WO2021196382A1 - 像素驱动电路以及显示面板 - Google Patents

像素驱动电路以及显示面板 Download PDF

Info

Publication number
WO2021196382A1
WO2021196382A1 PCT/CN2020/092754 CN2020092754W WO2021196382A1 WO 2021196382 A1 WO2021196382 A1 WO 2021196382A1 CN 2020092754 W CN2020092754 W CN 2020092754W WO 2021196382 A1 WO2021196382 A1 WO 2021196382A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
terminal
driving circuit
light
electrically connected
Prior art date
Application number
PCT/CN2020/092754
Other languages
English (en)
French (fr)
Inventor
尹伟红
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US17/251,371 priority Critical patent/US11335250B2/en
Publication of WO2021196382A1 publication Critical patent/WO2021196382A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/088Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements using a non-linear two-terminal element
    • G09G2300/089Pixel comprising a non-linear two-terminal element in series with each display pixel element, the series comprising also other elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2358/00Arrangements for display data security
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/141Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light conveying information used for selecting or modulating the light emitting or modulating element
    • G09G2360/142Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light conveying information used for selecting or modulating the light emitting or modulating element the light being detected by light detection means within each pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel
    • G09G2360/148Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel the light being detected by light detection means within each pixel

Definitions

  • the present invention relates to the field of display technology, and in particular to a pixel driving circuit and a display panel having a display mode and a photosensitive display mode.
  • the purpose of the present invention is to provide a pixel driving circuit and a display panel having a display mode and a photosensitive display mode, so as to solve the problems existing in the prior art.
  • a first aspect of the present invention provides a pixel driving circuit, including:
  • the photoelectric conversion element is electrically connected to the micro light-emitting diode through a circuit node to convert external light into photocurrent;
  • a light-emitting drive circuit for driving the micro light-emitting diode at least includes a first switch controlled by a first enable signal, and the first switch is connected to the input voltage and the circuit node In between, the micro light emitting diode is connected between the circuit node and the reference voltage;
  • a photosensitive driving circuit for driving the photoelectric conversion element at least includes a second switch controlled by a second enable signal, the second switch and the photoelectric conversion element are connected to the input Between the voltage and the circuit node,
  • the photoelectric conversion element when the first switch is in the on state and the second switch is in the off state, the photoelectric conversion element is disabled, and the light-emitting drive circuit drives the micro light-emitting diode to emit light, so that the The pixel driving circuit is in display mode;
  • the photosensitive driving circuit drives the photoelectric conversion element to generate a photocurrent, and the micro light emitting diode receives the light The current performs light-emitting display, so that the pixel driving circuit is in a light-sensitive display mode.
  • the second enable signal when the first enable signal is at a high level, the second enable signal is at a low level; when the first enable signal is at a low level, the second enable signal is at a high level Level.
  • the light-emitting drive circuit further includes:
  • a third switch the first end of which is used to receive the data signal source, and the second end of the third switch is used to receive the scanning signal source;
  • a fourth switch the first terminal of which is electrically connected to the input voltage, and the second terminal of which is electrically connected to the third terminal of the third switch,
  • the first switch of the first switch is electrically connected to the third terminal of the fourth switch
  • the second terminal of the switch is used to receive the first enable signal
  • the third terminal of the switch is electrically connected to the micro light emitting device.
  • the first end of the diode and the second end of the micro light-emitting diode are electrically connected to the reference voltage.
  • first switch, the second switch, the third switch, and the fourth switch are thin film transistors.
  • the light-emitting drive circuit further includes:
  • the storage capacitor has its first end electrically connected to the third end of the third switch and the second end of the fourth switch, and its second end is electrically connected to the input voltage.
  • the fourth switch is in a normally-on state through the storage capacitor.
  • the first switch, the third switch, and the fourth switch are all on.
  • the first end of the second switch is electrically connected to the input voltage
  • the second end of the second switch is used to receive the second enable signal
  • the third end of the second switch is electrically connected to the second end of the photoelectric conversion element.
  • the first end of the photoelectric conversion element is connected to the circuit node
  • the photosensitive driving circuit further includes:
  • the fifth switch has a first terminal electrically connected to the circuit node, a second terminal for receiving a reset signal source, and a third terminal electrically connected to the reference voltage.
  • the fifth switch is a thin film transistor.
  • the fifth switch when the pixel driving circuit is in the light-sensitive display mode, the fifth switch will be turned on first to reset the micro light-emitting diode and then turned off, and then turn on the second switch to make the The photoelectric conversion element generates photocurrent.
  • the light-emitting drive circuit includes a circuit with a uniformity compensation function, which is arranged at the front end of the pixel drive circuit and receives a data signal to compensate for the signal received by the micro light-emitting diode.
  • the photosensitive driving circuit includes an electric signal amplifying module, which is arranged between the micro light-emitting diode and the photoelectric conversion element to enhance the intensity of the photoelectric conversion element to the light response current.
  • the pixel driving circuit is arranged in a thin film transistor array substrate, which includes the first switch and the second switch, and the anode terminal of the micro light emitting diode is connected to the first switch through a bonding layer.
  • the drain terminal of the switch is electrically connected,
  • the material of the bonding layer is one of metal and its alloy, and has viscosity.
  • anode terminal of the photoelectric conversion element is electrically connected to the drain terminal of the second switch through the active layer material of the second switch.
  • anode terminal of the photoelectric conversion element is electrically connected to the drain terminal of the second switch through the bonding layer.
  • the anode terminal material of the photoelectric conversion element is a transparent conductive film.
  • a second aspect of the present invention provides a display panel, which includes the pixel driving circuit of any one of the above aspects.
  • a pixel driving circuit, a micro light emitting diode, and a photoelectric conversion element are arranged in the pixel, so that the micro light emitting diode can perform different driving operations according to the display mode and the photosensitive display mode to perform light emitting display, and realize the The function of the electronic device is integrated in the display panel, and there is no need to specially reserve an area for the electronic device to realize full-screen display.
  • Fig. 1 is a schematic diagram of a mobile terminal with a reserved hole or gap area.
  • FIG. 2 is a schematic diagram of a pixel driving circuit according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a circuit with a uniformity compensation function and a pixel driving circuit of an electric signal amplifying module according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a thin film transistor array substrate according to a second embodiment of the invention.
  • FIG. 5 is a schematic diagram of a thin film transistor array substrate according to a third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a thin film transistor array substrate according to a fourth embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a pixel driving circuit according to a first embodiment of the present invention.
  • the pixel drive circuit includes a light-emitting drive circuit (not labeled), a photosensitive drive circuit (not labeled), a micro light-emitting diode M1, and a photoelectric conversion element M2.
  • the micro-light-emitting diode M1 is used for light-emitting display
  • the photoelectric conversion element M2 is electrically connected to the micro-light-emitting diode M1 through a circuit node N to convert external light into light.
  • the light emitting drive circuit is used to drive the micro light emitting diode M1, and the photosensitive drive circuit is used to drive the photoelectric conversion element M2.
  • the light-emitting drive circuit includes at least a first switch T1, which is controlled by a first enable signal EN1, and the first switch T1 is connected between the input voltage VDD and the circuit node N.
  • the diode M1 is connected between the circuit node N and the reference voltage VSS;
  • the photosensitive driving circuit at least includes a second switch T2, which is controlled by a second enable signal EN2, and the second switch T2 and
  • the photoelectric conversion element M2 is connected between the input voltage VDD and the circuit node N.
  • the light-emitting drive circuit specifically includes three switches (T1, T3, and T4) and a storage capacitor Cs
  • the light-sensitive drive circuit specifically includes two switches (T2 and T5), each of which has two switches (T2 and T5). It includes a first terminal, a second terminal, and a third terminal, and the five switches can all be thin film transistors (thin film transistors). transistor, TFT), so each switch individually has a source terminal, a gate terminal, and a drain terminal, which correspond to the first terminal, the second terminal, and the third terminal, respectively.
  • the first terminal can be a source terminal or a drain terminal. If the first terminal is a source terminal, the third terminal is a drain terminal, and vice versa.
  • the terminal connected to the input voltage is the source terminal, and the other terminal is the drain terminal.
  • the switch of the present invention is preferably described as a P-type transistor, but this should not be interpreted as a limitation of the present invention.
  • the pixels in the display panel can have both a display mode for receiving data signals and a photosensitive display mode with the function of an electronic device. That is, through the present invention, it is possible to integrate the functions of an electronic device (such as a camera) into the display panel without special reserving holes or notches as the photosensitive area, thereby increasing the screen-to-body ratio.
  • an electronic device such as a camera
  • the light-emitting drive circuit further includes: a third switch T3, the first terminal of which is used to receive the data signal source Data, the second terminal of which is used to receive the scan signal source Scan, and the third terminal of which is electrically connected to the fourth switch
  • the second end of T4 and the first end of the storage capacitor Cs wherein the scan signal source Scan is a level signal from a scan line, and the level signal is used to control the input of the level signal of the data signal source Data
  • the fourth switch T4 its first end is electrically connected to the input voltage VDD, its second end is electrically connected to the third end of the third switch T3 and the first end of the storage capacitor Cs, and its third end is electrically connected Connected to the first terminal of the first switch T1; the storage capacitor Cs, the first terminal of which is electrically connected to the third terminal of the third switch T3 and the second terminal of the fourth switch T4, and the second terminal of the storage capacitor Cs is electrically connected to the The input voltage VDD is electrically connected, wherein the
  • the first terminal (anode) of the micro light emitting diode M1 is electrically connected to the third terminal of the fourth switch T4, and the second terminal (cathode) is electrically connected to the reference voltage VSS.
  • the pixel driving circuit is in the display mode, that is, when the imaging function is not activated, the level signals of the scanning signal source Scan and the first enable signal EN1 are high, indicating that the first switch T1, the third switch T3, and the fourth switch T4 are turned on.
  • the storage capacitor Cs may be used to maintain a voltage difference between the second terminal (gate terminal) of the fourth switch T4 and the first terminal connected to the input voltage VDD, so that the fourth switch T4 is in the normally-on state. Therefore, the first terminal of the micro light-emitting diode M1 can be connected to the input voltage VDD having a high potential to form a forward bias, and the level signal from the data signal source Data is received to emit light. .
  • the photosensitive driving circuit further includes: a second switch T2, a first terminal of which is electrically connected to the input voltage VDD, a second terminal of which is used to receive the second enable signal EN2, and a third terminal of which is electrically connected to the input voltage VDD.
  • the fifth switch T5 the first terminal of which is electrically connected to the circuit node N, the second terminal of which is used to receive the reset signal source RST, and the third terminal of which is electrically connected to
  • the level signal of the second enable signal EN2 is used to control the on and off of the second switch T2
  • the level signal of the reset signal source RST is used to control the fifth
  • the switch T5 is turned on and off to reset the potential of the micro light emitting diode M1.
  • the circuit node N is the third terminal of the first switch T1, the first terminal of the fifth switch T5, the first terminal of the micro light emitting diode, and the photoelectric The common intersection of the second ends of the conversion element.
  • the first end of the micro light emitting diode M1 is electrically connected to the circuit node N
  • the second end is electrically connected to the reference voltage VSS
  • the first end (anode) of the photoelectric conversion element M2 is electrically connected to the circuit node N.
  • the level signal of the reset signal source RST is first set to a high level to turn on the fifth switch T5, so the micro The potential of the light-emitting diode M1 can be reset and then turned off, and then the level signal of the second enable signal EN2 is set to a high level to turn on the second switch T2.
  • the photoelectric The first end of the conversion element M2 is connected to the input voltage VDD with a high potential to form a reverse bias voltage, so that when the photoelectric conversion element M2 detects light from the outside, it converts the light incident therein into a photocurrent And when the photocurrent is received by the micro light-emitting diode M1, it will perform light-emitting display.
  • the display mode and the photosensitive display mode are different driving operations, when the pixel driving circuit is in the display mode (that is, when the camera function is not activated), the scanning signal source Scan and the The level signal of the first enable signal EN1 is high, the level signal of the second enable signal EN2 and the level signal of the reset signal source RST are low, indicating that the first switch T1 and the second switch T1
  • the three switches T3 and the fourth switch T4 are turned on, so that the first end of the micro light-emitting diode M1 can be connected to the input voltage VDD having a high potential and receive the power of the data signal source Data.
  • a flat signal is illuminated and displayed, and since the second switch T2 and the fifth switch T5 are in the off state, the first end of the photoelectric conversion element M2 cannot be connected to the input voltage VDD and cannot convert the photocurrent , Causing the photoelectric conversion element M2 to disable.
  • the level signal of the first enable signal EN1 is set to a low level
  • the level signal of the reset signal source RST and The level signal of the second enable signal EN2 is set to a high level, indicating that the first switch T1 is in an off state, so that the first end of the micro light emitting diode M1 cannot be connected to the input
  • the voltage VDD and the level signal received from the data signal source Data (regardless of whether the third switch T3 and the fourth switch T4 are in the on state), and because the second switch T2 and the fifth switch T2
  • the switch T5 is turned on, so that the potential of the micro light emitting diode M1 can be reset first, and the first end of the photoelectric conversion element M2 is connected to the input voltage VDD with a high potential to convert the photocurrent, And when the photocurrent is received by the micro light-emitting diode M1, light-emitting display is performed.
  • the light-emitting drive circuit may additionally add a circuit with a uniformity compensation function to compensate for the signal received by the micro-light-emitting diode M1, for example, it has a brightness compensation that is not affected by a threshold voltage.
  • a functional circuit which can be composed of multiple thin film transistors.
  • the circuit of the uniformity compensation function can be arranged at the front end of the pixel driving circuit (as shown in area A in FIG.
  • the input signal such as the input voltage VDD and the level signal of the data signal source Data
  • the circuit of the uniformity compensation function it will be compensated by the circuit of the uniformity compensation function, and then it will be determined whether to transmit the compensated signal to the micro light emitting diode M1 by turning on and off the first switch T1 (according to the display The mode and the photosensitive display mode determine on and off), so that not only the driving mode of the pixel driving circuit will not be affected, but the signal received by the micro light emitting diode M1 can be optimized.
  • the photosensitive circuit may additionally add an electrical signal amplifying module to enhance the intensity of the photoelectric conversion element M2 to the light response current, thereby improving performance.
  • the electrical signal amplifying module may be arranged between the first end of the micro light emitting diode M1 and the second end of the photoelectric conversion element M2 (as shown in area B in FIG. 3), that is to say, when the When the photoelectric conversion element M2 generates a photocurrent, it first increases the intensity of the photocurrent through the electrical signal amplifying module, and then transmits it to the micro light emitting diode M1.
  • the electrical signal amplifying module may be composed of multiple resistors, multiple capacitors, multiple inductors, and even multiple thin film transistors, which is not specifically limited here.
  • FIGS. 4 to 6 are schematic diagrams of thin film transistor array substrates according to the second embodiment to the fourth embodiment of the present invention, respectively.
  • the micro light emitting diode M1 and the photoelectric conversion element M2 can be integrated in the thin film transistor array substrate substrate in different ways.
  • the thin film transistor array substrate includes the first switch T1 and the second switch T2.
  • the first switch T1 has a first source terminal 211, a first drain terminal 212, and a first anode electrode 213 electrically connected to the first drain terminal 212, and the first source terminal 211 is equivalent to the first
  • the first end of the first switch T1 is the end point of the input signal (here, the input voltage VDD and the level signal of the data signal source Data), and the input signal is affected by the input signal.
  • the first drain terminal 211 is equivalent to the third terminal of the first switch T1 in the first embodiment, which is connected to the first anode electrode 213 of the micro light emitting diode M1.
  • the micro light-emitting diode M1 (not shown in Figure 4) can be transferred through a thin film (thin Film transfer technology is bonded to the first anode electrode 213.
  • the micro light-emitting diode M1 is combined with the first anode electrode 213 through a bonding layer 214.
  • the bonding layer is formed of a metal or a metal alloy.
  • the present invention does not specifically limit the material of the bonding layer; the second switch T2 has a second source terminal 221 and a second drain terminal 222, and the second source terminal 221 is equivalent to a second source terminal 221 and a second drain terminal 222.
  • the first terminal of the second switch T2 is the terminal of the input signal (here, the input voltage VDD), and the input signal is controlled by the second enable signal EN2,
  • the second drain terminal 222 is equivalent to the third terminal of the second switch T2 in the first embodiment, and is connected to the second anode electrode 223 of the photoelectric conversion element M2 (corresponding to the photoelectric conversion element described above).
  • the first end of M2) is electrically connected. Furthermore, the photoelectric conversion element M2 can be prepared simultaneously with a plurality of thin film transistors (including the first switch T1 and the second switch T2) in the thin film transistor array substrate, that is, the plurality of thin film transistors are prepared at the same time.
  • the active layer of the transistor is fabricated at the same time, for example, polysilicon 2221 with doped ions and conductive as the second anode electrode 223 for extracting holes, and then a photoelectric conversion layer 224 and a second cathode for extracting electrons are sequentially formed thereon
  • the electrode 225 (corresponding to the second end of the photoelectric conversion element M2 described above) to form the photoelectric conversion element M2.
  • the second anode electrode 223 passes through the polysilicon 2221 and the second drain electrode. 222 is electrically connected.
  • the second cathode electrode 225 is a transparent conductive film (for example, indium tin oxide).
  • the difference from the second embodiment is that since the second drain electrode 222 and the polysilicon 2221 are both for conduction purposes, the first The second drain electrode 222 is replaced by the polysilicon 2221, so that the second anode electrode 223 can be directly electrically connected to the second drain electrode 222 replaced by the polysilicon 2221, that is, the input signal (herein Inputting the input voltage VDD) after receiving the second enable signal EN2 to turn on the second switch T2, the photoelectric conversion element M2 is directly generated by the polysilicon 2221 to generate a photocurrent.
  • the input signal herein Inputting the input voltage VDD
  • the difference from the second embodiment is that the photoelectric conversion element M2 (not shown in FIG. 6) is also bonded to the first embodiment.
  • the combination of the two switches T2 is specifically electrically connected to the third anode electrode 226 connected to the second drain terminal 222 through the combination layer 214, wherein the third anode electrode 226 serves as a hole for the photoelectric conversion element M2 to extract holes. electrode.
  • a pixel driving circuit, a micro light emitting diode, and a photoelectric conversion element are arranged in the pixel, so that the micro light emitting diode can perform different driving operations according to the display mode and the photosensitive display mode to perform light emitting display, and realize the The function of the electronic device is integrated in the display panel, and there is no need to specially reserve an area for the electronic device to realize full-screen display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

一种能够将电子设备的功能集成于显示面板中,以实现全屏显示的像素驱动电路,包括有发光驱动电路、感光驱动电路、一微发光二极体(M1)、以及一光电转换元件(M2),其中当像素驱动电路为显示模式时,发光驱动电路驱动微发光二极体(M1)发光显示,当像素驱动电路为感光显示模式时,感光驱动电路驱动光电转换元件(M2)产生光电流,并且当光电流被微发光二极体(M1)接收时会发光显示。

Description

像素驱动电路以及显示面板 技术领域
本发明涉及显示技术领域,尤其涉及一种具有显示模式以及感光显示模式的像素驱动电路以及显示面板。
背景技术
随着显示技术的发展,用户对屏占比的需求逐步提高,各屏幕厂商逐渐提出多种异形的显示面板以提高显示区域的占比。而近期全面屏的动向是将指纹识别、摄像头、面部识别、以及距离传感等传感器进一步地集成于显示面板中,使得显示面板从单纯的显示界面逐渐过渡到全面的感知的交互界面。例如在手机需要有前置的摄像功能,因此在屏占比日益提高的需求下,需要在手机的显示面板上预留孔洞11或是缺口区域(notch)12作为摄像头的感光区域(如图1所示),但这却降低了显示区域的占比。因此,有必要解决现有技术存在的问题。
技术问题
本发明的目的在于提供一种具有显示模式以及感光显示模式的像素驱动电路以及显示面板,以解决现有技术存在的问题。
技术解决方案
为实现上述目的,本发明第一方面提供一种像素驱动电路,包括:
微发光二极体,用以发光显示;
光电转换元件,通过一电路节点与所述微发光二极体电连接,用以将外部光线转换为光电流;
发光驱动电路,用以驱动所述微发光二极体,所述发光驱动电路至少包括有第一开关,其受第一使能信号控制,所述第一开关连接于输入电压和所述电路节点之间,所述微发光二极体连接于所述电路节点和参考电压之间;以及
感光驱动电路,用以驱动所述光电转换元件,所述感光驱动电路至少包括有第二开关,其受第二使能信号控制,所述第二开关和所述光电转换元件连接于所述输入电压和所述电路节点之间,
其中,当所述第一开关为导通状态并且所述第二开关为断开状态,所述光电转换元件失能,所述发光驱动电路驱动所述微发光二极体发光显示,使得所述像素驱动电路处于显示模式;以及
其中,当所述第一开关为断开状态并且所述第二开关为导通状态,所述感光驱动电路驱动所述光电转换元件产生光电流,并且所述微发光二极体接收所述光电流进行发光显示,使得所述像素驱动电路处于感光显示模式。
进一步地,当所述第一使能信号处于高电平时,所述第二使能信号处于低电平;当所述第一使能信号处于低电平时,所述第二使能信号处于高电平。
进一步地,所述发光驱动电路进一步包括:
第三开关,其第一端用以接收数据信号源,其第二端用以接收扫描信号源;以及
第四开关,其第一端电连接至所述输入电压,其第二端电连接至所述第三开关的第三端,
其中所述第一开关,其第一端电连接至所述第四开关的第三端,其第二端用以接收所述第一使能信号,其第三端电连接至所述微发光二极体的第一端,并且所述微发光二极体的第二端电连接至所述参考电压。
进一步地,所述第一开关、所述第二开关、所述第三开关、以及所述第四开关為薄膜晶体管。
进一步地,所述发光驱动电路进一步包括:
存储电容,其第一端电连接至所述第三开关的第三端以及所述第四开关的第二端,其第二端电连接至所述输入电压。
进一步地,所述第四开关通过所述存储电容处于常导通状态。
进一步地,当所述像素驱动电路处于所述显示模式时,所述第一开关、所述第三开关、以及所述第四开关均为导通状态。
进一步地,所述第二开关的第一端电连接至所述输入电压,其第二端用以接收所述第二使能信号,其第三端电连接所述光电转换元件的第二端,并且所述光电转换元件的第一端连接所述电路节点,所述感光驱动电路进一步包括:
第五开关,其第一端电连接至所述电路节点,其第二端用以接收复位信号源,其第三端电连接至所述参考电压。
进一步地,所述第五开关為薄膜晶体管。
进一步地,当所述像素驱动电路为感光显示模式时,所述第五开关会先导通使所述微发光二极体进行复位后关闭,接着再使所述第二开关导通以使所述光电转换元件产生光电流。
进一步地,所述发光驱动电路包括均一性补偿功能的电路,设置在所述像素驱动电路的前端,接收数据信号,用以对被所述微发光二极体接收的信号进行补偿。
进一步地,所述感光驱动电路包括电信号放大模块,设置在所述微发光二极体与所述光电转换元件之间,用以增强所述光电转换元件对光响应电流的强度。
进一步地,所述像素驱动电路设置于薄膜晶体管阵列基板中,其包括有所述第一开关以及所述第二开关,并且所述微发光二极体的阳极端通过结合层与所述第一开关的漏极端电连接,
其中,所述结合层的材料为金属以及其合金中的一种,具有黏性。
进一步地,所述光电转换元件的阳极端通过所述第二开关的有源层材料与所述第二开关的漏极端电连接。
进一步地,所述光电转换元件的阳极端通过所述结合层与所述第二开关的漏极端电连接。
进一步地,所述光电转换元件的所述阳极端材料为透明导电薄膜。
本发明第二方面提供一种显示面板,其包括上述任一方面的像素驱动电路。
有益效果
本发明通过在像素中设置像素驱动电路、微发光二极体、以及光电转换元件,使得所述微发光二极体得以根据显示模式以及感光显示模式作不同的驱动操作来进行发光显示,实现将电子设备的功能集成于显示面板,而不需要特地预留区域给电子设备,实现全屏显示。
附图说明
图1为具有预留的孔洞或缺口区域的移动终端的示意图。
图2为根据本发明第一实施例的像素驱动电路的示意图。
图3为根据本发明第一实施例的具有均一性补偿功能的电路以及电信号放大模块的像素驱动电路的示意图。
图4为根据本发明第二实施例的薄膜晶体管阵列基板的示意图。
图5为根据本发明第三实施例的薄膜晶体管阵列基板的示意图。
图6为根据本发明第四实施例的薄膜晶体管阵列基板的示意图。
本发明的最佳实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并对本发明作进一步地详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的实施例。本发明所提到的方向用语仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请参照图2,图2为根据本发明第一实施例的像素驱动电路的示意图。所述像素驱动电路包括发光驱动电路(未标示)、感光驱动电路(未标示)、微发光二极体M1、以及光电转换元件M2。在本实施例中,所述微发光二极体M1用以发光显示,所述光电转换元件M2通过一电路节点N与所述微发光二极体M1电连接,用以将外部光线转换为光电流,所述发光驱动电路用以驱动所述微发光二极体M1,所述感光驱动电路用以驱动所述光电转换元件M2。其中,所述发光驱动电路至少包括有第一开关T1,其受第一使能信号EN1控制,并且所述第一开关T1连接于输入电压VDD和所述电路节点N之间,所述微发光二极体M1连接于所述电路节点N和参考电压VSS之间;所述感光驱动电路则至少包括有第二开关T2,其受第二使能信号EN2控制,并且所述第二开关T2和所述光电转换元件M2连接于所述输入电压VDD和所述电路节点N之间。
在本实施例中,所述发光驱动电路具体包括三个开关(T1、T3、以及T4)以及一个存储电容Cs,所述感光驱动电路具体包括两个开关(T2以及T5),每个开关都包括有一第一端、一第二端、以及一第三端,并且所述五个开关均可以为薄膜晶体管(thin film transistor, TFT),因此每个开关个别具有源极端、栅极端以及漏极端,其分别对应到所述第一端、所述第二端以及所述第三端。可以理解的,第一端可以为源极端或是漏极端,若是第一端为源极端,则第三端为漏极端,反之亦然。一般而言会将连接输入电压的端点为源极端,另一端则为漏极端。为了方便说明,本发明的开关优选地以P型晶体管来作说明,但不应将此解释为对本发明的限制。
在本实施例中,显示面板内的像素可以同时具有接收数据信号的显示模式以及具有电子设备功能的感光显示模式。也就是说,通过本发明可以实现将电子设备(例如摄像头)的功能集成到显示面板中而不需要特地预留孔洞或是缺口区域(notch)作为感光区域,进而提高屏占比。为了方便说明,以下以摄像功能为例进行说明。
具体地,所述发光驱动电路进一步包括:第三开关T3,其第一端用以接收数据信号源Data,其第二端用以接收扫描信号源Scan,其第三端电连接至第四开关T4的第二端以及存储电容Cs的第一端,其中所述扫描信号源Scan为来自扫描线的电平信号,藉由所述电平信号控制所述数据信号源Data的电平信号的输入;第四开关T4,其第一端电连接至输入电压VDD,其第二端电连接至所述第三开关T3的第三端与所述存储电容Cs的第一端,其第三端电连接至第一开关T1的第一端;存储电容Cs,其第一端电连接至所述第三开关T3的第三端以及所述第四开关T4的第二端,其第二端与所述输入电压VDD电连接,其中所述第一开关T1的第一端电连接至所述第四开关T4的第三端,其第二端用以接收第一使能信号EN1,其第三端电连接至所述微发光二极体M1的第一端,所述第一使能信号EN1的电平信号用以控制所述第一开关T1的开与关。
再者,所述微发光二极体M1的第一端(阳极)电连接至所述第四开关T4的第三端,其第二端(阴极)电连接至所述参考电压VSS。当所述像素驱动电路处于显示模式时,即摄像功能不启动的情况下,所述扫描信号源Scan以及所述第一使能信号EN1的电平信号为高电平,表示所述第一开关T1、所述第三开关T3、以及所述第四开关T4为导通状态。于一实施例中,可以通过所述存储电容Cs使得所述第四开关T4的第二端(栅极端)和与所述输入电压VDD连接的第一端保持压差,使得所述第四开关T4处于常导通状态。因此,所述微发光二极体M1的第一端得以连接到具有高电位的所述输入电压VDD以形成顺向偏压,并且接收到来自所述数据信号源Data的电平信号而发光显示。
具体地,所述感光驱动电路进一步包括:第二开关T2,其第一端电连接至所述输入电压VDD,其第二端用以接收所述第二使能信号EN2,其第三端电连接至所述光电转换元件M2的第一端;第五开关T5,其第一端电连接至所述电路节点N,其第二端用以接收复位信号源RST,其第三端电连接至所述参考电压VSS,其中所述第二使能信号EN2的电平信号用以控制所述第二开关T2的开与关,所述复位信号源RST的电平信号用以控制所述第五开关T5的开与关,以使所述微发光二极体M1的电位复位。基于上述可以理解的,所述电路节点N为所述第一开关T1的第三端、所述第五开关T5的第一端、所述微发光二极体的第一端、以及所述光电转换元件的第二端的共同交点。
再者,所述微发光二极体M1的第一端电连接至所述电路节点N,其第二端电连接至所述参考电压VSS,而所述光电转换元件M2的第一端(阳极)电连接至所述第二开关T2的第三端,其第二端(阴极)则电连接至所述所述电路节点N。当所述像素驱动电路为感光显示模式时,即摄像功能启动的情况下,首先会将复位信号源RST的电平信号设置为高电平使所述第五开关T5导通,因此所述微发光二极体M1的电位得以先进行复位后再关闭,接着再将所述第二使能信号EN2的电平信号设置为高电平使所述第二开关T2导通,此时所述光电转换元件M2的第一端得以连接到具有高电位的所述输入电压VDD而形成反向偏压,使得光电转换元件M2在探测到来自外部的光线时,将入射于其中的光线转换为光电流,并且当所述光电流被所述微发光二极体M1接收时会进行发光显示。
综合上述,由于所述显示模式以及所述感光显示模式为不同的的驱动操作,因此当所述像素驱动电路处于显示模式时(即当摄像功能不启动时),所述扫描信号源Scan以及所述第一使能信号EN1的电平信号为高电平,所述第二使能信号EN2的电平信号以及复位信号源RST的电平信号则为低电平,表示第一开关T1、第三开关T3、以及第四开关T4为导通状态,使得所述微发光二极体M1的第一端得以连接到具有高电位的所述输入电压VDD并且接收到所述数据信号源Data的电平信号而发光显示,而由于所述第二开关T2以及所述第五开关T5为断开状态,使得所述光电转换元件M2的第一端无法连接到所述输入电压VDD而无法转换光电流,造成所述光电转换元件M2失能。另外,当所述像素驱动电路处于感光显示模式时(即当摄像功能启动时),所述第一使能信号EN1的电平信号设置为低电平,而复位信号源RST的电平信号以及所述第二使能信号EN2的电平信号则设置为高电平,表示所述第一开关T1为断开状态,使得所述微发光二极体M1的第一端无法连接到所述输入电压VDD以及接收到所述数据信号源Data的电平信号(无论所述第三开关T3与所述第四开关T4是否为导通状态),而由于所述第二开关T2以及所述第五开关T5为导通状态,使得所述微发光二极体M1的电位得以先进行复位后,所述光电转换元件M2的第一端连接到具有高电位的所述输入电压VDD而转换光电流,并且当所述光电流被所述微发光二极体M1接收时则进行发光显示。
于一实施例中,所述发光驱动电路可以额外增加具有均一性补偿功能的电路,用以对被所述微发光二极体M1接收的信号进行补偿,例如具有不受阈值电压影响的亮度补偿功能的电路,其可以由多个薄膜晶体管组成。所述均一性补偿功能的电路可以设置在所述像素驱动电路的前端(如图3中的区域A),也就是说在输入信号(例如输入电压VDD和数据信号源Data的电平信号)输入后会先经过所述均一性补偿功能的电路进行补偿,而后再经由所述第一开关T1的开与关决定是否将补偿后的信号传送至所述微发光二极体M1(根据所述显示模式以及所述感光显示模式决定开与关),这样不但不会影响所述像素驱动电路的驱动模式,更可以优化所述微发光二极体M1所接收到的信号。
于一实施例中,所述感光电路也可以额外增加电信号放大模块,以增强光电转换元件M2对光响应电流的强度,从而提升性能。所述电信号放大模块可以设置在所述微发光二极体M1的第一端与所述光电转换元件M2的第二端之间(如图3中的区域B),也就是说当所述光电转换元件M2产生光电流时,会先经过所述电信号放大模块增强光电流的强度,而后再传送至所述微发光二极体M1。可以理解的是,所述电信号放大模块可以由多个电阻器、多个电容器、以及多个电感器、甚至多个薄膜晶体管所组成,在此不做具体地限制。
结合图4至图6,图4至图6分别为根据本发明第二实施例至第四实施例的薄膜晶体管阵列基板的示意图。在本发明中,所述微发光二极体M1与所述光电转换元件M2可以通过不同的方式集成于所述薄膜晶体管阵列基板基板中。
在第二实施例中(如图4所示),所述薄膜晶体管阵列基板包括有所述第一开关T1以及所述第二开关T2。其中,所述第一开关T1具有第一源极端211、第一漏极端212、以及与所述第一漏极端212电连接的第一阳极电极213,所述第一源极端211相当于第一实施例中的所述第一开关T1的第一端,为输入信号(在此为输入所述输入电压VDD和所述数据信号源Data的电平信号)的端点,并且所述输入信号受到所述第一使能信号EN1的控制,所述第一漏极端211相当于第一实施例中的所述第一开关T1的第三端,其与所述微发光二极管M1的第一阳极电极213(相当于上述的所述微发光二极管M1的第一端)电连接。再者,所述微发光二极体M1(未图式于图4中)可以通过薄膜转移(thin film transfer)技术与所述第一阳极电极213键合(bonding)。于一实施例中,所述微发光二极管M1通过结合层214与所述第一阳极电极213结合,所述结合层为由金属或是金属合金所形成,其具有黏性,亦用于制作所述微发光二极管M1的磊晶基板与载体(carrier)基板的接合。可以理解的是,本发明并未对所述结合层的材料做具体地限制;所述第二开关T2具有第二源极端221以及第二漏极端222,所述第二源极端221相当于第一实施例中的所述第二开关T2的第一端,为输入信号(在此为输入所述输入电压VDD)的端点,并且所述输入信号受到所述第二使能信号EN2的控制,所述第二漏极端222相当于第一实施例中的所述第二开关T2的第三端,其与所述光电转换元件M2的第二阳极电极223(相当于上述的所述光电转换元件M2的第一端)电连接。再者,所述光电转换元件M2可以与所述薄膜晶体管阵列基板中的多个薄膜晶体管(包括所述第一开关T1与所述第二开关T2)同时制备,即在制备所述多个薄膜晶体管的有源层的同时制作例如具有参杂离子并且可以导电的多晶硅2221作为提取电洞的所述第二阳极电极223,接着依序在其上形成光电转换层224以及提取电子的第二阴极电极225(相当于上述的所述光电转换元件M2的第二端),以形成所述光电转换元件M2,此时所述第二阳极电极223通过所述多晶硅2221与所述第二漏极电极222电连接,为了使光线得以被所述光电转换层224接收并转换光电流,所述第二阴极电极225为透明导电薄膜(例如铟锡氧化物)。
在第三实施例中(如图5所示),其与第二实施例的差别在于:由于所述第二漏极电极222与所述多晶硅2221均为导通用途,因此可以将所述第二漏极电极222以所述多晶硅2221替代,使得所述第二阳极电极223可以直接与被所述多晶硅2221取代的所述第二漏极电极222电连接,即所述输入信号(在此为输入所述输入电压VDD)在受到所述第二使能信号EN2开启所述第二开关T2后,直接通过所述多晶硅2221使所述光电转换元件M2产生光电流。
在第四实施例中(如图6所示),其与第二实施例的差别在于:所述光电转换元件M2(未图式于图6中)同样也是以键合的方式与所述第二开关T2结合,具体为通过所述结合层214与连接所述第二漏极端222的第三阳极电极226电连接,其中所述第三阳极电极226作为所述光电转换元件M2提取电洞的电极。
本发明通过在像素中设置像素驱动电路、微发光二极体、以及光电转换元件,使得所述微发光二极体得以根据显示模式以及感光显示模式作不同的驱动操作来进行发光显示,实现将电子设备的功能集成于显示面板,而不需要特地预留区域给电子设备,实现全屏显示。
虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本申请的范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (17)

  1. 一种像素驱动电路,其特征在于,包括:
    微发光二极体,用以发光显示;
    光电转换元件,通过一电路节点与所述微发光二极体电连接,用以将外部光线转换为光电流;
    发光驱动电路,用以驱动所述微发光二极体,所述发光驱动电路至少包括有第一开关,其受第一使能信号控制,所述第一开关连接于输入电压和所述电路节点之间,所述微发光二极体连接于所述电路节点和参考电压之间;以及
    感光驱动电路,用以驱动所述光电转换元件,所述感光驱动电路至少包括有第二开关,其受第二使能信号控制,所述第二开关和所述光电转换元件连接于所述输入电压和所述电路节点之间,
    其中,当所述第一开关为导通状态并且所述第二开关为断开状态,所述光电转换元件失能,所述发光驱动电路驱动所述微发光二极体发光显示,使得所述像素驱动电路处于显示模式;以及
    其中,当所述第一开关为断开状态并且所述第二开关为导通状态,所述感光驱动电路驱动所述光电转换元件产生光电流,并且所述微发光二极体接收所述光电流进行发光显示,使得所述像素驱动电路处于感光显示模式。
  2. 根据权利要求1所述的像素驱动电路,其特征在于:当所述第一使能信号处于高电平时,所述第二使能信号处于低电平;当所述第一使能信号处于低电平时,所述第二使能信号处于高电平。
  3. 根据权利要求1所述的像素驱动电路,其特征在于,所述发光驱动电路进一步包括:
    第三开关,其第一端用以接收数据信号源,其第二端用以接收扫描信号源;以及
    第四开关,其第一端电连接至所述输入电压,其第二端电连接至所述第三开关的第三端,
    其中所述第一开关,其第一端电连接至所述第四开关的第三端,其第二端用以接收所述第一使能信号,其第三端电连接至所述微发光二极体的第一端,并且所述微发光二极体的第二端电连接至所述参考电压。
  4. 根据权利要求3所述的像素驱动电路,其特征在于:所述第一开关、所述第二开关、所述第三开关、以及所述第四开关為薄膜晶体管。
  5. 根据权利要求3所述的像素驱动电路,其特征在于,所述发光驱动电路进一步包括:
    存储电容,其第一端电连接至所述第三开关的第三端以及所述第四开关的第二端,其第二端电连接至所述输入电压。
  6. 根据权利要求5所述的像素驱动电路,其特征在于:所述第四开关通过所述存储电容处于常导通状态。
  7. 根据权利要求3所述的像素驱动电路,其特征在于:当所述像素驱动电路处于所述显示模式时,所述第一开关、所述第三开关、以及所述第四开关均为导通状态。
  8. 根据权利要求1所述的像素驱动电路,其特征在于:所述第二开关的第一端电连接至所述输入电压,其第二端用以接收所述第二使能信号,其第三端电连接所述光电转换元件的第二端,并且所述光电转换元件的第一端连接所述电路节点,所述感光驱动电路进一步包括:
    第五开关,其第一端电连接至所述电路节点,其第二端用以接收复位信号源,其第三端电连接至所述参考电压。
  9. 根据权利要求8所述的像素驱动电路,其特征在于:所述第五开关為薄膜晶体管。
  10. 根据权利要求8所述的像素驱动电路,其特征在于:当所述像素驱动电路为感光显示模式时,所述第五开关会先导通使所述微发光二极体进行复位后关闭,接着再使所述第二开关导通以使所述光电转换元件产生光电流。
  11. 根据权利要求1所述的像素驱动电路,其特征在于:所述发光驱动电路包括均一性补偿功能的电路,设置在所述像素驱动电路的前端,接收数据信号,用以对被所述微发光二极体接收的信号进行补偿。
  12. 根据权利要求1所述的像素驱动电路,其特征在于:所述感光驱动电路包括电信号放大模块,设置在所述微发光二极体与所述光电转换元件之间,用以增强所述光电转换元件对光响应电流的强度。
  13. 根据权利要求1所述的像素驱动电路,其特征在于:所述像素驱动电路设置于薄膜晶体管阵列基板中,其包括有所述第一开关以及所述第二开关,并且所述微发光二极体的阳极端通过结合层与所述第一开关的漏极端电连接,
    其中,所述结合层的材料为金属以及其合金中的一种,具有黏性。
  14. 根据权利要求13所述的像素驱动电路,其特征在于:所述光电转换元件的阳极端通过所述第二开关的有源层材料与所述第二开关的漏极端电连接。
  15. 根据权利要求13所述的像素驱动电路,其特征在于:所述光电转换元件的阳极端通过所述结合层与所述第二开关的漏极端电连接。
  16. 根据权利要求15所述的像素驱动电路,其特征在于:所述光电转换元件的所述阳极端材料为透明导电薄膜。
  17. 一种显示面板,其包括如权利要求1-16任一项所述的像素驱动电路。
PCT/CN2020/092754 2020-04-02 2020-05-28 像素驱动电路以及显示面板 WO2021196382A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/251,371 US11335250B2 (en) 2020-04-02 2020-05-28 Pixel driving circuit and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010257945.7 2020-04-02
CN202010257945.7A CN111312161B (zh) 2020-04-02 2020-04-02 像素驱动电路以及显示面板

Publications (1)

Publication Number Publication Date
WO2021196382A1 true WO2021196382A1 (zh) 2021-10-07

Family

ID=71160980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092754 WO2021196382A1 (zh) 2020-04-02 2020-05-28 像素驱动电路以及显示面板

Country Status (3)

Country Link
US (1) US11335250B2 (zh)
CN (1) CN111312161B (zh)
WO (1) WO2021196382A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3958245A1 (en) * 2020-08-21 2022-02-23 ams International AG A display, a display device and method to operate a display
KR20230046700A (ko) 2021-09-30 2023-04-06 엘지디스플레이 주식회사 픽셀 회로와 이를 포함한 표시장치
CN114067729B (zh) * 2021-11-16 2022-10-04 武汉华星光电技术有限公司 发光驱动电路及显示面板
CN117218991B (zh) * 2023-08-29 2024-10-11 中山大学 基于发光探测一体化器件的屏幕及其控制方法和系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887687A (zh) * 2009-05-12 2010-11-17 索尼公司 像素电路、显示装置和用于像素电路的驱动方法
CN203250518U (zh) * 2013-05-31 2013-10-23 京东方科技集团股份有限公司 像素电路、有机发光显示面板及显示装置
CN203520345U (zh) * 2013-07-31 2014-04-02 京东方科技集团股份有限公司 有机发光二极管像素电路和显示装置
KR20150131944A (ko) * 2014-05-14 2015-11-25 크루셜텍 (주) 이미지 스캔 가능한 디스플레이 장치
CN108766341A (zh) * 2018-05-22 2018-11-06 京东方科技集团股份有限公司 像素电路、显示面板、显示设备以及像素电路的控制方法
CN109671384A (zh) * 2019-01-29 2019-04-23 维沃移动通信有限公司 终端及用于终端的感光检测方法
CN110462837A (zh) * 2017-12-15 2019-11-15 京东方科技集团股份有限公司 具有图像扫描功能的amoled显示面板
CN110459175A (zh) * 2019-08-09 2019-11-15 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4161454B2 (ja) * 1999-03-16 2008-10-08 カシオ計算機株式会社 表示素子及びその駆動方法、並びに表示装置
WO2003054980A2 (en) * 2001-12-20 2003-07-03 Koninklijke Philips Electronics N.V. Dual-function electroluminescent device and method for driving the same
JP2006520490A (ja) * 2003-03-12 2006-09-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エージングに対抗するためにタイミングに有効な光フィードバックを有する発光アクティブマトリクス表示装置
US20090225016A1 (en) * 2008-03-10 2009-09-10 Wintek Corporation Light-sensitive driving circuit, light-sensitive method and display
JP5464583B2 (ja) * 2009-11-27 2014-04-09 株式会社ジャパンディスプレイ センサ装置、センサ素子の駆動方法、入力機能付き表示装置および電子機器
CN104900186B (zh) * 2015-06-15 2017-05-31 京东方科技集团股份有限公司 Oled像素电路及其显示装置
CN106710524A (zh) * 2015-11-13 2017-05-24 小米科技有限责任公司 Oled面板、终端及感光控制方法
CN105679245B (zh) * 2016-03-31 2018-06-08 上海天马有机发光显示技术有限公司 一种像素补偿电路及像素结构
KR102346031B1 (ko) * 2017-07-25 2022-01-03 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
CN109427301B (zh) * 2018-05-09 2021-01-22 京东方科技集团股份有限公司 像素电路和电致发光显示面板、其驱动方法及显示装置
CN108665852A (zh) * 2018-07-23 2018-10-16 京东方科技集团股份有限公司 像素电路、驱动方法、有机发光显示面板及显示装置
CN110568649A (zh) * 2019-09-10 2019-12-13 武汉华星光电技术有限公司 一种显示装置及其驱动方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887687A (zh) * 2009-05-12 2010-11-17 索尼公司 像素电路、显示装置和用于像素电路的驱动方法
CN203250518U (zh) * 2013-05-31 2013-10-23 京东方科技集团股份有限公司 像素电路、有机发光显示面板及显示装置
CN203520345U (zh) * 2013-07-31 2014-04-02 京东方科技集团股份有限公司 有机发光二极管像素电路和显示装置
KR20150131944A (ko) * 2014-05-14 2015-11-25 크루셜텍 (주) 이미지 스캔 가능한 디스플레이 장치
CN110462837A (zh) * 2017-12-15 2019-11-15 京东方科技集团股份有限公司 具有图像扫描功能的amoled显示面板
CN108766341A (zh) * 2018-05-22 2018-11-06 京东方科技集团股份有限公司 像素电路、显示面板、显示设备以及像素电路的控制方法
CN109671384A (zh) * 2019-01-29 2019-04-23 维沃移动通信有限公司 终端及用于终端的感光检测方法
CN110459175A (zh) * 2019-08-09 2019-11-15 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
US20220051611A1 (en) 2022-02-17
US11335250B2 (en) 2022-05-17
CN111312161A (zh) 2020-06-19
CN111312161B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
US10916598B2 (en) OLED array substrate, method for fabricating the same, OLED pixel circuit, and display device
US11210492B2 (en) OLED display panel, driving method therefor, and display device
WO2021196382A1 (zh) 像素驱动电路以及显示面板
JP5331862B2 (ja) Elディスプレイ
US11232750B2 (en) Display substrate, display panel, and manufacturing method and driving method of display substrate
US20200294752A1 (en) Display panel, display device and method for determining the position of an external object thereby
EP2091039B1 (en) Photo sensor and flat panel display device using thereof
US11085817B2 (en) Device and method for detecting light intensity, and display device
CN110444158B (zh) 像素驱动电路及其驱动方法、显示面板及显示装置
CN109147693B (zh) 具有红外识别的发光二极管显示装置
EP4002480A1 (en) Display substrate, and display device
US11156868B2 (en) Charge release circuit and driving method therefor, and display device
US20230320155A1 (en) Display panel and display device
WO2021256194A1 (ja) 画像表示装置及び電子機器
WO2023202586A9 (zh) 像素驱动电路、显示模组及显示装置、智能手表
US8610047B2 (en) Image sensor pixel having a static transistor and a dynamic transistor coupled to a sensing capacitor and driving method thereof
CN112054017A (zh) 一种显示面板、制备方法及显示装置
CN111625133A (zh) Oled显示面板
WO2021256185A1 (ja) 画像表示装置及び電子機器
US20240032337A1 (en) Display panel, manufacturing method thereof, and display device
US20230107909A1 (en) Display panel and display device
CN115641805A (zh) 显示基板及其亮度补偿方法、显示装置
CN114664906B (zh) 一种光感模组、显示面板及显示装置
CN221575972U (zh) 发射显示装置
CN113450706B (zh) 检测电路及其驱动方法、显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE