WO2021196093A1 - 电压攻击检测电路和芯片 - Google Patents

电压攻击检测电路和芯片 Download PDF

Info

Publication number
WO2021196093A1
WO2021196093A1 PCT/CN2020/082828 CN2020082828W WO2021196093A1 WO 2021196093 A1 WO2021196093 A1 WO 2021196093A1 CN 2020082828 W CN2020082828 W CN 2020082828W WO 2021196093 A1 WO2021196093 A1 WO 2021196093A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
detection circuit
circuit
attack detection
signal
Prior art date
Application number
PCT/CN2020/082828
Other languages
English (en)
French (fr)
Inventor
杨江
薛建锋
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/082828 priority Critical patent/WO2021196093A1/zh
Priority to CN202080001164.XA priority patent/CN111670367B/zh
Priority to EP20924968.9A priority patent/EP3929601B1/en
Priority to US17/490,178 priority patent/US20220019701A1/en
Publication of WO2021196093A1 publication Critical patent/WO2021196093A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • G06F21/75Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information by inhibiting the analysis of circuitry or operation
    • G06F21/755Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information by inhibiting the analysis of circuitry or operation with measures against power attack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/554Detecting local intrusion or implementing counter-measures involving event detection and direct action
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/82Protecting input, output or interconnection devices
    • G06F21/85Protecting input, output or interconnection devices interconnection devices, e.g. bus-connected or in-line devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31719Security aspects, e.g. preventing unauthorised access during test

Definitions

  • the embodiments of the present application relate to the field of electronics, and more specifically, to voltage attack detection circuits and chips.
  • a security chip can be used to realize functions such as user identification and key data storage, and it is widely used in the financial field.
  • security chips play a vital role in information security.
  • more and more chip-level attack methods and examples have been disclosed, and accordingly, higher and higher requirements are put forward for chip-level security.
  • error injection attack There are many ways to attack the chip level, of which error injection attacks are the most effective.
  • the purpose of the error injection attack is to force the chip to perform an abnormal operation, thereby exposing the security information in the chip. At this point, the attacker can easily obtain the confidential data in the security chip by using fault analysis technology.
  • error injection attack such as voltage attack, temperature attack, laser attack, electromagnetic attack, etc.
  • each power domain is independent, there are certain dependencies and interactions. Therefore, each power domain must be protected. In other words, the chip must build a complete set of protection schemes against voltage attacks in the full power domain.
  • the embodiments of the present application provide a voltage attack detection circuit and chip, which can perform voltage attack protection for the entire power domain.
  • a voltage attack detection circuit including:
  • At least one voltage regulation circuit At least one voltage regulation circuit
  • the at least one voltage regulation circuit is respectively connected to an external power source, the at least one voltage regulation circuit is used to convert the external power source into at least one internal power source, and the at least one internal power source is respectively used to output at least one first voltage;
  • At least one voltage sensor At least one voltage sensor
  • the at least one voltage sensor is respectively connected to the at least one internal power source to receive the at least one first voltage respectively, and each voltage sensor of the at least one voltage sensor is used to be based on the received reference voltage and The received first voltage outputs a first signal, and the first signal is used to indicate whether the received first voltage is within a preset voltage range.
  • the at least one first voltage output by the at least one voltage regulation circuit can be protected against voltage attacks, that is, the entire power domain can be protected against voltage attacks.
  • the maximum value of the preset voltage range is less than the maximum operating voltage of the bandgap reference, and the minimum value of the preset voltage range is greater than the minimum operating voltage of the bandgap reference.
  • the maximum value of the preset voltage range is configured to be less than the maximum operating voltage of the bandgap reference, and the minimum value is configured to be greater than the minimum operating voltage of the bandgap reference. In the case of normal operation of the circuit, it can be as far as possible Reduce the probability of false warnings to improve user experience.
  • the voltage attack detection circuit further includes:
  • the reference voltage generation circuit is used to generate the reference voltage
  • the reference voltage detection circuit is connected to the reference voltage generation circuit
  • the reference voltage detection circuit is used to receive the reference voltage and output an indication signal
  • the The indication signal is used to indicate whether the reference voltage is abnormal.
  • the voltage attack detection circuit further includes:
  • the reference voltage detection circuit is respectively connected to the at least one voltage sensor through the burr elimination circuit, and the burr elimination circuit is used to reset the first indicator signal whose duration is less than or equal to the preset threshold value to the second indicator Signal, the first indication signal is used to indicate that the reference voltage is abnormal, and the second indication signal is used to indicate that the reference voltage is not abnormal.
  • the glitch elimination circuit can ensure the accuracy of the indication signal.
  • the accuracy of the voltage attack warning can be guaranteed.
  • the voltage attack circuit can correctly indicate whether the at least one first voltage is attacked even when the reference voltage has a glitch, so as to alert the user when the power supply voltage is attacked Pay attention to safety protection or take safety measures.
  • each voltage sensor of the at least one voltage sensor is further configured to receive the indication signal, so that each voltage sensor of the at least one voltage sensor outputs the indication signal according to the received indication signal. ⁇ Said the first signal.
  • the first signal is used to indicate that the received first voltage is within the preset voltage range.
  • the voltage attack detection circuit further includes:
  • the external power supply voltage sensor is connected to the external power supply, the external power supply is used to output a second voltage, and the external power supply voltage sensor is used to receive the second voltage and the reference voltage and output a second signal , The second signal is used to indicate whether the second voltage is within the preset voltage range.
  • the external power supply voltage sensor can be used for voltage attack protection for the external power supply.
  • each voltage regulation circuit in the at least one voltage regulation circuit includes at least one of the following elements: a low dropout linear regulator, a charge pump, a step-down variation circuit, and a step-up type Changing circuit and bidirectional DC converter.
  • each of the at least one voltage sensor includes a hysteresis comparator.
  • a chip including:
  • FIG. 1 is a schematic structural diagram of the positional relationship between a voltage sensor and a voltage adjustment circuit in an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a voltage attack detection circuit according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of the positional relationship between a voltage sensor and a voltage adjustment circuit in an embodiment of the present application.
  • the chip will have multiple power domains (ie, internal power).
  • a voltage regulator circuit Voltage Regulator converts the input voltage (Input Voltage) into an output voltage (Output Voltage), and supplies power to other modules.
  • Voltage Regulator converts the input voltage (Input Voltage) into an output voltage (Output Voltage), and supplies power to other modules.
  • the chip contains multiple such voltage regulation circuits, a complex and diverse power domain is formed, and each power domain needs a voltage sensor to detect whether it is subject to voltage attacks.
  • FIG. 2 is a schematic structural diagram of a voltage attack detection circuit 200 according to an embodiment of the present application.
  • the voltage attack detection circuit 200 may include at least one voltage adjustment circuit.
  • the at least one voltage adjustment circuit may include a first voltage adjustment circuit 231 and a second voltage adjustment circuit as shown in FIG. 232,..., and the Nth voltage regulating circuit 23N.
  • the at least one voltage regulating circuit is respectively connected to an external power source (VDD), the at least one voltage regulating circuit is used to convert the external power source into at least one internal power source, and the at least one internal power source is respectively used to output at least one first power source.
  • VDD external power source
  • the at least one internal power source may include internal power sources V1, V2,..., And VN as shown in FIG. 2.
  • Each of the at least one power supply can supply power to different devices or modules in the chip.
  • the voltage attack detection circuit 200 may further include at least one voltage sensor.
  • the at least one voltage sensor may include a first voltage sensor 241, a second voltage sensor 242, ..., and an Nth voltage sensor 24N as shown in FIG. 2;
  • the at least one voltage sensor is respectively connected to the at least one internal power source to respectively receive the at least one first voltage, and each voltage sensor of the at least one voltage sensor is configured to be based on the received reference voltage ( The reference voltage, VREF) and the received first voltage output a first signal, and the first signal is used to indicate whether the received first voltage is within a preset voltage range.
  • the reference voltage, VREF The reference voltage, VREF
  • the at least one voltage sensor respectively outputs at least one first signal
  • the at least one first signal is respectively used to indicate whether the at least one first voltage is within a preset voltage range.
  • each of the at least one first signal may include a first signal component and a second signal component.
  • the at least one first signal may include at least one first signal component, for example, the at least one first signal component may include VIH, V2H,..., and VNH and at least one second signal as shown in FIG. 2 Components, for example, the at least one second signal component may include VIL, V2L, ..., and VNL as shown in FIG. 2.
  • the at least one first signal component may be respectively used to indicate whether the at least one first voltage is greater than or equal to the maximum value of the preset voltage range
  • the at least one second signal component may be respectively used to indicate Whether the at least one first voltage is less than or equal to the minimum value of the preset voltage range.
  • the first voltage adjustment circuit 231, the second voltage adjustment circuit 232,..., and the Nth voltage adjustment circuit 23N divide the external power supply domain VDD into V1 ⁇ VN Multiple internal power domains, where each internal power domain is connected to a voltage sensor.
  • the preset voltage range that is, the safe range
  • a high-voltage alarm signal is output
  • the voltage is lower than the safe range
  • a low-voltage alarm signal is output.
  • the first voltage regulating circuit 231 converts the external power supply VDD into the internal power supply V1.
  • V1H becomes a high level (logic "1"), that is, High voltage alarm signal
  • V1L changes to a high level (logic "1"), that is, a low voltage alarm signal is issued.
  • each of the at least one voltage sensor may be used to receive a first voltage and a first reference voltage and output a first signal component, the first signal component being used to indicate whether the first voltage is greater than Or equal to the first reference voltage; each of the at least one voltage sensor may also be used to receive the one first voltage and the second reference voltage and output a second signal component, the second signal component It is used to indicate whether the first voltage is less than or equal to the second reference voltage.
  • the voltage value of the first reference voltage is greater than the voltage value of the second reference voltage.
  • the at least one first voltage output by the at least one voltage regulation circuit can be protected against voltage attacks, that is, the entire power domain can be protected against voltage attacks.
  • the maximum value of the preset voltage range (that is, the upper limit value of the preset voltage range) is less than the maximum operating voltage of the bandgap reference
  • the minimum value of the preset voltage range (That is, the lower limit of the preset voltage range) is greater than the minimum operating voltage of the bandgap reference.
  • the maximum value of the preset voltage range is less than or equal to the voltage value of the first voltage when the power supply voltage is the maximum operating voltage of the bandgap reference.
  • the minimum value of the preset voltage range is greater than or equal to the voltage value of the first voltage when the voltage of the external power source is the minimum operating voltage of the bandgap reference.
  • the maximum value of the preset voltage range is configured to be less than the maximum operating voltage of the bandgap reference, and the minimum value is configured to be greater than the minimum operating voltage of the bandgap reference. In the case of normal operation of the circuit, it can be as far as possible Reduce the probability of false warnings to improve user experience.
  • the bandgap reference may also be referred to as a bandgap reference circuit, and the bandgap reference may be used to convert the external power supply (VDD) into some or all of the components in the voltage attack detection circuit 200.
  • VDD external power supply
  • the operating voltage of the band gap reference may be a range value.
  • the operating voltage of the band gap reference may also be a preset value.
  • the size of the operating voltage of the band gap reference depends on the size of the VDD. For example, the VDD can be directly used as the operating voltage of the band gap reference.
  • the target voltage regulating circuit ie, the target internal power supply
  • the working voltage of the bandgap reference is at the maximum working voltage, because the bandgap reference
  • the working voltage of is provided by the VDD and its size depends on the size of the VDD. Therefore, the voltage value of the VDD and the target internal power supply (that is, the target first voltage output by the target internal power supply) will also be Reaches the maximum value. Equivalently, by comparing the maximum value of the target first voltage with the first signal component formed by the first reference voltage to indicate whether the target internal power source is in a high voltage abnormal state, the first signal component can be increased The accuracy of the signal component.
  • the target voltage regulation circuit ie, the target internal power supply
  • the output voltage of the bandgap reference ie, the second reference voltage
  • the VDD and the target first voltage can also reach the minimum value. Equivalently, by comparing the minimum value of the target first voltage with the second signal component formed by the second reference voltage to indicate whether the target internal power source is in a low voltage abnormal state, the second signal component can be increased The accuracy of the signal component.
  • the voltage attack detection circuit 200 may further include a reference voltage generation circuit 210 and a reference voltage detection circuit 220.
  • the reference voltage generation circuit 210 is used to generate the reference voltage
  • the reference voltage detection circuit 220 is connected to the reference voltage generation circuit 210
  • the reference voltage detection circuit 220 is used to receive the reference voltage and output an indication Signal
  • the indication signal is used to indicate whether the reference voltage is abnormal.
  • the reference signals used by the at least one voltage sensor are the same reference signal to optimize the circuit structure.
  • the reference voltage generating circuit 210 may be used to generate a first reference voltage and a second reference voltage, and the at least one voltage sensor corresponds to the one first reference voltage and the one second reference voltage.
  • the at least one voltage sensor can also use different reference voltages.
  • the reference voltage generating circuit 210 may also be used to generate at least one first reference voltage and at least one second reference voltage.
  • the at least one first reference voltage corresponds to the at least one voltage sensor, respectively.
  • the at least one second reference voltage corresponds to the at least one voltage sensor, respectively.
  • the reference voltage generating circuit 210 may be a bandgap reference (Bandgap voltage reference, Bandgap), that is, the reference voltage may be a working voltage of a bandgap reference.
  • the bandgap reference can be the sum of a voltage proportional to temperature and a voltage inversely proportional to temperature, and the temperature coefficients of the two cancel each other to realize a voltage reference independent of temperature.
  • the bandgap reference may be a DC voltage that is independent of power supply and process and has certain temperature characteristics.
  • the band gap reference may be approximately 1.25V.
  • the reference voltage of the band gap reference may be similar to the band gap voltage of silicon.
  • Constructing the reference voltage as a reference voltage can prevent the specific value of the reference voltage from changing with changes in temperature. Accordingly, the voltage of the at least one internal power supply (that is, the at least one first voltage) can be accurately detected. ) Whether it is lower than or exceeding the preset voltage range, and remind the user that the power domain is under voltage attack when the preset voltage range is exceeded.
  • each voltage sensor of the at least one voltage sensor is further configured to receive the indication signal, so that each voltage sensor of the at least one voltage sensor outputs according to the received indication signal The first signal. For example, if the indication signal is used to indicate that the reference voltage is abnormal, the first signal is used to indicate that the received first voltage is within the preset voltage range.
  • the priority of the indication signal is higher than the priority of the judgment result of the at least one first voltage.
  • the indication signal when used to indicate that the reference voltage is abnormal, even if none of the at least one first voltage is within the preset voltage range, it is reset to indicate the at least one first voltage.
  • the first voltages are all within the preset voltage range.
  • the first indication information may also be referred to as a reset signal (RST).
  • the reference voltage detection circuit 220 is not used to output RST when the reference voltage is not abnormal, and outputs RST when the reference voltage is abnormal.
  • the working status of the reference voltage is monitored in real time by a reference voltage generating circuit with a reference voltage detection circuit.
  • the output signal of the at least one voltage sensor (that is, the at least one A first signal) is reset to indicate that the first voltage is within the preset voltage range to avoid triggering false alarms.
  • the reference voltage generating circuit 210 Since the reference voltage generating circuit 210 is connected to an external power source (VDD), when the reference voltage generating circuit 210 can provide the at least one voltage sensor with an accurate reference voltage VREF based on the external power source (VDD), the The indication signal is high (logic "1").
  • the reference voltage generating circuit 210 works abnormally, that is, when the external power supply VDD is too high or too low, the reference voltage VREF provided by the reference voltage generating circuit 210 to the at least one voltage sensor is no longer accurate.
  • the indicator signal is low level (logic "0"), that is, the output of the at least one voltage sensor is low level (logic "0"), that is, no alarm signal is issued. It is equivalent to invalidating the alarm signal (the at least one first signal) output by the at least one voltage sensor to avoid false alarms.
  • the at least one first signal may also be used to indicate that none of the at least one first voltage is within the preset voltage range. Equivalently, the indication signal is used to warn the user that the external power supply is attacked by voltage.
  • the reference voltage detection circuit 220 can not only indicate whether the at least one internal power supply is attacked, but also whether the external power supply is attacked, so as to alert when the at least one internal power supply is attacked or the external power supply is attacked. The user pays attention to safety protection or takes safety measures.
  • the voltage attack detection circuit 200 may further include a glitch elimination circuit 221.
  • the reference voltage detection circuit 220 is respectively connected to the at least one voltage sensor through the burr elimination circuit 221, and the burr elimination circuit 221 is configured to reset the first indication signal whose duration is less than or equal to a preset threshold to A second indication signal, where the first indication signal is used to indicate that the reference voltage is abnormal, and the second indication signal is used to indicate that the reference voltage is not abnormal.
  • the reference voltage generation circuit is used to receive the external power supply voltage sensor and the reference voltage detection circuit respectively output VREF after the CDD phase, and the reference voltage detection circuit 220 is used to receive the VREF. And output an indication signal, which is used to indicate whether the VREF is abnormal.
  • the indication signal output by the reference voltage detection circuit 220 as the first indication signal for indicating the abnormality of the VREF as an example, it is assumed that the duration of the first indication signal output by the reference voltage detection circuit 220 is less than or equal to a preset threshold.
  • the glitch elimination circuit 221 generates and outputs the second instruction information based on the first instruction information sent by the reference voltage detection circuit 220.
  • the glitch elimination circuit 221 outputs a logic "0"
  • the first indication information used to indicate that the VREF is abnormal is reset to the second indication information that indicates that the VREF is not abnormal.
  • the glitch may be a regular or irregular pulse signal or spike signal in the input waveform of the circuit.
  • the voltage value when a glitch in a positive direction appears on the reference voltage is equal to the voltage value when there is no glitch on the reference voltage plus the voltage value of the glitch.
  • the voltage value when a negative and positive burr appears on the reference voltage is equal to the voltage value when there is no burr on the reference voltage minus the voltage value of the burr.
  • an unstable reference voltage it can also be considered as a voltage after a glitch is superimposed on the stable reference voltage.
  • the burr elimination circuit can prevent the instantaneous fluctuation of the reference voltage from causing frequent resets, and ensure the accuracy and reliability of the indication signal.
  • the reference voltage detection circuit can sensitively detect such fluctuations, and accordingly, will frequently issue In order to indicate that the reference voltage is abnormal, the circuit cannot continue to work normally.
  • the indication signal used for indicating the abnormality of the reference voltage for an instant that is less than the specified duration can be reset to the indication signal used for indicating that the reference voltage is not abnormal, so as to increase the accuracy and reliability of the indication signal sex.
  • the voltage attack circuit can also correctly indicate whether the at least one first voltage is attacked when the reference voltage has a glitch, so as to remind the user to pay attention to safety when the power supply voltage is attacked Protect or take safety measures. Correspondingly, the accuracy of the voltage attack warning can be guaranteed.
  • the voltage attack detection circuit 200 may further include an external power supply voltage sensor 211.
  • the external power supply voltage sensor 211 is connected to the external power supply, the external power supply is used to output a second voltage, and the external power supply voltage sensor is used to receive the second voltage and the reference voltage and output the second voltage. Signal, the second signal is used to indicate whether the second voltage is within the preset voltage range.
  • the second voltage is the voltage of the external power supply.
  • the external power supply voltage sensor can be used for voltage attack protection for the external power supply.
  • each of the at least one voltage regulation circuit includes at least one of the following components: a low dropout linear regulator (LDO), a charge pump (Charge Pump), step-down change circuit (BUCK), step-up change circuit (Boost), bidirectional DC converter (Direct current-Direct current converter, DC-DC converter) and other circuits that can provide stable output voltage.
  • LDO low dropout linear regulator
  • BUCK charge pump
  • Boost step-up change circuit
  • bidirectional DC converter Direct current-Direct current converter, DC-DC converter
  • each of the at least one voltage sensor includes a hysteresis comparator.
  • the present application also provides a chip that includes a power management unit and the voltage attack detection circuit described above; wherein, the power management unit is connected to the voltage attack detection circuit, and the voltage attack detection circuit is used for It is detected whether the power supply voltage of the power management unit is attacked by voltage.
  • the voltage attack detection circuit can be applied to any chip with a power management unit.
  • a security chip for example, the security chip may be a fingerprint sensor chip or a processor chip or the like.
  • the security chip is suitable for any kind of electronic equipment.
  • portable or mobile computing devices such as smartphones, notebook computers, tablet computers, and gaming devices, as well as other electronic devices such as electronic databases, automobiles, and bank automated teller machines (ATM).
  • ATM bank automated teller machines
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Sources (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

一种电压攻击检测电路(200)和芯片,电压攻击检测电路(200)包括:至少一个电压调节电路(23N);至少一个电压调节电路(23N)分别连接至外部电源(VDD),至少一个电压调节电路(23N)用于将外部电源(VDD)转化为至少一个内部电源(VN),至少一个内部电源(VN)分别用于输出至少一个第一电压(V1);至少一个电压传感器(24N);其中,至少一个电压传感器(24N)分别连接至至少一个内部电源(VN),以分别接收至少一个第一电压(V1),至少一个电压传感器(24N)中的每一个电压传感器(24N)用于基于接收到的参考电压(VREF)和接收到的第一电压(V1)输出参考电压(V1H、V1L),参考电压(V1H、V1L)用于指示接收到的第一电压(V1)是否位于预设电压范围内,电压攻击检测电路(200)能够对全电源域于进行电压攻击防护。

Description

电压攻击检测电路和芯片 技术领域
本申请实施例涉及电子领域,并且更具体地,涉及电压攻击检测电路和芯片。
背景技术
随着移动支付与交易得到广泛的普及,电子设备被越来越多的用于存储、处理、传输包含关键信息的数据。例如,安全芯片可以用于实现用户身份识别与关键数据存储等功能,其被广泛应用于金融领域。安全芯片作为安全硬件的基础,对信息安全起着至关重要的作用。近年来,越来越多的芯片级攻击方法与实例被公开,相应的,对芯片级的安全提出来越来越高的要求。
针对芯片级的攻击方式有多种,其中错误注入攻击最为有效。错误注入攻击的目的是迫使芯片执行一个非正常的操作,从而使得芯片中的安全信息暴露出来。此时,攻击者可以利用故障分析技术轻易获取安全芯片中的机密数据。错误注入攻击的方式有很多种,例如电压攻击、温度攻击、激光攻击、电磁攻击等。
针对电压攻击,通过改变芯片电源域的供电电压,使得芯片内部的电路工作发生异常,从而引起触发器进入错误状态,致使处理器跳过或执行错误的操作,以便芯片内的安全信息暴露出来。
通常情况下,芯片内部会被划分成多个不同的电源域,每个电源域虽然独立,但也存在一定的依赖与交互,因此每个电源域都必须被保护。换言之,芯片要构建一套完备的针对全电源域的电压攻击防护方案。
发明内容
本申请实施例提供一种电压攻击检测电路和芯片,能够针对全电源域进行电压攻击防护。
第一方面,提供了一种电压攻击检测电路,包括:
至少一个电压调节电路;
所述至少一个电压调节电路分别连接至外部电源,所述至少一个电压调节电路用于将所述外部电源转化为至少一个内部电源,所述至少一个内部电 源分别用于输出至少一个第一电压;
至少一个电压传感器;
其中,所述至少一个电压传感器分别连接至所述至少一个内部电源,以分别接收所述至少一个第一电压,所述至少一个电压传感器中的每一个电压传感器用于基于接收到的参考电压和接收到的第一电压输出第一信号,所述第一信号用于指示所述接收到的第一电压是否位于预设电压范围内。
通过所述至少一个电压传感器,能够分别对所述至少一个电压调节电路输出的至少一个第一电压进行电压攻击防护,即对全电源域于进行电压攻击防护。
在一些可能的实现方式中,所述预设电压范围的最大值小于带隙基准的最大工作电压,所述预设电压范围的最小值大于所述带隙基准的最小工作电压。
将所述预设电压范围的最大值构造为小于带隙基准的最大工作电压,且将其最小值构造为大于所述带隙基准的最小工作电压,在电路正常工作的情况下,能够尽可能的降低错误预警的概率,以提高用户体验。
在一些可能的实现方式中,所述电压攻击检测电路还包括:
参考电压生成电路和参考电压检测电路;
其中,所述参考电压生成电路用于生成所述参考电压,所述参考电压检测电路连接至所参考电压生成电路,所述参考电压检测电路用于接收所述参考电压并输出指示信号,所述指示信号用于指示所述参考电压是否存在异常。
通过所述参考电压检测电路,可以避免由于所述参考电压存在异常,导致的错误预警,以提升电压攻击预警的准确率。
在一些可能的实现方式中,所述电压攻击检测电路还包括:
毛刺消除电路;
其中,所述参考电压检测电路通过所述毛刺消除电路分别连接至所述至少一个电压传感器,所述毛刺消除电路用于将时长小于或等于预设阈值的第一指示信号重置为第二指示信号,所述第一指示信号用于指示所述参考电压存在异常,所述第二指示信号用于指示所述参考电压不存在异常。
在所述参考电压出现毛刺的情况下,通过所述毛刺消除电路能够保证所述指示信号的准确率。
相应的,能够保证电压攻击预警的准确率。换言之,通过所述毛刺消除电路,所述电压攻击电路在所述参考电压出现毛刺的情况下也能够正确指示所述至少一个第一电压是否受到攻击,以便在所述电源电压受到攻击时提醒用户注意安全防护或采取安全措施。
在一些可能的实现方式中,所述至少一个电压传感器中的每一个电压传感器还用于接收所述指示信号,使得所述至少一个电压传感器中的每一个电压传感器根据接收到的指示信号输出所述第一信号。
在一些可能的实现方式中,若所述指示信号用于指示所述参考电压存在异常,所述第一信号用于指示接收到的第一电压位于所述预设电压范围内。
在一些可能的实现方式中,所述电压攻击检测电路还包括:
外部电源电压传感器;
其中,所述外部电源电压传感器连接至所述外部电源,所述外部电源用于输出第二电压,所述外部电源电压传感器用于接收所述第二电压和所述参考电压并输出第二信号,所述第二信号用于指示所述第二电压是否位于所述预设电压范围内。
在对所述至少一个内部电源进行电压攻击防护的基础上,通过所述外部电源电压传感器,可以对所述外部电源进行电压攻击防护。
在一些可能的实现方式中,所述至少一个电压调节电路中的每一个电压调节电路包括以下元件中的至少一项:低压差线性稳压器、电荷泵、降压式变化电路、升压式变化电路以及双向直流变换器。
在一些可能的实现方式中,所述至少一个电压传感器中的每一个电压传感器包括迟滞比较器。
第二方面,提供了一种芯片,包括:
电源管理单元;以及
第一方面或第一方面中任一种可能实现的方式中所述的电压攻击检测电路;其中,所述电源管理单元连接至所述电压攻击检测电路,所述电压攻击检测电路用于检测所述电源管理单元的电源电压是否受到电压攻击。
附图说明
图1是本申请实施例的电压传感器和电压调节电路的位置关系的示意性结构图。
图2是本申请实施例的电压攻击检测电路的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1是本申请实施例的电压传感器和电压调节电路的位置关系的示意性结构图。
如图1所示,芯片会具有多个电源域(即内部电源)。例如,由电压调节电路(Voltage Regulator)将输入电压(Input Voltage)转变为输出电压(Output Voltage),并向其他模块供电。当芯片中包含多个这样的电压调节电路时,便构成了复杂的、多样的电源域,每个电源域都需要由电压传感器来检测是否遭受电压攻击。
图2是本申请实施例的电压攻击检测电路200的示意性结构图。
如图2所示,所述电压攻击检测电路200可以包括至少一个电压调节电路,例如,所述至少一个电压调节电路可以包括如图2所示的第一电压调节电路231、第二电压调节电路232、…、以及第N电压调节电路23N。所述至少一个电压调节电路分别连接至外部电源(VDD),所述至少一个电压调节电路用于将所述外部电源转化为至少一个内部电源,所述至少一个内部电源分别用于输出至少一个第一电压,例如,所述至少一个内部电源可以包括如图2所示的内部电源V1、V2、…、以及VN。所述至少一个每部电源可以为芯片中的不同器件或模块进行供电。电压攻击检测电路200还可以包括至少一个电压传感器,例如,所述至少一个电压传感器可以包括如图2所示的第一电压传感器241、第二电压传感器242、…、以及第N电压传感器24N;其中,所述至少一个电压传感器分别连接至所述至少一个内部电源,以分别接收所述至少一个第一电压,所述至少一个电压传感器中的每一个电压传感器用于基于接收到的参考电压(reference voltage,VREF)和接收到的第一电压输出第一信号,所述第一信号用于指示所述接收到的第一电压是否位于预设电压范围内。
换言之,所述至少一个电压传感器分别输出至少一个第一信号,所述至少一个第一信号分别用于指示所述至少一个第一电压是否位于预设电压范围内。
需要说明的是,所述至少一个第一信号中的每一个第一信号可以包括第 一信号分量和第二信号分量。
例如,所述至少一个第一信号可以包括至少一个第一信号分量,例如,所述至少一个第一信号分量可以包括如图2所示的VIH、V2H、…、以及VNH和至少一个第二信号分量,例如,所述至少一个第二信号分量可以包括如图2所示的VIL、V2L、…、以及VNL。例如,所述至少一个第一信号分量可以分别用于指示所述至少一个第一电压是否大于或等于所述预设电压范围的最大值,所述至少一个第二信号分量可以分别用于指示所述至少一个第一电压是否小于或等于所述预设电压范围的最小值。
例如,如图2所示,所述电压攻击检测电路200中,第一电压调节电路231、第二电压调节电路232、…、以及第N电压调节电路23N将外部电源域VDD划分为V1~VN多个内部电源域,其中,每一个内部电源域连接有一个电压传感器。当任意一个内部电源域内的电压高于电压传感器设定的预设电压范围(即安全范围)时输出高压警报信号,且低于安全范围时输出低压警报信号。例如,第一电压调节电路231将外部电源VDD转换为内部电源V1,当V1高于第一电压传感器241所设定的安全范围时,V1H变为高电平(逻辑“1”),即发出高压报警信号;当V1低于第一电压传感器241所设定的安全范围时,V1L变为高电平(逻辑“1”),即发出低压报警信号。
换言之,所述至少一个电压传感器中的每一个电压传感器可以用于接收一个第一电压和第一参考电压并输出第一信号分量,所述第一信号分量用于指示所述第一电压是否大于或等于所述第一参考电压;所述至少一个电压传感器中的每一个电压传感器还可以用于接收所述一个第一电压和第二参考电压并输出第二信号分量,所述第二信号分量用于指示所述第一电压是否小于或等于所述第二参考电压。其中,所述第一参考电压的电压值大于所述第二参考电压的电压值。
通过所述至少一个电压传感器,能够分别对所述至少一个电压调节电路输出的至少一个第一电压进行电压攻击防护,即对全电源域于进行电压攻击防护。
在本申请的一些实施例中,所述预设电压范围的最大值(即所述预设电压范围的上限值)小于带隙基准的最大工作电压,所述预设电压范围的最小值(即所述预设电压范围的下限值)大于所述带隙基准的最小工作电压。
例如,所述预设电压范围的最大值小于或等于在所述电源电压为所述带 隙基准的最大工作电压的情况下的所述第一电压的电压值。所述预设电压范围的最小值大于或等于在所述外部电源的电压为带隙基准的最小工作电压的情况下的所述第一电压的电压值。
将所述预设电压范围的最大值构造为小于带隙基准的最大工作电压,且将其最小值构造为大于所述带隙基准的最小工作电压,在电路正常工作的情况下,能够尽可能的降低错误预警的概率,以提高用户体验。
具体而言,所述带隙基准也可以称为带隙基准电路,所述带隙基准可以用于将所述外部电源(VDD)转换成所述电压攻击检测电路200中的部分或全部器件的工作电压。换言之,所述VDD可以作为所述带隙基准的工作电压,以便所述带隙基准可以基于所述VDD输出用于所述电压攻击检测电路200中的部分或全部器件的工作电压。所述带隙基准的工作电压可以是一个范围值。所述带隙基准的工作电压也可以是预设值。所述带隙基准的工作电压的大小取决于所述VDD的大小。例如,所述VDD可以直接作为所述带隙基准的工作电压。
当判断所述所述至少一个电压调节电路中的目标电压调节电路(即目标内部电源)是否出现高电压异常时,如果所述带隙基准的工作电压处于最大工作电压,由于所述带隙基准的工作电压由所述VDD提供的且其大小取决于所述VDD的大小,因此,所述VDD以及所述目标内部电源的电压值(即所述目标内部电源输出的目标第一电压)也会达到最大值。相当于,通过比较所述目标第一电压的最大值与所述第一参考电压形成的所述第一信号分量,以指示所述目标内部电源是否处于高电压异常状态,能够增加所述第一信号分量的准确率。
类似地,当判断所述所述至少一个电压调节电路中的目标电压调节电路(即目标内部电源)是否出现低电压异常时,如果所述带隙基准的输出电压(即第二参考电压)达到最小值,所述VDD以及所述目标第一电压也能够达到最小值。相当于,通过比较所述目标第一电压的最小值与所述第二参考电压形成的所述第二信号分量,以指示所述目标内部电源是否处于低电压异常状态,能够增加所述第二信号分量的准确率。
如图2所示,在本申请的一些实施例中,所述电压攻击检测电路200还可以包括参考电压生成电路210和参考电压检测电路220。
其中,所述参考电压生成电路210用于生成所述参考电压,所述参考电 压检测电路220连接至所参考电压生成电路210,所述参考电压检测电路220用于接收所述参考电压并输出指示信号,所述指示信号用于指示所述参考电压是否存在异常。
需要说明的是,所述至少一个电压传感器所使用的参考信号为同一个参考信号,以优化电路结构。例如,所述参考电压生成电路210可以用于生成一个第一参考电压和一个第二参考电压,所述至少一个电压传感器对应所述一个第一参考电压和所述一个第二参考电压。当然,所述至少一个电压传感器也可以使用不同的参考电压。例如,所述参考电压生成电路210也可以用于生成至少一个第一参考电压和至少一个第二参考电压。例如,所述至少一个第一参考电压分别对应所述至少一个电压传感器。又例如,所述至少一个第二参考电压分别对应所述至少一个电压传感器。
其中,所述参考电压生成电路210可以是带隙基准(Bandgap voltage reference,Bandgap),即所述参考电压可以是带隙基准的工作电压。例如,带隙基准可以是一个与温度成正比的电压与一个与温度成反比的电压之和,二者温度系数相互抵消,实现与温度无关的电压基准。例如,所述带隙基准可以是一个与电源和工艺无关,具有确定温度特性的直流电压。例如,所述带隙基准可以约为1.25V。又例如,所述带隙基准的基准电压可以近似于硅的带隙电压。
将所述参考电压构造为基准电压,能够避免所述参考电压的具体数值随温度的变化而变化,相应的,可以精确的检测所述至少一个内部电源的电压(即所述至少一个第一电压)是否低于或超过预设电压范围,并在超过预设电压范围时提醒用户电源域受到电压攻击。
但是,当所述参考电压所在的电源域过高或过低时,将不再能提供准确的参考电压,所有第一信号将会发生误报警。
在本申请的一些实施例中,所述至少一个电压传感器中的每一个电压传感器还用于接收所述指示信号,使得所述至少一个电压传感器中的每一个电压传感器根据接收到的指示信号输出所述第一信号。例如,若所述指示信号用于指示所述参考电压存在异常,所述第一信号用于指示接收到的第一电压位于所述预设电压范围内。
换言之,所述指示信号的优先级高于所述至少一个第一电压的判断结果的优先级。
也就是说,在所述指示信号用于指示所述参考电压异常时,即使所述至少一个第一电压均未位于所述预设电压范围内,也将其复位为用于指示所述至少一个第一电压均位于所述预设电压范围内,此时,所述第一指示信息也可以称为复位信号(reset signal,RST)。换言之,所述参考电压检测电路220在所述参考电压不存在异常时不用于输出RST,在所述参考电压存在异常时输出RST。
通过带有参考电压检测电路的参考电压生成电路对所述参考电压的工作状态进行实时监测,当所述参考电压出现工作异常时,可以将所述至少一个电压传感器的输出信号(即所述至少一个第一信号)复位为指示第一电压位于所述预设电压范围,以避免触发误报警。
由于所述参考电压生成电路210连接至外部电源(VDD),当所述参考电压生成电路210基于所述外部电源(VDD)能够向所述至少一个电压传感器提供准确的参考电压VREF时,所述指示信号为高电平(逻辑“1”)。
当所述参考电压生成电路210工作异常时,即外部电源VDD已经过高或过低时,导致所述参考电压生成电路210向所述至少一个电压传感器够提供的参考电压VREF不再准确,此时,所述指示信号为低电平(逻辑“0”),即让所述至少一个电压传感器的输出均为低电平(逻辑“0”),即均不发出报警信号。相当于,使得所述至少一个电压传感器输出的报警信号(所述至少一个第一信号)被失效掉,以避免产生错误报警。
通过所述参考电压检测电路220,可以避免由于所述参考电压存在异常导致的错误预警,以提升电压攻击预警的准确率。
当然,在所述指示信号用于指示所述参考电压存在异常时,所述至少一个第一信号也可以分别用于指示所述至少一个第一电压均未位于所述预设电压范围内。相当于,所述指示信号用于进行预警用户外部电源受到电压攻击。换言之,通过所述参考电压检测电路220,不仅能够指示至少一个内部电源是否受到攻击,而且能够指示外部电源是否受到攻击,以便在所述至少一个内部电源受到攻击或所述外部电源受到攻击时提醒用户注意安全防护或采取安全措施。
如图2所示,在本申请的一些实施例中,所述电压攻击检测电路200还可以包括毛刺消除电路221。
其中,所述参考电压检测电路220通过所述毛刺消除电路221分别连接 至所述至少一个电压传感器,所述毛刺消除电路221用于将时长小于或等于预设阈值的第一指示信号重置为第二指示信号,所述第一指示信号用于指示所述参考电压存在异常,所述第二指示信号用于指示所述参考电压不存在异常。
例如,如图2所示,所述参考电压生成电路用于接收CDD后相所述外部电源电压传感器和所述参考电压检测电路分别输出VREF,所述参考电压检测电路220用于接收所述VREF并输出指示信号,所述指示信号用于指示所述VREF是否存在异常。以所述参考电压检测电路220输出的指示信号为用于指示所述VREF异常的第一指示信号为例,假设所述参考电压检测电路220输出的第一指示信号的时长小于或等于预设阈值,则所述毛刺消除电路221基于所述参考电压检测电路220发送的所述第一指示信息生成并输出所述第二指示信息。例如,假设通过逻辑“1”指示所述VREF存在异常,所述参考电压检测电路220输出逻辑“1”的时长小于或等于预设阈值时,则所述毛刺消除电路221输出逻辑“0”,以将用于指示所述VREF存在异常的第一指示信息重置为指示所述VREF不存在异常的第二指示信息。
需要说明的是,毛刺可以是电路的输入波形中包括有规律或没有规律的脉冲信号或尖峰信号。例如,所述参考电压上出现正方向的毛刺时的电压值等于所述参考电压上未出现毛刺时的电压值加所述毛刺的电压值。又例如,参考电压上出现负正方向的毛刺时的电压值等于所述参考电压上未出现毛刺时的电压值减去所述毛刺的电压值。
换言之,针对不稳定的参考电压,其也可以认为是稳定的参考电压上叠加有一个毛刺后的电压。
在所述参考电压出现毛刺的情况下,通过所述毛刺消除电路,能够避免所述参考电压的瞬时波动造成频繁复位,保证所述指示信号的准确率和可靠性。
例如,在上电过程中,若所述参考电压生成电路能够建立的临界电压处存在电压瞬时波动,所述参考电压检测电路可以很灵敏的检测出这种波动,相应的,将会频繁发出用于指示所述参考电压存在异常的指示信号,进而导致电路无法正常继续工作。通过毛刺消除电路,可以对小于指定时长的瞬时用于指示所述参考电压存在异常的指示信号重置为用于指示所述参考电压不存在异常的指示信号,以增加指示信号的准确率和可靠性。
通过所述毛刺消除电路,所述电压攻击电路在所述参考电压出现毛刺的情况下也能够正确指示所述至少一个第一电压是否受到攻击,以便在所述电源电压受到攻击时提醒用户注意安全防护或采取安全措施。相应的,能够保证电压攻击预警的准确率。
如图2所示,在本申请的一些实施例中,所述电压攻击检测电路200还可以包括外部电源电压传感器211。
其中,所述外部电源电压传感器211连接至所述外部电源,所述外部电源用于输出第二电压,所述外部电源电压传感器用于接收所述第二电压和所述参考电压并输出第二信号,所述第二信号用于指示所述第二电压是否位于所述预设电压范围内。例如,所述第二电压为所述外部电源的电压。
在对所述至少一个内部电源进行电压攻击防护的基础上,通过所述外部电源电压传感器,可以对所述外部电源进行电压攻击防护。
在本申请的一些实施例中,所述至少一个电压调节电路中的每一个电压调节电路包括以下元件中的至少一项:低压差线性稳压器(Low Dropout Regulator,LDO)、电荷泵(Charge Pump)、降压式变化电路(BUCK)、升压式变化电路(Boost)、双向直流变换器(Direct current-Direct current converter,DC-DC converter)等能够提供稳定输出电压的电路。
在本申请的一些实施例中,所述至少一个电压传感器中的每一个电压传感器包括迟滞比较器。
本申请还提供了一种芯片,所述包括电源管理单元以及上文所述的电压攻击检测电路;其中,所述电源管理单元连接至所述电压攻击检测电路,所述电压攻击检测电路用于检测所述电源管理单元的电源电压是否受到电压攻击。
换言之,所述电压攻击检测电路可以适用于任意一种具有电源管理单元的芯片。例如安全芯片。例如,所述安全芯片可以是指纹传感器芯片或者处理器芯片等等。所述安全芯片适用于任意一种电子设备。例如,智能手机、笔记本电脑、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结 合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易 想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种电压攻击检测电路,其特征在于,包括:
    至少一个电压调节电路;
    所述至少一个电压调节电路分别连接至外部电源,所述至少一个电压调节电路用于将所述外部电源转化为至少一个内部电源,所述至少一个内部电源分别用于输出至少一个第一电压;
    至少一个电压传感器;
    其中,所述至少一个电压传感器分别连接至所述至少一个内部电源,以分别接收所述至少一个第一电压,所述至少一个电压传感器中的每一个电压传感器用于基于接收到的参考电压和接收到的第一电压输出第一信号,所述第一信号用于指示所述接收到的第一电压是否位于预设电压范围内。
  2. 根据权利要求1所述的电压攻击检测电路,其特征在于,所述预设电压范围的最大值小于带隙基准的最大工作电压,所述预设电压范围的最小值大于所述带隙基准的最小工作电压。
  3. 根据权利要求2所述的电压攻击检测电路,其特征在于,所述电压攻击检测电路还包括:
    参考电压生成电路和参考电压检测电路;
    其中,所述参考电压生成电路用于生成所述参考电压,所述参考电压检测电路连接至所参考电压生成电路,所述参考电压检测电路用于接收所述参考电压并输出指示信号,所述指示信号用于指示所述参考电压是否存在异常。
  4. 根据权利要求3所述的电压攻击检测电路,其特征在于,所述电压攻击检测电路还包括:
    毛刺消除电路;
    其中,所述参考电压检测电路通过所述毛刺消除电路分别连接至所述至少一个电压传感器,所述毛刺消除电路用于将时长小于或等于预设阈值的第一指示信号重置为第二指示信号,所述第一指示信号用于指示所述参考电压存在异常,所述第二指示信号用于指示所述参考电压不存在异常。
  5. 根据权利要求3或4所述的电压攻击检测电路,其特征在于,所述至少一个电压传感器中的每一个电压传感器还用于接收所述指示信号,使得所 述至少一个电压传感器中的每一个电压传感器根据接收到的指示信号输出所述第一信号。
  6. 根据权利要求5所述的电压攻击检测电路,其特征在于,若所述指示信号用于指示所述参考电压存在异常,所述第一信号用于指示接收到的第一电压位于所述预设电压范围内。
  7. 根据权利要求1至6中任一项所述的电压攻击检测电路,其特征在于,所述电压攻击检测电路还包括:
    外部电源电压传感器;
    其中,所述外部电源电压传感器连接至所述外部电源,所述外部电源用于输出第二电压,所述外部电源电压传感器用于接收所述第二电压和所述参考电压并输出第二信号,所述第二信号用于指示所述第二电压是否位于所述预设电压范围内。
  8. 根据权利要求1至7中任一项所述的电压攻击检测电路,其特征在于,所述至少一个电压调节电路中的每一个电压调节电路包括以下元件中的至少一项:低压差线性稳压器、电荷泵、降压式变化电路、升压式变化电路以及双向直流变换器。
  9. 根据权利要求1至8中任一项所述的电压攻击检测电路,其特征在于,所述至少一个电压传感器中的每一个电压传感器包括迟滞比较器。
  10. 一种芯片,其特征在于,包括:
    电源管理单元;以及
    根据权利要求1至9中任一项所述的电压攻击检测电路;
    其中,所述电源管理单元连接至所述电压攻击检测电路,所述电压攻击检测电路用于检测所述电源管理单元的电源电压是否受到电压攻击。
PCT/CN2020/082828 2020-04-01 2020-04-01 电压攻击检测电路和芯片 WO2021196093A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/082828 WO2021196093A1 (zh) 2020-04-01 2020-04-01 电压攻击检测电路和芯片
CN202080001164.XA CN111670367B (zh) 2020-04-01 2020-04-01 电压攻击检测电路和芯片
EP20924968.9A EP3929601B1 (en) 2020-04-01 2020-04-01 Voltage attack detection circuit and chip
US17/490,178 US20220019701A1 (en) 2020-04-01 2021-09-30 Voltage attack detection circuit and chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/082828 WO2021196093A1 (zh) 2020-04-01 2020-04-01 电压攻击检测电路和芯片

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/490,178 Continuation US20220019701A1 (en) 2020-04-01 2021-09-30 Voltage attack detection circuit and chip

Publications (1)

Publication Number Publication Date
WO2021196093A1 true WO2021196093A1 (zh) 2021-10-07

Family

ID=72392540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082828 WO2021196093A1 (zh) 2020-04-01 2020-04-01 电压攻击检测电路和芯片

Country Status (4)

Country Link
US (1) US20220019701A1 (zh)
EP (1) EP3929601B1 (zh)
CN (1) CN111670367B (zh)
WO (1) WO2021196093A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4184187A1 (en) * 2021-11-19 2023-05-24 NXP USA, Inc. Supply voltage proportionality monitoring in a system-on-chip (soc)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525392A (zh) * 2003-02-06 2004-09-01 ���ǵ�����ʽ���� 具有防止功率分析攻击保护电路的智能卡及其操作方法
CN101943728A (zh) * 2009-07-06 2011-01-12 北京中电华大电子设计有限责任公司 一种防电源毛刺攻击的检测电路
CN104459564A (zh) * 2014-11-26 2015-03-25 上海爱信诺航芯电子科技有限公司 一种防电源攻击的电源毛刺信号检测电路及检测方法
CN107531200A (zh) * 2015-05-15 2018-01-02 三菱电机株式会社 攻击检测装置
CN107765752A (zh) * 2015-08-18 2018-03-06 力旺电子股份有限公司 具备侦测功能的电源系统
US20190005269A1 (en) * 2017-07-03 2019-01-03 Nxp B.V. Automatic Reset Filter Deactivation During Critical Security Processes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353032A (en) * 1980-06-02 1982-10-05 Tektronix, Inc. Glitch detector
JP3751966B2 (ja) * 2003-11-21 2006-03-08 日本テキサス・インスツルメンツ株式会社 サーマルシャットダウン回路
JP2007334761A (ja) * 2006-06-16 2007-12-27 Rohm Co Ltd 電圧生成回路及びそれを備えた電源回路
CN100576743C (zh) * 2008-04-18 2009-12-30 启攀微电子(上海)有限公司 一种毛刺的判断及消除电路
CN103034804B (zh) * 2012-12-11 2015-12-23 深圳国微技术有限公司 安全芯片及其攻击检测电路
CN103036823B (zh) * 2012-12-14 2015-06-17 中船重工(武汉)凌久电子有限责任公司 基于fpga的波特率快速自适应方法、处理器及接收端
CN203983986U (zh) * 2014-05-28 2014-12-03 武汉港迪电气有限公司 一种防止误触发的比较器输出电路
CN104850805B (zh) * 2015-05-29 2019-03-26 北京华大信安科技有限公司 一种保护芯片系统敏感信息的装置及方法
US9941880B1 (en) * 2016-11-16 2018-04-10 Xilinx, Inc. Secure voltage regulator
CN107462827B (zh) * 2017-08-31 2019-07-23 北京智芯微电子科技有限公司 带有内部稳压器的电源毛刺检测电路
US11308239B2 (en) * 2018-03-30 2022-04-19 Seagate Technology Llc Jitter attack protection circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525392A (zh) * 2003-02-06 2004-09-01 ���ǵ�����ʽ���� 具有防止功率分析攻击保护电路的智能卡及其操作方法
CN101943728A (zh) * 2009-07-06 2011-01-12 北京中电华大电子设计有限责任公司 一种防电源毛刺攻击的检测电路
CN104459564A (zh) * 2014-11-26 2015-03-25 上海爱信诺航芯电子科技有限公司 一种防电源攻击的电源毛刺信号检测电路及检测方法
CN107531200A (zh) * 2015-05-15 2018-01-02 三菱电机株式会社 攻击检测装置
CN107765752A (zh) * 2015-08-18 2018-03-06 力旺电子股份有限公司 具备侦测功能的电源系统
US20190005269A1 (en) * 2017-07-03 2019-01-03 Nxp B.V. Automatic Reset Filter Deactivation During Critical Security Processes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4184187A1 (en) * 2021-11-19 2023-05-24 NXP USA, Inc. Supply voltage proportionality monitoring in a system-on-chip (soc)
US11977664B2 (en) 2021-11-19 2024-05-07 Nxp Usa, Inc. Supply voltage proportionality monitoring in a system-on-chip (SOC)

Also Published As

Publication number Publication date
CN111670367A (zh) 2020-09-15
EP3929601A1 (en) 2021-12-29
EP3929601A4 (en) 2022-05-04
US20220019701A1 (en) 2022-01-20
EP3929601B1 (en) 2023-05-03
CN111670367B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2021179128A1 (zh) 电压攻击检测电路和芯片
US10719402B2 (en) Power-loss protection
US9298909B2 (en) Detecting status of an application program running in a device
US11175713B2 (en) Fault tolerance for power loss imminent circuitry failure
US9037879B2 (en) Rack server system having backup power supply
CN104813253A (zh) 用于功率资源保护的方法和设备
CN107426022A (zh) 安全事件监测方法及装置、电子设备、存储介质
CN106100007B (zh) 电缆保护装置
WO2021196093A1 (zh) 电压攻击检测电路和芯片
WO2021046771A1 (zh) 一种安全检测的方法和装置
WO2018154845A1 (ja) 管理装置、管理方法及びプログラム
Qu et al. A control scheme integrating the T chart and TCUSUM chart
CN112732064A (zh) 一种功耗调节系统、方法及介质
EP3929602B1 (en) Circuit and chip for detecting voltage-based attack
CN113568494B (zh) 一种硬盘供电电压的检测装置
CN210091171U (zh) 一种基于国产龙芯处理器的安全计算机
KR101629180B1 (ko) Bgr의 오류 검출이 가능한 전원 관리 시스템 및 그 방법
US11507446B1 (en) Hot-swap controller fault reporting system
Haider et al. Maximum power specification management feature in Intel Xeon CPUs
KR20160014464A (ko) 메모리 시스템 및 이의 데이터 보호 방법
CN116827618A (zh) 复合式入侵检测装置及方法
CN107066066A (zh) 一种防止服务器电源过载的方法
CN111736570A (zh) 控制器时钟频率检测方法、装置、计算机设备及存储介质
KR20100078757A (ko) Cpu 및 메모리 전원 보호 회로 및 그 방법
WO2014020750A1 (ja) 電源装置、及び電源管理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020924968

Country of ref document: EP

Effective date: 20210920

NENP Non-entry into the national phase

Ref country code: DE