WO2021196062A1 - 一种基于无人机的农业除虫装置及方法 - Google Patents
一种基于无人机的农业除虫装置及方法 Download PDFInfo
- Publication number
- WO2021196062A1 WO2021196062A1 PCT/CN2020/082657 CN2020082657W WO2021196062A1 WO 2021196062 A1 WO2021196062 A1 WO 2021196062A1 CN 2020082657 W CN2020082657 W CN 2020082657W WO 2021196062 A1 WO2021196062 A1 WO 2021196062A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- main body
- cloud server
- crops
- drone
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 241000607479 Yersinia pestis Species 0.000 claims abstract description 42
- 238000004891 communication Methods 0.000 claims abstract description 24
- 239000000575 pesticide Substances 0.000 claims abstract description 7
- 239000003814 drug Substances 0.000 claims description 33
- 239000007921 spray Substances 0.000 claims description 30
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims description 27
- 239000002917 insecticide Substances 0.000 claims description 11
- 229940079593 drug Drugs 0.000 claims description 5
- 238000010586 diagram Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 230000003139 buffering effect Effects 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims description 2
- 238000004806 packaging method and process Methods 0.000 claims description 2
- 239000000725 suspension Substances 0.000 abstract 1
- 238000005507 spraying Methods 0.000 description 16
- 241000238631 Hexapoda Species 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000013507 mapping Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000000749 insecticidal effect Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- -1 seeds Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D1/00—Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
- B64D1/16—Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
- B64D1/18—Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
Definitions
- the invention relates to the technical field of agricultural pest control, in particular to an unmanned aerial vehicle-based agricultural pest control device and method.
- the plant protection drone used in agriculture is an unmanned aircraft used for agricultural and forestry plant protection operations.
- This type of unmanned aircraft is composed of a flying platform ( It consists of three parts: fixed wing, helicopter, multi-axis aircraft), navigation flight control, and spraying mechanism.
- the spraying operation can be realized through ground remote control or navigation flight control, which can spray medicine, seeds, powder, etc.
- this kind of insect removal method is complicated to operate and the effect of insect removal is not obvious.
- the patent of the present invention proposes an agricultural intelligent insect removal device and method based on unmanned aerial vehicles to solve the problem of low insect removal efficiency in agriculture.
- the purpose of the present invention is to provide a drone-based agricultural pest control device and method, which use the image module on the drone to photograph plots, and intelligently obtain the types of crops and pests in the plots and the distribution of pests through the cloud server, and Calculate the amount and spray concentration of the insecticide and make a reasonable path plan for the operation at the same time, intelligent operation.
- an unmanned aerial vehicle-based agricultural pest control device including a main body of equipment and a cloud server, the main body of the equipment is flying above the crops when it is working, and the main body of the equipment includes a camera Module, used to shoot image information of crops and pests in the plot when the drone is working;
- Including the image module which is used to cache the image information taken by the camera module and compress and pack it;
- the cloud server includes a wireless module for receiving information sent by the main body of the device, the information including image information taken by the main body of the device, flight-related information recorded in the flight control module, and drug-related information recorded by the spray device;
- the processor unit is used to establish a plot plan from the received plot image information and compare crops and pests with images in the database to obtain the types of crops and pests;
- the cloud server has built-in software for path planning.
- the software used in the patent application is LABVIEW2018.
- the cloud server After embedding the algorithm program, the cloud server will calculate the plot plan and extract the plot coordinate information and enter it in LABVIEW2018.
- the embedded algorithm program obtains the operating path of the UAV, and transmits it to the main body of the equipment through the communication module.
- An organic shell is arranged on the outside of the main body of the equipment, the upper surface of the main body of the equipment is fixedly connected with a spray port, and a spraying device is fixedly connected below the spray port, and the spraying device includes a pressurizing device and a spray port And a support rod, the pressurizing device is fixedly installed inside the equipment body, the support rod is fixedly installed on the lower surface of the equipment body, and the spray port is fixedly installed on the lower surface of the support rod.
- the pressure-increasing device is communicated with the medicine adding port through a medicine tube, and the medicine spraying port is communicated with the pressure-increasing device through a medicine pipe.
- the working mode of the supercharging device is:
- A The insecticide added into the dosing port enters the different medicine pots in the main body of the equipment, and passes through the medicine tube, solenoid valve and pressure boosting device. The pressure boosting device is then connected to the spray mouth through the medicine pipe;
- the flight control module When the drone is in operation, the flight control module will adjust the booster device through the planned path. When the drone flies to an area with high pest density, the solenoid valve will be fully opened and the booster device will be adjusted up. Spray pressure to increase the spraying concentration of the medicine to achieve a complete deworming effect.
- the flight control module directly controls the working state of the booster device through the relay to realize automatic spraying of medicine.
- One end of the cantilever is assembled with the main body of the device, and the other end of the cantilever is fixedly connected with a driving motor, and a blade is fixedly connected to the motor shaft of the driving motor.
- the image module includes a camera module and a pan/tilt module, the pan/tilt module is connected to the main body of the device in rotation, the camera module is connected to the pan/tilt module in rotation, and the camera module and the pan/tilt module are connected to the cloud server through a communication module Wireless connection, wired connection between the booster device, the flight control module and the communication module.
- a UAV-based agricultural pest control method includes the steps:
- S1 The drone operator uses a corner of the plot as the coordinate origin to input the boundary data of the work plot through the remote control.
- the data in the remote control will be transmitted to the flight control module in the main body of the equipment through the communication module, and the flight control module will start
- the SLAM mapping algorithm quickly flies within the boundaries of the input work area for shooting, and transmits the captured image information to the image module.
- the image module caches the image information captured by the camera module and compresses and packs the captured image.
- S2 The image information obtained by the image module is transmitted to the cloud server through the communication module. After the processor unit analyzes, the floor plan of the work area is obtained. The captured images are compared with the calibration samples in the database to obtain the crop types, pest types, and pests. Distribution map.
- the cloud server further analyzes the planting area of the crops and the types of pests through the embedded algorithm to obtain the pesticide measurement and type to be sprayed. After the cloud server calculates the plot plan, it will extract the plot coordinate information and enter it into LABVIEW2018 through the embedded algorithm program Obtain the operating path of the drone, and transmit it to the plan view of the main operation site of the equipment and the operating width of the drone support rod through the communication module to obtain the operating route of the drone.
- S4 The operator puts the required different types of pesticides into different medicine boxes and sets them in the system.
- the operation route map drawn by the cloud server is transmitted to the flight control module of the drone through the communication module. Execution, the flight control module controls the drone to fly according to the designated route and sprays insecticides. When the drone flies to an area with high pest density, the flight control module will control the solenoid valve to fully open, and the booster device will increase the spray pressure Increase the spraying concentration of the medicine to achieve a complete deworming effect.
- the processor unit of the cloud server processes the information uploaded by the device in real time to draw a job completion diagram and reminds the operator to replenish the drone with medication and electricity based on the current status of each device in the main body of the device.
- an image module, a communication module and a pressurizing device are arranged inside the UAV, and by drawing a plan view of the work area and photographing crops, the cloud server is used to automatically identify the types and distribution of pests in the crops, and obtain a reasonable
- the operation route and the insecticide have realized intelligent operation.
- the spraying concentration of insecticide should be increased in places with high pest density. At the same time, the pests in the plot have been sprayed with pesticides to achieve the goal of completely killing the pests.
- Figure 1 is a schematic diagram of the structure of the device of the present invention.
- Figure 2 is an operation method for obtaining land parcel information by the device of the present invention
- Figure 3 is a method for processing information by the cloud server of the device of the present invention.
- Figure 4 is a flow chart of the method for removing insects in the device of the present invention.
- Figure 5 is a front view of the structure of the device of the present invention.
- an unmanned aerial vehicle-based agricultural pest control device including an equipment main body 10 and a cloud server, the equipment main body 10 flying above the crops while working, It is characterized in that: the device main body 10 includes a camera module 5, which is used to photograph image information of crops and pests in the plot when the drone is working;
- a flight control module 13 for controlling the working state of the drive motor 2 and the booster device 7;
- the cloud server includes a wireless module for receiving information sent by the main body 10 of the device.
- the information includes image information taken by the main body 10 of the device, flight-related information recorded in the flight control module 13 and medications recorded by the spraying device 15 Related Information;
- the cloud server has built-in software for path planning.
- the software used in the patent application is LABVIEW2018.
- the cloud server After embedding the algorithm program, the cloud server will calculate the plot plan and extract the plot coordinate information and enter it in LABVIEW2018.
- the embedded algorithm program obtains the operating path of the UAV, and transmits it to the main body 10 of the equipment through the communication module 12.
- An organic casing 4 is provided on the outside of the device body 10, a spray port 8 is fixedly connected to the upper surface of the device body 10, and a spray device 15 is fixedly connected below the spray port 8, and the spray device 15 includes The booster device 7, the spray port 8 and the support rod 9, the booster device 7 is fixedly installed inside the equipment body 10, the support rod 9 is fixedly installed on the lower surface of the equipment body 10, the spray port 8 It is fixedly installed on the lower surface of the support rod 9.
- the pressure-increasing device 7 and the medicine adding port 11 are communicated with a medicine tube, and the medicine injection port 8 and the pressure-increasing device 7 are communicated with a medicine pipe.
- the working mode of the supercharging device 7 is:
- the insecticide added into the dosing port 11 enters the different medicine pots in the main body 10 of the equipment, and passes through the medicine tube, solenoid valve, and the booster device 7.
- the booster device 7 is then connected to the medicine spray port 8 through the medicine pipe ;
- the flight control module 13 will adjust the booster device 7 through the planned path.
- the solenoid valve will fully open the booster device 7
- the spraying pressure will be increased to increase the spraying concentration of the medicine to achieve a complete insecticidal effect, different insecticides will be used for different insects, and the solenoid valve will be increased to select insecticides.
- the flight control module 13 directly controls the working state of the booster device 7 through a relay to realize automatic spraying of medicine.
- multiple spray ports 8 are used to increase the working speed.
- One end of the cantilever 3 is assembled with the main body 10 of the device, and the other end of the cantilever 3 is fixedly connected to the drive motor 2, and a blade 1 is fixedly connected to the motor shaft of the drive motor 2.
- the image module 14 includes a camera module 5 and a pan/tilt module 6.
- the pan/tilt module 6 and the device main body 10 are rotationally connected, the camera module 5 and the pan/tilt module 6 are rotationally connected, the camera module 5 and the cloud
- the station module 6 is wirelessly connected to the cloud server through the communication module 12, and the booster device 7, the flight control module 13 and the communication module 12 are connected by wires.
- a UAV-based agricultural pest control method includes the steps:
- S1 The drone operator uses a corner of the plot as the coordinate origin to input the boundary data of the working plot through the remote control.
- the data in the remote control will be transmitted to the flight control module 13 in the main body of the equipment through the communication module 12, and the flight control module 13 will start the SLAM mapping algorithm to quickly fly within the boundaries of the input job plots for shooting, and first transmit the captured image information to the image module 14.
- the image module 14 caches the image information captured by the camera module 5 and Compress it and pack it.
- S2 The image information obtained by the image module 14 is transmitted to the cloud server through the communication module 12, and the plan view of the operation plot is obtained after analysis by the processor unit, and the captured images are compared with the calibration samples in the database to obtain the types of crops and pests And the distribution map of pests.
- the cloud server further analyzes the planting area of the crops and the types of pests through the embedded algorithm to obtain the pesticide measurement and type to be sprayed. After the cloud server calculates the plot plan, it will extract the plot coordinate information and enter it into LABVIEW2018 through the embedded algorithm program The operating path of the drone is obtained, and the plan view of the operating plot of the main body 10 of the equipment and the operating width of the drone support rod 9 are transmitted to the operating path of the drone through the communication module 12 to obtain the operating route of the drone.
- the operator puts the required different types of pesticides into different medicine boxes and sets them in the system.
- the operation route map obtained by the cloud server is transmitted to the flight control module 13 of the drone through the communication module 12
- the flight control module 13 controls the drone to fly according to the designated route and sprays insecticide.
- the flight control module 13 will control the solenoid valve to fully open and pressurize
- the device 7 increases the spraying pressure to increase the spraying concentration of the medicine to achieve a complete deworming effect.
- the processor unit of the cloud server processes the information uploaded by the device in real time to draw a job completion diagram and reminds the operator to replenish the medicine and power of the drone based on the current status of each device in the main body of the device.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Catching Or Destruction (AREA)
Abstract
一种基于无人机的农业除虫装置及方法,包括设备主体(10)和云端服务器,设备主体(10)工作时悬浮飞行在农作物上方,设备主体上包括相机模块(5),用于在无人机工作时拍摄地块中农作物和害虫的图像信息,云台模块(6),用于在无人机工作拍摄时控制相机模块的拍摄角度,通过在无人机的内部设置图像模块(14)、通讯模块(12)和增压装置(7),通过对作业地块绘制平面图和农作物拍摄,利用云端服务器自动识别农作物中害虫的种类及其分布,并得出合理的作业路线和除虫剂,实现了智能作业。
Description
本发明涉及农业除虫技术领域,具体为一种基于无人机的农业除虫装置及方法。
随着无人机技术的快速发展,其用途越来越广泛,用于农业中的植保无人机,顾名思义是用于农林植物保护作业的无人驾驶飞机,该型无人飞机由飞行平台(固定翼、直升机、多轴飞行器)、导航飞控、喷洒机构三部分组成,通过地面遥控或导航飞控,来实现喷洒作业,可以喷洒药剂、种子、粉剂等。但是这种除虫方法操作繁琐除虫效果不明显,本发明专利提出一种基于无人机的农业智能除虫装置及方法,以解决农业中的除虫效率低的问题。
发明内容
本发明的目的在于提供一种基于无人机的农业除虫装置及方法,利用无人机上的图像模块拍摄地块,通过云端服务器智能得到地块中农作物和害虫的种类以及害虫的分布,并计算出除虫剂的用量和喷洒浓度同时为作业做出合理的路径规划,智能作业。
为实现上述目的,本发明提供如下技术方案:一种基于无人机的农业除虫装置,包括设备主体和云端服务器,所述设备主体工作时悬浮飞行在农作物上方,所述设备主体上包括相机模块,用于在无人机工作时拍摄地块中农作物和害虫的图像信息;
包括云台模块,用于在无人机工作拍摄时控制相机模块的拍摄角度;
包括通讯模块,用于设备主体、遥控模块和云端服务器之间的数据传输;
包括飞控模块,用于控制驱动电机和增压装置的工作状态;
包括图像模块,用于缓存相机模块拍摄的影像信息并将其压缩打包;
所述云端服务器包括无线模块,用于接收设备主体所发送的信息,所述信息包括设备主体所拍摄的图像信息、飞控模块中所记录的飞行相关信息和喷洒装置所记录药物相关信息;
所述处理器单元,用于将接收到的地块图像信息建立地块平面图和将农作物以及害虫与数据库中的图像进行比样得出农作物种类和害虫的种类;
包括存储单元,用于记录所有设备所发送的信息、以及经过处理器单元编辑处理后产生的数据;
优选的,所述云端服务器内置有用于路径规划的软件,本申请专利使用的软件为LABVIEW2018,通过嵌入算法程序后,云端服务器接计算出地块平面图后会提取地块平面图坐标信息输入LABVIEW2018中通过嵌入算法程序得出无人机的作业路径,并通过通讯模块传输给设备主体。
所述设备主体的外部设置有机壳,所述设备主体的上表面固定连接有喷药口,所述喷药口的下方固定连接有喷洒装置,所述喷洒装置包括增压装置、喷药口和支撑杆,所述增压装置固定安装在设备主体的内部,所述支撑杆固定安装在设备主体的下表面,所述喷药口固定安装在支撑杆的下表面。
所述增压装置与加药口之间通过药管连通,所述喷药口与增压装置之间通过药管连通。
优选的,所述增压装置的工作方式为:
A:加药口加入的除虫剂的进入设备主体中的不同的药壶,并且通过药管、电磁阀与增压装置,增压装置再通过药管与喷药口连接;
B:无人机在作业时,飞控模块会通过已经规划好的路径对增压装置进行调节,当无人机飞到害虫分布密度大地区时,电磁阀会全开增压装置会调高喷洒 压力以增加药物喷洒浓度达到完全除虫的效果。
C:飞控模块通过继电器直接控制增压装置的工作状态,实现自动喷洒药物。
所述悬臂的一端与设备主体为装配连接,所述悬臂的另一端与驱动电机固定连接,所述驱动电机的电机转轴上固定连接有叶片。
所述图像模块包括相机模块和云台模块,所述云台模块与设备主体为转动连接,所述相机模块与云台模块为转动连接,所述相机模块和云台模块通过通讯模块与云端服务器无线连接,所述增压装置、飞控模块和通讯模块之间为有线连接。
一种基于无人机的农业除虫方法,所示方法包括步骤:
S1:无人机操作员以地块的一角为坐标原点通过遥控器输入作业地块的界限数据,遥控器内的数据会通过通讯模块传送到设备主体中的飞控模块,飞控模块会启动SLAM建图算法在输入的作业地块的界限内快速飞行进行拍摄,并将拍摄到的影像信息先传送到图像模块,图像模块对拍摄影像缓存相机模块拍摄的影像信息并将其压缩打包。
S2:图像模块获得的图像信息通过通讯模块传送到云端服务器,经过处理器单元分析后得出作业地块的平面图,将拍摄到的影像与数据库中标定样本进行对比得到农作物种类、害虫种类以及害虫的分布图。
S3:云端服务器通过嵌入的算法进一步分析农作物的种植面积和害虫种类得出要喷洒的农药计量和种类,云端服务器接计算出地块平面图后会提取地块平面图坐标信息输入LABVIEW2018中通过嵌入算法程序得出无人机的作业路径,并通过通讯模块传输给设备主体作业地块的平面图和无人机支撑杆作业宽度得出无人机的作业路线。
S4:操作员将所需的不同种类杀虫剂放入不同的药箱,并在系统中进行设定, 云端服务器得出的作业路线图通过通讯模块传送到无人机中飞控模块中进行执行,通过飞控模块控制无人机按照指定路线飞行和喷洒除虫剂,当无人机飞到害虫分布密度大地区时,飞控模块会控制电磁阀会全开,增压装置增加喷洒压力以增加药物喷洒浓度达到完全除虫的效果。
S5:云端服务器的处理器单元将设备上传的信息进行实时处理绘制作业完成图并结合当前设备主体中各设备状态情况提醒操作员对无人机进行的药物和电量补给。
与现有技术相比,本发明的有益效果如下:
本发明通过在无人机的内部设置图像模块、通讯模块和增压装置,通过对作业地块绘制平面图和农作物拍摄,利用云端服务器自动识别农作物中害虫的种类及其分布,并得出合理的作业路线和除虫剂,实现了智能作业,害虫密度大的地方加大除虫剂喷洒浓度,同时地块中的害虫进行针对性喷洒农药已达到完全杀灭害虫的目的。
图1为本发明装置的结构示意图;
图2为本发明设备取得地块信息的操作方法;
图3为本发明设备云端服务器处理信息的方法;
图4为本发明装置的除虫方法流程图;
图5为本发明装置的结构主视图;
图中:1-叶片,2-驱动电机,3-悬臂,4-机壳,5-相机模块,6-云台模块,7-增压装置,8-喷药口,9-支撑杆,10-设备主体,11-加药口,12-通讯模块,13-飞控模块,14-图像模块,15-喷洒装置。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1至图5,本发明提供一种技术方案:一种基于无人机的农业除虫装置,包括设备主体10和云端服务器,所述设备主体10工作时悬浮飞行在农作物上方,其特征在于:所述设备主体10上包括相机模块5,用于在无人机工作时拍摄地块中农作物和害虫的图像信息;
包括云台模块6,用于在无人机工作拍摄时控制相机模块5的拍摄角度;
包括通讯模块12,用于设备主体10、遥控模块和云端服务器之间的数据传输;
包括飞控模块13,用于控制驱动电机2和增压装置7的工作状态;
包括图像模块14,用于缓存相机模块5拍摄的影像信息并将其压缩打包;
所述云端服务器包括无线模块,用于接收设备主体10所发送的信息,所述信息包括设备主体10所拍摄的图像信息、飞控模块13中所记录的飞行相关信息和喷洒装置15所记录药物相关信息;
包括处理器单元,用于将接收到的地块图像信息建立地块平面图和将农作物以及害虫与数据库中的图像进行比样得出农作物种类和害虫的种类;
包括存储单元,用于记录所有设备所发送的信息、以及经过处理器单元编辑处理后产生的数据。
优选的,所述云端服务器内置有用于路径规划的软件,本申请专利使用的软件为LABVIEW2018,通过嵌入算法程序后,云端服务器接计算出地块平面图后会提取地块平面图坐标信息输入LABVIEW2018中通过嵌入算法程序得出无人机 的作业路径,并通过通讯模块12传输给设备主体10。
所述设备主体10的外部设置有机壳4,所述设备主体10的上表面固定连接有喷药口8,所述喷药口8的下方固定连接有喷洒装置15,所述喷洒装置15包括增压装置7、喷药口8和支撑杆9,所述增压装置7固定安装在设备主体10的内部,所述支撑杆9固定安装在设备主体10的下表面,所述喷药口8固定安装在支撑杆9的下表面。
所述增压装置7与加药口11之间通过药管连通,所述喷药口8与增压装置7之间通过药管连通。
优选的,所述增压装置7的工作方式为:
A:加药口11加入的除虫剂的进入设备主体10中的不同的药壶,并且通过药管、电磁阀与增压装置7,增压装置7再通过药管与喷药口8连接;
B:无人机在作业时,飞控模块13会通过已经规划好的路径对增压装置7进行调节,当无人机飞到害虫分布密度大地区时,电磁阀会全开增压装置7会调高喷洒压力以增加药物喷洒浓度达到完全除虫的效果,针对不同的害虫采用不同杀虫剂,提高电磁阀选择除虫剂。
C:飞控模块13通过继电器直接控制增压装置7的工作状态,实现自动喷洒药物,本申请使用若多个喷药口8以提高工作速度。
所述悬臂3的一端与设备主体10为装配连接,所述悬臂3的另一端与驱动电机2固定连接,所述驱动电机2的电机转轴上固定连接有叶片1。
所述图像模块14包括相机模块5和云台模块6,所述云台模块6与设备主体10为转动连接,所述相机模块5与云台模块6为转动连接,所述相机模块5和云台模块6通过通讯模块12与云端服务器无线连接,所述增压装置7、飞控模块13和通讯模块12之间为有线连接。
一种基于无人机的农业除虫方法,所示方法包括步骤:
S1:无人机操作员以地块的一角为坐标原点通过遥控器输入作业地块的界限数据,遥控器内的数据会通过通讯模块12传送到设备主体中的飞控模块13,飞控模块13会启动SLAM建图算法在输入的作业地块的界限内快速飞行进行拍摄,并将拍摄到的影像信息先传送到图像模块14,图像模块14对拍摄影像缓存相机模块5拍摄的影像信息并将其压缩打包。
S2:图像模块14获得的图像信息通过通讯模块12传送到云端服务器,经过处理器单元分析后得出作业地块的平面图,将拍摄到的影像与数据库中标定样本进行对比得到农作物种类、害虫种类以及害虫的分布图。
S3:云端服务器通过嵌入的算法进一步分析农作物的种植面积和害虫种类得出要喷洒的农药计量和种类,云端服务器接计算出地块平面图后会提取地块平面图坐标信息输入LABVIEW2018中通过嵌入算法程序得出无人机的作业路径,并通过通讯模块12传输给设备主体10作业地块的平面图和无人机支撑杆9作业宽度得出无人机的作业路线。
S4:操作员将所需的不同种类杀虫剂放入不同的药箱,并在系统中进行设定,云端服务器得出的作业路线图通过通讯模块12传送到无人机中飞控模块13中进行执行,通过飞控模块13控制无人机按照指定路线飞行和喷洒除虫剂,当无人机飞到害虫分布密度大地区时,飞控模块13会控制电磁阀会全开,增压装置7增加喷洒压力以增加药物喷洒浓度达到完全除虫的效果。
S5:云端服务器的处理器单元将设备上传的信息进行实时处理绘制作业完成图并结合当前设备主体中各设备状态情况提醒操作员对无人机进行的药物和电量补。
给尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而 言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (6)
- 一种基于无人机的农业除虫装置,包括设备主体(10)和云端服务器,所述设备主体(10)工作时悬浮飞行在农作物上方,其特征在于:所述设备主体(10)上包括相机模块(5),用于在无人机工作时拍摄地块中农作物和害虫的图像信息;包括云台模块(6),用于在无人机工作拍摄时控制相机模块(5)的拍摄角度;包括通讯模块(12),用于设备主体(10)、遥控模块和云端服务器之间的数据传输;包括飞控模块(13),用于控制驱动电机(2)和增压装置(7)的工作状态;包括图像模块(14),用于缓存相机模块(5)拍摄的影像信息并将其压缩打包;所述云端服务器包括无线模块,用于接收设备主体(10)所发送的信息,所述信息包括设备主体(10)所拍摄的图像信息、飞控模块(13)中所记录的飞行相关信息和喷洒装置(15)所记录药物相关信息;包括处理器单元,用于将接收到的地块图像信息建立地块平面图和将农作物以及害虫与数据库中的图像进行比样得出农作物种类和害虫的种类;包括存储单元,用于记录所有设备所发送的信息、以及经过处理器单元编辑处理后产生的数据。
- 根据权利要求1所述的一种基于无人机的农业除虫装置,其特征在于:所述设备主体(10)的外部设置有机壳(4),所述设备主体(10)的上表面固定连接有喷药口(8),所述喷药口(8)的下方固定连接有喷洒装置(15),所述喷洒装置(15)包括增压装置(7)、喷药口(8)和支撑杆(9),所述增压装 置(7)固定安装在设备主体(10)的内部,所述支撑杆(9)固定安装在设备主体(10)的下表面,所述喷药口(8)固定安装在支撑杆(9)的下表面。
- 根据权利要求1所述的一种基于无人机的农业除虫装置,其特征在于:所述增压装置(7)与加药口(11)之间通过药管连通,所述喷药口(8)与增压装置(7)之间通过药管连通。
- 根据权利要求1所述的一种基于无人机的农业除虫装置,其特征在于:所述悬臂(3)的一端与设备主体(10)为装配连接,所述悬臂(3)的另一端与驱动电机(2)固定连接,所述驱动电机(2)的电机转轴上固定连接有叶片(1)。
- 根据权利要求1所述的一种基于无人机的农业除虫装置,其特征在于:所述图像模块(14)包括相机模块(5)和云台模块(6),所述云台模块(6)与设备主体(10)为转动连接,所述相机模块(5)与云台模块(6)为转动连接,所述相机模块(5)和云台模块(6)通过通讯模块(12)与云端服务器无线连接,所述增压装置(7)、飞控模块(13)和通讯模块(12)之间为有线连接。
- 一种使用如权利要求1-5任一项所述的除虫装置进行除虫的方法,所示方法包括步骤:S1:无人机操作员通过遥控器输入作业地块界限,设备主体(10)按照输入界限进行作业前拍摄。S2:图像模块(14)获得的图像信息传送到云端服务器,分析后得出作业地块的平面图,农作物种类、害虫种类以及害虫的分布图。S3:云端服务器通过进一步分析农作物的种植面积和害虫种类得出要喷洒的农药计量和种类,通过作业地块的平面图和无人机支撑杆(9)作业宽度得出 无人机的作业路线。S4:对无人机药箱加入所需除虫剂,云端服务器得出的作业路线图通过通讯模块(12)传送到无人机中飞控模块(13)中进行执行,通过飞控模块(13)控制无人机按照指定路线飞行和喷洒除虫剂。S5:云端服务器的处理器单元将设备上传的信息进行实时处理绘制作业完成图并结合当前设备主体(10)中各设备状态情况提醒操作员对无人机进行的药物和电量补给。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/082657 WO2021196062A1 (zh) | 2020-04-01 | 2020-04-01 | 一种基于无人机的农业除虫装置及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/082657 WO2021196062A1 (zh) | 2020-04-01 | 2020-04-01 | 一种基于无人机的农业除虫装置及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021196062A1 true WO2021196062A1 (zh) | 2021-10-07 |
Family
ID=77927280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/082657 WO2021196062A1 (zh) | 2020-04-01 | 2020-04-01 | 一种基于无人机的农业除虫装置及方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021196062A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114503972A (zh) * | 2022-02-15 | 2022-05-17 | 薛金莲 | 信息化装备智能管理系统 |
CN115024300A (zh) * | 2022-06-30 | 2022-09-09 | 昆明理工大学 | 一种三七病虫害防控植保无人机的智能喷药装置、方法与系统 |
CN115834845A (zh) * | 2023-02-24 | 2023-03-21 | 山东慧创信息科技有限公司 | 一种基于物联网的无人机土地数据识别系统 |
CN115857417A (zh) * | 2023-02-24 | 2023-03-28 | 中国烟草总公司四川省公司 | 基于智能遥感图像识别的无人机农药喷洒控制系统及方法 |
US11738613B1 (en) * | 2021-04-19 | 2023-08-29 | Christopher Cade Spikes | Drone air to ground transition system |
CN116806799A (zh) * | 2023-08-25 | 2023-09-29 | 深圳市纬尔科技有限公司 | 一种智慧农业田间除草方法以及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103803083A (zh) * | 2014-01-17 | 2014-05-21 | 浙江大学 | 一种基于gps的无人机喷药装置及其喷药方法 |
CN107450596A (zh) * | 2017-09-28 | 2017-12-08 | 烟台燕晟信息技术有限公司 | 一种无人机在统防统治中的应用 |
WO2019093967A1 (en) * | 2017-11-08 | 2019-05-16 | Prohibition X Pte. Ltd. | Surveillance with an unmanned aerial vehicle |
CN110197308A (zh) * | 2019-06-05 | 2019-09-03 | 黑龙江省七星农场 | 一种用于农业物联网的作物监测系统及方法 |
CN110213376A (zh) * | 2019-06-05 | 2019-09-06 | 黑龙江省七星农场 | 一种用于虫害预防的信息处理系统及方法 |
US20190389577A1 (en) * | 2018-03-30 | 2019-12-26 | Greensight Agronomics, Inc. | Automated drone-based spraying system |
-
2020
- 2020-04-01 WO PCT/CN2020/082657 patent/WO2021196062A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103803083A (zh) * | 2014-01-17 | 2014-05-21 | 浙江大学 | 一种基于gps的无人机喷药装置及其喷药方法 |
CN107450596A (zh) * | 2017-09-28 | 2017-12-08 | 烟台燕晟信息技术有限公司 | 一种无人机在统防统治中的应用 |
WO2019093967A1 (en) * | 2017-11-08 | 2019-05-16 | Prohibition X Pte. Ltd. | Surveillance with an unmanned aerial vehicle |
US20190389577A1 (en) * | 2018-03-30 | 2019-12-26 | Greensight Agronomics, Inc. | Automated drone-based spraying system |
CN110197308A (zh) * | 2019-06-05 | 2019-09-03 | 黑龙江省七星农场 | 一种用于农业物联网的作物监测系统及方法 |
CN110213376A (zh) * | 2019-06-05 | 2019-09-06 | 黑龙江省七星农场 | 一种用于虫害预防的信息处理系统及方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11738613B1 (en) * | 2021-04-19 | 2023-08-29 | Christopher Cade Spikes | Drone air to ground transition system |
CN114503972A (zh) * | 2022-02-15 | 2022-05-17 | 薛金莲 | 信息化装备智能管理系统 |
CN114503972B (zh) * | 2022-02-15 | 2024-02-20 | 内蒙古快为科技有限公司 | 信息化装备智能管理系统 |
CN115024300A (zh) * | 2022-06-30 | 2022-09-09 | 昆明理工大学 | 一种三七病虫害防控植保无人机的智能喷药装置、方法与系统 |
CN115024300B (zh) * | 2022-06-30 | 2023-08-18 | 昆明理工大学 | 一种三七病虫害防控植保无人机的智能喷药装置、方法与系统 |
CN115834845A (zh) * | 2023-02-24 | 2023-03-21 | 山东慧创信息科技有限公司 | 一种基于物联网的无人机土地数据识别系统 |
CN115857417A (zh) * | 2023-02-24 | 2023-03-28 | 中国烟草总公司四川省公司 | 基于智能遥感图像识别的无人机农药喷洒控制系统及方法 |
CN116806799A (zh) * | 2023-08-25 | 2023-09-29 | 深圳市纬尔科技有限公司 | 一种智慧农业田间除草方法以及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021196062A1 (zh) | 一种基于无人机的农业除虫装置及方法 | |
US11147257B2 (en) | Software process for tending crops using a UAV | |
US12004443B2 (en) | Payload selection to treat multiple plant objects having different attributes | |
US11526997B2 (en) | Targeting agricultural objects to apply units of treatment autonomously | |
CN111557290A (zh) | 一种基于无人机的农业除虫装置及方法 | |
CN106564599A (zh) | 一种基于多光谱遥感的无人机植保作业方法 | |
US11465162B2 (en) | Obscurant emission to assist image formation to automate agricultural management and treatment | |
CN106406336A (zh) | 一种用于果树喷药的无人机 | |
US11963473B2 (en) | Multiple emitters to treat agricultural objects from multiple payload sources | |
US20230331406A1 (en) | Remotely piloted aircraft suitable for aerial survey and spraying activities,and aerial survey and spraying system | |
CN104527981A (zh) | 一种利用农用无人机进行农药喷施的方法 | |
US20210185942A1 (en) | Managing stages of growth of a crop with micro-precision via an agricultural treatment delivery system | |
US11449976B2 (en) | Pixel projectile delivery system to replicate an image on a surface using pixel projectiles | |
JPWO2020040063A1 (ja) | 圃場作物撮影方法および撮影用ドローン | |
US20210186006A1 (en) | Autonomous agricultural treatment delivery | |
CN106598090A (zh) | 一种用于果树喷药的无人机控制系统 | |
CN105711840A (zh) | 农用无人机 | |
US20210185885A1 (en) | Calibration of systems to deliver agricultural projectiles | |
BR102022020737A2 (pt) | Sistema para uma operação agrícola e método para aplicar seletivamente um produto agrícola | |
JP2001292684A (ja) | 農薬・肥料散布制御システム | |
US20240284894A1 (en) | Communication protocol for treatment devices | |
Wu et al. | Addressing Greenhouse’s Lack of Natural Pollinators-A UAV-Based Artificial Pollination System | |
Kamthania | Use of drones in agriculture | |
TWI754916B (zh) | 結合人工智慧之游牧式養蜂地圖安全監控方法與系統 | |
GULAK | Implementation of Drone for Spraying Herbicide and Pesticide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20928268 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20928268 Country of ref document: EP Kind code of ref document: A1 |