WO2021194169A1 - 자가 헤어핀 프라이머 기반 등온 증폭 기술 - Google Patents

자가 헤어핀 프라이머 기반 등온 증폭 기술 Download PDF

Info

Publication number
WO2021194169A1
WO2021194169A1 PCT/KR2021/003399 KR2021003399W WO2021194169A1 WO 2021194169 A1 WO2021194169 A1 WO 2021194169A1 KR 2021003399 W KR2021003399 W KR 2021003399W WO 2021194169 A1 WO2021194169 A1 WO 2021194169A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
target nucleic
hairpin
site
hairpin probe
Prior art date
Application number
PCT/KR2021/003399
Other languages
English (en)
French (fr)
Inventor
박현규
송자연
김효용
정유진
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to US17/907,188 priority Critical patent/US20230119862A1/en
Publication of WO2021194169A1 publication Critical patent/WO2021194169A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/30Oligonucleotides characterised by their secondary structure
    • C12Q2525/301Hairpin oligonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/101Temperature

Definitions

  • the present invention is self-hairpin-based primer isothermal amplification techniques (S elf- p riming h airpin- mediated isothermal amp lification (SP-HAMP)) relates to a, more particularly, self-primers for the target nucleic acid detection that can be used for isothermal nucleic acid amplification
  • SP-HAMP self-hairpin-based primer isothermal amplification techniques
  • the present invention relates to a hairpin probe having a structure and a method for detecting a target nucleic acid using the same.
  • PCR Polymerase chain reaction
  • POCT point-of-care testing
  • NASBA nucleic acid sequence-based amplification
  • HDA helicase-dependent amplification
  • RPA recombinase polymerase amplification
  • SDA strand displacement amplification
  • LAMP loop-mediated isothermal amplification
  • RCA rolling circle amplification
  • EXPAR exponential amplification reaction
  • the LAMP technology has been considered as a technology with high application potential as a POCT technology by realizing a target nucleic acid amplification efficiency of up to 10 9 times within a short reaction time of about 1 hour.
  • the LAMP technology is a technology in which a dumbbell-shaped DNA product generated by the action of a DNA polymerase is amplified through a hybridization process with a primer after a target nucleic acid and four primers are hybridized (Tomita, N. et al . Nucleic Acids Res , 28, 63, 2000; Tomita, N. et al ., Nature protocols , 3, 877, 2008; Mori, Y.
  • the LAMP technology has a disadvantage in that the primer design is complicated, and since it uses several types of primers, the background signal is also rapidly amplified according to the random hybridization between the primers, and the detection efficiency is lowered.
  • the present inventors have made diligent efforts to develop an isothermal amplification method having superior amplification and detection efficiency than the prior art. It was confirmed that the target nucleic acid can be efficiently detected, and the present invention has been completed.
  • An object of the present invention is to provide a hairpin probe having a self-priming structure for detecting a target nucleic acid that can be used for nucleic acid isothermal amplification.
  • Another object of the present invention is to provide a method for detecting a target nucleic acid using a hairpin probe having a self-primer structure for detecting the target nucleic acid.
  • Another object of the present invention is to provide a composition for detecting a target nucleic acid comprising a hairpin probe having a self-primer structure for detecting the target nucleic acid.
  • Another object of the present invention is to provide a kit for detecting a target nucleic acid comprising a hairpin probe having the self-primer structure.
  • the present invention provides a hairpin probe comprising the following components and having a self-priming structure for detecting a target nucleic acid:
  • the b site of the autologous hairpin primer which is linked to the a site of the autologous hairpin primer and includes a sequence complementary to a part of the X site to form the stem of the hairpin probe;
  • the present invention also provides the steps of (a) reacting a composition comprising a target nucleic acid-containing sample, a hairpin probe having the self-primer structure, a nucleic acid polymerase, and a dNTP to generate an intermediate product in which the hairpin probe is extended by the self-priming step ; and (b) analyzing the generated hairpin probe intermediate product to detect the target nucleic acid.
  • the present invention also provides a composition for detecting a target nucleic acid comprising a hairpin probe having the self-priming structure, a nucleic acid polymerase, and a dNTP.
  • the present invention also provides a kit for detecting a target nucleic acid comprising a hairpin probe having the self-primer structure, a nucleic acid polymerase, and a dNTP.
  • Figure 1a shows the structure of the hairpin probe used in the SP-HAMP technology of the present invention.
  • 1B schematically illustrates the formation of a self-hairpin primer by hybridization of the hairpin probe of the present invention and a target nucleic acid.
  • the 5' end (PS1) and part of the loop (PS1') of the hairpin probe are modified with phosphorothioate DNA, and are composed of complementary sequences.
  • the stem and loop portions of the hairpin probe consist of sequences complementary to the target nucleic acid. Accordingly, the hairpin probe is opened by the target nucleic acid, and since the stem (a) and the 3' end portion (a') of the hairpin probe are composed of complementary sequences, a self hairpin primer structure is formed.
  • Figure 2 is a schematic diagram of the reaction of the SP-HAMP technology of the present invention. More specifically, (a) shows a reaction in which the hairpin probe is opened through hybridization with a target nucleic acid, (b) shows a reaction in which intermediate product 1 is produced through polymerization of the hairpin probe, (c) is It shows a structure that overcomes the weak binding force between phosphorothioate DNA and normal DNA and forms a relatively strong DNA/DNA bond to form a terminal self-hairpin primer, (d) DNA polymerase at the terminal self-hairpin primer part
  • the polymerization reaction shows a reaction in which intermediate product 2 is produced, (e) shows a structure in which a terminal autologous hairpin primer is formed in the intermediate product 2 generated in step (d), and (f) shows a reaction from the terminal autologous hairpin primer It shows a reaction in which a polymerization reaction takes place to produce an intermediate product 3.
  • the terminal self-hairpin primer is constantly formed and poly
  • Figure 3 shows the results of the effectiveness test of this SP-HAMP technology through fluorescence measurement and electrophoresis. More specifically, various conditions (1: hairpin probe modified with phosphorothioate DNA and having a self-primer structure + target nucleic acid + DNA polymerase, 2: hairpin probe modified with phosphorothioate DNA and having a self-primer structure + DNA Polymerase, 3: Hairpin probe with 5' end region and self-primer structure replacing phosphorothioate DNA with normal DNA + target nucleic acid + DNA polymerase, 4: Phosphorothioate DNA to DNA consisting of a random sequence The result of experimentally confirming whether a fluorescence signal is generated according to the replaced 5' end region and a hairpin probe having a self-priming structure + target nucleic acid + DNA polymerase) is shown.
  • Figure 4 shows the test results of the target nucleic acid detection sensitivity of the present SP-HAMP technology.
  • Figure 5 demonstrates the specificity of the present SP-HAMP technology. It shows the results of various base mismatch discrimination performance tests from the target nucleic acid.
  • Figure 7 demonstrates the practical application of the present SP-HAMP technology.
  • the fluorescence signal was measured using long single-stranded and double-stranded nucleic acids obtained through PCR and asymmetric PCR as samples. As a result, the same signal value as that of the short nucleic acid sample was obtained.
  • Figure 8 demonstrates the RNA target applicability of the present SP-HAMP technology.
  • the conventional nucleic acid isothermal amplification technology LAMP technology
  • LAMP technology has many complex designs.
  • a phosphorothioate and modified with self-Eight DNA isothermal amplification techniques that utilize hairpin peurobeueul with a primer structure (S elf- p riming h airpin- mediated isothermal amp lification (SP-HAMP)) developed.
  • a hairpin probe modified with phosphorothioate DNA and having a self-primer structure forms a self-hairpin primer structure by a target nucleic acid recognition reaction, and a long hairpin polymer product is produced through the action of a DNA polymerase.
  • the present invention provides a hairpin probe comprising the following components and having a self-priming structure for detecting a target nucleic acid:
  • the structure of the hairpin probe having the self-primer structure of the present invention is shown in FIG. 1 .
  • the 5' end (PS1) and part of the loop (PS1') of the hairpin probe of the present invention are modified with phosphorothioate DNA, and consist of sequences complementary to each other.
  • the stem and loop portions of the hairpin probe consist of sequences complementary to the target nucleic acid. Accordingly, the hairpin probe is opened by the target nucleic acid, and since the stem (a) and the 3' end portion (a') of the hairpin probe are composed of complementary sequences, a self hairpin primer structure is formed.
  • Phosphorothioate DNA weakens the base stacking binding force in the double helix structure, thereby lowering the melting temperature (T m ) value between phosphorothioate DNA and DNA (Boczkowska, M. et al. , Biochemistry , 41, 12483, 2002) (LaPlanche, LA et al ., 14, Nucleic acid Res , 9081, 1986).
  • an intermediate product is produced by extension of the hairpin probe by the autologous hairpin primer, and the intermediate product production process proceeds according to the following process (see FIG. 2):
  • the autologous hairpin primer (a') generated in (a) is formed by the binding of phosphorothioate DNA and normal DNA (PS1'-PS1) at a certain part of the stem and at the end of the stem by DNA polymerase forming an intermediate product 1, which is (FIG. 2 b);
  • the target nucleic acid detection limit was 11.5 zM, and through this, the SP-HAMP technology of the present invention It was confirmed that it has comparable performance to the existing LAMP technology.
  • various lengths and types of DNA are prepared, and using this as a target nucleic acid, the target It was confirmed that a long-length nucleic acid could be detected when a hairpin probe was prepared for a nucleic acid and the SP-HAMP reaction was performed.
  • the target nucleic acid can be effectively detected at 45 ⁇ 65 °C when the SP-HAMP reaction is performed at various temperatures.
  • Vent exo(-) polymerase was used as a DNA polymerase, but the system can be driven even within a reaction temperature (25 ⁇ C ⁇ 70 ⁇ C) with a wide range of solubility using various DNA polymerases, At this time, check that the shape of the corresponding hairpin probe does not deform even within the temperature, and if the shape does not change, it is applicable.
  • Bst 2.0 DNA Polymerase, Bst 2.0 WarmStart ⁇ DNA Polymerase, Klenow Fragment (3' ⁇ 5' exo-) may be used, but is not limited thereto.
  • the stem part (x, a, b, a') of the hairpin probe is optimized for the length and DNA base (A, T, C, G), and chemical modification, the system efficiency can be further increased. It is expected that there will be
  • the present invention provides an intermediate product in which (a) a target nucleic acid-containing sample, a hairpin probe having a self-priming structure of the present invention, a composition comprising a nucleic acid polymerase and a dNTP are reacted, and the hairpin probe is extended by the self-priming agent creating a; and (b) analyzing the generated hairpin probe intermediate product to detect the target nucleic acid.
  • a hairpin probe intermediate with a long chain is generated by extension of the hairpin probe by the self-hairpin primer. Nucleic acids can be detected.
  • the hairpin probe intermediate product may be checked for generation of an intermediate product having a size larger than that of the original hairpin probe through electrophoresis, and may be detected using a fluorescent dye or other method capable of detecting dsDNA.
  • the target nucleic acid may be DNA or RNA.
  • SYBR Green I was used as a fluorescent dye capable of detecting dsDNA, but the present invention is not limited thereto.
  • the SP-HAMP technology of the present invention can discriminate non-specific sequences other than the target nucleic acid as well as successfully discriminate 1 to 3 base mismatches, and is a technique showing excellent specificity.
  • the present invention relates to a composition for detecting a target nucleic acid comprising a hairpin probe having the self-priming structure, a nucleic acid polymerase, and a dNTP.
  • the present invention also relates to a kit for detecting a target nucleic acid comprising a hairpin probe having the self-priming structure, a nucleic acid polymerase, and a dNTP.
  • SP-HAMP reaction solution (final 20 ⁇ L) was prepared by adding 0.4 ⁇ L of dNTPs (10 mM each), 1 ⁇ L of hairpin probe (1 ⁇ M), and 2 ⁇ L of target nucleic acids of various concentrations to the reaction buffer, and the reaction buffer was 20 mM Tris-HCl (pH 8.8), 10mM KCl, 10mM (NH 4 ) 2 SO 4 , 2mM MgSO 4 It was prepared to contain 0.1% TritonX-100. After adding 0.5 ⁇ L of vent(exo-) DNA polymerase (2unit/ ⁇ L, New England Biolabs Inc. (Beverly, MA, USA)) to the prepared reaction solution, it was generated from SYBR Green I at 55°C at 30 second intervals By measuring the fluorescence intensity, the amount of final double-stranded DNA (hairpin probe intermediate) was analyzed.
  • vent(exo-) DNA polymerase (2unit/ ⁇ L, New England Biolabs Inc. (Beverly, MA, USA
  • the validation experiment of the SP-HAMP technology of the present invention was conducted using the same reaction conditions as those described in Example 1, such as target nucleic acids and hairpin probes.
  • the sensitivity verification experiment of the SP-HAMP technology of the present invention was conducted using the reaction conditions described in Example 1. After preparing an assay sample (20 ⁇ L) containing the target nucleic acid of various concentrations (1aM ⁇ 1nM), the SP-HAMP reaction was performed.
  • Example 2 Using the reaction conditions described in Example 1, the target nucleic acid detection specificity of the SP-HAMP technology of the present invention was confirmed.
  • the reaction was performed using a sample (see FIG. 5 ) containing a random sequence of a nucleic acid other than the target nucleic acid.
  • the D value is an index indicating the ability to discriminate a base mismatch from the target nucleic acid, and may be characterized as defined through the following relational expression.
  • D value (F 60,X - F 60,0 )/(F 60,P - F 60,0 )
  • F 60,X Fluorescence signal value after 60 minutes of a sample containing various base mismatch nucleic acids
  • F 60,0 Fluorescence signal value after 60 minutes of a sample containing no target nucleic acid
  • F 60,P Fluorescence signal value after 60 minutes of sample containing target nucleic acid
  • DNAs of various lengths and types were prepared and used as a target nucleic acid to obtain a hairpin probe for the target nucleic acid. prepared, and the reaction was carried out.
  • the SP-HAMP technique according to the present invention can detect long-length nucleic acids.
  • RNA could be detected as a target nucleic acid of the SP-HAMP technology according to the present invention.
  • cytochrome c oxidase subunit I mRNA of Brachionus rotundiformis was selected and a hairpin probe was designed and SP-HAMP amplification was performed.
  • the SP-HAMP technology according to the present invention is simple because it does not require a separate primer with a complicated design required by the existing LAMP technology, has improved detection efficiency than the conventional LAMP reaction, and detects not only DNA but also RNA as a target nucleic acid. Therefore, it can be applied to a wider field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 자가 헤어핀 프라이머 기반 등온 증폭 기술(Self-priming hairpin-mediated isothermal amplification (SP-HAMP))에 관한 것으로, 더욱 자세하게는 핵산 등온증폭에 사용할 수 있는 표적핵산 검출을 위한 자가 프라이머 구조를 가지는 헤어핀 프로브 및 이를 이용한 표적핵산의 검출방법에 관한 것으로, 본 발명에 따른 SP-HAMP 기술은 기존의 LAMP 기술에서 요구되는 복잡한 디자인의 별도의 프라이머가 필요로 하지 않아, 간편하며, 기존의 LAMP 반응보다 향상된 검출 효율을 가지며, 표적핵산으로 DNA뿐만 아니라 RNA 검출도 가능하여, 보다 넓은 분야에 적용이 가능하다.

Description

자가 헤어핀 프라이머 기반 등온 증폭 기술
본 발명은 자가 헤어핀 프라이머 기반 등온 증폭 기술(Self-priming hairpin-mediated isothermal amplification (SP-HAMP))에 관한 것으로, 더욱 자세하게는 핵산 등온증폭에 사용할 수 있는 표적핵산 검출을 위한 자가 프라이머 구조를 가지는 헤어핀 프로브 및 이를 이용한 표적핵산의 검출방법에 관한 것이다.
중합효소연쇄반응(polymerase chain reaction, 이하 PCR) 기술은 표적핵산의 증폭 및 검출을 위해 가장 널리 사용되는 기술이다. 하지만, PCR 반응을 구현하기 위해서는 정교한 온도 조절이 필수적으로 요구되며, 이를 위한 온도 조절 장치의 탑재로 인해 PCR 장비의 부피가 커지고 가격이 비싸진다는 단점을 가지고 있다. 최근 현장검사 (point-of-care testing, POCT) 기술 개발에 대한 수요가 증대되면서, 온도 조절 장치를 필요로 하는 PCR 기술의 단점을 해결하여 소형화를 구현할 수 있는 대체 기술에 대한 관심이 높아지고 있다.
이러한 기술 흐름에 발맞추어, 1990년대 초부터 온도 조절 과정 없이 일정한 온도에서 핵산 증폭이 가능한 등온 핵산 증폭 기술들 (nucleic acid sequence-based amplification (NASBA); helicase-dependent amplification (HDA); recombinase polymerase amplification (RPA); strand displacement amplification (SDA); loop-mediated isothermal amplification (LAMP); rolling circle amplification (RCA); exponential amplification reaction (EXPAR))이 활발히 개발되어왔다(Van Ness et al., Proc. Natl. Acad. Sci. U. S. A., 100, 4504, 2003).
상기의 여러 등온 핵산 증폭 기술 중에서도 LAMP 기술은 약 1시간의 짧은 반응 시간 내 최대 109배의 표적 핵산 증폭 효율을 구현함으로써, POCT 기술로서의 높은 활용 가능성을 보유한 기술로 간주되어 왔다. 구체적으로, LAMP 기술은 표적 핵산과 4개의 프라이머 혼성화 반응 후, DNA 중합 효소의 작용으로 인해 생성된 덤벨 형태의 DNA 산물이 프라이머와의 혼성화 과정을 통해 증폭되는 기술이다 (Tomita, N. et al. Nucleic Acids Res, 28, 63, 2000; Tomita, N. et al., Nature protocols, 3, 877, 2008; Mori, Y. et al., J Biochem Biophys Methods, 59, 145, 2004). 하지만, LAMP 기술은 프라이머 디자인이 복잡하며, 여러 종의 프라이머를 사용하기 때문에 프라이머 간 무작위적 혼성화에 따라 배경 신호 또한 빠르게 증폭하여 검출효율이 떨어지는 단점이 있다.
이에, 본 발명자들은 종래 기술보다 우수한 증폭효율과 검출효율을 가지는 등온증폭방법을 개발하고자 예의 노력한 결과, 포스포로티오에이트 DNA로 수식되고 자가 프라이머 구조를 가진 헤어핀 프로브를 이용하는 경우, 등온 조건에서 우수한 증폭 효율로 표적핵산을 검출할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은 핵산 등온증폭에 사용할 수 있는 표적핵산 검출을 위한 자가 프라이머 구조를 가지는 헤어핀 프로브를 제공하는데 있다.
본 발명의 다른 목적은 상기 표적핵산 검출을 위한 자가 프라이머 구조를 가지는 헤어핀 프로브를 이용한 표적핵산의 검출방법을 제공하는데 있다.
본 발명의 또다른 목적은 상기 표적핵산 검출을 위한 자가 프라이머 구조를 가지는 헤어핀 프로브를 포함하는 표적핵산 검출용 조성물을 제공하는데 있다.
본 발명의 또 다른 목적은 상기 자가 프라이머 구조를 가지는 헤어핀 프로브를 포함하는 표적핵산 검출용 키트를 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 다음 구성요소를 포함하고, 표적핵산 검출을 위한 자가 프라이머 구조를 가지는 헤어핀 프로브를 제공한다:
(i) 헤어핀 프로브의 5' 말단에 위치하며, 포스포로티오에이트(phosphorothioate) DNA로 수식되어 있고, PS1'부위와 상보적인 서열을 가지는 PS1 부위;
(ii) 상기 PS1 부위에 연결되고, 표적핵산과 상보적인 서열을 포함하는 헤어핀 프로브의 스템(stem)에 위치하는 X 부위;
(iii) 헤어핀 프로브의 루프(loop)에 위치하고, 상기 X 부위에 연결되며, 상기 X 부위의 표적핵산과 상보적인 서열에 이어지는 표적핵산과 상보적인 서열을 가지고, 포스포로티오에이트(phosphorothioate) DNA로 수식되어 있는 PS1' 부위;
(iv) 상기 PS1' 부위에 연결되고, 상기 PS1' 부위의 표적핵산과 상보적인 서열에 이어지는 표적핵산과 상보적인 서열을 가지고 헤어핀 프로브의 루프(loop)에 위치하는 L 부위;
(v) 상기 L 부위에 연결되고, 상기 X 부위의 일부와 상보적인 서열을 포함하여 헤어핀 프로브의 스템을 형성하는 자가 헤어핀 프라이머의 a 부위;
(vi) 상기 자가 헤어핀 프라이머의 a 부위와 연결되고, 상기 X 부위의 일부와 상보적인 서열을 포함하여 헤어핀 프로브의 스템을 형성하는 자가 헤어핀 프라이머의 b 부위; 및
(vii) 헤어핀 프로브의 3' 말단에 위치하고, 자가 헤어핀 프라이머의 b 부위에 연결되고, 상기 자가 헤어핀 프라이머의 a 부위와 상보적인 서열을 포함하는 자가 헤어핀 프라이머의 a' 부위.
본 발명은 또한, (a) 표적핵산 함유 시료, 상기 자가 프라이머 구조를 가지는 헤어핀 프로브, 핵산 중합효소 및 dNTP를 포함하는 조성물을 반응시켜, 자가 프라이머에 의해 헤어핀 프로브가 신장한 중간 생성물을 생성시키는 단계; 및 (b) 상기 생성된 헤어핀 프로브 중간 생성물을 분석하여 표적핵산을 검출하는 단계를 포함하는 표적핵산의 검출방법을 제공한다.
본 발명은 또한, 상기 자가 프라이머 구조를 가지는 헤어핀 프로브, 핵산 중합효소 및 dNTP를 포함하는 표적핵산 검출용 조성물을 제공한다.
본 발명은 또한, 상기 자가 프라이머 구조를 가지는 헤어핀 프로브, 핵산 중합효소 및 dNTP를 포함하는 표적핵산 검출용 키트를 제공한다.
도 1a는 본 발명의 SP-HAMP 기술에 이용하는 헤어핀 프로브의 구조를 나타낸 것이다. 도 1b는 본 발명의 헤어핀 프로브와 표적 핵산이 혼성화하여 자가 헤어핀 프라이머를 형성한 것을 모식화한 것이다. 헤어핀 프로브의 5' 말단 (PS1)과 루프의 일부분 (PS1')은 포스포로티오에이트 DNA로 수식 되어져 있으며, 서로 상보적인 서열로 이루어져 있다. 또한 헤어핀 프로브의 스템과 루프 부분은 표적 핵산과 상보적인 서열로 이루어져 있다. 이에, 헤어핀 프로브가 표적 핵산에 의해 열리게 되고, 헤어핀 프로브의 스템 (a)과 3' 말단 부분(a')이 상보적인 서열로 이루어져 있기에, 자가 헤어핀 프라이머 구조를 형성하게 된다.
도 2는 본 발명의 SP-HAMP 기술의 반응을 도식화한 것이다. 보다 구체적으로, (a)는 표적 핵산과의 혼성화를 통해 헤어핀 프로브가 열리는 반응을 나타낸 것이고, (b)는 헤어핀 프로브의 중합반응을 통해 중간 생성물 1이 생성되는 반응을 나타낸 것이며, (c)는 포스포로티오에이트 DNA와 정상 DNA 사이의 약한 결합력을 이겨내고 상대적으로 강한 DNA/DNA 결합을 형성하여 말단 자가 헤어핀 프라이머를 형성하는 구조체를 나타낸 것이며, (d) 말단 자가 헤어핀 프라이머 부분에서 DNA 중합효소에 의한 중합반응이 나타나 중간 생성물 2가 생성된 반응을 나타낸 것이며, (e) 상기 (d) 단계에서 생성된 중간 생성물 2에서 말단 자가 헤어핀 프라이머를 형성한 구조체를 나타낸 것이며 (f)는 말단 자가 헤어핀 프라이머로부터 중합 반응이 일어나 중간 생성물 3이 생성되는 반응을 나타낸 것이다. 중합반응 결과 생성되는 중간 생성물에서 끊임없이 말단 자가 헤어핀 프라이머 형성이 이루어지며 중합반응을 유도하게 된다.
도 3은 본 SP-HAMP 기술을 형광측정과 전기영동을 통해 유효성 실험 결과를 나타낸 것이다. 보다 구체적으로 다양한 조건 (1: 포스포로티오에이트 DNA로 수식되고 자가 프라이머 구조를 가진 헤어핀 프로브 + 표적 핵산 + DNA 중합 효소, 2: 포스포로티오에이트 DNA로 수식되고 자가 프라이머 구조를 가진 헤어핀 프로브 + DNA 중합 효소, 3: 포스포로티오에이트 DNA를 정상 DNA로 대체한 5' 말단 부위 및 자가 프라이머 구조를 가진 헤어핀 프로브 + 표적 핵산 + DNA 중합 효소, 4: 포스포로티오에이트 DNA를 무작위 서열로 이루어진 DNA로 대체한 5' 말단 부위 및 자가 프라이머 구조를 가진 헤어핀 프로브 + 표적 핵산 + DNA 중합 효소) 에 따른 형광 신호 발생 여부를 실험적으로 확인한 결과를 보여준다. 또한, 다양한 조건 (1: Ultra low range ladder, 2: 표적 핵산, 3: 헤어핀 프로브, 4: 표적 핵산 + 헤어핀 프로브, 5: 표적 핵산 + 헤어핀 프로브 + DNA 중합 효소 (10분), 6: 표적 핵산 + 헤어핀 프로브 + DNA 중합 효소 (30분), 7: 표적 핵산 + 헤어핀 프로브 + DNA 중합 효소 (1시간), 8: 헤어핀 프로브 + DNA 중합 효소 (1시간))에 따른 증폭 산물을 전기영동을 통해 확인한 실험결과를 나타낸 것이다.
도 4은 본 SP-HAMP 기술의 표적 핵산 검출 민감도 실험 결과를 나타낸 것이다. (F60 = F/F0 = 60 분 후 핵산이 포함된 시료의 형광 신호값 / 60분 후 핵산이 미포함된 시료의 형광 신호값)
도 5는 본 SP-HAMP 기술의 특이도를 입증한 것이다. 표적핵산으로부터의 다양한 염기부정합(mismatch) 구분 성능 실험 결과를 나타낸 것이다.
도 6은 본 발명의 SP-HAMP 기술의 온도별 유효성을 확인한 결과를 나타낸 것이다.
도 7은 본 SP-HAMP 기술의 실질적인 응용도를 입증한 것이다. PCR과 Asymmetric PCR을 통해 얻은 긴 단일 가닥 구조 및 이중 가닥 구조의 핵산을 시료로 사용하여 형광 신호를 측정한 결과 짧은 핵산 시료와 동일한 신호 값을 얻었다.
도 8은 본 SP-HAMP 기술의 RNA 타겟 적용성을 입증한 것이다. 표적 핵산을 DNA가 아닌 단일 가닥 구조의 RNA로 대체한 후 실험을 진행한 결과, 오직 RNA를 포함하고 있는 샘플에서만 증대된 형광 신호를 확인할 수 있었고, 시간에 따라 증폭 산물이 형성되는 것을 전기영동을 통해 재차 확인할 수 있었다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는 표적핵산을 현장에서 검출할 수 있는 POCT (point-of-care testing)기술을 발전시키고, 시장경쟁력을 선점할 수 있는 기술을 개발하고자, 종래 핵산 등온증폭기술인 LAMP 기술이 복잡한 디자인의 많은 프라이머를 필요로 하는 점을 개선하여, 포스포로티오에이트 DNA로 수식되고 자가 프라이머 구조를 가진 헤어핀 프로브을 활용하는 등온 증폭 기술 (Self-priming hairpin-mediated isothermal amplification (SP-HAMP))을 개발하였다.
보다 구체적으로, 본 발명에서는 포스포로티오에이트 DNA로 수식되고 자가 프라이머 구조를 가진 헤어핀 프로브가 표적 핵산 인식 반응에 의해 자가 헤어핀 프라이머 구조를 형성하게 되고, DNA 중합 효소의 작용을 통한 긴 헤어핀 중합체 산물을 형성하게 된다. 이를 통해서 간편한 핵산 증폭 반응을 구현하였으며, 결과적으로, LAMP 기술이 복잡한 디자인의 많은 프라이머를 필요로 한다는 제한을 극복하고 단일 헤어핀 프로브만을 이용하여 우수한 증폭 효율을 가지는 새로운 등온 핵산 증폭 반응을 구현하였다.
따라서, 본 발명은 일 관점에서, 다음 구성요소를 포함하고, 표적핵산 검출을 위한 자가 프라이머 구조를 가지는 헤어핀 프로브를 제공한다:
(i) 헤어핀 프로브의 5' 말단에 위치하며, 포스포로티오에이트(phosphorothioate) DNA로 수식되어 있고, PS1' 부위와 상보적인 서열을 가지는 PS1 부위;
(ii) 상기 PS1 부위에 연결되고, 표적핵산과 상보적인 서열을 포함하는 헤어핀 프로브의 스템(stem)에 위치하는 X 부위;
(iii) 상기 X 부위에 연결되고, 상기 X 부위의 표적핵산과 상보적인 서열에 이어지는 표적핵산과 상보적인 서열을 가지고, 포스포로티오에이트(phosphorothioate) DNA로 수식되어 있는 PS1' 부위;
(iii) 상기 PS1' 부위에 연결되고, 상기 PS1' 부위의 표적핵산과 상보적인 서열에 이어지는 표적핵산과 상보적인 서열을 가지고 헤어핀 프로브의 루프(loop)에 위치하는 L 부위;
(iv) 상기 L 부위에 연결되고, 상기 X 부위의 일부와 상보적인 서열을 포함하여 헤어핀 프로브의 스템을 형성하는 자가 헤어핀 프라이머의 a 부위;
(v) 상기 자가 헤어핀 프라이머의 a 부위와 연결되고, 상기 X 부위의 일부와 상보적인 서열을 포함하여 헤어핀 프로브의 스템을 형성하는 자가 헤어핀 프라이머의 b 부위; 및
(vi) 헤어핀 프로브의 3' 말단에 위치하고, 자가 헤어핀 프라이머의 b 부위에 연결되고, 상기 자가 헤어핀 프라이머의 a 부위와 상보적인 서열을 포함하는 자가 헤어핀 프라이머의 a' 부위.
본 발명의 자가 프라이머 구조를 가지는 헤어핀 프로브의 구조를 도 1에 나타내었다. 본 발명의 헤어핀 프로브의 5' 말단(PS1)과 루프의 일부분(PS1')은 포스포로티오에이트 DNA로 수식되어 있으며, 서로 상보적인 서열로 이루어져 있다. 또한 헤어핀 프로브의 스템과 루프 부분은 표적 핵산과 상보적인 서열로 이루어져 있다. 이에, 헤어핀 프로브가 표적 핵산에 의해 열리게 되고, 헤어핀 프로브의 스템 (a)과 3' 말단 부분(a')이 상보적인 서열로 이루어져 있기에, 자가 헤어핀 프라이머 구조를 형성하게 된다.
본 발명에 있어서, 포스포로티오에이트 DNA로 수식된 DNA는 염기 쌍 결합에 의하여 이중 가닥을 형성할 때(즉 이중 가닥 중 단일 가닥만 포스포로티오에이트로 수식되어 있는 경우), 정상 DNA 염기 쌍 결합보다 약한 결합을 형성한다. 따라서, 이와 상보적인 다른 정상 DNA 가닥이 존재하는 경우, 약한 결합이 끊어지고, 정상 DNA 가닥과 강한 결합을 형성하게 된다.
포스포로티오에이트 DNA는 이중나선 구조 내 Base stacking 결합력을 약화시켜서 포스포로티오에이트 DNA와 DNA 간의 melting temperature (Tm) 값이 낮아지게 한다 (Boczkowska, M. et al., Biochemistry, 41, 12483, 2002) (LaPlanche, L. A. et al., 14, Nucleic acid Res, 9081, 1986).
본 발명에서 표적핵산이 존재하는 경우, 자가 헤어핀 프라이머에 의한 헤어핀 브로브의 신장에 의하여 중간생성물이 생성되게 되며, 상기 중간 생성물 생성과정은 하기 과정에 따라 진행된다(도 2 참조):
(a) 헤어핀 프로브의 X, PS1' 및 L 부위와 표적핵산의 혼성화 반응 후, 헤어핀 프로브가 열려 스템 부분에 있는 자가 프라이머 구조(a' 부위)가 자가 헤어핀 프라이머를 형성하는 단계(도 2의 a);
(b) 상기 (a)에서 생성된 자가 헤어핀 프라이머(a')가 DNA 중합효소에 의해 스템의 일정 부위와 스템 말단 부위가 포스포로티오에이트 DNA와 정상 DNA의 결합 (PS1'-PS1) 으로 형성되어 있는 중간 생성물 1을 형성하는 단계(도 2의 b);
(c) 중간 생성물 1에서 포스포로티오에이트 DNA(PS1')와 정상 DNA(PS1) 간의 약한 결합이 포스포로티오에이트 DNA 간(PS1'-PS1)의 강한 결합에 의해 풀리면서, 헤어핀 폴드 백(fold back)이 일어나, 말단 자가 헤어핀 프라이머 구조를 형성하는 단계(도 3의 c);
(d) DNA 중합효소의 반응에 의해 상기 (c)에서 생성된 말단 자가 헤어핀 프라이머로부터 중합반응이 일어나 길이가 신장된 헤어핀 프로브 중간생성물 2가 생성되는 단계(도 2의 d);
(e) 상기 (d)에서 생성된 해어핀 프로브 중간생성물 2로부터 2차 헤어핀 폴드 백(fold back)이 일어나, 말단 자가 헤어핀 프라이머가 다시 형성되는 단계(도 2의 e);
(f) 뒤이어 중합반응이 반복해서 연속적으로 일어나 중간 생성물을 끊임없이 형성하는 단계(도 2의 f).
본 발명의 일 양태에서, SP-HAMP 기술의 표적핵산 검출한계 (limit of detection, LOD)를 확인한 결과, 표적핵산 검출한계는 11.5 zM인 것을 확인하였으며, 이를 통해, 본 발명의 SP-HAMP 기술이 기존 LAMP 기술과 필적할 만한 성능을 보유하고 있음을 확인하였다.
본 발명의 다른 양태에서는 다양한 길이와 종류의 DNA(합성 59mer DNA, 221mer 단일가닥 DNA, 221mer 이중가닥 DNA, 548mer 단일가닥 DNA 및 548mer 이중가닥 DNA)를 제작하고, 이를 표적핵산으로 사용하여, 상기 표적핵산에 대한 헤어핀 프로브를 제작하여, SP-HAMP 반응을 수행하였을 때, 긴 길이의 핵산을 검출할 수 있는 것을 확인하였다.
본 발명의 다른 양태에서는 다양한 온도에서 SP-HAMP 반응을 수행하였을 때 45~65℃에서 표적핵산을 유효성있게 검출할 수 있다는 것을 확인하였다.
본 발명의 일양태에서는 DNA 중합효소로 Vent exo(-) polymerase를 사용하였으나, 다양한 DNA 중합 효소 이용하여 가용성의 범위가 넓은 반응온도 (25 ˚C ~70 ˚C) 내에서도 시스템을 구동시킬 수 있으며, 이 때 해당하는 헤어핀 프로브가 해당 온도 내에서도 모양이 변형되지 않는지 확인해보고 모양이 변형되지 않는다면 적용 가능하며, Vent exo(-) polymerase 이외에도 Bst 2.0 DNA Polymerase, Bst 2.0 WarmStartㄾ DNA Polymerase, Klenow Fragment (3'→5' exo-) 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 헤어핀 프로브의 stem 부분 (x, a, b, a')은 길이 및 DNA base (A,T,C,G), 화학적 변형의 최적화 과정이 진행된다면, 더 시스템 효율을 높일 수 있을 것으로 기대된다.
본 발명의 또 다른 양태에서는 표적핵산으로 RNA를 사용하여, SP-HAMP 반응을 수행하는 경우, RNA를 포함하고 있는 샘플에서만 헤어핀 프로브 중간생성물이 생성되는 것을 확인하여, 본 발명에 따른 SP-HAMP 기술이 RNA 또한 검출할 수 있다는 것을 증명하였다.
다른 관점에서, 본 발명은 (a) 표적핵산 함유 시료, 본 발명의 자가 프라이머 구조를 가지는 헤어핀 프로브, 핵산 중합효소 및 dNTP를 포함하는 조성물을 반응시켜, 자가 프라이머에 의해 헤어핀 프로브가 신장한 중간 생성물을 생성시키는 단계; 및 (b) 상기 생성된 헤어핀 프로브 중간 생성물을 분석하여 표적핵산을 검출하는 단계를 포함하는 표적핵산의 검출방법에 관한 것이다.
본 발명에서 표적핵산이 존재하는 경우, 앞서 설명한 바와 같이, 상기 자가 헤어핀 프라이머에 의한 헤어핀 프로브의 신장에 의하여 사슬의 길이가 긴 헤어핀 프로브 중간생성물이 생성되게 되며, 상기 헤어핀 프로브 중간생성물을 분석하여 표적핵산을 검출할 수 있다.
상기 헤어핀 프로브 중간생성물은 전기영동을 통하여 최초의 헤어핀 프로브보다 큰 사이즈의 중간생성물의 생성 유무를 확인할 수도 있고, dsDNA를 검출할 수 있는 형광염료나 그 밖의 방법을 통해서 탐지할 수 있다.
본 발명에 있어서, 표적핵산은 DNA 또는 RNA일 수 있다.
본 발명의 일 양태에서는 dsDNA를 검출할 수 있는 형광염료로 SYBR Green I을 사용하였으나, 이에 한정되는 것은 아니다.
본 발명의 SP-HAMP 기술은 표적핵산 이외의 비특이적 서열을 구분할 수 있을 뿐만 아니라 1~3개의 염기 부정합까지 성공적으로 구분할 수 있어, 뛰어난 특이도를 나타내는 기술이다.
또 다른 관점에서, 본 발명은 상기 자가 프라이머 구조를 가지는 헤어핀 프로브, 핵산 중합효소 및 dNTP를 포함하는 표적핵산 검출용 조성물에 관한 것이다.
또 다른 관점에서, 본 발명은 또한, 상기 자가 프라이머 구조를 가지는 헤어핀 프로브, 핵산 중합효소 및 dNTP를 포함하는 표적핵산 검출용 키트에 관한 것이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시 예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1. SP-HAMP 기술 반응 조건 확립
자가 헤어핀 프라이머 기반 등온 증폭기술(SP-HAMP) 반응 용액의 제조 과정은 다음과 같다. SP-HAMP 반응용액 (최종 20μL)은 dNTPs(10mM each) 0.4 μL, 헤어핀 프로브 (1μM) 1μL 및 다양한 농도의 표적 핵산 2μL를 반응 완충용액에 첨가하여 제작하였으며, 상기 반응 완충용액은 20mM Tris-HCl (pH 8.8), 10mM KCl, 10mM (NH4)2SO4, 2mM MgSO4, 0.1% TritonX-100을 포함하도록 제조하였다. 상기 제조된 반응용액에 vent(exo-) DNA polymerase(2unit/μL, New England Biolabs Inc. (Beverly, MA, USA)) 0.5μL를 첨가한 후, 55℃에서 30초 간격으로 SYBR Green I으로부터 발생하는 형광세기를 측정하여, 최종 이중가닥 DNA(헤어핀 프로브 중간생성물)의 생성량을 분석하였다.
Figure PCTKR2021003399-appb-T000001
실시예 2. SP-HAMP 기술의 유효성 검증
표적 핵산, 헤어핀 프로브 등 실시예 1에 기재된 것과 동일한 반응 조건을 이용하여 본 발명의 SP-HAMP 기술의 유효성 검증 실험을 진행하였다.
표 2에 나타난 바와 같이 다양한 조건에서 실험을 수행하였다.
Figure PCTKR2021003399-appb-T000002
그 결과, 도 3 a)에 나타난 바와 같이, 표적 핵산, 헤어핀 프로브, DNA 중합 효소를 모두 포함하는 반응 조건(Curve 1)에서 월등히 높은 형광 신호가 발생하는 것을 확인하였다.
또한, 반응시간에 다른 중간생성물의 생성을 전기영동을 통하여 확인하였다.
Figure PCTKR2021003399-appb-T000003
그 결과, 도 3 b)에 나타난 바와 같이, 반응 조건에서 시간에 따라 다량의 이중가닥 DNA 산물이 생성됨을 확인하였다. 반면 표적 핵산이 없는 경우에는 어떠한 증폭 산물도 확인되지 않았다.
실시예 3. DNA 중합 효소 활성을 이용한 등온 핵산 증폭 기술 민감도 검증
실시예 1에 기재된 반응 조건을 이용하여 본 발명의 SP-HAMP 기술의 민감도 검증 실험을 진행하였다. 다양한 농도(1aM ~1nM)의 표적핵산을 포함하는 분석시료 (20μL)를 제조한 후, SP-HAMP 반응을 수행하였다.
그 결과, 도 4에 나타난 바와 같이, SP-HAMP 기술의 표적핵산 검출한계 (limit of detection, LOD)는 11.5 zM인 것을 확인하였다. 본 실험 결과를 통해, 본 발명에서 제안하는 SP-HAMP 기술이 기존 LAMP 기술과 필적할 만한 성능을 보유하고 있음을 확인하였다.
실시예 4. SP-HAMP 기술의 표적 핵산 검출 특이도 검증
실시예 1에 기재된 반응 조건을 이용하여 본 발명의 SP-HAMP 기술의 표적핵산 검출 특이도를 확인하였다. 표적 핵산 이외의 임의의 핵산 염기서열(random sequence)이 포함된 시료(도 5 참조)를 이용하여, 반응을 수행하였다.
그 결과, 도 5에 나타난 바와 같이, 본 발명의 SP-HAMP 기술은 표적핵산 이외의 비특이적 서열을 구분할 수 있을 뿐만 아니라 1~3개의 염기 부정합까지 성공적으로 구분할 수 있는 것을 확인하였다(도 5). 본 실험 결과를 통해, 본 발명에서 제안하는 SP-HAMP 기술이 뛰어난 특이도를 보유하고 있음을 확인하였다.
이때, D value는 표적핵산으로부터의 염기부정합(mismatch) 구분 능력을 나타내는 지표이며, 다음의 관계식을 통해 정의되는 것을 특징으로 할 수 있다.
D value = (F60,X - F60,0)/(F60,P - F60,0)
(F60,X: 다양한 염기 부정합(mismatch) 핵산이 포함된 시료의 60분 후 형광 신호값; F60,0: 표적 핵산이 포함되지 않은 시료의 60분 후 형광 신호값; F60,P: 표적 핵산이 포함된 시료의 60분 후 형광 신호값)
실시예 5. 반응 온도별 SP-HAMP 기술의 유효성 검증
실시예 1에 기재된 반응 조건에서 vent(exo-) DNA polymerase(2unit/μL, New England Biolabs Inc. (Beverly, MA, USA))를 사용하여, 반응온도만을 37 ˚C ~65 ˚C로 다양화 하여, 본 발명의 SP-HAMP 기술의 온도별 유효성을 확인하였다.
그 결과, 도 6에 나타난 바와 같이, 45~65℃에서 반응효율은 차이가 있으나, 표적핵산의 검출이 가능한 것을 확인하였다.
실시예 6. SP-HAMP 기술의 실용성 검증
실시예 1에 기재된 반응 조건을 이용하여 본 발명의 SP-HAMP 기술의 실용성을 검증하기 위해 PCR 및 asymmetric PCR을 이용하여 긴 길이의 단일 가닥 구조 또는 이중 가닥 구조의 핵산 DNA를 얻은 후, SP-HAMP의 유효성을 확인하였다.
다양한 길이와 종류의 DNA(합성 59mer DNA, 221mer 단일가닥 DNA, 221mer 이중가닥 DNA, 548mer 단일가닥 DNA 및 548mer 이중가닥 DNA)를 제작하고, 이를 표적핵산으로 사용하여, 상기 표적핵산에 대한 헤어핀 프로브를 제작하여, 반응을 수행하였다.
그 결과, 도 7에 나타난 바와 같이, 본 발명에 따른 SP-HAMP 기술이 긴 길이의 핵산을 검출할 수 있는 것을 확인하였다.
실시예 7. SP-HAMP 기술의 RNA 타겟 적용성 검증
본 발명에 따른 SP-HAMP 기술의 표적핵산으로서 RNA를 검출할 수 있는 지를 확인하였다.
표적핵산으로는 Brachionus rotundiformis(BR)의 cytochrome c oxidase subunit Ⅰ mRNA를 선정하여 헤어핀 프로브를 디자인하여 SP-HAMP 증폭반응을 수행하였다.
그 결과, 도 8에 나타난 바와 같이, 오직 RNA를 포함하고 있는 샘플에서만 증대된 형광 신호를 확인할 수 있었고, 시간에 따라 증폭 산물이 형성되는 것을 전기영동을 통해 재차 확인할 수 있었다. 따라서, 본 발명에 따른 SP-HAMP 기술이 RNA 또한 검출할 수 있다는 것을 확인하였다.
Figure PCTKR2021003399-appb-T000004
본 발명에 따른 SP-HAMP 기술은 기존의 LAMP 기술에서 요구되는 복잡한 디자인의 별도의 프라이머가 필요하지 않아, 간편하며, 기존의 LAMP 반응보다 향상된 검출 효율을 가지며, 표적핵산으로 DNA뿐만 아니라 RNA 검출도 가능하여, 보다 넓은 분야에 적용이 가능하다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
전자파일 첨부하였음.

Claims (4)

  1. 다음 구성요소를 포함하고, 표적핵산 검출을 위한 자가 프라이머 구조를 가지는 헤어핀 프로브:
    (i) 헤어핀 프로브의 5' 말단에 위치하며, 포스포로티오에이트(phosphorothioate) DNA로 수식되어 있고, PS1' 부위와 상보적인 서열을 가지는 PS1 부위;
    (ii) 상기 PS1 부위에 연결되고, 표적핵산과 상보적인 서열을 포함하는 헤어핀 프로브의 스템(stem)에 위치하는 X 부위;
    (iii) 헤어핀 프로브의 루프(loop)에 위치하고, 상기 X 부위에 연결되며, 상기 X 부위의 표적핵산과 상보적인 서열에 이어지는 표적핵산과 상보적인 서열을 가지고, 포스포로티오에이트(phosphorothioate) DNA로 수식되어 있는 PS1' 부위;
    (iii) 상기 PS1' 부위에 연결되고, 상기 PS1' 부위의 표적핵산과 상보적인 서열에 이어지는 표적핵산과 상보적인 서열을 가지고 헤어핀 프로브의 루프(loop)에 위치하는 L 부위;
    (iv) 상기 L 부위에 연결되고, 상기 X 부위의 일부와 상보적인 서열을 포함하여 헤어핀 프로브의 스템을 형성하는 자가 헤어핀 프라이머의 a 부위;
    (v) 상기 자가 헤어핀 프라이머의 a 부위와 연결되고, 상기 X 부위의 일부와 상보적인 서열을 포함하여 헤어핀 프로브의 스템을 형성하는 자가 헤어핀 프라이머의 b 부위; 및
    (vi) 헤어핀 프로브의 3' 말단에 위치하고, 자가 헤어핀 프라이머의 b 부위에 연결되고, 상기 자가 헤어핀 프라이머의 a 부위와 상보적인 서열을 포함하는 자가 헤어핀 프라이머의 a' 부위.
  2. 다음 단계를 포함하는 표적핵산의 검출방법:
    (a) 표적핵산 함유 시료, 제1항의 자가 프라이머 구조를 가지는 헤어핀 프로브, 핵산 중합효소 및 dNTP를 포함하는 조성물을 반응시켜, 자가 프라이머에 의해 헤어핀 프로브가 신장한 중간 생성물을 생성시키는 단계; 및
    (b) 상기 생성된 헤어핀 프로브 중간 생성물을 분석하여 표적핵산을 검출하는 단계.
  3. 제1항의 자가 프라이머 구조를 가지는 헤어핀 프로브, 핵산 중합효소 및 dNTP를 포함하는 표적핵산 검출용 조성물.
  4. 제1항의 자가 프라이머 구조를 가지는 헤어핀 프로브, 핵산 중합효소 및 dNTP를 포함하는 표적핵산 검출용 키트.
PCT/KR2021/003399 2020-03-23 2021-03-19 자가 헤어핀 프라이머 기반 등온 증폭 기술 WO2021194169A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/907,188 US20230119862A1 (en) 2020-03-23 2021-03-19 Self-priming hairpin-mediated isothermal amplification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0035028 2020-03-23
KR1020200035028A KR102364347B1 (ko) 2020-03-23 2020-03-23 자가 헤어핀 프라이머 기반 등온 증폭 기술

Publications (1)

Publication Number Publication Date
WO2021194169A1 true WO2021194169A1 (ko) 2021-09-30

Family

ID=77892757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003399 WO2021194169A1 (ko) 2020-03-23 2021-03-19 자가 헤어핀 프라이머 기반 등온 증폭 기술

Country Status (3)

Country Link
US (1) US20230119862A1 (ko)
KR (1) KR102364347B1 (ko)
WO (1) WO2021194169A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150088A (zh) * 2021-11-30 2022-03-08 广东医科大学 一种新冠病毒基因单碱基突变检测方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190089944A (ko) * 2017-04-28 2019-07-31 시아먼 유니버시티 표적 핵산 서열을 검출하는 방법
KR20190092881A (ko) * 2018-01-31 2019-08-08 한국과학기술원 헤어핀 프로브 기반 등온 핵산 증폭을 이용한 표적핵산 검출 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3144396B1 (en) * 2010-10-27 2020-01-01 President and Fellows of Harvard College Methods of use of toehold hairpin primer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190089944A (ko) * 2017-04-28 2019-07-31 시아먼 유니버시티 표적 핵산 서열을 검출하는 방법
KR20190092881A (ko) * 2018-01-31 2019-08-08 한국과학기술원 헤어핀 프로브 기반 등온 핵산 증폭을 이용한 표적핵산 검출 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JUNG CHEULHEE; ELLINGTON ANDREW D.: "A primerless molecular diagnostic: phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP)", ANALYTICAL AND BIOANALYTICAL CHEMISTRY, vol. 408, no. 30, 31 March 2016 (2016-03-31), DE, pages 8583 - 8591, XP036110424, ISSN: 1618-2642, DOI: 10.1007/s00216-016-9479-y *
LIU CHAN; LV SIFANG; GONG HANG; CHEN CHUNYAN; CHEN XIAOMING; CAI CHANGQUN: "2-aminopurine probe in combination with catalyzed hairpin assembly signal amplification for simple and sensitive detection of microRNA", vol. 174, 13 June 2017 (2017-06-13), NL, pages 336 - 340, XP085138322, ISSN: 0039-9140, DOI: 10.1016/j.talanta.2017.06.028 *
SONG JAYEON, KIM HYO YONG, KIM SOOHYUN, JUNG YUJIN, PARK HYUN GYU: "Self-priming phosphorothioated hairpin-mediated isothermal amplification", BIOSENSORS AND BIOELECTRONICS, vol. 178, 113051, 1 April 2021 (2021-04-01), Amsterdam , NL, pages 1 - 7, XP055853489, ISSN: 0956-5663, DOI: 10.1016/j.bios.2021.113051 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150088A (zh) * 2021-11-30 2022-03-08 广东医科大学 一种新冠病毒基因单碱基突变检测方法及其应用

Also Published As

Publication number Publication date
KR20210118585A (ko) 2021-10-01
US20230119862A1 (en) 2023-04-20
KR102364347B1 (ko) 2022-02-18

Similar Documents

Publication Publication Date Title
KR100702338B1 (ko) 표적핵산의검출에사용하기위한표지된프라이머및표적핵산의검출
US20210024998A1 (en) Nucleic acid detection method
EP3095873A1 (en) Methods and compositions for nucleic acid amplification
JP6783861B2 (ja) 等温核酸増幅のためのレポーター染料、クエンチャーが含まれる等温ベースの二重機能性オリゴヌクレオチド及びそれを用いた核酸増幅並びに測定方法
CN108220406A (zh) 用于检测核酸序列变体的方法
KR910014510A (ko) 폴리머라제 및 리가제 쇄 반응 모두에 적용할 수 있는 표적 핵산을 증폭시키는 방법
WO1996006187A1 (en) Nucleotide sequencing method
JP2005501567A5 (ko)
WO2019151755A1 (ko) 헤어핀 프로브 기반 등온 핵산 증폭을 이용한 표적핵산 검출 방법
WO2015126078A1 (ko) 핵산과 신호 프로브의 비대칭 등온증폭을 이용한 핵산의 검출방법
CN110878356B (zh) 一种多重核酸指数扩增探针及其肿瘤多靶标检测应用
CA2810856C (en) Compositions and methods for quantifying a nucleic acid sequence in a sample
WO2021194169A1 (ko) 자가 헤어핀 프라이머 기반 등온 증폭 기술
EP0855447A3 (en) Method of assay of nucleic acid sequences
WO2022010238A1 (ko) 특정 인공 뉴클레오타이드 서열을 이용한 위양성 판단용 조성물 및 이를 이용한 위양성 판단 방법
WO2018194437A2 (ko) 표적 점 돌연변이 유전자 검출을 위한 핵산 분자 템플레이트 및 이를 이용한 유전자 검사방법
CN116426619A (zh) 一种多重靶核苷酸检测试剂盒及方法和应用
WO2021210779A1 (ko) 자가 프라이머 구조를 가진 헤어핀 프로브를 활용한 등온 증폭기술을 이용한 표적핵산 검출방법
WO2019151757A1 (ko) 삼중접합구조 기반 등온 핵산 증폭 기술을 이용한 표적핵산 검출 방법
KR102397357B1 (ko) 포스포로티오에이트 dna로 수식된 헤어핀 프로브 기반의 등온 핵산증폭기술을 이용한 표적핵산 검출방법
WO2021182850A1 (ko) Mirna 동시 다중 검출 방법 및 이를 이용한 mirna 검출용 키트
WO2021085758A1 (ko) 핵산분해효소 연쇄 반응
WO2022139121A1 (ko) 중합효소연쇄반응을 기반으로 한 표적 점 돌연변이의 검출 방법
WO2024101758A1 (ko) 연장 매개 자가 접힘을 이용한 새로운 핵산 등온 증폭 방법
WO2024046097A1 (zh) 一种检测末端转移酶活性的方法及试剂盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774950

Country of ref document: EP

Kind code of ref document: A1