WO2021085758A1 - 핵산분해효소 연쇄 반응 - Google Patents
핵산분해효소 연쇄 반응 Download PDFInfo
- Publication number
- WO2021085758A1 WO2021085758A1 PCT/KR2020/003551 KR2020003551W WO2021085758A1 WO 2021085758 A1 WO2021085758 A1 WO 2021085758A1 KR 2020003551 W KR2020003551 W KR 2020003551W WO 2021085758 A1 WO2021085758 A1 WO 2021085758A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleic acid
- probe
- target nucleic
- detection
- detecting
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2527/00—Reactions demanding special reaction conditions
- C12Q2527/101—Temperature
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2565/00—Nucleic acid analysis characterised by mode or means of detection
- C12Q2565/10—Detection mode being characterised by the assay principle
- C12Q2565/101—Interaction between at least two labels
Definitions
- the present invention relates to a method for detecting a target nucleic acid using an exponential cross-nucleic acid cleavage reaction at an isothermal temperature.
- the on-site diagnosis technology is a technology that can significantly reduce the physical and time costs that may occur by using a large hospital or specialized diagnosis center for a checkup, unlike the existing diagnosis technology.
- MERS Middle East Respiratory Syndrome
- RNA viruses As described above, in the case of diseases caused by RNA viruses, it is easy to incur great human damage, and this can be said to be a result caused by the high mutation incidence rate, a characteristic of RNA viruses. Due to the characteristics of these RNA viruses, it is difficult to diagnose infection, and as a result, there is a problem that it is difficult to diagnose and cope with the disease early.
- the detection of specific nucleic acids and the analysis of nucleotide sequence changes include detection of the nucleic acid sequence of infectious viruses or bacteria or the presence of alleles, including changes in the genes of animals associated with cancer and disease, and identification of the source of the nucleic acids found in forensic samples, and It is usefully used to confirm paternity and paternity.
- Various methods are known for detecting the sequence of a specific nucleic acid and analyzing the sequence variation, but there is still a need for development and research on a nucleic acid detection and analysis method that is highly sensitive, easy to use, and cost effective.
- One of the most important factors in nucleic acid detection is that it must be able to obtain a signal sufficient to detect the target nucleic acid present in a small amount.
- PCR Polymerase Chain Reaction
- target nucleic acids can be exponentially amplified and increased to a measurable concentration
- Quant. Biol. 51: 263, 1986; U.S. Patent No. 4,582,788; U.S. Patent No. 6,027,923 two oligonucleotide primers containing a sequence complementary to the base sequence of a double-stranded target nucleic acid are added to a sample containing the target nucleic acid, and then the temperature of the sample is sufficiently changed from double-stranded to single-stranded.
- the primer is extended into a base sequence complementary to the target nucleic acid as a template by DNA polymerase.
- the nucleic acid cloned from the target nucleic acid and the primer hybrid is used as a template again, so that the target nucleic acid is replicated exponentially, so a very small amount of nucleic acid of a specific base sequence is also PCR By using, it is amplified to a measurable concentration.
- PCR requires extremely sophisticated thermal cycling programs and equipment, contamination of the measurement sample by external samples, contamination of the sample during the process of transferring the sample to the measurement stage after amplification of the target nucleic acid, and strict procedures must be followed to obtain consistent results. Therefore, it requires a highly skilled manpower, requires a high cost, and has a problem of low specificity.
- Ligase Chain Reaction is another method of enhancing the specificity of target nucleic acid detection using thermocycling (Barany, F. Proc. Natl. Acad. Sci. USA 88:189, 1991; Barany, F. PCR Methods Appl) 1:5, 1991).
- Two adjacent oligonucleotide primers hybridize to the target nucleic acid and are linked by a ligase.
- another two adjacent oligonucleotide primers having a complementary nucleotide sequence with the other strand of the target nucleic acid are also linked in the same way.
- a pair of primers is designed to confirm a single nucleotide mismatch in the upstream portion of the 3'end, if there is a single nucleotide mismatch between the primer and the target nucleic acid, the ligase of the pair of primers does not cause ligation. .
- LCR a series of processes such as denaturation of a target nucleic acid, such as PCR, and conjugation between primers by a ligase after heat release between a target nucleic acid and a primer, are repeated by thermocycling, and a pair of conjugated primers are different.
- the amount of conjugated primers increases exponentially as the number of thermal cycles increases, among the most specific nucleic acid sequencing methods that can analyze the change of a single base at a specific site of a small amount of nucleic acid. Is one. However, not only requires an extremely strict thermocycling program and expensive precise equipment such as PCR, but also because two pairs of primers with complementary nucleotide sequences are used, primer conjugation irrelevant to the target nucleic acid is amplified, resulting in errors in sequencing analysis. It has a problem that can cause In addition, the number of bases that can be analyzed at a time is limited to one base at a specific position, and there is a possibility of contamination while moving to the step of generating a signal after amplification.
- NASBA Nucleic Acid Sequence-Based Amplification
- RNase H enzyme is used when DNA primers are hybridized to the RNA template corresponding to the target nucleic acid and the template is elongated by reverse transcriptase. Is used to selectively degrade only the ribonucleic acid template.
- the single (-)cDNA strand extended from the DNA primer is hybridized with the secondary DNA primer as a template, and the secondary DNA primer is extended by the reverse transcriptase to form double-stranded DNA, and the antisense RNA is continued by the action of the T7 RNA transcriptase.
- antisense RNA acts as a template, so (+)cDNA is synthesized, and the double-stranded DNA template required for antisense RNA synthesis by T7 RNA transcriptase is synthesized again by RNase H and reverse transcriptase.
- this RNA amplification method also requires a cooling step necessary for primer and heat annealing after modifying the template RNA at high temperature initially, like PCR.
- HSA Helicase Dependent Amplification
- an isothermal nucleic acid amplification method for separating double-stranded DNA using enzymes is Recombinase Polymerase Amplification (Piepenburg O, et al., PLoS Biol 4: e204, 2006).
- Loop-mediated Amplification (Notomi T, et al., 2000. Nucleic. Acids. Res. 28:E63, 2000), Signal Mediated Amplification by isothermal amplification using a polymerase that has a DNA strand substitution function.
- RNA Technology Wharam, SD et al., Nucleic Acids Res., 29: e54, 2001
- Rolling Circle Amplification RCA
- SDA Strand Displacement Amplification
- NEMA Nicking Enzyme-mediated Amplification
- Isothermal Chain Amplification Jung, C. et al Anal. Chem. 82: 5937, 2010
- Exponential Amplification Reaction EXPAR
- the nucleic acid is amplified at a single temperature, so it does not require expensive thermocycling equipment, and has similar or higher sensitivity to PCR, so it is suitable for the nucleic acid detection method in the form of point of care. It has an advantage.
- the isothermal amplification method also uses polymerase to amplify nucleic acids, contamination by all samples and transfer of amplified nucleic acids to the measurement signal stage are exposed to the risk of contamination of the sample, as well as automation for processing many samples. It has limitations. To overcome this problem, a method of directly amplifying a measurement signal by a method specific to a target nucleic acid has been developed.
- Target nucleic acid-specific measurement signal amplification methods include branched DNA (bDNA) Signal Amplification (Urdea et al., Gene, 61: 253, 1987) and Cycling Probe Technology (CPT) (Duek et al., BioTech., 9:132). , 1990).
- bDNA branched DNA
- CPT Cycling Probe Technology
- a target nucleic acid is immobilized on a solid surface using a capture probe, and then a second probe called a label extender is hybridized with the target nucleic acid, and the second probe is hybridized with bDNA, a molecule for signal amplification.
- the bDNA has 15 arms, each of which binds to a probe to which three phosphatases are bound to generate chemiluminescence linearly proportional to the amount of target nucleic acid to detect a small amount of target nucleic acid.
- the bDNA signal amplification method is composed of several steps and requires a washing step for each step, so it is cumbersome to use and a long detection time is required.
- CPT selectively degrades only RNA hybridized with DNA using RNase H when a DNA-RNA-DNA structure probe forms a hybrid product with a target nucleic acid.
- the target nucleic acid is repeatedly used in the process of degrading RNA by forming a hybrid product with the probe again.
- the probe cleavage is analyzed by measuring the recovered fluorescence intensity using FRET.
- CPT can measure signals at the same time as the reaction, so compared to other amplification methods, the possibility of contamination is low, the process is simple, and because it does not require thermal cycling, it is easy to apply to clinical use, but the amplification efficiency is about 10 3 ⁇ 10 6 Due to the disadvantage of not showing sensitivity, it has limitations in using it independently.
- DNA detection methods that do not require a washing step such as CPT and amplify the measurement signal in real time under isothermal conditions, specifically degrade only the probe nucleic acid using an enzymatic reaction in the double helix structure in which the target nucleic acid and the probe are hybridized, and the target nucleic acid is again It consists of a structure that amplifies a signal by being used cyclically for degradation of a probe nucleic acid.
- NSA Nicking Enzyme Signal Amplification
- DNA nicking enzyme as a representative amplification method (Li et al., Nucleic. Acids. Res. 36:e36, 2008), signal amplification method using Exonuclease III (Xiaolei et al., J. Am.
- the present inventors have made diligent efforts to develop a nonlinear exponential nucleic acid degradation method capable of rapidly and sensitively measuring a small amount of target nucleic acid by solving the problem of the linear nucleic acid-specific signal amplification method of the prior art described above.
- the present invention was completed by devising a method having a sensitivity comparable to that of PCR by exponentially amplifying the signal by cross-repeating the target nucleic acid-specific probe cleavage.
- It provides a method for detecting a target nucleic acid using an exponential cross-nucleic acid cleavage reaction, characterized in that steps of cleaving a probe nucleic acid in a target nucleic acid-specific method are cross-linked.
- the present invention provides a kit for detecting a target nucleic acid sequence using an exponential cross-nucleic acid cleavage reaction comprising the following.
- the target nucleic acid detection method using the exponential cross-nucleic acid cleavage reaction at isothermal temperature of the present invention amplifies the signal by a method specific to the target nucleic acid, so it can prevent contamination due to sample movement, and the amplification reaction takes place under isothermal conditions and a thermal cycle program And because there is no need for a device, it is possible to solve the high cost due to the thermal circulation device, and it is easy to automate. Therefore, it is possible to develop a clinical target nucleic acid detection method using a signal amplification method, and at low cost, it is possible to detect nucleic acids related to diseases and infections early, sensitivity to drugs, and to predict the prognosis for cancer treatment, as well as genetic modification that brings a prescribed phenotype. It can be usefully used in molecular biology research and disease diagnosis by being applied to the detection of biomarkers, diagnosis of susceptibility to genetic diseases or diseases, evaluation of gene expression, and various genomic projects.
- 1 is a conceptual diagram of a glass surface-probe immobilization process.
- 2 is a diagram showing the results of immobilization for each probe concentration (1 ⁇ M to 10 nM).
- 3 is a conceptual diagram of a nuclease chain reaction.
- DSN double strand specific nuclease
- FIG. 5 is a diagram showing the DSN chain reaction results for each target concentration (100 nM ⁇ 0.01 nm).
- 6 is a diagram showing the DSN chain reaction results for each target concentration (100nM ⁇ 0.001pM).
- 7 is a diagram showing the detection result of miRNA 122 using conventional PCR.
- Figure 8 illustrates the nucleic acid decomposition chain reaction, where P1 and P2 have complementary nucleotide sequences to form a substrate for DSN, resulting in cross-nucleic acid decomposition. It is a degree.
- Fig. 9 is a diagram showing the results of measuring the surface contact angle depending on the presence or absence of the surfactant TrionnX -10 0 .
- FIG. 10 is a diagram showing the results of measuring DSN activity by surfactant concentration.
- FIG. 11 is a diagram illustrating a principle of turning on a fluorescent signal as a result of a nuclease reaction using a probe structure for turning on a fluorescent signal.
- FIG. 12 is a diagram showing a result of a DSN reaction according to a stem length.
- FIG. 13 is a diagram showing a fluorescence scanned image changed by fluorescence lighting after a DSN reaction using the probe structure for turning on a fluorescent signal of FIG. 11.
- It provides a method for detecting a target nucleic acid using an exponential cross-nucleic acid cleavage reaction, characterized in that steps of cleaving a probe nucleic acid in a target nucleic acid-specific method are cross-linked.
- the method for detecting the target nucleic acid may be characterized in that it is performed at isothermal temperatures.
- the isothermal may be within 45 to 85° C., or 50 to 80° C., or 55 to 75° C., or 60 to 70° C., but is not limited thereto.
- the target nucleic acid may be DNA or RNA, and may be miRNA-122.
- the present invention provides a method of detecting a nucleic acid using an exponential cross-nucleic acid cleavage reaction comprising the following steps.
- the solid in step 1) may be any one selected from the group consisting of glass, silicon, metal, ceramic, plastic, polymer, and hydrogel, and preferably glass.
- the solid surface of step 1) may be characterized by using TritonX-100.
- the step of detecting the signal indicating the presence of the target nucleic acid sequence in step 5) includes a method of measuring DNA mass such as capillary electrophoresis, mass spectrometry, and microarray analysis, sequencing, and real-time A technology selected from the group consisting of PCR, photo detection, fluorescence detection, bioluminescence detection, chemiluminescence detection, electrochemical detection, electrochemiluminescence detection, AFM, Raman method, SPR, and lateral flow detection may be used, but is limited thereto. no.
- a method of measuring fluorescence of a fluorescent molecule using a fluorescence signal amplification based on FRET may be used, but is not limited thereto.
- the length of the stem of the primary probe may be 4 to 6 bp, preferably 5 bp.
- the present inventor confirmed a fluorescent spot proportional to the immobilization concentration (see FIG. 2).
- the inventors designed a primary probe (SEQ ID NO: 1) and a secondary probe (SEQ ID NO: 2) to confirm the repetitive nuclease chain reaction conditions, and a reaction solution containing a target nucleic acid and As a result of measuring fluorescence after reacting, it was confirmed that higher fluorescence was displayed when P1 and P2 were immobilized than when only P1, the control group, was immobilized (see FIG. 4).
- cDNA for miRNA 122 and qPCR kit were purchased from Applied Biossystem and the time taken to detect 1fM using ABI's qPCR equipment was compared. It took a total of 4 hours, and as shown in FIG. 5, a detection sensitivity of 1 fM was obtained. As a result of this experiment, it was confirmed that the miRNA detection technology using NCR maintains the same sensitivity and the detection speed is 2 times faster (see FIG. 7 ).
- TritonX-100 a nonionic surfactant
- TritonX-100 showed a relatively low decrease in enzyme activity (4.6-57.8%).
- the present inventors designed a probe having a hairpin structure such that a fluorescent signal is turned on as a result of a nuclease reaction as shown in FIG. 11, and as a result of optimizing the probe structure (see FIG. 12), the optimal stem A probe for nuclease chain reaction with a stem size of 5bp was designed by determining the size of (stem) as 5bp (see Table 3 and FIG. 11).
- a DNA Chip microarray was fabricated, and a fluorescence image scan was performed after the DSN reaction. The change in the image of the spot on which the probe was immobilized was measured, followed by PCR amplification, and then hybridization between the probe and target. As a result of checking whether miRNA can be detected in a single process, it was confirmed that the spot image intensity of the fluorescence scanned image increased by turning on the fluorescence after the DSN reaction (see FIG. 13).
- kits for detecting a target nucleic acid sequence using an exponential cross-nucleic acid cleavage reaction comprising the following.
- the kit may be characterized in that it is carried out at isothermal temperatures.
- the solid support of 1) may be any one selected from the group consisting of glass, silicon, metal, ceramic, plastic, polymer, and hydrogel, and preferably glass.
- P1 bound to miRNA is degraded by a double strand specific nuclease (DSN), and as a result, a fragment of P1 binds to P2.
- DSN double strand specific nuclease
- P2 bound to the fragment of P1 is decomposed by DSN, and the resulting fragment of P2 binds to P1 again, causing a nucleolytic chain reaction in the form used for degradation of P1.
- Probe order Probe1(P1) TTT TTT TTT TCA AAC ACC ATT GTC ACA CTC CAA gaa cac cau uac aca gca ugg
- Probe2(P2) TTT TTT TTT TCC ATG CTG TGT AAT GGT GTT CTugga gug uga caa ugg ugu uug Target (miRNA-122) 5'-ugg agu gug aca aug gug uuuu g-3'
- the bar graph of FIG. 5 shows the intensity value of the maximum emission wavelength of 620 nm of Cy3 in the fluorescence spectrum measured by the sample collected by target concentration.
- cDNA for miRNA 122 and qPCR kit were purchased from Applied Biossystem and the time taken to detect 1fM using ABI's qPCR equipment was compared. It took a total of 4 hours to synthesize cDNA and proceed with qPCR, and a detection sensitivity of 1fM was obtained as shown in FIG. 5. As a result of this experiment, it was confirmed that the miRNA detection technology using NCR maintains the same sensitivity and the detection speed is 2 times faster (FIG. 7).
- the enzyme (DSN) activity was measured by surfactant (SDS, Tween20, TrotonX-100) concentration (0.001-0.2%) to determine the optimal concentration with high wettability without affecting the enzyme reaction.
- TritonX-100 a nonionic surfactant, showed a relatively low decrease in enzyme activity (4.6-57.8%).
- a probe having a hairpin structure was designed to turn on a fluorescent signal as a result of the nuclease reaction.
- three probes with different stem sizes as shown in Table 2 to minimize the generation of false positive signals due to decomposition of the probe stem by DNS. was synthesized to select the optimal structure.
- fluorescence signals were measured by the method tested in Experimental Example 1.
- a DNA Chip microarray was fabricated using P1 and P2 in Table 3 having a hair-pin structure in FIG. 11, and a fluorescence image scan was performed after the DSN reaction was performed. PCR amplification by measuring the change in the image of the spot where the probe was immobilized. After that, it was confirmed whether miRNA can be detected in a single process without going through the hybridization process between probe-targets.
- the spot image intensity of the fluorescence-scanned image increased by turning on the fluorescence after the DSN reaction.
- the number of spots in FIG. 13 is 20 and that at least 20 target miRNAs can be simultaneously profiled.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 등온 조건하에서 표적 핵산과 혼성화된 프로브가 절단되고 그 결과 생성된 프로브 단편이 다음 단계의 프로브와 혼성화되어 새로운 프로브 단편을 생성하는 반응이 직렬적으로 연결되어 신호증폭에 필요한 프로브 단편이 증폭되고, 그 결과 측정 신호가 증폭되어 소량의 특정 염기 서열의 핵산을 검출하는 방법에 관한 것이다. 본 발명의 등온에서의 지수적 교차 핵산 절단 반응을 이용한 표적 핵산 검출방법은 표적 핵산 특이적인 방법으로 신호를 증폭하기 때문에 시료 이동에 따른 오염을 예방할 수 있으며, 등온 조건하에서 증폭반응이 일어나 열순환 프로그램 및 장치가 필요없어 열순환 장치에 따른 고비용을 해결할 수 있고 자동화가 용이하다. 따라서, 신호증폭법을 이용한 임상용 표적 핵산 검출법 개발이 가능해져 저비용으로 질병 및 감염과 관련된 핵산의 조기검출, 약물에 대한 민감성, 암 치료에 대한 예후를 예측하는 데는 물론 규정된 표현형을 가져오는 유전자 변형의 검출, 유전질환 또는 질환에 대한 감수성의 진단, 유전자 발현의 평가 및 다양한 게놈 프로젝트에 응용되어 분자생물학적 연구 및 질병진단에 유용하게 사용할 수 있다.
Description
본 발명은 등온에서의 지수적 교차 핵산 절단 반응을 이용한 표적 핵산 검출방법에 관한 것이다.
삶의 질이 향상되면서 질병의 조기 진단에 대한 현대인들의 관심이 커지고 있고, 이러한 현대인들의 관심은 진단 시장의 성장에 직접적인 영향을 주고 있다. Frost & Sullivan의 조사에 따르면, 글로벌 체외진단 시장은 2013년 약 470 억 달러를 시작으로 7.3%의 연평균 성장률 (CAGR)을 기록하며 2017년에는 약 630 억 달러의 규모를 달성하였다. 또한, 이와 같이 급격히 성장하고 있는 체외진단 분야의 여러 기술 분야 중에서도 분자진단과 현장진단 분야가 각각 12.7%와 8.4%의 가장 높은 성장률을 기록하고 있는 기술 분야로 조사되었다. 분자진단 기술은 질병을 유발하는 병원체의 유전정보 (DNA/RNA)를 직접적으로 검출하기 때문에, 기존의 항원/항체 반응을 기반으로 하여 질병의 간접 인자 (indirect factor)를 검출하는 면역진단 기술의 단점을 해결할 수 있는 기술로서 많은 관심을 받고 있다. 또한, 현장진단 기술은 기존의 진단 기술과 달리 검진을 위해 대형 병원이나 전문 진단 센터를 이용함으로써 발생 가능한 물리적, 시간적 비용을 획기적으로 절감할 수 있는 기술이다.
이러한 분자진단 및 현장진단 기술 분야의 급속한 성장과 더불어, 최근 RNA 바이러스에 의한 질병 문제의 심각성이 부각되고 있다. RNA 바이러스 질병의 심각성을 보여줄 수 있는 사례로서 2015년 중동호흡기증후군 (middle east respiratory syndrome, MERS, 이하 메르스) 사태를 들 수 있다. 메르스는 코로나바이러스(coronavirus, 일종의 RNA 바이러스)에 의한 바이러스성 호흡기 감염증으로서, 2015년 전 세계적으로 1,599 명의 메르스 감염자가 발생하였고, 약 40%의 치사율을 기록하였다 (2015년 6월 26일 기준). 같은 해 대한민국에서는 5월 20일 첫 확진 환자를 시작으로 7월 5일 기준 186 명의 메르스 환자가 발생하였으며, 이후 11월까지 38 명의 사망자가 발생하였다. 이와 같이, RNA 바이러스에 의한 질병의 경우 큰 인명 피해가 발생하기 쉬우며, 이는 RNA 바이러스의 특징이라고 할 수 있는 높은 돌연변이 발생률에 의해 야기되는 결과라고 할 수 있다. 이러한 RNA 바이러스의 특징으로 인해 감염 여부를 진단하기가 힘들며, 결과적으로, 질병의 조기 진단 및 대처가 어렵다는 문제점이 있다.
특정 핵산 검출과 염기 서열 변화 분석은 감염성 바이러스 또는 세균의 핵산 서열 검출 또는 암 및 질병과 관련된 동물의 유전자의 변화를 포함하는 대립성 유전자의 존재 여부 그리고 법의학적 시료에서 발견된 핵산의 출처의 확인 및 친자와 친부 확인에 유용하게 이용되고 있다. 특정 핵산의 서열을 검출하고 서열 변이를 분석하는데 다양한 방법이 알려져 있으나 여전히 감도가 높으며, 사용이 용이하고, 비용대비 효과적인 핵산 검출 및 분석법에 대한 개발 및 연구가 필요한 실정이다. 핵산 검출에 있어 가장 중요한 요소 중 하나는 소량으로 존재하는 표적 핵산을 검출할 수 있을 만큼 충분한 신호를 얻을 수 있어야 한다는 것이다. 검출 민감도를 높이기 위한 다양한 방법이 개발되어 있는데, 대표적인 것으로 Polymerase Chain Reaction (PCR)이 있으며, 표적 핵산의 수를 지수적으로 증폭하여 측정 가능한 농도까지 증가시킬 수 있다(Mullis et al. Cold Spring Harbor Symp. Quant. Biol. 51: 263, 1986; 미국 특허 번호 4,582,788; 미국 특허 번호 6,027,923). 이 방법에서는 이중 가닥 표적 핵산의 염기서열과 상보적인 서열을 포함하는 두 개의 올리고뉴클리오티드 프라이머를 표적 핵산이 포함된 시료에 첨가한 후, 시료의 온도를 이중 가닥에서 단일 가닥으로 변형시킬 만큼 충분히 증가시켜 변성시키고, 다시 냉각시켜 단일 가닥 표적 핵산과 프라이머를 혼성화한다. 그 다음, DNA 중합효소에 의해 프라이머는 주형인 표적 핵산과 상보적 염기서열로 신장된다. 변성, 혼성, 그리고 신장의 일련의 과정이 열 순환을 거치면서 표적 핵산과 프라이머 혼성화물에서 복제된 핵산이 다시 주형으로 이용되기 때문에 지수적으로 표적 핵산이 복제되므로 극소량의 특정 염기서열의 핵산도 PCR를 이용하면 측정 가능한 농도까지 증폭된다. 그러나 PCR은 극도로 정교한 열순환 프로그램 및 장비가 필요하고, 외부 시료에 의한 측정 시료의 오염, 표적 핵산 증폭 후 측정단계로 시료를 옮기는 과정 중의 시료의 오염 그리고 일관된 결과를 얻기 위해서는 엄격한 절차를 따라야 하기 때문에 고도로 숙련된 인력을 요구하여 높은 비용이 소요되고, 특이성이 낮다는 문제점을 가지고 있다.
또 다른 열순환을 이용하여 표적 핵산 검출 특이성을 높인 방법으로 Ligase Chain Reaction(LCR)이 있다(Barany, F. Proc. Natl. Acad. Sci. USA 88:189, 1991; Barany, F. PCR Methods Appl. 1:5, 1991). 두 개의 인접한 올리고뉴클리오티드 프라이머는 표적 핵산과 혼성화 되고, 리가아제(ligase)에 의해 연결된다. 이 때, 표적 핵산의 다른 가닥과 상보적 염기서열을 가지는 또 다른 두 개의 인접한 올리고뉴클리오티드 프라이머도 같은 방법으로 연결된다. 한 쌍의 프라이머는 3' 말단 상류 부분에서 단일 염기 불일치를 확인할 수 있도록 설계되기 때문에 프라이머와 표적 핵산 간의 단일 염기 불일치가 있을 경우에는 한 쌍의 프라이머의 리가아제(ligase)에 의한 연결이 일어나지 않게 된다. LCR은 PCR과 같이 표적 핵산의 변성, 그리고 표적 핵산과 프라이머 간의 열풀림 이후 리가아제(ligase)에 의한 프라이머 간의 접합과 같은 일련의 과정이 열순환에 의해 반복되고, 접합된 한 쌍의 프라이머가 다른 쌍의 프라이머의 주형 역할을 수행하기 때문에 열순환 횟수가 증가함에 따라 접합된 프라이머의 양이 지수적으로 늘어나 소량의 핵산의 특정 부위의 단일 염기의 변화를 분석할 수 있는 가장 특이적인 핵산 서열 분석법 중에 하나이다. 그러나 PCR과 같이 극도로 엄격한 열순환 프로그램과 고가의 정밀한 장치를 필요로 할 뿐만 아니라 상보적인 염기서열을 가지는 두 쌍의 프라이머를 사용하기 때문에 표적 핵산과 무관한 프라이머 접합이 증폭되어 염기서열 분석에 오류를 발생시킬 수 있는 문제점을 지니고 있다. 뿐만 아니라 한 번에 분석할 수 있는 염기의 수는 특정 위치의 하나의 염기로 제한적이며, 증폭 이후에 신호를 발생시키는 단계로 이동하는 동안 오염의 가능성을 내제하고 있다.
열순환 기반의 증폭법인 PCR과 LCR의 단점을 보안하기 위해 개발된 다양한 종류의 등온 핵산 증폭법이 있다. Nucleic Acid Sequence-Based Amplification (NASBA) (Compton, J et al., Nature 350: 91, 1991)에서는 표적 핵산에 해당하는 RNA 주형에 DNA 프라이머가 혼성화 되고 역전사 효소에 의해서 주형이 신장되면 RNase H 효소를 이용하여 리보 핵산 주형만을 선택적으로 분해시킨다. 이 후, DNA 프라이머에서 신장된 단일 (-)cDNA 가닥이 주형으로 이차 DNA 프라이머와 혼성화되고 역전사 효소에 의해 이차 DNA 프라이머가 신장되어 이중 가닥 DNA가 형성되면 T7 RNA 전사효소의 작용으로 antisense RNA가 계속적으로 합성되고, antisense RNA가 주형으로 작용되기 때문에 (+)cDNA가 합성되어 RNase H 와 역전사 효소에 의해 다시 T7 RNA 전사효소에 의한 antisense RNA 합성에 필요한 이중가닥 DNA 주형이 합성된다. 그러나 이 RNA 증폭법도 PCR과 같이 초기에 고온에서 주형 RNA를 변형 시킨 후 다시 프라이머와 열풀림에 필요한 냉각 단계를 필요로 한다. 또한 프라이머에 의한 중합효소 프로모터와 증폭 생성물간의 결합 시 비특이적 증폭의 가능성을 가지고 있다.
Helicase Dependent Amplification (HDA) (Vincent, M. et al., EMBO Rep. 5:795, 2004)는 고온에서 이중 가닥 DNA를 변성시키는 대신, 이중 가닥 DNA의 나선 구조를 풀어주는 헬리카아제(helicase)를 이용하기 때문에 열순환 프로그램없이 등온 상태에서 PCR과 같이 지수적으로 표적 핵산을 증폭할 수 있는 장점을 가지고 있다. 그러나 200 bp 이상의 DNA는 증폭할 수 없고, 반응 속도가 느린 단점을 가지고 있다. HDA와 유사하게 이 중 가닥 DNA를 효소를 이용하여 분리시키는 등온 핵산 증폭법으로는 Recombinase Polymerase Amplification이 있다 (Piepenburg O, et al., PLoS Biol 4: e204, 2006).
이 이외에도 DNA 가닥 치환 기능을 가지고 있는 중합효소를 이용한 등온 증폭법으로 Loop-mediated Amplification (LAMP) (Notomi T, et al., 2000. Nucleic. Acids. Res. 28:E63, 2000), Signal Mediated Amplification of RNA Technology (SMART)(Wharam, S.D et al., Nucleic Acids Res., 29: e54, 2001), Rolling Circle Amplification (RCA) (Fire, A et al., Proc. Natl. Acad. Sci. USA, 92: 4641, 1995)이 있으며, 핵산 신장 및 핵산 가닥 치환 기능을 가진 중합효소와 함께 단일 가닥 핵산 절단을 함께 이용하여 등온에서 핵산을 증폭하는 기술로 Strand Displacement Amplification (SDA) (Walker, G. T. et al., Proc. Natl. Acad. Sci. U.S.A. 89:392, 1992), Nicking Enzyme-mediated Amplification (NEMA) (미국특허 출원번호 US2009081670), Isothermal Chain Amplification (Jung, C. et al Anal. Chem. 82:5937, 2010), Exponential Amplification Reaction (EXPAR) (Van, N.J. et al., Proc. Natl. Acad. Sci. U.S.A. 100: 4504, 2003) 과 같은 다양한 등온 핵산 증폭법이 개발되었다. 열순환을 활용한 핵산 증폭법에 비해 단일 온도에서 핵산이 증폭되기 때문에 고가의 열순환 장비가 필요 없고, PCR과 유사하거나 더 높은 민감도를 가지고 있어 현장진단(Point of Care)형태로 핵산 검출법에 적합한 장점을 가지고 있다. 그러나 등온증폭법 역시 중합효소를 이용하여 핵산을 증폭하기 때문에 전 시료에 의한 오염 및 측정 신호 단계로 증폭 핵산을 옮기는 과정에서 시료가 오염될 위험성에 노출되어 있을 뿐만 아니라 많은 시료를 처리하기 위한 자동화에 한계를 가지고 있다. 이러한 문제점을 극복하고자 표적 핵산 특이적인 방법으로 측정 신호를 직접적으로 증폭시키는 방법이 개발되었다.
표적 핵산 특이적 측정 신호 증폭법으로는 branched DNA (bDNA) Signal Amplification (Urdea et al., Gene, 61: 253, 1987)과 Cycling Probe Technology (CPT)(Duek et al., BioTech., 9:132, 1990)가 있다. bDNA 신호 증폭법은 capture 프로브를 이용하여 표적 핵산을 고체 표면에 고정화 시킨 다음 label extender라 불리는 2차 프로브가 표적 핵산과 혼성화 되는데 2차 프로브는 신호 증폭용 분자인 bDNA와 혼성화된다. bDNA에는 15개의 팔이 있어 각각 3개의 인산가수분해효소가 결합된 프로브와 결합하여 표적 핵산의 양에 선형적으로 비례한 화학발광을 발생시킴으로 소량의 표적 핵산을 검출한다. 그러나 bDNA 신호 증폭법은 여러 단계로 구성되어 있고 각 단계별로 세척 단계를 필요로 하여 사용법이 번거롭고 긴 검출 시간이 필요하다는 단점을 가지고 있다. CPT는 DNA-RNA-DNA 구조의 프로브가 표적 핵산과 혼성화물을 형성하면 DNA와 혼성화된 RNA만을 RNase H를 이용하여 선택적으로 분해시킨다. 표적 핵산은 다시 프로브와 혼성화물을 형성하여 RNA를 분해시키는 과정에 반복적으로 이용된다. 프로브 절단은 FRET을 이용하여 회복된 형광세기를 측정하여 분석한다. CPT는 반응과 동시에 신호를 측정할 수 있어 다른 증폭법과 비교하여 오염의 가능성이 낮고 과정이 단순하며 열순환을 필요로 하지 않아 임상에 적용하기 용이하나 증폭효율이 103 ~ 106정도로 임상에 필요한 민감도를 보여주지 못한다는 단점으로 독립적으로 사용하는 데는 한계를 가지고 있다. CPT와 같이 세척단계가 필요 없고 등온 조건하에서 측정 신호를 실시간으로 증폭하는 DNA 검출법들은 표적 핵산과 프로브가 혼성화된 이중 나선 구조에서 프로브 핵산만을 특이적으로 효소반응을 이용하여 분해시키고, 표적 핵산이 다시 프로브 핵산 분해에 순환적으로 이용되게 함으로써 신호를 증폭하는 구조로 이루어져 있다. 대표적인 증폭법으로 DNA nicking 효소를 이용하는 Nicking Enzyme Signal Amplification (NESA) (Li et al., Nucleic. Acids. Res. 36:e36, 2008), Exonuclease III를 이용하는 신호증폭법 (Xiaolei et al., J. Am. Chem. Soc. 132:1816, 2010,), DNAzyme (Elisa et al., J. Am. Chem. Soc., 132:1051, 2010; Shinsuke et al., J. Am. Chem. Soc., 125:15720, 2003; Connolly et al., Angew. Chem. Int. Ed. 49: 2720, 2010)을 이용한 신호증폭법 등이 있으나 선형적인 핵산분해 반응으로 기존의 PCR과 같은 비선형적인 지수적 증폭을 실현하지 못해 그 민감도는 여전히 임상에 적용하는데 한계를 지닌다.
이에, 본 발명자들은 상기 기술한 종래 기술의 선형적인 핵산 특이적 신호증폭법의 문제점을 해결하여 소량의 표적 핵산을 신속하고 민감하게 측정할 수 있는 비선형적인 지수적 핵산 분해 방법을 개발하고자 예의 노력한 결과, 표적 핵산 특이적 프로브 절단이 교차 반복되도록 하여 지수적으로 신호를 증폭하여 PCR에 버금가는 민감도를 가지는 방법을 고안하여 본 발명을 완성하였다.
본 발명의 목적은 표적 핵산 특이적인 방법으로 프로브의 절단이 교차 반복되도록 하여 비선형적으로 신호가 발생하여 아주 소량으로 존재하는 특정 염기서열의 표적 핵산 검출이 가능한 프로브 구조와 구성 그리고 검출 방법을 제공하는 것이다.
표적 핵산 특이적인 방법으로 프로브 핵산이 절단되는 단계가 교차적으로 연결된 것을 특징으로 하는 지수적 교차 핵산 절단 반응을 이용한 표적 핵산 검출방법을 제공한다.
또한, 본 발명은 다음을 포함하는 지수적 교차 핵산 절단 반응을 이용한 표적 핵산서열을 검출하는 키트를 제공한다.
1) 1차 프로브 및 이와 상보적인 염기서열을 가지는 2차 프로브가 고정되어 있는 고상 지지체; 및
2) 상기 프로브의 절단을 위한 뉴클레아제 활성을 갖는 효소.
본 발명의 등온에서의 지수적 교차 핵산 절단 반응을 이용한 표적 핵산 검출방법은 표적 핵산 특이적인 방법으로 신호를 증폭하기 때문에 시료 이동에 따른 오염을 예방할 수 있으며, 등온 조건하에서 증폭반응이 일어나 열순환 프로그램 및 장치가 필요없어 열순환 장치에 따른 고비용을 해결할 수 있고 자동화가 용이하다. 따라서, 신호증폭법을 이용한 임상용 표적 핵산 검출법 개발이 가능해져 저비용으로 질병 및 감염과 관련된 핵산의 조기검출, 약물에 대한 민감성, 암 치료에 대한 예후를 예측하는 데는 물론 규정된 표현형을 가져오는 유전자 변형의 검출, 유전질환 또는 질환에 대한 감수성의 진단, 유전자 발현의 평가 및 다양한 게놈 프로젝트에 응용되어 분자생물학적 연구 및 질병진단에 유용하게 사용할 수 있다.
도 1은 유리 표면-프로브(probe) 고정화 프로세스 개념도이다.
도 2는 프로브 농도별(1μM ~ 10nM) 고정화 결과를 나타낸 도이다.
도 3은 핵산분해효소 연쇄 반응 개념도이다.
도 4는 DSN(double strand specific nuclease) 연쇄 반응에 의한 형광 측정 결과를 나타낸 도이다.
도 5는 표적 농도별(100nM ~ 0.01nM) DSN 연쇄 반응 결과를 나타낸 도이다.
도 6은 표적 농도별(100nM ~ 0.001pM) DSN 연쇄 반응 결과를 나타낸 도이다. 도 7은 기존의 PCR을 이용한 miRNA 122 검출 결과를 나타낸 도이다.
도 8은 핵산분해 연쇄 반응을 설명하는 것으로, P1과 P2가 서로 상보적인 염기서열을 가지고 있어 DSN의 기질을 형성하여 교차핵산분해가 일어남으로써 P1과 P2가 분해 산물이 지수적으로 형성됨을 도식화한 도이다.
도 9는 계면활성제 TritonX-100 유무에 따른 표면 접촉 각(contact angle)을 측정한 결과를 나타낸 도이다.
도 10은 계면활성제 농도별 DSN 활성도를 측정한 결과를 나타낸 도이다.
도 11은 형광 신호 켜짐용 프로브 구조를 이용하여 핵산분해효소 반응 결과 형광신호가 켜지는 원리를 설명한 도이다.
도 12은 스템(stem) 길이에 따른 DSN반응 결과를 나타낸 도이다.
도 13은 도 11의 형광 신호 켜짐용 프로브 구조를 이용한 DSN 반응 후 형광 켜짐에 의해 변화된 형광 스캔된 이미지를 나타낸 도이다.
이하, 본 발명을 상세히 설명한다.
본 발명의 일 측면은,
표적 핵산 특이적인 방법으로 프로브 핵산이 절단되는 단계가 교차적으로 연결된 것을 특징으로 하는 지수적 교차 핵산 절단 반응을 이용한 표적 핵산 검출방법을 제공한다.
본 발명에 있어서, 상기 표적 핵산 검출 방법은 등온에서 수행되는 것을 특징으로 할 수 있다.
상기 등온은 45 내지 85 ℃, 또는 50 내 80 ℃, 또는 55 내지 75℃, 또는 60 내지 70℃ 이내일 수 있으나, 이에 한정되지 않는다.
본 발명에 있어서, 상기 표적 핵산은 DNA 또는 RNA일 수 있으며, miRNA-122일 수 있다.
또한, 본 발명은 다음의 단계를 포함하는 지수적 교차 핵산 절단반응을 이용한 핵산의 검출방법을 제공한다.
1) 표적 핵산을 포함하는 시료를 고체 표면에 고정화된 1차 프로브와 혼성화시키는 단계;
2)핵산분해효소를 처리하여 1차 프로브 핵산의 단편을 생성시키는 단계
3)상기 2)단계에서 생성된 1차 프로브핵산을 고체표면에 고정화된 2차 프로브와 혼성화시키는 단계;
4)핵산분해효소를 처리하여 2차 프로브 핵산의 단편을 생성시키는 단계;
*5)상기 표적 핵산서열의 존재를 나타내는 신호를 검출하는 단계.
*본 발명에 있어서, 상기 1)단계의 고체는 유리, 실리콘, 금속, 세라믹, 플라스틱, 폴리머 및 하이드로겔으로 구성된 군에서 선택되는 어느 하나일 수 있고, 바람직하게는 유리일 수 있다.
본 발명에 있어서, 상기 1)단계의 고체 표면은 TritonX-100을 사용한 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 5)단계의 표적 핵산 서열의 존재를 나타내는 신호를 검출하는 단계는 모세관 전기영동, 질량 분광광도법(mass spectrometry), 마이크로어레이 분석 등의 DNA 질량을 측정하는 방법, 시퀀싱, 실시간 PCR, 광 검출, 형광 검출, 생물발광 검출, 화학발광 검출, 전기화학적 검출, 전기화학발광 검출, AFM, 라만법, SPR 및 측방 유동 검출로 이루어진 군으로부터 선택되는 기술을 사용할 수 있으나 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 형광 검출 방법에 있어서 FRET에 기반한 형광신호 증폭을 이용한 형광분자의 형광을 측정하는 방법을 이용할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 1차 프로브의 스템(stem)의 길이는 4 내지 6bp인 것을 특징으로 할 수 있고, 바람직하게는 5bp인 것을 특징으로 할 수 있다.
본 발명의 구체적인 실시예에서, 본 발명자는 유리 표면에 프로브를 실리콘 아이솔레이터를 이용하여 고정화시킨 결과, 고정화 농도에 비례한 형광 스팟을 확인하였다(도 2 참조).
본 발명의 구체적인 실험예에서, 본 발명자는 반복적 핵산분해효소 연쇄 반응 조건을 확인하기 위하여 1차 프로브(서열번호 1)과 2차 프로브(서열번호 2)를 설계하고, 표적 핵산을 포함한 반응 용액과 반응시킨 후 형광을 측정한 결과, 대조군인 P1만 고정화된 것보다 P1과 P2가 고정화된 경우 더 높은 형광을 나타냄을 확인하였다(도 4 참조).
또한, 표적 농도별 반복적 핵산분해효소 연쇄 반응 민감도 확인한 결과, 대조군인 P1만 고정화된 것보다 P1과 P2가 고정화된 경우 24.4% 증가한 것으로 나타나 핵산분해 연쇄 반응에 의해 miRNA-122를 최소 1fM (20 zeptomole)까지 검출 가능함을 확인하였다(도 5 및 도 6 참조).
또한, 기존의 PCR을 이용하는 방법과 성능을 비교하기 위해 miRNA 122용 cDNA와 qPCR kit을 Applied Biossystem에서 구입하여 ABI의 qPCR 장비를 이용하여 1fM을 검출하는데 걸린 시간을 비교하였으며, cDNA 합성과 qPCR 진행에 총 4시간이 소요되었으며 도 5와 같이 1fM의 검출 민감도를 얻었다. 이 실험결과 NCR을 이용한 miRNA 검출 기술이 동일 민감도를 유지하면서도 검출 속도는 2배 더 빠른 것을 확인하였다(도 7 참조).
반응 부피 최소화를 위한 젖음성(wettability) 개선하기 위해 실험한 결과, 비이온계 계면 활성제인 TritonX-100가 상대적으로 낮은 효소 활성 감소(4.6-57.8%)를 나타냄을 확인하였으며, 유리(glass) 표면에서 반응 용액 편재현상없이 고른 효소 반응을 유도하기 위해 DSN 효소 활성에 거의 영향을 주지 않는 TritonX-100를 0.001% 농도로 사용하는 조건을 확립하였다(도 9 및 도 10 참조).
본 발명의 구체적인 실시예에서, 본 발명자는 도 11과 같이 핵산분해효소 반응 결과 형광 신호가 켜지도록 헤어핀(hairpin) 구조의 프로브를 설계하고, 프로브 구조를 최적화한 결과(도 12 참조), 최적 스템(stem)의 크기로 5bp로 결정하여 stem크기가 5bp인 핵산분해효소 연쇄 반응용 프로브를 설계하였다(표 3 및 도 11 참조).
상기 Hair-pin 구조를 가지는 P1과 P2를 이용하여 DNA Chip 마이크로 Array를 제작하고 DSN 반응 후 형광 이미지 스캔을 실시 Probe가 고정화된 스팟의 이미지 변화를 측정하여 PCR 증폭 후 Probe-Target간의 Hybridization 과정을 거치지 않고 단일 과정으로 miRNA 검출 가능 여부를 확인한 결과, DSN 반응 후 형광 켜짐에 의해 형광 스캔된 이미지의 스팟 이미지 세기가 증가함을 확인하였다(도 13 참조).
본 발명의 또 다른 측면은, 다음을 포함하는 지수적 교차 핵산 절단 반응을 이용한 표적 핵산서열을 검출하는 키트를 제공한다.
1) 1차 프로브 및 이와 상보적인 염기서열을 가지는 2차 프로브가 고정되어 있는 고상 지지체; 및
2) 상기 프로브의 절단을 위한 뉴클레아제 활성을 갖는 효소.
본 발명에 있어서, 상기 키트는 등온에서 수행하는 것을 특징으로 할 수 있다.
상기 1)의 고상지지체는 유리, 실리콘, 금속, 세라믹, 플라스틱, 폴리머 및 하이드로겔으로 구성된 군에서 선택되는 어느 하나일 수 있고, 바람직하게는 유리일 수 있다.
이하, 본 발명을 실시예 및 실험예에 의하여 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 구체적으로 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
<실시예 1> 유리 표면에 프로브(Probe) 고정화
도 1과 같이 Piranha(H2SO4:H2O2)를 이용하여 세척된 슬라이드 글라스(75㎜×25㎜) 표면에 APTMS(2%, ethanol)로 표면처리(상온, overnight)하고, Sulfo-MBS(linker)를 이용하여 반응 그룹을 활성화 한 후 DNA Probe를 고정화하였다. 그 후, 농도별 (1uM ~10nM) 프로브를 실리콘 아이솔레이터(silicon isolator)를 이용하여 상온에서 밤새 고정화시켰다.
그 결과, 도 2에 나타낸 바와 같이, 고정화 농도에 비례한 형광 스팟을 확인하였다.
<실험예 1> 반복적 핵산분해효소 연쇄 반응 조건 확인
본 발명의 반복적 핵산분해효소 연쇄 반응은 도 3과 같이 miRNA와 결합한 P1은 DSN(double strand specific nuclease)에 의해 분해되고, 그 결과 P1의 절편이 P2와 결합한다. P1의 절편과 결합된 P2는 DSN에 의해 분해되고, 그 결과 생성된 P2의 절편은 다시 P1과 결합하여 P1의 분해에 이용되는 형태의 핵산분해 연쇄 반응이 일어나게 된다.
이를 확인하기 위해서 표 1(DNA:대문자, RNA:소문자)에 있는 염기서열의 P1/P1 또는 P1/P2가 고정된 유리(glass) 위에 혼성화(hybridization) 반응 챔버를 부착한 후, 챔버 안에서 이중 가닥 DNA만을 선택적으로 분해하는 DSN(double strand specific nuclease)(0.001U/μl)과 표적(100nM)이 포함된 반응용액(50uL)을 65℃에서 2시간 반응 후, 따로 수거한 반응 용액을 플레이트 리더(plate reader)기를 이용하여 형광을 측정하였다.
Probe | 서열 |
Probe1(P1) | TTT TTT TTT TCA AAC ACC ATT GTC ACA CTC CAA gaa cac cau uac aca gca ugg |
Probe2(P2) | TTT TTT TTT TCC ATG CTG TGT AAT GGT GTT CTugga gug uga caa ugg ugu uug |
표적(miRNA-122) | 5'-ugg agu gug aca aug gug uuu g-3' |
그 결과 도 4에 나타난 바와 같이, 대조군인 P1만 고정화된 것보다 P1과 P2가 고정화된 경우 더 높은 형광을 얻었다. 이는 도 3과 같은 지수적 핵산분해 반응이 일어나 유리에 고정화된 P1, P2가 더 많이 분해된 결과를 나타낸다.
<실험예 2> 표적 농도별 반복적 핵산분해효소 연쇄 반응 민감도 확인
표적 농도별 반복적 핵산분해효소 연쇄 반응 민감도를 확인하기 위해서 P1/P1 또는 P1/P2가 고정된 유리(glass)에서 실험예 1과 같은 조건의 실험(총 반응용액 용량 20uL)을 miRNA-122 농도별 (100nM-0.001pM)로 진행하였다.
구체적으로, Target 농도별로 DSN (0.001 Unit/ul)가 포함된 20ul의 Buffer (50 mM Tris-HCl pH 8.0, 5 mM MgCl2, 1 Mm DTT)를 첨가하여 65℃에서 2시간 동안 반응시킨 후, 반응 시료는 수거하고 glass chip은 0.1% Twin 20이 포함된 5x SSC로 세척하였다. 반응시킨 후 유리(glass)표면에 남은 고정 프로브(probe)의 형광은 GelDoc을 이용하여 측정하고, 따로 수거한 반응 결과물을 플레이트 리더(plate-reder)기를 이용하여 형광을 측정하였다. Glass chip의 형광 스폿 이미지는 ChemiDoc MP Imaging System (Bio-Rad, USA)을 이용하여 측정하였으며 수거된 시료의 형광 스펙트럼은 TECAN M200 Pro를 이용하여 Excitation 520 nm 조건하에서 측정하였다.
그 결과 도 5 및 도6에 나타낸 바와 같이, 대조군인 P1만 고정화된 것보다 P1과 P2가 고정화된 경우 24.4% 증가한 것으로 나타나 핵산분해 연쇄 반응에 의해 miRNA-122를 최소 1fM (20 zeptomole)까지 검출 가능함을 확인하였다. 도 5의 막대 그래프는 Target 농도별 회수한 시료로 측정한 형광 스펙트럼에서 Cy3의 최대 Emission 파장 620 nm의 세기 값을 나타낸다.
기존의 PCR을 이용하는 방법과 성능을 비교하기 위해 miRNA 122용 cDNA와 qPCR kit을 Applied Biossystem에서 구입하여 ABI의 qPCR 장비를 이용하여 1fM을 검출하는데 걸린 시간을 비교하였다. cDNA 합성과 qPCR 진행에 총 4시간이 소요되었으며 도 5와 같이 1fM의 검출 민감도를 얻었다. 이 실험결과 NCR을 이용한 miRNA 검출 기술이 동일 민감도를 유지하면서도 검출 속도는 2배 더 빠른 것을 확인하였다(도 7).
<실험예 3> 반응 부피 최소화를 위한 젖음성(wettability) 개선
계면활성제 (SDS, Tween20, TrotonX-100)농도별(0.001-0.2%)로 효소(DSN) 활성도를 측정하여 효소 반응에 영향을 주지 않고 높은 wettability를 갖는 최적 농도를 결정하였다.
그 결과 도 10에 나타난 바와 같이, 비이온계 계면 활성제인 TritonX-100가 상대적으로 낮은 효소 활성 감소(4.6-57.8%)를 나타냈다. 유리(glass) 표면에서 반응 용액 편재현상없이 고른 효소 반응을 유도하기 위해 DSN 효소 활성에 거의 영향을 주지 않는 TritonX-100를 0.001% 농도로 사용하는 조건을 확립하였다.
이에, 0.001%의 TritonX-100로 인한 젖음성(webttability) 개선정도를 접촉각(contact angle)을 측정하여 정량한 결과, 대조군 (DW, buffer)대비 향상된 젖음성(wettability)을 확인하였다(도 9).
<실시예 2> 형광 신호 켜짐법 프로브 설계 및 프로브 구조 최적화
도 11과 같이 핵산분해효소 반응 결과 형광 신호가 켜지도록 헤어핀(hairpin) 구조의 프로브를 설계하였다. 최종 프로브 서열(probe sequence)을 결정하기 전에 프로브의 스템(stem)이 DNS에 의해 분해되어 오탐지(false positive) 신호 발생되는 것을 최소화하기 위하여 표 2와 같이 스템(stem) 크기가 다른 3개의 프로브를 합성하여 최적 구조를 선정하였다. 표 2에 나타난 스템길이가 다른 3개의 P1을 설계한 후, 실험예 1에서 실험한 방법으로 형광 신호를 측정하였다.
Probe | Stem 길이(base pair) | 서열 |
P1-5 | 5 | CCA GCC AAA CAC CAT TGT CAC ACT CCA GCT GG |
P1-6 | 6 | CCA TGC CAA ACA CCA TTG TCA CAC TCC AGC ATG G |
P1-7 | 7 | CCA TGC GCA AAC ACC ATT GTC ACA CTC CAC GCA TGG |
그 결과 도 12에 나타낸 바와 같이, P1-5에서 대조군 대비 형광의 증가가 큰 것으로 확인되었으며 오탐지(false positive) 신호도 매우 약한 것으로 확인되었다. 그러나 P1-7의 경우, 표적이 없는 샘플에서도 형광이 증가하여 오탐지(false positive) 신호를 발생함을 확인하였다. 이를 바탕으로 최적 스템(stem)의 크기로 5bp로 결정하여 stem크기가 5bp인 핵산분해효소 연쇄 반응용 프로브를 표 3과 같이 설계하였다.
Probe | 서열 |
P1 | 5’-Thiol-TTT TTT-F-CC GAC CAA ACA CCA TTG TCA CAC TCC Aag aac acc auu aca cag cau ggG TCG G-Q-3’ |
P2 | 5’-Thiol-TTT TTT TTT TCC ATG CTG TGT AAT GGT GTT CTu gga gug uga caa ugg ugu uug |
표적(miRNA-122) | ugg agu gug aca aug gug uuu g |
miRNA 122에 대하여 도 11의 Hair-pin 구조를 가지는 표3의 P1과 P2를 이용하여 DNA Chip 마이크로 Array를 제작하고 DSN 반응 후 형광 이미지 스캔을 실시 Probe가 고정화된 스팟의 이미지 변화를 측정하여 PCR 증폭 후 Probe-Target간의 Hybridization 과정을 거치지 않고 단일 과정으로 miRNA 검출 가능 여부를 확인하였다.
그 결과, 도 13과 같이 DSN 반응 후 형광 켜짐에 의해 형광 스캔된 이미지의 스팟 이미지 세기가 증가함을 확인함으로써 DNA Chip 마이크로 Array에서 기존의 2단계 반응을 거치지 않고 단일 효소반응만으로도 DNA Chip을 이용한 표적 핵산 검출이 가능함을 확인함과 동시에 도 13의 스팟 수는 20개로 최소 20 개의 표적 miRNA을 동시에 Profiling 할 수 있음을 확인하였다.
Claims (10)
- 표적 핵산 특이적인 방법으로 프로브 핵산이 절단되는 단계가 교차적으로 연결된 것을 특징으로 하는 지수적 교차 핵산 절단 반응을 이용한 표적 핵산 검출방법.
- 제1항에 있어서, 상기 표적 핵산 검출 방법은 등온에서 수행되는 것을 특징으로 하는, 표적 핵산 검출 방법.
- 제1항에 있어서, 다음의 단계를 포함하는 지수적 교차 핵산 절단반응을 이용한 핵산의 검출방법:1) 표적 핵산을 포함하는 시료를 고체 표면에 고정화된 1차 프로브와 혼성화시키는 단계;2)핵산분해효소를 처리하여 1차 프로브 핵산의 단편을 생성시키는 단계3)상기 2)단계에서 생성된 1차 프로브핵산을 고체표면에 고정화된 2차 프로브와 혼성화시키는 단계;4)핵산분해효소를 처리하여 2차 프로브 핵산의 단편을 생성시키는 단계;5)상기 표적 핵산서열의 존재를 나타내는 신호를 검출하는 단계.
- 제3항에 있어서,상기 1) 내지 5) 단계는 등온에서 수행되는 것을 특징으로 하는 방법.
- 제1항에 있어서, 상기 1)단계의 고체는 유리, 실리콘, 금속, 세라믹, 플라스틱, 폴리머 및 하이드로겔으로 구성된 군에서 선택되는 어느 하나인 것을 특징으로 하는 방법.
- 제1항에 있어서,상기 1)단계의 고체 표면은 TritonX-100을 사용한 것을 특징으로 하는 방법.
- 제1항에 있어서, 상기 5)단계의 신호를 검출하는 방법은 모세관 전기영동, 질량 분광광도법(mass spectrometry), 마이크로어레이 분석 등의 DNA 질량을 측정하는 방법, 시퀀싱, 광 검출, 형광 검출, 생물발광 검출, 화학발광 검출, 전기화학적 검출, 전기화학발광 검출, AFM, 라만법, SPR 및 측방 유동 검출로 이루어진 군으로부터 선택되는 것을 특징으로 하는 방법.
- 다음을 포함하는 지수적 교차 핵산 절단 반응을 이용한 표적 핵산 서열을 검출하는 키트:1) 1차 프로브 및 이와 상보적인 염기서열을 가지는 2차 프로브가 고정되어 있는 고상 지지체; 및2) 상기 프로브의 절단을 위한 뉴클레아제 활성을 갖는 효소.
- 제8항에 있어서,상기 키트는 등온에서 수행하는 것을 특징으로 하는 키트.
- 제8항에 있어서,상기 고상 지지체는 유리, 실리콘, 금속, 세라믹, 플라스틱, 폴리머 및 하이드로겔으로 구성된 군에서 선택되는 어느 하나인 것을 특징으로 하는 키트.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190134631A KR102261979B1 (ko) | 2019-10-28 | 2019-10-28 | 핵산분해효소 연쇄 반응 |
KR10-2019-0134631 | 2019-10-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021085758A1 true WO2021085758A1 (ko) | 2021-05-06 |
Family
ID=75716393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/003551 WO2021085758A1 (ko) | 2019-10-28 | 2020-03-13 | 핵산분해효소 연쇄 반응 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102261979B1 (ko) |
WO (1) | WO2021085758A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114280128A (zh) * | 2021-12-24 | 2022-04-05 | 清华大学 | 双标记gFET的制备及其在miRNA检测中的应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0161327B1 (ko) * | 1994-07-16 | 1998-11-16 | 베른트 콜프, 마르틴 크나우어 | 핵산의 민감한 검출 방법 |
KR20090057703A (ko) * | 2007-12-03 | 2009-06-08 | 래플진(주) | 핵산과 신호 프로브의 동시 등온증폭을 이용한 핵산의검출방법 |
WO2017143317A1 (en) * | 2016-02-20 | 2017-08-24 | Bashkirov Vladimir I | Methods and systems for detecting target nucleic acids |
KR102014470B1 (ko) * | 2017-12-29 | 2019-08-26 | 한국과학기술원 | 핵산의 절단 및 중합연쇄반응 시스템 기반 등온 핵산증폭기술을 이용한 표적 rna 검출 방법 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3267576B2 (ja) * | 1998-11-09 | 2002-03-18 | 三光純薬株式会社 | プローブ高分子の形成方法 |
JP4873812B2 (ja) * | 1999-11-15 | 2012-02-08 | キアジェン ゲイサーズバーグ インコーポレイテッド | マイクロアレイ上のrna:dnaハイブリッドの免疫検出 |
-
2019
- 2019-10-28 KR KR1020190134631A patent/KR102261979B1/ko active IP Right Grant
-
2020
- 2020-03-13 WO PCT/KR2020/003551 patent/WO2021085758A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0161327B1 (ko) * | 1994-07-16 | 1998-11-16 | 베른트 콜프, 마르틴 크나우어 | 핵산의 민감한 검출 방법 |
KR20090057703A (ko) * | 2007-12-03 | 2009-06-08 | 래플진(주) | 핵산과 신호 프로브의 동시 등온증폭을 이용한 핵산의검출방법 |
WO2017143317A1 (en) * | 2016-02-20 | 2017-08-24 | Bashkirov Vladimir I | Methods and systems for detecting target nucleic acids |
KR102014470B1 (ko) * | 2017-12-29 | 2019-08-26 | 한국과학기술원 | 핵산의 절단 및 중합연쇄반응 시스템 기반 등온 핵산증폭기술을 이용한 표적 rna 검출 방법 |
Non-Patent Citations (2)
Title |
---|
LI, J. J. ET AL.: "Enzymatic signal amplification of molecular beacon for sensitive DNA detection", NUCLEIC ACIDS RESEARCH, vol. 36, no. 6, 2008, pages 1 - 17, XP055455636, DOI: 10.1093/nar/gkn033 * |
YONGYUN ZHAO, LI ZHOU, ZHUO TANG: "Cleavage-based signal amplification of RNA", NATURE COMMUNICATIONS, vol. 4, 19 February 2013 (2013-02-19), pages 1493, XP055258176, DOI: 10.1038/ncomms2492 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114280128A (zh) * | 2021-12-24 | 2022-04-05 | 清华大学 | 双标记gFET的制备及其在miRNA检测中的应用 |
Also Published As
Publication number | Publication date |
---|---|
KR20210050250A (ko) | 2021-05-07 |
KR102261979B1 (ko) | 2021-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110106290B (zh) | 一种基于CRISPR/Cas系统用于检测ASFV的现场快速检测方法及试剂盒 | |
US20220090195A1 (en) | Structure and application of double-stranded oligonucleotide nucleic acid probe | |
US9434998B2 (en) | DNA chip for diagnosis of genitourinary infections | |
JP6574703B2 (ja) | 糞便サンプル中のヘリコバクターピロリdnaを検出するための方法 | |
CN110358815B (zh) | 一种同时检测多个靶标核酸的方法及其试剂盒 | |
Hajia | Limitations of different PCR protocols used in diagnostic laboratories: a short review | |
US20160102339A1 (en) | Sequence Conversion and Signal Amplifier DNA Having Locked Nucleic Acids and Detection Methods Using Same | |
KR20150098928A (ko) | 핵산과 신호 프로브의 비대칭 등온증폭을 이용한 핵산의 검출방법 | |
WO2021085758A1 (ko) | 핵산분해효소 연쇄 반응 | |
US20090181375A1 (en) | Method for detection of nucleic acid barcodes | |
WO2013122319A1 (ko) | 리가제 반응과 절단효소 증폭반응을 이용한 표적 유전자 또는 이의 돌연변이 검출방법 | |
Yang et al. | An amplification-free detection method of nucleic acids by a molecular beacon probe based on endonuclease activity | |
CN110172500B (zh) | 一种单核苷酸多态性的等温分型方法 | |
CN117568524A (zh) | 多重PCR检测IFV-A、IFV-B、RSV、HPIV、HAdV、MP、CP七项呼吸道病原体的引物探针组、应用与试剂盒 | |
US20090258342A1 (en) | Optimized probes and primers and methods of using same for the detection, quantification and grouping of hiv-1 | |
KR102551477B1 (ko) | 표적 물질의 검출용 키트 및 이를 이용하여 표적 물질을 검출하는 방법 | |
CN111996244A (zh) | 一种单核苷酸多态性检测用组合物及其应用 | |
US7273699B2 (en) | Methods for detecting nucleic acid sequence variation | |
WO2011142646A9 (ko) | 인유두종바이러스 검출 및 유전형 확인 방법 | |
US20230031670A1 (en) | Method and kit for detection of polynucleotide | |
Javaheri Tehrani et al. | Rolling Circle Amplification (RCA): an approach for quick detection and identification of fungal species | |
CN115044711A (zh) | 实时荧光pcr鉴别新型冠状病毒变异株的方法 | |
WO2019151757A1 (ko) | 삼중접합구조 기반 등온 핵산 증폭 기술을 이용한 표적핵산 검출 방법 | |
WO2004050906A1 (fr) | Procede de detection de la methylation de l'adn | |
JP6873903B2 (ja) | 強毒型クロストリジウムディフィシル株の存在を検出するための方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20883458 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20883458 Country of ref document: EP Kind code of ref document: A1 |