WO2021193818A1 - Crystal of phenanthroline derivative, method for producing same and light emitting element using same - Google Patents

Crystal of phenanthroline derivative, method for producing same and light emitting element using same Download PDF

Info

Publication number
WO2021193818A1
WO2021193818A1 PCT/JP2021/012518 JP2021012518W WO2021193818A1 WO 2021193818 A1 WO2021193818 A1 WO 2021193818A1 JP 2021012518 W JP2021012518 W JP 2021012518W WO 2021193818 A1 WO2021193818 A1 WO 2021193818A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
groups
crystal
Prior art date
Application number
PCT/JP2021/012518
Other languages
French (fr)
Japanese (ja)
Inventor
杉本和則
岡野翼
藤田達也
高橋弘純
長尾和真
川本一成
徳田貴士
星野秀尭
野田大貴
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020227031056A priority Critical patent/KR20220157948A/en
Priority to JP2021517490A priority patent/JPWO2021193818A1/ja
Priority to CN202180023209.8A priority patent/CN115335385A/en
Publication of WO2021193818A1 publication Critical patent/WO2021193818A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to crystals of a phenanthroline derivative and a method for producing the same.
  • the phenanthroline derivative is a compound useful as a light emitting element material that can be used in fields such as display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, electronic cameras, and optical signal generators.
  • a material for a light emitting element including the phenanthroline derivative represented by the general formula (1) described later has been disclosed, and as a method for producing the phenanthroline derivative, 1,3-di (1,10) has been disclosed.
  • -Phenanthroline-2-yl) Benzene is allowed to act on phenyllithium and then oxidized, or 1,3-dibromobenzene is reacted with t-butyllithium and then 2-phenyl-1,10-phenanthroline is allowed to act on it. Then, a method of oxidizing is disclosed (see, for example, Patent Document 1).
  • a dibromoaromatic compound is dilithiated with n-butyllithium or sec-butyllithium, and then nitrogen-containing.
  • a method of adding an aromatic ring derivative and then oxidizing it has been proposed (see, for example, Patent Document 2).
  • a polymer electrolyte composition containing an ionic group-containing polymer, an organic phosphorus-based additive, and a nitrogen-containing heteroaromatic ring-based additive as a method for producing a nitrogen-containing heteroaromatic ring-based additive, 8- A method of reacting an amino-7-quinoline carboaldehyde with 1,3-diacetylbenzene and potassium hydroxide, then reacting with phenyllithium, and then oxidizing and recrystallizing is disclosed (for example, Patent Document). 3).
  • Organic compounds generally have a plurality of solid states such as amorphous and crystalline. The same applies to phenanthroline derivatives, and crystalline polymorphs are present. Even if the crystal structure of the phenanthroline derivative is the same on a molecular basis, it affects the chemical and physical properties and handleability because the molecular packing mode is different. For example, when the above-mentioned phenanthroline compound is used as a light emitting element material, it is generally sublimated and purified, but Patent Document 1 does not disclose that its solid state can be specified, and is described in Patent Document 2.
  • the phenanthroline derivative obtained by the conventional production method has a low chemical purity, there is a problem that the chemical purity is insufficient to be used as a light emitting element material even after sublimation purification. Further, although the crystal form cannot be specified from the production method disclosed in Patent Document 3, a solvate crystal is formed depending on the crystal form and a large amount of residual solvent is used, which causes bumping during sublimation purification. There was a problem.
  • an object of the present invention is to provide crystals of a phenanthroline derivative having high chemical purity and a small amount of residual solvent, and a method for producing the same.
  • the present invention has a structure represented by the general formula (1), and in powder X-ray diffraction, the diffraction angles 2 ⁇ (°) 6.7 ⁇ 0.2, 8.2 ⁇ 0.2, 13. It is a crystal of a phenanthroline derivative having peaks at 7 ⁇ 0.2, 17.7 ⁇ 0.2 and 22.2 ⁇ 0.2, respectively.
  • another aspect of the present invention has a structure represented by the general formula (1), and in powder X-ray diffraction, the diffraction angles are 2 ⁇ (°) 5.0 ⁇ 0.2 and 7.5 ⁇ 0.
  • a crystal of a phenanthroline derivative having peaks at 2, 8.7 ⁇ 0.2, 12.5 ⁇ 0.2 and 17.3 ⁇ 0.2, respectively.
  • another aspect of the present invention has a structure represented by the general formula (1), and in powder X-ray diffraction, the diffraction angles are 2 ⁇ (°) 5.2 ⁇ 0.2 and 7.0 ⁇ 0. It is a crystal of a phenanthroline derivative having peaks at 2, 16.4 ⁇ 0.2, 20.0 ⁇ 0.2 and 23.6 ⁇ 0.2, respectively, and this crystal is for obtaining a C-type crystal described later. It is extremely suitable as a crystal of.
  • X represents a phenylene group or a naphthylene group.
  • the crystals of the phenanthroline derivative of the present invention have high chemical purity and a small amount of residual solvent. Therefore, there is an effect that bumping in sublimation purification can be suppressed. Further, it has an effect that it can be suitably used as a light emitting device material after sublimation purification by taking advantage of its high chemical purity. Further, when a specific pyrromethene compound is used in combination, the light emitting element can be driven at a low voltage when the light emitting element is manufactured.
  • FIG. 5 is a powder X-ray diffraction pattern of a B-type crystal of a phenanthroline derivative represented by the general formula (1) obtained in Example 1. It is a figure which shows the differential thermal analysis curve obtained by the differential thermogravimetric analysis simultaneous measurement of the B-type crystal of the phenanthroline derivative represented by the general formula (1) obtained by Example 1.
  • FIG. It is a powder X-ray diffraction pattern of the C-type crystal of the phenanthroline derivative represented by the general formula (1) obtained by Example 3.
  • FIG. It is a figure which shows the differential thermal analysis curve obtained by the differential thermogravimetric analysis simultaneous measurement of the C-type crystal of the phenanthroline derivative represented by the general formula (1) obtained by Example 3.
  • FIG. 6 is a powder X-ray diffraction pattern of an E-type crystal of a phenanthroline derivative represented by the general formula (1) obtained in Example 6. It is a figure which shows the differential thermal analysis curve obtained by the differential thermogravimetric analysis simultaneous measurement of the E-type crystal of the phenanthroline derivative represented by the general formula (1) obtained by Example 6.
  • FIG. FIG. 5 is a powder X-ray diffraction pattern of a D-type crystal of a phenanthroline derivative represented by the general formula (1) obtained in Comparative Example 1. It is a figure which shows the differential thermal analysis curve obtained by the differential thermogravimetric analysis simultaneous measurement of the D-type crystal of the phenanthroline derivative represented by the general formula (1) obtained by the comparative example 1.
  • the inventions according to claims 1 to 3 in the claims are inventions of C-type crystals of a phenanthroline derivative.
  • the invention according to claim 16 is an invention of an E-type crystal of a phenanthroline derivative.
  • the inventions according to claims 17 to 19 are inventions of B-type crystals of a phenanthroline derivative.
  • the inventions according to claims 12 to 15 are inventions of a production method for producing a C-type crystal from an E-type crystal.
  • the invention according to claim 20 is an invention of a production method for producing a B-shaped crystal.
  • the crystal of the phenanthroline derivative according to the first aspect of the present invention has a structure represented by the general formula (1), and in powder X-ray diffraction, the diffraction angle is 2 ⁇ (°) 6.7 ⁇ 0.2, 8. It has a specific crystalline form with peaks at 2 ⁇ 0.2, 13.7 ⁇ 0.2, 17.7 ⁇ 0.2 and 22.2 ⁇ 0.2, respectively, as used herein. Is referred to as a B-shaped crystal.
  • the crystal of the phenanthroline derivative according to the second aspect of the present invention has a structure represented by the general formula (1), and in powder X-ray diffraction, a diffraction angle of 2 ⁇ (°) 5.0 ⁇ 0.2, It has a specific crystalline form with peaks at 7.5 ⁇ 0.2, 8.7 ⁇ 0.2, 12.5 ⁇ 0.2 and 17.3 ⁇ 0.2, respectively, and is described herein. In the book, it is called a C-shaped crystal.
  • B-type crystals and C-type crystals of phenanthroline derivatives have high chemical purity and a small amount of residual solvent, so that bumping in sublimation purification can be suppressed. Further, taking advantage of its high chemical purity, it can be suitably used as a light emitting device material after sublimation purification.
  • X represents a phenylene group or a naphthylene group.
  • a phenylene group is preferable from the viewpoint of molecular weight and sublimation purification temperature.
  • Examples of the phenanthroline derivative represented by the general formula (1) include those having the following structure.
  • 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene is preferable from the viewpoint of ease of synthesis and stability of the thin film.
  • the crystals shown as B-type crystals have diffraction angles of 2 ⁇ (°) 6.7 ⁇ 0.2, 8.2 ⁇ 0.2, 13.7 ⁇ 0 in powder X-ray diffraction. Crystals having peaks at .2, 17.7 ⁇ 0.2 and 22.2 ⁇ 0.2, respectively, and the crystals shown as C-type crystals have diffraction angles of 2 ⁇ (°) 5.0 ⁇ 0.2, 7 It is a crystal having peaks at 5.5 ⁇ 0.2, 8.7 ⁇ 0.2, 12.5 ⁇ 0.2 and 17.3 ⁇ 0.2, respectively.
  • the powder X-ray diffraction can be measured under the following conditions using a powder X-ray diffractometer.
  • the measurement sample is prepared by filling a sample plate (material: silicon; depth: 0.2 mm) with the sample and flattening the sample surface.
  • X-ray source CuK ⁇ ray * Curved crystal monochromator (graphite) is used
  • Output 40kV / 50mA
  • Divergence slit 1/2 °
  • Divergence vertical restriction slit 5 mm
  • Scattering slit 1/2 °
  • Light receiving slit 0.15 mm
  • Detector Scintillation counter Scan method: 2 ⁇ / ⁇ scan, continuous scan Measurement range (2 ⁇ ): 2 to 30 ° Scan speed (2 ⁇ ): 20 ° / min Counting step (2 ⁇ ): 0.04 °.
  • the B-type crystal of the phenanthroline derivative of the present invention preferably has an endothermic peak in the range of 180 to 184 ° C. in the differential thermal weight simultaneous measurement (hereinafter, may be abbreviated as "TG-DTA").
  • TG-DTA differential thermal weight simultaneous measurement
  • Such an endothermic peak is one of the characteristics for specifying the crystal form, and having an endothermic peak in the range of 180 to 184 ° C. means that it is the above-mentioned B-type crystal.
  • the C-type crystal of the phenanthroline derivative of the present invention preferably has an endothermic peak in the range of 243 to 247 ° C. in the simultaneous measurement of differential thermogravimetric analysis. Having an endothermic peak in the range of 243 to 247 ° C. means that it is the above-mentioned C-type crystal.
  • TG-DTA can be measured under the following conditions using a TG-DTA device, and the temperature at the peak top indicated by the DTA curve is set as the endothermic peak. Temperature rise rate: 5 ° C / min Atmosphere: Dry nitrogen (flow rate: 100 mL / min) Sample cell: Aluminum open cell Sample amount: 5 to 15 mg.
  • the phenanthroline derivative represented by the general formula (1) can be produced, for example, by the method described in JP-A-2008-189660. That is, the desired phenanthroline derivative can be obtained by dilythiolating the dibromobenzene derivative with alkyllithium, allowing 2-phenyl-1,10-phenanthroline to act on the derivative, and then oxidizing the derivative.
  • the B-type crystal of the phenanthroline derivative represented by the general formula (1) of the first aspect of the present invention is, for example, an arbitrary form of the phenanthroline derivative represented by the general formula (1), an aprotic polar solvent and an aprotic polar solvent. Obtained by a method having a step (I) of dissolving and crystallizing in a mixed solvent containing an aromatic solvent, and then a step (II) of dissolving and crystallizing the crystals obtained in step (I) in an ether solvent. be able to.
  • aprotonic polar solvent examples include amide-based solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone; sulfoxide-based solvents such as dimethylsulfoxide; , 3-Dimethyl-2-imidazolidinone, N, N-dimethylpropylene urea and other urea solvents; acetonitrile, propionitrile and other nitrile solvents; pyridine, 2-methylpyridine and other pyridine solvents and the like. .. Two or more of these may be used. Among these, an amide solvent, a sulfoxide solvent, and a urea solvent are preferable, and 1,3-dimethyl-2-imidazolidinone is more preferable from the viewpoint of improving the recovery rate of B-type crystals.
  • amide-based solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrol
  • aromatic solvent examples include benzene, chlorobenzene, anisole, toluene, xylene, cumene, mesitylene and the like. Two or more of these may be used. Among these, anisole, toluene and xylene are preferable, and toluene is more preferable from the viewpoint of improving the recovery rate of B-type crystals.
  • the content of the aromatic solvent is 50 with respect to 100 parts by weight of the aprotic polar solvent from the viewpoint of improving the recovery rate of the B-type crystal. It is preferably up to 500 parts by weight, more preferably 100 to 300 parts by weight.
  • the solvents other than the aprotic polar solvent and the aromatic solvent are mixed as long as the crystals of the phenanthroline derivative having the desired diffraction angle can be obtained. It may be contained in a solvent.
  • the amount of the mixed solvent used is preferably 300 parts by weight or more, more preferably 500 parts by weight or more, based on 100 parts by weight of the phenanthroline derivative represented by the general formula (1), from the viewpoint of facilitating stirring.
  • the amount of the mixed solvent used is preferably 10,000 parts by weight or less, preferably 10,000 parts by weight or less, based on 100 parts by weight of the phenanthroline derivative represented by the general formula (1), from the viewpoint of improving the production efficiency per unit volume. More preferably, it is 000 parts by weight or less.
  • the order of adding the solvent in the step (I) is not particularly limited.
  • an aprotic polar solvent is added to the phenanthroline derivative represented by the general formula (1) and heated to dissolve it, and then an aromatic solvent is added. May be added.
  • the heating temperature is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, from the viewpoint of rapidly dissolving the phenanthroline derivative represented by the general formula (1).
  • the heating temperature is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, from an industrial point of view. It is not always necessary to completely dissolve the phenanthroline derivative, but if it is not completely dissolved, it is preferable to set the heating time according to the solubility. In this case, the heating time is preferably 0.5 to 100 hours, more preferably 1 to 50 hours.
  • the cooling temperature is preferably ⁇ 20 to 30 ° C., more preferably ⁇ 10 to 10 ° C. from the viewpoint of improving the recovery rate of B-type crystals.
  • the cooling rate is preferably 0.1 to 50 hours, more preferably 0.5 to 20 hours. While cooling, it may be agitated or allowed to stand.
  • the ether solvent examples include acyclic ethers such as diethyl ether, diisopropyl ether, cyclopentyl methyl ether, tert-butyl methyl ether, dimethoxyethane and diethylene glycol dimethyl ether; tetrahydrofuran, 2-methyl tetrahydrofuran, 1,4-dioxane and the like. Cyclic ethers and the like can be mentioned. Two or more of these may be used. Among these, cyclic ethers are preferable, and tetrahydrofuran is more preferable from the viewpoint of improving the recovery rate of B-type crystals.
  • acyclic ethers such as diethyl ether, diisopropyl ether, cyclopentyl methyl ether, tert-butyl methyl ether, dimethoxyethane and diethylene glycol dimethyl ether
  • tetrahydrofuran 2-methyl tetrahydrofuran
  • the amount of the ether solvent used is preferably 300 parts by weight or more, more preferably 500 parts by weight or more, based on 100 parts by weight of the phenanthroline derivative represented by the general formula (1), from the viewpoint of facilitating stirring.
  • the amount of the ether solvent used is preferably 10,000 parts by weight or less with respect to 100 parts by weight of the phenanthroline derivative represented by the general formula (1) from the viewpoint of improving the production efficiency per unit volume. More preferably, it is 000 parts by weight or less.
  • step (II) as a method for dissolving the phenanthroline derivative represented by the general formula (1) in an ether solvent, it is preferable to dissolve it by heating.
  • the heating temperature is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of rapidly dissolving the phenanthroline derivative represented by the general formula (1).
  • the heating temperature is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, from an industrial point of view. It is not always necessary to completely dissolve the phenanthroline derivative, but if it is not completely dissolved, it is preferable to set the heating time according to the solubility. In this case, the heating time is preferably 0.5 to 100 hours, more preferably 1 to 50 hours.
  • step (II) When heating and melting in step (II), it is preferable to cool in the step of crystallization.
  • the preferred ranges of cooling temperature and cooling rate are the same as in step (I).
  • the B-type crystal of the phenanthroline derivative obtained in advance may be added as a seed crystal. Further, it may further have a step of drying the obtained crystals.
  • the C-type crystal of the phenanthroline derivative represented by the general formula (1) of the second aspect of the present invention is, for example, an arbitrary form of the phenanthroline derivative represented by the general formula (1), an aprotic polar solvent and an aprotic polar solvent. It can be obtained by a method having a step (I) of dissolving and crystallizing in a mixed solvent containing an aromatic solvent, and then a step (III) of drying the crystals obtained in the step (I) at 50 ° C. or higher.
  • aprotic polar solvent examples include those exemplified in the method for producing a B-type crystal according to the first aspect.
  • amide-based solvents, sulfoxide-based solvents, and urea-based solvents are preferable, and from the viewpoint of improving the recovery rate of C-type crystals, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone, N, N -Dimethylacetamide is more preferred.
  • aromatic solvent examples include those exemplified in the method for producing a B-shaped crystal according to the first aspect.
  • anisole, toluene, and xylene are preferable, and anisole is more preferable from the viewpoint of improving the recovery rate of C-type crystals.
  • the content of the aromatic solvent is 50 with respect to 100 parts by weight of the aprotic polar solvent from the viewpoint of improving the recovery rate of the C-shaped crystal. It is preferably up to 210 parts by weight, more preferably 100 to 205 parts by weight.
  • crystals of the phenanthroline derivative having the desired diffraction angle can be obtained as the solvent other than the aprotic polar solvent and the aromatic solvent. It may be contained in the mixed solvent as long as possible.
  • the amount of the mixed solvent used is preferably 300 parts by weight or more, more preferably 500 parts by weight or more, based on 100 parts by weight of the phenanthroline derivative represented by the general formula (1), from the viewpoint of facilitating stirring.
  • the amount of the mixed solvent used is preferably 10,000 parts by weight or less, preferably 10,000 parts by weight or less, based on 100 parts by weight of the phenanthroline derivative represented by the general formula (1), from the viewpoint of improving the production efficiency per unit volume. More preferably, it is 000 parts by weight or less.
  • the order of adding the solvent in the step (I) is not particularly limited.
  • an aprotic polar solvent is added to the phenanthroline derivative represented by the general formula (1) and heated to dissolve it, and then an aromatic solvent is added. May be added.
  • step (I) as a method for dissolving the phenanthroline derivative represented by the general formula (1) in the mixed solvent, it is preferable to dissolve it by heating.
  • the preferable ranges of the heating temperature and the heating time are the same as those in the step (I) in the method for producing a B-shaped crystal according to the first aspect.
  • the cooling temperature and the cooling rate are the same as those in the step (I) in the method for producing a B-shaped crystal according to the first aspect.
  • the drying temperature in the step (III) is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, from the viewpoint of efficiently performing the crystal polymorphic transition.
  • the drying temperature is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, from an industrial point of view.
  • the drying in the step (III) is preferably vacuum drying.
  • the degree of pressure reduction for vacuum drying is preferably 666.6 Pa (5 mmHg) or less from the viewpoint of quickly removing the residual solvent.
  • the C-type crystal of the phenanthroline derivative represented by the general formula (1) has, for example, the structure represented by the general formula (1), and in powder X-ray diffraction, the diffraction angle is 2 ⁇ (°) 5. Crystals of phenanthroline derivatives with peaks at 2 ⁇ 0.2, 7.0 ⁇ 0.2, 16.4 ⁇ 0.2, 20.0 ⁇ 0.2 and 23.6 ⁇ 0.2, respectively. It can also be obtained by crystal polymorphic transition (referred to as E-type crystal in the specification). The C-type crystal of the phenanthroline derivative represented by the general formula (1) can also be obtained by heating a crystal other than the C-type crystal and drying it to promote the crystal polymorphic transition, but the temperature is high.
  • the E-type crystal is preferable from an industrial point of view because the crystal polymorphic transition proceeds at a relatively low temperature and a C-type crystal can be obtained. In this case, it is preferable to obtain an E-type crystal in the above-mentioned step (I) and to obtain a C-type crystal by crystal polymorph transition in the above-mentioned step (III).
  • the E-type crystal of the phenanthroline derivative is effective as a precursor of the C-type crystal because it easily transforms into the C-type crystal by heating and drying.
  • the E-type crystal of the phenanthroline derivative preferably has an endothermic peak in the range of 94 to 98 ° C. in the simultaneous measurement of differential thermogravimetric analysis, and having an endothermic peak in such a temperature range means that it is an E-type crystal. means.
  • the powder X-ray diffraction measurement and the differential thermogravimetric simultaneous measurement can be performed by the same method as described for the B-type crystal and the C-type crystal described above.
  • the E-type crystal of the phenanthroline derivative represented by the general formula (1) is, for example, a mixed solvent containing an arbitrary form of the phenanthroline derivative represented by the general formula (1), an aprotonic polar solvent and an aromatic solvent. It can be obtained by a method having a step (I) of dissolving and crystallizing in a solvent, and then a step (IV) of drying the crystals obtained in the step (I) at a temperature lower than 50 ° C.
  • aprotic polar solvent examples include those exemplified in the method for producing a B-type crystal according to the first aspect.
  • amide-based solvents, sulfoxide-based solvents, and urea-based solvents are preferable, and from the viewpoint of improving the recovery rate of C-type crystals, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone, N, N -Dimethylacetamide is more preferred.
  • aromatic solvent examples include those exemplified in the method for producing a B-shaped crystal according to the first aspect.
  • anisole, toluene, and xylene are preferable, and anisole is more preferable from the viewpoint of improving the recovery rate of C-type crystals.
  • the content of the aromatic solvent is 50 with respect to 100 parts by weight of the aprotic polar solvent from the viewpoint of improving the recovery rate of the C-shaped crystal. It is preferably up to 210 parts by weight, more preferably 100 to 205 parts by weight.
  • crystals of a phenanthroline derivative having a desired diffraction angle can be obtained as a solvent other than the aprotic polar solvent and the aromatic solvent. As long as it is contained in the mixed solvent, it may be contained.
  • the amount of the mixed solvent used is preferably 300 parts by weight or more, more preferably 500 parts by weight or more, based on 100 parts by weight of the phenanthroline derivative represented by the general formula (1), from the viewpoint of facilitating stirring.
  • the amount of the mixed solvent used is preferably 10,000 parts by weight or less, preferably 10,000 parts by weight or less, based on 100 parts by weight of the phenanthroline derivative represented by the general formula (1), from the viewpoint of improving the production efficiency per unit volume. More preferably, it is 000 parts by weight or less.
  • the order of adding the solvent in the step (I) is not particularly limited.
  • an aprotic polar solvent is added to the phenanthroline derivative represented by the general formula (1) and heated to dissolve it, and then an aromatic solvent is added. May be added.
  • step (I) as a method for dissolving the phenanthroline derivative represented by the general formula (1) in the mixed solvent, it is preferable to dissolve it by heating.
  • the preferable ranges of the heating temperature and the heating time are the same as those in the step (I) in the method for producing a B-shaped crystal according to the first aspect.
  • the cooling temperature and the cooling rate are the same as those in the step (I) in the method for producing a B-shaped crystal according to the first aspect.
  • the drying temperature in the step (IV) is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, from the viewpoint of quickly removing the residual solvent. On the other hand, the drying temperature is preferably less than 50 ° C., more preferably 30 ° C. or lower, from the viewpoint of maintaining the crystal form.
  • the E-type crystal of the phenanthroline derivative represented by the general formula (1) obtained by the above method By transferring the E-type crystal of the phenanthroline derivative represented by the general formula (1) obtained by the above method to a polymorphic crystal, a C-type crystal can be efficiently obtained.
  • the step of transferring the crystal polymorph 50 ° C. or higher is preferable, and 80 ° C. or higher is more preferable.
  • the temperature is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, from an industrial point of view.
  • the B-type crystal or C-type crystal of the phenanthroline derivative represented by the general formula (1) of the present invention has a small amount of residual solvent and has extremely high chemical purity, so that it can be suitably used as a light emitting element material. Since the B-type crystal or C-type crystal of the phenanthroline derivative of the present invention has high electron transport property and electron injection property, it is particularly suitable for the electron transport layer, the electron injection layer, and the charge generation layer among the light emitting elements. Can be used for.
  • the B-type crystal or C-type crystal of the phenanthroline derivative of the present invention has a small amount of residual solvent and extremely high chemical purity, the amount of degassing when producing a luminous element is small, and a high-purity film can be formed. Therefore, a light emitting element having high luminous efficiency can be obtained.
  • the driving voltage is reduced and high-efficiency light emission can be obtained, it is suitably used for a light emitting device containing a thermally activated delayed fluorescent material (sometimes referred to as "TADF material") in the light emitting layer.
  • TADF material thermally activated delayed fluorescent material
  • the light emitting element of the present invention has a function of converting electrical energy into light.
  • direct current is mainly used as electrical energy, but pulse current and alternating current can also be used.
  • the current value and the voltage value are not particularly limited, and the characteristic values required differ depending on the purpose of the device, but it is preferable to obtain high brightness at a low voltage from the viewpoint of power consumption and life of the device.
  • the half width of the emission spectrum by energization is preferably 60 nm or less, more preferably 50 nm or less, further preferably 45 nm or less, and particularly preferably 30 nm or less. preferable.
  • the light emitting device of the present invention has a narrow half width of the light emitting spectrum, it is more preferable to use it as a top emission type light emitting device. Due to the resonance effect of the microcavity, the top emission type light emitting element has higher luminous efficiency as the half width is narrower. Therefore, it is possible to achieve both high color purity and high luminous efficiency.
  • the light emitting element of the present invention is suitably used, for example, as a display device application such as a display in which a matrix method, a segment method, or both types are used in combination. It is also preferably used as a backlight for various devices.
  • the backlight is mainly used for the purpose of improving the visibility of display devices such as displays that do not emit light by itself, and is used for display devices such as liquid crystal displays, clocks, audio devices, automobile panels, display boards and signs.
  • the light emitting element of the present invention is preferably used for a liquid crystal display, particularly a backlight for a personal computer whose thinness is being studied, and can provide a backlight thinner and lighter than the conventional one.
  • the light emitting element of the present invention is also preferably used as various lighting devices. It is possible to achieve both high luminous efficiency and high color purity, and because it is possible to make it thinner and lighter, it is possible to realize a lighting device that combines low power consumption, vivid emission color, and high design. ..
  • the light emitting device of the present invention has, for example, a structure having an anode and a cathode, and an organic layer between the anode and the cathode.
  • the organic layer preferably includes at least a light emitting layer, and the light emitting layer is an organic electroluminescent device that emits light by electric energy.
  • the light emitting element may be either a bottom emission type or a top emission type.
  • the layer structure of the organic layer between the anode and the cathode is not only composed of the light emitting layer but also 1) light emitting layer / electron transporting layer, 2) hole transporting layer / light emitting layer, and 3).
  • Hole transport layer / light emitting layer / electron transport layer 4) hole injection layer / hole transport layer / light emitting layer / electron transport layer, 5) hole transport layer / light emitting layer / electron transport layer / electron injection layer, 6 ) Hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer, 7) hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer, 8) Examples thereof include a laminated structure such as a hole injection layer / a hole transport layer / an electron blocking layer / a light emitting layer / a hole blocking layer / an electron transport layer / an electron injection layer.
  • tandem type light emitting element in which a plurality of the above laminated configurations are laminated via an intermediate layer may be used.
  • the intermediate layer generally include an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, an intermediate insulation layer, and the like, and known material configurations can be used.
  • Preferred specific examples of the tandem type light emitting element are 9) hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / charge generation layer / hole injection layer / hole transport layer / light emitting layer /
  • a laminated structure such as an electron transport layer / electron injection layer can be mentioned.
  • each of the above layers may be either a single layer or a plurality of layers, and may be doped.
  • the electron transport layer is a layer in which electrons are injected from the cathode and further electrons are transported.
  • the electron transport material used for the electron transport layer is required to have a high electron affinity, a high electron mobility, excellent stability, and a substance in which impurities that serve as traps are unlikely to be generated. Further, a compound having a molecular weight of 400 or more is preferable because a compound having a low molecular weight tends to crystallize and deteriorate the film quality.
  • the electron transport layer in the present invention also includes a hole blocking layer capable of efficiently blocking the movement of holes as a synonym.
  • the hole blocking layer and the electron transporting layer may be formed alone or by laminating a plurality of materials.
  • the electron transporting material examples include polycyclic aromatic derivatives, styryl-based aromatic ring derivatives, quinone derivatives, phosphoroxide derivatives, quinolinol complexes such as tris (8-quinolinolate) aluminum (III), benzoquinolinol complexes, hydroxyazole complexes, and azomethine complexes. , Tropolone metal complexes and various metal complexes such as flavonol metal complexes.
  • the electron-accepting nitrogen represents a nitrogen atom forming a multiple bond with an adjacent atom. Since the heteroaryl group containing electron-accepting nitrogen has a large electron affinity, it becomes easy for electrons to be injected from the cathode, and a lower voltage drive becomes possible. In addition, the supply of electrons to the light emitting layer is increased, and the recombination probability is increased, so that the luminous efficiency is improved.
  • Examples of the compound having a heteroaryl group structure containing electron-accepting nitrogen include a pyridine derivative, a triazine derivative, a pyrazine derivative, a pyrimidine derivative, a quinoline derivative, a quinoxaline derivative, a quinazoline derivative, a naphthylidine derivative, a benzoquinoline derivative, a phenanthroline derivative, and an imidazole.
  • Preferred compounds include derivatives, oxazole derivatives, thiazole derivatives, triazole derivatives, oxaziazole derivatives, thiadiazol derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, phenanthle midazole derivatives, and oligopyridine derivatives such as bipyridine and tarpyridine. Is listed as.
  • imidazole derivatives such as tris (N-phenylbenzimidazole-2-yl) benzene
  • oxadiazole derivatives such as 1,3-bis [(4-tert-butylphenyl) -1,3,4-oxadiazolyl] phenylene.
  • Triazole derivatives such as N-naphthyl-2,5-diphenyl-1,3,4-triazole; phenanthroline derivatives such as vasocproin and 1,3-bis (1,10-phenanthroline-9-yl) benzene; 2,2 Benzene (benzo [h] quinoline-2-yl) -9,9'-benzoquinoline derivatives such as spirobifluorene; 2,5-bis (6'-(2', 2 "-bipyridyl))-1 , 1-Dimethyl-3,4-diphenylsilol and other bipyridine derivatives; 1,3-bis (4'-(2,2': 6'2 "-terpyridinyl)) benzene and other terpyridine derivatives; bis (1-naphthyl) ) -4- (1,8-naphthylidine-2-yl) naphthylidine derivatives such as phenylphosphine oxide
  • the electron transport material may be used alone or in combination of two or more.
  • the electron transport layer may contain a donor material.
  • the donor material is a compound that facilitates electron injection from the cathode or the electron injection layer into the electron transport layer by improving the electron injection barrier, and further improves the electrical conductivity of the electron transport layer.
  • donor materials include alkali metals such as lithium, inorganic salts containing alkali metals such as lithium fluoride, complexes of alkali metals such as lithium quinolinol and organic substances, alkaline earth metals, and alkaline earth metals.
  • alkali metals such as lithium
  • inorganic salts containing alkali metals such as lithium fluoride
  • complexes of alkali metals such as lithium quinolinol and organic substances
  • alkaline earth metals and alkaline earth metals.
  • examples thereof include inorganic salts contained, complexes of alkaline earth metals and organic substances, rare earth metals such as europium and itterbium, inorganic salts containing rare earth metals, and complexes of rare earth metals and organic substances.
  • metallic lithium, rare earth metal, or lithium quinolinol (Liq) is particularly preferable.
  • the electron injection layer is formed for the purpose of assisting the injection of electrons from the cathode to the electron transport layer, and is composed of a compound having a heteroaryl ring structure containing electron-accepting nitrogen and the above-mentioned donor material.
  • an insulator or a semiconductor inorganic substance can be used for the electron injection layer. It is preferable to use these materials because it is possible to prevent a short circuit of the light emitting element and improve the electron injection property.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides.
  • the charge generation layer is a layer that generates or separates charges by applying a voltage and injects charges into adjacent layers.
  • the charge generation layer may be formed of one layer, or a plurality of layers may be laminated.
  • a layer that easily generates electrons as an electric charge is called an n-type charge generation layer, and a layer that easily generates holes is called a p-type charge generation layer.
  • the charge generation layer is preferably composed of a double layer, and more preferably a pn junction type charge generation layer composed of an n-type charge generation layer and a p-type charge generation layer.
  • the pn junction type charge generation layer an electric charge is generated by applying a voltage in a light emitting element, or the charge is separated into holes and electrons, and these holes and electrons are separated into a hole transport layer and an electron transport layer. Is injected into the light emitting layer via.
  • the n-type charge generating layer supplies electrons to the first light emitting layer existing on the anode side to supply p-type charges.
  • the generation layer supplies holes to the second light emitting layer existing on the cathode side.
  • the n-type charge generation layer consists of an n-type dopant and an n-type host, and conventional materials can be used for these.
  • the n-type dopant the donor material exemplified as the material of the electron transport layer is preferably used.
  • alkali metals or salts thereof and rare earth metals are preferable, and materials selected from metallic lithium, lithium fluoride (LiF), lithium quinolinol (Liq) and metallic ytterbium are more preferable.
  • n-type host those exemplified as the electron transport material are preferably used.
  • a material selected from a triazine derivative, a phenanthroline derivative and an oligopyridine derivative is preferable, and a phenanthroline derivative or a terpyridine derivative is more preferable.
  • the p-type charge generation layer is composed of a p-type dopant and a p-type host, and conventional materials can be used for these.
  • the acceptor material exemplified as the material of the hole injection layer, iodine, FeCl 3 , FeF 3 , SbCl 5, and the like are preferably used. Specific examples thereof include HAT-CN6, F4-TCNQ, tetracyanoquinodimethane derivative, radialene derivative, iodine, FeCl 3 , FeF 3 , SbCl 5 and the like.
  • a thin film of the p-type dopant may be formed, and the film thickness is preferably 10 nm or less. Further, an arylamine derivative is preferable as the p-type host.
  • the crystal of the phenanthroline derivative of the present invention can be used for an electron transport layer, an electron injection layer, and a charge generation layer, and when used for an electron transport layer, for example, a thickness composed of a host material, a dopant material, and a TADF material. It is preferable to use a vapor-deposited film having a thickness of several tens of nm, which is formed by forming a light emitting layer having a thickness of several tens of nm and laminating on the light emitting layer. The light emitting device thus produced exhibits very high external quantum efficiency.
  • the crystal of the phenanthroline derivative of the present invention is used for the electron injection layer, for example, it is preferable to use it in a co-deposited film having a thickness of several nm containing an alkali metal as a donor material, and the same as above. It is preferable that the light emitting layer and the electron transporting layer of the above are sequentially laminated and formed on the electron transporting layer. The light emitting device thus produced also exhibits very high external quantum efficiency.
  • the crystal of the phenanthroline derivative of the present invention is used for the charge generation layer, for example, it is used as the n-type host material of the n-type charge generation layer of the tandem type fluorescent light emitting device containing an alkali metal which is an n-type dopant. It is preferable that the same light emitting layer and the electron transporting layer are sequentially laminated and formed on the electron transporting layer. The light emitting device thus produced also exhibits very high external quantum efficiency.
  • the anode is an electrode formed on the substrate and is not particularly limited as long as it is a material capable of efficiently injecting holes into the organic layer.
  • a transparent or translucent electrode is preferable, and top emission is preferable.
  • a reflective electrode is preferable.
  • Materials for the transparent or translucent electrode include conductive metal oxides such as zinc oxide, tin oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); or gold, silver, aluminum, chromium and the like.
  • Metals; conductive polymers such as polythiophene, polypyrrole, polyaniline are exemplified. However, when a metal is used, it is preferable to reduce the film thickness so that light can be semi-transmitted.
  • indium tin oxide is more preferable from the viewpoint of transparency and stability.
  • the material of the reflective electrode a material that does not absorb all light and has a high reflectance is preferable. Specifically, metals such as aluminum, silver, and platinum are exemplified.
  • the method for forming the anode an optimum method can be adopted depending on the material for forming the anode, and examples thereof include a sputtering method, a vapor deposition method, and an inkjet method. For example, a sputtering method is used when an anode is formed of a metal oxide, and a thin-film deposition method is used when an anode is formed of a metal.
  • the film thickness of the anode is not particularly limited, but is preferably several nm to several hundred nm. Further, these electrode materials may be used alone, or a plurality of materials may be laminated or mixed. Various wirings, circuits, and switching elements may be interposed between the substrate and the anode.
  • the cathode is an electrode formed on the surface opposite to the anode with the organic layer sandwiched between them, and is particularly preferably formed on the electron transport layer or the electron injection layer.
  • the material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the light emitting layer, but it is preferably a reflective electrode for a bottom emission type element and a translucent electrode for a top emission type element. Is preferable.
  • Metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium are generally used as cathode materials; these metals are combined with low work function metals such as lithium, sodium, potassium, calcium and magnesium. Alloys and multilayer laminated films; or conductive metal oxides such as zinc oxide, tin indium oxide (ITO), and indium zinc oxide (IZO) are preferable. Among them, a metal selected from aluminum, silver and magnesium as a main component is preferable from the viewpoints of electric resistance value, ease of film formation, film stability, luminous efficiency and the like.
  • a protective layer may be laminated on the cathode to protect the cathode.
  • the material constituting the protective layer is not particularly limited, but for example, metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium; alloys using these metals; silica, titania, silicon nitride and the like.
  • Inorganic substances Organic polymer compounds such as polyvinyl alcohol, polyvinyl chloride, and hydrocarbon-based polymer compounds can be mentioned.
  • the material used for the protective layer is selected from materials having light transmission in the visible light region.
  • the light emitting layer is a layer that emits light by the excitation energy generated by the recombination of holes and electrons.
  • the light emitting layer may be composed of a single material, but from the viewpoint of color purity and light emission intensity, a host compound (hereinafter, may be referred to as “first compound”) and a dopant compound (hereinafter, “second compound”). It is preferable that it is composed of two or more kinds of materials (sometimes referred to as "compound of").
  • first compound a thermally activated delayed fluorescent compound is a preferable example of the thermally activated delayed fluorescent material.
  • Thermally activated delayed fluorescent compounds also commonly referred to as TADF materials
  • TADF materials are singlet from triplet excited state by reducing the energy gap between the singlet excited state energy level and the triplet excited state energy level. It is a material that promotes inverse intersystem crossing to the term excited state and improves the generation probability of singlet excited states.
  • the difference between the lowest excited singlet energy level and the lowest excited triplet energy level (referred to as ⁇ EST) in the TADF material is preferably 0.3 eV or less.
  • the singlet exciton of the second compound Fluorescent emission is observed.
  • the lowest excited singlet energy level of the first compound is larger than the lowest excited singlet energy level of the second compound.
  • the second compound is a fluorescent light emitting material having a sharp light emitting spectrum, a light emitting element having high efficiency and high color purity can be obtained.
  • the light emitting layer contains a thermally activated delayed fluorescent compound, high-efficiency light emission is possible, which contributes to low power consumption of the display.
  • the Thermally Activated Delayed Fluorescence Compound may be a compound that exhibits Thermally Activated Delayed Fluorescence with a Single Material, or exhibits Thermally Activated Delayed Fluorescence with a plurality of compounds as in the case of forming an exciplex complex. It may be a compound.
  • thermally activated delayed fluorescent compound a single compound or a plurality of compounds may be mixed and used, and known materials can be used. Specific examples thereof include benzonitrile derivatives, triazine derivatives, disulfoxide derivatives, carbazole derivatives, indolocarbazole derivatives, dihydrophenazine derivatives, thiazole derivatives, oxadiazole derivatives and the like. In particular, a compound having an electron donating part (donor part) and an electron attracting part (acceptor part) in the same molecule is preferable.
  • the light emitting layer of the light emitting element may contain a pyrromethene boron complex represented by the following general formula (2).
  • the first compound is a thermally activated delayed fluorescent compound
  • the second compound is a pyrometheneboron complex.
  • the pyrromethene boron complex is a useful light emitting material that can obtain a sharp emission spectrum when used as a dopant, but it is necessary to achieve a light emitting element having high luminous efficiency and high durability while maintaining a sharp emission spectrum. Was difficult.
  • the pyrromethene boron complex represented by the following general formula (2) can provide a light emitting material having a high fluorescence quantum yield and a sharp emission spectrum, and a light emitting element having high luminous efficiency, color purity and durability. ..
  • X 1 is a nitrogen atom or a carbon atom, where the carbon atom includes a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted cycloalkyl.
  • One atomic or monovalent group selected from the group consisting of a group, a cyano group, a substituted or unsubstituted silyl group, and a substituted or unsubstituted siloxanyl group is bonded.
  • R 1 to R 6 are independently hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted aryl group, alkoxy group, substituted or unsubstituted alkylthio group, respectively.
  • An atom or group to be formed provided that in any one or more of the R 1 and R 2 pairs, the R 2 and R 3 pairs, the R 4 and R 5 pairs, and the R 5 and R 6 pairs.
  • a ring may be formed by forming a bond between the groups constituting the set.
  • Z 1 and Z 2 are independently halogen atoms, substituted or unsubstituted alkyl groups, substituted or unsubstituted aryl groups, substituted or unsubstituted alkoxy groups, cyano groups, and substituted or unsubstituted aryloxy groups, respectively. It is an atom or group selected from the group consisting of, but may be a ring formed by forming a bond between Z 1 and Z 2.
  • hydrogen may be deuterium.
  • the substituents in the case of substitution include an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an aryl group, a heteroaryl group, a hydroxyl group and a thiol.
  • unsubstituted means that the atom bonded to the target basic skeleton or group is only a hydrogen atom or a deuterium atom.
  • substituted means that the atom bonded to the target basic skeleton or group is only a hydrogen atom or a deuterium atom.
  • substituted in the compound described below or its partial structure.
  • the alkyl group refers to a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group and a tert-butyl group, which are substituted. It may be non-replaceable.
  • the additional substituent when substituted is not particularly limited, and examples thereof include an alkyl group, a halogen, an aryl group, and a heteroaryl group, and this point is also common to the following description.
  • the number of carbon atoms of the alkyl group is not particularly limited, but is preferably 1 or more and 20 or less, and more preferably 1 or more and 8 or less from the viewpoint of availability and cost.
  • the cycloalkyl group refers to a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, or an adamantyl group, which may be substituted or unsubstituted.
  • the number of carbon atoms in the alkyl group moiety is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
  • the heterocyclic group refers to an aliphatic ring having an atom other than carbon such as a pyran ring, a piperidine ring, and a cyclic amide in the ring, which may be substituted or unsubstituted.
  • the number of carbon atoms of the heterocyclic group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • the alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may be substituted or unsubstituted.
  • the carbon number of the alkenyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, a cyclohexenyl group, etc., which may be substituted or unsubstituted. ..
  • the number of carbon atoms of the cycloalkenyl group is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
  • the alkynyl group refers to an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may be substituted or unsubstituted.
  • the number of carbon atoms of the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • the alkoxy group refers to a functional group in which an aliphatic hydrocarbon group is bonded via an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group may be substituted or unsubstituted. good.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
  • the alkylthio group is one in which the oxygen atom of the ether bond of the alkoxy group is replaced with a sulfur atom.
  • the hydrocarbon group of the alkylthio group may be substituted or unsubstituted.
  • the number of carbon atoms of the alkylthio group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
  • the aryloxy group refers to a functional group in which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may be substituted or unsubstituted.
  • the number of carbon atoms of the aryloxy group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • the arylthio group is one in which the oxygen atom of the ether bond of the aryloxy group is replaced with a sulfur atom.
  • the aromatic hydrocarbon group in the arylthio group may be substituted or unsubstituted.
  • the number of carbon atoms of the arylthio group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • the aralkyl group is an alkyl group in which one of the hydrogen atoms of the alkyl group is substituted with an aryl group, for example, a phenylmethyl group or a phenylethyl group.
  • the carbon number of the aralkyl group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • the aryl group may be either a monocyclic ring or a fused ring, and may be, for example, a phenyl group, a naphthyl group, a fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthryl group, an anthrasenyl group, a benzophenanthryl group or a benzo.
  • aromatic hydrocarbon group such as anthrasenyl group, chrysenyl group, pyrenyl group, fluoranthenyl group, triphenylenyl group, benzofluoranthenyl group, dibenzoanthrasenyl group, perylenel group and helisenyl group.
  • a group selected from the group consisting of a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, an anthracenyl group, a pyrenyl group, a fluoranthenyl group and a triphenylenyl group is preferable.
  • the aryl group may be substituted or unsubstituted.
  • a group in which a plurality of phenyl groups such as a biphenyl group and a terphenyl group are bonded via a single bond is treated as a phenyl group having an aryl group as a substituent.
  • the number of carbon atoms of the aryl group is not particularly limited, but is preferably in the range of 6 or more and 40 or less, and more preferably 6 or more and 30 or less. Further, in the case of a phenyl group, when there are substituents on two adjacent carbon atoms in the phenyl group, a ring structure may be formed between these substituents.
  • the heteroaryl group may be either a monocyclic group or a fused ring, and may be, for example, a pyridyl group, a furanyl group, a thiophenyl group, a quinolinyl group, an isoquinolinyl group, a pyrazinyl group, a pyrimidyl group, a pyridazinyl group, a triazinyl group, a naphthyldinyl group, a synnolinyl group.
  • hetero atom a nitrogen atom, an oxygen atom, or a sulfur atom is preferable.
  • the heteroaryl group may be substituted or unsubstituted.
  • the number of carbon atoms of the heteroaryl group is not particularly limited, but is preferably in the range of 2 or more and 40 or less, and more preferably 2 or more and 30 or less.
  • Halogen refers to an atom selected from fluorine, chlorine, bromine and iodine.
  • the cyano group is a functional group whose structure is represented by -CN. Here, it is the carbon atom that is bonded to the other group.
  • the acyl group refers to a functional group in which an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, etc., such as an acetyl group, a propionyl group, a benzoyl group, and an acryryl group are bonded via a carbonyl group. .. These substituents may be further substituted.
  • the number of carbon atoms of the acyl group is not particularly limited, but is preferably 2 or more and 40 or less, and more preferably 2 or more and 30 or less.
  • the alkoxycarbonyl group refers to, for example, a functional group in which an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group and the like are bonded via an ester bond. These substituents may be further substituted.
  • the number of carbon atoms of the alkoxycarbonyl group is not particularly limited, but is preferably in the range of 1 or more and 20 or less. More specifically, methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, butoxycarbonyl group, isopropoxymethoxycarbonyl group, hexyloxycarbonyl group, phenoxycarbonyl group and the like can be mentioned.
  • the carbamoyl group refers to, for example, a functional group in which an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group and the like are bonded via an amide bond. These substituents may be further substituted.
  • the number of carbon atoms of the amide group is not particularly limited, but is preferably in the range of 1 or more and 20 or less. More specifically, a methylamide group, an ethylamide group, a propylamide group, a butyramide group, an isopropylamide group, a hexylamide group, a phenylamide group and the like can be mentioned.
  • the number of carbon atoms of the alkylsulfonyl group and the arylsulfonyl group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
  • the alkoxysulfonyl group refers to, for example, a functional group in which an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group and the like are bonded via a sulfonic acid ester bond.
  • these substituents may be further substituted.
  • the number of carbon atoms of the alkoxysulfonyl group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
  • the aminosulfonyl group refers to, for example, a functional group in which an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group and the like are bonded via a sulfonamide bond.
  • these substituents may be further substituted.
  • the number of carbon atoms of the aminosulfonyl group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
  • the amino group is a substituted or unsubstituted amino group.
  • substituents in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group and a branched alkyl group.
  • aryl group and heteroaryl group a phenyl group, a naphthyl group, a pyridyl group and a quinolinyl group are preferable. These substituents may be further substituted.
  • the number of carbon atoms is not particularly limited, but is preferably 2 or more and 50 or less, more preferably 6 or more and 40 or less, and particularly preferably 6 or more and 30 or less.
  • the silyl group indicates a functional group to which a substituted or unsubstituted silicon atom is bonded, and is, for example, an alkylsilyl group such as a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a propyldimethylsilyl group, or a vinyldimethylsilyl group.
  • alkylsilyl group such as a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a propyldimethylsilyl group, or a vinyldimethylsilyl group.
  • arylsilyl groups such as phenyldimethylsilyl group, tert-butyldiphenylsilyl group, triphenylsilyl group and trinaphthylsilyl group.
  • Substituents on silicon
  • the siloxanyl group refers to a silicon compound group via an ether bond such as a trimethylsiloxanyl group. Substituents on silicon may be further substituted.
  • the boryl group is a substituted or unsubstituted boryl group.
  • substituent in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, a branched alkyl group, an aryl ether group, an alkoxy group and a hydroxyl group, and among them, an aryl group and an aryl ether group are preferable.
  • R 16 and R 17 are independently selected from the same group as R 1 to R 6.
  • the pyromethene boron complex has a strong and highly planar skeleton, and therefore exhibits a high fluorescence quantum yield. Further, since the peak half width of the emission spectrum is small, efficient emission and high color purity can be achieved in the emission element. In order to further improve the luminous efficiency, it is effective to suppress the rotation / vibration of the substituent of the pyromethene boron complex, reduce the energy loss, and improve the fluorescence quantum yield. Further, in order to improve the color purity, it is effective to reduce the vibrational relaxation in the excited state of the pyrromethene boron complex and reduce the half width of the emission spectrum. From this point of view, in the structure represented by the general formula (2), it is preferable to use a structure in which X 1 is a carbon atom and the above-mentioned atom or monovalent group is bonded.
  • a pyromethene boron complex having a high fluorescence quantum yield and a small half-value width can be provided. .. Furthermore, when the group bonded to the bridge head position suppresses intramolecular rotation with respect to the pyrromethene skeleton, it is possible to suppress energy deactivation, which is advantageous for improving luminous efficiency. In addition, the stability of the pyromethene boron complex affects the durability of the light emitting device. In order to further improve the stability, it is preferable to introduce a bulky substituent at the bridge head position. By introducing a bulky substituent, the pyrromethene skeleton can be protected from interaction with other surrounding molecules.
  • X 1 is a carbon atom, as a particularly preferable monovalent group bonded to the carbon atom, the viewpoint represented by the following general formula (3) or general formula (4) can suppress energy deactivation. Is preferable.
  • R 9 to R 11 are independently hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl.
  • R 12 to R 14 are independently hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl.
  • R 15 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted Substituent alkynyl group, hydroxyl group, thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryloxy group, substituted or unsubstituted arylthio group, substituted or unsubstituted aryl group , Substituted or unsubstituted heteroaryl group, halogen atom, cyano group, formyl group, acyl group, carboxy group, substituted or unsubstituted alk
  • Ar 1 is a group selected from the group consisting of substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups. ) Further, when the group represented by the general formula (3) is contained, in the pyrometheneboron compound represented by the general formula (2), Z 1 and Z 2 are independently substituted or unsubstituted alkyl groups.
  • R 1 and R 6 are independently substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups (where these aryl groups and heteroaryl groups may be monocyclic or fused rings, respectively.
  • R 1 and R 6 are monocyclic aryl groups and heteroaryl groups
  • the monocyclic aryl groups and heteroaryl groups are one or more secondary alkyl groups and one or more.
  • R 2 and R 5 are independently hydrogen atoms, substituted or unsubstituted alkyl groups, substituted or unsubstituted cycloalkyl groups, substituted or unsubstituted alkenyl groups, substituted or unsubstituted alkenyl groups, respectively.
  • Z 1 and Z 2 are preferably an alkyl group, an alkoxy group, an aryl ether group, a halogen or a cyano group from the viewpoint of light emission characteristics and thermal stability. Further, from the viewpoint that the excited state is stable and a higher fluorescence quantum yield can be obtained, and the durability can be improved, Z 1 and Z 2 are more preferably electron-attracting groups, and more specifically. Is more preferably a fluorine atom, a fluorine-containing alkyl group, a fluorine-containing alkoxy group, a fluorine-containing aryl ether group or a cyano group, further preferably a fluorine atom or a cyano group, and most preferably a fluorine atom. preferable.
  • R 1 and R 6 are groups that contribute to the stability and luminous efficiency of the pyrromethene boron complex compound. Stability refers to electrical and thermal stability. Electrical stability means that deterioration of the compound such as decomposition is unlikely to occur when the light emitting element is continuously energized. Thermal stability means that the deterioration of the compound is unlikely to occur due to heating processes such as sublimation purification and vapor deposition during manufacturing and the environmental temperature around the light emitting element. Since the luminous efficiency decreases when the compound is altered, the stability of the compound is important for improving the durability of the light emitting device.
  • R 1 and R 6 are preferably substituted or unsubstituted aryl groups from the viewpoint of compound stability and luminous efficiency.
  • R 1 and R 6 are preferably groups having a large steric hindrance in the above group in order to prevent aggregation of pyrromethene boron complexes and avoid concentration quenching.
  • R 1 and R 6 are phenyl groups having one or more tertiary alkyl groups as substituents, phenyl groups having one or more aryl groups as substituents, and one or more heteroaryl groups. It has a total of two or more substituents, a phenyl group, a methyl group and a primary alkyl group, and at least one of them is substituted at the 2-position with respect to the bond site with the pyrrole ring.
  • R 1 and R 6 are functional groups having a rigid structure or a highly symmetric structure. From this point of view, R 1 and R 6 are for a phenyl group having one or more tert-butyl groups as a substituent, a phenyl group having one or more phenyl groups as a substituent, or at least a bond site with a pyrrole ring.
  • a phenyl group that is either a phenyl group in which a methyl group is substituted at the 2- or 6-position and has a substituent that is linearly symmetric with the bond with pyrrole as the axis of symmetry, or an unsubstituted fused ring-type aromatic. It is more preferably a hydrocarbon group. Further, from the viewpoint of ease of production, it may be a 2,6-dimethylphenyl group, a mesityl group, a 4-tert-butylphenyl group, a 3,5-ditert-butylphenyl group, a 4-biphenyl group or a 1-naphthyl group. More preferred.
  • R 3 and R 4 are groups that contribute to the control of the emission wavelength.
  • a method of extending the conjugation and lengthening the emission wavelength by directly bonding an aryl group or a heteroaryl group to the pyrromethene metal complex skeleton can be mentioned.
  • R 3 and R 4 are substituted or unsubstituted alkyl groups, substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups, but from the viewpoint of compound stability, they are substituted or unsubstituted.
  • Aryl groups are more preferred.
  • R 2 and R 5 mainly affect the peak wavelength, half width of emission spectrum, stability, or crystallinity. From the viewpoint of narrowing the half width of the emission spectrum, stability affecting device durability, and ease of manufacture including recrystallization purification, at least one or more preferably both of R 2 and R 5 are hydrogen atoms. Alternatively, it is preferably a substituted or unsubstituted alkyl group.
  • a bond may be formed between the groups constituting the pair to form a ring, or a bond may be formed between Z 1 and Z 2 to form a ring. it may be one that is formed, but in place of this sense, in the R 1 to the R 6, condensed and pyrromethene ring, preferably as a fused ring, i.e.
  • Z 1 and Z 2 include that a heterocycle containing boron can be provided as a partial structure.
  • R 7 and R 8 are substituted or unsubstituted alkyl groups, substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups. Is selected from. Of these, at least one is preferably a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
  • one of R 7 and R 8 is preferably a substituted or unsubstituted alkyl group, and more preferably a methyl group.
  • R 9 to R 11 are used for adjusting the peak wavelength, crystallinity, sublimation temperature and the like. Particularly affecting peak wavelength substituents attached to the 4-position of the pyrromethene skeleton, that is, R 10. If R 10 is an electron donating group, the emission peak wavelength shifts to the short wavelength side.
  • the electron donating group include a methyl group, an ethyl group, a tert-butyl group, a cyclohexyl group, a methoxy group, an ethoxy group, a phenyl group, a tolyl group, a naphthyl group, a furanyl group and a dibenzofuranyl group.
  • R 10 is an alkoxy group such as a methoxy group or an ethoxy group having a strong electron donating property, the short wavelength shift is large, which is useful for wavelength adjustment.
  • R 10 is an electron-attracting group, the emission peak shifts to the long wavelength side.
  • the electron-attracting group examples include a fluorine atom, a trifluoromethyl group, a cyano group, a pyridyl group, and a pyrimidyl group.
  • R 10 is a group selected from a fluorine atom, a trifluoromethyl group and a cyano group having strong electron attraction, the long wavelength shift is large, which is useful for wavelength adjustment.
  • the electron donating group and the electron attracting group are not limited to these.
  • Z 1 and Z 2 are independently substituted or unsubstituted alkyl groups, respectively. , substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted aryl group, a halogen atom and atom or group selected from the group consisting of cyano group,
  • R 1 ⁇ R 6 is , Independently, hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkenyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or Consists of an unsubstituted aryloxy group, a substituted or unsubstituted ary
  • Z 1 and Z 2 are preferably an alkyl group, an alkoxy group, an aryl ether group, a halogen or a cyano group from the viewpoint of light emission characteristics and thermal stability. Further, from the viewpoint that the excited state is stable and a higher fluorescence quantum yield can be obtained, and the durability can be improved, Z 1 and Z 2 are more preferably electron-attracting groups, and more specifically. Is more preferably a fluorine atom, a fluorine-containing alkyl group, a fluorine-containing alkoxy group, a fluorine-containing aryl ether group or a cyano group, further preferably a fluorine atom or a cyano group, and most preferably a fluorine atom. preferable.
  • R 1 and R 6 affect the emission peak wavelength, crystallinity, sublimation temperature, etc. of the pyrromethene boron complex.
  • R 1 and R 6 are preferably hydrogen atoms or alkyl groups.
  • R 1 and R 6 are more preferably alkyl groups, and further preferably methyl groups from the viewpoint of ease of production.
  • R 3 and R 4 mainly affect the emission peak wavelength, the half width of the emission spectrum, the stability, or the crystallinity of the pyrromethene boron complex.
  • at least one or preferably both of R 3 and R 4 are hydrogen atoms. It is preferably a group selected from the group consisting of substituted or unsubstituted alkyl groups, substituted or unsubstituted aryl groups and substituted or unsubstituted heteroaryl groups.
  • R 3 and R 4 are more preferably alkyl groups, and further preferably methyl groups from the viewpoint of ease of production.
  • R 2 and R 5 mainly affect the emission peak wavelength, the half width of the emission spectrum, the stability, or the crystallinity of the pyrromethene boron complex. From the viewpoint of reducing the half width of the emission spectrum, improving the stability, and easiness of synthesis including recrystallization purification, at least one or preferably both of R 2 and R 5 are hydrogen atoms. It is preferably a substituted or unsubstituted alkyl group, and it is more preferable that both are hydrogen atoms from the viewpoint of ease of production.
  • R 11 and Ar 1 are a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
  • it is more preferably a 1-naphthyl group.
  • an aryl group or a heteroaryl group into the pyrromethene skeleton for example, under a metal catalyst such as palladium, carbon-is used by a coupling reaction between a halogenated derivative of the pyrromethene boron complex and a boronic acid or boronic acid ester derivative. Examples include, but are not limited to, methods of forming carbon bonds.
  • a metal catalyst such as palladium
  • carbon-nitrogen using a coupling reaction of a halogenated derivative of the pyrromethene boron complex with an amine or carbazole derivative. Examples include, but are not limited to, methods of generating bonds.
  • the obtained pyromethene boron complex is subjected to organic synthetic purification such as recrystallization and column chromatography, and then the low boiling point component is removed by purification by heating under reduced pressure, which is generally called sublimation purification, to improve the purity. Is preferable.
  • the heating temperature in the sublimation purification is not particularly limited, but is preferably 330 ° C. or lower, more preferably 300 ° C. or lower, from the viewpoint of preventing thermal decomposition of the pyromethene boron complex.
  • the purity of the pyrromethene boron complex produced in this manner is preferably 99% by weight or more from the viewpoint of enabling the light emitting device to exhibit stable characteristics.
  • the optical properties of the pyrromethene boron complex can be obtained by measuring the absorption spectrum and emission spectrum of the diluted solution.
  • the solvent is not particularly limited as long as it dissolves the pyrromethene boron complex and the absorption spectrum of the solvent is transparent so as not to overlap with the absorption spectrum of the pyromethene boron complex.
  • toluene and the like are exemplified.
  • the concentration of the solution is not particularly limited as long as it has sufficient absorbance and does not cause concentration dimming, but it is preferably in the range of 1 ⁇ 10 -4 mol / L to 1 ⁇ 10 -7 mol / L. More preferably, it is in the range of 1 ⁇ 10 -5 mol / L to 1 ⁇ 10 -6 mol / L.
  • the absorption spectrum can be measured with a general ultraviolet-visible spectrophotometer.
  • the emission spectrum can be measured by a general fluorescence spectrophotometer.
  • the emission spectrum of the light emitted by the pyromethene boron complex by irradiation with excitation light is sharp.
  • the half width of the emission spectrum is preferably 60 nm or less, more preferably 50 nm or less, further preferably 45 nm or less, and particularly preferably 28 nm or less.
  • the luminous efficiency of the light emitting element depends on the fluorescence quantum yield of the light emitting material itself. Therefore, it is desired that the fluorescence quantum yield of the light emitting material is as close to 100% as possible.
  • the pyromethene boron complex represented by the general formula (2) can obtain a high fluorescence quantum yield by suppressing rotation and vibration at the bridge head position and reducing heat deactivation. From the above viewpoint, the fluorescence quantum yield of the pyrromethene boron complex is preferably 90% or more, more preferably 95% or more. However, the fluorescence quantum yield shown here is obtained by measuring a diluted solution using toluene as a solvent with an absolute quantum yield measuring device.
  • the light emitting layer further has a singlet energy (meaning the energy difference between the lowest excited singlet state and the ground state; the same applies hereinafter) of the first compound.
  • a singlet energy meaning the energy difference between the lowest excited singlet state and the ground state; the same applies hereinafter
  • Compounds larger than the singlet energy may be referred to as "third compounds" may be included.
  • the third compound can have a function of confining the energy of the light emitting material in the light emitting layer, and can efficiently emit light.
  • the lowest excited triplet energy of the third compound referred to as the energy difference between the lowest excited triplet state and the ground state; the same applies hereinafter
  • an organic compound having a high charge transporting ability and a high glass transition temperature is preferable.
  • the third compound may be composed of a single compound or two or more kinds of materials.
  • the third compound has an electron transporting property and the third compound has a hole transporting property.
  • the first compound and the third compound satisfy the relational expressions of the following formulas 1 to 4, respectively. Further, it is more preferable to satisfy the formulas 1 and 2, and it is further preferable to satisfy the formulas 3 and 4. Further, it is more preferable to satisfy all of the formulas 1 to 4.
  • S1 represents the energy level of the lowest excited singlet state of each compound
  • T1 represents the energy level of the lowest excited triplet state of each compound.
  • Examples of the third electron-transporting compound include compounds containing a ⁇ -electron-deficient heteroaromatic ring. Specific examples thereof include a heterocyclic compound having a polyazole skeleton, a heterocyclic compound having a quinoxaline skeleton or a dibenzoquinoxaline skeleton, a heterocyclic compound having a diazine skeleton (pyrimidine skeleton or pyrazine skeleton), and a heterocyclic compound having a pyridine skeleton. ..
  • a compound containing a ⁇ -electron excess type heteroaromatic ring and the like can be mentioned. Specifically, a compound having a carbazole skeleton is exemplified.
  • the method for forming each of the above-mentioned layers constituting the light emitting device of the present invention may be either a dry process or a wet process, and resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, coating method, inkjet method, printing may be used.
  • resistance heating vapor deposition is usually preferable from the viewpoint of device characteristics.
  • the thickness of the organic layer is not particularly limited because it depends on the resistance value of the luminescent substance, but it is preferably 1 to 1000 nm.
  • the film thicknesses of the light emitting layer, the electron transport layer, and the hole transport layer are preferably 1 nm or more and 200 nm or less, and more preferably 5 nm or more and 100 nm or less, respectively.
  • NMR Nuclear Magnetic Resonance Analysis
  • the 400 MHz NMR spectrum of the white solid obtained in Synthesis Example 2 was measured using a JNM-AL400 type nuclear magnetic resonance apparatus (manufactured by JEOL Ltd.). The chemical shift is expressed in ⁇ (unit: ppm) with reference to tetramethylsilane, and the signals are s (single line), d (double line), t (triple line), q (quadruple line), and m, respectively. It was represented by (multiple lines), br (wide), dd (double double lines), and dt (double triple lines).
  • the solvent name shown in the NMR data indicates the solvent used for the measurement.
  • X-ray source CuK ⁇ ray * Curved crystal monochromator (graphite) is used
  • Output 40kV / 50mA
  • Divergence slit 1/2 °
  • Divergence vertical restriction slit 5 mm
  • Scattering slit 1/2 °
  • Light receiving slit 0.15 mm
  • Detector Scintillation counter Scan method: 2 ⁇ / ⁇ scan, continuous scan Measurement range (2 ⁇ ): 2 to 30 ° Scan speed (2 ⁇ ): 20 ° / min Counting step (2 ⁇ ): 0.04 °.
  • Residual solvent amount The white solid obtained in each Example and Comparative Example was subjected to NMR measurement, and the molar ratio was calculated from the respective peak integrated values of the compound to be measured and the residual solvent, and compared with each Example. The amount of residual solvent was calculated from the weight and molar ratio of the white solid obtained by the example. When a plurality of residual solvents were confirmed, they were calculated as the total value.
  • the obtained concentrate was suspended in a mixed solution of dichloromethane / chloroform (volume ratio 1/10, 85 mL) and stirred at 0 ° C.
  • the precipitate was filtered and dried under reduced pressure at 100 ° C. to obtain 3.25 g of 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene as a white solid.
  • the NMR chemical shift of the obtained compound is shown below. 1H-NMR (CDCl 3 , ppm): 9.75 (s, 1H), 8.72 (dd, 2H), 8.57-8.17 (m, 12H), 7.90-7.82 (m) , 5H), 7.61-7.48 (m, 6H).
  • the precipitate was filtered and dried under reduced pressure at 20 ° C., tetrahydrofuran (16.7 mL, specific density 0.89) was added to the obtained precipitate, and the mixture was heated under reflux and stirred for 2 hours. Subsequently, the mixture was cooled to 0 ° C. over 1 hour and then stirred at 0 ° C. for 1 hour. The precipitate was filtered and dried under reduced pressure at 100 ° C. to obtain a white solid (yield 0.71 g, recovery rate 55%).
  • the precipitate was filtered and dried under reduced pressure at 100 ° C., tetrahydrofuran (7.7 mL, specific gravity 0.89) was added to the obtained precipitate, and the mixture was heated under reflux and stirred for 2 hours. Subsequently, the mixture was cooled to 0 ° C. over 3 hours and then stirred at 0 ° C. for 2 hours. The precipitate was filtered and dried under reduced pressure at 100 ° C. to obtain a white solid (yield 0.70 g, recovery rate 72%).
  • N-methylpyrrolidone (1.1 mL, specific density 1) was added to 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene (0.30 g) obtained in Synthesis Example 2 under an argon atmosphere. .03) and anisole (2.1 mL, specific density 0.99) were added, and the mixture was stirred at 100 ° C. for 0.5 hours. Subsequently, the mixture was cooled to 0 ° C. over 1 hour and then stirred at 0 ° C. for 2 hours. The precipitate was filtered and dried under reduced pressure at 100 ° C. to obtain a white solid (yield 0.23 g, recovery rate 77%).
  • the phenanthroline derivative synthesized by the conventional method and the phenanthroline derivative washed with a methanol solvent are amorphous and have a small amount of residual solvent, but have low chemical purity.
  • the D-type crystal of Comparative Example 1 has a high chemical purity but a large amount of residual solvent. Therefore, in order to obtain a phenanthroline derivative having a high chemical purity and a small amount of residual solvent, only the amorphous crystal is crystallized. Was insufficient, and it was found that it was necessary to select B-type crystals or C-type crystals with a small amount of residual solvent.
  • Example 6 since the crystal polymorphic transition easily proceeds in the E-type crystal under the conditions of drying under reduced pressure at 100 ° C., the E-type crystal is useful as a precursor for obtaining the C-type crystal by low-temperature drying. I understood.
  • the pyrromethene boron complex compound used in the following Examples and Comparative Examples is the compound shown below. The characteristics are shown in Table 3.
  • Example 7 A glass substrate (manufactured by Geomatec Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which an ITO transparent conductive film was deposited at 165 nm was cut into a size of 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with "Semicoclean 56" (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then washed with ultrapure water. This substrate was subjected to ultraviolet-ozone treatment for 1 hour immediately before the device was manufactured, placed in a vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 -4 Pa or less.
  • HAT-CN6 was first deposited at 10 nm as a hole injection layer, and HT-1 was deposited at 180 nm as a hole transport layer.
  • H-1 which is a host material
  • compound D-1 which is a dopant compound
  • compound H-2 which is a TADF material
  • a crystal (C-type crystal) of compound ET-1 which is a phenanthroline derivative
  • 2E-1 after depositing 2E-1 at 0.5 nm as an electron injection layer, magnesium and silver were co-deposited at 1000 nm to form a cathode, and a 5 ⁇ 5 mm square element was manufactured.
  • the external quantum efficiency was 11.4% when this light emitting device was made to emit light at 1000 cd / m 2.
  • the structures of HAT-CN6, HT-1, H-1, H-2, ET-1, and 2E-1 are shown below.
  • Example 8 A light emitting device was used in the same manner as in Example 7 except that the crystals in the crystal form shown in Table 1 were used as the crystal form of the phenanthroline derivative ET-1 and the compounds shown in Table 3 were used as the dopant material for the light emitting layer. Made and evaluated. The results are shown in Table 4.
  • Example 11 A glass substrate (manufactured by Geomatec Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which an ITO transparent conductive film was deposited at 165 nm was cut into a size of 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with "Semicoclean 56" (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then washed with ultrapure water. This substrate was subjected to ultraviolet-ozone treatment for 1 hour immediately before the device was manufactured, placed in a vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 -4 Pa or less.
  • HAT-CN6 was first deposited at 10 nm as a hole injection layer, and HT-1 was deposited at 40 nm as a hole transport layer.
  • H-1 which is a host material
  • compound D-6 which is a dopant compound
  • compound H-3 which is a TADF material
  • a crystal (C-type crystal) of the compound ET-1 which is a phenanthroline derivative was used, and thin-film deposition was laminated to a thickness of 50 nm.
  • magnesium and silver were co-deposited at 1000 nm to form a cathode, and a 5 ⁇ 5 mm square element was manufactured.
  • the external quantum efficiency was 9.2% when this light emitting device was made to emit light at 1000 cd / m 2.
  • the structure of H-3 is shown below.
  • Example 12 to 14 A light emitting device in the same manner as in Example 11 except that the crystals in the crystal form shown in Table 1 were used as the crystal form of the phenanthroline derivative ET-1 and the compounds shown in Table 3 were used as the dopant material for the light emitting layer. Was prepared and evaluated. The results are shown in Table 4.
  • Examples 7-14 have higher external quantum efficiencies than Comparative Examples 4 to 7 using the same light emitting layer. That is, as can be seen with reference to Table 4, in Examples 7 to 14 in which the B-type crystal or C-type crystal of the compound ET-1 is used as the electron transport material, the D form of the compound ET-1 is used as the electron transport material. Compared with Comparative Examples 4 to 7 in which crystalline or amorphous materials are used, it is possible to obtain a light emitting element in which the external quantum efficiency is significantly improved regardless of which thermally activated delayed fluorescent material is used for the light emitting layer. all right.
  • Example 15 A glass substrate (manufactured by Geomatec Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which an ITO transparent conductive film was deposited at 165 nm was cut into a size of 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with "Semicoclean 56" (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then washed with ultrapure water. This substrate was subjected to ultraviolet-ozone treatment for 1 hour immediately before the device was manufactured, placed in a vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 -4 Pa or less.
  • HAT-CN6 was first deposited at 10 nm as a hole injection layer, and HT-1 was deposited at 180 nm as a hole transport layer.
  • H-1 which is a host material
  • compound D-1 which is a dopant compound
  • compound H-2 which is a TADF material
  • the electron transport layer compound ET-2 is used as the electron transport material and 2E-1 is used as the donor material, and the vapor deposition rate ratio of the compounds ET-2 and 2E-1 is 1: 1 so that the thickness is 35 nm. It was laminated on the surface.
  • a crystal (C-type crystal) of the compound ET-1 which is a phenanthroline derivative is used as the electron injection layer, metallic lithium is used as the donor material, and the vapor deposition rate ratio of the compound ET-1 and the metallic lithium is 99: 1.
  • magnesium and silver were co-deposited at 1000 nm to form a cathode, and a 5 ⁇ 5 mm square element was manufactured.
  • the external quantum efficiency was 14.4% when this light emitting device was made to emit light at 1000 cd / m 2.
  • the structure of ET-2 is shown below.
  • Example 16 to 18 The light emitting device was prepared in the same manner as in Example 15 except that the crystals in the crystal form shown in Table 1 were used as the crystal form of the phenanthroline derivative ET-1 and the compounds shown in Table 3 were used as the dopant material for the light emitting layer. Made and evaluated. The results are shown in Table 5.
  • Example 19 A glass substrate (manufactured by Geomatec Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which an ITO transparent conductive film was deposited at 165 nm was cut into a size of 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with "Semicoclean 56" (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then washed with ultrapure water. This substrate was subjected to ultraviolet-ozone treatment for 1 hour immediately before the device was manufactured, placed in a vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 -4 Pa or less.
  • HAT-CN6 was first deposited at 10 nm as a hole injection layer, and HT-1 was deposited at 40 nm as a hole transport layer.
  • H-1 which is a host material
  • compound D-6 which is a dopant compound
  • compound H-3 which is a TADF material
  • the electron transport layer compound ET-2 is used as the electron transport material and 2E-1 is used as the donor material, and the vapor deposition rate ratio of the compounds ET-2 and 2E-1 is 1: 1 so that the thickness is 50 nm. It was laminated on the surface.
  • a crystal (C-type crystal) of ET-1 which is a phenanthroline derivative is used as an electron injection layer, and metallic lithium is used as a donor material, and the vapor deposition rate ratio of compound ET-1 and metallic lithium becomes 99: 1.
  • magnesium and silver were co-deposited with 1000 nm to form a cathode, and a 5 ⁇ 5 mm square element was produced.
  • the external quantum efficiency was 12.2% when this light emitting device was made to emit light at 1000 cd / m 2.
  • Example 20 to 22 A light emitting device in the same manner as in Example 19 except that the crystals in the crystal form shown in Table 1 were used as the crystal form of the phenanthroline derivative ET-1 and the compounds shown in Table 3 were used as the dopant material for the light emitting layer. Was prepared and evaluated. The results are shown in Table 5.
  • Examples 15 to 22 have higher external quantum efficiencies than Comparative Examples 8 to 9 using the same light emitting layer. That is, as can be seen with reference to Table 5, in Examples 15 to 22 in which the B-type crystal or C-type crystal of the compound ET-1 is used as the electron-injected material, the D-type of the compound ET-1 is used as the electron-injected material. Compared with Comparative Examples 8 to 11 in which crystalline or amorphous materials are used, it is possible to obtain a light emitting element in which the external quantum efficiency is significantly improved regardless of which thermally activated delayed fluorescent material is used for the light emitting layer. all right.
  • Example 23 A glass substrate (manufactured by Geomatec Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which an ITO transparent conductive film was deposited at 165 nm was cut into a size of 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with "Semicoclean 56" (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then washed with ultrapure water. This substrate was subjected to ultraviolet-ozone treatment for 1 hour immediately before the device was manufactured, placed in a vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 -4 Pa or less.
  • HAT-CN6 was first deposited at 5 nm as a hole injection layer, and then HT-1 was deposited at 50 nm as a hole transport layer.
  • H-1 which is a host material compound D-1 which is a dopant compound, and compound H-2 which is a TADF material are arranged in a weight ratio of 80: 1: 19. , 20 nm thick vapor deposition.
  • compound ET-2 is used as the electron transport material and 2E-1 is used as the donor material, and the vapor deposition rate ratio of the compounds ET-2 and 2E-1 is 1: 1 so that the thickness is 35 nm. It was laminated on the surface.
  • a phenanthroline derivative ET-1 crystal (C-type crystal: Example 6) was used as the n-type charge generation layer for the n-type host, metallic lithium was used for the n-type dopant, and the compound ET-1 and metallic lithium were used.
  • the layers were laminated at 10 nm so that the vapor deposition rate ratio was 99: 1.
  • HAT-CN6 was laminated at 10 nm as a p-type charge light emitting layer.
  • a hole transport layer of 50 nm, a light emitting layer of 20 nm, and an electron transport layer of 35 nm were deposited on the hole in this order in the same manner as described above.
  • magnesium and silver were co-deposited at 1000 nm to serve as a cathode, and a 5 ⁇ 5 mm square tandem fluorescent light emitting element was produced.
  • the external quantum efficiency when this light emitting device was made to emit light at 1000 cd / m 2 was 16.2%. It was confirmed that the external quantum efficiency was improved as compared with Example 15 in which the light emitting layer was only one layer.
  • Example 24 A glass substrate (manufactured by Geomatec Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which an ITO transparent conductive film was deposited at 165 nm was cut into a size of 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with "Semicoclean 56" (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then washed with ultrapure water. This substrate was subjected to ultraviolet-ozone treatment for 1 hour immediately before the device was manufactured, placed in a vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 -4 Pa or less.
  • "Semicoclean 56" trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • HAT-CN6 was first deposited at 5 nm as a hole injection layer, and then HT-1 was deposited at 50 nm as a hole transport layer.
  • H-1 which is a host material
  • compound D-6 which is a dopant material
  • compound H-3 which is a TADF material are arranged in a weight ratio of 80: 1: 19. , 30 nm thick vapor deposition.
  • n-type charge generation layer a crystal of ET-1 which is a phenanthroline derivative which is an n-type host (C-type crystal: Example 6) and metallic lithium, which is an n-type dopant, were laminated at 10 nm so that the vapor deposition rate ratio was 99: 1. Further, HAT-CN6 was laminated at 10 nm as a p-type charge generation layer. Similarly to the above, a hole transport layer of 50 nm, a light emitting layer of 30 nm, and ET-1 (C-type crystal) of 35 nm as an electron transport layer were deposited in this order.
  • the external quantum efficiency was 11.3% when this light emitting device was made to emit light at 1000 cd / m 2. It was confirmed that the external quantum efficiency was improved as compared with Example 11 in which the light emitting layer was only one layer.
  • the crystal of the phenanthroline derivative of the present invention exhibits extremely high chemical purity as compared with the phenanthroline derivative obtained by the conventional method, and since the amount of residual solvent is small, bumping in sublimation purification can be suppressed, which is suitable for industrial production. Is also available. Further, since the phenanthroline derivative obtained by sublimating and purifying the crystal of the phenanthroline derivative of the present invention has high chemical purity, it has a display element, a flat panel display, a backlight, lighting, an interior, a sign, a signboard, an electronic camera, and an optical signal generator. It can be suitably used as a light emitting element material used in such fields.

Abstract

The purpose of the present invention is to provide: a crystal of a phenanthroline derivative, said crystal having high chemical purity and low residual solvent content, thereby being suitable for use as a light emitting element material; and a method for producing this crystal of a phenanthroline derivative. The present invention provides: a crystal of a phenanthroline derivative, said crystal having a structure represented by general formula (1), while respectively having peaks at diffraction angles 2θ (°) of 6.7 ± 0.2, 8.2 ± 0.2, 13.7 ± 0.2, 17.7 ± 0.2 and 22.2 ± 0.2 in the powder X-ray diffraction pattern (said crystal being referred to as a B-form crystal); and crystal of a phenanthroline derivative, said crystal having a structure represented by general formula (1), while respectively having peaks at diffraction angles 2θ (°) of 5.0 ± 0.2, 7.5 ± 0.2, 8.7 ± 0.2, 12.5 ± 0.2 and 17.3 ± 0.2 in the powder X-ray diffraction pattern (said crystal being referred to as a C-form crystal). In addition, the present invention provides a crystal of a phenanthroline derivative, said crystal having a structure represented by general formula (1), while respectively having peaks at diffraction angles 2θ (°) of 5.2 ± 0.2, 7.0 ± 0.2, 16.4 ± 0.2, 20.0 ± 0.2 and 23.6 ± 0.2 in the powder X-ray diffraction pattern, said crystal being suitable for the achievement of a C-form crystal. (In the formula, X represents a phenylene group or a naphthylene group.)

Description

フェナントロリン誘導体の結晶およびその製造方法ならびにそれを用いた発光素子Crystals of phenanthroline derivatives, methods for producing them, and light emitting devices using them
 本発明は、フェナントロリン誘導体の結晶およびその製造方法に関する。フェナントロリン誘導体は、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機、光信号発生器などの分野に使用可能な発光素子材料として有用な化合物である。 The present invention relates to crystals of a phenanthroline derivative and a method for producing the same. The phenanthroline derivative is a compound useful as a light emitting element material that can be used in fields such as display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, electronic cameras, and optical signal generators.
 フェナントロリン誘導体に関し、これまでに、例えば、後述する一般式(1)で表されるフェナントロリン誘導体を包含する発光素子用材料が開示されており、その製造方法として、1,3-ジ(1,10-フェナントロリン-2-イル)ベンゼンにフェニルリチウムを作用させ、次いで酸化する方法や、1,3-ジブロモベンゼンをt-ブチルリチウムと反応させた後、2-フェニル-1,10-フェナントロリンを作用させ、次いで酸化する方法が開示されている(例えば、特許文献1参照)。 Regarding the phenanthroline derivative, for example, a material for a light emitting element including the phenanthroline derivative represented by the general formula (1) described later has been disclosed, and as a method for producing the phenanthroline derivative, 1,3-di (1,10) has been disclosed. -Phenanthroline-2-yl) Benzene is allowed to act on phenyllithium and then oxidized, or 1,3-dibromobenzene is reacted with t-butyllithium and then 2-phenyl-1,10-phenanthroline is allowed to act on it. Then, a method of oxidizing is disclosed (see, for example, Patent Document 1).
 また、後述する一般式(1)で表されるフェナントロリン誘導体を包含する含窒素芳香環誘導体の製造方法として、ジブロモ芳香族体をn-ブチルリチウムまたはsec-ブチルリチウムによりジリチオ化した後、含窒素芳香族環誘導体を付加し、次いで酸化する方法が提案されている(例えば、特許文献2参照)。 Further, as a method for producing a nitrogen-containing aromatic ring derivative including a phenanthroline derivative represented by the general formula (1) described later, a dibromoaromatic compound is dilithiated with n-butyllithium or sec-butyllithium, and then nitrogen-containing. A method of adding an aromatic ring derivative and then oxidizing it has been proposed (see, for example, Patent Document 2).
 また、イオン性基含有ポリマーと、有機リン系添加剤と、窒素含有複素芳香環系添加剤とを含有する高分子電解質組成物に関し、窒素含有複素芳香環系添加剤の製造方法として、8-アミノ-7-キノリンカルボアルデヒドを、1,3-ジアセチルベンゼン、水酸化カリウムと反応させた後、フェニルリチウムと反応させ、次いで酸化し、再結晶精製する方法が開示されている(例えば、特許文献3参照)。 Further, regarding a polymer electrolyte composition containing an ionic group-containing polymer, an organic phosphorus-based additive, and a nitrogen-containing heteroaromatic ring-based additive, as a method for producing a nitrogen-containing heteroaromatic ring-based additive, 8- A method of reacting an amino-7-quinoline carboaldehyde with 1,3-diacetylbenzene and potassium hydroxide, then reacting with phenyllithium, and then oxidizing and recrystallizing is disclosed (for example, Patent Document). 3).
特開2004-281390号公報Japanese Unexamined Patent Publication No. 2004-281390 特開2008-189660号公報Japanese Unexamined Patent Publication No. 2008-189660 国際公開第2015/156228号International Publication No. 2015/156228
 有機化合物は、一般的に、非晶質や結晶などの複数の固体状態を有する。フェナントロリン誘導体も同様であり、結晶多形が存在する。フェナントロリン誘導体の結晶構造は、分子単位では同一構造であっても、分子充填様式が異なるために、化学的および物理的な性質やハンドリング性に影響する。例えば、前述のフェナントロリン化合物を発光素子材料として用いる場合、昇華精製することが一般的であるが、特許文献1には、その固体状態を特定できる開示はなく、特許文献2に記載されるような従来の製造方法で得られるフェナントロリン誘導体は化学純度が低いため、昇華精製後も発光素子材料として使用するには化学純度が不十分である課題があった。また、特許文献3に開示された製造方法からは結晶形を特定することはできないが、結晶形によっては溶媒和物結晶を形成し、残留溶媒が多いため、昇華精製を行う際に突沸原因となる課題があった。 Organic compounds generally have a plurality of solid states such as amorphous and crystalline. The same applies to phenanthroline derivatives, and crystalline polymorphs are present. Even if the crystal structure of the phenanthroline derivative is the same on a molecular basis, it affects the chemical and physical properties and handleability because the molecular packing mode is different. For example, when the above-mentioned phenanthroline compound is used as a light emitting element material, it is generally sublimated and purified, but Patent Document 1 does not disclose that its solid state can be specified, and is described in Patent Document 2. Since the phenanthroline derivative obtained by the conventional production method has a low chemical purity, there is a problem that the chemical purity is insufficient to be used as a light emitting element material even after sublimation purification. Further, although the crystal form cannot be specified from the production method disclosed in Patent Document 3, a solvate crystal is formed depending on the crystal form and a large amount of residual solvent is used, which causes bumping during sublimation purification. There was a problem.
 そこで、本発明は、化学純度が高く、残留溶媒量が少ないフェナントロリン誘導体の結晶と、その製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide crystals of a phenanthroline derivative having high chemical purity and a small amount of residual solvent, and a method for producing the same.
 すなわち、本発明は、一般式(1)で表される構造を有し、粉末X線回折において、回折角2θ(°)6.7±0.2、8.2±0.2、13.7±0.2、17.7±0.2および22.2±0.2のそれぞれにピークを有する、フェナントロリン誘導体の結晶である。また、本発明の他の態様は、一般式(1)で表される構造を有し、粉末X線回折において、回折角2θ(°)5.0±0.2、7.5±0.2、8.7±0.2、12.5±0.2および17.3±0.2のそれぞれにピークを有する、フェナントロリン誘導体の結晶である。また、本発明の他の態様は、一般式(1)で表される構造を有し、粉末X線回折において、回折角2θ(°)5.2±0.2、7.0±0.2、16.4±0.2、20.0±0.2および23.6±0.2のそれぞれにピークを有する、フェナントロリン誘導体の結晶であり、この結晶は後述するC形結晶を得るための結晶として極めて好適である。 That is, the present invention has a structure represented by the general formula (1), and in powder X-ray diffraction, the diffraction angles 2θ (°) 6.7 ± 0.2, 8.2 ± 0.2, 13. It is a crystal of a phenanthroline derivative having peaks at 7 ± 0.2, 17.7 ± 0.2 and 22.2 ± 0.2, respectively. In addition, another aspect of the present invention has a structure represented by the general formula (1), and in powder X-ray diffraction, the diffraction angles are 2θ (°) 5.0 ± 0.2 and 7.5 ± 0. It is a crystal of a phenanthroline derivative having peaks at 2, 8.7 ± 0.2, 12.5 ± 0.2 and 17.3 ± 0.2, respectively. In addition, another aspect of the present invention has a structure represented by the general formula (1), and in powder X-ray diffraction, the diffraction angles are 2θ (°) 5.2 ± 0.2 and 7.0 ± 0. It is a crystal of a phenanthroline derivative having peaks at 2, 16.4 ± 0.2, 20.0 ± 0.2 and 23.6 ± 0.2, respectively, and this crystal is for obtaining a C-type crystal described later. It is extremely suitable as a crystal of.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(一般式(1)において、Xはフェニレン基又はナフチレン基を表す。) (In the general formula (1), X represents a phenylene group or a naphthylene group.)
 本発明のフェナントロリン誘導体の結晶は、化学純度が高く、残留溶媒量が少ない。したがって、昇華精製における突沸を抑制できる効果がある。また、高い化学純度を活かして、昇華精製後は発光素子材料として好適に使用することができる効果がある。また、特定のピロメテン化合物を併用した場合には、発光素子を作製した場合に、発光素子を低電圧で駆動できる。 The crystals of the phenanthroline derivative of the present invention have high chemical purity and a small amount of residual solvent. Therefore, there is an effect that bumping in sublimation purification can be suppressed. Further, it has an effect that it can be suitably used as a light emitting device material after sublimation purification by taking advantage of its high chemical purity. Further, when a specific pyrromethene compound is used in combination, the light emitting element can be driven at a low voltage when the light emitting element is manufactured.
実施例1により得られた一般式(1)で表されるフェナントロリン誘導体のB形結晶の粉末X線回折図である。FIG. 5 is a powder X-ray diffraction pattern of a B-type crystal of a phenanthroline derivative represented by the general formula (1) obtained in Example 1. 実施例1により得られた一般式(1)で表されるフェナントロリン誘導体のB形結晶の示差熱熱重量同時測定により得られた示差熱分析曲線を示す図である。It is a figure which shows the differential thermal analysis curve obtained by the differential thermogravimetric analysis simultaneous measurement of the B-type crystal of the phenanthroline derivative represented by the general formula (1) obtained by Example 1. FIG. 実施例3により得られた一般式(1)で表されるフェナントロリン誘導体のC形結晶の粉末X線回折図である。It is a powder X-ray diffraction pattern of the C-type crystal of the phenanthroline derivative represented by the general formula (1) obtained by Example 3. FIG. 実施例3により得られた一般式(1)で表されるフェナントロリン誘導体のC形結晶の示差熱熱重量同時測定により得られた示差熱分析曲線を示す図である。It is a figure which shows the differential thermal analysis curve obtained by the differential thermogravimetric analysis simultaneous measurement of the C-type crystal of the phenanthroline derivative represented by the general formula (1) obtained by Example 3. FIG. 実施例6により得られた一般式(1)で表されるフェナントロリン誘導体のE形結晶の粉末X線回折図である。6 is a powder X-ray diffraction pattern of an E-type crystal of a phenanthroline derivative represented by the general formula (1) obtained in Example 6. 実施例6により得られた一般式(1)で表されるフェナントロリン誘導体のE形結晶の示差熱熱重量同時測定により得られた示差熱分析曲線を示す図である。It is a figure which shows the differential thermal analysis curve obtained by the differential thermogravimetric analysis simultaneous measurement of the E-type crystal of the phenanthroline derivative represented by the general formula (1) obtained by Example 6. FIG. 比較例1により得られた一般式(1)で表されるフェナントロリン誘導体のD形結晶の粉末X線回折図である。FIG. 5 is a powder X-ray diffraction pattern of a D-type crystal of a phenanthroline derivative represented by the general formula (1) obtained in Comparative Example 1. 比較例1により得られた一般式(1)で表されるフェナントロリン誘導体のD形結晶の示差熱熱重量同時測定により得られた示差熱分析曲線を示す図である。It is a figure which shows the differential thermal analysis curve obtained by the differential thermogravimetric analysis simultaneous measurement of the D-type crystal of the phenanthroline derivative represented by the general formula (1) obtained by the comparative example 1. FIG. 比較例2により得られた一般式(1)で表されるフェナントロリン誘導体の非晶質の粉末X線回折図である。It is an amorphous powder X-ray diffraction pattern of the phenanthroline derivative represented by the general formula (1) obtained by Comparative Example 2.
 以下、本発明について詳細に説明する。請求の範囲における請求項1から請求項3に記載の発明はフェナントロリン誘導体のC形結晶の発明である。一方、請求項16に記載の発明はフェナントロリン誘導体のE形結晶の発明である。さらに、請求項17から請求項19に記載の発明はフェナントロリン誘導体のB形結晶の発明である。そして、請求項12から請求項15に記載の発明はE形結晶からC形結晶を製造する製造方法の発明である。また、請求項20に記載の発明はB形結晶を製造する製造方法の発明である。 Hereinafter, the present invention will be described in detail. The inventions according to claims 1 to 3 in the claims are inventions of C-type crystals of a phenanthroline derivative. On the other hand, the invention according to claim 16 is an invention of an E-type crystal of a phenanthroline derivative. Further, the inventions according to claims 17 to 19 are inventions of B-type crystals of a phenanthroline derivative. The inventions according to claims 12 to 15 are inventions of a production method for producing a C-type crystal from an E-type crystal. The invention according to claim 20 is an invention of a production method for producing a B-shaped crystal.
 本発明の第一の態様のフェナントロリン誘導体の結晶は、一般式(1)で表される構造を有し、粉末X線回折において、回折角2θ(°)6.7±0.2、8.2±0.2、13.7±0.2、17.7±0.2および22.2±0.2のそれぞれにピークを有する、特定の結晶形を有するものであり、本明細書においてはB形結晶と称する。 The crystal of the phenanthroline derivative according to the first aspect of the present invention has a structure represented by the general formula (1), and in powder X-ray diffraction, the diffraction angle is 2θ (°) 6.7 ± 0.2, 8. It has a specific crystalline form with peaks at 2 ± 0.2, 13.7 ± 0.2, 17.7 ± 0.2 and 22.2 ± 0.2, respectively, as used herein. Is referred to as a B-shaped crystal.
 また、本発明の第二の態様のフェナントロリン誘導体の結晶は、一般式(1)で表される構造を有し、粉末X線回折において、回折角2θ(°)5.0±0.2、7.5±0.2、8.7±0.2、12.5±0.2および17.3±0.2のそれぞれにピークを有する、特定の結晶形を有するものであり、本明細書においてはC形結晶と称する。 Further, the crystal of the phenanthroline derivative according to the second aspect of the present invention has a structure represented by the general formula (1), and in powder X-ray diffraction, a diffraction angle of 2θ (°) 5.0 ± 0.2, It has a specific crystalline form with peaks at 7.5 ± 0.2, 8.7 ± 0.2, 12.5 ± 0.2 and 17.3 ± 0.2, respectively, and is described herein. In the book, it is called a C-shaped crystal.
 フェナントロリン誘導体のB形結晶およびC形結晶は、化学純度が高く、残留溶媒が少ないため、昇華精製における突沸を抑制することができる。また、高い化学純度を活かして、昇華精製後は発光素子材料として好適に使用することができる。 B-type crystals and C-type crystals of phenanthroline derivatives have high chemical purity and a small amount of residual solvent, so that bumping in sublimation purification can be suppressed. Further, taking advantage of its high chemical purity, it can be suitably used as a light emitting device material after sublimation purification.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記一般式(1)において、Xはフェニレン基またはナフチレン基を表す。中でも、分子量と昇華精製温度の観点から、フェニレン基が好ましい。 In the above general formula (1), X represents a phenylene group or a naphthylene group. Of these, a phenylene group is preferable from the viewpoint of molecular weight and sublimation purification temperature.
 一般式(1)で表されるフェナントロリン誘導体としては、例えば、次に示す構造を有するものなどが挙げられる。 Examples of the phenanthroline derivative represented by the general formula (1) include those having the following structure.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 これらの中でも、合成し易さ、薄膜の安定性などの面から、1,3-ビス(9-フェニル-1,10-フェナントロリン-2-イル)ベンゼンが好ましい。 Among these, 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene is preferable from the viewpoint of ease of synthesis and stability of the thin film.
 本発明のフェナントロリン誘導体の結晶のうち、B形結晶として示す結晶は粉末X線回折において、回折角2θ(°)6.7±0.2、8.2±0.2、13.7±0.2、17.7±0.2および22.2±0.2のそれぞれにピークを有する結晶であり、C形結晶として示す結晶は回折角2θ(°)5.0±0.2、7.5±0.2、8.7±0.2、12.5±0.2および17.3±0.2のそれぞれにピークを有する結晶である。 Among the crystals of the phenanthroline derivative of the present invention, the crystals shown as B-type crystals have diffraction angles of 2θ (°) 6.7 ± 0.2, 8.2 ± 0.2, 13.7 ± 0 in powder X-ray diffraction. Crystals having peaks at .2, 17.7 ± 0.2 and 22.2 ± 0.2, respectively, and the crystals shown as C-type crystals have diffraction angles of 2θ (°) 5.0 ± 0.2, 7 It is a crystal having peaks at 5.5 ± 0.2, 8.7 ± 0.2, 12.5 ± 0.2 and 17.3 ± 0.2, respectively.
 ここで、粉末X線回折は、粉末X線回折装置を用いて、以下の条件で測定することができる。なお、測定試料は、試料板(材質:ケイ素;深さ:0.2mm)に試料を充填し、試料表面を平らにならして作製される。
X線源:CuKα線
*湾曲結晶モノクロメータ(グラファイト)を使用
出力:40kV/50mA
発散スリット:1/2°
発散縦制限スリット:5mm
散乱スリット:1/2°
受光スリット:0.15mm
検出器:シンチレーションカウンタ
スキャン方式:2θ/θスキャン、連続スキャン
測定範囲(2θ):2~30°
スキャン速度(2θ):20°/min
計数ステップ(2θ):0.04° 。
Here, the powder X-ray diffraction can be measured under the following conditions using a powder X-ray diffractometer. The measurement sample is prepared by filling a sample plate (material: silicon; depth: 0.2 mm) with the sample and flattening the sample surface.
X-ray source: CuKα ray * Curved crystal monochromator (graphite) is used Output: 40kV / 50mA
Divergence slit: 1/2 °
Divergence vertical restriction slit: 5 mm
Scattering slit: 1/2 °
Light receiving slit: 0.15 mm
Detector: Scintillation counter Scan method: 2θ / θ scan, continuous scan Measurement range (2θ): 2 to 30 °
Scan speed (2θ): 20 ° / min
Counting step (2θ): 0.04 °.
 本発明のフェナントロリン誘導体のB形結晶は、示差熱熱重量同時測定(以下、「TG-DTA」と略記する場合がある)において、180~184℃の範囲内に吸熱ピークを有することが好ましい。かかる吸熱ピークは、結晶形を特定する特性のひとつであり、180~184℃の範囲内に吸熱ピークを有することは、前述のB形結晶であることを意味する。また、本発明のフェナントロリン誘導体のC形結晶は、示差熱熱重量同時測定において、243~247℃の範囲内に吸熱ピークを有することが好ましい。243~247℃の範囲内に吸熱ピークを有することは、前述のC形結晶であることを意味する。 The B-type crystal of the phenanthroline derivative of the present invention preferably has an endothermic peak in the range of 180 to 184 ° C. in the differential thermal weight simultaneous measurement (hereinafter, may be abbreviated as "TG-DTA"). Such an endothermic peak is one of the characteristics for specifying the crystal form, and having an endothermic peak in the range of 180 to 184 ° C. means that it is the above-mentioned B-type crystal. Further, the C-type crystal of the phenanthroline derivative of the present invention preferably has an endothermic peak in the range of 243 to 247 ° C. in the simultaneous measurement of differential thermogravimetric analysis. Having an endothermic peak in the range of 243 to 247 ° C. means that it is the above-mentioned C-type crystal.
 ここで、TG-DTAは、TG-DTA装置を用いて、以下の条件で測定することができ、DTA曲線が示すピークトップの温度を吸熱ピークとする。
昇温速度:5℃/分
雰囲気:乾燥窒素(流量:100mL/min)
試料セル:アルミニウムオープンセル
試料量:5~15mg。
Here, TG-DTA can be measured under the following conditions using a TG-DTA device, and the temperature at the peak top indicated by the DTA curve is set as the endothermic peak.
Temperature rise rate: 5 ° C / min Atmosphere: Dry nitrogen (flow rate: 100 mL / min)
Sample cell: Aluminum open cell Sample amount: 5 to 15 mg.
 一般式(1)で表されるフェナントロリン誘導体は、例えば、特開2008-189660号公報に記載の方法で製造することができる。すなわち、ジブロモベンゼン誘導体をアルキルリチウムによりジリチオ化した後、2-フェニル-1,10-フェナントロリンを作用させ、次いで酸化することにより、目的とするフェナントロリン誘導体を得ることができる。 The phenanthroline derivative represented by the general formula (1) can be produced, for example, by the method described in JP-A-2008-189660. That is, the desired phenanthroline derivative can be obtained by dilythiolating the dibromobenzene derivative with alkyllithium, allowing 2-phenyl-1,10-phenanthroline to act on the derivative, and then oxidizing the derivative.
 本発明の第一の態様の一般式(1)で表されるフェナントロリン誘導体のB形結晶は、例えば、任意の形態の一般式(1)で表されるフェナントロリン誘導体を、非プロトン性極性溶媒および芳香族系溶媒を含む混合溶媒に溶解し、結晶化させる工程(I)、次いで工程(I)により得られた結晶をエーテル系溶媒に溶解し、結晶化させる工程(II)を有する方法により得ることができる。 The B-type crystal of the phenanthroline derivative represented by the general formula (1) of the first aspect of the present invention is, for example, an arbitrary form of the phenanthroline derivative represented by the general formula (1), an aprotic polar solvent and an aprotic polar solvent. Obtained by a method having a step (I) of dissolving and crystallizing in a mixed solvent containing an aromatic solvent, and then a step (II) of dissolving and crystallizing the crystals obtained in step (I) in an ether solvent. be able to.
 非プロトン性極性溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンなどのアミド系溶媒;ジメチルスルホキシドなどのスルホキシド系溶媒;スルホランなどのスルホン系溶媒;1,3-ジメチル-2-イミダゾリジノン、N,N-ジメチルプロピレンウレアなどのウレア系溶媒;アセトニトリル、プロピオニトリルなどのニトリル系溶媒;ピリジン、2-メチルピリジンなどのピリジン系溶媒などが挙げられる。これらを2種以上用いてもよい。これらの中でも、アミド系溶媒、スルホキシド系溶媒、ウレア系溶媒が好ましく、B形結晶の回収率を向上させる観点から、1,3-ジメチル-2-イミダゾリジノンがより好ましい。 Examples of the aprotonic polar solvent include amide-based solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone; sulfoxide-based solvents such as dimethylsulfoxide; , 3-Dimethyl-2-imidazolidinone, N, N-dimethylpropylene urea and other urea solvents; acetonitrile, propionitrile and other nitrile solvents; pyridine, 2-methylpyridine and other pyridine solvents and the like. .. Two or more of these may be used. Among these, an amide solvent, a sulfoxide solvent, and a urea solvent are preferable, and 1,3-dimethyl-2-imidazolidinone is more preferable from the viewpoint of improving the recovery rate of B-type crystals.
 芳香族系溶媒としては、例えば、ベンゼン、クロロベンゼン、アニソール、トルエン、キシレン、クメン、メシチレンなどが挙げられる。これらを2種以上用いてもよい。これらの中でも、アニソール、トルエン、キシレンが好ましく、B形結晶の回収率を向上させる観点から、トルエンがより好ましい。 Examples of the aromatic solvent include benzene, chlorobenzene, anisole, toluene, xylene, cumene, mesitylene and the like. Two or more of these may be used. Among these, anisole, toluene and xylene are preferable, and toluene is more preferable from the viewpoint of improving the recovery rate of B-type crystals.
 非プロトン性極性溶媒および芳香族系溶媒を含む混合溶媒において、芳香族系溶媒の含有量は、B形結晶の回収率を向上させる観点から、非プロトン性極性溶媒100重量部に対して、50~500重量部が好ましく、100~300重量部がより好ましい。 In the mixed solvent containing the aprotic polar solvent and the aromatic solvent, the content of the aromatic solvent is 50 with respect to 100 parts by weight of the aprotic polar solvent from the viewpoint of improving the recovery rate of the B-type crystal. It is preferably up to 500 parts by weight, more preferably 100 to 300 parts by weight.
 また、非プロトン性極性溶媒および芳香族系溶媒を含む混合溶媒において、非プロトン性極性溶媒および芳香族系溶媒以外の他の溶媒は、求める回折角を持つフェナントロリン誘導体の結晶が得られる限りで混合溶媒に含まれていても構わない。 Further, in the mixed solvent containing the aprotic polar solvent and the aromatic solvent, the solvents other than the aprotic polar solvent and the aromatic solvent are mixed as long as the crystals of the phenanthroline derivative having the desired diffraction angle can be obtained. It may be contained in a solvent.
 前記混合溶媒の使用量は、撹拌を容易にする観点から、一般式(1)で表されるフェナントロリン誘導体100重量部に対して、300重量部以上が好ましく、500重量部以上がより好ましい。一方、混合溶媒の使用量は、単位体積あたりの製造効率を向上させる観点から、一般式(1)で表されるフェナントロリン誘導体100重量部に対して、10,000重量部以下が好ましく、3,000重量部以下がより好ましい。 The amount of the mixed solvent used is preferably 300 parts by weight or more, more preferably 500 parts by weight or more, based on 100 parts by weight of the phenanthroline derivative represented by the general formula (1), from the viewpoint of facilitating stirring. On the other hand, the amount of the mixed solvent used is preferably 10,000 parts by weight or less, preferably 10,000 parts by weight or less, based on 100 parts by weight of the phenanthroline derivative represented by the general formula (1), from the viewpoint of improving the production efficiency per unit volume. More preferably, it is 000 parts by weight or less.
 工程(I)における溶媒の添加順序は特に限定されず、例えば、一般式(1)で表されるフェナントロリン誘導体に非プロトン性極性溶媒を加えて加熱して溶解させた後、芳香族系溶媒を加えてもよい。 The order of adding the solvent in the step (I) is not particularly limited. For example, an aprotic polar solvent is added to the phenanthroline derivative represented by the general formula (1) and heated to dissolve it, and then an aromatic solvent is added. May be added.
 工程(I)において、一般式(1)で表されるフェナントロリン誘導体を混合溶媒に溶解する方法としては、加熱して溶解させることが好ましい。加熱温度は、一般式(1)で表されるフェナントロリン誘導体を速やかに溶解する観点から、50℃以上が好ましく、80℃以上がより好ましい。一方、加熱温度は、工業的な観点から、150℃以下が好ましく、130℃以下がより好ましい。必ずしもフェナントロリン誘導体を完全に溶解させる必要はないが、完全に溶解しない場合には、溶解度に合わせて加熱時間を設定することが好ましい。この場合、加熱時間は0.5~100時間が好ましく、1~50時間がより好ましい。 In the step (I), as a method for dissolving the phenanthroline derivative represented by the general formula (1) in the mixed solvent, it is preferable to dissolve it by heating. The heating temperature is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, from the viewpoint of rapidly dissolving the phenanthroline derivative represented by the general formula (1). On the other hand, the heating temperature is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, from an industrial point of view. It is not always necessary to completely dissolve the phenanthroline derivative, but if it is not completely dissolved, it is preferable to set the heating time according to the solubility. In this case, the heating time is preferably 0.5 to 100 hours, more preferably 1 to 50 hours.
 工程(I)において加熱して溶解させる場合、結晶化させる工程において、冷却することが好ましい。冷却温度は、B形結晶の回収率を向上させる観点から、-20~30℃が好ましく、-10~10℃がより好ましい。冷却速度は、0.1~50時間が好ましく、0.5~20時間がより好ましい。冷却する間、撹拌してもよいし、静置してもよい。 When it is heated and melted in the step (I), it is preferable to cool it in the step of crystallization. The cooling temperature is preferably −20 to 30 ° C., more preferably −10 to 10 ° C. from the viewpoint of improving the recovery rate of B-type crystals. The cooling rate is preferably 0.1 to 50 hours, more preferably 0.5 to 20 hours. While cooling, it may be agitated or allowed to stand.
 エーテル系溶媒としては、例えば、ジエチルエーテル、ジイソプロピルエーテル、シクロペンチルメチルエーテル、tert-ブチルメチルエーテル、ジメトキシエタン、ジエチレングリコールジメチルエーテルなどの非環状エーテル類;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサンなどの環状エーテル類などが挙げられる。これらを2種以上用いてもよい。これらの中でも、環状エーテル類が好ましく、B形結晶の回収率を向上させる観点から、テトラヒドロフランを用いることがより好ましい。 Examples of the ether solvent include acyclic ethers such as diethyl ether, diisopropyl ether, cyclopentyl methyl ether, tert-butyl methyl ether, dimethoxyethane and diethylene glycol dimethyl ether; tetrahydrofuran, 2-methyl tetrahydrofuran, 1,4-dioxane and the like. Cyclic ethers and the like can be mentioned. Two or more of these may be used. Among these, cyclic ethers are preferable, and tetrahydrofuran is more preferable from the viewpoint of improving the recovery rate of B-type crystals.
 エーテル系溶媒の使用量は、撹拌を容易にする観点から、一般式(1)で表されるフェナントロリン誘導体100重量部に対して、300重量部以上が好ましく、500重量部以上がより好ましい。一方、エーテル系溶媒の使用量は、単位体積あたりの製造効率を向上させる観点から、一般式(1)で表されるフェナントロリン誘導体100重量部に対して、10,000重量部以下が好ましく、3,000重量部以下がより好ましい。 The amount of the ether solvent used is preferably 300 parts by weight or more, more preferably 500 parts by weight or more, based on 100 parts by weight of the phenanthroline derivative represented by the general formula (1), from the viewpoint of facilitating stirring. On the other hand, the amount of the ether solvent used is preferably 10,000 parts by weight or less with respect to 100 parts by weight of the phenanthroline derivative represented by the general formula (1) from the viewpoint of improving the production efficiency per unit volume. More preferably, it is 000 parts by weight or less.
 工程(II)において、一般式(1)で表されるフェナントロリン誘導体をエーテル系溶媒に溶解する方法としては、加熱して溶解させることが好ましい。加熱温度は、一般式(1)で表されるフェナントロリン誘導体を速やかに溶解する観点から、40℃以上が好ましく、60℃以上がより好ましい。一方、加熱温度は、工業的な観点から、150℃以下が好ましく、130℃以下がより好ましい。必ずしもフェナントロリン誘導体を完全溶解する必要はないが、完全溶解しない場合には、溶解度に合わせて加熱時間を設定することが好ましい。この場合、加熱時間は0.5~100時間が好ましく、1~50時間がより好ましい。 In step (II), as a method for dissolving the phenanthroline derivative represented by the general formula (1) in an ether solvent, it is preferable to dissolve it by heating. The heating temperature is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of rapidly dissolving the phenanthroline derivative represented by the general formula (1). On the other hand, the heating temperature is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, from an industrial point of view. It is not always necessary to completely dissolve the phenanthroline derivative, but if it is not completely dissolved, it is preferable to set the heating time according to the solubility. In this case, the heating time is preferably 0.5 to 100 hours, more preferably 1 to 50 hours.
 工程(II)において加熱して溶解させる場合、結晶化させる工程において、冷却することが好ましい。冷却温度および冷却速度の好ましい範囲は、工程(I)と同様である。 When heating and melting in step (II), it is preferable to cool in the step of crystallization. The preferred ranges of cooling temperature and cooling rate are the same as in step (I).
 工程(II)で結晶化させる工程において、予め得ておいた、フェナントロリン誘導体のB形結晶を種晶として加えてもよい。また、得られた結晶を乾燥する工程をさらに有してもよい。 In the step of crystallization in step (II), the B-type crystal of the phenanthroline derivative obtained in advance may be added as a seed crystal. Further, it may further have a step of drying the obtained crystals.
 本発明の第二の態様の一般式(1)で表されるフェナントロリン誘導体のC形結晶は、例えば、任意の形態の一般式(1)で表されるフェナントロリン誘導体を、非プロトン性極性溶媒および芳香族系溶媒を含む混合溶媒に溶解し、結晶化させる工程(I)、次いで工程(I)により得られた結晶を50℃以上で乾燥する工程(III)を有する方法により得ることができる。 The C-type crystal of the phenanthroline derivative represented by the general formula (1) of the second aspect of the present invention is, for example, an arbitrary form of the phenanthroline derivative represented by the general formula (1), an aprotic polar solvent and an aprotic polar solvent. It can be obtained by a method having a step (I) of dissolving and crystallizing in a mixed solvent containing an aromatic solvent, and then a step (III) of drying the crystals obtained in the step (I) at 50 ° C. or higher.
 非プロトン性極性溶媒としては、前記第一の態様のB形結晶の製造方法において例示したものが挙げられる。これらの中でも、アミド系溶媒、スルホキシド系溶媒、ウレア系溶媒が好ましく、C形結晶の回収率を向上させる観点から、1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドン、N,N-ジメチルアセトアミドがより好ましい。 Examples of the aprotic polar solvent include those exemplified in the method for producing a B-type crystal according to the first aspect. Of these, amide-based solvents, sulfoxide-based solvents, and urea-based solvents are preferable, and from the viewpoint of improving the recovery rate of C-type crystals, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone, N, N -Dimethylacetamide is more preferred.
 芳香族系溶媒としては、前記第一の態様のB形結晶の製造方法において例示したものが挙げられる。これらの中でも、アニソール、トルエン、キシレンが好ましく、C形結晶の回収率を向上させる観点から、アニソールがより好ましい。 Examples of the aromatic solvent include those exemplified in the method for producing a B-shaped crystal according to the first aspect. Among these, anisole, toluene, and xylene are preferable, and anisole is more preferable from the viewpoint of improving the recovery rate of C-type crystals.
 非プロトン性極性溶媒および芳香族系溶媒を含む混合溶媒において、芳香族系溶媒の含有量は、C形結晶の回収率を向上させる観点から、非プロトン性極性溶媒100重量部に対して、50~210重量部が好ましく、100~205重量部がより好ましい。 In the mixed solvent containing the aprotic polar solvent and the aromatic solvent, the content of the aromatic solvent is 50 with respect to 100 parts by weight of the aprotic polar solvent from the viewpoint of improving the recovery rate of the C-shaped crystal. It is preferably up to 210 parts by weight, more preferably 100 to 205 parts by weight.
 また、ここで用いる非プロトン性極性溶媒および芳香族系溶媒を含む混合溶媒においても、非プロトン性極性溶媒および芳香族系溶媒以外の他の溶媒は、求める回折角を持つフェナントロリン誘導体の結晶が得られる限りで混合溶媒に含まれていても構わない。 Further, even in the mixed solvent containing the aprotic polar solvent and the aromatic solvent used here, crystals of the phenanthroline derivative having the desired diffraction angle can be obtained as the solvent other than the aprotic polar solvent and the aromatic solvent. It may be contained in the mixed solvent as long as possible.
 混合溶媒の使用量は、撹拌を容易にする観点から、一般式(1)で表されるフェナントロリン誘導体100重量部に対して、300重量部以上が好ましく、500重量部以上がより好ましい。一方、混合溶媒の使用量は、単位体積あたりの製造効率を向上させる観点から、一般式(1)で表されるフェナントロリン誘導体100重量部に対して、10,000重量部以下が好ましく、3,000重量部以下がより好ましい。 The amount of the mixed solvent used is preferably 300 parts by weight or more, more preferably 500 parts by weight or more, based on 100 parts by weight of the phenanthroline derivative represented by the general formula (1), from the viewpoint of facilitating stirring. On the other hand, the amount of the mixed solvent used is preferably 10,000 parts by weight or less, preferably 10,000 parts by weight or less, based on 100 parts by weight of the phenanthroline derivative represented by the general formula (1), from the viewpoint of improving the production efficiency per unit volume. More preferably, it is 000 parts by weight or less.
 工程(I)における溶媒の添加順序は特に限定されず、例えば、一般式(1)で表されるフェナントロリン誘導体に非プロトン性極性溶媒を加えて加熱して溶解させた後、芳香族系溶媒を加えてもよい。 The order of adding the solvent in the step (I) is not particularly limited. For example, an aprotic polar solvent is added to the phenanthroline derivative represented by the general formula (1) and heated to dissolve it, and then an aromatic solvent is added. May be added.
 工程(I)において、一般式(1)で表されるフェナントロリン誘導体を混合溶媒に溶解する方法としては、加熱して溶解させることが好ましい。加熱温度および加熱時間の好ましい範囲は、前記第一の態様のB形結晶の製造方法における工程(I)と同様である。 In the step (I), as a method for dissolving the phenanthroline derivative represented by the general formula (1) in the mixed solvent, it is preferable to dissolve it by heating. The preferable ranges of the heating temperature and the heating time are the same as those in the step (I) in the method for producing a B-shaped crystal according to the first aspect.
 工程(I)において加熱して溶解させた場合、結晶化させる工程において、冷却することが好ましい。冷却温度および冷却速度の好ましい範囲は、前記第一の態様のB形結晶の製造方法における工程(I)と同様である。 When it is melted by heating in the step (I), it is preferable to cool it in the step of crystallization. The preferable ranges of the cooling temperature and the cooling rate are the same as those in the step (I) in the method for producing a B-shaped crystal according to the first aspect.
 工程(III)における乾燥温度は、結晶多形転移を効率的に行う観点から、50℃以上が好ましく、80℃以上がより好ましい。一方、乾燥温度は、工業的な観点から、150℃以下が好ましく、130℃以下がより好ましい。また、工程(III)における乾燥は、減圧乾燥が好ましい。減圧乾燥の減圧度は、残留溶媒を速やかに除去する観点から、666.6Pa(5mmHg)以下が好ましい。 The drying temperature in the step (III) is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, from the viewpoint of efficiently performing the crystal polymorphic transition. On the other hand, the drying temperature is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, from an industrial point of view. Further, the drying in the step (III) is preferably vacuum drying. The degree of pressure reduction for vacuum drying is preferably 666.6 Pa (5 mmHg) or less from the viewpoint of quickly removing the residual solvent.
 また、一般式(1)で表されるフェナントロリン誘導体のC形結晶は、例えば、前記一般式(1)で表される構造を有し、粉末X線回折において、回折角2θ(°)5.2±0.2、7.0±0.2、16.4±0.2、20.0±0.2および23.6±0.2のそれぞれにピークを有する、フェナントロリン誘導体の結晶(本明細書において、E形結晶と称する)の結晶多形転移によっても得ることができる。一般式(1)で表されるフェナントロリン誘導体のC形結晶は、C形結晶以外の結晶を加熱して乾燥をおこなって結晶多形転移を進行させることによっても得ることができるが、その温度は結晶形により大きく異なる。結晶形の中でも、E形結晶は、比較的低温で結晶多形転移が進行し、C形結晶を得ることができるため、工業的な観点から好ましい。この場合、前述の工程(I)においてE形結晶を得て、前述の工程(III)において、結晶多形転移によりC形結晶を得ることが好ましい。 Further, the C-type crystal of the phenanthroline derivative represented by the general formula (1) has, for example, the structure represented by the general formula (1), and in powder X-ray diffraction, the diffraction angle is 2θ (°) 5. Crystals of phenanthroline derivatives with peaks at 2 ± 0.2, 7.0 ± 0.2, 16.4 ± 0.2, 20.0 ± 0.2 and 23.6 ± 0.2, respectively. It can also be obtained by crystal polymorphic transition (referred to as E-type crystal in the specification). The C-type crystal of the phenanthroline derivative represented by the general formula (1) can also be obtained by heating a crystal other than the C-type crystal and drying it to promote the crystal polymorphic transition, but the temperature is high. It varies greatly depending on the crystal form. Among the crystal forms, the E-type crystal is preferable from an industrial point of view because the crystal polymorphic transition proceeds at a relatively low temperature and a C-type crystal can be obtained. In this case, it is preferable to obtain an E-type crystal in the above-mentioned step (I) and to obtain a C-type crystal by crystal polymorph transition in the above-mentioned step (III).
 フェナントロリン誘導体のE形結晶は、加熱して乾燥を行うことにより容易にC形結晶に転移することから、C形結晶の前駆体として有効である。フェナントロリン誘導体のE形結晶は、示差熱熱重量同時測定において、94~98℃の範囲内に吸熱ピークを有することが好ましく、かかる温度範囲に吸熱ピークを有することは、E形結晶であることを意味する。なお、粉末X線回折測定や示差熱熱重量同時測定は、前述のB形結晶やC形結晶において説明した方法と同様の方法で行うことができる。 The E-type crystal of the phenanthroline derivative is effective as a precursor of the C-type crystal because it easily transforms into the C-type crystal by heating and drying. The E-type crystal of the phenanthroline derivative preferably has an endothermic peak in the range of 94 to 98 ° C. in the simultaneous measurement of differential thermogravimetric analysis, and having an endothermic peak in such a temperature range means that it is an E-type crystal. means. The powder X-ray diffraction measurement and the differential thermogravimetric simultaneous measurement can be performed by the same method as described for the B-type crystal and the C-type crystal described above.
 一般式(1)で表されるフェナントロリン誘導体のE形結晶は、例えば、任意の形態の一般式(1)で表されるフェナントロリン誘導体を、非プロトン性極性溶媒および芳香族系溶媒を含む混合溶媒に溶解し、結晶化させる工程(I)、次いで工程(I)により得られた結晶を50℃未満で乾燥する工程(IV)を有する方法により得ることができる。 The E-type crystal of the phenanthroline derivative represented by the general formula (1) is, for example, a mixed solvent containing an arbitrary form of the phenanthroline derivative represented by the general formula (1), an aprotonic polar solvent and an aromatic solvent. It can be obtained by a method having a step (I) of dissolving and crystallizing in a solvent, and then a step (IV) of drying the crystals obtained in the step (I) at a temperature lower than 50 ° C.
 非プロトン性極性溶媒としては、前記第一の態様のB形結晶の製造方法において例示したものが挙げられる。これらの中でも、アミド系溶媒、スルホキシド系溶媒、ウレア系溶媒が好ましく、C形結晶の回収率を向上させる観点から、1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドン、N,N-ジメチルアセトアミドがより好ましい。 Examples of the aprotic polar solvent include those exemplified in the method for producing a B-type crystal according to the first aspect. Of these, amide-based solvents, sulfoxide-based solvents, and urea-based solvents are preferable, and from the viewpoint of improving the recovery rate of C-type crystals, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone, N, N -Dimethylacetamide is more preferred.
 芳香族系溶媒としては、前記第一の態様のB形結晶の製造方法において例示したものが挙げられる。これらの中でも、アニソール、トルエン、キシレンが好ましく、C形結晶の回収率を向上させる観点から、アニソールがより好ましい。 Examples of the aromatic solvent include those exemplified in the method for producing a B-shaped crystal according to the first aspect. Among these, anisole, toluene, and xylene are preferable, and anisole is more preferable from the viewpoint of improving the recovery rate of C-type crystals.
 非プロトン性極性溶媒および芳香族系溶媒を含む混合溶媒において、芳香族系溶媒の含有量は、C形結晶の回収率を向上させる観点から、非プロトン性極性溶媒100重量部に対して、50~210重量部が好ましく、100~205重量部がより好ましい。 In the mixed solvent containing the aprotic polar solvent and the aromatic solvent, the content of the aromatic solvent is 50 with respect to 100 parts by weight of the aprotic polar solvent from the viewpoint of improving the recovery rate of the C-shaped crystal. It is preferably up to 210 parts by weight, more preferably 100 to 205 parts by weight.
 また、ここで用いる非プロトン性極性溶媒および芳香族系溶媒を含む混合溶媒においても、非プロトン性極性溶媒および芳香族系溶媒以外の他の溶媒は求める回折角を持つフェナントロリン誘導体の結晶が得られる限りで混合溶媒に含まれていても構わない。 Further, even in the mixed solvent containing the aprotic polar solvent and the aromatic solvent used here, crystals of a phenanthroline derivative having a desired diffraction angle can be obtained as a solvent other than the aprotic polar solvent and the aromatic solvent. As long as it is contained in the mixed solvent, it may be contained.
 混合溶媒の使用量は、撹拌を容易にする観点から、一般式(1)で表されるフェナントロリン誘導体100重量部に対して、300重量部以上が好ましく、500重量部以上がより好ましい。一方、混合溶媒の使用量は、単位体積あたりの製造効率を向上させる観点から、一般式(1)で表されるフェナントロリン誘導体100重量部に対して、10,000重量部以下が好ましく、3,000重量部以下がより好ましい。 The amount of the mixed solvent used is preferably 300 parts by weight or more, more preferably 500 parts by weight or more, based on 100 parts by weight of the phenanthroline derivative represented by the general formula (1), from the viewpoint of facilitating stirring. On the other hand, the amount of the mixed solvent used is preferably 10,000 parts by weight or less, preferably 10,000 parts by weight or less, based on 100 parts by weight of the phenanthroline derivative represented by the general formula (1), from the viewpoint of improving the production efficiency per unit volume. More preferably, it is 000 parts by weight or less.
 工程(I)における溶媒の添加順序は特に限定されず、例えば、一般式(1)で表されるフェナントロリン誘導体に非プロトン性極性溶媒を加えて加熱して溶解させた後、芳香族系溶媒を加えてもよい。 The order of adding the solvent in the step (I) is not particularly limited. For example, an aprotic polar solvent is added to the phenanthroline derivative represented by the general formula (1) and heated to dissolve it, and then an aromatic solvent is added. May be added.
 工程(I)において、一般式(1)で表されるフェナントロリン誘導体を混合溶媒に溶解する方法としては、加熱して溶解させることが好ましい。加熱温度および加熱時間の好ましい範囲は、前記第一の態様のB形結晶の製造方法における工程(I)と同様である。 In the step (I), as a method for dissolving the phenanthroline derivative represented by the general formula (1) in the mixed solvent, it is preferable to dissolve it by heating. The preferable ranges of the heating temperature and the heating time are the same as those in the step (I) in the method for producing a B-shaped crystal according to the first aspect.
 工程(I)において加熱して溶解させた場合、結晶化させる工程において、冷却することが好ましい。冷却温度および冷却速度の好ましい範囲は、前記第一の態様のB形結晶の製造方法における工程(I)と同様である。 When it is melted by heating in the step (I), it is preferable to cool it in the step of crystallization. The preferable ranges of the cooling temperature and the cooling rate are the same as those in the step (I) in the method for producing a B-shaped crystal according to the first aspect.
 工程(IV)における乾燥温度は、残留溶媒を速やかに除去する観点から、10℃以上が好ましく、20℃以上がより好ましい。一方、乾燥温度は、結晶形を保持する観点から、50℃未満が好ましく、30℃以下がより好ましい。 The drying temperature in the step (IV) is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, from the viewpoint of quickly removing the residual solvent. On the other hand, the drying temperature is preferably less than 50 ° C., more preferably 30 ° C. or lower, from the viewpoint of maintaining the crystal form.
 上記方法により得られた一般式(1)で表されるフェナントロリン誘導体のE形結晶を、結晶多形転移させることにより、効率良くC形結晶を得ることができる。結晶多形転移させる工程としては、50℃以上が好ましく、80℃以上がより好ましい。一方、E形結晶は、比較的低温で結晶多形転移が進行するため、工業的な観点から、150℃以下が好ましく、130℃以下がより好ましい。 By transferring the E-type crystal of the phenanthroline derivative represented by the general formula (1) obtained by the above method to a polymorphic crystal, a C-type crystal can be efficiently obtained. As the step of transferring the crystal polymorph, 50 ° C. or higher is preferable, and 80 ° C. or higher is more preferable. On the other hand, since the crystal polymorphic transition of the E-type crystal proceeds at a relatively low temperature, the temperature is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, from an industrial point of view.
 本発明の一般式(1)で表されるフェナントロリン誘導体のB形結晶またはC形結晶は残留溶媒量が少なく、極めて高い化学純度を有するため、発光素子材料として好適に使用することができる。本発明のフェナントロリン誘導体のB形結晶またはC形結晶は、高い電子輸送性、電子注入性を有していることから、発光素子の中でも、特に電子輸送層、電子注入層、電荷発生層に好適に使用することができる。そして、本発明のフェナントロリン誘導体のB形結晶またはC形結晶に由来するフェナントロリン誘導体を電子輸送層、電子注入層または電荷発生層に含有する本発明の発光素子は、B形結晶またはC形結晶によって実現できたフェナントロリン誘導体として99.7%以上の極めて化学純度の高い層を有しているため、当該電子輸送層、電子注入層または電荷発生層を経時的な膜質変化が少ない安定な層とすることができ、また、熱活性化遅延蛍光材料を発光層に用いた場合でも7.0%以上の外部量子効率を示すことができる。 The B-type crystal or C-type crystal of the phenanthroline derivative represented by the general formula (1) of the present invention has a small amount of residual solvent and has extremely high chemical purity, so that it can be suitably used as a light emitting element material. Since the B-type crystal or C-type crystal of the phenanthroline derivative of the present invention has high electron transport property and electron injection property, it is particularly suitable for the electron transport layer, the electron injection layer, and the charge generation layer among the light emitting elements. Can be used for. Then, the light emitting element of the present invention containing the phenanthroline derivative derived from the B-type crystal or the C-type crystal of the phenanthroline derivative of the present invention in the electron transport layer, the electron injection layer or the charge generation layer is made of the B-type crystal or the C-type crystal. Since the realized phenanthroline derivative has a layer having an extremely high chemical purity of 99.7% or more, the electron transport layer, the electron injection layer or the charge generation layer is made into a stable layer with little change in film quality over time. Moreover, even when a heat-activated delayed fluorescent material is used for the light emitting layer, it is possible to exhibit an external quantum efficiency of 7.0% or more.
 また、本発明のフェナントロリン誘導体のB形結晶またはC形結晶は残留溶媒量が少なく、極めて高い化学純度を有するため、発光素子を作製する時の脱ガス量が少なく、高純度の製膜が可能となり、発光効率の高い発光素子が得られる。特に、駆動電圧を低減し高効率発光が得られることから、発光層に熱活性化遅延蛍光材料(「TADF材料」と表記することがある)を含む発光素子に好適に用いられる。 Further, since the B-type crystal or C-type crystal of the phenanthroline derivative of the present invention has a small amount of residual solvent and extremely high chemical purity, the amount of degassing when producing a luminous element is small, and a high-purity film can be formed. Therefore, a light emitting element having high luminous efficiency can be obtained. In particular, since the driving voltage is reduced and high-efficiency light emission can be obtained, it is suitably used for a light emitting device containing a thermally activated delayed fluorescent material (sometimes referred to as "TADF material") in the light emitting layer.
 次に、前記本発明の一般式(1)で表されるフェナントロリン誘導体のB形結晶またはC形結晶を用いた発光素子について詳細に述べる。 Next, a light emitting device using a B-type crystal or a C-type crystal of the phenanthroline derivative represented by the general formula (1) of the present invention will be described in detail.
 本発明の発光素子は、電気エネルギーを光に変換できる機能を有する。ここで電気エネルギーとしては主に直流電流が使用されるが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はなく、素子の目的によって要求される特性値が異なるが、素子の消費電力や寿命の観点から低電圧で高い輝度が得られることが好ましい。また、色純度を高める観点から、通電による発光スペクトルの半値幅が60nm以下であることが好ましく、50nm以下であることがより好ましく、45nm以下であることがさらに好ましく、30nm以下であることが特に好ましい。本発明の発光素子は発光スペクトルの半値幅が狭いため、トップエミッション型の発光素子に用いることがより好ましい。トップエミッション型発光素子はマイクロキャビティによる共振効果により、半値幅が狭いほど発光効率が高くなる。そのため、高色純度と高発光効率を両立することが可能となる。 The light emitting element of the present invention has a function of converting electrical energy into light. Here, direct current is mainly used as electrical energy, but pulse current and alternating current can also be used. The current value and the voltage value are not particularly limited, and the characteristic values required differ depending on the purpose of the device, but it is preferable to obtain high brightness at a low voltage from the viewpoint of power consumption and life of the device. Further, from the viewpoint of increasing the color purity, the half width of the emission spectrum by energization is preferably 60 nm or less, more preferably 50 nm or less, further preferably 45 nm or less, and particularly preferably 30 nm or less. preferable. Since the light emitting device of the present invention has a narrow half width of the light emitting spectrum, it is more preferable to use it as a top emission type light emitting device. Due to the resonance effect of the microcavity, the top emission type light emitting element has higher luminous efficiency as the half width is narrower. Therefore, it is possible to achieve both high color purity and high luminous efficiency.
 本発明の発光素子は、例えば、マトリクス方式もしくはセグメント方式または両方式が併用されたディスプレイ等の表示装置用途として好適に用いられる。また、各種機器等のバックライト用途としても好ましく用いられる。バックライトは、主に自発光しないディスプレイ等の表示装置の視認性を向上させる目的に使用され、液晶ディスプレイ、時計、オーディオ装置、自動車パネル、表示板および標識などの表示装置に使用される。特に、液晶ディスプレイ、中でも薄型化が検討されているパソコン用途のバックライトに本発明の発光素子は好ましく用いられ、従来のものより薄型で軽量なバックライトを提供できる。また、本発明の発光素子は、各種照明装置としても好ましく用いられる。高い発光効率と高色純度との両立が可能であり、さらに、薄型化や軽量化が可能であることから、低消費電力と鮮やかな発光色、高いデザイン性を合わせ持った照明装置が実現できる。 The light emitting element of the present invention is suitably used, for example, as a display device application such as a display in which a matrix method, a segment method, or both types are used in combination. It is also preferably used as a backlight for various devices. The backlight is mainly used for the purpose of improving the visibility of display devices such as displays that do not emit light by itself, and is used for display devices such as liquid crystal displays, clocks, audio devices, automobile panels, display boards and signs. In particular, the light emitting element of the present invention is preferably used for a liquid crystal display, particularly a backlight for a personal computer whose thinness is being studied, and can provide a backlight thinner and lighter than the conventional one. The light emitting element of the present invention is also preferably used as various lighting devices. It is possible to achieve both high luminous efficiency and high color purity, and because it is possible to make it thinner and lighter, it is possible to realize a lighting device that combines low power consumption, vivid emission color, and high design. ..
 本発明の発光素子は、例えば、陽極と陰極、および該陽極と該陰極との間に有機層を有する構造である。該有機層は少なくとも発光層を含み、該発光層が電気エネルギーにより発光する有機電界発光素子であることが好ましい。該発光素子は、ボトムエミッション型、またはトップエミッション型のいずれであってもよい。このような発光素子における陽極と陰極の間の有機層の層構成は、発光層のみからなる構成の他に、1)発光層/電子輸送層、2)正孔輸送層/発光層、3)正孔輸送層/発光層/電子輸送層、4)正孔注入層/正孔輸送層/発光層/電子輸送層、5)正孔輸送層/発光層/電子輸送層/電子注入層、6)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層、7)正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層、8)正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層のような積層構成が挙げられる。 The light emitting device of the present invention has, for example, a structure having an anode and a cathode, and an organic layer between the anode and the cathode. The organic layer preferably includes at least a light emitting layer, and the light emitting layer is an organic electroluminescent device that emits light by electric energy. The light emitting element may be either a bottom emission type or a top emission type. In such a light emitting element, the layer structure of the organic layer between the anode and the cathode is not only composed of the light emitting layer but also 1) light emitting layer / electron transporting layer, 2) hole transporting layer / light emitting layer, and 3). Hole transport layer / light emitting layer / electron transport layer, 4) hole injection layer / hole transport layer / light emitting layer / electron transport layer, 5) hole transport layer / light emitting layer / electron transport layer / electron injection layer, 6 ) Hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer, 7) hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer, 8) Examples thereof include a laminated structure such as a hole injection layer / a hole transport layer / an electron blocking layer / a light emitting layer / a hole blocking layer / an electron transport layer / an electron injection layer.
 さらに、上記の積層構成を、中間層を介して複数積層したタンデム型の発光素子であってもよい。中間層としては、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層などが挙げられ、公知の材料構成を用いることができる。タンデム型発光素子の好ましい具体例として、9)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/電荷発生層/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層のような積層構成が挙げられる。また、上記各層は、それぞれ単一層、複数層のいずれでもよく、ドーピングされていてもよい。さらに光学干渉効果に起因して発光効率を向上させるためのキャッピング材料を用いた層を含む素子構成も挙げられる。 Further, a tandem type light emitting element in which a plurality of the above laminated configurations are laminated via an intermediate layer may be used. Examples of the intermediate layer generally include an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, an intermediate insulation layer, and the like, and known material configurations can be used. Preferred specific examples of the tandem type light emitting element are 9) hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / charge generation layer / hole injection layer / hole transport layer / light emitting layer / A laminated structure such as an electron transport layer / electron injection layer can be mentioned. Further, each of the above layers may be either a single layer or a plurality of layers, and may be doped. Further, there is also an element configuration including a layer using a capping material for improving the luminous efficiency due to the optical interference effect.
 電子輸送層は、陰極から電子が注入され、さらに電子を輸送する層である。電子輸送層に用いられる電子輸送材料としては、電子親和力が大きいこと、電子移動度が大きいこと、安定性に優れること、およびトラップとなる不純物が発生しにくい物質であることが要求される。また低分子量の化合物は結晶化して膜質が劣化しやすいため分子量400以上の化合物が好ましい。本発明における電子輸送層には、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。正孔阻止層および電子輸送層は単独でも複数の材料が積層されて構成されていてもよい。電子輸送材料としては、多環芳香族誘導体、スチリル系芳香環誘導体、キノン誘導体、リンオキサイド誘導体、トリス(8-キノリノラート)アルミニウム(III)などのキノリノール錯体、ベンゾキノリノール錯体、ヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体などの各種金属錯体が挙げられる。 The electron transport layer is a layer in which electrons are injected from the cathode and further electrons are transported. The electron transport material used for the electron transport layer is required to have a high electron affinity, a high electron mobility, excellent stability, and a substance in which impurities that serve as traps are unlikely to be generated. Further, a compound having a molecular weight of 400 or more is preferable because a compound having a low molecular weight tends to crystallize and deteriorate the film quality. The electron transport layer in the present invention also includes a hole blocking layer capable of efficiently blocking the movement of holes as a synonym. The hole blocking layer and the electron transporting layer may be formed alone or by laminating a plurality of materials. Examples of the electron transporting material include polycyclic aromatic derivatives, styryl-based aromatic ring derivatives, quinone derivatives, phosphoroxide derivatives, quinolinol complexes such as tris (8-quinolinolate) aluminum (III), benzoquinolinol complexes, hydroxyazole complexes, and azomethine complexes. , Tropolone metal complexes and various metal complexes such as flavonol metal complexes.
 駆動電圧を低減し高効率発光が得られることから、電子受容性窒素を含むヘテロアリール基を有する化合物を用いることが好ましい。ここで電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。電子受容性窒素を含むヘテロアリール基は、電子親和力が大きいため、陰極から電子が注入しやすくなり、より低電圧駆動が可能となる。また発光層への電子の供給が多くなり、再結合確率が高くなるので発光効率が向上する。電子受容性窒素を含むヘテロアリール基構造を有する化合物としては、例えば、ピリジン誘導体、トリアジン誘導体、ピラジン誘導体、ピリミジン誘導体、キノリン誘導体、キノキサリン誘導体、キナゾリン誘導体、ナフチリジン誘導体、ベンゾキノリン誘導体、フェナントロリン誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、トリアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、フェナンスロイミダゾール誘導体、およびビピリジンやターピリジンなどのオリゴピリジン誘導体などが好ましい化合物として挙げられる。 It is preferable to use a compound having a heteroaryl group containing electron-accepting nitrogen because the driving voltage can be reduced and high-efficiency light emission can be obtained. Here, the electron-accepting nitrogen represents a nitrogen atom forming a multiple bond with an adjacent atom. Since the heteroaryl group containing electron-accepting nitrogen has a large electron affinity, it becomes easy for electrons to be injected from the cathode, and a lower voltage drive becomes possible. In addition, the supply of electrons to the light emitting layer is increased, and the recombination probability is increased, so that the luminous efficiency is improved. Examples of the compound having a heteroaryl group structure containing electron-accepting nitrogen include a pyridine derivative, a triazine derivative, a pyrazine derivative, a pyrimidine derivative, a quinoline derivative, a quinoxaline derivative, a quinazoline derivative, a naphthylidine derivative, a benzoquinoline derivative, a phenanthroline derivative, and an imidazole. Preferred compounds include derivatives, oxazole derivatives, thiazole derivatives, triazole derivatives, oxaziazole derivatives, thiadiazol derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, phenanthle midazole derivatives, and oligopyridine derivatives such as bipyridine and tarpyridine. Is listed as.
 中でも、トリス(N-フェニルベンズイミダゾール-2-イル)ベンゼンなどのイミダゾール誘導体、1,3-ビス[(4-tert-ブチルフェニル)-1,3,4-オキサジアゾリル]フェニレンなどのオキサジアゾール誘導体;N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなどのトリアゾール誘導体;バソクプロインや1,3-ビス(1,10-フェナントロリン-9-イル)ベンゼンなどのフェナントロリン誘導体;2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなどのベンゾキノリン誘導体;2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロールなどのビピリジン誘導体;1,3-ビス(4’-(2,2’:6’2”-ターピリジニル))ベンゼンなどのターピリジン誘導体;ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなどのナフチリジン誘導体およびトリアジン誘導体が、電子輸送能の観点から好ましく用いられる。また、電子輸送材料が縮合多環芳香族骨格を有していると、ガラス転移温度が向上し、かつ電子移動度が大きく低電圧化が可能なためより好ましい。 Among them, imidazole derivatives such as tris (N-phenylbenzimidazole-2-yl) benzene, and oxadiazole derivatives such as 1,3-bis [(4-tert-butylphenyl) -1,3,4-oxadiazolyl] phenylene. Triazole derivatives such as N-naphthyl-2,5-diphenyl-1,3,4-triazole; phenanthroline derivatives such as vasocproin and 1,3-bis (1,10-phenanthroline-9-yl) benzene; 2,2 Benzene (benzo [h] quinoline-2-yl) -9,9'-benzoquinoline derivatives such as spirobifluorene; 2,5-bis (6'-(2', 2 "-bipyridyl))-1 , 1-Dimethyl-3,4-diphenylsilol and other bipyridine derivatives; 1,3-bis (4'-(2,2': 6'2 "-terpyridinyl)) benzene and other terpyridine derivatives; bis (1-naphthyl) ) -4- (1,8-naphthylidine-2-yl) naphthylidine derivatives such as phenylphosphine oxide and triazine derivatives are preferably used from the viewpoint of electron transport ability. Further, it is more preferable that the electron transport material has a condensed polycyclic aromatic skeleton because the glass transition temperature is improved, the electron mobility is large, and the voltage can be lowered.
 このような縮合多環芳香族骨格としては、フルオランテン骨格、アントラセン骨格、ピレン骨格またはフェナントロリン骨格が好ましく、フルオランテン骨格またはフェナントロリン骨格が特に好ましい。電子輸送材料は単独でも2種以上を混合して用いても構わない。また、電子輸送層はドナー性材料を含有してもよい。ここで、ドナー性材料とは電子注入障壁の改善により、陰極または電子注入層からの電子輸送層への電子注入を容易にし、さらに電子輸送層の電気伝導性を向上させる化合物である。ドナー性材料の好ましい例としては、リチウムなどのアルカリ金属、フッ化リチウムなどのアルカリ金属を含有する無機塩、リチウムキノリノールなどのアルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩、アルカリ土類金属と有機物との錯体、ユーロピウムやイッテルビウムなどの希土類金属、希土類金属を含有する無機塩、希土類金属と有機物との錯体などが挙げられる。ドナー性材料としては、金属リチウム、希土類金属、またはリチウムキノリノール(Liq)が特に好ましい。 As such a condensed polycyclic aromatic skeleton, a fluoranthene skeleton, an anthracene skeleton, a pyrene skeleton or a phenanthroline skeleton is preferable, and a fluoranthene skeleton or a phenanthroline skeleton is particularly preferable. The electron transport material may be used alone or in combination of two or more. Further, the electron transport layer may contain a donor material. Here, the donor material is a compound that facilitates electron injection from the cathode or the electron injection layer into the electron transport layer by improving the electron injection barrier, and further improves the electrical conductivity of the electron transport layer. Preferred examples of donor materials include alkali metals such as lithium, inorganic salts containing alkali metals such as lithium fluoride, complexes of alkali metals such as lithium quinolinol and organic substances, alkaline earth metals, and alkaline earth metals. Examples thereof include inorganic salts contained, complexes of alkaline earth metals and organic substances, rare earth metals such as europium and itterbium, inorganic salts containing rare earth metals, and complexes of rare earth metals and organic substances. As the donor material, metallic lithium, rare earth metal, or lithium quinolinol (Liq) is particularly preferable.
 電子注入層は、陰極から電子輸送層への電子の注入を助ける目的で形成され、電子受容性窒素を含むヘテロアリール環構造を有する化合物や、上記のドナー性材料により構成される。また電子注入層に絶縁体や半導体の無機物を用いることもできる。これらの材料を用いることで発光素子の短絡を防止して、かつ電子注入性を向上させることができるので好ましい。このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。 The electron injection layer is formed for the purpose of assisting the injection of electrons from the cathode to the electron transport layer, and is composed of a compound having a heteroaryl ring structure containing electron-accepting nitrogen and the above-mentioned donor material. Further, an insulator or a semiconductor inorganic substance can be used for the electron injection layer. It is preferable to use these materials because it is possible to prevent a short circuit of the light emitting element and improve the electron injection property. As such an insulator, it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides.
 電荷発生層は、電圧の印加により電荷を発生または分離し、隣接する層へ電荷を注入する層である。電荷発生層は、一つの層で形成されていてもよく、複数の層が積層されていてもよい。一般的に、電荷として電子を発生しやすいものはn型電荷発生層と呼ばれ、正孔を発生しやすいものはp型電荷発生層と呼ばれる。電荷発生層は二重層からなることが好ましく、n型電荷発生層およびp型電荷発生層からなるpn接合型電荷発生層がより好ましい。pn接合型電荷発生層は、発光素子中において、電圧が印加されることにより電荷を発生、または電荷を正孔および電子に分離し、これらの正孔および電子を正孔輸送層および電子輸送層を経由して発光層に注入する。具体的には、複数の発光層を含む発光素子において、中間層として電荷発生層を用いた場合、n型電荷発生層は陽極側に存在する第一発光層に電子を供給し、p型電荷発生層は陰極側に存在する第二発光層に正孔を供給する。 The charge generation layer is a layer that generates or separates charges by applying a voltage and injects charges into adjacent layers. The charge generation layer may be formed of one layer, or a plurality of layers may be laminated. Generally, a layer that easily generates electrons as an electric charge is called an n-type charge generation layer, and a layer that easily generates holes is called a p-type charge generation layer. The charge generation layer is preferably composed of a double layer, and more preferably a pn junction type charge generation layer composed of an n-type charge generation layer and a p-type charge generation layer. In the pn junction type charge generation layer, an electric charge is generated by applying a voltage in a light emitting element, or the charge is separated into holes and electrons, and these holes and electrons are separated into a hole transport layer and an electron transport layer. Is injected into the light emitting layer via. Specifically, in a light emitting device including a plurality of light emitting layers, when a charge generating layer is used as an intermediate layer, the n-type charge generating layer supplies electrons to the first light emitting layer existing on the anode side to supply p-type charges. The generation layer supplies holes to the second light emitting layer existing on the cathode side.
 そのため、2層以上の発光層を有する発光素子において、発光層と発光層の間に1層以上の電荷発生層を有することにより、素子効率をより向上させ、駆動電圧を低減することができ、素子の耐久性をより向上させることができる。n型電荷発生層は、n型ドーパントおよびn型ホストからなり、これらは従来の材料を用いることができる。例えば、n型ドーパントとして、電子輸送層の材料として例示したドナー性材料が好適に用いられる。これらの中でも、アルカリ金属もしくはその塩、希土類金属が好ましく、金属リチウム、フッ化リチウム(LiF)、リチウムキノリノール(Liq)および金属イッテルビウムから選ばれた材料がさらに好ましい。また、n型ホストとしては、電子輸送材料として例示したものが好適に用いられる。これらの中でも、トリアジン誘導体、フェナントロリン誘導体およびオリゴピリジン誘導体から選ばれた材料が好ましく、フェナントロリン誘導体またはターピリジン誘導体がより好ましい。 Therefore, in a light emitting device having two or more light emitting layers, by having one or more charge generating layers between the light emitting layers, it is possible to further improve the element efficiency and reduce the driving voltage. The durability of the element can be further improved. The n-type charge generation layer consists of an n-type dopant and an n-type host, and conventional materials can be used for these. For example, as the n-type dopant, the donor material exemplified as the material of the electron transport layer is preferably used. Among these, alkali metals or salts thereof and rare earth metals are preferable, and materials selected from metallic lithium, lithium fluoride (LiF), lithium quinolinol (Liq) and metallic ytterbium are more preferable. Further, as the n-type host, those exemplified as the electron transport material are preferably used. Among these, a material selected from a triazine derivative, a phenanthroline derivative and an oligopyridine derivative is preferable, and a phenanthroline derivative or a terpyridine derivative is more preferable.
 上記p型電荷発生層は、p型ドーパントおよびp型ホストからなり、これらは従来の材料を用いることができる。例えば、p型ドーパントとして、正孔注入層の材料として例示したアクセプター材料や、ヨウ素、FeCl、FeF、SbClなどが好適に用いられる。具体的には、HAT-CN6、F4-TCNQ、テトラシアノキノジメタン誘導体、ラジアレン誘導体、ヨウ素、FeCl、FeF、SbClなどが挙げられる。これらの中でも、HAT-CN6や、(2E,2’E,2’’E)-2,2’,2’’-(シクロプロパン-1,2,3-トリイリデン)トリス(2-(ペルフルオロフェニル)-アセトニトリル)、(2E,2’E,2’’E)-2,2’,2’’-(シクロプロパン-1,2,3-トリイリデン)トリス(2-(4-シアノペルフルオロフェニル)-アセトニトリル)などのラジアレン誘導体がより好ましい。p型ドーパントの薄膜を形成してもよく、その膜厚は10nm以下が好ましい。また、p型ホストとして、アリールアミン誘導体が好ましい。 The p-type charge generation layer is composed of a p-type dopant and a p-type host, and conventional materials can be used for these. For example, as the p-type dopant, the acceptor material exemplified as the material of the hole injection layer, iodine, FeCl 3 , FeF 3 , SbCl 5, and the like are preferably used. Specific examples thereof include HAT-CN6, F4-TCNQ, tetracyanoquinodimethane derivative, radialene derivative, iodine, FeCl 3 , FeF 3 , SbCl 5 and the like. Among these, HAT-CN6 and (2E, 2'E, 2''E) -2,2', 2''- (cyclopropane-1,2,3-triylidene) tris (2- (perfluorophenyl) )-Utrigate), (2E, 2'E, 2''E) -2,2', 2''- (cyclopropane-1,2,3-triylidene) tris (2- (4-cyanoperfluorophenyl) -Radialene derivatives such as acetonitrile) are more preferred. A thin film of the p-type dopant may be formed, and the film thickness is preferably 10 nm or less. Further, an arylamine derivative is preferable as the p-type host.
 本発明のフェナントロリン誘導体の結晶を電子輸送層、電子注入層、電荷発生層に用いることができ、電子輸送層に用いるに際しては、例えば、ホスト材料、ドーパント材料、およびTADF材料の組成からなる厚さ数十nmの発光層を形成し、その上に積層形成する厚さ数十nmの蒸着膜にて用いることが好適である。そのようにして作製した発光素子は、非常に高い外部量子効率を示す。 The crystal of the phenanthroline derivative of the present invention can be used for an electron transport layer, an electron injection layer, and a charge generation layer, and when used for an electron transport layer, for example, a thickness composed of a host material, a dopant material, and a TADF material. It is preferable to use a vapor-deposited film having a thickness of several tens of nm, which is formed by forming a light emitting layer having a thickness of several tens of nm and laminating on the light emitting layer. The light emitting device thus produced exhibits very high external quantum efficiency.
 また、本発明のフェナントロリン誘導体の結晶を電子注入層に用いるに際しては、例えば、ドナー性材料であるアルカリ金属を含有させた厚さ数nmの共蒸着膜にて用いることが好適であり、上記同様の発光層、電子輸送層を順次積層形成し、その電子輸送層上に積層形成するとよい。そのようにして作製した発光素子も、非常に高い外部量子効率を示す。 When the crystal of the phenanthroline derivative of the present invention is used for the electron injection layer, for example, it is preferable to use it in a co-deposited film having a thickness of several nm containing an alkali metal as a donor material, and the same as above. It is preferable that the light emitting layer and the electron transporting layer of the above are sequentially laminated and formed on the electron transporting layer. The light emitting device thus produced also exhibits very high external quantum efficiency.
 また、本発明のフェナントロリン誘導体の結晶を電荷発生層に用いるに際しては、例えば、n型ドーパントであるアルカリ金属を含有させたタンデム型蛍光発光素子のn型電荷発生層のn型ホスト材料にて用いることが好適であり、上記同様の発光層および電子輸送層を順次積層形成し、その電子輸送層上に積層形成するとよい。そのようにして作製した発光素子も、非常に高い外部量子効率を示す。 When the crystal of the phenanthroline derivative of the present invention is used for the charge generation layer, for example, it is used as the n-type host material of the n-type charge generation layer of the tandem type fluorescent light emitting device containing an alkali metal which is an n-type dopant. It is preferable that the same light emitting layer and the electron transporting layer are sequentially laminated and formed on the electron transporting layer. The light emitting device thus produced also exhibits very high external quantum efficiency.
 陽極は、基板上に形成される電極で、正孔を有機層に効率よく注入できる材料であれば特に限定されないが、ボトムエミッション型の素子では透明または半透明電極であることが好ましく、トップエミッション型の素子では反射電極であることが好ましい。透明または半透明電極の材料としては、酸化亜鉛、酸化錫、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物;あるいは、金、銀、アルミニウム、クロムなどの金属;ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーが例示される。ただし金属を用いるときは光を半透過できるように膜厚を薄くすることが好ましい。 The anode is an electrode formed on the substrate and is not particularly limited as long as it is a material capable of efficiently injecting holes into the organic layer. However, in a bottom emission type device, a transparent or translucent electrode is preferable, and top emission is preferable. In the type element, a reflective electrode is preferable. Materials for the transparent or translucent electrode include conductive metal oxides such as zinc oxide, tin oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); or gold, silver, aluminum, chromium and the like. Metals; conductive polymers such as polythiophene, polypyrrole, polyaniline are exemplified. However, when a metal is used, it is preferable to reduce the film thickness so that light can be semi-transmitted.
 以上のうち、透明性と安定性の観点から酸化錫インジウム(ITO)がより好ましい。反射電極の材料としては、全ての光に対し吸収がなく高い反射率を有するものが好ましい。具体的には、アルミニウム、銀、白金などの金属が例示される。陽極の形成方法は、その形成材料に応じて最適な方法を採用できるが、スパッタ法、蒸着法、インクジェット法などが挙げられる。例えば、金属酸化物によって陽極を形成する場合にはスパッタ法、金属によって陽極を形成する場合には蒸着法が用いられる。陽極の膜厚は特に限定されないが、数nm~数百nmであることが好ましい。また、これらの電極材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。なお、基板と陽極の間に各種配線、回路、およびスイッチング素子が介在してもよい。 Of the above, indium tin oxide (ITO) is more preferable from the viewpoint of transparency and stability. As the material of the reflective electrode, a material that does not absorb all light and has a high reflectance is preferable. Specifically, metals such as aluminum, silver, and platinum are exemplified. As the method for forming the anode, an optimum method can be adopted depending on the material for forming the anode, and examples thereof include a sputtering method, a vapor deposition method, and an inkjet method. For example, a sputtering method is used when an anode is formed of a metal oxide, and a thin-film deposition method is used when an anode is formed of a metal. The film thickness of the anode is not particularly limited, but is preferably several nm to several hundred nm. Further, these electrode materials may be used alone, or a plurality of materials may be laminated or mixed. Various wirings, circuits, and switching elements may be interposed between the substrate and the anode.
 陰極は、有機層を挟んで陽極の反対側の表面に形成される電極で、特に電子輸送層または電子注入層の上に形成されることが好ましい。陰極に用いる材料は、電子を効率よく発光層に注入できる材料であれば特に限定されないが、ボトムエミッション型の素子では反射電極であることが好ましく、トップエミッション型の素子では半透明電極であることが好ましい。 The cathode is an electrode formed on the surface opposite to the anode with the organic layer sandwiched between them, and is particularly preferably formed on the electron transport layer or the electron injection layer. The material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the light emitting layer, but it is preferably a reflective electrode for a bottom emission type element and a translucent electrode for a top emission type element. Is preferable.
 陰極の材料としては、一般的には白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属;これらの金属とリチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどの低仕事関数金属との合金や多層積層膜;または酸化亜鉛、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物などが好ましい。中でも、主成分としてはアルミニウム、銀およびマグネシウムから選ばれた金属が、電気抵抗値、製膜しやすさ、膜の安定性、発光効率などの面から好ましい。 Metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium are generally used as cathode materials; these metals are combined with low work function metals such as lithium, sodium, potassium, calcium and magnesium. Alloys and multilayer laminated films; or conductive metal oxides such as zinc oxide, tin indium oxide (ITO), and indium zinc oxide (IZO) are preferable. Among them, a metal selected from aluminum, silver and magnesium as a main component is preferable from the viewpoints of electric resistance value, ease of film formation, film stability, luminous efficiency and the like.
 また、陰極がマグネシウムと銀で構成されると、本発明における電子輸送層および電子注入層への電子注入が容易になり、低電圧駆動が可能になるため好ましい。なお、陰極保護のために、陰極上に保護層(キャップ層)を積層してもよい。保護層を構成する材料としては、特に限定されないが、例えば、白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属;これら金属を用いた合金;シリカ、チタニアおよび窒化ケイ素などの無機物;ポリビニルアルコール、ポリ塩化ビニル、炭化水素系高分子化合物などの有機高分子化合物などが挙げられる。ただし、発光素子が、陰極側から光を取り出す素子構造(トップエミッション構造)である場合は、保護層に用いられる材料は、可視光領域で光透過性のある材料から選択される。 Further, when the cathode is composed of magnesium and silver, electron injection into the electron transport layer and the electron injection layer in the present invention becomes easy, and low voltage drive becomes possible, which is preferable. A protective layer (cap layer) may be laminated on the cathode to protect the cathode. The material constituting the protective layer is not particularly limited, but for example, metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium; alloys using these metals; silica, titania, silicon nitride and the like. Inorganic substances: Organic polymer compounds such as polyvinyl alcohol, polyvinyl chloride, and hydrocarbon-based polymer compounds can be mentioned. However, when the light emitting element has an element structure (top emission structure) that extracts light from the cathode side, the material used for the protective layer is selected from materials having light transmission in the visible light region.
 発光層は、正孔と電子の再結合によって発生した励起エネルギーにより発光する層である。発光層は単一の材料で構成されていてもよいが、色純度と発光強度の観点からホスト化合物(以下、「第一の化合物」と称することがある)とドーパント化合物(以下、「第二の化合物」と称することがある)との2種以上の材料で構成されていることが好ましい。第一の化合物としては、熱活性化遅延蛍光材料として熱活性化遅延蛍光性の化合物が好適な例として挙げられる。熱活性化遅延蛍光性化合物は、一般的に、TADF材料とも呼ばれ、一重項励起状態のエネルギー準位と三重項励起状態エネルギー準位のエネルギーギャップを小さくすることで、三重項励起状態から一重項励起状態への逆項間交差を促進し、一重項励起子の生成確率を向上させた材料である。TADF材料における最低励起一重項エネルギー準位と最低励起三重項エネルギー準位の差(ΔESTとする)は0.3eV以下であることが好ましい。この熱活性化遅延蛍光機構による遅延蛍光を利用することにより、理論的内部効率を100%まで高めることができる。 The light emitting layer is a layer that emits light by the excitation energy generated by the recombination of holes and electrons. The light emitting layer may be composed of a single material, but from the viewpoint of color purity and light emission intensity, a host compound (hereinafter, may be referred to as “first compound”) and a dopant compound (hereinafter, “second compound”). It is preferable that it is composed of two or more kinds of materials (sometimes referred to as "compound of"). As the first compound, a thermally activated delayed fluorescent compound is a preferable example of the thermally activated delayed fluorescent material. Thermally activated delayed fluorescent compounds, also commonly referred to as TADF materials, are singlet from triplet excited state by reducing the energy gap between the singlet excited state energy level and the triplet excited state energy level. It is a material that promotes inverse intersystem crossing to the term excited state and improves the generation probability of singlet excited states. The difference between the lowest excited singlet energy level and the lowest excited triplet energy level (referred to as ΔEST) in the TADF material is preferably 0.3 eV or less. By utilizing delayed fluorescence by this thermal activated delayed fluorescence mechanism, the theoretical internal efficiency can be increased up to 100%.
 さらに熱活性化遅延蛍光性を有する第一の化合物の一重項励起子から第二の化合物の一重項励起子へフェルスター型のエネルギー移動が起こる場合、第二の化合物の一重項励起子からの蛍光発光が観測される。このようなエネルギー移動が起きるためには第一の化合物の最低励起一重項エネルギー準位が、第二の化合物の最低励起一重項エネルギー準位より大きいことが好ましい。ここで第二の化合物がシャープな発光スペクトルを有する蛍光発光材である場合、高効率かつ高色純度の発光素子を得ることができる。このように、発光層が熱活性化遅延蛍光性化合物を含有すると、高効率発光が可能となり、ディスプレイの低消費電力化に寄与する。熱活性化遅延蛍光性化合物は、単一の材料で熱活性化遅延蛍光を示す化合物であってもいいし、エキサイプレックス錯体を形成する場合のように複数の化合物で熱活性化遅延蛍光を示す化合物であってもよい。 Furthermore, when Felster-type energy transfer occurs from the singlet exciton of the first compound having thermal activated delayed fluorescence to the singlet exciton of the second compound, the singlet exciton of the second compound Fluorescent emission is observed. In order for such energy transfer to occur, it is preferable that the lowest excited singlet energy level of the first compound is larger than the lowest excited singlet energy level of the second compound. Here, when the second compound is a fluorescent light emitting material having a sharp light emitting spectrum, a light emitting element having high efficiency and high color purity can be obtained. As described above, when the light emitting layer contains a thermally activated delayed fluorescent compound, high-efficiency light emission is possible, which contributes to low power consumption of the display. The Thermally Activated Delayed Fluorescence Compound may be a compound that exhibits Thermally Activated Delayed Fluorescence with a Single Material, or exhibits Thermally Activated Delayed Fluorescence with a plurality of compounds as in the case of forming an exciplex complex. It may be a compound.
 熱活性化遅延蛍光性化合物としては、単一の化合物でも複数の化合物を混合して用いてもよく、公知の材料を用いることができる。具体的には、例えば、ベンゾニトリル誘導体、トリアジン誘導体、ジスルホキシド誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ジヒドロフェナジン誘導体、チアゾール誘導体、オキサジアゾール誘導体などが挙げられる。特に同一分子内に電子供与性部(ドナー部)と電子求引性部(アクセプター部)を有する化合物であることが好ましい。 As the thermally activated delayed fluorescent compound, a single compound or a plurality of compounds may be mixed and used, and known materials can be used. Specific examples thereof include benzonitrile derivatives, triazine derivatives, disulfoxide derivatives, carbazole derivatives, indolocarbazole derivatives, dihydrophenazine derivatives, thiazole derivatives, oxadiazole derivatives and the like. In particular, a compound having an electron donating part (donor part) and an electron attracting part (acceptor part) in the same molecule is preferable.
 また前記発光素子の発光層には、下記一般式(2)で表されるピロメテンホウ素錯体を含有させてもよい。とくに、前記第一の化合物を熱活性化遅延蛍光性化合物にする場合は、上記第二の化合物をピロメテンホウ素錯体にするのが好ましい。ピロメテンホウ素錯体は、ドーパントとして用いた場合、シャープな発光スペクトルを得られる有用な発光材料ではあるが、シャープな発光スペクトルを保持しつつ、高い発光効率と高い耐久性を有する発光素子を達成することは困難であった。しかし、下記一般式(2)で表されるピロメテンホウ素錯体は、蛍光量子収率が高く発光スペクトルがシャープな発光材料および、発光効率、色純度および耐久性が高い発光素子を提供することができる。 Further, the light emitting layer of the light emitting element may contain a pyrromethene boron complex represented by the following general formula (2). In particular, when the first compound is a thermally activated delayed fluorescent compound, it is preferable that the second compound is a pyrometheneboron complex. The pyrromethene boron complex is a useful light emitting material that can obtain a sharp emission spectrum when used as a dopant, but it is necessary to achieve a light emitting element having high luminous efficiency and high durability while maintaining a sharp emission spectrum. Was difficult. However, the pyrromethene boron complex represented by the following general formula (2) can provide a light emitting material having a high fluorescence quantum yield and a sharp emission spectrum, and a light emitting element having high luminous efficiency, color purity and durability. ..
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 ここで、上記一般式(2)において、Xは、窒素原子、または炭素原子であり、ただし、当該炭素原子には、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールチオ基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のヘテロアリール基、ハロゲン原子、カルボキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアミノ基、ニトロ基、シアノ基、置換もしくは無置換のシリル基、および置換もしくは無置換のシロキサニル基からなる群より選ばれる原子または一価の基が一つ結合している。 Here, in the above general formula (2), X 1 is a nitrogen atom or a carbon atom, where the carbon atom includes a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted cycloalkyl. A group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted alkylthio group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted arylthio group, a substituted or unsubstituted alkenyl group. , Substituted or unsubstituted aralkyl group, substituted or unsubstituted heteroaryl group, halogen atom, carboxy group, substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted carbamoyl group, substituted or unsubstituted amino group, nitro One atomic or monovalent group selected from the group consisting of a group, a cyano group, a substituted or unsubstituted silyl group, and a substituted or unsubstituted siloxanyl group is bonded.
 R~Rは、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、アルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールチオ基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のヘテロアリール基、ハロゲン原子、カルボキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアミノ基、ニトロ基、シアノ基、置換もしくは無置換のシリル基、および置換もしくは無置換のシロキサニル基からなる群から選択される原子または基であり、ただし、RおよびRの組、RおよびRの組、RおよびRの組、RおよびRの組のいずれか1つ以上の組においてその組を構成する基の間に結合が形成されて環が形成されたものであってもよい。ZおよびZは、それぞれ独立に、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のアルコキシ基、シアノ基、および置換もしくは無置換のアリールオキシ基からなる群から選択される原子または基であり、ただし、ZおよびZの間に結合が形成されて環が形成されたものであってもよい。 R 1 to R 6 are independently hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted aryl group, alkoxy group, substituted or unsubstituted alkylthio group, respectively. Substituted or unsubstituted aryloxy group, substituted or unsubstituted arylthio group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aralkyl group, substituted or unsubstituted heteroaryl group, halogen atom, carboxy group, substituted or Select from the group consisting of an unsubstituted alkoxycarbonyl group, a substituted or unsubstituted carbamoyl group, a substituted or unsubstituted amino group, a nitro group, a cyano group, a substituted or unsubstituted silyl group, and a substituted or unsubstituted siroxanyl group. An atom or group to be formed, provided that in any one or more of the R 1 and R 2 pairs, the R 2 and R 3 pairs, the R 4 and R 5 pairs, and the R 5 and R 6 pairs. A ring may be formed by forming a bond between the groups constituting the set. Z 1 and Z 2 are independently halogen atoms, substituted or unsubstituted alkyl groups, substituted or unsubstituted aryl groups, substituted or unsubstituted alkoxy groups, cyano groups, and substituted or unsubstituted aryloxy groups, respectively. It is an atom or group selected from the group consisting of, but may be a ring formed by forming a bond between Z 1 and Z 2.
 上記の全ての基において、水素は重水素であってもよい。以下に説明する化合物またはその部分構造においても同様である。 In all the above groups, hydrogen may be deuterium. The same applies to the compounds described below or their partial structures.
 また、上記の全ての基において、置換される場合における置換基としては、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、ヘテロアリール基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、アラルキル基、ハロゲン、シアノ基、ホルミル基、アシル基、カルボキシ基、アルコキシカルボニル基、カルバモイル基、アシル基、アルキルスルホニル基、アリールスルホニル基、アルコキシスルホニル基、アミノスルホニル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基およびオキソ基からなる群より選ばれる基が好ましい。さらには、後述の各置換基の説明において好ましいとする具体的な置換基がより好ましい。また、これらの置換基は、さらに上述の置換基により置換されていてもよい。 Further, in all the above groups, the substituents in the case of substitution include an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an aryl group, a heteroaryl group, a hydroxyl group and a thiol. Group, alkoxy group, alkylthio group, aryloxy group, arylthio group, aralkyl group, halogen, cyano group, formyl group, acyl group, carboxy group, alkoxycarbonyl group, carbamoyl group, acyl group, alkylsulfonyl group, arylsulfonyl group, A group selected from the group consisting of an alkoxysulfonyl group, an aminosulfonyl group, an amino group, a nitro group, a silyl group, a siloxanyl group, a boryl group, a phosphine oxide group and an oxo group is preferable. Furthermore, specific substituents that are preferable in the description of each substituent described later are more preferable. Further, these substituents may be further substituted with the above-mentioned substituents.
 本説明の説明において「無置換」とは、対象となる基本骨格または基に結合する原子が水素原子または重水素原子のみであることを意味する。以下に説明する化合物またはその部分構造において、「置換もしくは無置換の」という場合についても、上記と同様である。 In the explanation of this explanation, "unsubstituted" means that the atom bonded to the target basic skeleton or group is only a hydrogen atom or a deuterium atom. The same applies to the case of "substitutable or unsubstituted" in the compound described below or its partial structure.
 アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの飽和脂肪族炭化水素基を示し、これは置換されていても無置換でもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、ハロゲン、アリール基、ヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、好ましくは1以上20以下、より好ましくは1以上8以下の範囲である。 The alkyl group refers to a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group and a tert-butyl group, which are substituted. It may be non-replaceable. The additional substituent when substituted is not particularly limited, and examples thereof include an alkyl group, a halogen, an aryl group, and a heteroaryl group, and this point is also common to the following description. The number of carbon atoms of the alkyl group is not particularly limited, but is preferably 1 or more and 20 or less, and more preferably 1 or more and 8 or less from the viewpoint of availability and cost.
 シクロアルキル基とは、例えば、シクロプロピル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などの飽和脂環式炭化水素基を示し、これは置換されていても無置換でもよい。アルキル基部分の炭素数は特に限定されないが、好ましくは、3以上20以下の範囲である。 The cycloalkyl group refers to a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, or an adamantyl group, which may be substituted or unsubstituted. The number of carbon atoms in the alkyl group moiety is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
 複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環を示し、これは置換されていても無置換でもよい。複素環基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。 The heterocyclic group refers to an aliphatic ring having an atom other than carbon such as a pyran ring, a piperidine ring, and a cyclic amide in the ring, which may be substituted or unsubstituted. The number of carbon atoms of the heterocyclic group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換されていても無置換でもよい。アルケニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。 The alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may be substituted or unsubstituted. The carbon number of the alkenyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換されていても無置換でもよい。シクロアルケニル基の炭素数は特に限定されないが、好ましくは、3以上20以下の範囲である。 The cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, a cyclohexenyl group, etc., which may be substituted or unsubstituted. .. The number of carbon atoms of the cycloalkenyl group is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
 アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換されていても無置換でもよい。アルキニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。 The alkynyl group refers to an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may be substituted or unsubstituted. The number of carbon atoms of the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換されていても無置換でもよい。アルコキシ基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。 The alkoxy group refers to a functional group in which an aliphatic hydrocarbon group is bonded via an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group may be substituted or unsubstituted. good. The number of carbon atoms of the alkoxy group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換されていても無置換でもよい。アルキルチオ基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。 The alkylthio group is one in which the oxygen atom of the ether bond of the alkoxy group is replaced with a sulfur atom. The hydrocarbon group of the alkylthio group may be substituted or unsubstituted. The number of carbon atoms of the alkylthio group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
 アリールオキシ基とは、例えば、フェノキシ基など、エーテル結合を介して芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換されていても無置換でもよい。アリールオキシ基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。 The aryloxy group refers to a functional group in which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may be substituted or unsubstituted. The number of carbon atoms of the aryloxy group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
 アリールチオ基とは、アリールオキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールチオ基における芳香族炭化水素基は置換されていても無置換でもよい。アリールチオ基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。 The arylthio group is one in which the oxygen atom of the ether bond of the aryloxy group is replaced with a sulfur atom. The aromatic hydrocarbon group in the arylthio group may be substituted or unsubstituted. The number of carbon atoms of the arylthio group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
 アラルキル基とは、例えば、フェニルメチル基やフェニルエチル基など、アルキル基の水素原子の1つがアリール基で置換されたアルキル基である。アラルキル基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。 The aralkyl group is an alkyl group in which one of the hydrogen atoms of the alkyl group is substituted with an aryl group, for example, a phenylmethyl group or a phenylethyl group. The carbon number of the aralkyl group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
 アリール基は、単環もしくは縮合環のいずれでもよく、例えば、フェニル基、ナフチル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フェナントリル基、アントラセニル基、ベンゾフェナントリル基、ベンゾアントラセニル基、クリセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基、ベンゾフルオランテニル基、ジベンゾアントラセニル基、ペリレニル基、ヘリセニル基などの芳香族炭化水素基を示す。中でも、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基、ピレニル基、フルオランテニル基およびトリフェニレニル基からなる群より選ばれる基が好ましい。アリール基は、置換されていても無置換でもよい。本発明では、ビフェニル基、ターフェニル基など複数のフェニル基が単結合を介して結合している基は、アリール基を置換基として有するフェニル基として扱うものとする。アリール基の炭素数は特に限定されないが、好ましくは6以上40以下、より好ましくは6以上30以下の範囲である。また、フェニル基においては、そのフェニル基中の隣接する2つの炭素原子上に各々置換基がある場合、それらの置換基同士で環構造を形成していてもよい。 The aryl group may be either a monocyclic ring or a fused ring, and may be, for example, a phenyl group, a naphthyl group, a fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthryl group, an anthrasenyl group, a benzophenanthryl group or a benzo. It shows an aromatic hydrocarbon group such as anthrasenyl group, chrysenyl group, pyrenyl group, fluoranthenyl group, triphenylenyl group, benzofluoranthenyl group, dibenzoanthrasenyl group, perylenel group and helisenyl group. Of these, a group selected from the group consisting of a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, an anthracenyl group, a pyrenyl group, a fluoranthenyl group and a triphenylenyl group is preferable. The aryl group may be substituted or unsubstituted. In the present invention, a group in which a plurality of phenyl groups such as a biphenyl group and a terphenyl group are bonded via a single bond is treated as a phenyl group having an aryl group as a substituent. The number of carbon atoms of the aryl group is not particularly limited, but is preferably in the range of 6 or more and 40 or less, and more preferably 6 or more and 30 or less. Further, in the case of a phenyl group, when there are substituents on two adjacent carbon atoms in the phenyl group, a ring structure may be formed between these substituents.
 ヘテロアリール基は、単環もしくは縮合環のいずれでもよく、例えば、ピリジル基、フラニル基、チオフェニル基、キノリニル基、イソキノリニル基、ピラジニル基、ピリミジル基、ピリダジニル基、トリアジニル基、ナフチリジニル基、シンノリニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ベンゾカルバゾリル基、カルボリニル基、インドロカルバゾリル基、ベンゾフロカルバゾリル基、ベンゾチエノカルバゾリル基、ジヒドロインデノカルバゾリル基、ベンゾキノリニル基、アクリジニル基、ジベンゾアクリジニル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基などの、炭素および水素以外の原子、すなわちヘテロ原子を一個または複数個環内に有する環状芳香族基を示す。ヘテロ原子としては窒素原子、酸素原子、または硫黄原子が好ましい。ヘテロアリール基は置換されていても無置換でもよい。ヘテロアリール基の炭素数は特に限定されないが、好ましくは、2以上40以下、より好ましくは2以上30以下の範囲である。 The heteroaryl group may be either a monocyclic group or a fused ring, and may be, for example, a pyridyl group, a furanyl group, a thiophenyl group, a quinolinyl group, an isoquinolinyl group, a pyrazinyl group, a pyrimidyl group, a pyridazinyl group, a triazinyl group, a naphthyldinyl group, a synnolinyl group. Phtalazinyl group, quinoxalinyl group, quinazolinyl group, benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, benzocarbazolyl group, carbolinyl group, indolocarbazolyl group, benzo Flocarbazolyl group, benzothienocarbazolyl group, dihydroindenocarbazolyl group, benzoquinolinyl group, acridinyl group, dibenzoacrydinyl group, benzoimidazolyl group, imidazole pyridyl group, benzoxazolyl group, benzothiazolyl group, fe Indicates a cyclic aromatic group having an atom other than carbon and hydrogen, that is, a hetero atom in one or more rings, such as a nantrolinyl group. As the hetero atom, a nitrogen atom, an oxygen atom, or a sulfur atom is preferable. The heteroaryl group may be substituted or unsubstituted. The number of carbon atoms of the heteroaryl group is not particularly limited, but is preferably in the range of 2 or more and 40 or less, and more preferably 2 or more and 30 or less.
 ハロゲンとは、フッ素、塩素、臭素およびヨウ素から選ばれる原子を示す。 Halogen refers to an atom selected from fluorine, chlorine, bromine and iodine.
 シアノ基とは、構造が-CNで表される官能基である。ここで他の基と結合するのは炭素原子である。 The cyano group is a functional group whose structure is represented by -CN. Here, it is the carbon atom that is bonded to the other group.
 ホルミル基とは、構造が-C(=O)Hで表される官能基である。ここで他の基と結合するのは炭素原子である。 The formyl group is a functional group whose structure is represented by -C (= O) H. Here, it is the carbon atom that is bonded to the other group.
 アシル基とは、例えばアセチル基、プロピオニル基、ベンゾイル基、アクリリル基など、カルボニル基を介してアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基が結合した官能基を示す。これらの置換基はさらに置換されていてもよい。アシル基の炭素数は特に限定されないが、好ましくは、2以上40以下、より好ましくは2以上30以下である。 The acyl group refers to a functional group in which an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, etc., such as an acetyl group, a propionyl group, a benzoyl group, and an acryryl group are bonded via a carbonyl group. .. These substituents may be further substituted. The number of carbon atoms of the acyl group is not particularly limited, but is preferably 2 or more and 40 or less, and more preferably 2 or more and 30 or less.
 アルコキシカルボニル基とは、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基などがエステル結合を介して結合した官能基を示す。これらの置換基はさらに置換されていてもよい。アルコキシカルボニル基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。より具体的には、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基、イソプロポキシメトキシカルボニル基、ヘキシロキシカルボニル基、フェノキシカルボニル基などが挙げられる。 The alkoxycarbonyl group refers to, for example, a functional group in which an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group and the like are bonded via an ester bond. These substituents may be further substituted. The number of carbon atoms of the alkoxycarbonyl group is not particularly limited, but is preferably in the range of 1 or more and 20 or less. More specifically, methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, butoxycarbonyl group, isopropoxymethoxycarbonyl group, hexyloxycarbonyl group, phenoxycarbonyl group and the like can be mentioned.
 カルバモイル基とは、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基などがアミド結合を介して結合した官能基を示す。これらの置換基はさらに置換されていてもよい。アミド基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。より具体的には、メチルアミド基、エチルアミド基、プロピルアミド基、ブチルアミド基、イソプロピルアミド基、ヘキシルアミド基、フェニルアミド基などが挙げられる。 The carbamoyl group refers to, for example, a functional group in which an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group and the like are bonded via an amide bond. These substituents may be further substituted. The number of carbon atoms of the amide group is not particularly limited, but is preferably in the range of 1 or more and 20 or less. More specifically, a methylamide group, an ethylamide group, a propylamide group, a butyramide group, an isopropylamide group, a hexylamide group, a phenylamide group and the like can be mentioned.
 アルキルスルホニル基、アリールスルホニル基とは、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが-S(=O)-結合を介して結合した官能基を示す。これらの置換基はさらに置換されていてもよい。アルキルスルホニル基、アリールスルホニル基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。 The alkylsulfonyl group and arylsulfonyl group indicate, for example, a functional group in which an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group and the like are bonded via an −S (= O) 2-bond. These substituents may be further substituted. The number of carbon atoms of the alkylsulfonyl group and the arylsulfonyl group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
 アルコキシスルホニル基とは、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基などがスルホン酸エステル結合を介して結合した官能基を示す。ここでスルホン酸エステル結合とは、エステル結合のカルボニル部、すなわち-C(=O)-がスルホニル部、すなわち-S(=O)-に置換されたものを指す。また、これらの置換基はさらに置換されていてもよい。アルコキシスルホニル基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。 The alkoxysulfonyl group refers to, for example, a functional group in which an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group and the like are bonded via a sulfonic acid ester bond. Here, the sulfonic acid ester bond refers to a carbonyl portion of the ester bond, that is, -C (= O)-replaced with a sulfonyl moiety, that is, -S (= O) 2- . Moreover, these substituents may be further substituted. The number of carbon atoms of the alkoxysulfonyl group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
 アミノスルホニル基とは、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基などがスルホンアミド結合を介して結合した官能基を示す。ここでスルホンアミド結合とは、エステル結合のカルボニル部、すなわち-C(=O)-がスルホニル部、すなわち-S(=O)-に置換されたものを指す。また、これらの置換基はさらに置換されていてもよい。アミノスルホニル基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。 The aminosulfonyl group refers to, for example, a functional group in which an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group and the like are bonded via a sulfonamide bond. Here, the sulfone amide bond refers to a carbonyl portion of the ester bond, that is, -C (= O)-replaced with a sulfonyl moiety, that is, -S (= O) 2- . Moreover, these substituents may be further substituted. The number of carbon atoms of the aminosulfonyl group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
 アミノ基とは、置換もしくは無置換のアミノ基である。置換する場合の置換基としては、例えば、アリール基、ヘテロアリール基、直鎖アルキル基、分岐アルキル基が挙げられる。アリール基、ヘテロアリール基としては、フェニル基、ナフチル基、ピリジル基、キノリニル基が好ましい。これら置換基はさらに置換されてもよい。炭素数は特に限定されないが、好ましくは、2以上50以下、より好ましくは6以上40以下、特に好ましくは6以上30以下の範囲である。 The amino group is a substituted or unsubstituted amino group. Examples of the substituent in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group and a branched alkyl group. As the aryl group and heteroaryl group, a phenyl group, a naphthyl group, a pyridyl group and a quinolinyl group are preferable. These substituents may be further substituted. The number of carbon atoms is not particularly limited, but is preferably 2 or more and 50 or less, more preferably 6 or more and 40 or less, and particularly preferably 6 or more and 30 or less.
 シリル基とは、置換もしくは無置換のケイ素原子が結合した官能基を示し、例えば、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、プロピルジメチルシリル基、ビニルジメチルシリル基などのアルキルシリル基や、フェニルジメチルシリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、トリナフチルシリル基などのアリールシリル基を示す。ケイ素上の置換基はさらに置換されてもよい。シリル基の炭素数は特に限定されないが、好ましくは、1以上30以下の範囲である。 The silyl group indicates a functional group to which a substituted or unsubstituted silicon atom is bonded, and is, for example, an alkylsilyl group such as a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a propyldimethylsilyl group, or a vinyldimethylsilyl group. , And arylsilyl groups such as phenyldimethylsilyl group, tert-butyldiphenylsilyl group, triphenylsilyl group and trinaphthylsilyl group. Substituents on silicon may be further substituted. The number of carbon atoms of the silyl group is not particularly limited, but is preferably in the range of 1 or more and 30 or less.
 シロキサニル基とは、例えばトリメチルシロキサニル基などのエーテル結合を介したケイ素化合物基を示す。ケイ素上の置換基はさらに置換されてもよい。 The siloxanyl group refers to a silicon compound group via an ether bond such as a trimethylsiloxanyl group. Substituents on silicon may be further substituted.
 ボリル基とは、置換もしくは無置換のボリル基である。置換する場合の置換基としては、例えば、アリール基、ヘテロアリール基、直鎖アルキル基、分岐アルキル基、アリールエーテル基、アルコキシ基、ヒドロキシル基が挙げられ、中でもアリール基、アリールエーテル基が好ましい。 The boryl group is a substituted or unsubstituted boryl group. Examples of the substituent in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, a branched alkyl group, an aryl ether group, an alkoxy group and a hydroxyl group, and among them, an aryl group and an aryl ether group are preferable.
 ホスフィンオキシド基とは、-P(=O)R1617で表される基である。R16およびR17はそれぞれ独立にR~Rと同様の群から選ばれる。 The phosphine oxide group is a group represented by −P (= O) R 16 R 17. R 16 and R 17 are independently selected from the same group as R 1 to R 6.
 上述した各基の説明における「置換されていても無置換でもよい」の記載および「置換基はさらに置換されていてもよい」の記載における置換する場合の置換可能な置換基の範囲は、置換前の化合物との比較において、化学的に同等あるいは発光素子に用いたときの性能に殆ど影響を与えない程度と評価される置換基の範囲である。別の視点では、発光素子に用いるという視点からみて、均等物と評価できる範囲を含む意味である。また、後述する一般式(3)、一般式(4)における各基の説明には上記した各基の説明を援用し、また、R~R15およびArの説明における「置換もしくは無置換の」の記載における置換する場合の置換基の範囲についても上記の「置換されていても無置換でもよい」の記載および「置換基はさらに置換されていてもよい」の記載における置換する場合の置換可能な置換基の範囲と同様の意味である。 The range of substitutable substituents in the case of substitution in the description of "may be substituted or unsubstituted" and the description of "substituents may be further substituted" in the description of each group described above is substituted. In comparison with the previous compound, it is the range of substituents that are evaluated to be chemically equivalent or have almost no effect on the performance when used in a light emitting element. From another point of view, it means that it includes a range that can be evaluated as an equal object from the viewpoint of being used for a light emitting element. Further, the above description of each group is used for the description of each group in the general formulas (3) and (4) described later, and "substitution or no substitution" in the description of R 7 to R 15 and Ar 1 is used. Regarding the range of substituents in the case of substitution in the description of "", the case of substitution in the above description of "substituted or unsubstituted" and "substituents may be further substituted". It has the same meaning as the range of replaceable substituents.
 ピロメテンホウ素錯体は、強固で平面性の高い骨格を有するため、高い蛍光量子収率を示す。また、発光スペクトルのピーク半値幅が小さいため、発光素子において効率的な発光と高い色純度を達成することができる。発光効率のさらなる向上のためには、ピロメテンホウ素錯体の置換基の回転・振動を抑制し、エネルギー損失を減少させて蛍光量子収率を向上させることが有効である。また、色純度向上のためにはピロメテンホウ素錯体の励起状態における振動緩和を減少させ、発光スペクトルの半値幅を減少させることが有効である。この観点から、前記一般式(2)で表される構造において、Xが炭素原子であり、前記した原子または一価の基が結合したものを用いることが好ましい。 The pyromethene boron complex has a strong and highly planar skeleton, and therefore exhibits a high fluorescence quantum yield. Further, since the peak half width of the emission spectrum is small, efficient emission and high color purity can be achieved in the emission element. In order to further improve the luminous efficiency, it is effective to suppress the rotation / vibration of the substituent of the pyromethene boron complex, reduce the energy loss, and improve the fluorescence quantum yield. Further, in order to improve the color purity, it is effective to reduce the vibrational relaxation in the excited state of the pyrromethene boron complex and reduce the half width of the emission spectrum. From this point of view, in the structure represented by the general formula (2), it is preferable to use a structure in which X 1 is a carbon atom and the above-mentioned atom or monovalent group is bonded.
 Xが炭素原子であり、当該炭素原子に前記した原子または一価の基が一つ結合したものを用いることによって、高い蛍光量子収率かつ半値幅の小さいピロメテンホウ素錯体を提供することができる。さらに、橋頭位に結合した基がピロメテン骨格に対して分子内回転を抑制されると、エネルギー失活を起こすことを抑制することができるため、発光効率向上に有利である。また、ピロメテンホウ素錯体の安定性は発光素子の耐久性に影響する。その安定性をより向上させるため、橋頭位に嵩高い置換基を導入することが好ましい。嵩高い置換基を導入することにより、ピロメテン骨格を周囲の他分子との相互作用から保護することができる。 By using a carbon atom in which X 1 is a carbon atom and one of the above-mentioned atoms or monovalent groups is bonded to the carbon atom, a pyromethene boron complex having a high fluorescence quantum yield and a small half-value width can be provided. .. Furthermore, when the group bonded to the bridge head position suppresses intramolecular rotation with respect to the pyrromethene skeleton, it is possible to suppress energy deactivation, which is advantageous for improving luminous efficiency. In addition, the stability of the pyromethene boron complex affects the durability of the light emitting device. In order to further improve the stability, it is preferable to introduce a bulky substituent at the bridge head position. By introducing a bulky substituent, the pyrromethene skeleton can be protected from interaction with other surrounding molecules.
 Xが炭素原子である場合に当該炭素原子に結合する特に好ましい一価の基としては、次の一般式(3)や一般式(4)で表される基がエネルギー失活を抑制できる観点から好ましい。 When X 1 is a carbon atom, as a particularly preferable monovalent group bonded to the carbon atom, the viewpoint represented by the following general formula (3) or general formula (4) can suppress energy deactivation. Is preferable.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(ここで、R~R11は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の複素環基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロアルケニル基、置換もしくは無置換のアルキニル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、水酸基、チオール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールチオ基、ハロゲン原子、シアノ基、ホルミル基、アシル基、カルボキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアルキルスルホニル基、置換もしくは無置換のアリールスルホニル基、置換もしくは無置換のアミノスルホニル基、置換もしくは無置換のアミノ基、ニトロ基、置換もしくは無置換のシリル基、および隣接基との間で形成された環構造からなる群より選ばれる原子または基であり、
およびRは、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基または置換もしくは無置換のヘテロアリール基からなる群より選ばれる基である。)
(Here, R 9 to R 11 are independently hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl. Group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, substituted or unsubstituted aryl group, substituted or unsubstituted heteroaryl group, hydroxyl group, thiol group, substituted or unsubstituted alkoxy group, substituted Alternatively, an unsubstituted alkylthio group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted arylthio group, a halogen atom, a cyano group, a formyl group, an acyl group, a carboxy group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or Unsubstituted carbamoyl group, substituted or unsubstituted alkylsulfonyl group, substituted or unsubstituted arylsulfonyl group, substituted or unsubstituted aminosulfonyl group, substituted or unsubstituted amino group, nitro group, substituted or unsubstituted silyl An atom or group selected from the group consisting of a ring structure formed between a group and an adjacent group.
R 7 and R 8 are groups independently selected from the group consisting of substituted or unsubstituted alkyl groups, substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups, respectively. )
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(ここで、R12~R14は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の複素環基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロアルケニル基、置換もしくは無置換のアルキニル基、水酸基、チオール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールチオ基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、ハロゲン原子、シアノ基、ホルミル基、アシル基、カルボキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアルキルスルホニル基、置換もしくは無置換のアリールスルホニル基、置換もしくは無置換のアルコキシスルホニル基、置換もしくは無置換のアミノスルホニル基、置換もしくは無置換のアミノ基、ニトロ基、置換もしくは無置換のシリル基、置換もしくは無置換のシロキサニル基、置換もしくは無置換のボリル基および置換もしくは無置換のホスフィンオキシド基からなる群より選ばれる原子または基であり、 
15は、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の複素環基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロアルケニル基、置換もしくは無置換のアルキニル基、水酸基、チオール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールチオ基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、ハロゲン原子、シアノ基、ホルミル基、アシル基、カルボキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアルキルスルホニル基、置換もしくは無置換のアリールスルホニル基、置換もしくは無置換のアルコキシスルホニル基、置換もしくは無置換のアミノスルホニル基、置換もしくは無置換のアミノ基、ニトロ基、置換もしくは無置換のシリル基、置換もしくは無置換のシロキサニル基、置換もしくは無置換のボリル基および置換もしくは無置換のホスフィンオキシド基からなる群より選ばれる基であり、 
Arは、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基からなる群より選ばれる基である。)
 また、一般式(3)で表される基が含まれる場合において、一般式(2)で表されるピロメテンホウ素化合物は、ZおよびZが、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリール基、ハロゲン原子、およびシアノ基からなる群より選ばれる基であり、R、R、RおよびRは、それぞれ独立に、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基であり(ここで、これらのアリール基およびヘテロアリール基は単環でも縮合環でもよい。ただしRおよびRのうち一方または両方が単環のアリール基およびヘテロアリール基である場合、当該単環のアリール基およびヘテロアリール基は、1つ以上の第二級アルキル基、1つ以上の第三級アルキル基、1つ以上のアリール基もしくは1つ以上のヘテロアリール基を置換基として有しているか、または、メチル基と第一級アルキル基とを合計で2つ以上置換基として有している。)、RおよびRは、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールチオ基、ハロゲン原子、シアノ基、カルボキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアミノ基、ニトロ基、および置換もしくは無置換のシリル基からなる群より選ばれる原子または基であることが好ましい。ただし、この場合においては、RとRとの間、および、RとRとの間の一方または両方は、前記の基の間に1個または2個の原子を介して結合が形成されていてもよい。
(Here, R 12 to R 14 are independently hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl. Group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group, thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryloxy group, substituted Alternatively, an unsubstituted or unsubstituted arylthio group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a halogen atom, a cyano group, a formyl group, an acyl group, a carboxy group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or Unsubstituted carbamoyl group, substituted or unsubstituted alkylsulfonyl group, substituted or unsubstituted arylsulfonyl group, substituted or unsubstituted alkoxysulfonyl group, substituted or unsubstituted aminosulfonyl group, substituted or unsubstituted amino group, An atom or group selected from the group consisting of a nitro group, a substituted or unsubstituted silyl group, a substituted or unsubstituted siroxanyl group, a substituted or unsubstituted boryl group and a substituted or unsubstituted phosphine oxide group.
R 15 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted Substituent alkynyl group, hydroxyl group, thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryloxy group, substituted or unsubstituted arylthio group, substituted or unsubstituted aryl group , Substituted or unsubstituted heteroaryl group, halogen atom, cyano group, formyl group, acyl group, carboxy group, substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted carbamoyl group, substituted or unsubstituted alkylsulfonyl group , Substituent or unsubstituted arylsulfonyl group, substituted or unsubstituted alkoxysulfonyl group, substituted or unsubstituted aminosulfonyl group, substituted or unsubstituted amino group, nitro group, substituted or unsubstituted silyl group, substituted or unsubstituted A group selected from the group consisting of a substituted siloxanyl group, a substituted or unsubstituted boryl group and a substituted or unsubstituted phosphine oxide group.
Ar 1 is a group selected from the group consisting of substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups. )
Further, when the group represented by the general formula (3) is contained, in the pyrometheneboron compound represented by the general formula (2), Z 1 and Z 2 are independently substituted or unsubstituted alkyl groups. , substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted aryl group, a halogen atom and a group selected from the group consisting of cyano group,, R 1, R 3, R 4 And R 6 are independently substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups (where these aryl groups and heteroaryl groups may be monocyclic or fused rings, respectively. When one or both of R 1 and R 6 are monocyclic aryl groups and heteroaryl groups, the monocyclic aryl groups and heteroaryl groups are one or more secondary alkyl groups and one or more. It has a tertiary alkyl group, one or more aryl groups or one or more heteroaryl groups as substituents, or has a total of two or more methyl groups and primary alkyl groups as substituents. ), R 2 and R 5 are independently hydrogen atoms, substituted or unsubstituted alkyl groups, substituted or unsubstituted cycloalkyl groups, substituted or unsubstituted alkenyl groups, substituted or unsubstituted alkenyl groups, respectively. Aryl group, substituted or unsubstituted heteroaryl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryloxy group, substituted or unsubstituted arylthio group, halogen atom, cyano group. , A carboxy group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted carbamoyl group, a substituted or unsubstituted amino group, a nitro group, and an atom or group selected from the group consisting of a substituted or unsubstituted silyl group. It is preferable to have. However, in this case, one or both of R 4 and R 5 and one or both of R 2 and R 3 have a bond between the above groups via one or two atoms. It may be formed.
 なお、上記する第一級アルキル基、第二級アルキル基、第三級アルキル基の炭素数は多いほど立体障害性を増すこととなるので好ましいが、化合物としての合成の容易性の観点から、2~10程度、であることが好ましく、さらに好ましくは4~10である。 The larger the number of carbon atoms in the primary alkyl group, secondary alkyl group, and tertiary alkyl group described above is, the more sterically hindered it is, which is preferable. However, from the viewpoint of ease of synthesis as a compound, it is preferable. It is preferably about 2 to 10, and more preferably 4 to 10.
 さらに、ZおよびZは、発光特性と熱的安定性の観点から、アルキル基、アルコキシ基、アリールエーテル基、ハロゲンまたはシアノ基であることが好ましい。また、励起状態が安定でより高い蛍光量子収率が得られる観点、および耐久性を向上させることができる観点から、ZおよびZは電子求引性基であることがより好ましく、具体的には、フッ素原子、含フッ素アルキル基、含フッ素アルコキシ基、含フッ素アリールエーテル基またはシアノ基であることがより好ましく、フッ素原子またはシアノ基であることがさらに好ましく、フッ素原子であることが最も好ましい。 Further, Z 1 and Z 2 are preferably an alkyl group, an alkoxy group, an aryl ether group, a halogen or a cyano group from the viewpoint of light emission characteristics and thermal stability. Further, from the viewpoint that the excited state is stable and a higher fluorescence quantum yield can be obtained, and the durability can be improved, Z 1 and Z 2 are more preferably electron-attracting groups, and more specifically. Is more preferably a fluorine atom, a fluorine-containing alkyl group, a fluorine-containing alkoxy group, a fluorine-containing aryl ether group or a cyano group, further preferably a fluorine atom or a cyano group, and most preferably a fluorine atom. preferable.
 RおよびRは、ピロメテンホウ素錯体化合物の安定性および発光効率に寄与する基である。安定性とは、電気的安定性および熱的安定性を指す。電気的安定性は発光素子に連続通電した状態で分解などの化合物の変質が起きにくいことを意味する。熱的安定性は、製造時の昇華精製や蒸着などの加熱工程や発光素子周辺の環境温度により化合物の変質が起きにくいことを意味する。化合物が変質すると発光効率が低下するため、化合物の安定性は発光素子の耐久性向上にとって重要である。RおよびRは、化合物の安定性と発光効率の観点から、置換もしくは無置換のアリール基が好ましい。RおよびRは、ピロメテンホウ素錯体同士の凝集を防ぎ濃度消光を回避するために、上記の群のなかでも立体障害の大きい基であることが好ましい。この観点から、RおよびRは、1つ以上の第三級アルキル基を置換基として有するフェニル基、1つ以上のアリール基を置換基として有するフェニル基、1つ以上のヘテロアリール基を置換基として有するフェニル基、メチル基と第一級アルキル基とを合計で2つ以上置換基として有し、かつ、それらのうちの少なくとも1つがピロール環との結合部位に対する2位に置換されているフェニル基、および縮合環式芳香族炭化水素基からなる群より選ばれることが好ましい。また、回転もしくは振動の自由度が小さいほど熱失活による効率低下を抑制できるため、RおよびRは剛直な構造もしくは対称性の高い構造を持つ官能基であることが好ましい。この観点からRおよびRは、1つ以上のtert-ブチル基を置換基として有するフェニル基、1つ以上のフェニル基を置換基として有するフェニル基、少なくともピロール環との結合部位に対して2位と6位にメチル基が置換されているフェニル基のいずれかであって、かつピロールとの結合を対称軸として線対称に置換基を有するフェニル基、もしくは無置換の縮合環式芳香族炭化水素基であることがより好ましい。さらに製造容易性の観点から2,6-ジメチルフェニル基、メシチル基、4-tert-ブチルフェニル基、3,5-ジtert-ブチルフェニル基、4-ビフェニル基または1-ナフチル基であることがさらに好ましい。 R 1 and R 6 are groups that contribute to the stability and luminous efficiency of the pyrromethene boron complex compound. Stability refers to electrical and thermal stability. Electrical stability means that deterioration of the compound such as decomposition is unlikely to occur when the light emitting element is continuously energized. Thermal stability means that the deterioration of the compound is unlikely to occur due to heating processes such as sublimation purification and vapor deposition during manufacturing and the environmental temperature around the light emitting element. Since the luminous efficiency decreases when the compound is altered, the stability of the compound is important for improving the durability of the light emitting device. R 1 and R 6 are preferably substituted or unsubstituted aryl groups from the viewpoint of compound stability and luminous efficiency. R 1 and R 6 are preferably groups having a large steric hindrance in the above group in order to prevent aggregation of pyrromethene boron complexes and avoid concentration quenching. From this point of view, R 1 and R 6 are phenyl groups having one or more tertiary alkyl groups as substituents, phenyl groups having one or more aryl groups as substituents, and one or more heteroaryl groups. It has a total of two or more substituents, a phenyl group, a methyl group and a primary alkyl group, and at least one of them is substituted at the 2-position with respect to the bond site with the pyrrole ring. It is preferably selected from the group consisting of a phenyl group and a fused ring-type aromatic hydrocarbon group. Further, since the smaller the degree of freedom of rotation or vibration is, the lower the efficiency due to heat deactivation can be suppressed , it is preferable that R 1 and R 6 are functional groups having a rigid structure or a highly symmetric structure. From this point of view, R 1 and R 6 are for a phenyl group having one or more tert-butyl groups as a substituent, a phenyl group having one or more phenyl groups as a substituent, or at least a bond site with a pyrrole ring. A phenyl group that is either a phenyl group in which a methyl group is substituted at the 2- or 6-position and has a substituent that is linearly symmetric with the bond with pyrrole as the axis of symmetry, or an unsubstituted fused ring-type aromatic. It is more preferably a hydrocarbon group. Further, from the viewpoint of ease of production, it may be a 2,6-dimethylphenyl group, a mesityl group, a 4-tert-butylphenyl group, a 3,5-ditert-butylphenyl group, a 4-biphenyl group or a 1-naphthyl group. More preferred.
 RおよびRは、発光波長の制御に寄与する基である。ピロメテンホウ素錯体を赤色発光させるには、アリール基またはヘテロアリール基をピロメテン金属錯体骨格に直接結合させることにより、共役を拡張させ、発光を長波長化する方法が挙げられる。この理由によりRおよびRは置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基または置換もしくは無置換のヘテロアリール基であるが、化合物の安定性の観点から、置換もしくは無置換のアリール基がより好ましい。 R 3 and R 4 are groups that contribute to the control of the emission wavelength. In order to make the pyrromethene boron complex emit red light, a method of extending the conjugation and lengthening the emission wavelength by directly bonding an aryl group or a heteroaryl group to the pyrromethene metal complex skeleton can be mentioned. For this reason, R 3 and R 4 are substituted or unsubstituted alkyl groups, substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups, but from the viewpoint of compound stability, they are substituted or unsubstituted. Aryl groups are more preferred.
 RおよびRは、主にピーク波長、発光スペクトルの半値幅、安定性、または結晶性に影響する。発光スペクトルの半値幅の狭小化、素子耐久性に影響する安定性、および再結晶精製を含む製造の容易性の観点から、RおよびRの少なくとも一方、より好ましくは両方が、水素原子、または置換もしくは無置換のアルキル基であることが好ましい。 R 2 and R 5 mainly affect the peak wavelength, half width of emission spectrum, stability, or crystallinity. From the viewpoint of narrowing the half width of the emission spectrum, stability affecting device durability, and ease of manufacture including recrystallization purification, at least one or more preferably both of R 2 and R 5 are hydrogen atoms. Alternatively, it is preferably a substituted or unsubstituted alkyl group.
 また、一般式(2)で表される化合物にあっては、RおよびRの組、RおよびRの組、RおよびRの組、RおよびRの組のいずれか1つ以上の組においてその組を構成する基の間に結合が形成されて環が形成されたものであってもよく、また、ZおよびZの間に結合が形成されて環が形成されたものであってよいが、この意味するところには、RないしRにあっては、ピロメテン環との縮合環、好ましく縮合環として、すなわちピロメテン環の2個の炭素を含んで、五員環から七員環の環、を形成できることを意味し、また、ZおよびZにあっては、ホウ素を含んだ複素環を部分構造として有することができることが含まれる。 Further, in the compound represented by the general formula (2), any of the set of R 1 and R 2 , the set of R 2 and R 3 , the set of R 4 and R 5 , and the set of R 5 and R 6. In one or more pairs, a bond may be formed between the groups constituting the pair to form a ring, or a bond may be formed between Z 1 and Z 2 to form a ring. it may be one that is formed, but in place of this sense, in the R 1 to the R 6, condensed and pyrromethene ring, preferably as a fused ring, i.e. contain two carbons pyrromethene ring It means that a ring of five-membered ring to seven-membered ring can be formed, and Z 1 and Z 2 include that a heterocycle containing boron can be provided as a partial structure.
 また、発光効率向上のためには一般式(3)で表される基の回転・振動を抑制し、エネルギー損失を減少させて蛍光量子収率を向上させることが有効である。一般式(3)で表される基の回転・振動を抑制するために、RおよびRは置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基または置換もしくは無置換のヘテロアリール基から選ばれる。中でも少なくとも一方が置換もしくは無置換のアリール基または置換もしくは無置換のヘテロアリール基であることが好ましい。一方、製造の容易さの観点から、RおよびRの一方が置換もしくは無置換のアルキル基であることが好ましく、メチル基であることがより好ましい。また、R~R11は、ピーク波長、結晶性、昇華温度などの調整に用いられる。特にピーク波長に影響するのはピロメテン骨格との結合に対し4位の位置の置換基、すなわちR10である。R10が電子供与性基であれば発光ピーク波長は短波長側にシフトする。電子供与性基として具体的には、メチル基、エチル基、tert-ブチル基、シクロヘキシル基、メトキシ基、エトキシ基、フェニル基、トリル基、ナフチル基、フラニル基、ジベンゾフラニル基などが例示される。特にR10が電子供与性が強いメトキシ基、エトキシ基などのアルコキシ基である場合、短波長シフトが大きく、波長調整に有用である。一方、R10が電子求引性基であれば発光ピークは長波長側にシフトする。電子求引性基として具体的には、フッ素原子、トリフルオロメチル基、シアノ基、ピリジル基、ピリミジル基などが例示される。特にR10が電子求引性が強いフッ素原子、トリフルオロメチル基およびシアノ基から選ばれた基である場合、長波長シフトが大きく、波長調整に有用である。ただし電子供与性基および電子求引性基はこれらに限定されるものではない。 Further, in order to improve the luminous efficiency, it is effective to suppress the rotation / vibration of the group represented by the general formula (3), reduce the energy loss, and improve the fluorescence quantum yield. In order to suppress the rotation and vibration of the group represented by the general formula (3), R 7 and R 8 are substituted or unsubstituted alkyl groups, substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups. Is selected from. Of these, at least one is preferably a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. On the other hand, from the viewpoint of ease of production, one of R 7 and R 8 is preferably a substituted or unsubstituted alkyl group, and more preferably a methyl group. Further, R 9 to R 11 are used for adjusting the peak wavelength, crystallinity, sublimation temperature and the like. Particularly affecting peak wavelength substituents attached to the 4-position of the pyrromethene skeleton, that is, R 10. If R 10 is an electron donating group, the emission peak wavelength shifts to the short wavelength side. Specific examples of the electron donating group include a methyl group, an ethyl group, a tert-butyl group, a cyclohexyl group, a methoxy group, an ethoxy group, a phenyl group, a tolyl group, a naphthyl group, a furanyl group and a dibenzofuranyl group. NS. In particular, when R 10 is an alkoxy group such as a methoxy group or an ethoxy group having a strong electron donating property, the short wavelength shift is large, which is useful for wavelength adjustment. On the other hand, if R 10 is an electron-attracting group, the emission peak shifts to the long wavelength side. Specific examples of the electron-attracting group include a fluorine atom, a trifluoromethyl group, a cyano group, a pyridyl group, and a pyrimidyl group. In particular, when R 10 is a group selected from a fluorine atom, a trifluoromethyl group and a cyano group having strong electron attraction, the long wavelength shift is large, which is useful for wavelength adjustment. However, the electron donating group and the electron attracting group are not limited to these.
 また、一般式(4)で表される基が含まれる場合において、一般式(2)で表されるピロメテンホウ素化合物は、ZおよびZが、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリール基、ハロゲン原子、およびシアノ基からなる群より選ばれる原子または基であり、R~Rは、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換アルケニル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のアミノ基、置換もしくは無置換のシリル基、および置換もしくは無置換のシロキサニル基からなる群より選ばれる基であり、ただし、R、R、R、Rのうち少なくとも一つは水素原子または置換もしくは無置換のアルキル基であることが望ましい。 Further, when the group represented by the general formula (4) is contained, in the pyrometheneboron compound represented by the general formula (2), Z 1 and Z 2 are independently substituted or unsubstituted alkyl groups, respectively. , substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted aryl group, a halogen atom and atom or group selected from the group consisting of cyano group,, R 1 ~ R 6 is , Independently, hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkenyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or Consists of an unsubstituted aryloxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted amino group, a substituted or unsubstituted silyl group, and a substituted or unsubstituted siroxanyl group. It is a group selected from the group, but it is desirable that at least one of R 1 , R 3 , R 4 , and R 6 is a hydrogen atom or a substituted or unsubstituted alkyl group.
 さらに、ZおよびZは、発光特性と熱的安定性の観点から、アルキル基、アルコキシ基、アリールエーテル基、ハロゲンまたはシアノ基であることが好ましい。また、励起状態が安定でより高い蛍光量子収率が得られる観点、および耐久性を向上させることができる観点から、ZおよびZは電子求引性基であることがより好ましく、具体的には、フッ素原子、含フッ素アルキル基、含フッ素アルコキシ基、含フッ素アリールエーテル基またはシアノ基であることがより好ましく、フッ素原子またはシアノ基であることがさらに好ましく、フッ素原子であることが最も好ましい。 Further, Z 1 and Z 2 are preferably an alkyl group, an alkoxy group, an aryl ether group, a halogen or a cyano group from the viewpoint of light emission characteristics and thermal stability. Further, from the viewpoint that the excited state is stable and a higher fluorescence quantum yield can be obtained, and the durability can be improved, Z 1 and Z 2 are more preferably electron-attracting groups, and more specifically. Is more preferably a fluorine atom, a fluorine-containing alkyl group, a fluorine-containing alkoxy group, a fluorine-containing aryl ether group or a cyano group, further preferably a fluorine atom or a cyano group, and most preferably a fluorine atom. preferable.
 RおよびRは、ピロメテンホウ素錯体の発光ピーク波長、結晶性、昇華温度などに影響する。発光スペクトルの半値幅をより小さくする観点から、RおよびRは、水素原子またはアルキル基であることが好ましい。さらに、蛍光量子収率がより向上する観点から、RおよびRはアルキル基であることがより好ましく、製造容易性の観点からメチル基であることがさらに好ましい。 R 1 and R 6 affect the emission peak wavelength, crystallinity, sublimation temperature, etc. of the pyrromethene boron complex. From the viewpoint of reducing the half width of the emission spectrum, R 1 and R 6 are preferably hydrogen atoms or alkyl groups. Further, from the viewpoint of further improving the fluorescence quantum yield, R 1 and R 6 are more preferably alkyl groups, and further preferably methyl groups from the viewpoint of ease of production.
 RおよびRは、主にピロメテンホウ素錯体の発光ピーク波長、発光スペクトルの半値幅、安定性、または結晶性に影響する。発光スペクトルの半値幅をより小さくする観点、安定性をより向上させる観点、および再結晶生成を含む合成の容易性の観点から、RおよびRの少なくとも一方、好ましくは両方が、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基および置換もしくは無置換のヘテロアリール基からなる群から選ばれた基であることが好ましい。さらに、半値幅をより減少する観点から、RおよびRはアルキル基であることがより好ましく、製造容易性の観点からメチル基であることがさらに好ましい。 R 3 and R 4 mainly affect the emission peak wavelength, the half width of the emission spectrum, the stability, or the crystallinity of the pyrromethene boron complex. From the viewpoint of making the half-value width of the emission spectrum smaller, improving the stability, and easiness of synthesis including recrystallization, at least one or preferably both of R 3 and R 4 are hydrogen atoms. It is preferably a group selected from the group consisting of substituted or unsubstituted alkyl groups, substituted or unsubstituted aryl groups and substituted or unsubstituted heteroaryl groups. Further, from the viewpoint of further reducing the half width, R 3 and R 4 are more preferably alkyl groups, and further preferably methyl groups from the viewpoint of ease of production.
 RおよびRは、主にピロメテンホウ素錯体の発光ピーク波長、発光スペクトルの半値幅、安定性、または結晶性に影響する。発光スペクトルの半値幅をより小さくする観点、安定性をより向上させる観点、および再結晶精製を含む合成の容易性の観点から、RおよびRの少なくとも一方、好ましくは両方が、水素原子、置換もしくは無置換のアルキル基であることが好ましく、製造容易性の観点から両方が水素原子であることがさらに好ましい。 R 2 and R 5 mainly affect the emission peak wavelength, the half width of the emission spectrum, the stability, or the crystallinity of the pyrromethene boron complex. From the viewpoint of reducing the half width of the emission spectrum, improving the stability, and easiness of synthesis including recrystallization purification, at least one or preferably both of R 2 and R 5 are hydrogen atoms. It is preferably a substituted or unsubstituted alkyl group, and it is more preferable that both are hydrogen atoms from the viewpoint of ease of production.
 また、発光効率向上のためには一般式(4)で表される基の回転・振動を抑制し、エネルギー損失を減少させて蛍光量子収率を向上させることが有効である。一般式(4)で表される基の回転・振動を抑制するために、R11およびArは、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基であることがより好ましく、製造容易性の観点からフェニル基、2,6-ジメチルフェニル基、メシチル基、4-tert-ブチルフェニル基、3,5-ジtert-ブチルフェニル基、4-メトキシフェニル基、4-ビフェニル基または1-ナフチル基であることがさらに好ましい。 Further, in order to improve the luminous efficiency, it is effective to suppress the rotation / vibration of the group represented by the general formula (4), reduce the energy loss, and improve the fluorescence quantum yield. In order to suppress the rotation / vibration of the group represented by the general formula (4), it is more preferable that R 11 and Ar 1 are a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. , Phenyl group, 2,6-dimethylphenyl group, mesityl group, 4-tert-butylphenyl group, 3,5-ditert-butylphenyl group, 4-methoxyphenyl group, 4-biphenyl group from the viewpoint of ease of production. Alternatively, it is more preferably a 1-naphthyl group.
 ピロメテン骨格にアリール基やヘテロアリール基を導入するには、例えば、パラジウムなどの金属触媒下で、ピロメテンホウ素錯体のハロゲン化誘導体とボロン酸あるいはボロン酸エステル誘導体とのカップリング反応を用いて炭素-炭素結合を生成する方法が挙げられるが、これに限定されるものではない。同様に、ピロメテン骨格にアミノ基やカルバゾリル基を導入するには、例えば、パラジウムなどの金属触媒下で、ピロメテンホウ素錯体のハロゲン化誘導体とアミンあるいはカルバゾール誘導体とのカップリング反応を用いて炭素-窒素結合を生成する方法が挙げられるが、これに限定されるものではない。 To introduce an aryl group or a heteroaryl group into the pyrromethene skeleton, for example, under a metal catalyst such as palladium, carbon-is used by a coupling reaction between a halogenated derivative of the pyrromethene boron complex and a boronic acid or boronic acid ester derivative. Examples include, but are not limited to, methods of forming carbon bonds. Similarly, to introduce an amino or carbazolyl group into the pyrromethene skeleton, for example, under a metal catalyst such as palladium, carbon-nitrogen using a coupling reaction of a halogenated derivative of the pyrromethene boron complex with an amine or carbazole derivative. Examples include, but are not limited to, methods of generating bonds.
 得られたピロメテンホウ素錯体は、再結晶やカラムクロマトグラフィーなどの有機合成的な精製を行った後、さらに一般的に昇華精製と呼ばれる減圧加熱による精製により低沸点成分を除去し、純度を向上させることが好ましい。昇華精製における加熱温度は特に限定されないが、ピロメテンホウ素錯体の熱分解を防ぐ観点から330℃以下が好ましく、300℃以下がより好ましい。このようにして製造されたピロメテンホウ素錯体の純度は、発光素子が安定した特性を示すことが可能となる観点から99重量%以上であることが好ましい。 The obtained pyromethene boron complex is subjected to organic synthetic purification such as recrystallization and column chromatography, and then the low boiling point component is removed by purification by heating under reduced pressure, which is generally called sublimation purification, to improve the purity. Is preferable. The heating temperature in the sublimation purification is not particularly limited, but is preferably 330 ° C. or lower, more preferably 300 ° C. or lower, from the viewpoint of preventing thermal decomposition of the pyromethene boron complex. The purity of the pyrromethene boron complex produced in this manner is preferably 99% by weight or more from the viewpoint of enabling the light emitting device to exhibit stable characteristics.
 ピロメテンホウ素錯体の光学特性は、希釈溶液の吸収スペクトルおよび発光スペクトルを測定することで得られる。溶媒としては、ピロメテンホウ素錯体を溶解し、かつ溶媒の吸収スペクトルがピロメテンホウ素錯体の吸収スペクトルと重ならない透明なものであれば特に限定されない。具体的にはトルエンなどが例示される。溶液の濃度は十分な吸光度があり、かつ濃度消光が起きない濃度範囲であれば特に限定されないが、1×10-4mol/L~1×10-7mol/Lの範囲であることが好ましく、1×10-5mol/L~1×10-6mol/Lの範囲であることがより好ましい。 The optical properties of the pyrromethene boron complex can be obtained by measuring the absorption spectrum and emission spectrum of the diluted solution. The solvent is not particularly limited as long as it dissolves the pyrromethene boron complex and the absorption spectrum of the solvent is transparent so as not to overlap with the absorption spectrum of the pyromethene boron complex. Specifically, toluene and the like are exemplified. The concentration of the solution is not particularly limited as long as it has sufficient absorbance and does not cause concentration dimming, but it is preferably in the range of 1 × 10 -4 mol / L to 1 × 10 -7 mol / L. More preferably, it is in the range of 1 × 10 -5 mol / L to 1 × 10 -6 mol / L.
 吸収スペクトルは一般的な紫外可視分光光度計により測定できる。また発光スペクトルは一般的な蛍光分光光度計により測定できる。さらに蛍光量子収率の測定には積分球を用いた絶対量子収率測定装置を利用することが好ましい。高色純度を実現するために、ピロメテンホウ素錯体が励起光の照射により発する光の発光スペクトルがシャープであることが好ましい。 The absorption spectrum can be measured with a general ultraviolet-visible spectrophotometer. The emission spectrum can be measured by a general fluorescence spectrophotometer. Further, it is preferable to use an absolute quantum yield measuring device using an integrating sphere for measuring the fluorescence quantum yield. In order to achieve high color purity, it is preferable that the emission spectrum of the light emitted by the pyromethene boron complex by irradiation with excitation light is sharp.
 また表示装置や照明装置で主流となっているトップエミッション素子ではマイクロキャビティ構造による共振効果により高輝度および高色純度を達成できるが、発光スペクトルがシャープであるとこの共振効果がより強く表れ、高効率化に有利である。この観点から、発光スペクトルの半値幅は60nm以下であることが好ましく、50nm以下であることがより好ましく、45nm以下であることがさらに好ましく、28nm以下であることが特に好ましい。 In addition, high brightness and high color purity can be achieved by the resonance effect of the microcavity structure in the top emission element, which is the mainstream in display devices and lighting devices, but when the emission spectrum is sharp, this resonance effect appears more strongly and is high. It is advantageous for efficiency. From this viewpoint, the half width of the emission spectrum is preferably 60 nm or less, more preferably 50 nm or less, further preferably 45 nm or less, and particularly preferably 28 nm or less.
 発光素子の発光効率は、発光材料自身の蛍光量子収率に依存する。そのため発光材料の蛍光量子収率は、可能な限り100%に近いことが望まれる。一般式(2)で表されるピロメテンホウ素錯体は、橋頭位の回転・振動を抑制し、熱失活を減少させることで高い蛍光量子収率を得ることができる。以上の観点から、ピロメテンホウ素錯体の蛍光量子収率は90%以上であることが好ましく、95%以上であることがより好ましい。ただし、ここで示す蛍光量子収率はトルエンを溶媒とした希釈溶液を絶対量子収率測定装置で測定したものである。 The luminous efficiency of the light emitting element depends on the fluorescence quantum yield of the light emitting material itself. Therefore, it is desired that the fluorescence quantum yield of the light emitting material is as close to 100% as possible. The pyromethene boron complex represented by the general formula (2) can obtain a high fluorescence quantum yield by suppressing rotation and vibration at the bridge head position and reducing heat deactivation. From the above viewpoint, the fluorescence quantum yield of the pyrromethene boron complex is preferably 90% or more, more preferably 95% or more. However, the fluorescence quantum yield shown here is obtained by measuring a diluted solution using toluene as a solvent with an absolute quantum yield measuring device.
 なお、第一の化合物が熱活性化遅延蛍光性化合物である場合、発光層にさらに一重項エネルギー(最低励起一重項状態と基底状態とのエネルギー差をいう。以下同じ)が第一の化合物の一重項エネルギーよりも大きい化合物(以下かかる化合物を「第三の化合物」と称することがある)を含ませてもよい。それにより、第三の化合物は発光材料のエネルギーを発光層内に閉じ込める機能を有することができ、効率よく発光させることが可能となる。また、第三の化合物の最低励起三重項エネルギー(最低励起三重項状態と基底状態とのエネルギー差をいう。以下同じ)が第一の化合物の最低励起三重項エネルギーよりも大きいことが好ましい。このような第三の化合物としては、電荷輸送能が高く、かつガラス転移温度が高い有機化合物が好ましい。 When the first compound is a thermally activated delayed fluorescent compound, the light emitting layer further has a singlet energy (meaning the energy difference between the lowest excited singlet state and the ground state; the same applies hereinafter) of the first compound. Compounds larger than the singlet energy (hereinafter, such compounds may be referred to as "third compounds") may be included. As a result, the third compound can have a function of confining the energy of the light emitting material in the light emitting layer, and can efficiently emit light. Further, it is preferable that the lowest excited triplet energy of the third compound (referred to as the energy difference between the lowest excited triplet state and the ground state; the same applies hereinafter) is larger than the lowest excited triplet energy of the first compound. As such a third compound, an organic compound having a high charge transporting ability and a high glass transition temperature is preferable.
 それらの第三の化合物は単一でも2種類以上の材料により構成されていてもよい。第三の化合物として2種類以上の材料を用いる場合には、電子輸送性の第三の化合物と正孔輸送性の第三の化合物の組み合わせであることが好ましい。電子輸送性の第三の化合物と正孔輸送性の第三の化合物を適切な混合比で組み合わせることにより、発光層内の電荷バランスを調整し、発光領域の偏りを抑制することで発光素子の信頼性を向上させ、耐久性を上げることができる。また電子輸送性の第三の化合物と正孔輸送性の第三の化合物との間で励起錯体を形成してもよい。 The third compound may be composed of a single compound or two or more kinds of materials. When two or more kinds of materials are used as the third compound, it is preferable that the third compound has an electron transporting property and the third compound has a hole transporting property. By combining the third compound with electron transporting property and the third compound with hole transporting property at an appropriate mixing ratio, the charge balance in the light emitting layer is adjusted and the bias of the light emitting region is suppressed to suppress the bias of the light emitting device. It can improve reliability and durability. Further, an excited complex may be formed between the electron-transporting third compound and the hole-transporting third compound.
 以上の観点から、第一の化合物と第三の化合物が下記の式1~式4の関係式をそれぞれ満たすことが好ましい。また、式1および式2を満たすことがより好ましく、式3および式4を満たすことがさらに好ましい。また、式1~式4を全て満たすことがよりさらに好ましい。
S1(電子輸送性の第三の化合物)>S1(第一の化合物)(式1)
S1(正孔輸送性の第三の化合物)>S1(第一の化合物)(式2)
T1(電子輸送性の第三の化合物)>T1(第一の化合物)(式3)
T1(正孔輸送性の第三の化合物)>T1(第一の化合物)(式4)
ここで、S1はそれぞれの化合物の最低励起一重項状態のエネルギー準位、T1はそれぞれの化合物の最低励起三重項状態のエネルギー準位を表している。
From the above viewpoint, it is preferable that the first compound and the third compound satisfy the relational expressions of the following formulas 1 to 4, respectively. Further, it is more preferable to satisfy the formulas 1 and 2, and it is further preferable to satisfy the formulas 3 and 4. Further, it is more preferable to satisfy all of the formulas 1 to 4.
S1 (electron-transporting third compound)> S1 (first compound) (formula 1)
S1 (hole transporting third compound)> S1 (first compound) (formula 2)
T1 (electron-transporting third compound)> T1 (first compound) (formula 3)
T1 (hole-transporting third compound)> T1 (first compound) (formula 4)
Here, S1 represents the energy level of the lowest excited singlet state of each compound, and T1 represents the energy level of the lowest excited triplet state of each compound.
 電子輸送性の第三の化合物としては、π電子不足型複素芳香環を含む化合物などが挙げられる。具体的にはポリアゾール骨格を有する複素環化合物、キノキサリン骨格またはジベンゾキノキサリン骨格を有する複素環化合物、ジアジン骨格(ピリミジン骨格やピラジン骨格)を有する複素環化合物、ピリジン骨格を有する複素環化合物が例示される。また上記の正孔輸送性の第三の化合物としてはπ電子過剰型複素芳香環を含む化合物などが挙げられる。具体的にはカルバゾール骨格を有する化合物が例示される。 Examples of the third electron-transporting compound include compounds containing a π-electron-deficient heteroaromatic ring. Specific examples thereof include a heterocyclic compound having a polyazole skeleton, a heterocyclic compound having a quinoxaline skeleton or a dibenzoquinoxaline skeleton, a heterocyclic compound having a diazine skeleton (pyrimidine skeleton or pyrazine skeleton), and a heterocyclic compound having a pyridine skeleton. .. Moreover, as the above-mentioned third hole transporting compound, a compound containing a π-electron excess type heteroaromatic ring and the like can be mentioned. Specifically, a compound having a carbazole skeleton is exemplified.
 以上、前述した本発明の発光素子を構成する上記各層の形成方法は、ドライプロセスまたはウェットプロセスのいずれでもよく、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法、インクジェット法、印刷法など特に限定されないが、通常は、素子特性の点から抵抗加熱蒸着が好ましい。有機層の厚みは、発光物質の抵抗値に依るためとくに限定することはできないが、1~1000nmであることが好ましい。発光層、電子輸送層および正孔輸送層の膜厚は、それぞれ、好ましくは1nm以上200nm以下であり、さらに好ましくは5nm以上100nm以下である。 As described above, the method for forming each of the above-mentioned layers constituting the light emitting device of the present invention may be either a dry process or a wet process, and resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, coating method, inkjet method, printing may be used. Although the method is not particularly limited, resistance heating vapor deposition is usually preferable from the viewpoint of device characteristics. The thickness of the organic layer is not particularly limited because it depends on the resistance value of the luminescent substance, but it is preferably 1 to 1000 nm. The film thicknesses of the light emitting layer, the electron transport layer, and the hole transport layer are preferably 1 nm or more and 200 nm or less, and more preferably 5 nm or more and 100 nm or less, respectively.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定して解釈されるものではない。まず、評価方法について説明する。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not construed as being limited to these. First, the evaluation method will be described.
 (1)核磁気共鳴分析(NMR)
 合成例2において得られた白色固体について、JNM-AL400型核磁気共鳴装置(日本電子社製)を用いて、400 MHz NMRスペクトルを測定した。ケミカルシフトは、テトラメチルシランを基準として、δ(単位:ppm)で表し、シグナルはそれぞれs(一重線)、d(二重線)、t(三重線)、q(四重線)、m(多重線)、br(幅広)、dd(二重二重線)、dt(二重三重線)で表した。また、NMRデータ中に示される溶媒名は、測定に使用した溶媒を示す。
(1) Nuclear Magnetic Resonance Analysis (NMR)
The 400 MHz NMR spectrum of the white solid obtained in Synthesis Example 2 was measured using a JNM-AL400 type nuclear magnetic resonance apparatus (manufactured by JEOL Ltd.). The chemical shift is expressed in δ (unit: ppm) with reference to tetramethylsilane, and the signals are s (single line), d (double line), t (triple line), q (quadruple line), and m, respectively. It was represented by (multiple lines), br (wide), dd (double double lines), and dt (double triple lines). The solvent name shown in the NMR data indicates the solvent used for the measurement.
 (2)粉末X線回折
 各実施例および比較例により得られた白色固体を、粉末X線回折装置(株式会社リガク社;2200/RINT ultima+PC)の試料板(材質:ケイ素;深さ:0.2mm)に充填し、表面を平らにならして測定試料とし、以下の条件で粉末X線回折を測定した。
X線源:CuKα線
*湾曲結晶モノクロメータ(グラファイト)を使用
出力:40kV/50mA
発散スリット:1/2°
発散縦制限スリット:5mm
散乱スリット:1/2°
受光スリット:0.15mm
検出器:シンチレーションカウンタ
スキャン方式:2θ/θスキャン、連続スキャン
測定範囲(2θ):2~30°
スキャン速度(2θ):20°/min
計数ステップ(2θ):0.04° 。
(2) Powder X-ray Diffraction The white solid obtained in each Example and Comparative Example was used as a sample plate (material: silicon; depth: 0. 2 mm) was filled, the surface was flattened to prepare a measurement sample, and powder X-ray diffraction was measured under the following conditions.
X-ray source: CuKα ray * Curved crystal monochromator (graphite) is used Output: 40kV / 50mA
Divergence slit: 1/2 °
Divergence vertical restriction slit: 5 mm
Scattering slit: 1/2 °
Light receiving slit: 0.15 mm
Detector: Scintillation counter Scan method: 2θ / θ scan, continuous scan Measurement range (2θ): 2 to 30 °
Scan speed (2θ): 20 ° / min
Counting step (2θ): 0.04 °.
 (3)吸熱ピーク
 各実施例および比較例により得られた白色固体について、示差熱熱重量同時測定装置(TG-DTA装置。株式会社リガク社;TG8120 Smart Loader)を用いて、示差熱熱重量同時測定を行い、DTA曲線が示すピークトップの温度を吸熱ピークとした。
昇温速度:5℃/分
雰囲気:乾燥窒素(流量:100mL/min)
試料セル:アルミニウムオープンセル
試料量:5~15mg。
(3) Endothermic peak For the white solids obtained in each Example and Comparative Example, a differential thermal thermal weight simultaneous measurement device (TG-DTA device; Rigaku Co., Ltd .; TG8120 Smart Roader) was used to simultaneously display the differential thermal weight. The measurement was performed, and the temperature of the peak top indicated by the DTA curve was defined as the endothermic peak.
Temperature rise rate: 5 ° C / min Atmosphere: Dry nitrogen (flow rate: 100 mL / min)
Sample cell: Aluminum open cell Sample amount: 5 to 15 mg.
 (4)化学純度
 各実施例および比較例により得られた白色固体について、高速液体クロマトグラフィー(以下、HPLC)を用いて、化学純度の測定を行い、ブランクピークおよび残留溶媒ピークを除く全ピークに対する測定対象ピークの面積百分率を化学純度とした。また、HPLC分析用試料は、各実施例および比較例により得られた白色固体4mgをテトラヒドロフラン40mLに溶解して調製した。
HPLC:LC-2010CHT(株式会社島津製作所)
検出:UV(254nm)
カラム:Mightysil RP-8GP(関東化学株式会社)
カラムサイズ:250×4.6mm(5μm)
カラム温度:45℃
移動相:A液 0.1%リン酸水溶液(重量比)
    B液 アセトニトリル/テトラヒドロフラン=80/20(体積比)
展開条件:A/B=55/45→0/100(体積比);0→25分、リニアグラジエント
     A/B=0/100(体積比);25→30分、一定
     A/B=0/100→55/45(体積比);30→31分、リニアグラジエント
     A/B=55/45(体積比)、31→35分、一定
流速:1.0mL/分
注入量:10μL。
(4) Chemical Purity For the white solids obtained in each Example and Comparative Example, the chemical purity was measured using high performance liquid chromatography (hereinafter referred to as HPLC), and for all peaks except blank peaks and residual solvent peaks. The area percentage of the peak to be measured was taken as the chemical purity. The sample for HPLC analysis was prepared by dissolving 4 mg of the white solid obtained in each Example and Comparative Example in 40 mL of tetrahydrofuran.
HPLC: LC-2010CHT (Shimadzu Corporation)
Detection: UV (254 nm)
Column: Mightysil RP-8GP (Kanto Chemical Co., Inc.)
Column size: 250 x 4.6 mm (5 μm)
Column temperature: 45 ° C
Mobile phase: Liquid A 0.1% aqueous phosphoric acid solution (weight ratio)
Liquid B Acetonitrile / tetrahydrofuran = 80/20 (volume ratio)
Deployment conditions: A / B = 55/45 → 0/100 (volume ratio); 0 → 25 minutes, linear gradient A / B = 0/100 (volume ratio); 25 → 30 minutes, constant A / B = 0 / 100 → 55/45 (volume ratio); 30 → 31 minutes, linear gradient A / B = 55/45 (volume ratio), 31 → 35 minutes, constant flow rate: 1.0 mL / min Injection volume: 10 μL.
 (5)残留溶媒量
 各実施例および比較例により得られた白色固体について、NMR測定を行い、測定対象化合物および残留溶媒のそれぞれ任意のピーク積分値からモル比率を算出し、各実施例および比較例により得られた白色固体の重量およびモル比率から残留溶媒量を算出した。なお、残留溶媒が複数確認された場合にはそれらの合計値として算出した。
(5) Residual solvent amount The white solid obtained in each Example and Comparative Example was subjected to NMR measurement, and the molar ratio was calculated from the respective peak integrated values of the compound to be measured and the residual solvent, and compared with each Example. The amount of residual solvent was calculated from the weight and molar ratio of the white solid obtained by the example. When a plurality of residual solvents were confirmed, they were calculated as the total value.
 つぎに、本発明の結晶の前駆物質の合成例、本発明の結晶作製の実施例および比較例と、それらの評価結果について説明する。 Next, an example of synthesizing the precursor of the crystal of the present invention, an example of producing the crystal of the present invention and a comparative example, and their evaluation results will be described.
 (合成例1)2-フェニル-1,10-フェナントロリンの合成:
 アルゴン雰囲気下、1,10-フェナントロリン(9.64g)のトルエン(250mL)溶液に、フェニルリチウム溶液(1.07M、100mL)を加え、0℃で1.5時間撹拌した。続いて反応混合物に水(150mL)を加え、ジクロロメタン(200mL)で3回抽出後、有機層を飽和食塩水(150mL)で洗浄し、有機層を濃縮した。得られた濃縮物のジクロロメタン(300mL)溶液に、二酸化マンガン(93g)を加え、室温で56時間撹拌した。続いて反応混合物をろ過し、残渣をジクロロメタン(500mL)で洗浄後、ろ液と洗浄液を合わせて濃縮した。得られた濃縮物を酢酸エチル(30mL)に懸濁し、0℃で撹拌した。析出物をろ過後、80℃で減圧乾燥し、2-フェニル-1,10-フェナントロリン9.44gを白色固体として得た。
(Synthesis Example 1) Synthesis of 2-Phenyl-1,10-phenanthroline:
A phenyllithium solution (1.07 M, 100 mL) was added to a toluene (250 mL) solution of 1,10-phenanthroline (9.64 g) under an argon atmosphere, and the mixture was stirred at 0 ° C. for 1.5 hours. Subsequently, water (150 mL) was added to the reaction mixture, the mixture was extracted three times with dichloromethane (200 mL), the organic layer was washed with saturated brine (150 mL), and the organic layer was concentrated. Manganese dioxide (93 g) was added to a solution of the obtained concentrate in dichloromethane (300 mL), and the mixture was stirred at room temperature for 56 hours. Subsequently, the reaction mixture was filtered, and the residue was washed with dichloromethane (500 mL), and then the filtrate and the washing liquid were combined and concentrated. The resulting concentrate was suspended in ethyl acetate (30 mL) and stirred at 0 ° C. The precipitate was filtered and dried under reduced pressure at 80 ° C. to obtain 9.44 g of 2-phenyl-1,10-phenanthroline as a white solid.
 (合成例2)1,3-ビス(9-フェニル-1,10-フェナントロリン-2-イル)ベンゼンの合成:
 アルゴン雰囲気下、1,3-ジブロモベンゼン(1.2mL)のn-ヘキサン(35mL)溶液に、n-ブチルリチウム(1.52M、17mL)を加え、還流下1時間撹拌した。続いて反応混合物を0℃に冷却後、2-フェニル-1,10-フェナントロリン(5.10g)のテトラヒドロフラン(100mL)溶液を加え、0℃で2時間撹拌した。続いて反応混合物に水(100mL)を加え、ジクロロメタン(150mL)で3回抽出後、有機層を飽和食塩水(150mL)で洗浄し、有機層を濃縮した。得られた濃縮物のジクロロメタン(180mL)溶液に、二酸化マンガン(34.8g)を加え、室温で12時間撹拌した。続いて反応混合物をろ過し、残渣をジクロロメタン(750mL)で洗浄後、ろ液と洗浄液を合わせて濃縮した。
(Synthesis Example 2) Synthesis of 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene:
Under an argon atmosphere, n-butyllithium (1.52M, 17 mL) was added to a solution of 1,3-dibromobenzene (1.2 mL) in n-hexane (35 mL), and the mixture was stirred under reflux for 1 hour. Subsequently, the reaction mixture was cooled to 0 ° C., a solution of 2-phenyl-1,10-phenanthroline (5.10 g) in tetrahydrofuran (100 mL) was added, and the mixture was stirred at 0 ° C. for 2 hours. Subsequently, water (100 mL) was added to the reaction mixture, the mixture was extracted three times with dichloromethane (150 mL), the organic layer was washed with saturated brine (150 mL), and the organic layer was concentrated. Manganese dioxide (34.8 g) was added to a solution of the obtained concentrate in dichloromethane (180 mL), and the mixture was stirred at room temperature for 12 hours. Subsequently, the reaction mixture was filtered, and the residue was washed with dichloromethane (750 mL), and then the filtrate and the washing liquid were combined and concentrated.
 得られた濃縮物をジクロロメタン/クロロホルム混合溶液(体積比1/10、85mL)に懸濁し、0℃で撹拌した。析出物をろ過後、100℃で減圧乾燥し、1,3-ビス(9-フェニル-1,10-フェナントロリン-2-イル)ベンゼン3.25gを白色固体として得た。得られた化合物のNMRケミカルシフトを以下に示す。
1H-NMR(CDCl,ppm):9.75(s,1H)、8.72(dd,2H)、8.57-8.17(m,12H)、7.90-7.82(m,5H)、7.61-7.48(m,6H)。
The obtained concentrate was suspended in a mixed solution of dichloromethane / chloroform (volume ratio 1/10, 85 mL) and stirred at 0 ° C. The precipitate was filtered and dried under reduced pressure at 100 ° C. to obtain 3.25 g of 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene as a white solid. The NMR chemical shift of the obtained compound is shown below.
1H-NMR (CDCl 3 , ppm): 9.75 (s, 1H), 8.72 (dd, 2H), 8.57-8.17 (m, 12H), 7.90-7.82 (m) , 5H), 7.61-7.48 (m, 6H).
 (実施例1)
 アルゴン雰囲気下、合成例2により得られた1,3-ビス(9-フェニル-1,10-フェナントロリン-2-イル)ベンゼン(1.28g)に、1,3-ジメチル-2-イミダゾリジノン(4.9mL、比重1.05)、トルエン(8.7mL、比重0.86)を加え、110℃で0.5時間撹拌した。続いて1時間かけて0℃まで冷却後、0℃で1時間撹拌した。析出物をろ過後、20℃で減圧乾燥し、得られた析出物に、テトラヒドロフラン(16.7mL、比重0.89)を加え、2時間加熱還流撹拌した。続いて1時間かけて0℃まで冷却後、0℃で1時間撹拌した。析出物をろ過後、100℃で減圧乾燥し、白色固体を得た(収量0.71g、回収率55%)。
(Example 1)
Under an argon atmosphere, 1,3-dimethyl-2-imidazolidinone was added to 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene (1.28 g) obtained in Synthesis Example 2. (4.9 mL, specific density 1.05) and toluene (8.7 mL, specific density 0.86) were added, and the mixture was stirred at 110 ° C. for 0.5 hours. Subsequently, the mixture was cooled to 0 ° C. over 1 hour and then stirred at 0 ° C. for 1 hour. The precipitate was filtered and dried under reduced pressure at 20 ° C., tetrahydrofuran (16.7 mL, specific density 0.89) was added to the obtained precipitate, and the mixture was heated under reflux and stirred for 2 hours. Subsequently, the mixture was cooled to 0 ° C. over 1 hour and then stirred at 0 ° C. for 1 hour. The precipitate was filtered and dried under reduced pressure at 100 ° C. to obtain a white solid (yield 0.71 g, recovery rate 55%).
 得られた白色固体について、前述の方法により粉末X線回折および吸熱ピークの測定を行ったところ、測定結果は以下のとおりであり、B形結晶であることが確認できた。粉末X線回折図を図1に、示差熱分析曲線を図2に、それぞれ示す。
回折角2θ(°):6.7、8.2、13.7、17.7、22.2
吸熱ピーク:182℃
 また、前述の方法により化学純度および残留溶媒量を評価した結果を表1に示す。
When the powder X-ray diffraction and the endothermic peak were measured for the obtained white solid by the above-mentioned method, the measurement results were as follows, and it was confirmed that the white solid was a B-type crystal. The powder X-ray diffraction pattern is shown in FIG. 1, and the differential thermal analysis curve is shown in FIG. 2, respectively.
Diffraction angle 2θ (°): 6.7, 8.2, 13.7, 17.7, 22.2
Endothermic peak: 182 ° C
Table 1 shows the results of evaluating the chemical purity and the amount of residual solvent by the above-mentioned method.
 (実施例2)
 アルゴン雰囲気下、合成例2により得られた1,3-ビス(9-フェニル-1,10-フェナントロリン-2-イル)ベンゼン(0.97g)に、1,3-ジメチル-2-イミダゾリジノン(2.2mL、比重1.05)、トルエン(6.6mL、比重0.86)を加え、120℃で0.5時間撹拌した。続いて3時間かけて0℃まで冷却後、0℃で2時間撹拌した。析出物をろ過後、100℃で減圧乾燥し、得られた析出物に、テトラヒドロフラン(7.7mL、比重0.89)を加え、2時間加熱還流撹拌した。続いて3時間かけて0℃まで冷却後、0℃で2時間撹拌した。析出物をろ過後、100℃で減圧乾燥し、白色固体を得た(収量0.70g、回収率72%)。
(Example 2)
Under an argon atmosphere, 1,3-dimethyl-2-imidazolidinone was added to 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene (0.97 g) obtained in Synthesis Example 2. (2.2 mL, specific gravity 1.05) and toluene (6.6 mL, specific density 0.86) were added, and the mixture was stirred at 120 ° C. for 0.5 hours. Subsequently, the mixture was cooled to 0 ° C. over 3 hours and then stirred at 0 ° C. for 2 hours. The precipitate was filtered and dried under reduced pressure at 100 ° C., tetrahydrofuran (7.7 mL, specific gravity 0.89) was added to the obtained precipitate, and the mixture was heated under reflux and stirred for 2 hours. Subsequently, the mixture was cooled to 0 ° C. over 3 hours and then stirred at 0 ° C. for 2 hours. The precipitate was filtered and dried under reduced pressure at 100 ° C. to obtain a white solid (yield 0.70 g, recovery rate 72%).
 得られた白色固体について、前述の方法により粉末X線回折および吸熱ピークの測定を行ったところ、測定結果は以下のとおりであり、B形結晶であることが確認できた。
回折角2θ(°):6.7、8.2、13.7、17.7、22.2
吸熱ピーク:182℃
 また、前述の方法により化学純度および残留溶媒量を評価した結果を表1に示す。
When the powder X-ray diffraction and the endothermic peak were measured for the obtained white solid by the above-mentioned method, the measurement results were as follows, and it was confirmed that the white solid was a B-type crystal.
Diffraction angle 2θ (°): 6.7, 8.2, 13.7, 17.7, 22.2
Endothermic peak: 182 ° C
Table 1 shows the results of evaluating the chemical purity and the amount of residual solvent by the above-mentioned method.
 (実施例3)
 アルゴン雰囲気下、合成例2により得られた1,3-ビス(9-フェニル-1,10-フェナントロリン-2-イル)ベンゼン(0.30g)に、1,3-ジメチル-2-イミダゾリジノン(1.1mL、比重1.05)、アニソール(2.1mL、比重0.99)を加え、100℃で0.5時間撹拌した。続いて1時間かけて0℃まで冷却後、0℃で2時間撹拌した。析出物をろ過後、100℃で減圧乾燥し、白色固体を得た(収量0.24g、回収率80%)。
(Example 3)
Under an argon atmosphere, 1,3-dimethyl-2-imidazolidinone was added to 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene (0.30 g) obtained in Synthesis Example 2. (1.1 mL, specific gravity 1.05) and anisole (2.1 mL, specific gravity 0.99) were added, and the mixture was stirred at 100 ° C. for 0.5 hours. Subsequently, the mixture was cooled to 0 ° C. over 1 hour and then stirred at 0 ° C. for 2 hours. The precipitate was filtered and dried under reduced pressure at 100 ° C. to obtain a white solid (yield 0.24 g, recovery rate 80%).
 得られた白色固体について、前述の方法により粉末X線回折および吸熱ピークの測定を行ったところ、測定結果は以下のとおりであり、C形結晶であることが確認できた。粉末X線回折図を図3に、示差熱分析曲線を図4に、それぞれ示す。
回折角2θ(°):5.0、7.5、8.7、12.5、17.3
吸熱ピーク:245℃
 また、前述の方法により化学純度および残留溶媒量を評価した結果を表1に示す。
When the powder X-ray diffraction and the endothermic peak were measured for the obtained white solid by the above-mentioned method, the measurement results were as follows, and it was confirmed that the white solid was a C-shaped crystal. The powder X-ray diffraction pattern is shown in FIG. 3, and the differential thermal analysis curve is shown in FIG. 4, respectively.
Diffraction angle 2θ (°): 5.0, 7.5, 8.7, 12.5, 17.3
Endothermic peak: 245 ° C
Table 1 shows the results of evaluating the chemical purity and the amount of residual solvent by the above-mentioned method.
 (実施例4)
 アルゴン雰囲気下、合成例2により得られた1,3-ビス(9-フェニル-1,10-フェナントロリン-2-イル)ベンゼン(0.30g)に、N-メチルピロリドン(1.1mL、比重1.03)、アニソール(2.1mL、比重0.99)を加え、100℃で0.5時間撹拌した。続いて1時間かけて0℃まで冷却後、0℃で2時間撹拌した。析出物をろ過後、100℃で減圧乾燥し、白色固体を得た(収量0.23g、回収率77%)。
(Example 4)
N-methylpyrrolidone (1.1 mL, specific density 1) was added to 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene (0.30 g) obtained in Synthesis Example 2 under an argon atmosphere. .03) and anisole (2.1 mL, specific density 0.99) were added, and the mixture was stirred at 100 ° C. for 0.5 hours. Subsequently, the mixture was cooled to 0 ° C. over 1 hour and then stirred at 0 ° C. for 2 hours. The precipitate was filtered and dried under reduced pressure at 100 ° C. to obtain a white solid (yield 0.23 g, recovery rate 77%).
 得られた白色固体について、前述の方法により粉末X線回折および吸熱ピークの測定を行ったところ、測定結果は以下のとおりであり、C形結晶であることが確認できた。
回折角2θ(°):5.0、7.5、8.7、12.5、17.3
吸熱ピーク:245℃
 また、前述の方法により化学純度および残留溶媒量を評価した結果を表1に示す。
When the powder X-ray diffraction and the endothermic peak were measured for the obtained white solid by the above-mentioned method, the measurement results were as follows, and it was confirmed that the white solid was a C-shaped crystal.
Diffraction angle 2θ (°): 5.0, 7.5, 8.7, 12.5, 17.3
Endothermic peak: 245 ° C
Table 1 shows the results of evaluating the chemical purity and the amount of residual solvent by the above-mentioned method.
 (実施例5)
 アルゴン雰囲気下、合成例2により得られた1,3-ビス(9-フェニル-1,10-フェナントロリン-2-イル)ベンゼン(0.30g)に、N,N-ジメチルアセトアミド(1.1mL、比重0.94)、アニソール(2.1mL、比重0.99)を加え、100℃で0.5時間撹拌した。続いて1時間かけて0℃まで冷却後、0℃で2時間撹拌した。析出物をろ過後、100℃で減圧乾燥し、白色固体を得た(収量0.25g、回収率83%)。
(Example 5)
Under an argon atmosphere, N, N-dimethylacetamide (1.1 mL,) was added to 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene (0.30 g) obtained in Synthesis Example 2. Anisole (2.1 mL, specific gravity 0.99) was added, and the mixture was stirred at 100 ° C. for 0.5 hours. Subsequently, the mixture was cooled to 0 ° C. over 1 hour and then stirred at 0 ° C. for 2 hours. The precipitate was filtered and dried under reduced pressure at 100 ° C. to obtain a white solid (yield 0.25 g, recovery rate 83%).
 得られた白色固体について、前述の方法により粉末X線回折および吸熱ピークの測定を行ったところ、測定結果は以下のとおりであり、C形結晶であることが確認できた。
回折角2θ(°):5.0、7.5、8.7、12.5、17.3
吸熱ピーク:245℃
 また、前述の方法により化学純度および残留溶媒量を評価した結果を表1に示す。
When the powder X-ray diffraction and the endothermic peak were measured for the obtained white solid by the above-mentioned method, the measurement results were as follows, and it was confirmed that the white solid was a C-shaped crystal.
Diffraction angle 2θ (°): 5.0, 7.5, 8.7, 12.5, 17.3
Endothermic peak: 245 ° C
Table 1 shows the results of evaluating the chemical purity and the amount of residual solvent by the above-mentioned method.
 (実施例6)
 アルゴン雰囲気下、合成例2により得られた1,3-ビス(9-フェニル-1,10-フェナントロリン-2-イル)ベンゼン(0.30g)に、1,3-ジメチル-2-イミダゾリジノン(1.1mL、比重1.05)、アニソール(2.1mL、比重0.99)を加え、100℃で0.5時間撹拌した。続いて4時間かけて0℃まで冷却後、0℃で2時間撹拌した。析出物をろ過後、25℃で減圧乾燥し、白色固体を得た(収量0.30g、回収率100%)。
(Example 6)
Under an argon atmosphere, 1,3-dimethyl-2-imidazolidinone was added to 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene (0.30 g) obtained in Synthesis Example 2. (1.1 mL, specific gravity 1.05) and anisole (2.1 mL, specific gravity 0.99) were added, and the mixture was stirred at 100 ° C. for 0.5 hours. Subsequently, the mixture was cooled to 0 ° C. over 4 hours and then stirred at 0 ° C. for 2 hours. The precipitate was filtered and dried under reduced pressure at 25 ° C. to obtain a white solid (yield 0.30 g, recovery rate 100%).
 得られた白色固体について、前述の方法により粉末X線回折および吸熱ピークの測定を行ったところ、測定結果は以下のとおりであり、E形結晶であることが確認できた。粉末X線回折図を図5に、示差熱分析曲線を図6に、それぞれ示す。
回折角2θ(°):5.2、7.0、16.4、20.0、23.6
吸熱ピーク:96℃
 アルゴン雰囲気下、前記情報により得られた1,3-ビス(9-フェニル-1,10-フェナントロリン-2-イル)ベンゼン(0.15g)を、100℃で減圧乾燥し、白色固体を得た(収量0.12g、回収率80%)。
When the powder X-ray diffraction and the endothermic peak were measured for the obtained white solid by the above-mentioned method, the measurement results were as follows, and it was confirmed that the white solid was an E-type crystal. The powder X-ray diffraction pattern is shown in FIG. 5, and the differential thermal analysis curve is shown in FIG. 6, respectively.
Diffraction angle 2θ (°): 5.2, 7.0, 16.4, 20.0, 23.6
Endothermic peak: 96 ° C
Under an argon atmosphere, 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene (0.15 g) obtained from the above information was dried under reduced pressure at 100 ° C. to obtain a white solid. (Yield 0.12 g, recovery rate 80%).
 得られた白色固体について、前述の方法により粉末X線回折および吸熱ピークの測定を行ったところ、測定結果は以下のとおりであり、C形結晶であることが確認できた。
回折角2θ(°):5.0、7.5、8.7、12.5、17.3
吸熱ピーク:245℃
 また、前述の方法により化学純度および残留溶媒量を評価した結果を表2に示す。
When the powder X-ray diffraction and the endothermic peak were measured for the obtained white solid by the above-mentioned method, the measurement results were as follows, and it was confirmed that the white solid was a C-shaped crystal.
Diffraction angle 2θ (°): 5.0, 7.5, 8.7, 12.5, 17.3
Endothermic peak: 245 ° C
Table 2 shows the results of evaluating the chemical purity and the amount of residual solvent by the above-mentioned method.
 (比較例1)
 アルゴン雰囲気下、合成例2により得られた1,3-ビス(9-フェニル-1,10-フェナントロリン-2-イル)ベンゼン(0.30g)に、1,3-ジメチル-2-イミダゾリジノン(0.9mL、比重1.05)、アニソール(2.1mL、比重0.99)を加え、100℃で0.5時間撹拌した。続いて1時間かけて0℃まで冷却後、0℃で2時間撹拌した。析出物をろ過後、100℃で減圧乾燥し、白色固体を得た(収量0.27g、回収率90%)。
(Comparative Example 1)
Under an argon atmosphere, 1,3-dimethyl-2-imidazolidinone was added to 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene (0.30 g) obtained in Synthesis Example 2. (0.9 mL, specific gravity 1.05) and anisole (2.1 mL, specific density 0.99) were added, and the mixture was stirred at 100 ° C. for 0.5 hours. Subsequently, the mixture was cooled to 0 ° C. over 1 hour and then stirred at 0 ° C. for 2 hours. The precipitate was filtered and dried under reduced pressure at 100 ° C. to obtain a white solid (yield 0.27 g, recovery rate 90%).
 得られた白色固体について、前述の方法により粉末X線回折および吸熱ピークの測定を行ったところ、測定結果は以下のとおりであり、B形結晶やC形結晶とは異なる結晶形(「D形結晶」と称する)であることが確認できた。粉末X線回折図を図7に、示差熱分析曲線を図8に、それぞれ示す。
回折角2θ(°):4.8、7.2、9.5、22.9,27.6
吸熱ピーク:173℃
 また、前述の方法により化学純度および残留溶媒量を評価した結果を表2に示す。
When the powder X-ray diffraction and the endothermic peak were measured for the obtained white solid by the above-mentioned method, the measurement results are as follows, and the crystal form different from the B-type crystal and the C-type crystal (“D-type”). It was confirmed that it was called "crystal"). The powder X-ray diffraction pattern is shown in FIG. 7, and the differential thermal analysis curve is shown in FIG. 8, respectively.
Diffraction angle 2θ (°): 4.8, 7.2, 9.5, 22.9, 27.6
Endothermic peak: 173 ° C
Table 2 shows the results of evaluating the chemical purity and the amount of residual solvent by the above-mentioned method.
 (比較例2)
 アルゴン雰囲気下、合成例2により得られた1,3-ビス(9-フェニル-1,10-フェナントロリン-2-イル)ベンゼン(0.70g)に、メタノール(18mL、比重0.79)を加え、20℃で2時間撹拌した。析出物をろ過後、100℃で減圧乾燥し、白色固体を得た(収量0.67g、回収率96%)。得られた白色固体について、前述の方法により粉末X線回折の測定を行った。測定結果を図9に示す。図9に示す通り、特徴的な回折ピークは認められず、非晶質であった。また、前述の方法により化学純度および残留溶媒量を評価した結果を表2に示す。
(Comparative Example 2)
Under an argon atmosphere, methanol (18 mL, specific density 0.79) was added to 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene (0.70 g) obtained in Synthesis Example 2. , Stirred at 20 ° C. for 2 hours. The precipitate was filtered and dried under reduced pressure at 100 ° C. to obtain a white solid (yield 0.67 g, recovery rate 96%). The powder X-ray diffraction of the obtained white solid was measured by the above-mentioned method. The measurement results are shown in FIG. As shown in FIG. 9, no characteristic diffraction peak was observed, and it was amorphous. Table 2 shows the results of evaluating the chemical purity and the amount of residual solvent by the above-mentioned method.
 (比較例3)
 合成例2により得られた1,3-ビス(9-フェニル-1,10-フェナントロリン-2-イル)ベンゼンについて、前述の方法により粉末X線回折の測定を行ったところ、比較例2と同様に、特徴的な回折ピークは認められず、非晶質であった。また、前述の方法により化学純度および残留溶媒量を評価した結果を表2に示す。実施例1~7および比較例1~3の主な製法と評価結果を表1および2に示す。
(Comparative Example 3)
When the powder X-ray diffraction of 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene obtained in Synthesis Example 2 was measured by the above-mentioned method, it was the same as in Comparative Example 2. No characteristic diffraction peak was observed, and it was amorphous. Table 2 shows the results of evaluating the chemical purity and the amount of residual solvent by the above-mentioned method. Tables 1 and 2 show the main production methods and evaluation results of Examples 1 to 7 and Comparative Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表1および表2に示す通り、従来の方法で合成されたフェナントロリン誘導体やメタノール溶媒で洗浄したフェナントロリン誘導体は、非晶質であり、残留溶媒量は少ないものの、化学純度が低いことがわかった。一方、比較例1のD形結晶は、化学純度は高いものの、残留溶媒量が多いことから、化学純度が高く、残留溶媒量が少ないフェナントロリン誘導体を得るには、非晶質を結晶化させるのみでは不十分であり、残留溶媒量が少ないB形結晶またはC形結晶を選択する必要があることがわかった。また、実施例6において、E形結晶は100℃減圧乾燥条件において容易に結晶多形転移が進行することから、E形結晶は低温乾燥によりC形結晶を得るための前駆体として有用であることがわかった。 As shown in Tables 1 and 2, it was found that the phenanthroline derivative synthesized by the conventional method and the phenanthroline derivative washed with a methanol solvent are amorphous and have a small amount of residual solvent, but have low chemical purity. On the other hand, the D-type crystal of Comparative Example 1 has a high chemical purity but a large amount of residual solvent. Therefore, in order to obtain a phenanthroline derivative having a high chemical purity and a small amount of residual solvent, only the amorphous crystal is crystallized. Was insufficient, and it was found that it was necessary to select B-type crystals or C-type crystals with a small amount of residual solvent. Further, in Example 6, since the crystal polymorphic transition easily proceeds in the E-type crystal under the conditions of drying under reduced pressure at 100 ° C., the E-type crystal is useful as a precursor for obtaining the C-type crystal by low-temperature drying. I understood.
 次に、前述のB形結晶またはC形結晶を用いて電子輸送層を形成し、発光層として熱活性化遅延蛍光材料を用いた発光素子の実施例および比較例について説明する。 Next, examples and comparative examples of a light emitting device in which an electron transport layer is formed using the above-mentioned B-type crystal or C-type crystal and a thermally activated delayed fluorescent material is used as the light-emitting layer will be described.
 なお、下記の実施例および比較例において使用したピロメテンホウ素錯体化合物は、以下に示す化合物である。その特性を表3に示す。 The pyrromethene boron complex compound used in the following Examples and Comparative Examples is the compound shown below. The characteristics are shown in Table 3.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 (実施例7)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間紫外線-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CN6を10nm、正孔輸送層として、HT-1を180nm蒸着した。次に、発光層として、ホスト材料であるH-1と、ドーパント化合物である化合物D-1と、TADF材料である化合物H-2とを、重量比で80:1:19になるようにして、40nmの厚さに蒸着した。さらに電子輸送層として、フェナントロリン誘導体である化合物ET-1の結晶(C形結晶)を用いて35nmの厚さに蒸着を行って積層した。次に、電子注入層として2E-1を0.5nm蒸着した後、マグネシウムと銀を1000nm共蒸着して陰極とし、5×5mm角の素子を作製した。
(Example 7)
A glass substrate (manufactured by Geomatec Co., Ltd., 11Ω / □, sputtered product) on which an ITO transparent conductive film was deposited at 165 nm was cut into a size of 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with "Semicoclean 56" (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then washed with ultrapure water. This substrate was subjected to ultraviolet-ozone treatment for 1 hour immediately before the device was manufactured, placed in a vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 -4 Pa or less. By the resistance heating method, HAT-CN6 was first deposited at 10 nm as a hole injection layer, and HT-1 was deposited at 180 nm as a hole transport layer. Next, as the light emitting layer, H-1 which is a host material, compound D-1 which is a dopant compound, and compound H-2 which is a TADF material are arranged in a weight ratio of 80: 1: 19. , 40 nm thick. Further, as an electron transport layer, a crystal (C-type crystal) of compound ET-1, which is a phenanthroline derivative, was used to deposit and laminate a thickness of 35 nm. Next, after depositing 2E-1 at 0.5 nm as an electron injection layer, magnesium and silver were co-deposited at 1000 nm to form a cathode, and a 5 × 5 mm square element was manufactured.
 この発光素子を1000cd/mで発光させた時の外部量子効率11.4%であった。なお、HAT-CN6、HT-1、H-1、H-2、ET-1、2E-1の構造を下記に示す。 The external quantum efficiency was 11.4% when this light emitting device was made to emit light at 1000 cd / m 2. The structures of HAT-CN6, HT-1, H-1, H-2, ET-1, and 2E-1 are shown below.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 (実施例8~10)
 フェナントロリン誘導体であるET-1の結晶形として表1に記載した結晶形の結晶を用い、発光層のドーパント材料として表3に記載した化合物を用いた以外は実施例7と同様にして発光素子を作製し、評価した。結果を表4に示す。
(Examples 8 to 10)
A light emitting device was used in the same manner as in Example 7 except that the crystals in the crystal form shown in Table 1 were used as the crystal form of the phenanthroline derivative ET-1 and the compounds shown in Table 3 were used as the dopant material for the light emitting layer. Made and evaluated. The results are shown in Table 4.
 (実施例11)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間紫外線-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CN6を10nm、正孔輸送層として、HT-1を40nm蒸着した。次に、発光層として、ホスト材料であるH-1と、ドーパント化合物である化合物D-6と、TADF材料である化合物H-3とを、重量比で80:1:19になるようにして、30nmの厚さに蒸着した。さらに電子輸送層として、フェナントロリン誘導体である化合物ET-1の結晶(C形結晶)を用いて50nmの厚さに蒸着を積層した。次に、電子注入層として2E-1を0.5nm蒸着した後、マグネシウムと銀を1000nm共蒸着して陰極とし、5×5mm角の素子を作製した。
(Example 11)
A glass substrate (manufactured by Geomatec Co., Ltd., 11Ω / □, sputtered product) on which an ITO transparent conductive film was deposited at 165 nm was cut into a size of 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with "Semicoclean 56" (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then washed with ultrapure water. This substrate was subjected to ultraviolet-ozone treatment for 1 hour immediately before the device was manufactured, placed in a vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 -4 Pa or less. By the resistance heating method, HAT-CN6 was first deposited at 10 nm as a hole injection layer, and HT-1 was deposited at 40 nm as a hole transport layer. Next, as the light emitting layer, H-1 which is a host material, compound D-6 which is a dopant compound, and compound H-3 which is a TADF material are arranged in a weight ratio of 80: 1: 19. , 30 nm thick vapor deposition. Further, as an electron transport layer, a crystal (C-type crystal) of the compound ET-1 which is a phenanthroline derivative was used, and thin-film deposition was laminated to a thickness of 50 nm. Next, after depositing 2E-1 at 0.5 nm as an electron injection layer, magnesium and silver were co-deposited at 1000 nm to form a cathode, and a 5 × 5 mm square element was manufactured.
 この発光素子を1000cd/mで発光させた時の外部量子効率9.2%であった。なお、H-3の構造を下記に示す。 The external quantum efficiency was 9.2% when this light emitting device was made to emit light at 1000 cd / m 2. The structure of H-3 is shown below.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 (実施例12~14)
 フェナントロリン誘導体であるET-1の結晶形として表1に記載した結晶形の結晶を用い、発光層のドーパント材料として表3に記載した化合物を用いた以外は、実施例11と同様にして発光素子を作製し、評価した。結果を表4に示す。
(Examples 12 to 14)
A light emitting device in the same manner as in Example 11 except that the crystals in the crystal form shown in Table 1 were used as the crystal form of the phenanthroline derivative ET-1 and the compounds shown in Table 3 were used as the dopant material for the light emitting layer. Was prepared and evaluated. The results are shown in Table 4.
 (比較例4、5)
 フェナントロリン誘導体であるET-1の結晶形として表2に記載した結晶形のものを用い、発光層のドーパント材料として表3に記載した化合物を用いた以外は、実施例7と同様にして発光素子を作製し、評価した。結果を表4に示す。
(Comparative Examples 4 and 5)
The light emitting device was used in the same manner as in Example 7 except that the crystalline form of ET-1 which is a phenanthroline derivative was used as the crystal form shown in Table 2 and the compound shown in Table 3 was used as the dopant material of the light emitting layer. Was prepared and evaluated. The results are shown in Table 4.
 (比較例6、7)
 フェナントロリン誘導体であるET-1の結晶形として表2に記載した結晶形のものを用い、発光層のドーパント材料として表3に記載した化合物を用いた以外は、実施例11と同様にして発光素子を作製し、評価した。結果を表4に示す。
(Comparative Examples 6 and 7)
The light emitting device was used in the same manner as in Example 11 except that the crystalline form of ET-1 which is a phenanthroline derivative was used as the crystal form shown in Table 2 and the compound shown in Table 3 was used as the dopant material of the light emitting layer. Was prepared and evaluated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表4より、実施例7~14は、同じ発光層を用いている比較例4~7に比べて、いずれも外部量子効率が高いことが分かる。すなわち、表4を参照して分かるように、電子輸送材料に化合物ET-1のB形結晶またはC形結晶を用いている実施例7~14では、電子輸送材料に化合物ET-1のD形結晶または非晶質を用いている比較例4~7と比べて、いずれの熱活性化遅延蛍光材料を発光層に用いた場合でも、外部量子効率が大幅に向上する発光素子を得られることがわかった。 From Table 4, it can be seen that Examples 7-14 have higher external quantum efficiencies than Comparative Examples 4 to 7 using the same light emitting layer. That is, as can be seen with reference to Table 4, in Examples 7 to 14 in which the B-type crystal or C-type crystal of the compound ET-1 is used as the electron transport material, the D form of the compound ET-1 is used as the electron transport material. Compared with Comparative Examples 4 to 7 in which crystalline or amorphous materials are used, it is possible to obtain a light emitting element in which the external quantum efficiency is significantly improved regardless of which thermally activated delayed fluorescent material is used for the light emitting layer. all right.
 次に、前述のB形結晶またはC形結晶を用いて電子注入層を形成し、発光層として熱活性化遅延蛍光材料を用いた発光素子の実施例および比較例ついて説明する。 Next, examples and comparative examples of a light emitting device in which an electron injection layer is formed using the above-mentioned B-type crystal or C-type crystal and a thermally activated delayed fluorescent material is used as the light-emitting layer will be described.
 (実施例15)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間紫外線-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CN6を10nm、正孔輸送層として、HT-1を180nm蒸着した。次に、発光層として、ホスト材料であるH-1と、ドーパント化合物である化合物D-1と、TADF材料である化合物H-2とを、重量比で80:1:19になるようにして、40nmの厚さに蒸着した。さらに電子輸送層として、電子輸送材料に化合物ET-2を、ドナー性材料として2E-1を用い、化合物ET-2と2E-1の蒸着速度比が1:1になるようにして35nmの厚さに積層した。次に、電子注入層として、フェナントロリン誘導体である化合物ET-1の結晶(C形結晶)を用い、ドナー性材料として金属リチウムを用い、化合物ET-1と金属リチウムの蒸着速度比が99:1になるようにして5nm蒸着した後、マグネシウムと銀を1000nm共蒸着して陰極とし、5×5mm角の素子を作製した。
(Example 15)
A glass substrate (manufactured by Geomatec Co., Ltd., 11Ω / □, sputtered product) on which an ITO transparent conductive film was deposited at 165 nm was cut into a size of 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with "Semicoclean 56" (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then washed with ultrapure water. This substrate was subjected to ultraviolet-ozone treatment for 1 hour immediately before the device was manufactured, placed in a vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 -4 Pa or less. By the resistance heating method, HAT-CN6 was first deposited at 10 nm as a hole injection layer, and HT-1 was deposited at 180 nm as a hole transport layer. Next, as the light emitting layer, H-1 which is a host material, compound D-1 which is a dopant compound, and compound H-2 which is a TADF material are arranged in a weight ratio of 80: 1: 19. , 40 nm thick. Further, as the electron transport layer, compound ET-2 is used as the electron transport material and 2E-1 is used as the donor material, and the vapor deposition rate ratio of the compounds ET-2 and 2E-1 is 1: 1 so that the thickness is 35 nm. It was laminated on the surface. Next, a crystal (C-type crystal) of the compound ET-1 which is a phenanthroline derivative is used as the electron injection layer, metallic lithium is used as the donor material, and the vapor deposition rate ratio of the compound ET-1 and the metallic lithium is 99: 1. After vapor deposition at 5 nm so as to be, magnesium and silver were co-deposited at 1000 nm to form a cathode, and a 5 × 5 mm square element was manufactured.
 この発光素子を1000cd/mで発光させた時の外部量子効率14.4%であった。なお、ET-2の構造を下記に示す。 The external quantum efficiency was 14.4% when this light emitting device was made to emit light at 1000 cd / m 2. The structure of ET-2 is shown below.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 (実施例16~18)
 フェナントロリン誘導体であるET-1の結晶形として表1に記載した結晶形の結晶を用い、発光層のドーパント材料として表3に記載した化合物を用いた以外は実施例15と同様にして発光素子を作製し、評価した。結果を表5に示す。
(Examples 16 to 18)
The light emitting device was prepared in the same manner as in Example 15 except that the crystals in the crystal form shown in Table 1 were used as the crystal form of the phenanthroline derivative ET-1 and the compounds shown in Table 3 were used as the dopant material for the light emitting layer. Made and evaluated. The results are shown in Table 5.
 (実施例19)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間紫外線-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CN6を10nm、正孔輸送層として、HT-1を40nm蒸着した。次に、発光層として、ホスト材料であるH-1と、ドーパント化合物である化合物D-6と、TADF材料である化合物H-3とを、重量比で80:1:19になるようにして、30nmの厚さに蒸着した。さらに電子輸送層として、電子輸送材料に化合物ET-2を、ドナー性材料として2E-1を用い、化合物ET-2と2E-1の蒸着速度比が1:1になるようにして50nmの厚さに積層した。次に、電子注入層として、フェナントロリン誘導体であるET-1の結晶(C形結晶)を、ドナー性材料として金属リチウムを用い、化合物ET-1と金属リチウムの蒸着速度比が99:1になるようにして5nm蒸着した後、マグネシウムと銀を1000nm共蒸着して陰極とし、5×5mm角の素子を作製した。
(Example 19)
A glass substrate (manufactured by Geomatec Co., Ltd., 11Ω / □, sputtered product) on which an ITO transparent conductive film was deposited at 165 nm was cut into a size of 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with "Semicoclean 56" (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then washed with ultrapure water. This substrate was subjected to ultraviolet-ozone treatment for 1 hour immediately before the device was manufactured, placed in a vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 -4 Pa or less. By the resistance heating method, HAT-CN6 was first deposited at 10 nm as a hole injection layer, and HT-1 was deposited at 40 nm as a hole transport layer. Next, as the light emitting layer, H-1 which is a host material, compound D-6 which is a dopant compound, and compound H-3 which is a TADF material are arranged in a weight ratio of 80: 1: 19. , 30 nm thick vapor deposition. Further, as the electron transport layer, compound ET-2 is used as the electron transport material and 2E-1 is used as the donor material, and the vapor deposition rate ratio of the compounds ET-2 and 2E-1 is 1: 1 so that the thickness is 50 nm. It was laminated on the surface. Next, a crystal (C-type crystal) of ET-1 which is a phenanthroline derivative is used as an electron injection layer, and metallic lithium is used as a donor material, and the vapor deposition rate ratio of compound ET-1 and metallic lithium becomes 99: 1. After the 5 nm vapor deposition in this manner, magnesium and silver were co-deposited with 1000 nm to form a cathode, and a 5 × 5 mm square element was produced.
 この発光素子を1000cd/mで発光させた時の外部量子効率12.2%であった。 The external quantum efficiency was 12.2% when this light emitting device was made to emit light at 1000 cd / m 2.
 (実施例20~22)
 フェナントロリン誘導体であるET-1の結晶形として表1に記載した結晶形の結晶を用い、発光層のドーパント材料として表3に記載した化合物を用いた以外は、実施例19と同様にして発光素子を作製し、評価した。結果を表5に示す。
(Examples 20 to 22)
A light emitting device in the same manner as in Example 19 except that the crystals in the crystal form shown in Table 1 were used as the crystal form of the phenanthroline derivative ET-1 and the compounds shown in Table 3 were used as the dopant material for the light emitting layer. Was prepared and evaluated. The results are shown in Table 5.
 (比較例8、9)
 ET-1の結晶形として表2に記載した結晶形のものを用い、発光層のドーパント材料として表3に記載した化合物を用いた以外は、実施例15と同様にして発光素子を作製し、評価した。結果を表5に示す。
(Comparative Examples 8 and 9)
A light emitting device was produced in the same manner as in Example 15 except that the crystal form shown in Table 2 was used as the crystal form of ET-1 and the compounds shown in Table 3 were used as the dopant material of the light emitting layer. evaluated. The results are shown in Table 5.
 (比較例10、11)
 ET-1の結晶形として表2に記載した結晶形のものを用い、発光層のドーパント材料として表3に記載した化合物を用いた以外は、実施例19と同様にして発光素子を作製し、評価した。結果を表5に示す。
(Comparative Examples 10 and 11)
A light emitting device was produced in the same manner as in Example 19 except that the crystal form shown in Table 2 was used as the crystal form of ET-1 and the compounds shown in Table 3 were used as the dopant material of the light emitting layer. evaluated. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表5から、実施例15~22は、同じ発光層を用いている比較例8~9に比べて、いずれも外部量子効率が高いことが分かる。すなわち、表5を参照して分かるように、電子注入材料に化合物ET-1のB形結晶またはC形結晶を用いている実施例15~22では、電子注入材料に化合物ET-1のD形結晶または非晶質を用いている比較例8~11と比べて、いずれの熱活性化遅延蛍光材料を発光層に用いた場合でも、外部量子効率が大幅に向上する発光素子を得られることがわかった。 From Table 5, it can be seen that Examples 15 to 22 have higher external quantum efficiencies than Comparative Examples 8 to 9 using the same light emitting layer. That is, as can be seen with reference to Table 5, in Examples 15 to 22 in which the B-type crystal or C-type crystal of the compound ET-1 is used as the electron-injected material, the D-type of the compound ET-1 is used as the electron-injected material. Compared with Comparative Examples 8 to 11 in which crystalline or amorphous materials are used, it is possible to obtain a light emitting element in which the external quantum efficiency is significantly improved regardless of which thermally activated delayed fluorescent material is used for the light emitting layer. all right.
 次に、前述のB形結晶またはC形結晶を用いてタンデム型蛍光発光素子の電荷発生層を形成し、発光層として熱活性化遅延蛍光材料を用いた発光素子の実施例について説明する。 Next, an example of a light emitting device in which a charge generation layer of a tandem fluorescent light emitting device is formed by using the above-mentioned B-type crystal or C-type crystal and a thermally activated delayed fluorescent material is used as the light emitting layer will be described.
 (実施例23)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間紫外線-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CN6を5nm、続いて正孔輸送層として、HT-1を50nm蒸着した。次に、発光層として、ホスト材料であるH-1と、ドーパント化合物である化合物D-1と、TADF材料である化合物H-2とを、重量比で80:1:19になるようにして、20nmの厚さに蒸着した。さらに電子輸送層として、電子輸送材料に化合物ET-2を、ドナー性材料として2E-1を用い、化合物ET-2と2E-1の蒸着速度比が1:1になるようにして35nmの厚さに積層した。続いてn型電荷発生層としてn型ホストにフェナントロリン誘導体であるET-1の結晶(C形結晶:実施例6)を用い、n型ドーパントに金属リチウムを用い、化合物ET-1と金属リチウムの蒸着速度比が99:1になるようにして10nm積層した。さらにp型電荷発光層としてHAT-CN6を10nm積層した。その上に上記と同様に正孔輸送層50nm、発光層20nm、電子輸送層35nmを順に蒸着した。次に、電子注入層として2E-1を0.5nm蒸着した後、マグネシウムと銀を1000nm共蒸着して陰極とし、5×5mm角のタンデム型蛍光発光素子を作製した。
(Example 23)
A glass substrate (manufactured by Geomatec Co., Ltd., 11Ω / □, sputtered product) on which an ITO transparent conductive film was deposited at 165 nm was cut into a size of 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with "Semicoclean 56" (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then washed with ultrapure water. This substrate was subjected to ultraviolet-ozone treatment for 1 hour immediately before the device was manufactured, placed in a vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 -4 Pa or less. By the resistance heating method, HAT-CN6 was first deposited at 5 nm as a hole injection layer, and then HT-1 was deposited at 50 nm as a hole transport layer. Next, as the light emitting layer, H-1 which is a host material, compound D-1 which is a dopant compound, and compound H-2 which is a TADF material are arranged in a weight ratio of 80: 1: 19. , 20 nm thick vapor deposition. Further, as the electron transport layer, compound ET-2 is used as the electron transport material and 2E-1 is used as the donor material, and the vapor deposition rate ratio of the compounds ET-2 and 2E-1 is 1: 1 so that the thickness is 35 nm. It was laminated on the surface. Subsequently, a phenanthroline derivative ET-1 crystal (C-type crystal: Example 6) was used as the n-type charge generation layer for the n-type host, metallic lithium was used for the n-type dopant, and the compound ET-1 and metallic lithium were used. The layers were laminated at 10 nm so that the vapor deposition rate ratio was 99: 1. Further, HAT-CN6 was laminated at 10 nm as a p-type charge light emitting layer. A hole transport layer of 50 nm, a light emitting layer of 20 nm, and an electron transport layer of 35 nm were deposited on the hole in this order in the same manner as described above. Next, after depositing 2E-1 at 0.5 nm as an electron injection layer, magnesium and silver were co-deposited at 1000 nm to serve as a cathode, and a 5 × 5 mm square tandem fluorescent light emitting element was produced.
 この発光素子を1000cd/mで発光させた時の外部量子効率は16.2%であった。発光層が1層のみの実施例15と比べ、外部量子効率が向上していることが確認された。 The external quantum efficiency when this light emitting device was made to emit light at 1000 cd / m 2 was 16.2%. It was confirmed that the external quantum efficiency was improved as compared with Example 15 in which the light emitting layer was only one layer.
 (実施例24)
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間紫外線-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CN6を5nm、続いて正孔輸送層として、HT-1を50nm蒸着した。次に、発光層として、ホスト材料であるH-1と、ドーパント材料である化合物D-6と、TADF材料である化合物H-3とを、重量比で80:1:19になるようにして、30nmの厚さに蒸着した。電子輸送層としてフェナントロリン誘導体であるET-1の結晶(C形結晶)を35nmの厚さに積層した。続いてn型電荷発生層として、n型ホストであるフェナントロリン誘導体であるET-1の結晶(C形結晶:
実施例6)と、n型ドーパントである金属リチウムを、蒸着速度比が99:1になるようにして10nm積層した。さらにp型電荷発生層としてHAT-CN6を10nm積層した。その上に上記と同様に正孔輸送層50nm、発光層30nm、電子輸送層としてET-1(C形結晶)35nmを順に蒸着した。次に、電子注入層として2E-1を0.5nm蒸着した後、マグネシウムと銀を1000nm共蒸着して陰極とし、5mm×5mm角のタンデム型発光素子を作製した。
(Example 24)
A glass substrate (manufactured by Geomatec Co., Ltd., 11Ω / □, sputtered product) on which an ITO transparent conductive film was deposited at 165 nm was cut into a size of 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with "Semicoclean 56" (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then washed with ultrapure water. This substrate was subjected to ultraviolet-ozone treatment for 1 hour immediately before the device was manufactured, placed in a vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 -4 Pa or less. By the resistance heating method, HAT-CN6 was first deposited at 5 nm as a hole injection layer, and then HT-1 was deposited at 50 nm as a hole transport layer. Next, as the light emitting layer, H-1 which is a host material, compound D-6 which is a dopant material, and compound H-3 which is a TADF material are arranged in a weight ratio of 80: 1: 19. , 30 nm thick vapor deposition. Crystals (C-type crystals) of ET-1, which is a phenanthroline derivative, were laminated to a thickness of 35 nm as an electron transport layer. Subsequently, as an n-type charge generation layer, a crystal of ET-1 which is a phenanthroline derivative which is an n-type host (C-type crystal:
Example 6) and metallic lithium, which is an n-type dopant, were laminated at 10 nm so that the vapor deposition rate ratio was 99: 1. Further, HAT-CN6 was laminated at 10 nm as a p-type charge generation layer. Similarly to the above, a hole transport layer of 50 nm, a light emitting layer of 30 nm, and ET-1 (C-type crystal) of 35 nm as an electron transport layer were deposited in this order. Next, after depositing 2E-1 at 0.5 nm as an electron injection layer, magnesium and silver were co-deposited at 1000 nm to serve as a cathode, and a tandem type light emitting element of 5 mm × 5 mm square was produced.
 この発光素子を1000cd/mで発光させた時の外部量子効率11.3%であった。発光層が1層のみの実施例11と比べ、外部量子効率が向上していることが確認された。 The external quantum efficiency was 11.3% when this light emitting device was made to emit light at 1000 cd / m 2. It was confirmed that the external quantum efficiency was improved as compared with Example 11 in which the light emitting layer was only one layer.
 本発明のフェナントロリン誘導体の結晶は、従来方法により得られるフェナントロリン誘導体と比較して極めて高い化学純度を示し、かつ残留溶媒量が少ないため、昇華精製における突沸を抑制することができ、工業的生産にも利用できる。また、本発明のフェナントロリン誘導体の結晶を昇華精製したフェナントロリン誘導体は、化学純度が高いことから、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機、光信号発生器などの分野で使用される発光素子材料として好適に利用することができる。
 
The crystal of the phenanthroline derivative of the present invention exhibits extremely high chemical purity as compared with the phenanthroline derivative obtained by the conventional method, and since the amount of residual solvent is small, bumping in sublimation purification can be suppressed, which is suitable for industrial production. Is also available. Further, since the phenanthroline derivative obtained by sublimating and purifying the crystal of the phenanthroline derivative of the present invention has high chemical purity, it has a display element, a flat panel display, a backlight, lighting, an interior, a sign, a signboard, an electronic camera, and an optical signal generator. It can be suitably used as a light emitting element material used in such fields.

Claims (20)

  1.  一般式(1)で表される構造を有し、粉末X線回折において、回折角2θ(°)5.0±0.2、7.5±0.2、8.7±0.2、12.5±0.2および17.3±0.2のそれぞれにピークを有する、フェナントロリン誘導体の結晶。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、Xはフェニレン基またはナフチレン基を表す。)
    It has a structure represented by the general formula (1), and in powder X-ray diffraction, the diffraction angles 2θ (°) 5.0 ± 0.2, 7.5 ± 0.2, 8.7 ± 0.2, Crystals of a phenanthroline derivative having peaks at 12.5 ± 0.2 and 17.3 ± 0.2, respectively.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), X represents a phenylene group or a naphthylene group.)
  2.  前記フェナントロリン誘導体が、1,3-ビス(9-フェニル-1,10-フェナントロリン-2-イル)ベンゼンである、請求項1に記載のフェナントロリン誘導体の結晶。 The crystal of the phenanthroline derivative according to claim 1, wherein the phenanthroline derivative is 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene.
  3.  示差熱熱重量同時測定において、243~247℃の範囲内に吸熱ピークを有する、請求項1または2に記載のフェナントロリン誘導体の結晶。 The crystal of the phenanthroline derivative according to claim 1 or 2, which has an endothermic peak in the range of 243 to 247 ° C. in the simultaneous measurement of differential thermogravimetric analysis.
  4.  陽極および陰極、ならびに、当該陰極と陽極との間に、熱活性化遅延蛍光材料を含む発光層と、電子輸送層、電子注入層および電荷発生層からなる群から選ばれ、かつ、請求項1~3のいずれかに記載の結晶に由来するフェナントロリン誘導体を含む少なくとも1つの層とを有する、電気エネルギーにより発光する発光素子。 It is selected from the group consisting of an anode and a cathode, a light emitting layer containing a thermally activated delayed fluorescent material between the cathode and the cathode, an electron transport layer, an electron injection layer and a charge generation layer, and claim 1. A light emitting element that emits light by electric energy and has at least one layer containing a phenanthroline derivative derived from the crystal according to any one of 3 to 3.
  5.  前記発光層に、さらに下記一般式(2)で表されるピロメテンホウ素錯体を含有する請求項4に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000002
    (ここで、上記一般式(2)中、
     Xは、窒素原子または炭素原子であり、ただし、当該炭素原子には、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールチオ基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のヘテロアリール基、ハロゲン原子、カルボキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアミノ基、ニトロ基、シアノ基、置換もしくは無置換のシリル基、および置換もしくは無置換のシロキサニル基からなる群より選ばれる原子または一価の基が一つ結合している。
     R~Rは、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、アルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールチオ基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアラルキル基、置換もしくは無置換のヘテロアリール基、ハロゲン原子、カルボキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアミノ基、ニトロ基、シアノ基、置換もしくは無置換のシリル基、および置換もしくは無置換のシロキサニル基からなる群から選択される原子または基であり、ただし、RおよびRの組、RおよびRの組、RおよびRの組、RおよびRの組のいずれか1つ以上の組においてその組を構成する基の間に結合が形成されて環が形成されたものであってもよい。
     ZおよびZは、それぞれ独立に、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のアルコキシ基、シアノ基、および置換もしくは無置換のアリールオキシ基からなる群から選択される原子または基であり、ただし、ZおよびZの間に結合が形成されて環が形成されたものであってよい。)
    The light emitting device according to claim 4, further comprising a pyrromethene boron complex represented by the following general formula (2) in the light emitting layer.
    Figure JPOXMLDOC01-appb-C000002
    (Here, in the above general formula (2),
    X 1 is a nitrogen atom or a carbon atom, where the carbon atom is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or substituted or Unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryloxy group, substituted or unsubstituted arylthio group, substituted or unsubstituted alkenyl group, substituted or unsubstituted aralkyl group, substituted or unsubstituted. Substituted heteroaryl group, halogen atom, carboxy group, substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted carbamoyl group, substituted or unsubstituted amino group, nitro group, cyano group, substituted or unsubstituted silyl group , And one atomic or monovalent group selected from the group consisting of substituted or unsubstituted siloxanyl groups are attached.
    R 1 to R 6 are independently hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted aryl group, alkoxy group, substituted or unsubstituted alkylthio group, respectively. Substituted or unsubstituted aryloxy group, substituted or unsubstituted arylthio group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aralkyl group, substituted or unsubstituted heteroaryl group, halogen atom, carboxy group, substituted or Select from the group consisting of an unsubstituted alkoxycarbonyl group, a substituted or unsubstituted carbamoyl group, a substituted or unsubstituted amino group, a nitro group, a cyano group, a substituted or unsubstituted silyl group, and a substituted or unsubstituted siroxanyl group. An atom or group to be formed, provided that in any one or more of the R 1 and R 2 pairs, the R 2 and R 3 pairs, the R 4 and R 5 pairs, and the R 5 and R 6 pairs. A ring may be formed by forming a bond between the groups constituting the set.
    Z 1 and Z 2 are independently halogen atoms, substituted or unsubstituted alkyl groups, substituted or unsubstituted aryl groups, substituted or unsubstituted alkoxy groups, cyano groups, and substituted or unsubstituted aryloxy groups, respectively. It is an atom or group selected from the group consisting of, but may be one in which a bond is formed between Z 1 and Z 2 to form a ring. )
  6.  前記一般式(2)において、
    が炭素である場合に当該炭素に結合する基が下記一般式(3)で表される基であり、
    Figure JPOXMLDOC01-appb-C000003
    (ここで、R~R11は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の複素環基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロアルケニル基、置換もしくは無置換のアルキニル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、水酸基、チオール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールチオ基、ハロゲン原子、シアノ基、ホルミル基、アシル基、カルボキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアルキルスルホニル基、置換もしくは無置換のアリールスルホニル基、置換もしくは無置換のアミノスルホニル基、置換もしくは無置換のアミノ基、ニトロ基、置換もしくは無置換のシリル基、および隣接基との間で形成された環構造からなる群より選ばれる原子または基であり、
    およびRは、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基または置換もしくは無置換のヘテロアリール基からなる群より選ばれる基である。)
    およびZが、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリール基、ハロゲン原子、およびシアノ基からなる群より選ばれる基であり、
    、R、RおよびRは、それぞれ独立に、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基であり、
    (ここで、これらのアリール基およびヘテロアリール基は単環でも縮合環でもよい。ただしRおよびRのうち一方または両方が単環のアリール基およびヘテロアリール基である場合、当該単環のアリール基およびヘテロアリール基は、1つ以上の第二級アルキル基、1つ以上の第三級アルキル基、1つ以上のアリール基もしくは1つ以上のヘテロアリール基を置換基として有しているか、または、メチル基と第一級アルキル基とを合計で2つ以上置換基として有している。)
    およびRが、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールチオ基、ハロゲン原子、シアノ基、カルボキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアミノ基、ニトロ基、および置換もしくは無置換のシリル基からなる群より選ばれる原子または基である、
    (ここで、RとRの組、および、RとRの組の一方または両方は、その組を構成する基の間に結合が形成されて五員環以上の環が形成されたものであってもよい。)
    請求項5に記載の発光素子。
    In the general formula (2),
    When X 1 is carbon, the group bonded to the carbon is a group represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (Here, R 9 to R 11 are independently hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl. Group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, substituted or unsubstituted aryl group, substituted or unsubstituted heteroaryl group, hydroxyl group, thiol group, substituted or unsubstituted alkoxy group, substituted Alternatively, an unsubstituted alkylthio group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted arylthio group, a halogen atom, a cyano group, a formyl group, an acyl group, a carboxy group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or Unsubstituted carbamoyl group, substituted or unsubstituted alkylsulfonyl group, substituted or unsubstituted arylsulfonyl group, substituted or unsubstituted aminosulfonyl group, substituted or unsubstituted amino group, nitro group, substituted or unsubstituted silyl An atom or group selected from the group consisting of a ring structure formed between a group and an adjacent group.
    R 7 and R 8 are groups independently selected from the group consisting of substituted or unsubstituted alkyl groups, substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups, respectively. )
    Z 1 and Z 2 are independently substituted or unsubstituted alkyl groups, substituted or unsubstituted alkoxy groups, substituted or unsubstituted aryloxy groups, substituted or unsubstituted aryl groups, halogen atoms, and cyano groups, respectively. It is a group selected from the group consisting of
    R 1 , R 3 , R 4 and R 6 are independently substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups, respectively.
    (Here, these aryl groups and heteroaryl groups may be monocyclic or fused rings. However, when one or both of R 1 and R 6 are monocyclic aryl groups and heteroaryl groups, the monocyclic ring Does the aryl group and heteroaryl group have one or more secondary alkyl groups, one or more tertiary alkyl groups, one or more aryl groups or one or more heteroaryl groups as substituents? Or, it has a total of two or more methyl groups and primary alkyl groups as substituents.)
    R 2 and R 5 are independently hydrogen atoms, substituted or unsubstituted alkyl groups, substituted or unsubstituted cycloalkyl groups, substituted or unsubstituted alkoxy groups, substituted or unsubstituted aryl groups, substituted or unsubstituted. Substituted heteroaryl groups, substituted or unsubstituted alkoxy groups, substituted or unsubstituted alkylthio groups, substituted or unsubstituted aryloxy groups, substituted or unsubstituted arylthio groups, halogen atoms, cyano groups, carboxy groups, substituted or An atom or group selected from the group consisting of an unsubstituted alkoxycarbonyl group, a substituted or unsubstituted carbamoyl group, a substituted or unsubstituted amino group, a nitro group, and a substituted or unsubstituted silyl group.
    (Here, in one or both of the pair of R 4 and R 5 and the pair of R 2 and R 3 , a bond is formed between the groups constituting the pair to form a ring having five or more members. It may be the one.)
    The light emitting element according to claim 5.
  7.  前記一般式(2)において、
    が炭素である場合に当該炭素に結合する基が下記一般式(4)で表される基であり、
    Figure JPOXMLDOC01-appb-C000004
    (ここで、R12~R14は、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の複素環基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロアルケニル基、置換もしくは無置換のアルキニル基、水酸基、チオール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールチオ基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、ハロゲン原子、シアノ基、ホルミル基、アシル基、カルボキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアルキルスルホニル基、置換もしくは無置換のアリールスルホニル基、置換もしくは無置換のアルコキシスルホニル基、置換もしくは無置換のアミノスルホニル基、置換もしくは無置換のアミノ基、ニトロ基、置換もしくは無置換のシリル基、置換もしくは無置換のシロキサニル基、置換もしくは無置換のボリル基および置換もしくは無置換のホスフィンオキシド基からなる群より選ばれる原子または基であり、
    15は、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の複素環基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロアルケニル基、置換もしくは無置換のアルキニル基、水酸基、チオール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールチオ基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、ハロゲン原子、シアノ基、ホルミル基、アシル基、カルボキシ基、置換もしくは無置換のアルコキシカルボニル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアルキルスルホニル基、置換もしくは無置換のアリールスルホニル基、置換もしくは無置換のアルコキシスルホニル基、置換もしくは無置換のアミノスルホニル基、置換もしくは無置換のアミノ基、ニトロ基、置換もしくは無置換のシリル基、置換もしくは無置換のシロキサニル基、置換もしくは無置換のボリル基および置換もしくは無置換のホスフィンオキシド基からなる群より選ばれる基であり、
    Arは、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基からなる群より選ばれる基である。)
    およびZが、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリール基、ハロゲン原子、およびシアノ基からなる群より選ばれる原子または基であり、
    ~Rは、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換アルケニル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のアミノ基、置換もしくは無置換のシリル基、および置換もしくは無置換のシロキサニル基からなる群より選ばれる基であり、ただし、R、R、R、Rのうち少なくとも一つは水素原子または置換もしくは無置換のアルキル基である、
    請求項5に記載の発光素子。
    In the general formula (2),
    When X 1 is carbon, the group bonded to the carbon is a group represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000004
    (Here, R 12 to R 14 are independently hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl. Group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group, thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryloxy group, substituted Alternatively, an unsubstituted or unsubstituted arylthio group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a halogen atom, a cyano group, a formyl group, an acyl group, a carboxy group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or Unsubstituted carbamoyl group, substituted or unsubstituted alkylsulfonyl group, substituted or unsubstituted arylsulfonyl group, substituted or unsubstituted alkoxysulfonyl group, substituted or unsubstituted aminosulfonyl group, substituted or unsubstituted amino group, An atom or group selected from the group consisting of a nitro group, a substituted or unsubstituted silyl group, a substituted or unsubstituted siroxanyl group, a substituted or unsubstituted boryl group and a substituted or unsubstituted phosphine oxide group.
    R 15 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted cycloalkenyl group, a substituted or unsubstituted Substituent alkynyl group, hydroxyl group, thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryloxy group, substituted or unsubstituted arylthio group, substituted or unsubstituted aryl group , Substituted or unsubstituted heteroaryl group, halogen atom, cyano group, formyl group, acyl group, carboxy group, substituted or unsubstituted alkoxycarbonyl group, substituted or unsubstituted carbamoyl group, substituted or unsubstituted alkylsulfonyl group , Substituent or unsubstituted arylsulfonyl group, substituted or unsubstituted alkoxysulfonyl group, substituted or unsubstituted aminosulfonyl group, substituted or unsubstituted amino group, nitro group, substituted or unsubstituted silyl group, substituted or unsubstituted A group selected from the group consisting of a substituted siloxanyl group, a substituted or unsubstituted boryl group and a substituted or unsubstituted phosphine oxide group.
    Ar 1 is a group selected from the group consisting of substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups. )
    Z 1 and Z 2 are independently substituted or unsubstituted alkyl groups, substituted or unsubstituted alkoxy groups, substituted or unsubstituted aryloxy groups, substituted or unsubstituted aryl groups, halogen atoms, and cyano groups, respectively. An atom or group selected from the group consisting of
    R 1 to R 6 are independently hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted alkenyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted. Alkylthio groups, substituted or unsubstituted aryloxy groups, substituted or unsubstituted aryl groups, substituted or unsubstituted heteroaryl groups, substituted or unsubstituted amino groups, substituted or unsubstituted silyl groups, and substituted or unsubstituted. A group selected from the group consisting of substituted siloxanyl groups, provided that at least one of R 1 , R 3 , R 4 , and R 6 is a hydrogen atom or a substituted or unsubstituted alkyl group.
    The light emitting element according to claim 5.
  8.  前記発光素子は、電荷発生層を有するものであり、当該電荷発生層がさらにアルカリ金属またはアルカリ金属化合物を含有する請求項4~7のいずれかに記載の発光素子。 The light emitting element according to any one of claims 4 to 7, wherein the light emitting element has a charge generating layer, and the charge generating layer further contains an alkali metal or an alkali metal compound.
  9.  前記アルカリ金属またはアルカリ金属化合物を構成するアルカリ金属元素がリチウムである請求項8に記載の発光素子。 The light emitting element according to claim 8, wherein the alkali metal element constituting the alkali metal or alkali metal compound is lithium.
  10.  請求項4~9のいずれかに記載の発光素子を含む表示装置。 A display device including the light emitting element according to any one of claims 4 to 9.
  11.  請求項4~9のいずれかに記載の発光素子を含む照明装置。 A lighting device including the light emitting element according to any one of claims 4 to 9.
  12.  前記一般式(1)で表されるフェナントロリン誘導体を、非プロトン性極性溶媒および芳香族系溶媒を含む混合溶媒に溶解し、結晶化させる工程(I)、次いで工程(I)により得られた結晶を50℃以上で乾燥する工程(III)を有する、請求項1~3のいずれかに記載のフェナントロリン誘導体の結晶の製造方法。 The phenanthroline derivative represented by the general formula (1) is dissolved in a mixed solvent containing an aprotic polar solvent and an aromatic solvent and crystallized, and then the crystals obtained by the step (I). The method for producing a crystal of a phenanthroline derivative according to any one of claims 1 to 3, which comprises a step (III) of drying the phenanthroline derivative at 50 ° C. or higher.
  13.  前記一般式(1)で表される構造を有し、粉末X線回折において、回折角2θ(°)5.2±0.2、7.0±0.2、16.4±0.2、20.0±0.2および23.6±0.2のそれぞれにピークを有するフェナントロリン誘導体の結晶を、結晶多形転移させる工程を有する、請求項1~3のいずれかに記載のフェナントロリン誘導体の結晶の製造方法。 It has a structure represented by the general formula (1), and in powder X-ray diffraction, the diffraction angles 2θ (°) 5.2 ± 0.2, 7.0 ± 0.2, 16.4 ± 0.2. The phenanthroline derivative according to any one of claims 1 to 3, further comprising a step of transferring a crystal of the phenanthroline derivative having peaks at 20.0 ± 0.2 and 23.6 ± 0.2 to a crystal polymorphism. Crystal manufacturing method.
  14.  前記一般式(1)で表される構造を有し、粉末X線回折において、回折角2θ(°)5.2±0.2、7.0±0.2、16.4±0.2、20.0±0.2および23.6±0.2のそれぞれにピークを有するフェナントロリン誘導体の結晶として、示差熱熱重量同時測定において、94~98℃の範囲に吸熱ピークを有するものを用いる、請求項13に記載のフェナントロリン誘導体の結晶の製造方法。 It has a structure represented by the general formula (1), and in powder X-ray diffraction, the diffraction angles 2θ (°) 5.2 ± 0.2, 7.0 ± 0.2, 16.4 ± 0.2. As the crystals of the phenanthroline derivative having peaks at 20.0 ± 0.2 and 23.6 ± 0.2, those having endothermic peaks in the range of 94 to 98 ° C. in the differential thermal weight simultaneous measurement are used. The method for producing a crystal of a phenanthroline derivative according to claim 13.
  15.  前記一般式(1)で表されるフェナントロリン誘導体を、非プロトン性極性溶媒および芳香族系溶媒を含む混合溶媒に溶解し、結晶化させる工程(I)、次いで工程(I)により得られた結晶を50℃未満で乾燥する工程(IV)によって、前記粉末X線回折において、回折角2θ(°)5.2±0.2、7.0±0.2、16.4±0.2、20.0±0.2および23.6±0.2のそれぞれにピークを有するフェナントロリン誘導体の結晶を製造する、請求項13または14に記載のフェナントロリン誘導体の結晶の製造方法。 The phenanthroline derivative represented by the general formula (1) is dissolved in a mixed solvent containing an aprotonic polar solvent and an aromatic solvent and crystallized, and then the crystals obtained by the step (I). In the powder X-ray diffraction, the diffraction angles 2θ (°) 5.2 ± 0.2, 7.0 ± 0.2, 16.4 ± 0.2, The method for producing a crystal of a phenanthroline derivative according to claim 13 or 14, wherein a crystal of the phenanthroline derivative having peaks at 20.0 ± 0.2 and 23.6 ± 0.2, respectively, is produced.
  16.  下記一般式(1)で表される構造を有し、粉末X線回折において、回折角2θ(°)5.2±0.2、7.0±0.2、16.4±0.2、20.0±0.2および23.6±0.2のそれぞれにピークを有するフェナントロリン誘導体の結晶。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(1)において、Xはフェニレン基またはナフチレン基を表す。)
    It has a structure represented by the following general formula (1), and in powder X-ray diffraction, the diffraction angles 2θ (°) 5.2 ± 0.2, 7.0 ± 0.2, 16.4 ± 0.2. Crystals of phenanthroline derivatives having peaks at 2, 0.0 ± 0.2 and 23.6 ± 0.2, respectively.
    Figure JPOXMLDOC01-appb-C000005
    (In the general formula (1), X represents a phenylene group or a naphthylene group.)
  17.  下記一般式(1)で表される構造を有し、粉末X線回折において、回折角2θ(°)6.7±0.2、8.2±0.2、13.7±0.2、17.7±0.2および22.2±0.2のそれぞれにピークを有するフェナントロリン誘導体の結晶。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(1)において、Xはフェニレン基またはナフチレン基を表す。)
    It has a structure represented by the following general formula (1), and in powder X-ray diffraction, the diffraction angles 2θ (°) 6.7 ± 0.2, 8.2 ± 0.2, 13.7 ± 0.2. , Crystals of phenanthroline derivatives having peaks at 17.7 ± 0.2 and 22.2 ± 0.2, respectively.
    Figure JPOXMLDOC01-appb-C000006
    (In the general formula (1), X represents a phenylene group or a naphthylene group.)
  18.  前記フェナントロリン誘導体が、1,3-ビス(9-フェニル-1,10-フェナントロリン-2-イル)ベンゼンである、請求項17に記載のフェナントロリン誘導体の結晶。 The crystal of the phenanthroline derivative according to claim 17, wherein the phenanthroline derivative is 1,3-bis (9-phenyl-1,10-phenanthroline-2-yl) benzene.
  19.  示差熱熱重量同時測定において、180~184℃の範囲内に吸熱ピークを有する、請求項17または18に記載のフェナントロリン誘導体の結晶。 The crystal of the phenanthroline derivative according to claim 17 or 18, which has an endothermic peak in the range of 180 to 184 ° C. in the differential thermogravimetric simultaneous measurement.
  20.  前記一般式(1)で表されるフェナントロリン誘導体を、非プロトン性極性溶媒および芳香族系溶媒を含む混合溶媒に溶解し、結晶化させる工程(I)、次いで工程(I)により得られた結晶をエーテル系溶媒に溶解し、結晶化させる工程(II)を有する、請求項17~19いずれかに記載のフェナントロリン誘導体の結晶の製造方法。
     
    The phenanthroline derivative represented by the general formula (1) is dissolved in a mixed solvent containing an aprotic polar solvent and an aromatic solvent and crystallized, and then the crystals obtained by the step (I). The method for producing a crystal of a phenanthroline derivative according to any one of claims 17 to 19, which comprises a step (II) of dissolving the substance in an ether solvent and crystallizing the substance.
PCT/JP2021/012518 2020-03-26 2021-03-25 Crystal of phenanthroline derivative, method for producing same and light emitting element using same WO2021193818A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227031056A KR20220157948A (en) 2020-03-26 2021-03-25 Crystal of phenanthroline derivative, method for producing the same, and light emitting device using the same
JP2021517490A JPWO2021193818A1 (en) 2020-03-26 2021-03-25
CN202180023209.8A CN115335385A (en) 2020-03-26 2021-03-25 Crystal of phenanthroline derivative, method for producing same, and light-emitting element using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-055829 2020-03-26
JP2020055829 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193818A1 true WO2021193818A1 (en) 2021-09-30

Family

ID=77891918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012518 WO2021193818A1 (en) 2020-03-26 2021-03-25 Crystal of phenanthroline derivative, method for producing same and light emitting element using same

Country Status (4)

Country Link
JP (1) JPWO2021193818A1 (en)
KR (1) KR20220157948A (en)
CN (1) CN115335385A (en)
WO (1) WO2021193818A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114195809A (en) * 2021-12-27 2022-03-18 中国科学院长春应用化学研究所 Boron-doped or phosphorus-doped fused ring compound and preparation method and application thereof
WO2023190159A1 (en) * 2022-04-01 2023-10-05 東レ株式会社 Compound, light-emitting element material and light-emitting element obtained using same, photoelectric conversion element material, color conversion composition, color conversion sheet, light source unit, display device, and lighting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281390A (en) * 2003-02-25 2004-10-07 Toray Ind Inc Material for light emitting element, and light emitting element using the same
JP2005053900A (en) * 2003-07-23 2005-03-03 Toray Ind Inc Pyrromethene compound, light emitting element material using the same, and light emitting element
WO2006021982A1 (en) * 2004-08-23 2006-03-02 Toray Industries, Inc. Material for luminescent element and luminescent element
JP5408124B2 (en) * 2009-01-23 2014-02-05 東レ株式会社 Light emitting device material and light emitting device
CN110835351A (en) * 2018-08-15 2020-02-25 江苏三月光电科技有限公司 Organic compound with pyrromethene boron complex as core and preparation and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4842587B2 (en) * 2005-08-11 2011-12-21 株式会社半導体エネルギー研究所 Phenanthroline derivative compound, and electron transporting material, light-emitting element, light-emitting device, and electronic device using the same
JP2008189660A (en) 2007-01-11 2008-08-21 Toray Ind Inc Method for producing nitrogen-containing aromatic ring derivative
CN101308906A (en) * 2007-05-16 2008-11-19 财团法人山形县产业技术振兴机构 Electron transporting materials and organic light-emitting devices therewith
JP4784631B2 (en) * 2008-09-30 2011-10-05 トヨタ自動車株式会社 Driving force transmission device
EP3131145B1 (en) 2014-04-07 2018-09-05 Toray Industries, Inc. Polymer electrolyte composition and polymer electrolyte membrane, membrane-electrolyte assembly, and solid polymer fuel cell using same
EP3252052B1 (en) * 2015-01-29 2021-05-19 Toray Industries, Inc. Phenanthroline derivative, electronic device containing same, light emitting element, and photoelectric conversion element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281390A (en) * 2003-02-25 2004-10-07 Toray Ind Inc Material for light emitting element, and light emitting element using the same
JP2005053900A (en) * 2003-07-23 2005-03-03 Toray Ind Inc Pyrromethene compound, light emitting element material using the same, and light emitting element
WO2006021982A1 (en) * 2004-08-23 2006-03-02 Toray Industries, Inc. Material for luminescent element and luminescent element
JP5408124B2 (en) * 2009-01-23 2014-02-05 東レ株式会社 Light emitting device material and light emitting device
CN110835351A (en) * 2018-08-15 2020-02-25 江苏三月光电科技有限公司 Organic compound with pyrromethene boron complex as core and preparation and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114195809A (en) * 2021-12-27 2022-03-18 中国科学院长春应用化学研究所 Boron-doped or phosphorus-doped fused ring compound and preparation method and application thereof
CN114195809B (en) * 2021-12-27 2023-11-14 中国科学院长春应用化学研究所 Boron-doped or phosphorus-doped fused ring compound and preparation method and application thereof
WO2023190159A1 (en) * 2022-04-01 2023-10-05 東レ株式会社 Compound, light-emitting element material and light-emitting element obtained using same, photoelectric conversion element material, color conversion composition, color conversion sheet, light source unit, display device, and lighting device

Also Published As

Publication number Publication date
CN115335385A (en) 2022-11-11
KR20220157948A (en) 2022-11-29
JPWO2021193818A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP5821635B2 (en) Light emitting device material and light emitting device
CN113412265B (en) Polycyclic aromatic compounds
JP6174819B2 (en) Heterocyclic compound and organic light emitting device using the same
TWI429650B (en) Organic electroluminescent elements
KR102041705B1 (en) Benzocarbazole-based compound and organic light emitting device comprising the same
JP2013539205A (en) Novel organic electroluminescent compound and organic electroluminescent device using the same
KR102050572B1 (en) Novel compound and organic light emitting device comprising the same
KR102192691B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
KR20160066308A (en) An electroluminescent compound and an electroluminescent device comprising the same
KR20180098130A (en) Novel compound and organic light emitting device comprising the same
KR20150117130A (en) Organic compound and organic electroluminescent device comprising the same
WO2021193818A1 (en) Crystal of phenanthroline derivative, method for producing same and light emitting element using same
KR20190020930A (en) An electroluminescent compound and an electroluminescent device comprising the same
TW201412764A (en) Material for organic electroluminescence element and organic electroluminescence element using the same
WO2021149510A1 (en) Pyrromethene boron complex, light-emitting element containing same, light-emitting element, display device, and illumination device
KR102120916B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
KR101612160B1 (en) Organic compound and organic electroluminescent device comprising the same
KR20190044576A (en) Compound and organic light emitting device comprising the same
KR101584855B1 (en) Nitrogen-containing heterocyclic compounds and organic electronic device comprising the same
KR101561332B1 (en) New organic compounds and organic electro luminescence device comprising the same
JP7454810B2 (en) Polycyclic aromatic compounds
KR102629455B1 (en) Novel compound and organic light emitting device comprising the same
KR102070939B1 (en) Novel compound and organic light emitting device comprising the same
KR102665301B1 (en) An electroluminescent compound and an electroluminescent device comprising the same
KR102559642B1 (en) An electroluminescent compound and an electroluminescent device comprising the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021517490

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775812

Country of ref document: EP

Kind code of ref document: A1