WO2023190159A1 - Compound, light-emitting element material and light-emitting element obtained using same, photoelectric conversion element material, color conversion composition, color conversion sheet, light source unit, display device, and lighting device - Google Patents

Compound, light-emitting element material and light-emitting element obtained using same, photoelectric conversion element material, color conversion composition, color conversion sheet, light source unit, display device, and lighting device Download PDF

Info

Publication number
WO2023190159A1
WO2023190159A1 PCT/JP2023/011821 JP2023011821W WO2023190159A1 WO 2023190159 A1 WO2023190159 A1 WO 2023190159A1 JP 2023011821 W JP2023011821 W JP 2023011821W WO 2023190159 A1 WO2023190159 A1 WO 2023190159A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
substituted
light emitting
compound
Prior art date
Application number
PCT/JP2023/011821
Other languages
French (fr)
Japanese (ja)
Inventor
大貴 野田
一成 川本
和真 長尾
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023190159A1 publication Critical patent/WO2023190159A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a novel compound and a light emitting device material, a light emitting device, a photoelectric conversion device material, a color conversion composition, a color conversion sheet, a light source unit, a display device, and a lighting device using the same.
  • Organic thin-film light-emitting devices emit light by recombining electrons injected from the cathode and holes injected from the anode in a light-emitting layer sandwiched between the two electrodes.They can be made thinner and have a lower driving voltage. It has characteristics such as high brightness, and the ability to emit multicolor light.
  • an object of the present invention is to provide a compound having high luminous efficiency, excellent durability, and green luminescent properties.
  • the present invention is a compound having a structure represented by the following general formula (1).
  • Ring A 1 and Ring B 1 are substituted or unsubstituted aromatic hydrocarbon rings having 6 to 30 ring carbon atoms, or substituted or unsubstituted aromatic hydrocarbon rings having 5 to 30 ring atoms. It is a group heterocycle.
  • Ring C 1 is a substituted or unsubstituted polycyclic aromatic hydrocarbon having 11 or more and 20 or less ring atoms.
  • Ring D 1 is a substituted or unsubstituted polycyclic aromatic hydrocarbon having 7 or more and 20 or less ring atoms.
  • X is O, N-R A or S
  • R A is an alkyl group, cycloalkyl group, alkenyl group, imino group, aryl group or heteroaryl group. These groups may further have a substituent.
  • R A may further be bonded to ring A 1 or ring B 1 via a linking group to form a ring structure. In that case, the linking group is a single bond, -O-, -S-, >CR A1 R A2 or >SiR A3 R A4 .
  • R A1 to R A4 are each independently hydrogen, halogen, an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group, and these groups may further have a substituent.
  • R A1 and R A2 or R A3 and R A4 may be further bonded via a linking group.
  • L is a single bond, O, S, >CR A5 R A6 or > SiR A7 R A8 .
  • R A5 to R A8 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group, and these groups further have a substituent. Good too. Furthermore, R A5 and R A6 and R A7 and R A8 may be further bonded via a linking group.
  • the compound of the present invention has green luminescent properties with high luminous efficiency and excellent durability.
  • the polycyclic aromatic compounds described in Patent Documents 1 to 4 have strong and highly planar skeletons, and therefore exhibit high fluorescence quantum yields. Furthermore, since the peak half width at the emission wavelength is small, color purity can be improved.
  • the vibration of the compound having the structure represented by the general formula (1) is restricted, deactivation in the excited state is suppressed, and the light emitting element of the light emitting element is Efficiency and durability can be improved.
  • Ring A 1 and Ring B 1 are substituted or unsubstituted aromatic hydrocarbon rings having 6 to 30 ring carbon atoms, or substituted or unsubstituted aromatic hydrocarbon rings having 5 to 30 ring atoms. It is a group heterocycle.
  • Ring C 1 is a substituted or unsubstituted polycyclic aromatic hydrocarbon having 11 or more and 20 or less ring atoms.
  • Ring D 1 is a substituted or unsubstituted polycyclic aromatic hydrocarbon having 7 or more and 20 or less ring atoms.
  • X is O, N-R A or S
  • R A is an alkyl group, cycloalkyl group, alkenyl group, imino group, aryl group or heteroaryl group. These groups may further have a substituent.
  • R A may further be bonded to ring A 1 or ring B 1 via a linking group to form a ring structure. In that case, the linking group is a single bond, -O-, -S-, >CR A1 R A2 or >SiR A3 R A4 .
  • R A1 to R A4 are each independently hydrogen, halogen, an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group, and these groups may further have a substituent.
  • R A1 and R A2 or R A3 and R A4 may be further bonded via a linking group.
  • L is a single bond, O, S, >CR A5 R A6 or > SiR A7 R A8 .
  • R A5 to R A8 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group, and these groups further have a substituent. Good too. Furthermore, R A5 and R A6 and R A7 and R A8 may be further bonded via a linking group.
  • L is preferably a single bond.
  • ring C 1 and ring D 1 contain a ring structure represented by any of the following chemical formulas (2-1) to (2-8), and are substituted or unsubstituted.
  • Polycyclic aromatic hydrocarbons are preferred.
  • ring C 1 and ring D 1 are the same.
  • the compound having the structure represented by general formula (1) is more preferably a compound represented by general formula (3) below.
  • R 1 to R 19 are each independently hydrogen, halogen, cyano group, alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, An aryl ether group, an arylthioether group, an aryl group, a heteroaryl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a nitro group, or a silyl group. These groups may further have a substituent. Among these, hydrogen, an alkyl group, an aryl group, and a heteroaryl group are preferred.
  • Ring A 1 and Ring B 1 are each independently a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 30 ring atoms or a substituted or unsubstituted aromatic heterocycle having 5 to 30 ring atoms. It is. Ring A 1 is preferably a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 10 ring carbon atoms. Ring B 1 is preferably a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 10 ring atoms or a substituted or unsubstituted aromatic heterocycle having 5 to 10 ring atoms.
  • X 1 is O, NR 20 or S
  • R 20 is an alkyl group, cycloalkyl group, alkenyl group, imino group, aryl group or heteroaryl group. These groups may further have a substituent.
  • R 20 may further be bonded to ring A 1 or ring B 1 via a linking group to form a ring structure.
  • the linking group is a single bond, -O-, -S-, >CR 21 R 22 or >SiR 23 R 24 .
  • R 21 to R 24 are each independently hydrogen, halogen, an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group, and these groups may further have a substituent.
  • R 21 and R 22 or R 23 and R 24 may be further bonded via a linking group.
  • X 1 is preferably NR 20
  • R 20 is a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkenyl group.
  • a substituted or unsubstituted imino group is preferred.
  • any of the following general formulas (4-1) to (4-5) A compound having the structure represented by the following is more preferable, and can further improve the color purity, light-emitting element efficiency, and durability of the light-emitting element.
  • a compound in which X 1 is NR 20 and R 20 is a substituted or unsubstituted alkenyl group or a substituted or unsubstituted imino group is represented by the following general formula (5-1) or (5-2).
  • a compound having a structure is more preferable, and can further improve the color purity, light-emitting element efficiency, and durability of the light-emitting element.
  • R 1 to R 19 are the same as R 1 to R 19 in general formula (3). .
  • R 201 to R 207 and R 210 to R 214 each independently represent hydrogen, halogen, cyano group, alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, alkynyl group, Formed between an alkoxy group, an alkylthio group, an aryl ether group, an arylthioether group, an aryl group, a heteroaryl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a silyl group, or adjacent groups among these groups. It is a saturated or unsaturated ring.
  • These groups may further have a substituent.
  • Ar 1 to Ar 3 are each independently a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. .
  • Y 1 to Y 2 are each independently a single bond, O, S, CR 150 R 151 or SiR 152 R 153 , and in general formula (4 In -4) to (4-5), W 1 to W 2 are each independently NR 154 , O or S.
  • R 150 to R 154 each independently represent hydrogen, an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group, and these groups may further have a substituent.
  • R 150 and R 151 or R 152 and R 153 may further be bonded via a linking group.
  • the linking group is a single bond, -O-, -S-, >CR 21 R 22 or >SiR 23 R 24 .
  • Y 1 and Y 2 are preferably single bonds from the viewpoint of further improving the color purity, light emitting element efficiency, and durability of the light emitting element.
  • W 3 to W 4 are each independently N or CR 220 .
  • R 220 is hydrogen, an alkyl group, a cycloalkyl group, an aryl group or a heteroaryl group, and these groups may further have a substituent. From the viewpoint of further improving the color purity, light emitting element efficiency, and durability of the light emitting element, R220 is preferably an aryl group.
  • the isotopic species of hydrogen atoms present in the molecule of the compound of the present invention is not particularly limited.
  • all hydrogen atoms in the molecule may be 1 H, or some or all of them may be 2 H (deuterium D).
  • unsubstituted in the case of “substituted or unsubstituted” means that a hydrogen atom or a deuterium atom is bonded.
  • Halogen refers to fluorine, chlorine, bromine or iodine.
  • a cyano group is a group whose structure is represented by -C ⁇ N. Here, it is the carbon atom that is bonded to the other group.
  • the alkyl group refers to a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group; It may or may not have.
  • the number of carbon atoms in the alkyl group is not particularly limited, but from the viewpoint of availability and cost, it is preferably in the range of 1 to 20, more preferably 1 to 8.
  • the number of carbon atoms here includes the number of carbon atoms contained in a substituent bonded to an alkyl group, and the same applies to other substituents that define the number of carbon atoms.
  • the cycloalkyl group refers to, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, or an adamantyl group, which may or may not have a substituent.
  • the number of carbon atoms forming the ring is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
  • the alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond, such as a vinyl group, allyl group, butadienyl group, and may or may not have a substituent.
  • the number of carbon atoms in the alkenyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • a cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond, such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, even if it has a substituent. You don't have to.
  • the number of carbon atoms forming the ring is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
  • the alkynyl group refers to, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • the number of carbon atoms in the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • An alkoxy group refers to a functional group to which an aliphatic hydrocarbon group is bonded via an ether bond, such as a methoxy group, ethoxy group, or propoxy group, and may or may not have a substituent. Good too.
  • the number of carbon atoms in the alkoxy group is not particularly limited, but is preferably in the range of 1 to 20.
  • An alkylthio group is an alkoxy group in which the oxygen atom of the ether bond is replaced with a sulfur atom.
  • the hydrocarbon group of the alkylthio group may or may not have a substituent.
  • the number of carbon atoms in the alkylthio group is not particularly limited, but is preferably in the range of 1 to 20.
  • the aryl ether group refers to a group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, which may or may not have a substituent.
  • the number of ring carbon atoms in the aryl ether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • An arylthioether group is an aryl ether group in which the oxygen atom of the ether bond is replaced with a sulfur atom. This may or may not have substituents.
  • the number of ring carbon atoms in the arylthioether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • Aryl groups include, for example, phenyl group, biphenyl group, terphenyl group, naphthyl group, fluorenyl group, benzofluorenyl group, dibenzofluorenyl group, phenanthryl group, anthracenyl group, benzophenanthryl group, and benzanthracetyl group.
  • Indicates aromatic hydrocarbon groups such as nyl group, chrysenyl group, pyrenyl group, fluoranthenyl group, triphenylenyl group, benzofluoranthenyl group, dibenzaanthracenyl group, perylenyl group, and helicenyl group. This may or may not have substituents.
  • phenyl group biphenyl group, terphenyl group, naphthyl group, fluorenyl group, phenanthryl group, anthracenyl group, pyrenyl group, fluoranthenyl group, and triphenylenyl group are preferable.
  • the number of carbon atoms forming the ring is not particularly limited, but is preferably in the range of 6 or more and 40 or less, more preferably 6 or more and 30 or less.
  • a substituted phenyl group when there are substituents on two adjacent carbon atoms in the phenyl group, these substituents may form a ring structure with each other.
  • the resulting group is a "substituted phenyl group,” "aryl group having a structure in which two or more rings are condensed,” or "an aryl group having a structure in which two or more rings are condensed.” ⁇ heteroaryl group having a heteroaryl group''.
  • Heteroaryl groups include, for example, pyridyl group, furanyl group, thiophenyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group, pyrimidyl group, pyridazinyl group, triazinyl group, naphthyridinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, Benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, benzocarbazolyl group, carbolinyl group, indolocarbazolyl group, benzofurocarbazolyl group, benzothienocarba Non-carbon groups such as zolyl group, dihydroindenocarbazolyl group, benzoquinolinyl group, acridinyl
  • the naphthyridinyl group refers to any of the following: 1,5-naphthyridinyl group, 1,6-naphthyridinyl group, 1,7-naphthyridinyl group, 1,8-naphthyridinyl group, 2,6-naphthyridinyl group, 2,7-naphthyridinyl group. Show that.
  • a heteroaryl group may or may not have a substituent.
  • the number of ring-forming atoms is not particularly limited, but is preferably in the range of 3 or more and 40 or less, more preferably 3 or more and 30 or less.
  • the amino group is a substituted or unsubstituted amino group.
  • the number of carbon atoms in the amino group is not particularly limited, but is preferably in the range of 2 or more and 50 or less, more preferably 6 or more and 40 or less, particularly preferably 6 or more and 30 or less.
  • a silyl group refers to a functional group to which a substituted or unsubstituted silicon atom is bonded, such as an alkylsilyl group such as a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a propyldimethylsilyl group, or a vinyldimethylsilyl group. and arylsilyl groups such as phenyldimethylsilyl group, tert-butyldiphenylsilyl group, triphenylsilyl group, and trinaphthylsilyl group.
  • the number of carbon atoms in the silyl group is not particularly limited, but is preferably in the range of 1 to 30.
  • the carboxyl group, oxycarbonyl group, and carbamoyl group may or may not have a substituent.
  • substituents include an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and these substituents may be further substituted.
  • the number of carbon atoms in the imino group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • aromatic hydrocarbon rings include a monocyclic benzene ring, a biphenyl ring, a fused bicyclic naphthalene ring, and a tricyclic terphenyl ring (m-terphenyl, o -terphenyl, p-terphenyl), fused tricyclic ring systems such as acenaphthylene ring, fluorene ring, phenalene ring, phenanthrene ring, fused tetracyclic ring system such as triphenylene ring, pyrene ring, naphthacene ring, and fused pentacyclic ring system. Examples include perylene ring and pentacene ring.
  • aromatic heterocycles include pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, oxadiazole ring, thiadiazole ring, triazole ring, tetrazole ring, pyrazole ring, pyridine ring, and pyrimidine.
  • substituents include halogen, cyano group, alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, and aryl ether group. , an arylthioether group, an aryl group, a heteroaryl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a nitro group, or a silyl group, and further, specific substituents that are preferred in the description of each substituent. is preferred. Moreover, these substituents may be further substituted with the above-mentioned substituents.
  • a compound having a structure represented by general formula (1) is described, for example, in "Advanced. Materials", 2016, vol. 28, p. It can be produced by referring to the method described in 2777-2781.
  • the obtained compound having the structure represented by the general formula (1) is purified by organic synthesis such as recrystallization and column chromatography, and then further purified by heating under reduced pressure, which is generally called sublimation purification. It is preferable to remove low-boiling components to improve purity.
  • the purity of the compound having the structure represented by general formula (1) is preferably 99% by weight or more from the viewpoint of stabilizing the characteristics of the light emitting device.
  • the peak wavelength is preferably 500 nm or more and 550 nm or less, and more preferably 510 nm or more and 540 nm or less.
  • the emission wavelength of the compound having the structure represented by general formula (1) is measured using a fluorescence spectrophotometer using a diluted solution with a concentration of 10 -5 mol/L using toluene as a solvent. I can do it.
  • the light-emitting element material in the present invention refers to a material that includes a compound having a structure represented by general formula (1) and is used for any layer of a light-emitting element.
  • Examples include materials used for hole injection layers, hole transport layers, light emitting layers, electron transport layers, and/or protective films (cap layers) of electrodes, which will be described later. Among these, it is suitably used for the light emitting layer because it has high light emitting device efficiency and color purity.
  • the light emitting element material may contain other components in addition to the compound having the structure represented by general formula (1).
  • other components include those exemplified as materials constituting a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and/or a protective film (cap layer) of an electrode, which will be described later.
  • the light emitting device of the present invention has a cathode, an anode, and one or more organic layers disposed between them, and emits light using electrical energy. It is preferable that at least one of the organic layers contains a compound having a structure represented by the above-mentioned general formula (1), and this organic layer is a light emitting layer.
  • the light emitting element of the present invention may be either a bottom emission type or a top emission type.
  • a top emission type light emitting element the narrower the half width, the higher the light emitting element efficiency due to the resonance effect of the microcavity. Therefore, it is possible to achieve both color purity and light emitting element efficiency at a higher level.
  • the layer structure between the anode and the cathode in such a light emitting device includes, in addition to the structure consisting only of the light emitting layer, 1) light emitting layer/electron transport layer, 2) hole transport layer/light emitting layer, 3) hole transport layer/emissive layer/electron transport layer, 4) hole injection layer/hole transport layer/emissive layer/electron transport layer, 5) hole transport layer/emissive layer/electron transport layer/electron injection layer, 6) hole Injection layer/hole transport layer/emissive layer/electron transport layer/electron injection layer, 7) hole injection layer/hole transport layer/emissive layer/hole blocking layer/electron transport layer/electron injection layer, 8) positive Examples include a laminated structure such as hole injection layer/hole transport layer/electron blocking layer/light emitting layer/hole blocking layer/electron transport layer/electron injection layer.
  • the above laminated structure may be a tandem type in which a plurality of layers are laminated with an intermediate layer interposed therebetween.
  • the intermediate layer generally include an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, an intermediate insulating layer, etc., and known material configurations can be used.
  • hole injection layer/hole transport layer/light emitting layer/electron transport layer/electron injection layer/charge generation layer/hole injection layer/hole transport layer/light emitting layer/electron transport Laminated configurations such as layer/electron injection layer may be mentioned.
  • the light-emitting layers may be the same or different.
  • each of the above layers may be a single layer or multiple layers, and may be doped.
  • a protective layer may be further included, and the light emitting element efficiency can be further improved due to the optical interference effect.
  • the substrate It is preferable to form the light emitting element on a substrate in order to maintain the mechanical strength of the light emitting element, to have little thermal deformation, and to have barrier properties that prevent water vapor and oxygen from entering the light emitting layer.
  • the substrate include, but are not limited to, a glass plate, a ceramic plate, a resin film, a resin thin film, a metal thin plate, and the like.
  • glass substrates are preferably used because they are transparent and easy to process.
  • a glass substrate having high transparency is preferable.
  • resin films and resin thin films obtained by hardening varnish are suitably used for this purpose.
  • resin film a heat-resistant film is used, and specific examples include polyimide film and polyethylene naphthalate film.
  • various wirings, circuits, and switching elements using TFTs may be provided on the surface of the substrate to drive the organic EL.
  • an anode is formed on the substrate.
  • Various wiring, circuits, and switching elements may be interposed between the substrate and the anode.
  • the material used for the anode is not particularly limited as long as it can efficiently inject holes into the organic layer, but in the case of a bottom emission type light emitting element, a transparent or semitransparent electrode is preferable, and in the case of a top emission type light emitting element, In this case, a reflective electrode is preferable.
  • the material for the transparent or translucent electrode examples include conductive metal oxides such as zinc oxide, tin oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO), gold, silver, aluminum, chromium, etc. metals, and conductive polymers such as polythiophene, polypyrrole, and polyaniline.
  • conductive metal oxides such as zinc oxide, tin oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO)
  • gold, silver, aluminum, chromium, etc. metals examples of the material for the transparent or translucent electrode.
  • conductive polymers such as polythiophene, polypyrrole, and polyaniline.
  • ITO indium tin oxide
  • the material for the reflective electrode is preferably one that does not absorb any light and has a high reflectance, such as metals such as aluminum, silver, and platinum.
  • Two or more of these electrode materials may be used, or a plurality of materials may be laminated.
  • the film thickness of the anode is not particularly limited, but is preferably several nm to several hundred nm.
  • the optimal method for forming the anode can be selected depending on the forming material, and examples include sputtering, vapor deposition, and inkjet methods.
  • a sputtering method is preferably used, and when forming an anode using a metal, a vapor deposition method is preferably used.
  • the film thickness of the anode is not particularly limited, it is preferably several nm to several hundred nm.
  • the cathode is preferably formed on the surface opposite to the anode with the organic layer in between, and is particularly preferably formed on the surface of the electron transport layer or the electron injection layer.
  • the material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the light-emitting layer, but in the case of a bottom-emission type light-emitting element, it is preferably a reflective electrode, and in the case of a top-emission type light-emitting element, it is preferably a translucent electrode. Preferably it is an electrode.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, alloys and multilayer laminated films of these metals and low work function metals such as lithium, sodium, potassium, calcium, and magnesium are used.
  • conductive metal oxides such as zinc oxide, indium tin oxide (ITO), and indium zinc oxide (IZO) are preferable.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • aluminum, silver, and magnesium are preferred as main components from the viewpoints of electrical resistance, ease of film formation, film stability, light emitting device efficiency, and the like.
  • the layer be composed of magnesium and silver because electron injection into the electron transport layer and the electron injection layer becomes easy and driving voltage can be reduced.
  • the material constituting the protective layer is not particularly limited, but includes, for example, metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, alloys using these metals, silica, titania, and silicon nitride.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium
  • alloys using these metals silica, titania, and silicon nitride.
  • examples include inorganic substances, polyvinyl alcohol, polyvinyl chloride, organic polymer compounds such as hydrocarbon polymer compounds, and the like.
  • the material used for the protective layer is preferably selected from materials that are transparent in the visible light region.
  • the hole injection layer is a layer inserted between the anode and the hole transport layer to facilitate hole injection.
  • the hole injection layer may be a single layer or a plurality of layers may be laminated.
  • the presence of a hole injection layer between the hole transport layer and the anode not only allows lower voltage driving and improved durability, but also improves the carrier balance of the device and improves the light emitting device efficiency.
  • a preferable example of the hole injection material is an electron-donating hole injection material (donor material). These materials have a HOMO level shallower than that of the hole transport layer and are close to the work function of the anode, making it possible to reduce the energy barrier with the anode.
  • donor material electron-donating hole injection material
  • Aromatic amine materials such as starburst arylamines such as phenyl)amino)triphenylamine (1-TNATA), carbazole derivatives, pyrazoline derivatives, stilbene compounds, hydrazone compounds, benzofuran derivatives, thiophene derivatives, oxadiazole
  • heterocyclic compounds such as derivatives, phthalocyanine derivatives, and porphyrin derivatives
  • polymer-based polymers such as polycarbonate and styrene derivatives having the above monomers in their side chains
  • polythiophenes such as PEDOT/PSS
  • polyaniline polyfluorene
  • polyvinylcarbazole polysilane.
  • the hole-injecting material is an electron-accepting hole-injecting material (acceptor material).
  • the hole injection layer may be composed of an acceptor material alone, or may be formed by doping the acceptor material into the donor material.
  • the acceptor material is a material that forms a charge transfer complex with an adjacent hole transport layer when used alone, or with the donor material when used as a dope in the donor material. Use of such a material is more preferable because it contributes to improving the conductivity of the hole injection layer and lowering the driving voltage of the device, thereby improving the efficiency and durability of the light emitting device.
  • Acceptor materials include metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, ruthenium oxide, charge transfer complexes such as tris(4-bromophenyl)aminium hexachloroantimonate (TBPAH), 1,4,5, 8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN6), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), fluorine Examples include n-type organic semiconductor compounds such as copper phthalocyanine, fullerene, and the like. When the hole injection layer contains an acceptor compound, the hole injection layer may be composed of one layer or a plurality of laminated layers.
  • the hole transport layer is a layer that transports holes injected from the anode to the light emitting layer.
  • the hole transport layer may be a single layer or may be composed of a plurality of laminated layers.
  • the hole transport layer is formed using one type of hole transport material alone or by laminating or mixing two or more types of hole transport materials. Further, it is preferable that the hole transport material has high hole injection efficiency and efficiently transports the injected holes. To this end, it is required that the material has an appropriate ionization potential, high hole mobility, excellent stability, and is unlikely to generate trapping impurities.
  • Substances that meet these conditions include, but are not particularly limited to, benzidine derivatives, an aromatic amine material group called starburst arylamines, carbazole derivatives, pyrazoline derivatives, stilbene compounds, hydrazone compounds, Heterocyclic compounds such as benzofuran derivatives, dibenzofuran derivatives, thiophene derivatives, benzothiophene derivatives, dibenzothiophene derivatives, fluorene derivatives, spirofluorene derivatives, oxadiazole derivatives, phthalocyanine derivatives, porphyrin derivatives, etc., and in polymer systems, the above monomers are used as side chains. Examples include polycarbonate, styrene derivatives, polythiophene, polyaniline, polyfluorene, polyvinylcarbazole, and polysilane.
  • the light-emitting layer is a layer that emits light due to excitation energy generated by recombination of holes and electrons.
  • the light-emitting layer may be composed of a single material, from the viewpoint of color purity, it is preferable that the light-emitting layer contains a dopant material that emits light with a narrow half-value width and a matrix material.
  • the compound having the structure represented by the general formula (1) has a particularly excellent fluorescence quantum yield, a peak emission wavelength suitable for green emission, a narrow half-width, and a high color purity. Because of its excellent properties, it is preferable to use it as a dopant material for the light-emitting layer.
  • the content of the dopant material in the light emitting layer is preferably 5% by weight or less, more preferably 2% by weight or less, from the viewpoint of further suppressing the concentration quenching phenomenon.
  • the content of the dopant material in the light emitting layer is preferably 0.1% by weight or more, and more preferably 0.5% by weight or more.
  • the matrix material is preferably an organic compound that has a high charge transport ability and a high glass transition temperature.
  • the matrix material include, but are not limited to, compounds having a condensed aryl ring such as naphthacene, pyrene, anthracene, and fluoranthene, and derivatives thereof, N,N'-dinaphthyl-N,N'-diphenyl-4,4'-diphenyl Aromatic amine derivatives such as -1,1'-diamine, metal chelated oxinoid compounds such as tris(8-quinolinato)aluminum(III), bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives , coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, pyrrolopyrrole derivatives, thiadiazolopyridine derivatives, dibenzofuran derivative
  • a fluorescent material other than the compound having the structure represented by general formula (1) may be contained.
  • compounds having a fused aryl ring such as naphthacene, pyrene, anthracene, and fluoranthene and their derivatives, compounds having a heteroaryl ring and their derivatives, distyrylbenzene derivatives, aminostyryl derivatives, tetraphenylbutadiene derivatives, and stilbene derivatives.
  • a phosphorescent material may be contained as a dopant material.
  • the phosphorescent material includes at least one metal selected from the group consisting of iridium (Ir), ruthenium (Ru), palladium (Pd), platinum (Pt), osmium (Os), and rhenium (Re).
  • a metal complex compound is preferred, and from the viewpoint of highly efficient light emission, an iridium complex or a platinum complex is more preferred.
  • the ligand preferably has a nitrogen-containing heteroaryl group such as a phenylpyridine skeleton, a phenylquinoline skeleton, or a carbene skeleton, but is not limited thereto.
  • the dopant material is only a compound having a structure represented by general formula (1).
  • the light-emitting layer further contains a compound that exhibits delayed fluorescence.
  • Compounds that exhibit delayed fluorescence have a small energy gap between the singlet excited state and the triplet excited state, causing a transition from the triplet excited state to the singlet excited state, and are materials that can utilize triplet excitons as delayed fluorescence. be.
  • this delayed fluorescence is utilized in an organic light emitting device, the light emitting device efficiency can be further improved.
  • Förster-type energy transfer occurs from the singlet excited state of the compound exhibiting delayed fluorescence to the singlet excited state of the dopant material, fluorescence emission from the singlet excited state of the dopant material is observed.
  • the dopant material is a fluorescent material having a sharp emission wavelength
  • a light emitting element with better light emitting element efficiency and color purity can be obtained.
  • the light-emitting layer contains a compound exhibiting delayed fluorescence
  • the light-emitting element efficiency is further improved, contributing to lower power consumption of the display.
  • the compound exhibiting delayed fluorescence may be a single material or a plurality of materials, such as when forming an exciplex complex.
  • the compound exhibiting delayed fluorescence may be made of a single material or a plurality of materials, and known materials can be used. Specific examples include benzonitrile derivatives, triazine derivatives, disulfoxide derivatives, carbazole derivatives, indolocarbazole derivatives, dihydrophenazine derivatives, thiazole derivatives, and oxadiazole derivatives. Examples of compounds exhibiting such delayed fluorescence include, but are not particularly limited to, the following examples.
  • the light-emitting layer contains a compound having a structure represented by the above-mentioned general formula (1) as a dopant material, preferably further contains a compound exhibiting delayed fluorescence, and further contains a compound exhibiting delayed fluorescence and a matrix material. It is more preferable.
  • the excitation singlet energy of the dopant material is S 1 (1)
  • the excitation singlet energy of the compound exhibiting delayed fluorescence is S 1 (2)
  • the excitation singlet energy of the matrix material is S 1 (3)
  • Equation 1 It is preferable to satisfy the following relationship.
  • the matrix material can have a function of confining the energy of the compound exhibiting delayed fluorescence and the dopant material within the light emitting layer, making it possible to emit light efficiently and further improving the efficiency of the light emitting device.
  • matrix materials that satisfy the relationship of formula 1 with the compound having the structure represented by general formula (1) or the compound exhibiting delayed fluorescence described above include, but are not particularly limited to, the following examples: can be mentioned.
  • the electron transport layer is a layer into which electrons are injected from the cathode and further transports electrons.
  • the electron transport material used in the electron transport layer is required to have high electron affinity, high electron mobility, excellent stability, and be a substance that does not easily generate impurities that become traps. Further, from the viewpoint of suppressing film quality deterioration due to crystallization, a compound having a molecular weight of 400 or more is preferable.
  • the electron transport layer in the present invention also includes a hole blocking layer that can efficiently block the movement of holes.
  • the hole-blocking layer and the electron-transporting layer may be composed of a single layer or a stack of a plurality of materials.
  • electron transport materials include polycyclic aromatic derivatives, styryl aromatic ring derivatives, quinone derivatives, phosphorus oxide derivatives, quinolinol complexes such as tris(8-quinolinolato)aluminum(III), benzoquinolinol complexes, hydroxyazole complexes, and azomethine complexes. , various metal complexes such as tropolone metal complexes and flavonol metal complexes. From the viewpoint of reducing driving voltage and further improving light emitting device efficiency, it is preferable to use a compound having a heteroaryl group containing electron-accepting nitrogen.
  • the electron-accepting nitrogen refers to a nitrogen atom forming multiple bonds with adjacent atoms.
  • heteroaryl group containing electron-accepting nitrogen has a large electron affinity, electrons can be easily injected from the cathode, allowing lower voltage driving. In addition, more electrons are supplied to the light emitting layer, and the probability of recombination increases, so that the light emitting device efficiency is further improved.
  • compounds having a heteroaryl group structure containing electron-accepting nitrogen include pyridine derivatives, triazine derivatives, pyrazine derivatives, pyrimidine derivatives, quinoline derivatives, quinoxaline derivatives, quinazoline derivatives, naphthyridine derivatives, benzoquinoline derivatives, phenanthroline derivatives, and imidazole.
  • Examples include derivatives, oxazole derivatives, thiazole derivatives, triazole derivatives, oxadiazole derivatives, thiadiazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, phenanthroimidazole derivatives, and oligopyridine derivatives such as bipyridine and terpyridine. Two or more types of these may be used.
  • the electron transport material has a condensed polycyclic aromatic skeleton because the glass transition temperature is improved, the electron mobility is large, and the driving voltage can be reduced.
  • a fused polycyclic aromatic skeleton is preferably a quinolinol skeleton, a triazine skeleton, a fluoranthene skeleton, an anthracene skeleton, a pyrene skeleton, or a phenanthroline skeleton.
  • the electron transport layer may contain a donor material.
  • the donor material is a compound that improves the electron injection barrier, facilitates electron injection from the cathode or electron injection layer to the electron transport layer, and further improves the electrical conductivity of the electron transport layer.
  • donor materials include alkali metals such as Li, inorganic salts containing alkali metals such as LiF, complexes of alkali metals and organic substances such as lithium quinolinol, alkaline earth metals, and alkaline earth metals.
  • alkali metals such as Li
  • inorganic salts containing alkali metals such as LiF complexes of alkali metals and organic substances such as lithium quinolinol, alkaline earth metals, and alkaline earth metals.
  • examples include inorganic salts, complexes of alkaline earth metals and organic substances, rare earth metals such as Eu and Yb, inorganic salts containing rare earth metals, and complexes of rare earth metals and organic substances. Two or more types of these may be used. Among these, metallic lithium, rare earth metals, and lithium quinolinol (Liq) are preferred.
  • an electron injection layer may be provided between the cathode and the electron transport layer.
  • the electron injection layer is formed for the purpose of assisting the injection of electrons from the cathode to the electron transport layer, and is composed of a compound having a heteroaryl ring structure containing electron-accepting nitrogen, or the above-mentioned donor material. .
  • triazine derivatives, phenanthroline derivatives, and oligopyridine derivatives are preferred, phenanthroline derivatives and terpyridine derivatives are more preferred, and phenanthroline derivatives having a structure represented by the following general formula (4) are even more preferred. That is, the light emitting device of the present invention preferably contains a phenanthroline derivative having a structure represented by general formula (4) in the electron injection layer.
  • Ar 4 is selected from the group consisting of a p-valent aromatic hydrocarbon group and a p-valent aromatic heterocyclic group.
  • p is a natural number from 1 to 3.
  • R 301 to R 308 may be the same or different, and are selected from the group consisting of a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocyclic group, an aryl group, and a heteroaryl group.
  • the p phenanthrolyl groups can be substituted at any position.
  • aromatic hydrocarbon group examples include, in the case of a monovalent group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthryl group, an anthracenyl group, a benzo Examples include phenanthryl group, benzanthracenyl group, chrysenyl group, pyrenyl group, fluoranthenyl group, triphenylenyl group, benzofluoranthenyl group, dibenzaanthracenyl group, perylenyl group, and helicenyl group.
  • phenyl group biphenyl group, terphenyl group, naphthyl group, fluorenyl group, phenanthryl group, anthracenyl group, pyrenyl group, fluoranthenyl group, triphenylenyl group, and their hydrogen atoms
  • a group from which at least a part of is removed is preferred.
  • the aromatic hydrocarbon group may or may not have a substituent.
  • the number of carbon atoms forming the ring is not particularly limited, but is preferably in the range of 6 or more and 40 or less, more preferably 6 or more and 30 or less.
  • substituents may form a ring structure.
  • the aromatic heterocyclic group refers to a cyclic aromatic group having one or more atoms other than carbon in the ring, for example, in the case of monovalent, pyridyl group, furanyl group, thiophenyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group.
  • the naphthyridinyl group refers to any of the following: 1,5-naphthyridinyl group, 1,6-naphthyridinyl group, 1,7-naphthyridinyl group, 1,8-naphthyridinyl group, 2,6-naphthyridinyl group, 2,7-naphthyridinyl group. Show that.
  • the aromatic heterocyclic group may or may not have a substituent.
  • the number of carbon atoms forming the ring of the aromatic heterocyclic group is not particularly limited, but is preferably in the range of 2 to 40, more preferably 2 to 30.
  • the aromatic hydrocarbon group or the aromatic heterocyclic group may further have a substituent other than the phenanthryl group.
  • p is preferably 2.
  • an inorganic material such as an insulator or a semiconductor can also be used for the electron injection layer.
  • an inorganic material such as an insulator or a semiconductor can also be used for the electron injection layer. Use of these materials is preferable because short circuits in the light emitting element can be suppressed and electron injection properties can be improved.
  • metal compounds such as alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides are preferable. Two or more types of these may be used.
  • the charge generation layer in the present invention generally consists of a double layer, and specifically can be used as a pn junction charge generation layer consisting of an n-type charge generation layer and a p-type charge generation layer.
  • the pn junction type charge generation layer generates charges or separates the charges into holes and electrons when a voltage is applied in the light emitting element, and transfers these holes and electrons to the hole transport layer and the electron transport layer. injection into the light-emitting layer via the layer. Specifically, it functions as an intermediate charge generation layer in a light emitting element in which light emitting layers are stacked.
  • the n-type charge generation layer supplies electrons to the first light-emitting layer located on the anode side, and the p-type charge generation layer supplies holes to the second light-emission layer located on the cathode side. Therefore, the light emitting element efficiency in a light emitting element in which a plurality of light emitting layers are laminated can be improved, the driving voltage can be reduced, and the durability of the light emitting element is also improved.
  • the n-type charge generation layer consists of an n-type dopant and a host, and conventional materials can be used for these.
  • n-type dopants include alkali metals, alkaline earth metals, rare earth metals, and the like. Two or more types of these may be used. Among these, alkali metals or salts thereof, and rare earth metals are preferred, and lithium metal, lithium fluoride (LiF), lithium quinolinol (Liq), and ytterbium metal are more preferred.
  • examples of the host include triazine derivatives, phenanthroline derivatives, oligopyridine derivatives, and the like. Two or more types of these may be used.
  • the light emitting device of the present invention preferably contains a phenanthroline derivative having a structure represented by general formula (6) in the charge generation layer, and preferably contains a phenanthroline derivative having a structure represented by general formula (7). More preferred.
  • any one of Y 1 to Y 3 is a nitrogen atom, and the others are methine groups.
  • L 2 is a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, or a substituted or unsubstituted anthrylene group
  • L 3 is a single bond, a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group or a substituted or unsubstituted anthrylene group.
  • the substituent is an alkyl group or an alkoxy group.
  • A is a phenyl group or a pyridyl group, and m is 0 or 1.
  • the p-type charge generation layer includes a p-type dopant and a host, and conventional materials can be used for these.
  • a p-type dopant tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ)
  • tetracyanoquinodimethane derivatives tetracyanoquinodimethane derivatives
  • radialene derivatives iodine
  • Two or more types of these may be used.
  • arylamine derivatives are preferred.
  • the formation method of each of the above layers constituting the light emitting element may be either a dry process or a wet process, and examples thereof include resistance heating evaporation, electron beam evaporation, sputtering, molecular lamination method, coating method, inkjet method, printing method, etc. . Among these, resistance heating vapor deposition is preferred from the viewpoint of device characteristics.
  • the thickness of the organic layer cannot be limited because it depends on the resistance value of the luminescent material, but it is preferably 1 to 1000 nm.
  • the thickness of each of the light-emitting layer, electron transport layer, and hole transport layer is preferably 1 nm or more and 200 nm or less, more preferably 5 nm or more and 100 nm or less.
  • the light emitting element according to the embodiment of the present invention has a function of converting electrical energy into light.
  • direct current is mainly used as electrical energy here
  • pulsed current or alternating current can also be used.
  • the current and voltage values There are no particular restrictions on the current and voltage values, and required characteristic values vary depending on the purpose of the device, but from the viewpoint of power consumption and durability of the device, it is preferable that high brightness can be obtained at low voltage.
  • the half-width is preferably 45 nm or less, more preferably 35 nm or less, and 30 nm or less at the emission wavelength when energized. The following are more preferred.
  • the light emitting device according to the embodiment of the present invention can achieve both high light emitting device efficiency and high color purity, and can also be made thinner and lighter, so it can be used, for example, as a display device or a lighting device. Suitably used.
  • Examples of display devices include display devices such as displays that use a matrix method, backlights for various devices, and the like.
  • Backlights are mainly used for the purpose of improving the visibility of display devices such as non-self-luminous displays, and are used in liquid crystal displays, clocks, audio devices, automobile panels, display boards, signs, and the like.
  • liquid crystal displays and in particular, for backlights for personal computers, for which thinning is being considered.
  • Examples of the lighting device include medical lighting, interior lighting, etc., and it is possible to realize a lighting device that combines low power consumption, bright luminous color, and high design.
  • the compounds of the present invention may be used in color conversion compositions that convert incident light from a light emitter, such as a light source, into light of a different wavelength from the incident light. It is preferable that the color conversion composition contains the compound represented by the above-mentioned general formula (1) and a binder resin.
  • converting into light with a wavelength different from that of the incident light preferably means converting into light with a longer wavelength than the incident light.
  • the color conversion composition of the present invention can be prepared by, for example, mixing a binder resin, a compound having a structure represented by general formula (1), and additives and solvents as necessary to a predetermined composition, and then stirring and It can be obtained by homogeneously mixing or kneading using a kneader.
  • the stirring/kneading machine include a homogenizer, a revolution-revolution type stirrer, a three-roller mill, a ball mill, a planetary ball mill, and a bead mill.
  • defoaming is also preferably carried out under vacuum or reduced pressure conditions. Further, certain specific components may be mixed in advance, or treatments such as aging may be performed. It is also possible to remove the solvent with an evaporator to reach the desired solids concentration.
  • the color conversion sheet of the present invention is a sheet that converts incident light from a light emitter such as a light source into light of a wavelength different from that of the incident light, and contains the color conversion composition of the present invention described above. It is preferable to convert the incident light into light with a longer wavelength than that of the incident light.
  • the color conversion sheet of the present invention preferably includes a color conversion layer that is a layer formed from the color conversion composition described above.
  • the amount of residual solvent in the color conversion layer is preferably 0.5% by weight or less from the viewpoint of further improving the durability of the color conversion sheet.
  • the amount of residual solvent in the color conversion layer is preferably 0.1% by weight or more from the viewpoint of further improving the luminous efficiency of the color conversion sheet.
  • a color conversion layer is formed by applying the color conversion composition prepared by the method described above onto a base material and drying it.
  • the binder resin is a thermosetting resin
  • the color conversion composition may be applied onto the base material and then heated and cured to form a color conversion layer
  • the binder resin is a photocurable resin
  • the color conversion composition The material may be applied onto a substrate and then photocured to form a color conversion layer.
  • the light source unit of the present invention includes at least a light source and the color conversion sheet of the present invention described above.
  • the light source included in the light source unit of the present invention serves as a source of the above-mentioned excitation light.
  • the method of arranging the light source and the color conversion sheet is not particularly limited, and the light source and color conversion sheet may be placed in close contact with each other, or a remote phosphor format may be used in which the light source and the color conversion sheet are separated. Good too.
  • the light source unit may further include a color filter for the purpose of increasing color purity.
  • any type of light source can be used as long as it emits light in a wavelength range that can be absorbed by the luminescent material.
  • any light source can be used in principle, such as a hot cathode tube, a cold cathode tube, a fluorescent light source such as an inorganic EL, an organic electroluminescent light source, an LED light source, an incandescent light source, or sunlight.
  • LED is a suitable light source, and for display (display device) and lighting applications, blue LED, which has a light source in the range of 430 to 500 nm, is an even more suitable light source because it can improve the color purity of blue light. be.
  • the light source may have one kind of luminescence peak or two or more kinds of luminescence peaks, but in order to improve color purity, it is preferable to have one kind of luminescence peak. It is also possible to use a plurality of light sources with different types of emission peaks in any combination.
  • the light source unit of the present invention is useful for various light sources such as space lighting and backlighting, and specifically, it can be used for display devices, lighting, interiors, signs, signboards, etc., but especially for display devices and lighting applications. It is particularly suitable for use in
  • the display device of the present invention includes at least the light emitting element of the present invention described above and/or the color conversion sheet described above.
  • the light source unit of the present invention described above is preferably used as a backlight unit in a display device such as a liquid crystal display.
  • a display device such as an organic EL display that displays in a matrix and/or segment format and has high luminous efficiency and excellent durability can be manufactured.
  • the lighting device of the present invention includes at least the light emitting element of the present invention described above and/or the color conversion sheet of the present invention described above.
  • this lighting device emits white light by combining a blue LED light source as a light source unit and a color conversion sheet that converts the blue light from the blue LED light source into light with a longer wavelength.
  • a lighting device can also be obtained using the above-described light emitting element of the present invention.
  • These lighting devices include, for example, medical lighting, interior lighting, and the like, and can achieve both bright luminescent color, high durability, and high design.
  • the compound of the present invention may be used in a photoelectric conversion material constituting a photoelectric conversion layer in a photoelectric conversion element having a photoelectric conversion layer between an anode and a cathode.
  • the photoelectric conversion material may be composed only of the compound having the structure represented by the general formula (1) of the present invention, but may further contain other photoelectric conversion materials in order to further increase the photoelectric conversion efficiency. .
  • Light emitting element characteristics A voltage was applied to the light emitting devices obtained in Examples 24 to 115 and Comparative Examples 7 to 41 so that the current density was 0.1 mA/cm 2 , and a spectral radiance meter CS-1000 manufactured by Konica Minolta, Inc. was used. The emission wavelength was measured using Based on the obtained emission wavelength, the light emitting device efficiency was determined on the assumption that Lambassian radiation was performed.
  • the emission wavelength was similarly measured when a voltage was applied to the light emitting devices obtained in Examples 24 to 115 and Comparative Examples 7 to 41 so that the current density was 10 mA/cm 2 , and the peak wavelength and half wavelength were measured.
  • the price range was calculated.
  • a voltage was applied to the light emitting devices obtained in Examples 24 to 115 and Comparative Examples 7 to 37 so that the current density was 10 mA/cm 2 , and the brightness of the light emitting devices was measured using a photodiode. Luminance. Further, a voltage was continuously applied so that the current density was 10 mA/cm 2 , and the time (LT90) at which the brightness reached 90% of the initial brightness was measured, and this was used as an index of durability.
  • Raw material 1A is published in Journal of American Chemical Society, 2020, vol. 142, p. It can be synthesized by the method disclosed in No. 19468-19472.
  • Raw material 1B is obtained from Angewandte chemie international edition, vol. 59, p. It can be synthesized by the method disclosed in No. 7813-7817.
  • Raw material 1A (5.5 g), raw material 1B (8.6 g), potassium phosphate (3.9 g) and N,N-dimethylformamide (60 ml) were placed in a flask and heated and stirred at 150°C for 6 hours under a nitrogen atmosphere. did. After heating and stirring, the reaction solution was cooled to room temperature, water and toluene were added, and the mixture was separated. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography to obtain intermediate INT1 (yield 73%).
  • Compound D-1 was purified by sublimation at 400° C. under a pressure of 1 ⁇ 10 ⁇ 3 Pa using an oil diffusion pump, and then used as a light emitting device material.
  • Table 1 shows the results of evaluating the luminescence properties of Compound D-1.
  • Compound D-2 was purified by sublimation at 400° C. under a pressure of 1 ⁇ 10 ⁇ 3 Pa using an oil diffusion pump, and then used as a light emitting device material.
  • Table 1 shows the results of evaluating the luminescence properties of Compound D-2.
  • Example 24 A glass substrate (manufactured by Geomatec Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which a 100 nm thick ITO transparent conductive film was deposited was cut into 38 mm ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned for 15 minutes using "Semico Clean” (registered trademark) 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.), and then washed with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before fabricating the device, placed in a vacuum evaporation device, and evacuated until the degree of vacuum in the device became 5 ⁇ 10 ⁇ 4 Pa or less.
  • "Semico Clean" registered trademark
  • This substrate was subjected to UV-ozone treatment for 1 hour immediately before fabricating the device, placed in a vacuum evaporation device, and evacuated until the degree of vacuum in the device became 5 ⁇ 10 ⁇ 4 Pa or less.
  • HAT-CN6 was deposited to a thickness of 10 nm as a hole injection layer by a resistance heating method.
  • compound HT-1 was deposited to a thickness of 40 nm as a first hole transport layer.
  • compound HT-2 was deposited to a thickness of 10 nm as a second hole transport layer.
  • Compound H-1 was used as a matrix material and Compound D-1 was used as a dopant material, and the dopant material was deposited to a thickness of 20 nm at a doping concentration of 1% by weight.
  • HAT-CN6 , HT-1, HT-2, H-1, ET-1, and 2E-1 are the compounds shown below.
  • Table 2 shows the results of evaluating the obtained light emitting device using the method described above.
  • Example 25-46 Comparative Examples 7-12
  • a light emitting device was produced in the same manner as in Example 24, except that the compounds listed in Table 2 were used as dopant materials, and Table 2 shows the evaluation results.
  • Example 47 A glass substrate (manufactured by Geomatec Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which a 100 nm thick ITO transparent conductive film was deposited was cut into 38 mm ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned for 15 minutes using "Semico Clean” (registered trademark) 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.), and then washed with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before fabricating the device, placed in a vacuum evaporation device, and evacuated until the degree of vacuum in the device became 5 ⁇ 10 ⁇ 4 Pa or less.
  • "Semico Clean" registered trademark
  • This substrate was subjected to UV-ozone treatment for 1 hour immediately before fabricating the device, placed in a vacuum evaporation device, and evacuated until the degree of vacuum in the device became 5 ⁇ 10 ⁇ 4 Pa or less.
  • HAT-CN6 was first deposited to a thickness of 10 nm as a hole injection layer, and then HT-3 was deposited to a thickness of 30 nm as a hole transport layer.
  • H-2 is used as a matrix material
  • compound D-1 is used as a dopant material
  • compound H-3 which is a compound showing delayed fluorescence, is mixed in a weight ratio of 79.0:1.0:20. It was deposited to a thickness of 30 nm.
  • ET-2 was laminated to a thickness of 10 nm as a hole blocking layer
  • ET-3 was laminated to a thickness of 40 nm as an electron transport layer.
  • HT-3, H-2, H-3, ET-2, and ET-3 are the compounds shown below.
  • Table 3 shows the results of evaluating the obtained light emitting device using the method described above.
  • Example 48-69 Comparative Examples 13-18
  • a light emitting device was produced in the same manner as in Example 47 except that the compounds listed in Table 3 were used as dopant materials, and Table 3 shows the evaluation results.
  • Example 70 Tandem type light emitting element evaluation
  • a glass substrate manufactured by Geomatec Co., Ltd., 11 ⁇ / ⁇ , sputtered product
  • the obtained substrate was ultrasonically cleaned for 15 minutes using "Semico Clean” (registered trademark) 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.), and then washed with ultrapure water.
  • This substrate was subjected to UV-ozone treatment for 1 hour immediately before fabricating the device, placed in a vacuum evaporation device, and evacuated until the degree of vacuum in the device became 5 ⁇ 10 ⁇ 4 Pa or less.
  • HAT-CN6 was first deposited to a thickness of 10 nm as a hole injection layer, and then HT-3 was deposited to a thickness of 30 nm as a hole transport layer.
  • a host material (third compound) H-2, a dopant material (first compound) compound G-1, and a TADF material (second compound) compound H-3 are used as a light-emitting layer.
  • ET-2 was laminated to a thickness of 10 nm as a hole blocking layer
  • ET-3 was laminated to a thickness of 40 nm as an electron transport layer.
  • compound ET-4 as an n-type host and metallic lithium as an n-type dopant were laminated to a thickness of 10 nm at a deposition rate ratio of 99:1.
  • HAT-CN6 was laminated to a thickness of 10 nm as a p-type charge generation layer.
  • a 30 nm thick hole transport layer and a 30 nm light emitting layer were formed in the same manner as above.
  • 10 nm of ET-2 was deposited as a hole blocking layer
  • 40 nm of ET-3 was deposited as an electron transport layer.
  • 2E-1 was deposited to a thickness of 0.5 nm as an electron injection layer, and then magnesium and silver were co-deposited to a thickness of 1000 nm to form a cathode, thereby producing a 5 mm x 5 mm square tandem light emitting device.
  • the light emitting device efficiency was 31.8% and the LT90 was 185 hours.
  • Example 71-92 A light emitting device was produced in the same manner as in Example 70, except that the compound listed in Table 4 was used instead of D-1 as the dopant material. The evaluation results are shown in Table 4.
  • Example 93-115 Light emission was carried out in the same manner as in Example 70, except that Compound ET-5 was used instead of Compound ET-4, which is an n-type host, as the n-type charge generation layer, and the compounds listed in Table 4 were used as the dopant materials. The device was fabricated. The evaluation results are shown in Table 4.
  • ET-4, ET-5 and Bphen are the compounds shown below.
  • [1] A compound having a structure represented by the above general formula (1).
  • [2] The compound according to [1], wherein in general formula (1), L is a single bond.
  • [3] A substituted or unsubstituted polycyclic aromatic hydrocarbon in which ring C 1 and ring D 1 contain a ring structure represented by any of the above general formulas (2-1) to (2-8).
  • [4] The compound according to any one of [1] to [3], wherein in general formula (1), ring C 1 and ring D 1 are the same.
  • [5] The compound according to any one of [1] to [4], which has a structure represented by the above general formula (3).
  • the compound having the structure represented by the above general formula (3) has a structure represented by the above general formula (5-1) or (5-2) [5] to [8] Compounds described.
  • a light emitting device material comprising the compound according to any one of [1] to [9].
  • It has a cathode, an anode, and one or more organic layers disposed between the cathode and the anode, and at least one of the organic layers is described in any one of [1] to [9].
  • a light emitting device containing a compound of [12] The light emitting device according to [11], wherein the organic layer containing the compound according to any one of [1] to [9] is a light emitting layer.
  • Photoelectric conversion element material comprising the compound according to any one of [1] to [9]
  • [21] A color conversion composition that converts incident light into light of a wavelength different from that of the incident light, the color conversion composition containing the compound according to any one of [1] to [9] and a binder resin. thing.
  • [22] A color conversion sheet comprising the color conversion composition according to [21] or a cured product thereof.
  • [23] A light source unit comprising a light source and the color conversion sheet according to [22].
  • a display device comprising the light emitting element according to any one of [11] to [19].
  • [25] A display device including the light source unit according to [23].
  • [26] A lighting device comprising the light emitting element according to any one of [11] to [19].
  • [27] A lighting device including the light source unit according to [23].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The purpose of the present invention is to provide a compound which exhibits high luminous efficiency and excellent durability and has green light emission characteristics. The present invention is a compound which has a structure represented by general formula (1). In general formula (1), ring A1 and ring B1 are each a substituted or unsubstituted aromatic hydrocarbon ring having 6-30 ring-forming carbon atoms or a substituted or unsubstituted aromatic heterocyclic ring having 5-30 ring-forming atoms. Ring C1 is a substituted or unsubstituted polycyclic aromatic hydrocarbon having 11-20 ring-forming atoms. Ring D1 is a substituted or unsubstituted polycyclic aromatic hydrocarbon having 7-20 ring-forming atoms. X is O, N-RA or S, and RA is an alkyl group, a cycloalkyl group, an alkenyl group, an imino group, an aryl group or a heteroaryl group. These groups may have substituent groups. In addition, RA may bond to ring A1 or ring B1 via a linking group to form a ring. In this case, the linking group is a single bond, -O-, -S-, >CRA1RA2 or >SiA3RA4. RA1 to RA4 are each independently hydrogen, a halogen, an alkyl group, a cycloalkyl group, an aryl group or a heteroaryl group, and these groups may have substituent groups. In addition, RA1 and RA2 or RA3 and RA4 may be bonded via a linking group. L is a single bond, O, S, >CRA5RA6 or >SiRA7RA8. RA5 to RA8 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an aryl group and a heteroaryl group, and these groups may have substituent groups. In addition, RA5 and RA6 may be bonded via a linking group, and RA7 and RA8 may be bonded via a linking group.

Description

化合物、それを用いた発光素子材料および発光素子、光電変換素子材料、色変換組成物、色変換シート、光源ユニット、表示装置、照明装置Compounds, light emitting device materials and light emitting devices using the same, photoelectric conversion device materials, color conversion compositions, color conversion sheets, light source units, display devices, lighting devices
 本発明は、新規化合物およびそれを用いた発光素子材料、発光素子、光電変換素子材料、色変換組成物、色変換シート、光源ユニット、表示装置、照明装置に関する。 The present invention relates to a novel compound and a light emitting device material, a light emitting device, a photoelectric conversion device material, a color conversion composition, a color conversion sheet, a light source unit, a display device, and a lighting device using the same.
 陰極から注入された電子と陽極から注入された正孔が、両極に挟まれた発光層内で再結合することにより発光する有機薄膜発光素子は、薄型化が可能であること、駆動電圧が低いこと、輝度が高いこと、多色発光が可能であることなどの特徴を有する。 Organic thin-film light-emitting devices emit light by recombining electrons injected from the cathode and holes injected from the anode in a light-emitting layer sandwiched between the two electrodes.They can be made thinner and have a lower driving voltage. It has characteristics such as high brightness, and the ability to emit multicolor light.
 有機発光素子を用いた表示装置や照明装置の更なる高色域化に向けて、発光ピークの半値幅の狭い材料の開発が盛んに行われている。かかる技術として、例えば、ホウ素原子と窒素原子などで複数の芳香族環を連結した多環芳香族化合物(例えば、特許文献1~4参照)などが提案されている。 In order to further increase the color gamut of display devices and lighting devices using organic light-emitting devices, materials with narrow half-value widths of emission peaks are being actively developed. As such a technique, for example, polycyclic aromatic compounds in which a plurality of aromatic rings are connected by boron atoms, nitrogen atoms, etc. (see, for example, Patent Documents 1 to 4) have been proposed.
中国特許出願公開第107417715号明細書China Patent Application Publication No. 107417715 国際公開第2015/102118号International Publication No. 2015/102118 国際公開第2020/106032号International Publication No. 2020/106032 国際公開第2020/217229号International Publication No. 2020/217229
 特許文献1~4に記載された多環芳香族化合物は、青色発光材料であり、緑色発光材料としては発光波長が不十分であった。また、発光素子とした際の発光素子効率および耐久性に課題を抱えていた。そこで、本発明は、発光効率が高く耐久性に優れた、緑色発光特性を有する化合物を提供することを目的とする。 The polycyclic aromatic compounds described in Patent Documents 1 to 4 are blue light-emitting materials, and their emission wavelengths are insufficient for green light-emitting materials. Additionally, there were problems with the efficiency and durability of the light emitting device when it was used as a light emitting device. Therefore, an object of the present invention is to provide a compound having high luminous efficiency, excellent durability, and green luminescent properties.
 本願発明は、下記一般式(1)で表される構造を有する化合物である。 The present invention is a compound having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記一般式(1)中、環Aおよび環Bは、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環または置換もしくは無置換の環形成原子数5~30の芳香族複素環である。 In the above general formula (1), Ring A 1 and Ring B 1 are substituted or unsubstituted aromatic hydrocarbon rings having 6 to 30 ring carbon atoms, or substituted or unsubstituted aromatic hydrocarbon rings having 5 to 30 ring atoms. It is a group heterocycle.
 環Cは、置換もしくは無置換の環構造原子数が11以上20以下の多環芳香族炭化水素である。 Ring C 1 is a substituted or unsubstituted polycyclic aromatic hydrocarbon having 11 or more and 20 or less ring atoms.
 環Dは、置換もしくは無置換の環構造原子数が7以上20以下の多環芳香族炭化水素である。 Ring D 1 is a substituted or unsubstituted polycyclic aromatic hydrocarbon having 7 or more and 20 or less ring atoms.
 Xは、O、N-RまたはSであり、Rは、アルキル基、シクロアルキル基、アルケニル基、イミノ基、アリール基またはヘテロアリール基である。これらの基は、さらに置換基を有してもよい。また、Rは、さらに連結基を介して、環Aまたは環Bとの間で結合して環構造を形成してもよい。その場合の連結基は、単結合、-O-、-S-、>CRA1A2または>SiRA3A4である。RA1~RA4は、それぞれ独立して、水素、ハロゲン、アルキル基、シクロアルキル基、アリール基またはヘテロアリール基であり、これらの基は、さらに置換基を有してもよい。また、RA1とRA2またはRA3とRA4は、さらに連結基を介して結合していてもよい。 X is O, N-R A or S, and R A is an alkyl group, cycloalkyl group, alkenyl group, imino group, aryl group or heteroaryl group. These groups may further have a substituent. Further, R A may further be bonded to ring A 1 or ring B 1 via a linking group to form a ring structure. In that case, the linking group is a single bond, -O-, -S-, >CR A1 R A2 or >SiR A3 R A4 . R A1 to R A4 are each independently hydrogen, halogen, an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group, and these groups may further have a substituent. Furthermore, R A1 and R A2 or R A3 and R A4 may be further bonded via a linking group.
 Lは単結合、O、S、>CRA5A6または>SiRA7A8である。RA5~RA8は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アリール基およびヘテロアリール基からなる群より選ばれ、これらの基は、さらに置換基を有してもよい。また、RA5とRA6およびRA7とRA8は、さらに連結基を介して結合していてもよい。 L is a single bond, O, S, >CR A5 R A6 or > SiR A7 R A8 . R A5 to R A8 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group, and these groups further have a substituent. Good too. Furthermore, R A5 and R A6 and R A7 and R A8 may be further bonded via a linking group.
 本発明の化合物は、発光効率が高く耐久性に優れた、緑色発光特性を有する。本発明の化合物により、発光素子効率が高く耐久性に優れた、緑色発光特性を有する発光素子を提供することができる。 The compound of the present invention has green luminescent properties with high luminous efficiency and excellent durability. By using the compound of the present invention, it is possible to provide a light-emitting device having high light-emitting device efficiency, excellent durability, and green light-emitting characteristics.
 以下に、本発明の内容について詳細に説明する。本発明は、以下に記載する実施態様や具体例に限定されるものではない。 Below, the content of the present invention will be explained in detail. The present invention is not limited to the embodiments or specific examples described below.
 <一般式(1)で表される構造を有する化合物>
 本発明の化合物は、後述の一般式(1)で表される構造を有する。
<Compound having a structure represented by general formula (1)>
The compound of the present invention has a structure represented by the general formula (1) described below.
 青色発光材料として、特許文献1~4に記載の多環芳香族化合物は、強固で平面性の高い骨格を有するため、高い蛍光量子収率を示す。また、発光波長におけるピーク半値幅が小さいため、色純度を向上させることができる。 As blue light-emitting materials, the polycyclic aromatic compounds described in Patent Documents 1 to 4 have strong and highly planar skeletons, and therefore exhibit high fluorescence quantum yields. Furthermore, since the peak half width at the emission wavelength is small, color purity can be improved.
 このような多環芳香族化合物を緑色発光させる手段としては、芳香族炭化水素環または芳香族複素環を多環芳香族化合物に直接結合させることにより、共役を拡張させ、発光を長波長化する方法が挙げられる。しかしながら、芳香族炭化水素環または芳香族複素環を単に多環芳香族化合物に結合させるだけでは、共役長の拡張が不十分であり、緑色発光の実現が困難であった。本発明においては、一般式(1)で示すように、環Cおよび環Dの2つの多環芳香族炭化水素を縮環することで、共役長を拡張して長波長化し、緑色発光を得ることができる。さらに、2つの多環芳香族炭化水素を縮環することによって、一般式(1)で表される構造を有する化合物の振動を制限し、励起状態における失活を抑制し、発光素子の発光素子効率および耐久性を向上させることができる。 As a means of making such a polycyclic aromatic compound emit green light, by directly bonding an aromatic hydrocarbon ring or an aromatic heterocycle to a polycyclic aromatic compound, the conjugation is expanded and the emission wavelength is extended. There are several methods. However, simply bonding an aromatic hydrocarbon ring or an aromatic heterocycle to a polycyclic aromatic compound does not sufficiently expand the conjugation length, making it difficult to achieve green light emission. In the present invention, as shown in the general formula (1), by condensing two polycyclic aromatic hydrocarbons, ring C 1 and ring D 1 , the conjugation length is expanded to make the wavelength longer, and green light is emitted. can be obtained. Furthermore, by condensing two polycyclic aromatic hydrocarbons, the vibration of the compound having the structure represented by the general formula (1) is restricted, deactivation in the excited state is suppressed, and the light emitting element of the light emitting element is Efficiency and durability can be improved.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記一般式(1)中、環Aおよび環Bは、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環または置換もしくは無置換の環形成原子数5~30の芳香族複素環である。 In the above general formula (1), Ring A 1 and Ring B 1 are substituted or unsubstituted aromatic hydrocarbon rings having 6 to 30 ring carbon atoms, or substituted or unsubstituted aromatic hydrocarbon rings having 5 to 30 ring atoms. It is a group heterocycle.
 環Cは、置換もしくは無置換の環構造原子数が11以上20以下の多環芳香族炭化水素である。 Ring C 1 is a substituted or unsubstituted polycyclic aromatic hydrocarbon having 11 or more and 20 or less ring atoms.
 環Dは、置換もしくは無置換の環構造原子数が7以上20以下の多環芳香族炭化水素である。 Ring D 1 is a substituted or unsubstituted polycyclic aromatic hydrocarbon having 7 or more and 20 or less ring atoms.
 Xは、O、N-RまたはSであり、Rは、アルキル基、シクロアルキル基、アルケニル基、イミノ基、アリール基またはヘテロアリール基である。これらの基は、さらに置換基を有してもよい。また、Rは、さらに連結基を介して、環Aまたは環Bとの間で結合して環構造を形成してもよい。その場合の連結基は、単結合、-O-、-S-、>CRA1A2または>SiRA3A4である。RA1~RA4は、それぞれ独立して、水素、ハロゲン、アルキル基、シクロアルキル基、アリール基またはヘテロアリール基であり、これらの基は、さらに置換基を有してもよい。また、RA1とRA2またはRA3とRA4は、さらに連結基を介して結合していてもよい。 X is O, N-R A or S, and R A is an alkyl group, cycloalkyl group, alkenyl group, imino group, aryl group or heteroaryl group. These groups may further have a substituent. Further, R A may further be bonded to ring A 1 or ring B 1 via a linking group to form a ring structure. In that case, the linking group is a single bond, -O-, -S-, >CR A1 R A2 or >SiR A3 R A4 . R A1 to R A4 are each independently hydrogen, halogen, an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group, and these groups may further have a substituent. Furthermore, R A1 and R A2 or R A3 and R A4 may be further bonded via a linking group.
 Lは単結合、O、S、>CRA5A6または>SiRA7A8である。RA5~RA8は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アリール基およびヘテロアリール基からなる群より選ばれ、これらの基は、さらに置換基を有してもよい。また、RA5とRA6およびRA7とRA8は、さらに連結基を介して結合していてもよい。 L is a single bond, O, S, >CR A5 R A6 or > SiR A7 R A8 . R A5 to R A8 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group, and these groups further have a substituent. Good too. Furthermore, R A5 and R A6 and R A7 and R A8 may be further bonded via a linking group.
 発光素子の色純度、発光素子効率および耐久性をより向上させる観点から、Lは単結合が好ましい。 From the viewpoint of further improving the color purity, light-emitting element efficiency, and durability of the light-emitting element, L is preferably a single bond.
 緑色発光の色純度をより向上させる観点から、環Cおよび環Dが下記化学式(2-1)~(2-8)のいずれかで表される環構造を含む、置換もしくは無置換の多環芳香族炭化水素であることが好ましい。 From the viewpoint of further improving the color purity of green light emission, ring C 1 and ring D 1 contain a ring structure represented by any of the following chemical formulas (2-1) to (2-8), and are substituted or unsubstituted. Polycyclic aromatic hydrocarbons are preferred.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 合成の容易さの観点から、環Cおよび環Dが同一であることが好ましい。 From the viewpoint of ease of synthesis, it is preferable that ring C 1 and ring D 1 are the same.
 一般式(1)で表される構造を有する化合物としては、下記一般式(3)で表される化合物であることがより好ましい。 The compound having the structure represented by general formula (1) is more preferably a compound represented by general formula (3) below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記一般式(3)中、R~R19は、それぞれ独立して、水素、ハロゲン、シアノ基、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、またはシリル基である。これらの基は、さらに置換基を有してもよい。これらの中でも、水素、アルキル基、アリール基、ヘテロアリール基が好ましい。 In the above general formula (3), R 1 to R 19 are each independently hydrogen, halogen, cyano group, alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, An aryl ether group, an arylthioether group, an aryl group, a heteroaryl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a nitro group, or a silyl group. These groups may further have a substituent. Among these, hydrogen, an alkyl group, an aryl group, and a heteroaryl group are preferred.
 環Aおよび環Bは、それぞれ独立して、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環または置換もしくは無置換の環形成原子数5~30の芳香族複素環である。環Aは、置換もしくは無置換の環形成炭素数6~10の芳香族炭化水素環が好ましい。また、環Bは、置換もしくは無置換の環形成炭素数6~10の芳香族炭化水素環または置換もしくは無置換の環形成原子数5~10の芳香族複素環が好ましい。 Ring A 1 and Ring B 1 are each independently a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 30 ring atoms or a substituted or unsubstituted aromatic heterocycle having 5 to 30 ring atoms. It is. Ring A 1 is preferably a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 10 ring carbon atoms. Ring B 1 is preferably a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 10 ring atoms or a substituted or unsubstituted aromatic heterocycle having 5 to 10 ring atoms.
 Xは、O、N-R20またはSであり、R20は、アルキル基、シクロアルキル基、アルケニル基、イミノ基、アリール基またはヘテロアリール基である。これらの基は、さらに置換基を有してもよい。また、R20は、さらに連結基を介して、環Aまたは環Bとの間で結合して環構造を形成してもよい。その場合の連結基は、単結合、-O-、-S-、>CR2122または>SiR2324である。R21~R24は、それぞれ独立して、水素、ハロゲン、アルキル基、シクロアルキル基、アリール基またはヘテロアリール基であり、これらの基は、さらに置換基を有してもよい。また、R21とR22またはR23とR24は、さらに連結基を介して結合していてもよい。 X 1 is O, NR 20 or S, and R 20 is an alkyl group, cycloalkyl group, alkenyl group, imino group, aryl group or heteroaryl group. These groups may further have a substituent. Further, R 20 may further be bonded to ring A 1 or ring B 1 via a linking group to form a ring structure. In that case, the linking group is a single bond, -O-, -S-, >CR 21 R 22 or >SiR 23 R 24 . R 21 to R 24 are each independently hydrogen, halogen, an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group, and these groups may further have a substituent. Furthermore, R 21 and R 22 or R 23 and R 24 may be further bonded via a linking group.
 緑色発光の色純度をより向上させる観点から、XはN-R20が好ましく、R20は、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のアルケニル基、置換もしくは無置換のイミノ基が好ましい。 From the viewpoint of further improving the color purity of green light emission, X 1 is preferably NR 20 , and R 20 is a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, or a substituted or unsubstituted alkenyl group. , a substituted or unsubstituted imino group is preferred.
 XがN-R20であり、R20が置換もしくは無置換のアリール基または置換もしくは無置換のヘテロアリール基である化合物として、下記一般式(4-1)~(4-5)のいずれかで表される構造を有する化合物がより好ましく、発光素子の色純度、発光素子効率および耐久性をより向上させることができる。 As a compound in which X 1 is NR 20 and R 20 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group, any of the following general formulas (4-1) to (4-5) A compound having the structure represented by the following is more preferable, and can further improve the color purity, light-emitting element efficiency, and durability of the light-emitting element.
 XがN-R20であり、R20が置換もしくは無置換のアルケニル基または置換もしくは無置換のイミノ基である化合物として、下記一般式(5-1)または(5-2)で表される構造を有する化合物がより好ましく、発光素子の色純度、発光素子効率および耐久性をより向上させることができる。 A compound in which X 1 is NR 20 and R 20 is a substituted or unsubstituted alkenyl group or a substituted or unsubstituted imino group is represented by the following general formula (5-1) or (5-2). A compound having a structure is more preferable, and can further improve the color purity, light-emitting element efficiency, and durability of the light-emitting element.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記一般式(4-1)~(4-5)および(5-1)~(5-2)中、R~R19は、一般式(3)におけるR~R19と同じである。 In the above general formulas (4-1) to (4-5) and (5-1) to (5-2), R 1 to R 19 are the same as R 1 to R 19 in general formula (3). .
 一般式(4-1)~(4-5)におけるR101~R107、R110~R116、R120~R127、R130~R131、R140~R141および一般式(5-1)~(5-2)におけるR201~R207、R210~R214は、それぞれ独立して、水素、ハロゲン、シアノ基、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基またはこれらのうち隣接する基との間に形成される飽和もしくは不飽和の環である。これらの基は、さらに置換基を有してもよい。これらの中でも、水素、アルキル基、アリール基、ヘテロアリール基が好ましい。 R 101 to R 107 , R 110 to R 116 , R 120 to R 127 , R 130 to R 131 , R 140 to R 141 in general formulas (4-1) to (4-5) and general formula (5-1 ) to (5-2), R 201 to R 207 and R 210 to R 214 each independently represent hydrogen, halogen, cyano group, alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, alkynyl group, Formed between an alkoxy group, an alkylthio group, an aryl ether group, an arylthioether group, an aryl group, a heteroaryl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a silyl group, or adjacent groups among these groups. It is a saturated or unsaturated ring. These groups may further have a substituent. Among these, hydrogen, an alkyl group, an aryl group, and a heteroaryl group are preferred.
 一般式(4-1)、(4-4)~(4-5)において、Ar~Arは、それぞれ独立に、置換もしくは無置換のアリール基または置換もしくは無置換のヘテロアリール基である。 In general formulas (4-1), (4-4) to (4-5), Ar 1 to Ar 3 are each independently a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. .
 一般式(4-2)~(4-3)において、Y~Yは、それぞれ独立して、単結合、O、S、CR150151またはSiR152153であり、一般式(4-4)~(4-5)において、W~Wは、それぞれ独立して、NR154、OまたはSである。ここで、R150~R154は、それぞれ独立して、水素、アルキル基、シクロアルキル基、アリール基またはヘテロアリール基であり、これらの基は、さらに置換基を有してもよい。また、R150とR151またはR152とR153は、さらには連結基を介して結合していてもよい。その場合の連結基は、単結合、-O-、-S-、>CR2122または>SiR2324である。これらの中でも、YおよびYは、発光素子の色純度、発光素子効率および耐久性をより向上させる観点から、単結合が好ましい。 In general formulas (4-2) to (4-3), Y 1 to Y 2 are each independently a single bond, O, S, CR 150 R 151 or SiR 152 R 153 , and in general formula (4 In -4) to (4-5), W 1 to W 2 are each independently NR 154 , O or S. Here, R 150 to R 154 each independently represent hydrogen, an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group, and these groups may further have a substituent. Moreover, R 150 and R 151 or R 152 and R 153 may further be bonded via a linking group. In that case, the linking group is a single bond, -O-, -S-, >CR 21 R 22 or >SiR 23 R 24 . Among these, Y 1 and Y 2 are preferably single bonds from the viewpoint of further improving the color purity, light emitting element efficiency, and durability of the light emitting element.
 一般式(5-1)~(5-2)において、W~Wは、それぞれ独立に、NまたはC-R220である。R220は、水素、アルキル基、シクロアルキル基、アリール基またはヘテロアリール基であり、これらの基は、さらに置換基を有してもよい。発光素子の色純度、発光素子効率および耐久性をより向上させる観点から、R220はアリール基が好ましい。 In general formulas (5-1) to (5-2), W 3 to W 4 are each independently N or CR 220 . R 220 is hydrogen, an alkyl group, a cycloalkyl group, an aryl group or a heteroaryl group, and these groups may further have a substituent. From the viewpoint of further improving the color purity, light emitting element efficiency, and durability of the light emitting element, R220 is preferably an aryl group.
 本発明の化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば、分子内の水素原子がすべてHであってもよいし、一部または全部がH(デューテリウムD)であってもよい。 The isotopic species of hydrogen atoms present in the molecule of the compound of the present invention is not particularly limited. For example, all hydrogen atoms in the molecule may be 1 H, or some or all of them may be 2 H (deuterium D).
 以下の説明において、「置換もしくは無置換の」という場合における「無置換」とは、水素原子または重水素原子が結合したことを意味する。 In the following description, "unsubstituted" in the case of "substituted or unsubstituted" means that a hydrogen atom or a deuterium atom is bonded.
 ハロゲンとは、フッ素、塩素、臭素またはヨウ素を示す。 Halogen refers to fluorine, chlorine, bromine or iodine.
 シアノ基とは、構造が-C≡Nで表される基である。ここで他の基と結合するのは炭素原子である。 A cyano group is a group whose structure is represented by -C≡N. Here, it is the carbon atom that is bonded to the other group.
 アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、好ましくは、1以上20以下、より好ましくは、1以上8以下の範囲である。ここでいう炭素数とは、アルキル基に結合した置換基に含まれる炭素数も含み、炭素数を規定している他の置換基もこれと同様である。 The alkyl group refers to a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group; It may or may not have. The number of carbon atoms in the alkyl group is not particularly limited, but from the viewpoint of availability and cost, it is preferably in the range of 1 to 20, more preferably 1 to 8. The number of carbon atoms here includes the number of carbon atoms contained in a substituent bonded to an alkyl group, and the same applies to other substituents that define the number of carbon atoms.
 シクロアルキル基とは、例えば、シクロプロピル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。環形成炭素数は特に限定されないが、好ましくは、3以上20以下の範囲である。 The cycloalkyl group refers to, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, or an adamantyl group, which may or may not have a substituent. The number of carbon atoms forming the ring is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルケニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。 The alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond, such as a vinyl group, allyl group, butadienyl group, and may or may not have a substituent. The number of carbon atoms in the alkenyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。環形成炭素数は特に限定されないが、好ましくは、3以上20以下の範囲である。 A cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond, such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, even if it has a substituent. You don't have to. The number of carbon atoms forming the ring is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
 アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。 The alkynyl group refers to, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent. The number of carbon atoms in the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、これは置換基を有していても有していなくてもよい。アルコキシ基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。 An alkoxy group refers to a functional group to which an aliphatic hydrocarbon group is bonded via an ether bond, such as a methoxy group, ethoxy group, or propoxy group, and may or may not have a substituent. Good too. The number of carbon atoms in the alkoxy group is not particularly limited, but is preferably in the range of 1 to 20.
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換基を有しても有していなくてもよい。アルキルチオ基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。 An alkylthio group is an alkoxy group in which the oxygen atom of the ether bond is replaced with a sulfur atom. The hydrocarbon group of the alkylthio group may or may not have a substituent. The number of carbon atoms in the alkylthio group is not particularly limited, but is preferably in the range of 1 to 20.
 アリールエーテル基とは、例えば、フェノキシ基など、エーテル結合を介して芳香族炭化水素基が結合した基を示し、これは置換基を有していても有していなくてもよい。アリールエーテル基の環形成炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。 The aryl ether group refers to a group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, which may or may not have a substituent. The number of ring carbon atoms in the aryl ether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
 アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。これは置換基を有していても有していなくてもよい。アリールチオエーテル基の環形成炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。 An arylthioether group is an aryl ether group in which the oxygen atom of the ether bond is replaced with a sulfur atom. This may or may not have substituents. The number of ring carbon atoms in the arylthioether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
 アリール基とは、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フェナントリル基、アントラセニル基、ベンゾフェナントリル基、ベンゾアントラセニル基、クリセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基、ベンゾフルオランテニル基、ジベンゾアントラセニル基、ペリレニル基、ヘリセニル基などの芳香族炭化水素基を示す。これは置換基を有していても有していなくてもよい。これらの中でも、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基が好ましい。環形成炭素数は特に限定されないが、好ましくは、6以上40以下、より好ましくは、6以上30以下の範囲である。 Aryl groups include, for example, phenyl group, biphenyl group, terphenyl group, naphthyl group, fluorenyl group, benzofluorenyl group, dibenzofluorenyl group, phenanthryl group, anthracenyl group, benzophenanthryl group, and benzanthracetyl group. Indicates aromatic hydrocarbon groups such as nyl group, chrysenyl group, pyrenyl group, fluoranthenyl group, triphenylenyl group, benzofluoranthenyl group, dibenzaanthracenyl group, perylenyl group, and helicenyl group. This may or may not have substituents. Among these, phenyl group, biphenyl group, terphenyl group, naphthyl group, fluorenyl group, phenanthryl group, anthracenyl group, pyrenyl group, fluoranthenyl group, and triphenylenyl group are preferable. The number of carbon atoms forming the ring is not particularly limited, but is preferably in the range of 6 or more and 40 or less, more preferably 6 or more and 30 or less.
 また、置換のフェニル基においては、そのフェニル基中の隣接する2つの炭素原子上に各々置換基がある場合、それらの置換基同士で環構造を形成していてもよい。その結果としてできた基は、その構造に応じて、「置換のフェニル基」、「2つ以上の環が縮環した構造を有するアリール基」、「2つ以上の環が縮環した構造を有するヘテロアリール基」のいずれか1つ以上に該当しうる。 Furthermore, in a substituted phenyl group, when there are substituents on two adjacent carbon atoms in the phenyl group, these substituents may form a ring structure with each other. Depending on the structure, the resulting group is a "substituted phenyl group," "aryl group having a structure in which two or more rings are condensed," or "an aryl group having a structure in which two or more rings are condensed." ``heteroaryl group having a heteroaryl group''.
 ヘテロアリール基とは、例えば、ピリジル基、フラニル基、チオフェニル基、キノリニル基、イソキノリニル基、ピラジニル基、ピリミジル基、ピリダジニル基、トリアジニル基、ナフチリジニル基、シンノリニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ベンゾカルバゾリル基、カルボリニル基、インドロカルバゾリル基、ベンゾフロカルバゾリル基、ベンゾチエノカルバゾリル基、ジヒドロインデノカルバゾリル基、ベンゾキノリニル基、アクリジニル基、ジベンゾアクリジニル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基などの、炭素以外の原子を一個または複数個環内に有する環状芳香族基を示す。ただし、ナフチリジニル基とは、1,5-ナフチリジニル基、1,6-ナフチリジニル基、1,7-ナフチリジニル基、1,8-ナフチリジニル基、2,6-ナフチリジニル基、2,7-ナフチリジニル基のいずれかを示す。ヘテロアリール基は置換基を有していても有していなくてもよい。環形成原子数は特に限定されないが、好ましくは、3以上40以下、より好ましくは、3以上30以下の範囲である。 Heteroaryl groups include, for example, pyridyl group, furanyl group, thiophenyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group, pyrimidyl group, pyridazinyl group, triazinyl group, naphthyridinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, Benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, benzocarbazolyl group, carbolinyl group, indolocarbazolyl group, benzofurocarbazolyl group, benzothienocarba Non-carbon groups such as zolyl group, dihydroindenocarbazolyl group, benzoquinolinyl group, acridinyl group, dibenzoacridinyl group, benzimidazolyl group, imidazopyridyl group, benzoxazolyl group, benzothiazolyl group, phenanthrolinyl group represents a cyclic aromatic group having one or more atoms in the ring. However, the naphthyridinyl group refers to any of the following: 1,5-naphthyridinyl group, 1,6-naphthyridinyl group, 1,7-naphthyridinyl group, 1,8-naphthyridinyl group, 2,6-naphthyridinyl group, 2,7-naphthyridinyl group. Show that. A heteroaryl group may or may not have a substituent. The number of ring-forming atoms is not particularly limited, but is preferably in the range of 3 or more and 40 or less, more preferably 3 or more and 30 or less.
 アミノ基とは、置換もしくは無置換のアミノ基である。アミノ基の炭素数は特に限定されないが、好ましくは、2以上50以下、より好ましくは6以上40以下、特に好ましくは6以上30以下の範囲である。 The amino group is a substituted or unsubstituted amino group. The number of carbon atoms in the amino group is not particularly limited, but is preferably in the range of 2 or more and 50 or less, more preferably 6 or more and 40 or less, particularly preferably 6 or more and 30 or less.
 シリル基とは、置換もしくは無置換のケイ素原子が結合した官能基を示し、例えば、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、プロピルジメチルシリル基、ビニルジメチルシリル基などのアルキルシリル基や、フェニルジメチルシリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、トリナフチルシリル基などのアリールシリル基を示す。シリル基の炭素数は特に限定されないが、好ましくは、1以上30以下の範囲である。 A silyl group refers to a functional group to which a substituted or unsubstituted silicon atom is bonded, such as an alkylsilyl group such as a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a propyldimethylsilyl group, or a vinyldimethylsilyl group. and arylsilyl groups such as phenyldimethylsilyl group, tert-butyldiphenylsilyl group, triphenylsilyl group, and trinaphthylsilyl group. The number of carbon atoms in the silyl group is not particularly limited, but is preferably in the range of 1 to 30.
 また、カルボキシル基、オキシカルボニル基、カルバモイル基は、置換基を有していても有していなくてもよい。ここで、置換基としては、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基等が挙げられ、これらの置換基は、さらに置換されてもよい。 Furthermore, the carboxyl group, oxycarbonyl group, and carbamoyl group may or may not have a substituent. Here, examples of the substituent include an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and these substituents may be further substituted.
 イミノ基とは、例えば、イミンやイミドなどのC=NH、もしくはC-NH-Cと表される官能基を示し、これは置換基を有していても有していなくてもよい。イミノ基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。 The imino group refers to a functional group represented by C=NH or C 1 -NH-C 2 such as imine or imide, which may or may not have a substituent. . The number of carbon atoms in the imino group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 芳香族炭化水素環としては、例えば、単環系であるベンゼン環、二環系であるビフェニル環、縮合二環系であるナフタレン環、三環系であるテルフェニル環(m-テルフェニル、o-テルフェニル、p-テルフェニル)、縮合三環系である、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、縮合四環系であるトリフェニレン環、ピレン環、ナフタセン環、縮合五環系であるペリレン環、ペンタセン環などが挙げられる。 Examples of aromatic hydrocarbon rings include a monocyclic benzene ring, a biphenyl ring, a fused bicyclic naphthalene ring, and a tricyclic terphenyl ring (m-terphenyl, o -terphenyl, p-terphenyl), fused tricyclic ring systems such as acenaphthylene ring, fluorene ring, phenalene ring, phenanthrene ring, fused tetracyclic ring system such as triphenylene ring, pyrene ring, naphthacene ring, and fused pentacyclic ring system. Examples include perylene ring and pentacene ring.
 芳香族複素環としては、例えば、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、フラザン環、オキサジアゾール環、チアントレン環などが挙げられる。 Examples of aromatic heterocycles include pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, oxadiazole ring, thiadiazole ring, triazole ring, tetrazole ring, pyrazole ring, pyridine ring, and pyrimidine. ring, pyridazine ring, pyrazine ring, triazine ring, indole ring, isoindole ring, 1H-indazole ring, benzimidazole ring, benzoxazole ring, benzothiazole ring, 1H-benzotriazole ring, quinoline ring, isoquinoline ring, cinnoline ring, Quinazoline ring, quinoxaline ring, phthalazine ring, naphthyridine ring, purine ring, pteridine ring, carbazole ring, acridine ring, phenoxathiine ring, phenoxazine ring, phenothiazine ring, phenazine ring, indolizine ring, furan ring, benzofuran ring, iso Examples include a benzofuran ring, a dibenzofuran ring, a thiophene ring, a benzothiophene ring, a dibenzothiophene ring, a furazane ring, an oxadiazole ring, and a thianthrene ring.
 また、上記の全ての基において、置換される場合における置換基としては、ハロゲン、シアノ基、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基またはシリル基であり、さらには、各置換基の説明において好ましいとする具体的な置換基が好ましい。また、これらの置換基は、さらに上述の置換基により置換されていてもよい。 In addition, in all of the above groups, when substituted, examples of substituents include halogen, cyano group, alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, and aryl ether group. , an arylthioether group, an aryl group, a heteroaryl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, an amino group, a nitro group, or a silyl group, and further, specific substituents that are preferred in the description of each substituent. is preferred. Moreover, these substituents may be further substituted with the above-mentioned substituents.
 一般式(1)で表される構造を有する化合物の一例を以下に示すが、これらに限定されるものではない。 An example of a compound having a structure represented by general formula (1) is shown below, but the compound is not limited thereto.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 一般式(1)で表される構造を有する化合物は、例えば、「Advanced.Materials」、2016年、vol.28、p.2777-2781に記載されている方法を参考に製造することができる。 A compound having a structure represented by general formula (1) is described, for example, in "Advanced. Materials", 2016, vol. 28, p. It can be produced by referring to the method described in 2777-2781.
 得られた一般式(1)で表される構造を有する化合物は、再結晶やカラムクロマトグラフィーなどの有機合成的な精製を行った後、さらに、一般的に昇華精製と呼ばれる減圧加熱による精製により低沸点成分を除去し、純度を向上させることが好ましい。 The obtained compound having the structure represented by the general formula (1) is purified by organic synthesis such as recrystallization and column chromatography, and then further purified by heating under reduced pressure, which is generally called sublimation purification. It is preferable to remove low-boiling components to improve purity.
 一般式(1)で表される構造を有する化合物の純度は、発光素子特性の安定化の観点から、99重量%以上が好ましい。 The purity of the compound having the structure represented by general formula (1) is preferably 99% by weight or more from the viewpoint of stabilizing the characteristics of the light emitting device.
 一般式(1)で表される構造を有する化合物の発光波長において、緑色発光の色純度をより向上させる観点から、ピーク波長は500nm以上550nm以下であることが好ましく、510nm以上540nm以下がさらに好ましい。ここで、一般式(1)で表される構造を有する化合物の発光波長は、トルエンを溶媒とする濃度10-5mol/Lの希釈溶液を用いて、蛍光分光光度計を用いて測定することができる。 Regarding the emission wavelength of the compound having the structure represented by general formula (1), from the viewpoint of further improving the color purity of green emission, the peak wavelength is preferably 500 nm or more and 550 nm or less, and more preferably 510 nm or more and 540 nm or less. . Here, the emission wavelength of the compound having the structure represented by general formula (1) is measured using a fluorescence spectrophotometer using a diluted solution with a concentration of 10 -5 mol/L using toluene as a solvent. I can do it.
 <発光素子材料>
 本発明における発光素子材料とは、一般式(1)で表される構造を有する化合物を含み、発光素子のいずれかの層に使用される材料を表す。例えば、後述する正孔注入層、正孔輸送層、発光層、電子輸送層および/または電極の保護膜(キャップ層)に使用される材料などが挙げられる。これらの中でも、高い発光素子効率および色純度を有することから、発光層に好適に使用される。
<Light emitting element material>
The light-emitting element material in the present invention refers to a material that includes a compound having a structure represented by general formula (1) and is used for any layer of a light-emitting element. Examples include materials used for hole injection layers, hole transport layers, light emitting layers, electron transport layers, and/or protective films (cap layers) of electrodes, which will be described later. Among these, it is suitably used for the light emitting layer because it has high light emitting device efficiency and color purity.
 発光素子材料は、一般式(1)で表される構造を有する化合物とともに、他の成分を含有してもよい。他の成分としては、例えば、後述する正孔注入層、正孔輸送層、発光層、電子輸送層および/または電極の保護膜(キャップ層)を構成する材料として例示したものなどが挙げられる。 The light emitting element material may contain other components in addition to the compound having the structure represented by general formula (1). Examples of other components include those exemplified as materials constituting a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and/or a protective film (cap layer) of an electrode, which will be described later.
 <発光素子>
 次に、本発明の発光素子の実施の形態について説明する。本発明の発光素子は、陰極と陽極と、これらの間に配置された1層以上の有機層を有し、電気エネルギーによって発光する。有機層のうち少なくとも1層に、前述の一般式(1)で表される構造を有する化合物を含有し、かかる有機層が発光層であることが好ましい。
<Light emitting element>
Next, embodiments of the light emitting device of the present invention will be described. The light emitting device of the present invention has a cathode, an anode, and one or more organic layers disposed between them, and emits light using electrical energy. It is preferable that at least one of the organic layers contains a compound having a structure represented by the above-mentioned general formula (1), and this organic layer is a light emitting layer.
 本発明の発光素子は、ボトムエミッション型、またはトップエミッション型のいずれであってもよい。トップエミッション型発光素子は、マイクロキャビティによる共振効果により、半値幅が狭いほど発光素子効率が高くなる。そのため、色純度と発光素子効率をより高いレベルで両立することができる。 The light emitting element of the present invention may be either a bottom emission type or a top emission type. In a top emission type light emitting element, the narrower the half width, the higher the light emitting element efficiency due to the resonance effect of the microcavity. Therefore, it is possible to achieve both color purity and light emitting element efficiency at a higher level.
 このような発光素子における陽極と陰極の間の層構成は、発光層のみからなる構成の他に、1)発光層/電子輸送層、2)正孔輸送層/発光層、3)正孔輸送層/発光層/電子輸送層、4)正孔注入層/正孔輸送層/発光層/電子輸送層、5)正孔輸送層/発光層/電子輸送層/電子注入層、6)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層、7)正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層、8)正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層のような積層構成が挙げられる。 The layer structure between the anode and the cathode in such a light emitting device includes, in addition to the structure consisting only of the light emitting layer, 1) light emitting layer/electron transport layer, 2) hole transport layer/light emitting layer, 3) hole transport layer/emissive layer/electron transport layer, 4) hole injection layer/hole transport layer/emissive layer/electron transport layer, 5) hole transport layer/emissive layer/electron transport layer/electron injection layer, 6) hole Injection layer/hole transport layer/emissive layer/electron transport layer/electron injection layer, 7) hole injection layer/hole transport layer/emissive layer/hole blocking layer/electron transport layer/electron injection layer, 8) positive Examples include a laminated structure such as hole injection layer/hole transport layer/electron blocking layer/light emitting layer/hole blocking layer/electron transport layer/electron injection layer.
 さらに、上記の積層構成を、中間層を介して複数積層したタンデム型であってもよい。中間層としては、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層などが挙げられ、公知の材料構成を用いることができる。タンデム型の好ましい具体例として、9)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/電荷発生層/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層のような積層構成が挙げられる。上記発光層は、それぞれ同一でも異なっていても良い。 Furthermore, the above laminated structure may be a tandem type in which a plurality of layers are laminated with an intermediate layer interposed therebetween. Examples of the intermediate layer generally include an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, an intermediate insulating layer, etc., and known material configurations can be used. As a preferred specific example of the tandem type, 9) hole injection layer/hole transport layer/light emitting layer/electron transport layer/electron injection layer/charge generation layer/hole injection layer/hole transport layer/light emitting layer/electron transport Laminated configurations such as layer/electron injection layer may be mentioned. The light-emitting layers may be the same or different.
 また、上記各層は、それぞれ単一層、複数層のいずれでもよく、ドーピングされていてもよい。また、上記各層に加えて、保護層(キャップ層)をさらに有してもよく、光学干渉効果により発光素子効率をより向上させることができる。 Furthermore, each of the above layers may be a single layer or multiple layers, and may be doped. Furthermore, in addition to the above-mentioned layers, a protective layer (cap layer) may be further included, and the light emitting element efficiency can be further improved due to the optical interference effect.
 以下に発光素子の構成の具体例を挙げるが、本発明の構成はこれらに限定されるものではない。 Specific examples of the structure of the light emitting element are listed below, but the structure of the present invention is not limited to these.
 (基板)
 発光素子の機械的強度を保ち、熱変形が少なく、発光層に水蒸気や酸素が侵入することを防ぐバリア性を有するために、発光素子を基板上に形成することが好ましい。基板としては、特に限定されないが、例えば、ガラス板、セラミック版、樹脂製フィルム、樹脂薄膜、金属製薄板などが挙げられる。これらの中でも、透明であり、加工が容易である観点から、ガラス基板が好適に用いられる。特に、基板を通して光を取り出すボトムエミッション型発光素子の場合、高い透明性を有するガラス基板が好ましい。また、主にスマートフォンなどのモバイル機器において、フレキシブルディスプレイやフォルダブルディスプレイが増加しており、この用途には、樹脂製フィルムやワニスを硬化した樹脂薄膜が好適に用いられる。樹脂製フィルムとしては、耐熱フィルムが使用されており、具体的には、ポリイミドフィルム、ポリエチレンナフタレートフィルムが例示される。
(substrate)
It is preferable to form the light emitting element on a substrate in order to maintain the mechanical strength of the light emitting element, to have little thermal deformation, and to have barrier properties that prevent water vapor and oxygen from entering the light emitting layer. Examples of the substrate include, but are not limited to, a glass plate, a ceramic plate, a resin film, a resin thin film, a metal thin plate, and the like. Among these, glass substrates are preferably used because they are transparent and easy to process. In particular, in the case of a bottom emission type light emitting element that extracts light through the substrate, a glass substrate having high transparency is preferable. Furthermore, flexible displays and foldable displays are increasing in mobile devices such as smartphones, and resin films and resin thin films obtained by hardening varnish are suitably used for this purpose. As the resin film, a heat-resistant film is used, and specific examples include polyimide film and polyethylene naphthalate film.
 また、基板の表面には、有機ELを駆動させるための各種配線、回路、およびTFTによるスイッチング素子が設けられていてもよい。 Further, various wirings, circuits, and switching elements using TFTs may be provided on the surface of the substrate to drive the organic EL.
 (陽極)
 陽極は、前記基板上に形成されることが好ましい。基板と陽極の間に、各種配線、回路、およびスイッチング素子が介在してもよい。陽極に用いる材料は、正孔を有機層に効率よく注入できる材料であれば特に限定されないが、ボトムエミッション型発光素子の場合、透明または半透明電極であることが好ましく、トップエミッション型発光素子の場合、反射電極であることが好ましい。
(anode)
Preferably, an anode is formed on the substrate. Various wiring, circuits, and switching elements may be interposed between the substrate and the anode. The material used for the anode is not particularly limited as long as it can efficiently inject holes into the organic layer, but in the case of a bottom emission type light emitting element, a transparent or semitransparent electrode is preferable, and in the case of a top emission type light emitting element, In this case, a reflective electrode is preferable.
 透明または半透明電極の材質としては、例えば、酸化亜鉛、酸化錫、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物、金、銀、アルミニウム、クロムなどの金属、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーが挙げられる。ただし、金属を用いるときは光を半透過できるように、膜厚を薄くすることが好ましい。これらの中でも、透明性と安定性の観点から、酸化錫インジウム(ITO)がより好ましい。 Examples of the material for the transparent or translucent electrode include conductive metal oxides such as zinc oxide, tin oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO), gold, silver, aluminum, chromium, etc. metals, and conductive polymers such as polythiophene, polypyrrole, and polyaniline. However, when using metal, it is preferable to make the film thin so that light can be partially transmitted. Among these, indium tin oxide (ITO) is more preferred from the viewpoint of transparency and stability.
 反射電極の材質としては、全ての光に対し吸収がなく高い反射率を有するものが好ましく、例えば、アルミニウム、銀、白金などの金属が挙げられる。 The material for the reflective electrode is preferably one that does not absorb any light and has a high reflectance, such as metals such as aluminum, silver, and platinum.
 これらの電極材料を2種以上用いてもよく、複数の材料を積層してもよい。 Two or more of these electrode materials may be used, or a plurality of materials may be laminated.
 陽極の膜厚は、特に限定されないが、数nm~数百nmが好ましい。 The film thickness of the anode is not particularly limited, but is preferably several nm to several hundred nm.
 陽極の形成方法は、その形成材料に応じて最適な方法を選択することができるが、例えば、スパッタ法、蒸着法、インクジェット法などが挙げられる。例えば、金属酸化物によって陽極を形成する場合にはスパッタ法、金属によって陽極を形成する場合には蒸着法が好ましく用いられる。陽極の膜厚は特に限定されないが、数nm~数百nmであることが好ましい。 The optimal method for forming the anode can be selected depending on the forming material, and examples include sputtering, vapor deposition, and inkjet methods. For example, when forming the anode using a metal oxide, a sputtering method is preferably used, and when forming an anode using a metal, a vapor deposition method is preferably used. Although the film thickness of the anode is not particularly limited, it is preferably several nm to several hundred nm.
 (陰極)
 陰極は、有機層を挟んで陽極の反対側の表面に形成され、特に電子輸送層または電子注入層表面に形成されることが好ましい。陰極に用いる材料は、電子を効率よく発光層に注入できる材料であれば特に限定されないが、ボトムエミッション型発光素子の場合、反射電極であることが好ましく、トップエミッション型発光素子の場合、半透明電極であることが好ましい。
(cathode)
The cathode is preferably formed on the surface opposite to the anode with the organic layer in between, and is particularly preferably formed on the surface of the electron transport layer or the electron injection layer. The material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the light-emitting layer, but in the case of a bottom-emission type light-emitting element, it is preferably a reflective electrode, and in the case of a top-emission type light-emitting element, it is preferably a translucent electrode. Preferably it is an electrode.
 一般的には、白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、これらの金属とリチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどの低仕事関数金属との合金や多層積層膜、酸化亜鉛、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物などが好ましい。これらの中でも、主成分としては、電気抵抗値や製膜しやすさ、膜の安定性、発光素子効率などの観点から、アルミニウム、銀、マグネシウムが好ましい。また、マグネシウムと銀で構成されると、電子輸送層および電子注入層への電子注入が容易になり、駆動電圧を低減することができるため好ましい。 Generally, metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, alloys and multilayer laminated films of these metals and low work function metals such as lithium, sodium, potassium, calcium, and magnesium are used. , conductive metal oxides such as zinc oxide, indium tin oxide (ITO), and indium zinc oxide (IZO) are preferable. Among these, aluminum, silver, and magnesium are preferred as main components from the viewpoints of electrical resistance, ease of film formation, film stability, light emitting device efficiency, and the like. Furthermore, it is preferable that the layer be composed of magnesium and silver because electron injection into the electron transport layer and the electron injection layer becomes easy and driving voltage can be reduced.
 (保護層)
 陰極保護のために、陰極上に保護層(キャップ層)を積層することが好ましい。保護層を構成する材料としては、特に限定されないが、例えば、白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属、これら金属を用いた合金、シリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、ポリ塩化ビニル、炭化水素系高分子化合物などの有機高分子化合物などが挙げられる。ただし、トップエミッション型発光素子の場合、保護層に用いられる材料は、可視光領域で光透過性のある材料から選択されることが好ましい。
(protective layer)
For cathode protection, it is preferable to laminate a protective layer (cap layer) on the cathode. The material constituting the protective layer is not particularly limited, but includes, for example, metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, alloys using these metals, silica, titania, and silicon nitride. Examples include inorganic substances, polyvinyl alcohol, polyvinyl chloride, organic polymer compounds such as hydrocarbon polymer compounds, and the like. However, in the case of a top emission type light emitting element, the material used for the protective layer is preferably selected from materials that are transparent in the visible light region.
 (正孔注入層)
 正孔注入層は、陽極と正孔輸送層の間に挿入され、正孔注入を容易にする層である。正孔注入層は1層であっても複数の層が積層されていてもよい。正孔輸送層と陽極の間に正孔注入層が存在すると、より低電圧駆動し、耐久性も向上するだけでなく、さらに素子のキャリアバランスが向上して発光素子効率も向上するため好ましい。
(hole injection layer)
The hole injection layer is a layer inserted between the anode and the hole transport layer to facilitate hole injection. The hole injection layer may be a single layer or a plurality of layers may be laminated. Preferably, the presence of a hole injection layer between the hole transport layer and the anode not only allows lower voltage driving and improved durability, but also improves the carrier balance of the device and improves the light emitting device efficiency.
 正孔注入材料の好ましい一例として、電子供与性正孔注入材料(ドナー材料)が挙げられる。これらはHOMO準位が正孔輸送層より浅く、かつ陽極の仕事関数に近いため陽極とのエネルギー障壁を小さくできる材料である。具体的には、ベンジジン誘導体、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス(1-ナフチル(フェニル)アミノ)トリフェニルアミン(1-TNATA)などのスターバーストアリールアミンなどの芳香族アミン系材料群、カルバゾール誘導体、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体、チオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、PEDOT/PSSなどのポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾール、ポリシランなどが例示される。これらを2種以上用いてもよい。また、複数の材料を積層して正孔注入層としてもよい。 A preferable example of the hole injection material is an electron-donating hole injection material (donor material). These materials have a HOMO level shallower than that of the hole transport layer and are close to the work function of the anode, making it possible to reduce the energy barrier with the anode. Specifically, benzidine derivatives, 4,4',4"-tris(3-methylphenyl(phenyl)amino)triphenylamine (m-MTDATA), 4,4',4"-tris(1-naphthyl( Aromatic amine materials such as starburst arylamines such as phenyl)amino)triphenylamine (1-TNATA), carbazole derivatives, pyrazoline derivatives, stilbene compounds, hydrazone compounds, benzofuran derivatives, thiophene derivatives, oxadiazole Examples include heterocyclic compounds such as derivatives, phthalocyanine derivatives, and porphyrin derivatives, and polymer-based polymers such as polycarbonate and styrene derivatives having the above monomers in their side chains, polythiophenes such as PEDOT/PSS, polyaniline, polyfluorene, polyvinylcarbazole, and polysilane. Ru. Two or more types of these may be used. Alternatively, a hole injection layer may be formed by laminating a plurality of materials.
 また正孔注入材料の別の好ましい一例として、電子受容性正孔注入材料(アクセプター材料)が挙げられる。ここで正孔注入層はアクセプター材料単独で構成されていても、前記のドナー材料にアクセプター材料をドープして用いられていてもよい。アクセプター材料は、単独で用いる場合は隣接している正孔輸送層との間で、またドナー材料にドープして用いる場合はドナー材料との間で電荷移動錯体を形成する材料である。このような材料を用いると正孔注入層の導電性向上と、素子の駆動電圧低下に寄与し、発光素子効率の向上、耐久性向上といった効果が得られるため、より好ましい。アクセプター材料としては、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ルテニウムのような金属酸化物、トリス(4-ブロモフェニル)アミニウムヘキサクロロアンチモネート(TBPAH)などの電荷移動錯体、1,4,5,8,9,11-ヘキサアザトリフェニレン-ヘキサカルボニトリル(HAT-CN6)、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4-TCNQ)、フッ素化銅フタロシアニンのなどのn型有機半導体化合物、フラーレンなどが例示される。正孔注入層にアクセプター性化合物を含む場合、正孔注入層は1層であってもよいし、複数の層が積層されて構成されていてもよい。 Another preferred example of the hole-injecting material is an electron-accepting hole-injecting material (acceptor material). Here, the hole injection layer may be composed of an acceptor material alone, or may be formed by doping the acceptor material into the donor material. The acceptor material is a material that forms a charge transfer complex with an adjacent hole transport layer when used alone, or with the donor material when used as a dope in the donor material. Use of such a material is more preferable because it contributes to improving the conductivity of the hole injection layer and lowering the driving voltage of the device, thereby improving the efficiency and durability of the light emitting device. Acceptor materials include metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, ruthenium oxide, charge transfer complexes such as tris(4-bromophenyl)aminium hexachloroantimonate (TBPAH), 1,4,5, 8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN6), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), fluorine Examples include n-type organic semiconductor compounds such as copper phthalocyanine, fullerene, and the like. When the hole injection layer contains an acceptor compound, the hole injection layer may be composed of one layer or a plurality of laminated layers.
 (正孔輸送層)
 正孔輸送層は、陽極から注入された正孔を発光層まで輸送する層である。正孔輸送層は単層であっても複数の層が積層されて構成されていてもどちらでもよい。
(hole transport layer)
The hole transport layer is a layer that transports holes injected from the anode to the light emitting layer. The hole transport layer may be a single layer or may be composed of a plurality of laminated layers.
 正孔輸送層は、一種の正孔輸送材料単独で、または二種以上の正孔輸送材料を積層または混合することによって形成される。また正孔輸送材料は、正孔注入効率が高くかつ注入された正孔を効率良く輸送することが好ましい。そのためには適切なイオン化ポテンシャルを持ち、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が発生しにくい物質であることが要求される。 The hole transport layer is formed using one type of hole transport material alone or by laminating or mixing two or more types of hole transport materials. Further, it is preferable that the hole transport material has high hole injection efficiency and efficiently transports the injected holes. To this end, it is required that the material has an appropriate ionization potential, high hole mobility, excellent stability, and is unlikely to generate trapping impurities.
 このような条件を満たす物質として、特に限定されるものではないが、例えば、ベンジジン誘導体、スターバーストアリールアミンと呼ばれる芳香族アミン系材料群、カルバゾール誘導体、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体、ジベンゾフラン誘導体、チオフェン誘導体、ベンゾチオフェン誘導体、ジベンゾチオフェン誘導体、フルオレン誘導体、スピロフルオレン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾールおよびポリシランなどが挙げられる。 Substances that meet these conditions include, but are not particularly limited to, benzidine derivatives, an aromatic amine material group called starburst arylamines, carbazole derivatives, pyrazoline derivatives, stilbene compounds, hydrazone compounds, Heterocyclic compounds such as benzofuran derivatives, dibenzofuran derivatives, thiophene derivatives, benzothiophene derivatives, dibenzothiophene derivatives, fluorene derivatives, spirofluorene derivatives, oxadiazole derivatives, phthalocyanine derivatives, porphyrin derivatives, etc., and in polymer systems, the above monomers are used as side chains. Examples include polycarbonate, styrene derivatives, polythiophene, polyaniline, polyfluorene, polyvinylcarbazole, and polysilane.
 (発光層)
 発光層は、正孔と電子の再結合によって発生した励起エネルギーにより発光する層である。発光層は単一の材料で構成されていてもよいが、色純度の観点から、半値幅の狭い発光を示すドーパント材料と、マトリクス材料を含有することが好ましい。
(Light emitting layer)
The light-emitting layer is a layer that emits light due to excitation energy generated by recombination of holes and electrons. Although the light-emitting layer may be composed of a single material, from the viewpoint of color purity, it is preferable that the light-emitting layer contains a dopant material that emits light with a narrow half-value width and a matrix material.
 一般式(1)で表される構造を有する化合物は、特に優れた蛍光量子収率を有していること、発光波長のピーク波長が緑色発光に適しており、半値幅が狭く、色純度に優れることから、発光層のドーパント材料として用いることが好ましい。ドーパント材料の含有量は、濃度消光現象をより抑制する観点から、発光層中、5重量%以下が好ましく、2重量%以下がより好ましい。一方、エネルギー移動をより効率よく行う観点から、ドーパント材料の含有量は、発光層中、0.1重量%以上が好ましく、0.5重量%以上がより好ましい。 The compound having the structure represented by the general formula (1) has a particularly excellent fluorescence quantum yield, a peak emission wavelength suitable for green emission, a narrow half-width, and a high color purity. Because of its excellent properties, it is preferable to use it as a dopant material for the light-emitting layer. The content of the dopant material in the light emitting layer is preferably 5% by weight or less, more preferably 2% by weight or less, from the viewpoint of further suppressing the concentration quenching phenomenon. On the other hand, from the viewpoint of performing energy transfer more efficiently, the content of the dopant material in the light emitting layer is preferably 0.1% by weight or more, and more preferably 0.5% by weight or more.
 マトリクス材料としては、電荷輸送能が高く、かつガラス転移温度が高い有機化合物であることが好ましい。マトリクス材料として、特に限定されないが、例えば、ナフタセン、ピレン、アントラセン、フルオランテンなどの縮合アリール環を有する化合物やその誘導体、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどの芳香族アミン誘導体、トリス(8-キノリナート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体などが挙げられる。これらを2種以上用いてもよいし、2種以上のマトリクス材料を積層してもよい。これらの中でも、カルバゾール誘導体、アントラセン誘導体、ナフタセン誘導体が好ましい。 The matrix material is preferably an organic compound that has a high charge transport ability and a high glass transition temperature. Examples of the matrix material include, but are not limited to, compounds having a condensed aryl ring such as naphthacene, pyrene, anthracene, and fluoranthene, and derivatives thereof, N,N'-dinaphthyl-N,N'-diphenyl-4,4'-diphenyl Aromatic amine derivatives such as -1,1'-diamine, metal chelated oxinoid compounds such as tris(8-quinolinato)aluminum(III), bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives , coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, pyrrolopyrrole derivatives, thiadiazolopyridine derivatives, dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives, and in polymer systems, polyphenylene vinylene derivatives, polypara Examples include phenylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, and polythiophene derivatives. Two or more types of these may be used, or two or more types of matrix materials may be laminated. Among these, carbazole derivatives, anthracene derivatives, and naphthacene derivatives are preferred.
 ドーパント材料として、一般式(1)で表される構造を有する化合物以外の蛍光発光材料を含有してもよい。具体的には、ナフタセン、ピレン、アントラセン、フルオランテンなどの縮合アリール環を有する化合物やその誘導体、ヘテロアリール環を有する化合物やその誘導体、ジスチリルベンゼン誘導体、アミノスチリル誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、ピロメテン誘導体、ジケトピロロ[3,4-c]ピロール誘導体、クマリン誘導体、アゾール誘導体およびその金属錯体、芳香族アミン誘導体などが挙げられる。これらを2種以上用いてもよい。 As a dopant material, a fluorescent material other than the compound having the structure represented by general formula (1) may be contained. Specifically, compounds having a fused aryl ring such as naphthacene, pyrene, anthracene, and fluoranthene and their derivatives, compounds having a heteroaryl ring and their derivatives, distyrylbenzene derivatives, aminostyryl derivatives, tetraphenylbutadiene derivatives, and stilbene derivatives. , aldazine derivatives, pyrromethene derivatives, diketopyrrolo[3,4-c]pyrrole derivatives, coumarin derivatives, azole derivatives and metal complexes thereof, aromatic amine derivatives, and the like. Two or more types of these may be used.
 また、ドーパント材料としてリン光発光材料を含有してもよい。リン光発光材料としては、イリジウム(Ir)、ルテニウム(Ru)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)、及びレニウム(Re)からなる群から選択される少なくとも一つの金属を含む金属錯体化合物が好ましく、高効率発光の観点から、イリジウム錯体または白金錯体がより好ましい。配位子は、フェニルピリジン骨格、フェニルキノリン骨格、カルベン骨格などの含窒素ヘテロアリール基を有することが好ましいが、これらに限定されるものではない。 Additionally, a phosphorescent material may be contained as a dopant material. The phosphorescent material includes at least one metal selected from the group consisting of iridium (Ir), ruthenium (Ru), palladium (Pd), platinum (Pt), osmium (Os), and rhenium (Re). A metal complex compound is preferred, and from the viewpoint of highly efficient light emission, an iridium complex or a platinum complex is more preferred. The ligand preferably has a nitrogen-containing heteroaryl group such as a phenylpyridine skeleton, a phenylquinoline skeleton, or a carbene skeleton, but is not limited thereto.
 ただし、色純度をより向上させる観点から、ドーパント材料は、一般式(1)で表される構造を有する化合物のみであることが好ましい。 However, from the viewpoint of further improving color purity, it is preferable that the dopant material is only a compound having a structure represented by general formula (1).
 発光層は、さらに、遅延蛍光を示す化合物を含有することが好ましい。遅延蛍光を示す化合物は、一重項励起状態と三重項励起状態間のエネルギーギャップが小さく、三重項励起状態から一重項励起状態への遷移が生じ、三重項励起子を遅延蛍光として利用できる材料である。この遅延蛍光を有機発光素子に利用した場合、発光素子効率をより向上させることができる。さらに遅延蛍光を示す化合物の一重項励起状態からドーパント材料の一重項励起状態へとフェルスター型のエネルギー移動が起こる場合、ドーパント材料の一重項励起状態からの蛍光発光が観測される。ここで、ドーパント材料がシャープな発光波長を有する蛍光発光材である場合、発光素子効率および色純度がより優れた発光素子を得ることができる。このように、発光層が遅延蛍光を示す化合物を含有すると、発光素子効率がより向上し、ディスプレイの低消費電力化に寄与する。遅延蛍光を示す化合物は、単一の材料であってもよいし、エキサイプレックス錯体を形成する場合のように複数の材料でであってもよい。 It is preferable that the light-emitting layer further contains a compound that exhibits delayed fluorescence. Compounds that exhibit delayed fluorescence have a small energy gap between the singlet excited state and the triplet excited state, causing a transition from the triplet excited state to the singlet excited state, and are materials that can utilize triplet excitons as delayed fluorescence. be. When this delayed fluorescence is utilized in an organic light emitting device, the light emitting device efficiency can be further improved. Furthermore, when Förster-type energy transfer occurs from the singlet excited state of the compound exhibiting delayed fluorescence to the singlet excited state of the dopant material, fluorescence emission from the singlet excited state of the dopant material is observed. Here, when the dopant material is a fluorescent material having a sharp emission wavelength, a light emitting element with better light emitting element efficiency and color purity can be obtained. In this way, when the light-emitting layer contains a compound exhibiting delayed fluorescence, the light-emitting element efficiency is further improved, contributing to lower power consumption of the display. The compound exhibiting delayed fluorescence may be a single material or a plurality of materials, such as when forming an exciplex complex.
 遅延蛍光を示す化合物としては、単一でも複数の材料でもよく、公知の材料を用いることができる。具体的には、例えば、ベンゾニトリル誘導体、トリアジン誘導体、ジスルホキシド誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ジヒドロフェナジン誘導体、チアゾール誘導体、オキサジアゾール誘導体などが挙げられる。このような遅延蛍光を示す化合物として、特に限定されるものではないが、以下のような例が挙げられる。 The compound exhibiting delayed fluorescence may be made of a single material or a plurality of materials, and known materials can be used. Specific examples include benzonitrile derivatives, triazine derivatives, disulfoxide derivatives, carbazole derivatives, indolocarbazole derivatives, dihydrophenazine derivatives, thiazole derivatives, and oxadiazole derivatives. Examples of compounds exhibiting such delayed fluorescence include, but are not particularly limited to, the following examples.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 発光層は、ドーパント材料として前述の一般式(1)で表される構造を有する化合物を含有し、さらに遅延蛍光を示す化合物を含有することが好ましく、遅延蛍光を示す化合物およびマトリクス材料を含有することがより好ましい。ドーパント材料の励起一重項エネルギーをS(1)、遅延蛍光を示す化合物の励起一重項エネルギーをS(2)、マトリクス材料の励起一重項エネルギーをS(3)とするとき、式1の関係を満足することが好ましい。
(3)>S(2)>S(1)    (式1)
これにより、マトリクス材料は遅延蛍光を示す化合物およびドーパント材料のエネルギーを発光層内に閉じ込める機能を有することができ、効率よく発光させることが可能となり、発光素子効率をより向上させることができる。一般式(1)で表される構造を有する化合物や前述の遅延蛍光を示す化合物との間で式1の関係を満足するマトリクス材料として、特に限定されるものではないが、以下のような例が挙げられる。
The light-emitting layer contains a compound having a structure represented by the above-mentioned general formula (1) as a dopant material, preferably further contains a compound exhibiting delayed fluorescence, and further contains a compound exhibiting delayed fluorescence and a matrix material. It is more preferable. When the excitation singlet energy of the dopant material is S 1 (1), the excitation singlet energy of the compound exhibiting delayed fluorescence is S 1 (2), and the excitation singlet energy of the matrix material is S 1 (3), Equation 1 It is preferable to satisfy the following relationship.
S 1 (3)>S 1 (2)>S 1 (1) (Formula 1)
Thereby, the matrix material can have a function of confining the energy of the compound exhibiting delayed fluorescence and the dopant material within the light emitting layer, making it possible to emit light efficiently and further improving the efficiency of the light emitting device. Examples of matrix materials that satisfy the relationship of formula 1 with the compound having the structure represented by general formula (1) or the compound exhibiting delayed fluorescence described above include, but are not particularly limited to, the following examples: can be mentioned.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 (電子輸送層)
 電子輸送層は、陰極から電子が注入され、さらに電子を輸送する層である。電子輸送層に用いられる電子輸送材料としては、電子親和力が大きいこと、電子移動度が大きいこと、安定性に優れること、およびトラップとなる不純物が発生しにくい物質であることが要求される。また、結晶化による膜質劣化を抑制する観点から、分子量400以上の化合物が好ましい。
(electron transport layer)
The electron transport layer is a layer into which electrons are injected from the cathode and further transports electrons. The electron transport material used in the electron transport layer is required to have high electron affinity, high electron mobility, excellent stability, and be a substance that does not easily generate impurities that become traps. Further, from the viewpoint of suppressing film quality deterioration due to crystallization, a compound having a molecular weight of 400 or more is preferable.
 本発明における電子輸送層には、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。正孔阻止層および電子輸送層は単独でも複数の材料が積層されて構成されていてもよい。 The electron transport layer in the present invention also includes a hole blocking layer that can efficiently block the movement of holes. The hole-blocking layer and the electron-transporting layer may be composed of a single layer or a stack of a plurality of materials.
 電子輸送材料としては、多環芳香族誘導体、スチリル系芳香環誘導体、キノン誘導体、リンオキサイド誘導体、トリス(8-キノリノラート)アルミニウム(III)などのキノリノール錯体、ベンゾキノリノール錯体、ヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体などの各種金属錯体が挙げられる。駆動電圧を低減し、発光素子効率をより向上させる観点から、電子受容性窒素を含むヘテロアリール基を有する化合物を用いることが好ましい。ここで、電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。電子受容性窒素を含むヘテロアリール基は、電子親和力が大きいため、陰極から電子が注入しやすくなり、より低電圧駆動が可能となる。また、発光層への電子の供給が多くなり、再結合確率が高くなるため発光素子効率がより向上する。電子受容性窒素を含むヘテロアリール基構造を有する化合物としては、例えば、ピリジン誘導体、トリアジン誘導体、ピラジン誘導体、ピリミジン誘導体、キノリン誘導体、キノキサリン誘導体、キナゾリン誘導体、ナフチリジン誘導体、ベンゾキノリン誘導体、フェナントロリン誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、トリアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、フェナンスロイミダゾール誘導体、ビピリジンやターピリジンなどのオリゴピリジン誘導体などが挙げられる。これらを2種以上用いてもよい。 Examples of electron transport materials include polycyclic aromatic derivatives, styryl aromatic ring derivatives, quinone derivatives, phosphorus oxide derivatives, quinolinol complexes such as tris(8-quinolinolato)aluminum(III), benzoquinolinol complexes, hydroxyazole complexes, and azomethine complexes. , various metal complexes such as tropolone metal complexes and flavonol metal complexes. From the viewpoint of reducing driving voltage and further improving light emitting device efficiency, it is preferable to use a compound having a heteroaryl group containing electron-accepting nitrogen. Here, the electron-accepting nitrogen refers to a nitrogen atom forming multiple bonds with adjacent atoms. Since the heteroaryl group containing electron-accepting nitrogen has a large electron affinity, electrons can be easily injected from the cathode, allowing lower voltage driving. In addition, more electrons are supplied to the light emitting layer, and the probability of recombination increases, so that the light emitting device efficiency is further improved. Examples of compounds having a heteroaryl group structure containing electron-accepting nitrogen include pyridine derivatives, triazine derivatives, pyrazine derivatives, pyrimidine derivatives, quinoline derivatives, quinoxaline derivatives, quinazoline derivatives, naphthyridine derivatives, benzoquinoline derivatives, phenanthroline derivatives, and imidazole. Examples include derivatives, oxazole derivatives, thiazole derivatives, triazole derivatives, oxadiazole derivatives, thiadiazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, phenanthroimidazole derivatives, and oligopyridine derivatives such as bipyridine and terpyridine. Two or more types of these may be used.
 また、電子輸送材料が縮合多環芳香族骨格を有していると、ガラス転移温度が向上し、電子移動度が大きく、駆動電圧を低減することができるためより好ましい。このような縮合多環芳香族骨格としては、キノリノール骨格、トリアジン骨格、フルオランテン骨格、アントラセン骨格、ピレン骨格またはフェナントロリン骨格が好ましい。 Further, it is more preferable that the electron transport material has a condensed polycyclic aromatic skeleton because the glass transition temperature is improved, the electron mobility is large, and the driving voltage can be reduced. Such a fused polycyclic aromatic skeleton is preferably a quinolinol skeleton, a triazine skeleton, a fluoranthene skeleton, an anthracene skeleton, a pyrene skeleton, or a phenanthroline skeleton.
 電子輸送層は、ドナー性材料を含有してもよい。ここで、ドナー性材料とは、電子注入障壁の改善により、陰極または電子注入層からの電子輸送層への電子注入を容易にし、さらに電子輸送層の電気伝導性を向上させる化合物である。 The electron transport layer may contain a donor material. Here, the donor material is a compound that improves the electron injection barrier, facilitates electron injection from the cathode or electron injection layer to the electron transport layer, and further improves the electrical conductivity of the electron transport layer.
 ドナー性材料の好ましい例としては、Liなどのアルカリ金属、LiFなどのアルカリ金属を含有する無機塩、リチウムキノリノールなどのアルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩、アルカリ土類金属と有機物との錯体、EuやYbなどの希土類金属、希土類金属を含有する無機塩、希土類金属と有機物との錯体などが挙げられる。これらを2種以上用いてもよい。これらの中でも、金属リチウム、希土類金属、リチウムキノリノール(Liq)が好ましい。 Preferred examples of donor materials include alkali metals such as Li, inorganic salts containing alkali metals such as LiF, complexes of alkali metals and organic substances such as lithium quinolinol, alkaline earth metals, and alkaline earth metals. Examples include inorganic salts, complexes of alkaline earth metals and organic substances, rare earth metals such as Eu and Yb, inorganic salts containing rare earth metals, and complexes of rare earth metals and organic substances. Two or more types of these may be used. Among these, metallic lithium, rare earth metals, and lithium quinolinol (Liq) are preferred.
 (電子注入層)
 本発明において、陰極と電子輸送層の間に、電子注入層を設けてもよい。一般的に、電子注入層は、陰極から電子輸送層への電子の注入を助ける目的で形成され、電子受容性窒素を含むヘテロアリール環構造を有する化合物や、上記のドナー性材料により構成される。また、これらを2種以上含有してもよい。これらの中でも、トリアジン誘導体、フェナントロリン誘導体、オリゴピリジン誘導体が好ましく、フェナントロリン誘導体、ターピリジン誘導体がより好ましく、下記一般式(4)で表される構造を有するフェナントロリン誘導体がさらに好ましい。すなわち、本発明の発光素子は、電子注入層に一般式(4)で表される構造を有するフェナントロリン誘導体を含有することが好ましい。
(electron injection layer)
In the present invention, an electron injection layer may be provided between the cathode and the electron transport layer. Generally, the electron injection layer is formed for the purpose of assisting the injection of electrons from the cathode to the electron transport layer, and is composed of a compound having a heteroaryl ring structure containing electron-accepting nitrogen, or the above-mentioned donor material. . Moreover, you may contain 2 or more types of these. Among these, triazine derivatives, phenanthroline derivatives, and oligopyridine derivatives are preferred, phenanthroline derivatives and terpyridine derivatives are more preferred, and phenanthroline derivatives having a structure represented by the following general formula (4) are even more preferred. That is, the light emitting device of the present invention preferably contains a phenanthroline derivative having a structure represented by general formula (4) in the electron injection layer.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 上記一般式(6)中、Arは、p価の芳香族炭化水素基、およびp価の芳香族複素環基からなる群より選ばれる。pは1~3の自然数である。R301~R308は、それぞれ同じでも異なっていてもよく、水素原子、アルキル基、シクロアルキル基、複素環基、アリール基、ヘテロアリール基からなる群より選ばれる。Arのうち、p個のフェナントロリル基による置換位置は任意の位置である。 In the above general formula (6), Ar 4 is selected from the group consisting of a p-valent aromatic hydrocarbon group and a p-valent aromatic heterocyclic group. p is a natural number from 1 to 3. R 301 to R 308 may be the same or different, and are selected from the group consisting of a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocyclic group, an aryl group, and a heteroaryl group. Among Ar 4 , the p phenanthrolyl groups can be substituted at any position.
 芳香族炭化水素基としては、例えば、1価の場合、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フェナントリル基、アントラセニル基、ベンゾフェナントリル基、ベンゾアントラセニル基、クリセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基、ベンゾフルオランテニル基、ジベンゾアントラセニル基、ペリレニル基、ヘリセニル基などが挙げられる。中でも、合成容易性、昇華性の観点から、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基や、これらの水素原子の少なくとも1部を除いた基が好ましい。芳香族炭化水素基は、置換基を有していても有していなくてもよい。環形成炭素数は特に限定されないが、好ましくは6以上40以下、より好ましくは6以上30以下の範囲である。また、隣接する2つの炭素原子上に各々置換基がある場合、それらの置換基同士で環構造を形成していてもよい。 Examples of the aromatic hydrocarbon group include, in the case of a monovalent group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthryl group, an anthracenyl group, a benzo Examples include phenanthryl group, benzanthracenyl group, chrysenyl group, pyrenyl group, fluoranthenyl group, triphenylenyl group, benzofluoranthenyl group, dibenzaanthracenyl group, perylenyl group, and helicenyl group. Among them, from the viewpoint of ease of synthesis and sublimation, phenyl group, biphenyl group, terphenyl group, naphthyl group, fluorenyl group, phenanthryl group, anthracenyl group, pyrenyl group, fluoranthenyl group, triphenylenyl group, and their hydrogen atoms A group from which at least a part of is removed is preferred. The aromatic hydrocarbon group may or may not have a substituent. The number of carbon atoms forming the ring is not particularly limited, but is preferably in the range of 6 or more and 40 or less, more preferably 6 or more and 30 or less. Furthermore, when there are substituents on two adjacent carbon atoms, these substituents may form a ring structure.
 芳香族複素環基とは、炭素以外の原子を1個以上環内に有する環状芳香族基を示し、例えば、1価の場合、ピリジル基、フラニル基、チオフェニル基、キノリニル基、イソキノリニル基、ピラジニル基、ピリミジル基、ピリダジニル基、トリアジニル基、ナフチリジニル基、シンノリニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ベンゾカルバゾリル基、カルボリニル基、インドロカルバゾリル基、ベンゾフロカルバゾリル基、ベンゾチエノカルバゾリル基、ジヒドロインデノカルバゾリル基、ベンゾキノリニル基、アクリジニル基、ジベンゾアクリジニル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基などが挙げられる。ただし、ナフチリジニル基とは、1,5-ナフチリジニル基、1,6-ナフチリジニル基、1,7-ナフチリジニル基、1,8-ナフチリジニル基、2,6-ナフチリジニル基、2,7-ナフチリジニル基のいずれかを示す。芳香族複素環基は置換基を有していても有していなくてもよい。芳香族複素環基の環形成炭素数は特に限定されないが、好ましくは、2以上40以下、より好ましくは2以上30以下の範囲である。 The aromatic heterocyclic group refers to a cyclic aromatic group having one or more atoms other than carbon in the ring, for example, in the case of monovalent, pyridyl group, furanyl group, thiophenyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group. group, pyrimidyl group, pyridazinyl group, triazinyl group, naphthyridinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, benzocarbazolyl group, carbolinyl group, indolocarbazolyl group, benzofurocarbazolyl group, benzothienocarbazolyl group, dihydroindenocarbazolyl group, benzoquinolinyl group, acridinyl group, dibenzaacridinyl group, Examples include benzimidazolyl group, imidazopyridyl group, benzoxazolyl group, benzothiazolyl group, and phenanthrolinyl group. However, the naphthyridinyl group refers to any of the following: 1,5-naphthyridinyl group, 1,6-naphthyridinyl group, 1,7-naphthyridinyl group, 1,8-naphthyridinyl group, 2,6-naphthyridinyl group, 2,7-naphthyridinyl group. Show that. The aromatic heterocyclic group may or may not have a substituent. The number of carbon atoms forming the ring of the aromatic heterocyclic group is not particularly limited, but is preferably in the range of 2 to 40, more preferably 2 to 30.
 芳香族炭化水素基または芳香族複素環基は、フェナントリル基以外にさらに置換基を有していてもよい。 The aromatic hydrocarbon group or the aromatic heterocyclic group may further have a substituent other than the phenanthryl group.
 昇華性および薄膜形成性の観点から、pは2が好ましい。 From the viewpoint of sublimation property and thin film forming property, p is preferably 2.
 一般式(6)で表される構造を有するフェナントロリン誘導体の一例を以下に示す。 An example of a phenanthroline derivative having a structure represented by general formula (6) is shown below.
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 また、電子注入層に絶縁体や半導体の無機物を用いることもできる。これらの材料を用いることにより、発光素子の短絡を抑制し、電子注入性を向上させることができるので好ましい。 Furthermore, an inorganic material such as an insulator or a semiconductor can also be used for the electron injection layer. Use of these materials is preferable because short circuits in the light emitting element can be suppressed and electron injection properties can be improved.
 このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物、アルカリ土類金属のハロゲン化物などの金属化合物が好ましい。これらを2種以上用いてもよい。 As such an insulator, metal compounds such as alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides are preferable. Two or more types of these may be used.
 (電荷発生層)
 本発明における電荷発生層は、一般に二重層からなり、具体的には、n型電荷発生層およびp型電荷発生層からなるpn接合電荷発生層として用いることができる。上記pn接合型電荷発生層は、発光素子中で電圧が印加されることにより、電荷を発生、または電荷を正孔および電子に分離し、これらの正孔および電子を正孔輸送層および電子輸送層を経由して発光層に注入する。具体的には、発光層が積層された発光素子において中間層の電荷発生層として機能する。n型電荷発生層は陽極側に存在する第一発光層に電子を供給し、p型電荷発生層は陰極側に存在する第二発光層に正孔を供給する。そのため、複数の発光層を積層した発光素子における発光素子効率を改善でき、駆動電圧を低減することができ、発光素子の耐久性も向上する。
(charge generation layer)
The charge generation layer in the present invention generally consists of a double layer, and specifically can be used as a pn junction charge generation layer consisting of an n-type charge generation layer and a p-type charge generation layer. The pn junction type charge generation layer generates charges or separates the charges into holes and electrons when a voltage is applied in the light emitting element, and transfers these holes and electrons to the hole transport layer and the electron transport layer. injection into the light-emitting layer via the layer. Specifically, it functions as an intermediate charge generation layer in a light emitting element in which light emitting layers are stacked. The n-type charge generation layer supplies electrons to the first light-emitting layer located on the anode side, and the p-type charge generation layer supplies holes to the second light-emission layer located on the cathode side. Therefore, the light emitting element efficiency in a light emitting element in which a plurality of light emitting layers are laminated can be improved, the driving voltage can be reduced, and the durability of the light emitting element is also improved.
 上記n型電荷発生層は、n型ドーパントおよびホストからなり、これらは従来の材料を用いることができる。例えば、n型ドーパントとして、アルカリ金属、アルカリ土類金属、希土類金属などが挙げられる。これらを2種以上用いてもよい。これらの中でも、アルカリ金属もしくはその塩、希土類金属が好ましく、金属リチウム、フッ化リチウム(LiF)、リチウムキノリノール(Liq)、金属イッテルビウムがさらに好ましい。また、ホストとして、トリアジン誘導体、フェナントロリン誘導体、オリゴピリジン誘導体などが挙げられる。これらを2種以上用いてもよい。これらの中でも、トリアジン誘導体、フェナントロリン誘導体、オリゴピリジン誘導体が好ましく、フェナントロリン誘導体、ターピリジン誘導体がより好ましく、前記一般式(6)で表される構造を有するフェナントロリン誘導体がさらに好ましく、下記一般式(7)で表されるフェナントロリン誘導体が特に好ましい。すなわち、本発明の発光素子は、電荷発生層に一般式(6)で表される構造を有するフェナントロリン誘導体を含有することが好ましく、一般式(7)で表されるフェナントロリン誘導体を含有することがより好ましい。 The n-type charge generation layer consists of an n-type dopant and a host, and conventional materials can be used for these. For example, n-type dopants include alkali metals, alkaline earth metals, rare earth metals, and the like. Two or more types of these may be used. Among these, alkali metals or salts thereof, and rare earth metals are preferred, and lithium metal, lithium fluoride (LiF), lithium quinolinol (Liq), and ytterbium metal are more preferred. Further, examples of the host include triazine derivatives, phenanthroline derivatives, oligopyridine derivatives, and the like. Two or more types of these may be used. Among these, triazine derivatives, phenanthroline derivatives, and oligopyridine derivatives are preferred, phenanthroline derivatives and terpyridine derivatives are more preferred, phenanthroline derivatives having the structure represented by the general formula (6) above are even more preferred, and the following general formula (7) A phenanthroline derivative represented by is particularly preferred. That is, the light emitting device of the present invention preferably contains a phenanthroline derivative having a structure represented by general formula (6) in the charge generation layer, and preferably contains a phenanthroline derivative having a structure represented by general formula (7). More preferred.
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 上記一般式(7)中、Y~Yのいずれか一つは窒素原子であり、それ以外はメチン基である。Lは置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基または置換もしくは無置換のアントリレン基であり、Lは単結合、置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基または置換もしくは無置換のアントリレン基である。ただし、これらの基が置換されている場合の置換基は、アルキル基またはアルコキシ基である。Aはフェニル基またはピリジル基であり、mは0または1である。 In the above general formula (7), any one of Y 1 to Y 3 is a nitrogen atom, and the others are methine groups. L 2 is a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, or a substituted or unsubstituted anthrylene group, and L 3 is a single bond, a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group or a substituted or unsubstituted anthrylene group. However, when these groups are substituted, the substituent is an alkyl group or an alkoxy group. A is a phenyl group or a pyridyl group, and m is 0 or 1.
 一般式(7)で表されるフェナントロリン誘導体の一例を以下に示す。 An example of the phenanthroline derivative represented by general formula (7) is shown below.
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 上記p型電荷発生層は、p型ドーパントおよびホストからなり、これらは従来の材料を用いることができる。例えば、p型ドーパントとして、テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4-TCNQ)、テトラシアノキノジメタン誘導体、ラジアレン誘導体、ヨウ素、FeCl、FeF、SbClなどが挙げられる。これらを2種以上用いてもよい。これらの中でも、アリールアミン誘導体が好ましい。 The p-type charge generation layer includes a p-type dopant and a host, and conventional materials can be used for these. For example, as a p-type dopant, tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), tetracyanoquinodimethane derivatives, radialene derivatives, iodine, FeCl 3 , FeF 3 , SbCl 5 , etc. can be mentioned. Two or more types of these may be used. Among these, arylamine derivatives are preferred.
 (発光素子の製造方法)
 発光素子を構成する上記各層の形成方法は、ドライプロセスまたはウェットプロセスのいずれでもよく、例えば、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法、インクジェット法、印刷法などが挙げられる。これらの中でも、素子特性の観点から、抵抗加熱蒸着が好ましい。
(Method for manufacturing light emitting element)
The formation method of each of the above layers constituting the light emitting element may be either a dry process or a wet process, and examples thereof include resistance heating evaporation, electron beam evaporation, sputtering, molecular lamination method, coating method, inkjet method, printing method, etc. . Among these, resistance heating vapor deposition is preferred from the viewpoint of device characteristics.
 有機層の厚みは、発光物質の抵抗値によるため限定することはできないが、1~1000nmであることが好ましい。発光層、電子輸送層、正孔輸送層の膜厚はそれぞれ、好ましくは1nm以上200nm以下であり、さらに好ましくは5nm以上100nm以下である。 The thickness of the organic layer cannot be limited because it depends on the resistance value of the luminescent material, but it is preferably 1 to 1000 nm. The thickness of each of the light-emitting layer, electron transport layer, and hole transport layer is preferably 1 nm or more and 200 nm or less, more preferably 5 nm or more and 100 nm or less.
 (発光素子の特性)
 本発明の実施の形態に係る発光素子は、電気エネルギーを光に変換できる機能を有する。ここで電気エネルギーとしては主に直流電流が使用されるが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はなく、素子の目的によって要求される特性値が異なるが、素子の消費電力や耐久性の観点から低電圧で高い輝度が得られることが好ましい。
(Characteristics of light emitting element)
The light emitting element according to the embodiment of the present invention has a function of converting electrical energy into light. Although direct current is mainly used as electrical energy here, pulsed current or alternating current can also be used. There are no particular restrictions on the current and voltage values, and required characteristic values vary depending on the purpose of the device, but from the viewpoint of power consumption and durability of the device, it is preferable that high brightness can be obtained at low voltage.
 本発明の実施の形態に係る発光素子は、色純度を高める観点から、通電による発光波長において、色純度をより向上させる観点から、半値幅は、45nm以下が好ましく、35nm以下がより好ましく、30nm以下がさらに好ましい。 In the light-emitting element according to the embodiment of the present invention, from the viewpoint of increasing color purity, the half-width is preferably 45 nm or less, more preferably 35 nm or less, and 30 nm or less at the emission wavelength when energized. The following are more preferred.
 (発光素子の用途)
 本発明の実施の形態に係る発光素子は、高い発光素子効率と高色純度との両立が可能であり、さらに、薄型化や軽量化が可能であることから、例えば、表示装置や照明装置として好適に用いられる。
(Applications of light emitting elements)
The light emitting device according to the embodiment of the present invention can achieve both high light emitting device efficiency and high color purity, and can also be made thinner and lighter, so it can be used, for example, as a display device or a lighting device. Suitably used.
 表示装置としては、例えば、マトリクスメント方式で表示するディスプレイ等の表示装置や、各種機器等のバックライトなどが挙げられる。バックライトは、主に自発光しないディスプレイ等の表示装置の視認性を向上させる目的に使用され、液晶ディスプレイ、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。これらの中でも、液晶ディスプレイ、中でも薄型化が検討されているパソコン用途のバックライトに好適に用いることができる。 Examples of display devices include display devices such as displays that use a matrix method, backlights for various devices, and the like. Backlights are mainly used for the purpose of improving the visibility of display devices such as non-self-luminous displays, and are used in liquid crystal displays, clocks, audio devices, automobile panels, display boards, signs, and the like. Among these, it can be suitably used for liquid crystal displays, and in particular, for backlights for personal computers, for which thinning is being considered.
 照明装置としては、例えば、医療用照明、インテリア照明などが挙げられ、低消費電力と鮮やかな発光色、高いデザイン性を合わせ持った照明装置が実現できる。 Examples of the lighting device include medical lighting, interior lighting, etc., and it is possible to realize a lighting device that combines low power consumption, bright luminous color, and high design.
 <色変換組成物>
 本発明の化合物は、光源等の発光体からの入射光を、その入射光とは異なる波長の光に変換する色変換組成物に用いてもよい。色変換組成物は、上述した一般式(1)で表される化合物およびバインダー樹脂を含むことが好ましい。ここで、入射光とは異なる波長の光に変換するとは、入射光よりも長波長の光に変換することが好ましい。
<Color conversion composition>
The compounds of the present invention may be used in color conversion compositions that convert incident light from a light emitter, such as a light source, into light of a different wavelength from the incident light. It is preferable that the color conversion composition contains the compound represented by the above-mentioned general formula (1) and a binder resin. Here, converting into light with a wavelength different from that of the incident light preferably means converting into light with a longer wavelength than the incident light.
 <色変換組成物の製造方法>
 本発明の色変換組成物は、例えば、バインダー樹脂、一般式(1)で表される構造を有する化合物、必要に応じて添加剤や溶剤等を所定の組成になるよう混合した後、撹拌・混練機を用いて均質に混合または混練することにより得ることができる。撹拌・混練機としては、例えば、ホモジナイザー、自公転型撹拌機、3本ローラー、ボールミル、遊星式ボールミル、ビーズミル等が挙げられる。混合または分散後、もしくは混合または分散の過程において、真空もしくは減圧条件下で脱泡することも好ましく行われる。また、ある特定の成分を事前に混合することや、エージング等の処理をしても構わない。エバポレーターによって溶剤を除去して所望の固形分濃度にすることも可能である。
<Method for manufacturing color conversion composition>
The color conversion composition of the present invention can be prepared by, for example, mixing a binder resin, a compound having a structure represented by general formula (1), and additives and solvents as necessary to a predetermined composition, and then stirring and It can be obtained by homogeneously mixing or kneading using a kneader. Examples of the stirring/kneading machine include a homogenizer, a revolution-revolution type stirrer, a three-roller mill, a ball mill, a planetary ball mill, and a bead mill. After mixing or dispersing, or during the process of mixing or dispersing, defoaming is also preferably carried out under vacuum or reduced pressure conditions. Further, certain specific components may be mixed in advance, or treatments such as aging may be performed. It is also possible to remove the solvent with an evaporator to reach the desired solids concentration.
 <色変換シート>
 本発明の色変換シートは、光源等の発光体からの入射光を、その入射光とは異なる波長の光に変換するシートであり、前述の本発明の色変換組成物を含有する。入射光よりも長波長の光に変換することが好ましい。
<Color conversion sheet>
The color conversion sheet of the present invention is a sheet that converts incident light from a light emitter such as a light source into light of a wavelength different from that of the incident light, and contains the color conversion composition of the present invention described above. It is preferable to convert the incident light into light with a longer wavelength than that of the incident light.
 本発明の色変換シートは、前述の色変換組成物から形成される層である色変換層を含むことが好ましい。色変換層の残存溶剤量は、色変換シートの耐久性をより向上させる観点から、0.5重量%以下が好ましい。一方、色変換層の残存溶剤量は、色変換シートの発光効率をより向上させる観点から、0.1重量%以上が好ましい。 The color conversion sheet of the present invention preferably includes a color conversion layer that is a layer formed from the color conversion composition described above. The amount of residual solvent in the color conversion layer is preferably 0.5% by weight or less from the viewpoint of further improving the durability of the color conversion sheet. On the other hand, the amount of residual solvent in the color conversion layer is preferably 0.1% by weight or more from the viewpoint of further improving the luminous efficiency of the color conversion sheet.
 <色変換シートの製造方法>
 次に、本発明の色変換シートの製造方法の一例を説明する。上述した方法で作製した色変換組成物を基材上に塗布し、乾燥することにより、色変換層を形成する。バインダー樹脂が熱硬化性樹脂の場合、色変換組成物を基材上に塗布した後、加熱硬化して色変換層を形成してもよく、バインダー樹脂が光硬化性樹脂の場合、色変換組成物を基材上に塗布した後、光硬化して色変換層を形成してもよい。
<Method for manufacturing color conversion sheet>
Next, an example of the method for manufacturing the color conversion sheet of the present invention will be explained. A color conversion layer is formed by applying the color conversion composition prepared by the method described above onto a base material and drying it. When the binder resin is a thermosetting resin, the color conversion composition may be applied onto the base material and then heated and cured to form a color conversion layer, and when the binder resin is a photocurable resin, the color conversion composition The material may be applied onto a substrate and then photocured to form a color conversion layer.
 <光源ユニット>
 本発明の光源ユニットは、少なくとも光源と、前述の本発明の色変換シートを含む。本発明の光源ユニットに含まれる光源は、上述の励起光の発生源となるものである。光源と色変換シートとの配置方法については特に限定されず、光源と色変換シートとを密着させた構成を取ってもよいし、光源と色変換シートとを離したリモートフォスファー形式を取ってもよい。また、光源ユニットは、色純度を高める目的で、さらにカラーフィルターを備える構成を取ってもよい。
<Light source unit>
The light source unit of the present invention includes at least a light source and the color conversion sheet of the present invention described above. The light source included in the light source unit of the present invention serves as a source of the above-mentioned excitation light. The method of arranging the light source and the color conversion sheet is not particularly limited, and the light source and color conversion sheet may be placed in close contact with each other, or a remote phosphor format may be used in which the light source and the color conversion sheet are separated. Good too. Further, the light source unit may further include a color filter for the purpose of increasing color purity.
 <光源>
 光源の種類は、発光材料が吸収可能な波長領域に発光を示すものであればいずれの光源でも用いることができる。例えば、熱陰極管や冷陰極管、無機ELなどの蛍光性光源、有機エレクトロルミネッセンス素子光源、LED光源、白熱光源、あるいは太陽光などいずれの光源でも原理的には利用可能である。これらの中でも、LEDが好適な光源であり、ディスプレイ(表示装置)や照明用途では、青色光の色純度を高められる点で、430~500nmの範囲の光源を持つ青色LEDがさらに好適な光源である。
<Light source>
Any type of light source can be used as long as it emits light in a wavelength range that can be absorbed by the luminescent material. For example, any light source can be used in principle, such as a hot cathode tube, a cold cathode tube, a fluorescent light source such as an inorganic EL, an organic electroluminescent light source, an LED light source, an incandescent light source, or sunlight. Among these, LED is a suitable light source, and for display (display device) and lighting applications, blue LED, which has a light source in the range of 430 to 500 nm, is an even more suitable light source because it can improve the color purity of blue light. be.
 光源は1種類の発光ピークを持つものでもよく、2種類以上の発光ピークを持つものでもよいが、色純度を高めるためには1種類の発光ピークを持つものが好ましい。また、発光ピークの種類の異なる複数の光源を任意に組み合わせて使用することも可能である。 The light source may have one kind of luminescence peak or two or more kinds of luminescence peaks, but in order to improve color purity, it is preferable to have one kind of luminescence peak. It is also possible to use a plurality of light sources with different types of emission peaks in any combination.
 本発明における光源ユニットは、空間照明、バックライト等種々の光源に有用であり、具体的には、表示装置、照明、インテリア、標識、看板などの用途に使用できるが、特に表示装置や照明用途に特に好適に用いられる。 The light source unit of the present invention is useful for various light sources such as space lighting and backlighting, and specifically, it can be used for display devices, lighting, interiors, signs, signboards, etc., but especially for display devices and lighting applications. It is particularly suitable for use in
 <表示装置、照明装置>
 本発明の表示装置は、少なくとも、上述した本発明の発光素子および/または上述した色変換シートを備える。例えば、液晶ディスプレイ等の表示装置には、バックライトユニットとして、上述した本発明の光源ユニットが好ましく用いられる。また、上述した発光素子を用いて、例えば、マトリクスおよび/またはセグメント方式で表示する、高発光効率かつ耐久性に優れた有機ELディスプレイ等の表示装置を作製することができる。
<Display device, lighting device>
The display device of the present invention includes at least the light emitting element of the present invention described above and/or the color conversion sheet described above. For example, the light source unit of the present invention described above is preferably used as a backlight unit in a display device such as a liquid crystal display. Further, by using the above-described light emitting element, a display device such as an organic EL display that displays in a matrix and/or segment format and has high luminous efficiency and excellent durability can be manufactured.
 また、本発明の照明装置は、少なくとも、上述した本発明の発光素子および/または上述した本発明の色変換シートを備える。例えば、この照明装置は、光源ユニットとしての青色LED光源と、この青色LED光源からの青色光をこれよりも長波長の光に変換する色変換シートとを組み合わせて、白色光を発光するように構成される。また、上述した本発明の発光素子を用いて照明装置を得ることもできる。これらの照明装置としては、例えば、医療用照明、インテリア照明などが挙げられ、鮮やかな発光色、高耐久性、高いデザイン性を両立することができる。 Furthermore, the lighting device of the present invention includes at least the light emitting element of the present invention described above and/or the color conversion sheet of the present invention described above. For example, this lighting device emits white light by combining a blue LED light source as a light source unit and a color conversion sheet that converts the blue light from the blue LED light source into light with a longer wavelength. configured. Furthermore, a lighting device can also be obtained using the above-described light emitting element of the present invention. These lighting devices include, for example, medical lighting, interior lighting, and the like, and can achieve both bright luminescent color, high durability, and high design.
 <光電変換材料>
 本発明の化合物は、陽極と陰極の間に光電変換層を有する光電変換素子において、光電変換層を構成する光電変換材料に使用してもよい。光電変換材料は、本発明の一般式(1)で表される構造を有する化合物のみから構成されていてもよいが、光電変換効率をより高めるために、さらにその他の光電変換材料を含んでもよい。
<Photoelectric conversion material>
The compound of the present invention may be used in a photoelectric conversion material constituting a photoelectric conversion layer in a photoelectric conversion element having a photoelectric conversion layer between an anode and a cathode. The photoelectric conversion material may be composed only of the compound having the structure represented by the general formula (1) of the present invention, but may further contain other photoelectric conversion materials in order to further increase the photoelectric conversion efficiency. .
 以下、実施例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。 The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples.
 まず、各実施例および比較例における評価方法を以下に記載する。 First, evaluation methods for each example and comparative example will be described below.
 (H-NMR)
 実施例1~23により得られた化合物の重クロロホルム溶液について、超伝導FTNMR EX-270(日本電子(株)製)を用いて、H-NMR測定を行い、その構造を同定した。
( 1H -NMR)
Deuterated chloroform solutions of the compounds obtained in Examples 1 to 23 were subjected to 1 H-NMR measurement using superconducting FTNMR EX-270 (manufactured by JEOL Ltd.), and their structures were identified.
 (発光特性)
 実施例1~23および比較例1~6により得られた化合物をトルエンに溶解した濃度10-5mol/Lの希釈溶液について、(株)堀場製作所製の蛍光分光光度計(FluoroMax-4P)を用いて、発光波長を測定し、ピーク波長と半値幅を求めた。
(Light emission characteristics)
Diluted solutions of the compounds obtained in Examples 1 to 23 and Comparative Examples 1 to 6 dissolved in toluene at a concentration of 10 -5 mol/L were measured using a fluorescence spectrophotometer (FluoroMax-4P) manufactured by Horiba, Ltd. The emission wavelength was measured, and the peak wavelength and half-width were determined.
 (発光素子特性)
 実施例24~115および比較例7~41により得られた発光素子に、電流密度が0.1mA/cmとなるように電圧を印加し、コニカミノルタ(株)製分光放射輝度計CS-1000を用いて、発光波長を測定した。得られた発光波長から、ランバシアン放射を行ったと仮定し、発光素子効率を求めた。
(Light emitting element characteristics)
A voltage was applied to the light emitting devices obtained in Examples 24 to 115 and Comparative Examples 7 to 41 so that the current density was 0.1 mA/cm 2 , and a spectral radiance meter CS-1000 manufactured by Konica Minolta, Inc. was used. The emission wavelength was measured using Based on the obtained emission wavelength, the light emitting device efficiency was determined on the assumption that Lambassian radiation was performed.
 また、実施例24~115および比較例7~41により得られた発光素子に、電流密度が10mA/cmとなるように電圧を印加した時の発光波長を同様に測定し、ピーク波長および半値幅を算出した。 In addition, the emission wavelength was similarly measured when a voltage was applied to the light emitting devices obtained in Examples 24 to 115 and Comparative Examples 7 to 41 so that the current density was 10 mA/cm 2 , and the peak wavelength and half wavelength were measured. The price range was calculated.
 実施例24~115および比較例7~37により得られた発光素子に、電流密度が10mA/cmとなるように電圧を印加し、フォトダイオードを用いて、発光素子の輝度を測定し、初期輝度とした。さらに、電流密度が10mA/cmとなるように電圧を印加し続け、初期輝度の90%の輝度となる時間(LT90)を測定し、耐久性の指標とした。 A voltage was applied to the light emitting devices obtained in Examples 24 to 115 and Comparative Examples 7 to 37 so that the current density was 10 mA/cm 2 , and the brightness of the light emitting devices was measured using a photodiode. Luminance. Further, a voltage was continuously applied so that the current density was 10 mA/cm 2 , and the time (LT90) at which the brightness reached 90% of the initial brightness was measured, and this was used as an index of durability.
 実施例1 Example 1
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 原料1Aは、Jouranal of American Chemical Society、2020年、vol.142、p.19468-19472開示の方法により合成可能である。 Raw material 1A is published in Journal of American Chemical Society, 2020, vol. 142, p. It can be synthesized by the method disclosed in No. 19468-19472.
 原料1Bは、Angewandte chemie international edition、vol.59、p.7813-7817開示の方法により合成可能である。 Raw material 1B is obtained from Angewandte chemie international edition, vol. 59, p. It can be synthesized by the method disclosed in No. 7813-7817.
 原料1A(5.5g)、原料1B(8.6g)、リン酸カリウム(3.9g)およびN,N-ジメチルホルムアミド(60ml)をフラスコに入れ、窒素雰囲気下、150℃で6時間加熱撹拌した。加熱撹拌後、反応液を室温まで冷却し、水およびトルエンを加えて分液した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィーにより精製し、中間体INT1(収率73%)を得た。 Raw material 1A (5.5 g), raw material 1B (8.6 g), potassium phosphate (3.9 g) and N,N-dimethylformamide (60 ml) were placed in a flask and heated and stirred at 150°C for 6 hours under a nitrogen atmosphere. did. After heating and stirring, the reaction solution was cooled to room temperature, water and toluene were added, and the mixture was separated. After distilling off the solvent under reduced pressure, the residue was purified by silica gel column chromatography to obtain intermediate INT1 (yield 73%).
 中間体INT1(7.9g)およびtert-ブチルベンゼン(90ml)を添加したフラスコを0℃まで冷却し、1.6Mのn-ブチルリチウムヘキサン溶液(5.5ml)を滴下した。滴下終了後、室温まで昇温しながら1時間撹拌した。再び0℃まで冷却し、三臭化ホウ素(8.9g)を滴下した。滴下終了後、室温まで昇温しながら1時間撹拌した後、0℃まで冷却し、N,N-ジイソプロピルエチルアミン(4.6g)を添加し、その後、150℃で10時間加熱撹拌した。反応液を0℃まで冷却し、メタノールでクエンチした。析出した固体を吸引ろ過により採取した。得られた固体をトルエンおよび酢酸ブチルで加熱洗浄し、D-1(収率17%)を得た。得られた化合物D-1のH-NMR測定結果を以下に示す。
H-NMR(CDCl(d=ppm)):10.26(s、1H)、9.21(s、1H)、8.97(d、1H)、8.70(m、5H)、8.49(s、1H)、8.40(t、2H)、8.26(m、4H)、7.93(d、1H)、7.82(m、2H)7.71(m、5H)、7.22(t、2H)、6.36(m、2H)1.74(s、9H)、1.57(s、9H)。
A flask containing intermediate INT1 (7.9 g) and tert-butylbenzene (90 ml) was cooled to 0° C., and a 1.6 M n-butyllithium hexane solution (5.5 ml) was added dropwise. After the dropwise addition was completed, the mixture was stirred for 1 hour while being heated to room temperature. The mixture was cooled to 0° C. again, and boron tribromide (8.9 g) was added dropwise. After completion of the dropwise addition, the mixture was stirred for 1 hour while being heated to room temperature, then cooled to 0°C, N,N-diisopropylethylamine (4.6 g) was added, and then heated and stirred at 150°C for 10 hours. The reaction solution was cooled to 0°C and quenched with methanol. The precipitated solid was collected by suction filtration. The obtained solid was heated and washed with toluene and butyl acetate to obtain D-1 (yield 17%). The results of 1 H-NMR measurement of the obtained compound D-1 are shown below.
1 H-NMR (CDCl 3 (d=ppm)): 10.26 (s, 1H), 9.21 (s, 1H), 8.97 (d, 1H), 8.70 (m, 5H), 8.49 (s, 1H), 8.40 (t, 2H), 8.26 (m, 4H), 7.93 (d, 1H), 7.82 (m, 2H) 7.71 (m, 5H), 7.22 (t, 2H), 6.36 (m, 2H) 1.74 (s, 9H), 1.57 (s, 9H).
 化合物D-1を、油拡散ポンプを用いて、1×10-3Paの圧力下、400℃で昇華精製を行ってから発光素子材料として使用した。 Compound D-1 was purified by sublimation at 400° C. under a pressure of 1×10 −3 Pa using an oil diffusion pump, and then used as a light emitting device material.
 化合物D-1の発光特性評価結果を表1に示す。 Table 1 shows the results of evaluating the luminescence properties of Compound D-1.
 実施例2 Example 2
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
 原料1B(3.9g)、1,3-ジブロモ-5-フルオロベンゼン(3.2g)、リン酸カリウム(2.7g)およびN,N-ジメチルホルムアミド(85ml)をフラスコに入れ、窒素雰囲気下、150℃で2時間加熱撹拌した。加熱撹拌後、反応液を室温まで冷却し、水を加え撹拌した。析出した固体を吸引ろ過により得られた固体をシリカゲルカラムクロマトグラフィーにより精製し、中間体INT2-1(収率61%)を得た。 Raw material 1B (3.9 g), 1,3-dibromo-5-fluorobenzene (3.2 g), potassium phosphate (2.7 g) and N,N-dimethylformamide (85 ml) were placed in a flask and heated under a nitrogen atmosphere. The mixture was heated and stirred at 150° C. for 2 hours. After heating and stirring, the reaction solution was cooled to room temperature, water was added, and the mixture was stirred. The precipitated solid was filtered with suction, and the solid obtained was purified by silica gel column chromatography to obtain intermediate INT2-1 (yield 61%).
 中間体INT2-1(3.6g)、p,p’-ジトリルアミン(2.3g)、ビス(ジベンジリデンアセトン)パラジウム(0)(0.06g)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(0.06g)、ナトリウム-tert-ブトキシド(1.4g)およびo-キシレン(50ml)をフラスコに入れ、窒素雰囲気下、100℃で3時間加熱撹拌した。加熱撹拌後、室温まで冷却し、カラムクロマトグラフィーにより精製し、中間体INT2-2(91%)を得た。 Intermediate INT2-1 (3.6 g), p,p'-ditolylamine (2.3 g), bis(dibenzylideneacetone) palladium (0) (0.06 g), tri-tert-butylphosphonium tetrafluoroborate ( 0.06 g), sodium-tert-butoxide (1.4 g) and o-xylene (50 ml) were placed in a flask and heated and stirred at 100° C. for 3 hours under a nitrogen atmosphere. After heating and stirring, the mixture was cooled to room temperature and purified by column chromatography to obtain intermediate INT2-2 (91%).
 中間体INT2-2(7.0g)およびトルエン(75ml)を入れたフラスコに、窒素雰囲気下、三臭化ホウ素(3.8g)を滴下した。滴下終了後、100℃で4時間加熱撹拌した。加熱撹拌後、0℃まで冷却し、メタノールでクエンチした。析出した固体を吸引ろ過により固体を採取した。得られた固体をトルエンおよび酢酸ブチルで加熱洗浄した後、クロロベンゼンにより再結晶を行い、D-2(収率28%)を得た。得られた化合物D-2のH-NMR測定結果を以下に示す。
H-NMR(CDCl(d=ppm)):10.17(s、1H)、8.98(s、1H)、8.93(s、1H)、8.70(m、3H)、8.57(d、1H)、8.41(d、2H)、8.32(d、1H)、8.00(d、1H)、7.84(t、1H)、7.71(m、5H)、7.34(d、3H)、7.21(m、12H)、6.87(d、1H)、6.40(m、2H)、5.92(s、1H)、2.62(s、3H)、2.45(s、3H)、2.42(s、6H)。
Boron tribromide (3.8 g) was added dropwise to a flask containing intermediate INT2-2 (7.0 g) and toluene (75 ml) under a nitrogen atmosphere. After the dropwise addition was completed, the mixture was heated and stirred at 100° C. for 4 hours. After heating and stirring, the mixture was cooled to 0°C and quenched with methanol. The precipitated solid was collected by suction filtration. The obtained solid was heated and washed with toluene and butyl acetate, and then recrystallized from chlorobenzene to obtain D-2 (yield 28%). The results of 1 H-NMR measurement of the obtained compound D-2 are shown below.
1 H-NMR (CDCl 3 (d=ppm)): 10.17 (s, 1H), 8.98 (s, 1H), 8.93 (s, 1H), 8.70 (m, 3H), 8.57 (d, 1H), 8.41 (d, 2H), 8.32 (d, 1H), 8.00 (d, 1H), 7.84 (t, 1H), 7.71 (m , 5H), 7.34 (d, 3H), 7.21 (m, 12H), 6.87 (d, 1H), 6.40 (m, 2H), 5.92 (s, 1H), 2 .62 (s, 3H), 2.45 (s, 3H), 2.42 (s, 6H).
 化合物D-2を、油拡散ポンプを用いて、1×10-3Paの圧力下、400℃で昇華精製を行ってから発光素子材料として使用した。 Compound D-2 was purified by sublimation at 400° C. under a pressure of 1×10 −3 Pa using an oil diffusion pump, and then used as a light emitting device material.
 化合物D-2の発光特性評価結果を表1に示す。 Table 1 shows the results of evaluating the luminescence properties of Compound D-2.
 実施例3~23
 原料および合成条件を適宜変更し、下記構造を有する化合物D-3~D-23を合成し、実施例1と同様に評価した結果を表1に示す。
Examples 3-23
Compounds D-3 to D-23 having the following structures were synthesized by changing the raw materials and synthesis conditions as appropriate, and the results of evaluation in the same manner as in Example 1 are shown in Table 1.
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 比較例1~6
 下記構造を有する化合物EX-1~EX-6について、実施例1と同様に評価した結果を表1に示す。
Comparative examples 1 to 6
Compounds EX-1 to EX-6 having the following structures were evaluated in the same manner as in Example 1, and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000079
 実施例24
 ITO透明導電膜を100nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38mm×46mmに切断し、エッチングを行った。得られた基板を、“セミコクリーン”(登録商標)56(商品名、フルウチ化学(株)製)を用いて15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、正孔注入層としてHAT-CN6を10nm蒸着した。次に、第一正孔輸送層として、化合物HT-1を40nm蒸着した。次に、第二正孔輸送層として、化合物HT-2を10nm蒸着した。次に、発光層として、マトリクス材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が1重量%になるようにして20nmの厚さに蒸着した。次に、電子輸送層として、電子輸送材料に化合物ET-1を、ドナー性材料として化合物2E-1を用い、ET-1と2E-1の蒸着速度比がET-1:2E-1=1:1になるようにして30nmの厚さに蒸着した。その後、マグネシウムと銀を100nm共蒸着して陰極とし、5mm×5mm角の発光素子を作製した。なおHAT-CN6HT-1、HT-2、H-1、ET-1、2E-1は以下に示す化合物である。
Example 24
A glass substrate (manufactured by Geomatec Co., Ltd., 11Ω/□, sputtered product) on which a 100 nm thick ITO transparent conductive film was deposited was cut into 38 mm×46 mm and etched. The obtained substrate was ultrasonically cleaned for 15 minutes using "Semico Clean" (registered trademark) 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.), and then washed with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before fabricating the device, placed in a vacuum evaporation device, and evacuated until the degree of vacuum in the device became 5×10 −4 Pa or less. HAT-CN6 was deposited to a thickness of 10 nm as a hole injection layer by a resistance heating method. Next, compound HT-1 was deposited to a thickness of 40 nm as a first hole transport layer. Next, compound HT-2 was deposited to a thickness of 10 nm as a second hole transport layer. Next, as a light-emitting layer, Compound H-1 was used as a matrix material and Compound D-1 was used as a dopant material, and the dopant material was deposited to a thickness of 20 nm at a doping concentration of 1% by weight. Next, as an electron transport layer, compound ET-1 was used as an electron transport material and compound 2E-1 was used as a donor material, and the deposition rate ratio of ET-1 and 2E-1 was set to ET-1:2E-1=1. :1 to a thickness of 30 nm. Thereafter, magnesium and silver were co-evaporated to a thickness of 100 nm to form a cathode, and a 5 mm x 5 mm square light emitting element was manufactured. Note that HAT-CN6 , HT-1, HT-2, H-1, ET-1, and 2E-1 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 得られた発光素子について、前述の方法により評価した結果を表2に示す。 Table 2 shows the results of evaluating the obtained light emitting device using the method described above.
 (実施例25~46、比較例7~12)
 ドーパント材料として表2に記載した化合物を用いた以外は実施例24と同様にして発光素子を作製し、評価した結果を表2に示す。
(Examples 25-46, Comparative Examples 7-12)
A light emitting device was produced in the same manner as in Example 24, except that the compounds listed in Table 2 were used as dopant materials, and Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000081
 実施例47
 ITO透明導電膜を100nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38mm×46mmに切断し、エッチングを行った。得られた基板を、“セミコクリーン”(登録商標)56(商品名、フルウチ化学(株)製)を用いて15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CN6を10nm、続いて正孔輸送層として、HT-3を30nm蒸着した。次に、発光層として、マトリクス材料にH-2と、ドーパント材料に化合物D-1と、遅延蛍光を示す化合物である化合物H-3とを、重量比で79.0:1.0:20になるようにして、30nmの厚さに蒸着した。続いて正孔阻止層としてET-2を10nm、電子輸送層としてET-3を40nmの厚さに積層した。次に、電子注入層として2E-1を0.5nm蒸着した後、マグネシウムと銀を100nm共蒸着して陰極とし、5mm×5mm角の発光素子を作製した。なおHT-3、H-2、H-3、ET-2、ET-3は以下に示す化合物である。
Example 47
A glass substrate (manufactured by Geomatec Co., Ltd., 11Ω/□, sputtered product) on which a 100 nm thick ITO transparent conductive film was deposited was cut into 38 mm×46 mm and etched. The obtained substrate was ultrasonically cleaned for 15 minutes using "Semico Clean" (registered trademark) 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.), and then washed with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before fabricating the device, placed in a vacuum evaporation device, and evacuated until the degree of vacuum in the device became 5×10 −4 Pa or less. Using a resistance heating method, HAT-CN6 was first deposited to a thickness of 10 nm as a hole injection layer, and then HT-3 was deposited to a thickness of 30 nm as a hole transport layer. Next, as a light-emitting layer, H-2 is used as a matrix material, compound D-1 is used as a dopant material, and compound H-3, which is a compound showing delayed fluorescence, is mixed in a weight ratio of 79.0:1.0:20. It was deposited to a thickness of 30 nm. Subsequently, ET-2 was laminated to a thickness of 10 nm as a hole blocking layer, and ET-3 was laminated to a thickness of 40 nm as an electron transport layer. Next, 2E-1 was deposited to a thickness of 0.5 nm as an electron injection layer, and then magnesium and silver were co-deposited to a thickness of 100 nm to form a cathode, thereby producing a 5 mm x 5 mm square light emitting element. Note that HT-3, H-2, H-3, ET-2, and ET-3 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
 得られた発光素子について前述の方法により評価した結果を表3に示す。 Table 3 shows the results of evaluating the obtained light emitting device using the method described above.
 (実施例48~69、比較例13~18)
 ドーパント材料として表3に記載した化合物を用いた以外は実施例47と同様にして発光素子を作製し、評価した結果を表3に示す。
(Examples 48-69, Comparative Examples 13-18)
A light emitting device was produced in the same manner as in Example 47 except that the compounds listed in Table 3 were used as dopant materials, and Table 3 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000083
 実施例70
 (タンデム型発光素子評価)
 ITO透明導電膜を100nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38mm×46mmに切断し、エッチングを行った。得られた基板を、“セミコクリーン”(登録商標)56(商品名、フルウチ化学(株)製)を用いて15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT-CN6を10nm、続いて正孔輸送層として、HT-3を30nm蒸着した。次に、発光層として、ホスト材料(第三の化合物)H-2と、ドーパント材料(第一の化合物)化合物G-1と、TADF材料(第二の化合物)である化合物H-3とを、重量比で79.0:1.0:20になるようにして、30nmの厚さに蒸着した。続いて正孔阻止層としてET-2を10nm、電子輸送層としてET-3を40nmの厚さに積層した。続いてn型電荷発生層として、n型ホストである化合物ET-4と、n型ドーパントである金属リチウムを、蒸着速度比が99:1になるようにして10nm積層した。さらにp型電荷発生層としてHAT-CN6を10nm積層した。その上に上記と同様に正孔輸送層30nmおよび発光層30nmを形成した。さらに正孔阻止層としてET-2を10nm、電子輸送層としてET-3を40nm順に蒸着した。次に、電子注入層として2E-1を0.5nm蒸着した後、マグネシウムと銀を1000nm共蒸着して陰極とし、5mm×5mm角のタンデム型発光素子を作製した。
Example 70
(Tandem type light emitting element evaluation)
A glass substrate (manufactured by Geomatec Co., Ltd., 11Ω/□, sputtered product) on which a 100 nm thick ITO transparent conductive film was deposited was cut into 38 mm×46 mm and etched. The obtained substrate was ultrasonically cleaned for 15 minutes using "Semico Clean" (registered trademark) 56 (trade name, manufactured by Furuuchi Chemical Co., Ltd.), and then washed with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before fabricating the device, placed in a vacuum evaporation device, and evacuated until the degree of vacuum in the device became 5×10 −4 Pa or less. Using a resistance heating method, HAT-CN6 was first deposited to a thickness of 10 nm as a hole injection layer, and then HT-3 was deposited to a thickness of 30 nm as a hole transport layer. Next, as a light-emitting layer, a host material (third compound) H-2, a dopant material (first compound) compound G-1, and a TADF material (second compound) compound H-3 are used. , in a weight ratio of 79.0:1.0:20 to a thickness of 30 nm. Subsequently, ET-2 was laminated to a thickness of 10 nm as a hole blocking layer, and ET-3 was laminated to a thickness of 40 nm as an electron transport layer. Subsequently, as an n-type charge generation layer, compound ET-4 as an n-type host and metallic lithium as an n-type dopant were laminated to a thickness of 10 nm at a deposition rate ratio of 99:1. Furthermore, HAT-CN6 was laminated to a thickness of 10 nm as a p-type charge generation layer. Thereon, a 30 nm thick hole transport layer and a 30 nm light emitting layer were formed in the same manner as above. Further, 10 nm of ET-2 was deposited as a hole blocking layer, and 40 nm of ET-3 was deposited as an electron transport layer. Next, 2E-1 was deposited to a thickness of 0.5 nm as an electron injection layer, and then magnesium and silver were co-deposited to a thickness of 1000 nm to form a cathode, thereby producing a 5 mm x 5 mm square tandem light emitting device.
 得られた発光素子について前述の方法により評価したところ、発光素子効率は31.8%、LT90は185時間であった。 When the obtained light emitting device was evaluated by the method described above, the light emitting device efficiency was 31.8% and the LT90 was 185 hours.
 (実施例71~92)
 ドーパント材料としてD-1にかえて表4に記載の化合物を用いたこと以外は実施例70と同様にして、発光素子を作製した。評価結果を表4に示す。
(Examples 71-92)
A light emitting device was produced in the same manner as in Example 70, except that the compound listed in Table 4 was used instead of D-1 as the dopant material. The evaluation results are shown in Table 4.
 (実施例93~115)
 n型電荷発生層として、n型ホストである化合物ET-4にかえて化合物ET-5を用い、ドーパント材料として表4に記載の化合物を用いたこと以外は実施例70と同様にして、発光素子を作製した。評価結果を表4に示す。
(Examples 93-115)
Light emission was carried out in the same manner as in Example 70, except that Compound ET-5 was used instead of Compound ET-4, which is an n-type host, as the n-type charge generation layer, and the compounds listed in Table 4 were used as the dopant materials. The device was fabricated. The evaluation results are shown in Table 4.
 (比較例19~37)
 n型電荷発生層として、n型ホストである化合物ET-4にかえてBphenを用い、ドーパント材料として表5に記載の化合物を用いたこと以外は実施例70と同様にして、発光素子を作製した。評価結果を表5に示す。
(Comparative Examples 19 to 37)
A light-emitting device was produced in the same manner as in Example 70, except that Bphen was used instead of the n-type host compound ET-4 as the n-type charge generation layer, and the compounds listed in Table 5 were used as the dopant materials. did. The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000086
 なおET-4、ET-5およびBphenは以下に示す化合物である。 Note that ET-4, ET-5 and Bphen are the compounds shown below.
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
 以上のとおり、本明細書には以下の[1]~[17]の発明が記載されている。
[1]上記一般式(1)で表される構造を有する化合物。
[2]一般式(1)中、Lが単結合である[1]に記載の化合物。
[3]環Cおよび環Dが上記一般式(2-1)~(2-8)のいずれかで表される環構造を含む、置換もしくは無置換の多環芳香族炭化水素である[1]または[2]に記載の化合物。
[4]一般式(1)中、環Cおよび環Dが同一である[1]~[3]のいずれかに記載の化合物。
[5]上記一般式(3)で表される構造を有する[1]~[4]のいずれかに記載の化合物。
[6]XがN-R20であり、R20が置換もしくは無置換のアリール基または置換もしくは無置換のヘテロアリール基である[5]に記載の化合物。
[7]前記一般式(3)で表される構造を有する化合物が上記一般式(4-1)~(4-5)のいずれかで表される構造を有する[5]または[6]に記載の化合物。
[8]XがN-R20であり、R20が置換もしくは無置換のアルケニル基または置換もしくは無置換のイミノ基である[5]~[7]のいずれかに記載の化合物。
[9]前記一般式(3)で表される構造を有する化合物が上記一般式(5-1)または(5-2)で表される構造を有する[5]~[8]のいずれかに記載の化合物。
[10][1]~[9]のいずれかに記載の化合物からなる発光素子材料。
[11]陰極と陽極と、前記陰極と陽極との間に配置された1層以上の有機層を有し、前記有機層のうち少なくとも1層に[1]~[9]のいずれかに記載の化合物を含有する発光素子。
[12][1]~[9]のいずれかに記載の化合物を含有する有機層が発光層である[11]に記載の発光素子。
[13]前記発光層がマトリクス材料を含有する[12]に記載の発光素子。
[14]前記発光層が遅延蛍光を示す化合物を含有する[12]または[13]に記載の発光素子。
[15]前記発光層がマトリクス材料と遅延蛍光を示す化合物を含有し、マトリクス材料の励起一重項エネルギーをS(1)、遅延蛍光を示す化合物の励起一重項エネルギーをS(2)、[1]~[5]のいずれかに記載の化合物の励起一重項エネルギーをS(3)とするとき、式1の関係を満足する[12]~[14]のいずれかに記載の発光素子。
(1)>S(2)>S(3)    (式1)
[16]さらに電荷発生層を有する[12]~[15]のいずれかに記載の発光素子。
[17]前記電荷発生層が、上記一般式(6)で表されるフェナントロリン誘導体を含有する[16]に記載の発光素子。
[18]前記電荷発生層が、上記一般式(7)で表されるフェナントロリン誘導体を含有する[16]に記載の発光素子。
[19]トップエミッション型有機電界発光素子である[12]~[18]のいずれかに記載の発光素子。
[20][1]~[9]のいずれかに記載の化合物からなる光電変換素子材料
[21]入射光を、その入射光とは異なる波長の光に変換する色変換組成物であって、[1]~[9]のいずれかに記載の化合物およびバインダー樹脂を含有する色変換組成物。
[22][21]に記載の色変換組成物またはその硬化物を含む、色変換シート。
[23]光源および[22]に記載の色変換シートを含む、光源ユニット。
[24][11]~[19]のいずれかに記載の発光素子を含む、表示装置。
[25][23]に記載の光源ユニットを含む、表示装置。
[26][11]~[19]のいずれかに記載の発光素子を含む、照明装置。
[27][23]に記載の光源ユニットを含む、照明装置。
As described above, the following inventions [1] to [17] are described in this specification.
[1] A compound having a structure represented by the above general formula (1).
[2] The compound according to [1], wherein in general formula (1), L is a single bond.
[3] A substituted or unsubstituted polycyclic aromatic hydrocarbon in which ring C 1 and ring D 1 contain a ring structure represented by any of the above general formulas (2-1) to (2-8). The compound according to [1] or [2].
[4] The compound according to any one of [1] to [3], wherein in general formula (1), ring C 1 and ring D 1 are the same.
[5] The compound according to any one of [1] to [4], which has a structure represented by the above general formula (3).
[6] The compound according to [5], wherein X 1 is NR 20 and R 20 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
[7] The compound having the structure represented by the general formula (3) has a structure represented by any of the general formulas (4-1) to (4-5) [5] or [6] Compounds described.
[8] The compound according to any one of [5] to [7], wherein X 1 is NR 20 and R 20 is a substituted or unsubstituted alkenyl group or a substituted or unsubstituted imino group.
[9] The compound having the structure represented by the above general formula (3) has a structure represented by the above general formula (5-1) or (5-2) [5] to [8] Compounds described.
[10] A light emitting device material comprising the compound according to any one of [1] to [9].
[11] It has a cathode, an anode, and one or more organic layers disposed between the cathode and the anode, and at least one of the organic layers is described in any one of [1] to [9]. A light emitting device containing a compound of
[12] The light emitting device according to [11], wherein the organic layer containing the compound according to any one of [1] to [9] is a light emitting layer.
[13] The light emitting device according to [12], wherein the light emitting layer contains a matrix material.
[14] The light emitting device according to [12] or [13], wherein the light emitting layer contains a compound exhibiting delayed fluorescence.
[15] The light emitting layer contains a matrix material and a compound exhibiting delayed fluorescence, the excitation singlet energy of the matrix material is S 1 (1), the excitation singlet energy of the compound exhibiting delayed fluorescence is S 1 (2), When the excited singlet energy of the compound according to any one of [1] to [5] is S 1 (3), the light emission according to any one of [12] to [14], which satisfies the relationship of formula 1. element.
S 1 (1)>S 1 (2)>S 1 (3) (Formula 1)
[16] The light emitting device according to any one of [12] to [15], further comprising a charge generation layer.
[17] The light emitting device according to [16], wherein the charge generation layer contains a phenanthroline derivative represented by the above general formula (6).
[18] The light emitting device according to [16], wherein the charge generation layer contains a phenanthroline derivative represented by the above general formula (7).
[19] The light emitting device according to any one of [12] to [18], which is a top emission type organic electroluminescent device.
[20] Photoelectric conversion element material comprising the compound according to any one of [1] to [9]
[21] A color conversion composition that converts incident light into light of a wavelength different from that of the incident light, the color conversion composition containing the compound according to any one of [1] to [9] and a binder resin. thing.
[22] A color conversion sheet comprising the color conversion composition according to [21] or a cured product thereof.
[23] A light source unit comprising a light source and the color conversion sheet according to [22].
[24] A display device comprising the light emitting element according to any one of [11] to [19].
[25] A display device including the light source unit according to [23].
[26] A lighting device comprising the light emitting element according to any one of [11] to [19].
[27] A lighting device including the light source unit according to [23].

Claims (27)

  1. 下記一般式(1)で表される構造を有する化合物。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中、環Aおよび環Bは、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素環または置換もしくは無置換の環形成原子数5~30の芳香族複素環である。
     環Cは、置換もしくは無置換の環構造原子数が11以上20以下の多環芳香族炭化水素である。
     環Dは、置換もしくは無置換の環構造原子数が7以上20以下の多環芳香族炭化水素である。
     Xは、O、N-RまたはSであり、Rは、アルキル基、シクロアルキル基、アルケニル基、イミノ基、アリール基またはヘテロアリール基である。これらの基は、さらに置換基を有してもよい。また、Rは、さらに連結基を介して、環Aまたは環Bとの間で結合して環構造を形成してもよい。その場合の連結基は、単結合、-O-、-S-、>CRA1A2または>SiRA3A4である。RA1~RA4は、それぞれ独立して、水素、ハロゲン、アルキル基、シクロアルキル基、アリール基またはヘテロアリール基であり、これらの基は、さらに置換基を有してもよい。また、RA1とRA2またはRA3とRA4は、さらに連結基を介して結合していてもよい。
     Lは単結合、O、S、>CRA5A6または>SiRA7A8である。RA5~RA8は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、アリール基およびヘテロアリール基からなる群より選ばれ、これらの基は、さらに置換基を有してもよい。また、RA5とRA6およびRA7とRA8は、さらに連結基を介して結合していてもよい。)
    A compound having a structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the above general formula (1), Ring A 1 and Ring B 1 are substituted or unsubstituted aromatic hydrocarbon rings having 6 to 30 ring atoms, or substituted or unsubstituted aromatic hydrocarbon rings having 5 to 30 ring atoms. It is an aromatic heterocycle.
    Ring C 1 is a substituted or unsubstituted polycyclic aromatic hydrocarbon having 11 or more and 20 or less ring atoms.
    Ring D 1 is a substituted or unsubstituted polycyclic aromatic hydrocarbon having 7 or more and 20 or less ring atoms.
    X is O, N-R A or S, and R A is an alkyl group, cycloalkyl group, alkenyl group, imino group, aryl group or heteroaryl group. These groups may further have a substituent. Further, R A may further be bonded to ring A 1 or ring B 1 via a linking group to form a ring structure. In that case, the linking group is a single bond, -O-, -S-, >CR A1 R A2 or >SiR A3 R A4 . R A1 to R A4 are each independently hydrogen, halogen, an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group, and these groups may further have a substituent. Furthermore, R A1 and R A2 or R A3 and R A4 may be further bonded via a linking group.
    L is a single bond, O, S, >CR A5 R A6 or > SiR A7 R A8 . R A5 to R A8 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group, and these groups further have a substituent. Good too. Furthermore, R A5 and R A6 and R A7 and R A8 may be further bonded via a linking group. )
  2. 一般式(1)中、Lが単結合である請求項1に記載の化合物。 2. The compound according to claim 1, wherein in general formula (1), L is a single bond.
  3. 環Cおよび環Dが化学式(2-1)~(2-8)のいずれかで表される環構造を含む、置換もしくは無置換の多環芳香族炭化水素である請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    Claim 1, wherein ring C 1 and ring D 1 are substituted or unsubstituted polycyclic aromatic hydrocarbons containing a ring structure represented by any one of chemical formulas (2-1) to (2-8). compound.
    Figure JPOXMLDOC01-appb-C000002
  4. 一般式(1)中、環Cおよび環Dが同一である請求項1に記載の化合物。 The compound according to claim 1, wherein in general formula (1), ring C 1 and ring D 1 are the same.
  5. 下記一般式(3)で表される構造を有する請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    (上記一般式(3)中、R~R19は、それぞれ独立して、水素、ハロゲン、シアノ基、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基またはシリル基である。これらの基は、さらに置換基を有してもよい。
     環Aおよび環Bは、一般式(1)に記載の通りである。
     Xは、O、N-R20またはSであり、R20は、アルキル基、シクロアルキル基、アルケニル基、イミノ基、アリール基またはヘテロアリール基である。これらの基は、さらに置換基を有してもよい。また、R20は、さらに連結基を介して、環Aまたは環Bとの間で結合して環構造を形成してもよい。その場合の連結基は、単結合、-O-、-S-、>CR2122または>SiR2324である。R21~R24は、それぞれ独立して、水素、ハロゲン、アルキル基、シクロアルキル基、アリール基またはヘテロアリール基であり、これらの基は、さらに置換基を有してもよい。また、R21とR22またはR23とR24は、さらに連結基を介して結合していてもよい。)
    The compound according to claim 1, having a structure represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In the above general formula (3), R 1 to R 19 are each independently hydrogen, halogen, cyano group, alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group) , aryl ether group, arylthioether group, aryl group, heteroaryl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group or silyl group.These groups may further have a substituent. good.
    Ring A 1 and ring B 1 are as described in general formula (1).
    X 1 is O, NR 20 or S, and R 20 is an alkyl group, cycloalkyl group, alkenyl group, imino group, aryl group or heteroaryl group. These groups may further have a substituent. Further, R 20 may further be bonded to ring A 1 or ring B 1 via a linking group to form a ring structure. In that case, the linking group is a single bond, -O-, -S-, >CR 21 R 22 or >SiR 23 R 24 . R 21 to R 24 are each independently hydrogen, halogen, an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group, and these groups may further have a substituent. Furthermore, R 21 and R 22 or R 23 and R 24 may be further bonded via a linking group. )
  6. がN-R20であり、R20が置換もしくは無置換のアリール基または置換もしくは無置換のヘテロアリール基である請求項5に記載の化合物。 6. The compound according to claim 5, wherein X 1 is NR 20 and R 20 is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
  7. 前記一般式(3)で表される構造を有する化合物が下記一般式(4-1)~(4-5)のいずれかで表される構造を有する請求項5に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (上記一般式(4-1)~(4-5)中、R~R19は、一般式(1)に記載の通りである。
     R101~R107、R110~R116、R120~R127、R130~R131およびR140~R141は、それぞれ独立して、水素、ハロゲン、シアノ基、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基またはこれらのうち隣接する基との間に形成される飽和もしくは不飽和の環である。これらの基は、さらに置換基を有してもよい。
     Ar~Arは、それぞれ独立して、置換もしくは無置換のアリール基または置換もしくは無置換のヘテロアリール基である。
     Y~Yは、それぞれ独立して、単結合、O、S、CR150151またはSiR152153である。
     W~Wは、それぞれ独立して、NR154、OまたはSである。
     ここで、R150~R154は、それぞれ独立して、水素、アルキル基、シクロアルキル基、アリール基またはヘテロアリール基であり、これらの基は、さらに置換基を有してもよい。また、R150とR151またはR152とR153は、さらに連結基を介して結合していてもよい。)
    The compound according to claim 5, wherein the compound having a structure represented by the general formula (3) has a structure represented by any of the following general formulas (4-1) to (4-5).
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (In the above general formulas (4-1) to (4-5), R 1 to R 19 are as described in general formula (1).
    R 101 to R 107 , R 110 to R 116 , R 120 to R 127 , R 130 to R 131 and R 140 to R 141 each independently represent hydrogen, halogen, cyano group, alkyl group, cycloalkyl group, Alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, arylthioether group, aryl group, heteroaryl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, silyl group, or any of these It is a saturated or unsaturated ring formed between adjacent groups. These groups may further have a substituent.
    Ar 1 to Ar 3 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group.
    Y 1 to Y 2 are each independently a single bond, O, S, CR 150 R 151 or SiR 152 R 153 .
    W 1 to W 2 are each independently NR 154 , O or S.
    Here, R 150 to R 154 each independently represent hydrogen, an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group, and these groups may further have a substituent. Furthermore, R 150 and R 151 or R 152 and R 153 may be further bonded via a linking group. )
  8. がN-R20であり、R20が置換もしくは無置換のアルケニル基または置換もしくは無置換のイミノ基である請求項5に記載の化合物。 6. The compound according to claim 5, wherein X 1 is NR 20 and R 20 is a substituted or unsubstituted alkenyl group or a substituted or unsubstituted imino group.
  9. 前記一般式(3)で表される構造を有する化合物が下記一般式(5-1)または(5-2)で表される構造を有する請求項5に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
    (上記一般式(5-1)~(5-2)中、R~R19は、一般式(3)に記載の通りである。
     R201~R207およびR210~R214は、それぞれ独立して、水素、ハロゲン、シアノ基、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基またはこれらのうち隣接する基との間に形成される飽和もしくは不飽和の環である。これらの基は、さらに置換基を有してもよい。
     W~Wは、それぞれ独立に、NまたはC-R220である。R220は、水素、アルキル基、シクロアルキル基、アリール基またはヘテロアリール基であり、これらの基は、さらに置換基を有してもよい。)
    The compound according to claim 5, wherein the compound having a structure represented by the general formula (3) has a structure represented by the following general formula (5-1) or (5-2).
    Figure JPOXMLDOC01-appb-C000006
    (In the above general formulas (5-1) to (5-2), R 1 to R 19 are as described in general formula (3).
    R 201 to R 207 and R 210 to R 214 each independently represent hydrogen, halogen, cyano group, alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, arylthioether group, aryl group, heteroaryl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, silyl group, or a saturated or unsaturated ring formed between adjacent groups among these groups. . These groups may further have a substituent.
    W 3 to W 4 are each independently N or CR 220 . R 220 is hydrogen, an alkyl group, a cycloalkyl group, an aryl group or a heteroaryl group, and these groups may further have a substituent. )
  10. 請求項1~9のいずれかに記載の化合物からなる発光素子材料。 A light emitting device material comprising the compound according to any one of claims 1 to 9.
  11. 陰極と陽極と、前記陰極と陽極との間に配置された1層以上の有機層を有し、前記有機層のうち少なくとも1層に請求項1に記載の化合物を含有する発光素子。 A light-emitting element comprising a cathode, an anode, and one or more organic layers disposed between the cathode and the anode, and at least one of the organic layers contains the compound according to claim 1.
  12. 請求項1に記載の化合物を含有する有機層が発光層である請求項11に記載の発光素子。 The light emitting device according to claim 11, wherein the organic layer containing the compound according to claim 1 is a light emitting layer.
  13. 前記発光層がさらにマトリクス材料を含有する請求項12に記載の発光素子。 13. The light emitting device according to claim 12, wherein the light emitting layer further contains a matrix material.
  14. 前記発光層がさらに遅延蛍光を示す化合物を含有する請求項12に記載の発光素子。 The light emitting device according to claim 12, wherein the light emitting layer further contains a compound exhibiting delayed fluorescence.
  15. 前記発光層がさらにマトリクス材料と遅延蛍光を示す化合物を含有し、マトリクス材料の励起一重項エネルギーをS(1)、遅延蛍光を示す化合物の励起一重項エネルギーをS(2)、一般式(1)で表される構造を有する化合物の励起一重項エネルギーをS(3)とするとき、式1の関係を満足する請求項12に記載の発光素子。
    (1)>S(2)>S(3)    (式1)
    The light-emitting layer further contains a matrix material and a compound exhibiting delayed fluorescence, and the excitation singlet energy of the matrix material is S 1 (1), the excitation singlet energy of the compound exhibiting delayed fluorescence is S 1 (2), and the general formula 13. The light emitting device according to claim 12, which satisfies the relationship of Formula 1, where the excited singlet energy of the compound having the structure represented by (1) is S 1 (3).
    S 1 (1)>S 1 (2)>S 1 (3) (Formula 1)
  16. さらに電荷発生層を有する請求項12に記載の発光素子。 The light emitting device according to claim 12, further comprising a charge generation layer.
  17. 前記電荷発生層が、下記一般式(6)で表されるフェナントロリン誘導体を含有する請求項16に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000007
    (一般式(6)において、Arは、p価の芳香族炭化水素基、およびp価の芳香族複素環基からなる群より選ばれる。pは1~3の自然数である。R101~R108は、それぞれ同じでも異なっていてもよく、水素原子、アルキル基、シクロアルキル基、複素環基、アリール基、ヘテロアリール基からなる群より選ばれる。Arのうち、p個のフェナントロリル基による置換位置は任意の位置である。)
    The light emitting device according to claim 16, wherein the charge generation layer contains a phenanthroline derivative represented by the following general formula (6).
    Figure JPOXMLDOC01-appb-C000007
    (In general formula (6), Ar 1 is selected from the group consisting of a p-valent aromatic hydrocarbon group and a p-valent aromatic heterocyclic group. p is a natural number from 1 to 3. R 101 ~ R 108 may be the same or different and are selected from the group consisting of a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocyclic group, an aryl group, and a heteroaryl group.Among Ar 1 , p phenanthrolyl groups The replacement position is any position.)
  18. 前記電荷発生層が、下記一般式(7)で表されるフェナントロリン誘導体を含有する請求項16に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000008
    (一般式(7)において、Y~Yのいずれか一つは窒素原子であり、それ以外はメチン基である;Lは置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基または置換もしくは無置換のアントリレン基であり、Lは単結合、置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基または置換もしくは無置換のアントリレン基である;ただし、これらの基が置換されている場合の置換基は、アルキル基またはアルコキシ基である;Aはフェニル基またはピリジル基であり、nは0または1である。)
    The light emitting device according to claim 16, wherein the charge generation layer contains a phenanthroline derivative represented by the following general formula (7).
    Figure JPOXMLDOC01-appb-C000008
    (In general formula (7), any one of Y 1 to Y 3 is a nitrogen atom, and the others are methine groups; L 1 is a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group or a substituted or unsubstituted anthrylene group, and L 2 is a single bond, a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, or a substituted or unsubstituted anthrylene group; provided that these groups are substituted or When the substituent is an alkyl group or an alkoxy group; A is a phenyl group or a pyridyl group, and n is 0 or 1.)
  19. トップエミッション型有機電界発光素子である請求項12に記載の発光素子。 The light emitting device according to claim 12, which is a top emission type organic electroluminescent device.
  20. 請求項1~9のいずれかに記載の化合物からなる光電変換素子材料 A photoelectric conversion element material comprising the compound according to any one of claims 1 to 9.
  21. 入射光を、その入射光とは異なる波長の光に変換する色変換組成物であって、請求項1~9のいずれかに記載の化合物およびバインダー樹脂を含有する色変換組成物。 A color conversion composition that converts incident light into light of a wavelength different from that of the incident light, the color conversion composition comprising the compound according to any one of claims 1 to 9 and a binder resin.
  22. 請求項21に記載の色変換組成物またはその硬化物を含む、色変換シート。 A color conversion sheet comprising the color conversion composition according to claim 21 or a cured product thereof.
  23. 光源および請求項22に記載の色変換シートを含む、光源ユニット。 A light source unit comprising a light source and the color conversion sheet according to claim 22.
  24. 請求項11~19のいずれかに記載の発光素子を含む、表示装置。 A display device comprising the light emitting element according to any one of claims 11 to 19.
  25. 請求項23に記載の光源ユニットを含む、表示装置。 A display device comprising the light source unit according to claim 23.
  26. 請求項11~19のいずれかに記載の発光素子を含む、照明装置。 A lighting device comprising the light emitting element according to any one of claims 11 to 19.
  27. 請求項23に記載の光源ユニットを含む、照明装置。 A lighting device comprising the light source unit according to claim 23.
PCT/JP2023/011821 2022-04-01 2023-03-24 Compound, light-emitting element material and light-emitting element obtained using same, photoelectric conversion element material, color conversion composition, color conversion sheet, light source unit, display device, and lighting device WO2023190159A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022061621 2022-04-01
JP2022-061621 2022-04-01
JP2022-131587 2022-08-22
JP2022131587 2022-08-22

Publications (1)

Publication Number Publication Date
WO2023190159A1 true WO2023190159A1 (en) 2023-10-05

Family

ID=88201425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011821 WO2023190159A1 (en) 2022-04-01 2023-03-24 Compound, light-emitting element material and light-emitting element obtained using same, photoelectric conversion element material, color conversion composition, color conversion sheet, light source unit, display device, and lighting device

Country Status (1)

Country Link
WO (1) WO2023190159A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104383A1 (en) * 2022-11-15 2024-05-23 浙江光昊光电科技有限公司 Organic compound comprising benzophenanthrene and use thereof in organic photoelectric devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121597A1 (en) * 2015-01-29 2016-08-04 東レ株式会社 Phenanthroline derivative, electronic device containing same, light emitting element, and photoelectric conversion element
WO2021020942A1 (en) * 2019-07-31 2021-02-04 주식회사 엘지화학 Organic light-emitting element
WO2021020929A1 (en) * 2019-08-01 2021-02-04 주식회사 엘지화학 Compound and organic light emitting device comprising same
WO2021193818A1 (en) * 2020-03-26 2021-09-30 東レ株式会社 Crystal of phenanthroline derivative, method for producing same and light emitting element using same
CN113698426A (en) * 2020-05-20 2021-11-26 广州华睿光电材料有限公司 Polycyclic compound and application thereof in organic electronic device
KR20220086223A (en) * 2020-12-16 2022-06-23 솔루스첨단소재 주식회사 Organic light-emitting compound and organic electroluminescent device using the same
WO2022131780A1 (en) * 2020-12-16 2022-06-23 솔루스첨단소재 주식회사 Organic light-emitting compound and organic electroluminescent element using same
WO2022181197A1 (en) * 2021-02-24 2022-09-01 東レ株式会社 Organic el element material, organic el element, display device, and illumination device
CN115197252A (en) * 2022-07-14 2022-10-18 清华大学 Organic compound and application thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121597A1 (en) * 2015-01-29 2016-08-04 東レ株式会社 Phenanthroline derivative, electronic device containing same, light emitting element, and photoelectric conversion element
WO2021020942A1 (en) * 2019-07-31 2021-02-04 주식회사 엘지화학 Organic light-emitting element
WO2021020929A1 (en) * 2019-08-01 2021-02-04 주식회사 엘지화학 Compound and organic light emitting device comprising same
WO2021193818A1 (en) * 2020-03-26 2021-09-30 東レ株式会社 Crystal of phenanthroline derivative, method for producing same and light emitting element using same
CN113698426A (en) * 2020-05-20 2021-11-26 广州华睿光电材料有限公司 Polycyclic compound and application thereof in organic electronic device
KR20220086223A (en) * 2020-12-16 2022-06-23 솔루스첨단소재 주식회사 Organic light-emitting compound and organic electroluminescent device using the same
WO2022131780A1 (en) * 2020-12-16 2022-06-23 솔루스첨단소재 주식회사 Organic light-emitting compound and organic electroluminescent element using same
WO2022181197A1 (en) * 2021-02-24 2022-09-01 東レ株式会社 Organic el element material, organic el element, display device, and illumination device
CN115197252A (en) * 2022-07-14 2022-10-18 清华大学 Organic compound and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104383A1 (en) * 2022-11-15 2024-05-23 浙江光昊光电科技有限公司 Organic compound comprising benzophenanthrene and use thereof in organic photoelectric devices

Similar Documents

Publication Publication Date Title
JP7120015B2 (en) light emitting element
TWI608075B (en) Benzoindolocarbazole derivative, light-emitting element material using the same, and light-emitting element
JP6627507B2 (en) Fluoranthene derivative, electronic device, light emitting element and photoelectric conversion element containing the same
WO2014087657A1 (en) Aromatic amine derivative and organic electroluminescent element
JP7144743B2 (en) COMPOUND, LIGHT-EMITTING ELEMENT, DISPLAY AND LIGHTING DEVICE USING THE SAME
WO2014057874A1 (en) Fluoranthene derivative, luminescent element material containing same, and luminescent element
JPWO2016009823A1 (en) Monoamine derivative, light emitting device material and light emitting device using the same
WO2021085460A1 (en) Light-emitting element material containing pyrromethene boron complex, light-emitting element, display device, and illumination device
CN115784904A (en) Nitrogen-containing compound, electronic component, and electronic device
KR102650329B1 (en) Pyromethene boron complex, light-emitting devices containing the same, display devices, and lighting devices
WO2023190159A1 (en) Compound, light-emitting element material and light-emitting element obtained using same, photoelectric conversion element material, color conversion composition, color conversion sheet, light source unit, display device, and lighting device
JP7400472B2 (en) Pyrromethene boron complex, light emitting device using the same, display device, lighting device, color conversion composition, color conversion film, color conversion substrate, light source unit, and display
WO2014024750A1 (en) Light emitting element material and light emitting element
JP2023011526A (en) Compound, and luminous element material, luminous element, color conversion composition, color conversion sheet, optical unit, display device and lighting device that are based thereon
JP2023011486A (en) Compound, and luminous element and color conversion composition that are based thereon
JP2022018080A (en) Compound having pyrromethene skeleton, light-emitting device material containing the same and light-emitting device fabricated using the same
KR102514842B1 (en) Compounds, electronic devices containing them, organic thin-film light-emitting devices, display devices, and lighting devices
JP2014093501A (en) Light-emitting element material and light emitting element
WO2024090353A1 (en) Compound, luminescent element material, luminescent element, display device, and illuminator
JP2023011527A (en) Compound, and luminous element material, luminous element, color conversion composition, color conversion sheet, optical unit, display device and lighting device that are based thereon
JP2023029264A (en) Compound and light emitter employing the same
JP2024000077A (en) Compound, light-emitting device material, and light-emitting device including the same
WO2024161905A1 (en) Compound, organic el element, display device, and lighting device
JP2022032989A (en) Light-emitting element material formed by pyrromethene boron complex and light-emitting element using the same
JP2022132743A (en) Compound, and light-emitting element material and light-emitting element using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023521065

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780169

Country of ref document: EP

Kind code of ref document: A1