WO2021193716A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2021193716A1
WO2021193716A1 PCT/JP2021/012238 JP2021012238W WO2021193716A1 WO 2021193716 A1 WO2021193716 A1 WO 2021193716A1 JP 2021012238 W JP2021012238 W JP 2021012238W WO 2021193716 A1 WO2021193716 A1 WO 2021193716A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
battery
electric motor
power supply
capacitor
Prior art date
Application number
PCT/JP2021/012238
Other languages
English (en)
French (fr)
Inventor
山本 啓介
智久 小関
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Priority to US17/909,770 priority Critical patent/US11942819B2/en
Priority to CN202180024305.4A priority patent/CN115380449A/zh
Priority to DE112021001924.4T priority patent/DE112021001924T5/de
Publication of WO2021193716A1 publication Critical patent/WO2021193716A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/066Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems characterised by the use of dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle

Definitions

  • the present invention relates to a control device for driving an actuator.
  • Patent Document 1 describes an example of a device provided with a main power supply and a standby power supply as a power supply source for supplying power to the memory.
  • power is supplied to the memory from the power source selected by the switching circuit.
  • a device that uses a capacitor as a standby power supply as a device that drives an actuator by supplying power from either the main power supply or the standby power supply.
  • the amount of power supplied to the capacitor is limited. Therefore, when the actuator is driven by the power supply from the capacitor, it is desired to suppress a sudden drop in the voltage of the capacitor.
  • One aspect of the control device for solving the above problems is an actuator, a battery, a capacitor, a power supply selection unit that selects one of the battery and the capacitor as a power supply source to the actuator, and the battery.
  • a control mode of the actuator a determination unit for determining whether or not is normal, and a second mode in which the power consumption of the actuator is reduced as compared with the case of driving the actuator in the first mode and the first mode.
  • One of the modes is selected, and the actuator is driven in the selected control mode.
  • the power supply selection unit selects the battery.
  • the control is performed. It includes a control unit that switches the mode from the first mode to the second mode, and then causes the power supply selection unit to select the capacitor.
  • the control mode of the actuator when it is no longer determined that the battery is normal, the control mode of the actuator is switched to the second mode, and then the capacitor is selected by the power supply selection unit.
  • the first mode is a control mode in which the power consumption of the actuator is increased as compared with the case where the actuator is driven in the second mode. According to the above configuration, when the actuator is driven in such a first mode, it is possible to suppress the power supply from the capacitor to the actuator. Therefore, it is possible to suppress a sudden drop in the voltage of the capacitor.
  • One aspect of the control device for solving the above problems is an actuator, a battery, a capacitor, a power supply selection unit that selects one of the battery and the capacitor as a power supply source to the actuator, and the battery.
  • a control mode of the actuator a determination unit for determining whether or not is normal, and a second mode in which the power consumption of the actuator is reduced as compared with the case of driving the actuator in the first mode and the first mode.
  • One of the modes is selected, and the actuator is driven in the selected control mode.
  • the power supply selection unit selects the capacitor.
  • the second mode is selected as the control mode and the state in which the battery is not determined to be normal is changed to the state in which the battery is determined to be normal, the power supply is supplied.
  • the selection unit includes a control unit that selects the battery and then switches the control mode from the second mode to the first mode.
  • the battery when it is determined that the battery is normal, the battery is selected by the power supply selection unit, and then the control mode of the actuator is switched to the first mode.
  • the actuator when the actuator is driven in the first mode in which the power consumption of the actuator is increased, it is possible to prevent the capacitor from supplying power to the actuator. Therefore, it is possible to suppress a sudden drop in the voltage of the capacitor.
  • FIG. 1 shows the schematic structure of the control device of an embodiment.
  • (A) to (d) are timing charts when shifting from the first mode to the second mode.
  • (A) to (d) are timing charts when shifting from the second mode to the first mode.
  • the control device 100 shown in FIG. 1 is an in-vehicle control device that adjusts the braking force of the vehicle.
  • the control device 100 includes a braking device 10 and a control unit 40 that controls the braking device 10.
  • the braking device 10 includes an electric motor 11 which is an example of an actuator, and a pump 12 which supplies a brake fluid according to the drive of the electric motor 11.
  • control device 100 is provided with a battery 21, a capacitor 22, and a power supply selection unit 23.
  • the battery 21 not only functions as a power supply source for the electric motor 11 of the braking device 10, but also functions as a power supply source for actuators of other in-vehicle devices. Further, the battery 21 can be charged by, for example, power generation from an in-vehicle generator.
  • the capacitor 22 can be charged, for example, by supplying power from the battery 21.
  • the capacity of the capacitor 22 is smaller than the capacity of the battery 21.
  • the power supply selection unit 23 selects one of the battery 21 and the capacitor 22 as the power supply source of the electric motor 11 and operates so as to supply power to the electric motor 11 from the selected power supply source.
  • the power supply selection unit 23 has at least one switching element.
  • the electric motor 11 is driven by the power supply from the power supply source selected by the power supply selection unit 23 among the battery 21 and the capacitor 22.
  • Detection signals are input to the control unit 40 from various sensors.
  • the sensor include a first voltage sensor 31, a second voltage sensor 32, and a third voltage sensor 33.
  • the first voltage sensor 31 detects the battery voltage Vbt, which is the voltage of the battery 21, and outputs a signal according to the detection result as a detection signal.
  • the second voltage sensor 32 detects the capacitor voltage Vc, which is the voltage of the capacitor 22, and outputs a signal corresponding to the detection result as a detection signal.
  • the third voltage sensor 33 detects the output voltage Vout, which is the voltage output from the power supply selection unit 23, and outputs a signal corresponding to the detection result as a detection signal.
  • the control unit 40 may have any of the following configurations (a) to (c).
  • the control unit 40 includes one or more processors that execute various processes according to a computer program.
  • the processor includes a CPU and memories such as RAM and ROM.
  • the memory stores a program code or a command configured to cause the CPU to execute the process.
  • Memory, or computer-readable medium includes any available medium accessible by a general purpose or dedicated computer.
  • the control unit 40 includes one or more dedicated hardware circuits that execute various processes. Examples of the dedicated hardware circuit include an integrated circuit for a specific application, that is, an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the control unit 40 includes a processor that executes a part of various processes according to a computer program, and a dedicated hardware circuit that executes the remaining processes of the various processes.
  • the control unit 40 has a determination unit 41 and a control unit 42 as functional units.
  • the determination unit 41 determines whether or not the battery 21 is normal.
  • the control unit 42 executes the drive processing of the power supply selection unit 23 and the drive processing of the electric motor 11.
  • a first mode and a second mode are prepared as control modes for driving the electric motor 11.
  • the first mode is a normal control mode.
  • the second mode is a control mode in which the power consumption of the electric motor 11 is reduced as compared with the case where the electric motor 11 is driven in the first mode.
  • the control unit 42 selects the first mode or the second mode based on the determination result of the determination unit 41. Then, in the drive process of the electric motor 11, the control unit 42 drives the electric motor 11 in the selected control mode.
  • step S11 it is determined whether or not a disconnection has occurred in the power supply path from the battery 21 to the power supply selection unit 23.
  • the output voltage Vout is substantially the same as the battery voltage Vbt when no disconnection occurs.
  • the output voltage Vout deviates from the battery voltage Vbt. Therefore, for example, in a situation where the power supply selection unit 23 selects the battery 21, when the difference between the output voltage Vout and the battery voltage Vbt is less than the difference determination value, it is considered that the disconnection has not occurred.
  • the difference is equal to or greater than the difference judgment value, it is considered that the disconnection has occurred.
  • the power supply selection unit 23 selects the capacitor 22, it cannot be determined whether or not the disconnection has occurred in the power supply path, so that it is considered that the disconnection has not occurred.
  • step S12 both the abnormality flag FLG1 and the disconnection flag FLG2 are set to ON.
  • the abnormality flag FLG1 is a flag that is set to off when the battery 21 is normal, and is set to on when the battery 21 is not normal.
  • the disconnection flag FLG2 is set to ON when it is determined that the disconnection has occurred in the power supply path from the battery 21 to the power supply selection unit 23, while it is determined that the disconnection has occurred.
  • the case where the disconnection occurs is an example of the case where the battery 21 is not normal. Therefore, when the disconnection flag FLG2 is set to ON, the abnormality flag FLG1 is also set to ON. After that, this processing routine is temporarily terminated.
  • step S11 if it is not determined that a disconnection has occurred in the power supply path from the battery 21 to the power supply selection unit 23 (NO), the process proceeds to the next step S13.
  • step S13 it is determined whether or not the battery voltage Vbt is abnormally lowered. In the present embodiment, when the battery voltage Vbt is less than the abnormality determination voltage VbtTh1, it is considered that the battery voltage Vbt is abnormally lowered. On the other hand, when the battery voltage Vbt is equal to or higher than the abnormality determination voltage VbtTh1, it is not considered that the battery voltage Vbt is abnormally lowered. In this case, a voltage sufficiently lower than the rated voltage of the battery 21 is set as the abnormality determination voltage VbtTh1.
  • step S14 the abnormality flag FLG1 is set to ON, and the disconnection flag FLG2 is set to Off. That is, when the battery voltage Vbt is abnormally low, it can be determined that the battery 21 is not normal even if the power supply path from the battery 21 to the power supply selection unit 23 is not disconnected. Therefore, the abnormality flag FLG1 is set to ON even if the disconnection flag FLG2 is not set to ON. After that, this processing routine is temporarily terminated.
  • step S15 it is determined whether or not the abnormality flag FLG1 is set to ON.
  • the abnormality flag FLG1 is set to off (S15: NO)
  • S15: NO it can be determined that the battery 21 is normal, so that the processing routine is temporarily terminated without changing the flags FLG1 and FLG2. In this case, the state in which off is set for each of FLG1 and FLG2 is maintained.
  • the abnormality flag FLG1 is set to ON (S15: YES)
  • the process proceeds to the next step S16.
  • step S16 it is determined whether or not the battery voltage Vbt has returned to normal.
  • the normal return voltage VbtTh2 is set to be higher than the abnormality determination voltage VbtTh1.
  • step S16 If it is not determined that the battery voltage Vbt has returned to normal (S16: NO), the process proceeds to step S14 described above. That is, the state in which the battery 21 is not determined to be normal is maintained. On the other hand, when it is determined that the battery voltage Vbt has returned to normal (S16: YES), the process proceeds to the next step S17.
  • step S17 both the abnormality flag FLG1 and the disconnection flag FLG2 are set to off. Then, this processing routine is temporarily terminated.
  • the processing routine executed by the control unit 42 in order to determine the timing of switching the control mode and changing the power supply source of the electric motor 11 in the situation where the first mode is selected. explain. This processing routine is repeatedly executed while the first mode is selected.
  • step S21 it is determined whether or not the abnormality flag FLG1 is set to ON.
  • the process proceeds to the next step S22.
  • step S22 it is determined whether or not the disconnection flag FLG2 is set to ON.
  • the disconnection flag FLG2 is set to ON (S22: YES)
  • the process proceeds to the next step S23.
  • step S23 the second mode is selected as the control mode. That is, the control mode is switched from the first mode to the second mode.
  • step S24 the power supply source of the electric motor 11 to be selected by the power supply selection unit 23 is changed from the battery 21 to the capacitor 22.
  • the control mode is changed from the first mode to the second mode. Can be switched.
  • the power supply source of the electric motor 11 selected by the power supply selection unit 23 is changed to the capacitor 22. After that, this processing routine is temporarily terminated.
  • step S22 when the disconnection flag FLG2 is set to off (NO), the process proceeds to the next step S25.
  • step S25 it is determined whether or not the driving of the electric motor 11 is stopped. If the driving of the electric motor 11 is not stopped (S25: NO), this processing routine is temporarily terminated.
  • step S25: YES when the driving of the electric motor 11 is stopped (S25: YES), the process proceeds to step S23 described above. That is, when the battery 21 is not disconnected, the electric motor 11 is still driven even if the determination that the battery 21 is normal is not made, the first mode is selected as the control mode. In addition, the state in which the battery 21 is selected as the power supply source of the electric motor 11 is maintained. In this case, after the drive of the electric motor 11 is stopped, the control mode is switched (S23) and the power supply source of the electric motor 11 is changed (S24) in sequence.
  • step S21 if the error flag FLG1 is set to off in step S21 (NO), this processing routine is temporarily terminated. That is, when it is determined that the battery 21 is normal, either the first mode is selected as the control mode or the battery 21 is selected as the power supply source of the electric motor 11. Is maintained.
  • step S31 it is determined whether or not the error flag FLG1 is set to off.
  • the process proceeds to the next step S32.
  • step S32 it is determined whether or not the capacitor voltage Vc is less than the switching determination capacitor voltage VcTh1.
  • the capacitor voltage Vc is less than the switching determination capacitor voltage VcTh1, it is considered that the capacitor voltage Vc has become significantly lower.
  • the capacitor voltage Vc is equal to or higher than the switching determination capacitor voltage VcTh1, it is considered that the electric charge is still accumulated in the capacitor 22.
  • step S33 the power supply source of the electric motor 11 to be selected by the power supply selection unit 23 is changed from the capacitor 22 to the battery 21.
  • step S34 the first mode is selected as the control mode.
  • the electric motor 11 selected by the power supply selection unit 23 The power supply source is changed to the battery 21.
  • the control mode is switched from the second mode to the first mode. After that, this processing routine is temporarily terminated.
  • step S32 when the capacitor voltage Vc is equal to or higher than the switching determination capacitor voltage VcTh1 (NO), the process proceeds to the next step S35.
  • step S35 it is determined whether or not the driving of the electric motor 11 is stopped. If the driving of the electric motor 11 is not stopped (S35: NO), this processing routine is temporarily terminated. On the other hand, when the driving of the electric motor 11 is stopped (S35: YES), the process shifts to the above-mentioned step S33. That is, when the capacitor voltage Vc is equal to or higher than the switching determination capacitor voltage VcTh1, the second mode is selected as the control mode while the electric motor 11 is being driven even if it is determined that the battery 21 is normal.
  • step S31 if the error flag FLG1 is set to ON in step S31 (NO), this processing routine is temporarily terminated. That is, when it is not determined that the battery 21 is normal, either a state in which the second mode is selected as the control mode or a state in which the capacitor 22 is selected as the power supply source of the electric motor 11. Is maintained.
  • the battery 21 when the electric motor 11 is driven in the first mode from the timing t11, the battery 21 is selected as the power supply source of the electric motor 11. Therefore, the battery voltage Vbt starts to decrease.
  • the battery voltage Vbt becomes less than the abnormality determination voltage VbtTh1 at the timing t12, and the abnormality flag FLG1 is set to ON. That is, the state in which the determination that the battery 21 is normal is made is changed to the state in which the determination that the battery 21 is normal is not made.
  • the electric motor 11 is driving until the timing t13. Therefore, even if the determination that the battery 21 is normal is not made, the driving of the electric motor 11 in the first mode is continued, and the battery 21 is selected as the power supply source of the electric motor 11. Will be continued.
  • the control mode of the electric motor 11 is switched from the first mode to the second mode at the subsequent timing t14.
  • the power supply source of the electric motor 11 selected by the power supply selection unit 23 is changed from the battery 21 to the capacitor 22.
  • the electric motor 11 is driven in the second mode by the power supply from the capacitor 22.
  • the first mode is a mode in which the power consumption of the electric motor 11 is larger than that in the case of driving the electric motor 11 in the second mode. Therefore, when the electric motor 11 is driven in the first mode under the condition that the capacitor 22 is selected by the power supply selection unit 23, the power consumption of the electric motor 11 is large, so that the capacitor voltage Vc drops sharply.
  • the capacitor 22 is selected as the power supply source of the electric motor 11.
  • the control mode is switched from the first mode to the second mode even while the electric motor 11 is being driven. Further, the power supply source of the electric motor 11 is changed from the battery 21 to the capacitor 22. As a result, even if the battery 21 cannot supply power to the electric motor 11 due to the occurrence of disconnection, the electric motor 11 can be continued to be driven. Moreover, in this case, the electric motor 11 is driven in the second mode. Therefore, the time during which the electric motor 11 can be driven can be lengthened as compared with the case where the driving of the electric motor 11 in the first mode is continued.
  • the driving of the electric motor 11 is started at the timing t21 when the battery voltage Vbt is rising due to charging.
  • the electric motor 11 since it has not been determined that the battery 21 is normal, the electric motor 11 is driven in the second mode by the power supply from the capacitor 22. Then, the capacitor voltage Vc gradually decreases.
  • the battery voltage Vbt becomes the normal return voltage VbtTh2 or more and the battery voltage Vbt has returned to the normal state. That is, the state in which the determination that the battery 21 is normal is not made is shifted to the state in which the determination that the battery 21 is normal is made.
  • the electric motor 11 is driving until the timing t23. Therefore, even if it is determined that the battery 21 is normal, the state in which the capacitor 22 is selected as the power supply source of the electric motor 11 is continued, and the electric motor 11 in the second mode is continued. Drive is continued.
  • the power supply source of the electric motor 11 is changed from the capacitor 22 to the battery 21 at the subsequent timing t24.
  • the control mode of the electric motor 11 is switched from the second mode to the first mode. Then, when the drive of the electric motor 11 is instructed after that, the electric motor 11 is driven in the first mode by the power supply from the battery 21.
  • the first mode in which the electric motor 11 consumes a large amount of power is selected. Therefore, when the electric motor 11 is driven in the first mode, it is possible to suppress the power supply from the capacitor 22 to the electric motor 11. Therefore, it is possible to prevent the capacitor voltage Vc from dropping sharply.
  • the capacitor voltage Vc may become less than the switching determination capacitor voltage VcTh1.
  • the capacitor voltage Vc is very low, and there is a possibility that the amount of power supplied from the capacitor 22 to the electric motor 11 cannot be sufficiently secured while the electric motor 11 is being driven in the second mode.
  • the capacitor voltage Vc becomes less than the switching determination capacitor voltage VcTh1 under the condition that the electric motor 11 is driven in the second mode, even if the electric motor 11 is being driven, The power supply source of the electric motor 11 is changed from the capacitor 22 to the battery 21. As a result, it is possible to prevent the electric motor 11 from being unable to secure the amount of power supplied while the electric motor 11 is being driven, and it is possible to prevent the driving of the electric motor 11 from being interrupted.
  • the above embodiment can be modified and implemented as follows.
  • the above embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range. -In a situation where it is determined that the battery 21 is normal, when the battery voltage Vbt becomes lower than the capacitor voltage Vc, the determination that the battery 21 is normal is not made. good. Further, when the value obtained by subtracting the battery voltage Vbt from the capacitor voltage Vc becomes equal to or greater than the determination value, it may not be determined that the battery 21 is normal.
  • the judgment as to whether or not the battery voltage Vbt has returned to normal may be changed as follows. For example, when the battery voltage Vbt becomes higher than the capacitor voltage Vc, it may be determined that the battery voltage Vbt has returned to normal. Further, when the value obtained by subtracting the capacitor voltage Vc from the battery voltage Vbt becomes equal to or higher than the recovery determination value, it may be determined that the battery voltage Vbt has returned to normal.
  • the capacitor voltage Vc becomes less than the switching determination capacitor voltage VcTh1 when the battery 21 shifts from a state in which it is not determined to be normal to a state in which it is determined to be normal.
  • the power supply source of the electric motor 11 is changed to the battery 21, and then the control mode is switched to the first mode.
  • the power supply source of the electric motor 11 may be changed to the battery 21, while the state of selecting the second mode as the control mode may be maintained. In this case, it is preferable to switch the control mode to the first mode after the drive of the electric motor 11 is stopped.
  • the electric motor 11 When the battery 21 shifts from a state in which it is not determined to be normal to a state in which it is determined to be normal, even if the capacitor voltage Vc is the switching determination capacitor voltage VcTh1 or more, the electric motor 11
  • the power supply source of the electric motor 11 may be changed from the capacitor 22 to the battery 21 while the electric motor 11 is being driven. Further, the control mode may be switched from the second mode to the first mode after the power supply source of the electric motor 11 is changed to the battery 21 while the electric motor 11 is being driven.
  • the state of selecting the second mode as the control mode may be continued until the driving of the electric motor 11 is stopped. In this case, it is preferable to switch the control mode from the second mode to the first mode after the drive of the electric motor 11 is stopped.
  • the electric motor 11 is being driven even if the battery 21 is not disconnected.
  • the control mode may be switched to the second mode.
  • the power supply source of the electric motor 11 may be changed to the capacitor 22 while the electric motor 11 is being driven.
  • the state of selecting the battery 21 as the power supply source of the electric motor 11 may be continued until the driving of the electric motor 11 is stopped. In this case, it is preferable to change the power supply source of the electric motor 11 from the battery 21 to the capacitor 22 after the drive of the electric motor 11 is stopped.
  • the electric motor 11 is prior to switching the control mode.
  • the power supply source may be changed to the capacitor 22. Even in this case, it is preferable to switch the control mode to the second mode immediately after changing the power supply source to the capacitor 22.
  • a capacitor having a capacity similar to that of the battery 21 may be adopted, or a capacitor having a capacity larger than that of the battery 21 may be adopted.
  • the actuator driven by power supply from one of the battery 21 and the capacitor 22 may be an in-vehicle actuator other than the electric motor 11 of the braking device 10.
  • the actuator may be a solenoid valve of the braking device 10 or an actuator of an in-vehicle steering device. Further, the actuator may be a power window drive motor.
  • control device does not have to be an in-vehicle device.
  • control unit applied to the above control device.
  • a control unit including the determination unit and the control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

制御装置100は、電気モータ11と、バッテリ21と、コンデンサ22と、電源選択部23と、バッテリ21が正常であるか否かを判定する判定部41と、電気モータ11の制御モードとして、第1モードと、第1モードで電気モータ11を駆動させる際よりも電気モータ11の消費電力量を少なくする第2モードとのうちの一方を選択し、選択した制御モードで電気モータ11を駆動させる制御部42とを備える。制御部42は、バッテリ21が正常であるとの判定がなされている状態から正常であるとの判定がなされていない状態に移行したときには、制御モードを第1モードから第2モードに切り替え、その後に電源選択部23にコンデンサ22を選択させる。

Description

制御装置
 本発明は、アクチュエータを駆動させる制御装置に関する。
 特許文献1には、メモリに給電する電力供給源として主電源及び待機電源を備える装置の一例が記載されている。この装置では、切替回路によって選択された電源からメモリに給電が行われるようになっている。
特開2003-32399号公報
 主電源及び待機電源を備えるとともに、主電源及び待機電源のうちの一方からの給電によってアクチュエータを駆動させる装置として、コンデンサを待機電源として採用するものがある。コンデンサの給電量には限りがある。そのため、コンデンサからの給電によってアクチュエータを駆動させる場合、コンデンサの電圧の急激な低下を抑制することが望まれる。
 上記課題を解決するための制御装置の一態様は、アクチュエータと、バッテリと、コンデンサと、前記アクチュエータへの電力供給源として前記バッテリ及び前記コンデンサのうちの一方を選択する電源選択部と、前記バッテリが正常であるか否かを判定する判定部と、前記アクチュエータの制御モードとして、第1モードと、前記第1モードで前記アクチュエータを駆動させる際よりも当該アクチュエータの消費電力量を少なくする第2モードと、のうちの一方を選択し、選択した制御モードで前記アクチュエータを駆動させるものであり、前記バッテリが正常であるとの判定がなされているときには、前記電源選択部に前記バッテリを選択させ、且つ前記制御モードとして前記第1モードを選択し、前記バッテリが正常であるとの判定がなされている状態から前記バッテリが正常であるとの判定がなされていない状態に移行したときには、前記制御モードを前記第1モードから前記第2モードに切り替え、その後に前記電源選択部に前記コンデンサを選択させる制御部と、を備える。
 上記構成によれば、バッテリが正常であるとの判定がなされなくなると、アクチュエータの制御モードが第2モードに切り替えられ、その後に電源選択部によってコンデンサが選択される。第1モードは、第2モードでアクチュエータを駆動させる場合と比較し、アクチュエータの消費電力量を多くする制御モードである。上記構成によれば、こうした第1モードでアクチュエータを駆動させる際に、コンデンサから当該アクチュエータへの給電が行われることを抑制できる。したがって、コンデンサの電圧の急激な低下を抑制できる。
 上記課題を解決するための制御装置の一態様は、アクチュエータと、バッテリと、コンデンサと、前記アクチュエータへの電力供給源として前記バッテリ及び前記コンデンサのうちの一方を選択する電源選択部と、前記バッテリが正常であるか否かを判定する判定部と、前記アクチュエータの制御モードとして、第1モードと、前記第1モードで前記アクチュエータを駆動させる際よりも当該アクチュエータの消費電力量を少なくする第2モードと、のうちの一方を選択し、選択した制御モードで前記アクチュエータを駆動させるものであり、前記バッテリが正常であるとの判定がなされていないときには、前記電源選択部に前記コンデンサを選択させ、且つ前記制御モードとして前記第2モードを選択し、前記バッテリが正常であるとの判定がなされていない状態から前記バッテリが正常であるとの判定がなれている状態に移行したときには、前記電源選択部に前記バッテリを選択させ、その後に前記制御モードを前記第2モードから前記第1モードに切り替える制御部と、を備える。
 上記構成によれば、バッテリが正常であるとの判定がなされるようになると、電源選択部によってバッテリが選択され、その後にアクチュエータの制御モードが第1モードに切り替えられる。これにより、アクチュエータの消費電力量を多くする第1モードでアクチュエータを駆動させる際に、コンデンサから当該アクチュエータへの給電が行われることを抑制できる。したがって、コンデンサの電圧の急激な低下を抑制できる。
実施形態の制御装置の概略構成を示す図。 同制御装置の判定部によって実行される処理ルーチンを説明するフローチャート。 同制御装置の制御部によって実行される処理ルーチンを説明するフローチャート。 同制御部によって実行される処理ルーチンを説明するフローチャート。 (a)~(d)は、第1モードから第2モードに移行させる際のタイミングチャート。 (a)~(d)は、第2モードから第1モードに移行させる際のタイミングチャート。
 以下、制御装置の一実施形態を図1~図6に従って説明する。
 図1に示す制御装置100は、車両の制動力を調整する車載の制御装置である。制御装置100は、制動装置10と、制動装置10を制御する制御ユニット40とを備えている。制動装置10は、アクチュエータの一例である電気モータ11と、電気モータ11の駆動に応じてブレーキ液を供給するポンプ12とを備えている。
 また、制御装置100には、バッテリ21と、コンデンサ22と、電源選択部23とが設けられている。バッテリ21は、制動装置10の電気モータ11の電力供給源として機能するだけではなく、他の車載装置のアクチュエータの電力供給源としても機能する。また、バッテリ21は、例えば車載の発電機の発電によって充電可能である。
 コンデンサ22は、例えばバッテリ21からの給電によって充電可能である。本実施形態では、コンデンサ22の容量は、バッテリ21の容量よりも少ない。
 電源選択部23は、電気モータ11の電力供給源としてバッテリ21及びコンデンサ22のうちの一方を選択し、選択した電力供給源から電気モータ11に給電させるように作動する。例えば、電源選択部23は、少なくとも1つのスイッチング素子を有している。
 本実施形態の制御装置100によれば、バッテリ21及びコンデンサ22のうち、電源選択部23によって選択されている電力供給源からの給電によって電気モータ11が駆動する。
 制御ユニット40には、各種のセンサから検出信号が入力される。センサとしては、例えば、第1電圧センサ31、第2電圧センサ32及び第3電圧センサ33を挙げることができる。第1電圧センサ31は、バッテリ21の電圧であるバッテリ電圧Vbtを検出し、検出結果に応じた信号を検出信号として出力する。第2電圧センサ32は、コンデンサ22の電圧であるコンデンサ電圧Vcを検出し、検出結果に応じた信号を検出信号として出力する。第3電圧センサ33は、電源選択部23から出力される電圧である出力電圧Voutを検出し、検出結果に応じた信号を検出信号として出力する。
 制御ユニット40は、以下(a)~(c)の何れかの構成であればよい。
(a)制御ユニット40は、コンピュータプログラムに従って各種処理を実行する一つ以上のプロセッサを備えている。プロセッサは、CPU並びに、RAM及びROMなどのメモリを含んでいる。メモリは、処理をCPUに実行させるように構成されたプログラムコード又は指令を格納している。メモリ、すなわちコンピュータ可読媒体は、汎用又は専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含んでいる。
(b)制御ユニット40は、各種処理を実行する一つ以上の専用のハードウェア回路を備えている。専用のハードウェア回路としては、例えば、特定用途向け集積回路、すなわちASIC(Application Specific Integrated Circuit)又はFPGA(Field Programmable Gate Array)を挙げることができる。
(c)制御ユニット40は、各種処理の一部をコンピュータプログラムに従って実行するプロセッサと、各種処理のうちの残りの処理を実行する専用のハードウェア回路とを備えている。
 制御ユニット40は、機能部として、判定部41及び制御部42を有している。判定部41は、バッテリ21が正常であるか否かを判定する。制御部42は、電源選択部23の駆動処理と、電気モータ11の駆動処理とを実行する。
 本実施形態では、電気モータ11を駆動させるための制御モードとして、第1モードと第2モードとが用意されている。第1モードは、通常の制御モードである。第2モードは、第1モードで電気モータ11を駆動させる際よりも電気モータ11の消費電力量を少なくする制御モードである。制御部42は、判定部41の判定結果を基に、第1モード又は第2モードを選択する。そして、電気モータ11の駆動処理において、制御部42は、選択した制御モードで電気モータ11を駆動させる。
 次に、図2を参照し、判定部41が実行する処理ルーチンについて説明する。本処理ルーチンは、所定の制御サイクル毎に繰り返し実行される。
 本処理ルーチンにおいて、ステップS11では、バッテリ21から電源選択部23までの電力供給経路で断線が発生しているか否かの判定が行われる。電源選択部23がバッテリ21を選択している場合、断線が発生していないときには出力電圧Voutはバッテリ電圧Vbtとほぼ同じとなる。一方、断線が発生しているときには出力電圧Voutがバッテリ電圧Vbtから乖離する。そこで例えば、電源選択部23がバッテリ21を選択している状況下において、出力電圧Voutとバッテリ電圧Vbtとの差分が差分判定値未満であるときは断線が発生していないと見なす。一方、差分が差分判定値以上であるときは断線が発生していると見なす。なお、電源選択部23がコンデンサ22を選択している場合には、上記電力供給経路で断線が発生しているか否かを判断できないため、断線が発生していないと見なす。
 断線が発生しているとの判定がなされている場合(S11:YES)、処理が次のステップS12に移行される。ステップS12において、異常フラグFLG1及び断線フラグFLG2の何れにもオンがセットされる。異常フラグFLG1は、バッテリ21が正常であるときにはオフがセットされる一方で、バッテリ21が正常ではないときにはオンがセットされるフラグである。断線フラグFLG2は、バッテリ21から電源選択部23までの電力供給経路で断線が発生しているとの判定がなされているときにはオンがセットされる一方で、断線が発生しているとの判定がなされていないときにはオフがセットされるフラグである。断線が発生している場合とは、バッテリ21が正常ではない場合の一例である。よって、断線フラグFLG2にオンがセットされる場合には、異常フラグFLG1にもオンがセットされる。その後、本処理ルーチンが一旦終了される。
 一方、ステップS11において、バッテリ21から電源選択部23までの電力供給経路で断線が発生しているとの判定がなされていない場合(NO)、処理が次のステップS13に移行される。ステップS13において、バッテリ電圧Vbtが異常に低下しているか否かの判定が行われる。本実施形態では、バッテリ電圧Vbtが異常判定用電圧VbtTh1未満である場合は、バッテリ電圧Vbtが異常に低下していると見なす。一方、バッテリ電圧Vbtが異常判定用電圧VbtTh1以上である場合は、バッテリ電圧Vbtが異常に低下していると見なさない。この場合、バッテリ21の定格電圧よりも十分に低い電圧が異常判定用電圧VbtTh1として設定される。
 バッテリ電圧Vbtが異常に低下しているとの判定がなされている場合(S13:YES)、処理が次のステップS14に移行される。ステップS14において、異常フラグFLG1にオンがセットされ、断線フラグFLG2にオフがセットされる。すなわち、バッテリ電圧Vbtが異常に低下している場合は、バッテリ21から電源選択部23までの電力供給経路で断線が発生していなくてもバッテリ21が正常ではないと判断できる。そのため、断線フラグFLG2にオンをセットしなくても異常フラグFLG1にオンがセットされる。その後、本処理ルーチンが一旦終了される。
 一方、ステップS13において、バッテリ電圧Vbtが異常に低下しているとの判定がなされていない場合(NO)、処理が次のステップS15に移行される。ステップS15において、異常フラグFLG1にオンがセットされているか否かの判定が行われる。異常フラグFLG1にオフがセットされている場合(S15:NO)、バッテリ21が正常であると判断できるため、各フラグFLG1,FLG2を変更することなく、本処理ルーチンが一旦終了される。この場合、各FLG1,FLG2の何れもにオフがセットされている状態が維持される。一方、異常フラグFLG1にオンがセットされている場合(S15:YES)、処理が次のステップS16に移行される。
 ステップS16において、バッテリ電圧Vbtが正常に戻ったか否かの判定が行われる。本実施形態では、バッテリ電圧Vbtが正常復帰電圧VbtTh2以上である場合はバッテリ電圧Vbtが正常に戻ったと見なす。一方、バッテリ電圧Vbtが正常復帰電圧VbtTh2未満である場合はバッテリ電圧Vbtが正常に戻っていないと見なす。この場合、正常復帰電圧VbtTh2として、異常判定用電圧VbtTh1よりも高い電圧が設定されている。
 バッテリ電圧Vbtが正常に戻ったとの判定がなされていない場合(S16:NO)、処理が前述したステップS14に移行される。すなわち、バッテリ21が正常であるとの判定がなされていない状態が維持される。一方、バッテリ電圧Vbtが正常に戻ったとの判定がなされている場合(S16:YES)、処理が次のステップS17に移行される。
 ステップS17において、異常フラグFLG1及び断線フラグFLG2の何れにもオフがセットされる。そして、本処理ルーチンが一旦終了される。
 次に、図3を参照し、第1モードを選択している状況下において、制御モードの切り替え及び電気モータ11の電力供給源の変更のタイミングを決めるために制御部42が実行する処理ルーチンについて説明する。本処理ルーチンは、第1モードが選択されている間では繰り返し実行される。
 本処理ルーチンにおいて、ステップS21では、異常フラグFLG1にオンがセットされているか否かの判定が行われる。異常フラグFLG1にオンがセットされている場合(S21:YES)、処理が次のステップS22に移行される。ステップS22において、断線フラグFLG2にオンがセットされているか否かの判定が行われる。断線フラグFLG2にオンがセットされている場合(S22:YES),処理が次のステップS23に移行される。
 ステップS23において、制御モードとして第2モードが選択される。すなわち、制御モードが第1モードから第2モードに切り替えられる。続いて、次のステップS24において、電源選択部23に選択させる電気モータ11の電力供給源が、バッテリ21からコンデンサ22に変更される。本実施形態では、バッテリ21が正常であるとの判定がなされている状態からバッテリ21が正常であるとの判定がなされていない状態に移行したときには、制御モードが第1モードから第2モードに切り替えられる。そして、制御モードを切り替えた後に、電源選択部23が選択する電気モータ11の電力供給源がコンデンサ22に変更される。その後、本処理ルーチンが一旦終了される。
 一方、ステップS22において、断線フラグFLG2にオフがセットされている場合(NO)、処理が次のステップS25に移行される。ステップS25において、電気モータ11の駆動が停止されているか否かの判定が行われる。電気モータ11の駆動が停止されていない場合(S25:NO)、本処理ルーチンが一旦終了される。一方、電気モータ11の駆動が停止している場合(S25:YES)、処理が前述したステップS23に移行される。すなわち、バッテリ21の断線が発生していない場合、バッテリ21が正常であるとの判定がなされなくなっても電気モータ11が駆動している場合、制御モードとして第1モードが選択されている状態、及び、電気モータ11の電力供給源としてバッテリ21が選択されている状態の何れもが維持される。この場合、電気モータ11の駆動が停止された後に、制御モードの切り替え(S23)、及び、電気モータ11の電力供給源の変更(S24)が順次行われる。
 その一方で、ステップS21において、異常フラグFLG1にオフがセットされている場合(NO)、本処理ルーチンが一旦終了される。すなわち、バッテリ21が正常であるとの判定がなされている場合、制御モードとして第1モードが選択されている状態、及び、電気モータ11の電力供給源としてバッテリ21が選択されている状態の何れもが維持される。
 次に、図4を参照し、第2モードを選択している状況下において、制御モードの切り替え及び電気モータ11の電力供給源の変更のタイミングを決めるために制御部42が実行する処理ルーチンについて説明する。本処理ルーチンは、第2モードが選択されている間では繰り返し実行される。
 本処理ルーチンにおいて、ステップS31では、異常フラグFLG1にオフがセットされているか否かの判定が行われる。異常フラグFLG1にオフがセットされている場合(S31:YES)、処理が次のステップS32に移行される。ステップS32において、コンデンサ電圧Vcが切替判定コンデンサ電圧VcTh1未満であるか否かの判定が行われる。コンデンサ電圧Vcが切替判定コンデンサ電圧VcTh1未満である場合は、コンデンサ電圧Vcが大分低くなったと見なす。一方、コンデンサ電圧Vcが切替判定コンデンサ電圧VcTh1以上である場合は、コンデンサ22には電荷がまだまだ蓄積されていると見なす。例えば「0」に近い値を切替判定コンデンサ電圧VcTh1として設定することにより、コンデンサ電圧Vcがほぼ「0」であるか否かを判定することができる。そして、コンデンサ電圧Vcが切替判定コンデンサ電圧VcTh1未満である場合(S32:YES)、処理が次のステップS33に移行される。
 ステップS33において、電源選択部23に選択させる電気モータ11の電力供給源が、コンデンサ22からバッテリ21に変更される。続いて、次のステップS34において、制御モードとして第1モードが選択される。本実施形態では、バッテリ21が正常であるとの判定がなされていない状態からバッテリ21が正常であるとの判定がなされている状態に移行したときには、電源選択部23が選択する電気モータ11の電力供給源がバッテリ21に変更される。電気モータ11の電力供給源の変更後に、制御モードが第2モードから第1モードに切り替えられる。その後、本処理ルーチンが一旦終了される。
 一方、ステップS32において、コンデンサ電圧Vcが切替判定コンデンサ電圧VcTh1以上である場合(NO)、処理が次のステップS35に移行される。ステップS35において、電気モータ11の駆動が停止されているか否かの判定が行われる。電気モータ11の駆動が停止されていない場合(S35:NO)、本処理ルーチンが一旦終了される。一方、電気モータ11の駆動が停止している場合(S35:YES)、処理が前述したステップS33に移行される。すなわち、コンデンサ電圧Vcが切替判定コンデンサ電圧VcTh1以上である場合、バッテリ21が正常であるとの判定がなされるようになっても電気モータ11の駆動中では、制御モードとして第2モードが選択されている状態、及び、電気モータ11の電力供給源としてコンデンサ22が選択されている状態の何れもが維持される。そして、電気モータ11の駆動が停止された後に、電気モータ11の電力供給源の変更(S33)、及び、制御モードの切り替え(S34)が順次行われる。
 その一方で、ステップS31において、異常フラグFLG1にオンがセットされている場合(NO)、本処理ルーチンが一旦終了される。すなわち、バッテリ21が正常であるとの判定がなされていない場合、制御モードとして第2モードが選択されている状態、及び、電気モータ11の電力供給源としてコンデンサ22が選択されている状態の何れもが維持される。
 本実施形態の作用及び効果について説明する。
 はじめに、図5を参照し、バッテリ21が正常であるとの判定がなされている状態から正常であるとの判定がなされていない状態に移行する場合について説明する。
 図5(a),(b),(c),(d)に示すように、タイミングt11から第1モードで電気モータ11が駆動されると、電気モータ11の電力供給源としてバッテリ21が選択されているため、バッテリ電圧Vbtが低下し始める。図5に示す例では、タイミングt12でバッテリ電圧Vbtが異常判定用電圧VbtTh1未満になり、異常フラグFLG1にオンがセットされる。すなわち、バッテリ21が正常であるとの判定がなされている状態からバッテリ21が正常であるとの判定がなされていない状態に移行される。
 しかし、タイミングt13までは、電気モータ11が駆動している。そのため、バッテリ21が正常であるとの判定がなされなくなっても、第1モードでの電気モータ11の駆動が継続されるとともに、電気モータ11の電力供給源としてバッテリ21が選択されている状態が継続される。
 タイミングt13で電気モータ11の駆動が停止されると、その後のタイミングt14で、電気モータ11の制御モードが、第1モードから第2モードに切り替わる。このように制御モードとして第2モードが選択された後のタイミングt15で、電源選択部23によって選択される電気モータ11の電力供給源が、バッテリ21からコンデンサ22に変更される。そして、その後のタイミングt16で電気モータ11の駆動が指示された場合、コンデンサ22からの給電によって、第2モードで電気モータ11が駆動することになる。
 ここで、第1モードは、第2モードで電気モータ11を駆動させる場合よりも電気モータ11の消費電力量が多いモードである。そのため、電源選択部23によってコンデンサ22が選択されている状況下において第1モードで電気モータ11が駆動される場合、電気モータ11の消費電力量が多いため、コンデンサ電圧Vcが急激な低下する。
 これに対し、本実施形態では、電気モータ11の消費電力量を少なくする第2モードが選択された以降で、電気モータ11の電力供給源としてコンデンサ22が選択される。これにより、電気モータ11の消費電力量の多い第1モードで電気モータ11を駆動させる際に、コンデンサ22から電気モータ11への給電が行われることを抑制できる。したがって、コンデンサ電圧Vcが急激に低下することを抑制できる。
 ちなみに、バッテリ21の断線が発生したためにバッテリ21が正常であるとの判定がなされなくなることがある。バッテリ21で断線が発生した場合、バッテリ21から電気モータ11に給電することができない。そのため、バッテリ21で断線が発生しているとの判定がなされた場合には、電気モータ11の駆動中であっても、制御モードが第1モードから第2モードに切り替えられる。また、電気モータ11の電力供給源がバッテリ21からコンデンサ22に変更される。これにより、断線の発生に起因してバッテリ21から電気モータ11に給電できなくなったとしても、電気モータ11の駆動を継続させることができる。しかも、この際には第2モードで電気モータ11を駆動させることになる。したがって、第1モードでの電気モータ11の駆動が継続される場合と比較し、電気モータ11を駆動させることのできる時間を長くできる。
 次に、図6を参照し、バッテリ21が正常であるとの判定がなされていない状態から正常であるとの判定がなされている状態に移行する場合の作用及び効果について説明する。なお、図6に示す例では、電気モータ11の電力供給源としてコンデンサ22が選択されている間、車両の発電機の発電などによってバッテリ21が充電されるものとする。
 図6(a),(b),(c),(d)に示すように、充電によってバッテリ電圧Vbtが上昇している際のタイミングt21で、電気モータ11の駆動が開始される。この場合、バッテリ21が正常であるとの判定がなされていないため、コンデンサ22からの給電によって、第2モードで電気モータ11が駆動される。すると、コンデンサ電圧Vcが徐々に低下する。第2モードでの電気モータ11の駆動中のタイミングt22で、バッテリ電圧Vbtが正常復帰電圧VbtTh2以上になり、バッテリ電圧Vbtが正常に戻ったとの判定がなされる。すなわち、バッテリ21が正常であるとの判定がなされていない状態からバッテリ21が正常であるとの判定がなされている状態に移行される。
 しかし、タイミングt23までは、電気モータ11が駆動している。そのため、バッテリ21が正常であるとの判定がなされるようになっても、電気モータ11の電力供給源としてコンデンサ22が選択されている状態が継続されるとともに、第2モードでの電気モータ11の駆動が継続される。
 タイミングt23で電気モータ11の駆動が停止されると、その後のタイミングt24で、電気モータ11の電力供給源が、コンデンサ22からバッテリ21に変更される。このように電力供給源としてバッテリ21が選択された後のタイミングt25で、電気モータ11の制御モードが、第2モードから第1モードに切り替えられる。そして、その後に電気モータ11の駆動が指示された場合、バッテリ21からの給電によって、第1モードで電気モータ11が駆動することになる。
 本実施形態では、電気モータ11の電力供給源としてバッテリ21が選択された以降で、電気モータ11の消費電力量の多い第1モードが選択される。これにより、第1モードで電気モータ11を駆動させる際にコンデンサ22から電気モータ11に給電されることを抑制できる。したがって、コンデンサ電圧Vcが急激に低下することを抑制できる。
 ちなみに、第2モードで電気モータ11を駆動させているときに、コンデンサ電圧Vcが切替判定コンデンサ電圧VcTh1未満になってしまうことがある。この場合、コンデンサ電圧Vcが非常に低くなっており、第2モードでの電気モータ11の駆動中にコンデンサ22から電気モータ11への給電量を十分に確保できなくなるおそれがある。
 そこで、本実施形態では、第2モードで電気モータ11を駆動させている状況下でコンデンサ電圧Vcが切替判定コンデンサ電圧VcTh1未満になった場合には、電気モータ11の駆動中であっても、電気モータ11の電力供給源がコンデンサ22からバッテリ21に変更される。これにより、電気モータ11の駆動中に電気モータ11への給電量を確保できなくなることを抑制でき、ひいては電気モータ11の駆動が中断されることを抑制できる。
 上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ・バッテリ21が正常であるとの判定がなされている状況下において、バッテリ電圧Vbtがコンデンサ電圧Vcよりも低くなったときに、バッテリ21が正常であるとの判定をなさなくするようにしてもよい。また、コンデンサ電圧Vcからバッテリ電圧Vbtを引いた値が判定値以上になったときに、バッテリ21が正常であるとの判定をなさなくなるようにしてもよい。
 ・バッテリ電圧Vbtが正常に戻ったか否かの判定を以下のように変更してもよい。例えば、バッテリ電圧Vbtがコンデンサ電圧Vcよりも高くなったときに、バッテリ電圧Vbtが正常に戻ったとの判定をなすようにしてもよい。また、バッテリ電圧Vbtからコンデンサ電圧Vcを引いた値が復帰判定値以上になったときに、バッテリ電圧Vbtが正常に戻ったとの判定をなすようにしてもよい。
 ・上記実施形態では、バッテリ21が正常であるとの判定がなされていない状態から正常であるとの判定がなされている状態に移行した場合において、コンデンサ電圧Vcが切替判定コンデンサ電圧VcTh1未満になったときには、電気モータ11の駆動中であっても、電気モータ11の電力供給源をバッテリ21に変更し、その後に制御モードを第1モードに切り替えている。しかし、これに限らない。例えば、電気モータ11の駆動中では電気モータ11の電力供給源をバッテリ21に変更する一方で、制御モードとして第2モードを選択する状態を維持してもよい。この場合、電気モータ11の駆動が停止した後で制御モードを第1モードに切り替えることが好ましい。
 ・バッテリ21が正常であるとの判定がなされていない状態から正常であるとの判定がなされている状態に移行した場合、コンデンサ電圧Vcが切替判定コンデンサ電圧VcTh1以上であっても、電気モータ11の駆動中に、電気モータ11の電力供給源をコンデンサ22からバッテリ21に変更してもよい。さらに、電気モータ11の駆動中に、電気モータ11の電力供給源がバッテリ21に変更された後に、制御モードを第2モードから第1モードに切り替えてもよい。反対に、電気モータ11の駆動が停止されるまでは、制御モードとして第2モードを選択する状態を継続させてもよい。この場合、電気モータ11の駆動停止後に制御モードを第2モードから第1モードに切り替えることが好ましい。
 ・バッテリ21が正常であるとの判定がなされている状態から正常であるとの判定がなされていない状態に移行した場合、バッテリ21で断線が発生していなくても、電気モータ11の駆動中に、制御モードを第2モード切り替えてもよい。さらに、電気モータ11の駆動中に、電気モータ11の電力供給源をコンデンサ22に変更してもよい。反対に、電気モータ11の駆動が停止されるまでは、電気モータ11の電力供給源としてバッテリ21を選択する状態を継続させてもよい。この場合、電気モータ11の駆動停止後に電気モータ11の電力供給源をバッテリ21からコンデンサ22に変更することが好ましい。
 ・バッテリ21で断線が発生しているとの判定がなされたことに起因してバッテリ21が正常であるとの判定がなされなくなった場合には、制御モードの切り替えよりも先に、電気モータ11の電力供給源をコンデンサ22に変更してもよい。この場合であっても、電力供給源をコンデンサ22に変更した後、直ぐに制御モードを第2モードに切り替えることが好ましい。
 ・コンデンサ22として、バッテリ21よりも容量が同程度のものを採用してもよいし、バッテリ21よりも容量の多いものを採用してもよい。
 ・バッテリ21及びコンデンサ22のうちの一方からの給電によって駆動するアクチュエータは、制動装置10の電気モータ11以外の他の車載アクチュエータであってもよい。例えば、アクチュエータは、制動装置10の電磁弁であってもよいし、車載の操舵装置のアクチュエータであってもよい。また、アクチュエータは、パワーウィンドウの駆動モータであってもよい。
 ・制御装置は、車載の装置でなくてもよい。
 次に、上記実施形態及び変更例から把握できる技術的思想について記載する。
 (イ)上記制御装置に適用される制御ユニットであって、
 前記判定部と、前記制御部と、を備える制御ユニット。

Claims (2)

  1.  アクチュエータと、
     バッテリと、
     コンデンサと、
     前記アクチュエータへの電力供給源として前記バッテリ及び前記コンデンサのうちの一方を選択する電源選択部と、
     前記バッテリが正常であるか否かを判定する判定部と、
     前記アクチュエータの制御モードとして、第1モードと、前記第1モードで前記アクチュエータを駆動させる際よりも当該アクチュエータの消費電力量を少なくする第2モードと、のうちの一方を選択し、選択した制御モードで前記アクチュエータを駆動させるものであり、前記バッテリが正常であるとの判定がなされているときには、前記電源選択部に前記バッテリを選択させ、且つ前記制御モードとして前記第1モードを選択し、前記バッテリが正常であるとの判定がなされている状態から前記バッテリが正常であるとの判定がなされていない状態に移行したときには、前記制御モードを前記第1モードから前記第2モードに切り替え、その後に前記電源選択部に前記コンデンサを選択させる制御部と、を備える
     制御装置。
  2.  アクチュエータと、
     バッテリと、
     コンデンサと、
     前記アクチュエータへの電力供給源として前記バッテリ及び前記コンデンサのうちの一方を選択する電源選択部と、
     前記バッテリが正常であるか否かを判定する判定部と、
     前記アクチュエータの制御モードとして、第1モードと、前記第1モードで前記アクチュエータを駆動させる際よりも当該アクチュエータの消費電力量を少なくする第2モードと、のうちの一方を選択し、選択した制御モードで前記アクチュエータを駆動させるものであり、前記バッテリが正常であるとの判定がなされていないときには、前記電源選択部に前記コンデンサを選択させ、且つ前記制御モードとして前記第2モードを選択し、前記バッテリが正常であるとの判定がなされていない状態から前記バッテリが正常であるとの判定がなれている状態に移行したときには、前記電源選択部に前記バッテリを選択させ、その後に前記制御モードを前記第2モードから前記第1モードに切り替える制御部と、を備える
     制御装置。
PCT/JP2021/012238 2020-03-27 2021-03-24 制御装置 WO2021193716A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/909,770 US11942819B2 (en) 2020-03-27 2021-03-24 Control device
CN202180024305.4A CN115380449A (zh) 2020-03-27 2021-03-24 控制装置
DE112021001924.4T DE112021001924T5 (de) 2020-03-27 2021-03-24 Steuerungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020057729A JP7559339B2 (ja) 2020-03-27 2020-03-27 制御装置
JP2020-057729 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021193716A1 true WO2021193716A1 (ja) 2021-09-30

Family

ID=77890359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012238 WO2021193716A1 (ja) 2020-03-27 2021-03-24 制御装置

Country Status (5)

Country Link
US (1) US11942819B2 (ja)
JP (1) JP7559339B2 (ja)
CN (1) CN115380449A (ja)
DE (1) DE112021001924T5 (ja)
WO (1) WO2021193716A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149798A (ja) * 2008-12-26 2010-07-08 Toyota Motor Corp ブレーキ制御装置
WO2010113574A1 (ja) * 2009-03-31 2010-10-07 日立オートモティブシステムズ株式会社 ブレーキ制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032399A (ja) 2001-07-12 2003-01-31 Fuji Xerox Co Ltd 画像処理装置および給電方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149798A (ja) * 2008-12-26 2010-07-08 Toyota Motor Corp ブレーキ制御装置
WO2010113574A1 (ja) * 2009-03-31 2010-10-07 日立オートモティブシステムズ株式会社 ブレーキ制御装置

Also Published As

Publication number Publication date
DE112021001924T5 (de) 2023-01-12
JP2021158824A (ja) 2021-10-07
JP7559339B2 (ja) 2024-10-02
US20230107732A1 (en) 2023-04-06
CN115380449A (zh) 2022-11-22
US11942819B2 (en) 2024-03-26

Similar Documents

Publication Publication Date Title
JP4258534B2 (ja) 電源システム
CN109792160B (zh) 车载用的备用装置
WO2017169817A1 (ja) 車載電源用のスイッチ装置および制御装置
WO2018016277A1 (ja) バックアップ電源装置およびバックアップシステム
JP2012135206A (ja) 蓄電装置
JP2008182872A5 (ja)
US11338748B2 (en) In-vehicle power source control device and in-vehicle power source system
US11066027B2 (en) In-vehicle power supply apparatus configured to charge a plurality of batteries
US11652360B2 (en) In-vehicle backup control apparatus and in-vehicle backup apparatus
WO2021193716A1 (ja) 制御装置
JP2020120464A (ja) 車両用電源制御装置、及び車両用電源装置
WO2015190421A1 (ja) 電子制御装置
JP2022095088A (ja) 電源制御装置
JP7251170B2 (ja) 車両の電源システム
WO2018180606A1 (ja) 車載電源装置およびその車載電源装置が搭載される車両
US11855475B2 (en) Charge/discharge control apparatus
JP4735523B2 (ja) 蓄電装置
WO2017057211A1 (ja) 車載用電源装置
JP2018050355A (ja) 車載用非常電源装置
US11299115B2 (en) Power storage unit control device
US20220416318A1 (en) In-Vehicle Power Source Control Apparatus and In-Vehicle Power Source Apparatus
JP2009092627A (ja) 蓄電装置
JP6855321B2 (ja) 異常判定装置および異常判定方法
JP2023046805A (ja) 電力供給回路、電力供給方法及びコンピュータプログラム
CN116620023A (zh) 车载系统、方法、非暂时性存储介质以及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774743

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21774743

Country of ref document: EP

Kind code of ref document: A1