WO2021193598A1 - L-グルタミン酸オキシダーゼ変異体 - Google Patents

L-グルタミン酸オキシダーゼ変異体 Download PDF

Info

Publication number
WO2021193598A1
WO2021193598A1 PCT/JP2021/011898 JP2021011898W WO2021193598A1 WO 2021193598 A1 WO2021193598 A1 WO 2021193598A1 JP 2021011898 W JP2021011898 W JP 2021011898W WO 2021193598 A1 WO2021193598 A1 WO 2021193598A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
glutamate
amino acid
glutamate oxidase
site
Prior art date
Application number
PCT/JP2021/011898
Other languages
English (en)
French (fr)
Inventor
一敏 ▲高▼橋
浩輝 山口
宇乃 田上
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to EP21776970.2A priority Critical patent/EP4130023A4/en
Priority to JP2022510522A priority patent/JPWO2021193598A1/ja
Publication of WO2021193598A1 publication Critical patent/WO2021193598A1/ja
Priority to US17/947,596 priority patent/US20230203456A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/50Polycarboxylic acids having keto groups, e.g. 2-ketoglutaric acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/03Oxidoreductases acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12Y104/03011L-Glutamate oxidase (1.4.3.11)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/906Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7)
    • G01N2333/90605Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7) acting on the CH-NH2 group of donors (1.4)
    • G01N2333/90633Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3) in general

Definitions

  • the present invention relates to an L-glutamate oxidase mutant and the like.
  • L-Glutamic acid oxidase is an enzyme that catalyzes the following reaction (EC 1.4.3.11).
  • GluOX has been known to exert activity as a heteromultimer ( ⁇ 2 ⁇ 2 ⁇ 2 ) having different subunits by analysis based on protein isolation and purification.
  • the GluOX gene then encodes an immature protein (molecular weight about 70 kDa) containing an ⁇ -containing chain (single strand), and GluOX is a homodimer having two subunits consisting of an ⁇ -containing single strand (a homodimer It has been reported that the activity is maintained even as ( ⁇ -containing single chain) 2) (Patent Document 1).
  • Non-Patent Document 1 the native GluOX is now not only cleaved by protease into three segments of ⁇ , but also within the ⁇ region by protease, and two ⁇ fragments (if necessary). Therefore, in this case, it is considered that the activity is exhibited by taking a unique three-dimensional structure of a hetero-octomer ( ⁇ 1 2 ⁇ 2 2 ⁇ 2 ⁇ 2 ) containing ⁇ 1, ⁇ 2), ⁇ unit, and ⁇ unit. (Non-Patent Document 1).
  • L-glutamic acid is known as a major umami component in foods, and is also an important component that is also present in biological samples such as blood. L-glutamic acid can be easily measured using GluOX. Therefore, GluOX is used to measure L-glutamic acid in a sample.
  • An object of the present invention is to provide an L-glutamate oxidase that enables measurement of L-glutamate.
  • processing-removed region (SEQ ID NO: 1) between the ⁇ region and the ⁇ region in the ⁇ -containing single-stranded GluOX (amino acid sequence of SEQ ID NO: 1) described in Patent Document 1.
  • (Region consisting of amino acid residues at positions 467 to 506 in the amino acid sequence of SEQ ID NO: 1) and processing-removed region downstream of ⁇ region (region consisting of amino acid residues at positions 670 to 687 in the amino acid sequence of SEQ ID NO: 1) are deleted.
  • the single-chain polypeptide (polypeptide consisting of the amino acid sequence of SEQ ID NO: 3) can exhibit higher oxidative activity of L-glutamic acid than the ⁇ -containing single-chain GluOX described in Patent Document 1. (Fig. 1, Example).
  • the present inventors also have a region near the boundary between the ⁇ 1 region and the ⁇ 2 region, a region near the boundary between the ⁇ 2 region and the ⁇ region, and a region near the boundary between the ⁇ region and the ⁇ region (particularly, with the ⁇ 1 region) in the single-stranded polypeptide.
  • L-glutamic acid in which a single-stranded polypeptide having a peptide linker inserted in at least one or more near-boundary regions in the near-boundary region of the ⁇ 2 region and the near-boundary region between the ⁇ 2 region and the ⁇ region is higher than that of the immature protein. It was found that the oxidative activity of the above can be exhibited (Fig. 1, Examples). The present inventors have further succeeded in finding a plurality of variants capable of exhibiting higher oxidative activity of L-glutamic acid than the ⁇ -containing single-chain GluOX described in Patent Document 1, and completed the present invention. I came to do it.
  • L-glutamate oxidase mutant according to (a) or (b) below: (A) An L-glutamate oxidase variant containing an amino acid sequence showing 90% or more identity with respect to the amino acid sequence of SEQ ID NO: 3 and having an oxidative activity of L-glutamate (however, the amino acid sequence of SEQ ID NO: 1). (Excluding L-glutamate oxidase containing); or (b) the site in the region near the boundary between the (1) ⁇ 1 region and the ⁇ 2 region, and (2) the ⁇ 2 region and the ⁇ region in the L-glutamate oxidase variant of (a) above.
  • a peptide linker consisting of 1 to 20 amino acid residues is formed at one or more sites selected from the group consisting of a site in the near-boundary region of (3) a region near the boundary between the ⁇ region and the ⁇ region.
  • the site in the region near the boundary between the ⁇ 1 region and the ⁇ 2 region is the site in the region consisting of the amino acid residues at positions 349 to 363 in SEQ ID NO: 3.
  • the site in the region near the boundary between the ⁇ 2 region and the ⁇ region is the site in the region consisting of amino acid residues at positions 372 to 377 in SEQ ID NO: 3, and the site in the region near the boundary between the ⁇ region and the ⁇ region is.
  • the L-glutamate oxidase variant which is a site in the region consisting of amino acid residues at positions 466 to 469 in SEQ ID NO: 3.
  • the peptide linker is inserted into one or both of (1) a site near the boundary between the ⁇ 1 region and the ⁇ 2 region, or (2) a site near the boundary between the ⁇ 2 region and the ⁇ region.
  • the L-glutamate oxidase variant according to any one of [1] to [3].
  • the site in the region near the boundary between the ⁇ 1 region and the ⁇ 2 region is the site between the amino acid residues at positions 356 and 357 in SEQ ID NO: 3.
  • the site in the region near the boundary between the ⁇ 2 region and the ⁇ region is the site between the amino acid residues at positions 376 and 377 in SEQ ID NO: 3, or the site in the region near the boundary between the ⁇ region and the ⁇ region is the sequence.
  • [6] L-glutamate oxidase mutants are A106, C210, Q235, D236, D237, P244, T311, W313, Q333, I334, M336, Q338, R339, T416, A438, K441, Y455, Q456 in SEQ ID NO: 3.
  • the L-glutamate oxidase mutant is A106S, C210S, Q235E, D236E, D237E, P244H, T311S, W313F, Q333E, I334V, I334L, M336L, Q338E, R339K, T416S, A438P in SEQ ID NO: 3.
  • a method for analyzing L-glutamate which comprises measuring L-glutamate contained in a test sample using the L-glutamate oxidase variant according to any one of [1] to [7].
  • a method for producing an L-glutamate oxidase variant which comprises producing the L-glutamate oxidase variant according to any one of [1] to [7] using the transformed microorganism of [13].
  • the L-glutamic acid detection reagent of [15] which further comprises one or more selected from the group consisting of a reaction buffer or buffer salt, a hydrogen hydrogen detection reagent, an ammonia detection reagent, and a 2-oxoglutaric acid detection reagent. kit.
  • a detection system for L-glutamate analysis comprising (a) a device and (b) an L-glutamate oxidase variant according to any one of [1] to [7].
  • L-glutamic acid according to [17], further comprising one or more selected from the group consisting of (c) reaction buffer or buffer salt, hydrogen hydrogen detection reagent, ammonia detection reagent and 2-oxoglutaric acid detection reagent.
  • Detection system for analysis [19] An enzyme for L-glutamate analysis, which comprises (a) a detection electrode and (b) an L-glutamate oxidase variant of any one of [1] to [7] fixed or placed on the detection electrode. sensor.
  • the L-glutamate oxidase variant of the present invention has high activity against L-glutamate, it is useful for rapid and highly sensitive measurement of L-glutamate and / or production of 2-oxoglutamate.
  • the L-glutamate oxidase variant of the present invention is also easy to prepare because it does not require a protease treatment and a subsequent purification treatment for the protease treated product.
  • the analytical method of the present invention is useful in a wide range of fields such as biological research, health nutrition, medical care, and food manufacturing.
  • FIG. 1 is a diagram showing the relationship between the processing of L-glutamate oxidase (GluOX) and the L-glutamate oxidase mutant of the present invention.
  • the GluOX gene naturally expresses single-stranded polypeptides encoding the ⁇ region ( ⁇ 1 region, ⁇ 2 region), ⁇ region, and ⁇ region. In nature, this single-chain polypeptide is cleaved by processing by proteases microorganisms producing this single chain polypeptide in nature (microorganism belonging to the genus Streptomyces) are expressed, hetero octamer ([alpha] 1 2 It is known to form ⁇ 2 2 ⁇ 2 ⁇ 2).
  • the GluOX variant of the present invention is (A) a shortened single-chain polypeptide lacking both the processing removal region between the ⁇ region and the ⁇ region in this single-chain polypeptide and the processing removal region downstream of the ⁇ region. , And (B) the site in the region near the boundary between the ⁇ 1 region and the ⁇ 2 region, and (2) the site in the region near the boundary between the ⁇ 2 region and the ⁇ region in the shortened single-stranded polypeptide of the above (A). And (3) an insertion type single-chain polypeptide in which a peptide linker is inserted at one or more sites selected from the group consisting of sites in the region near the boundary between the ⁇ region and the ⁇ region.
  • SEQ ID NO: 1 is a diagram showing the amino acid sequence (SEQ ID NO: 1) of the wild-type GluOX of Streptomyces SP X-119-6.
  • the amino acid sequence of this wild-type GluOX (SEQ ID NO: 1) is encoded by the nucleotide sequence of SEQ ID NO: 2.
  • Each region corresponds to the amino acid sequence of SEQ ID NO: 1 as follows.
  • ⁇ region Region consisting of amino acid residues at positions 1 to 376 (region consisting of amino acid residues at positions ⁇ 1 to 1 to 352; region ⁇ 2 region: region consisting of amino acid residues at positions 361 to 376); ⁇ region: 377 Region consisting of amino acid residues at positions ⁇ 466; ⁇ region: Region consisting of amino acid residues at positions 507 to 669.
  • the protease cleavage site black triangle corresponds to the amino acid sequence of SEQ ID NO: 1 as follows.
  • Protease cleavage region in ⁇ region between amino acid residues at positions 353 to 360 (underlined part); boundary site between ⁇ region and ⁇ region: between amino acid residues at positions 376 and 377; downstream site of ⁇ region: Between amino acid residues at positions 466 and 467; upstream site of ⁇ region: between amino acid residues at positions 506 and 507; downstream region of ⁇ region: between amino acid residues at positions 664 and 669 (underlined part) ).
  • Preferred point mutation locations that can be introduced for L-glutamate oxidase variants are A106, C210, Q235, D236, D237, P244, T311, W313, Q333, I334, M336, Q338, R339, T416, A438, K441. , Y455, Q456, Q457, L545, L598, C601, and P609.
  • FIG. 3 shows the processing-removed region between the ⁇ region and the ⁇ region in the amino acid sequence (SEQ ID NO: 1) of the wild-type GluOX of Streptomyces sp. X-119-6 (positions 467 to 506 in the amino acid sequence of SEQ ID NO: 1).
  • a shortened single-stranded polypeptide lacking both an amino acid residue region) and a processing-removed region downstream of the ⁇ region (a region consisting of amino acid residues 670 to 687 in the amino acid sequence of SEQ ID NO: 1). It is a figure which shows the polypeptide which consists of the amino acid sequence of SEQ ID NO: 3. Each region corresponds to the amino acid sequence of SEQ ID NO: 3 as follows.
  • ⁇ region Region consisting of amino acid residues at positions 1 to 376 (region consisting of amino acid residues at positions ⁇ 1 to 1 to 352; region ⁇ 2 region: region consisting of amino acid residues at positions 361 to 376); ⁇ region: 377 Region consisting of amino acid residues at positions ⁇ 466; ⁇ region: Region consisting of amino acid residues at positions 467 to 629.
  • Each neighboring region corresponds to the amino acid sequence of SEQ ID NO: 3 as follows.
  • Region near the boundary between ⁇ 1 region and ⁇ 2 region Region consisting of amino acid residues at positions 349 to 363; Region near the boundary between ⁇ 2 region and ⁇ region: Region consisting of amino acid residues at positions 372 to 377; Boundary neighborhood region: A region consisting of amino acid residues at positions 466 to 469.
  • the underlined part corresponds to the protease cleavage region in the ⁇ region described in FIG. 2; and the downstream region of the ⁇ region.
  • Preferred point mutation locations that can be introduced for the L-glutamate oxidase variant are A106, C210, Q235, D236, D237, P244, T311, W313, Q333, I334, M336, Q338, R339, T416, A438, K441. , Y455, Q456, Q457, L505 (corresponding to L545 in SEQ ID NO: 1), P558 (corresponding to L598 in SEQ ID NO: 1), C561 (corresponding to C601 in SEQ ID NO: 1), and P569 (corresponding to P609 in SEQ ID NO: 1). ).
  • the present invention provides the following (a) or (b) L-glutamate oxidase variants: (A) An L-glutamate oxidase variant containing an amino acid sequence showing 90% or more identity with respect to the amino acid sequence of SEQ ID NO: 3 and having an oxidative activity of L-glutamate (however, the amino acid sequence of SEQ ID NO: 1). (Excluding L-glutamate oxidase containing); or (b) a site in the region near the boundary between the ⁇ 1 region and the ⁇ 2 region, and (2) the ⁇ 2 region and the ⁇ region in the L-glutamate oxidase variant of (a).
  • a peptide linker consisting of 1 to 20 amino acid residues is inserted at one or more sites selected from the group consisting of sites in the near-boundary region and (3) sites in the near-boundary region of the ⁇ region and ⁇ region. It is an L-glutamate oxidase variant that has an oxidative activity of L-glutamate.
  • the site in the region near the boundary between the ⁇ 1 region and the ⁇ 2 region is the site in the region consisting of the amino acid residues at positions 349 to 363 in SEQ ID NO: 3.
  • the site in the region near the boundary between the ⁇ 2 region and the ⁇ region is the site in the region consisting of amino acid residues at positions 372 to 377 in SEQ ID NO: 3, and the site in the region near the boundary between the ⁇ region and the ⁇ region is.
  • the L-glutamate oxidase variant which is a site in the region consisting of amino acid residues at positions 466 to 469 in SEQ ID NO: 3.
  • the L-glutamate oxidase variant of (a) is a processing-removed region (amino acid of SEQ ID NO: 1) between the ⁇ region and ⁇ region in a single-stranded polypeptide (amino acid sequence of SEQ ID NO: 1) naturally expressed by the GluOX gene. Shortening by deleting both the processing-removed region downstream of the ⁇ region (the region consisting of the amino acid residues at positions 467 to 506 in the sequence) and the processing-removed region (the region consisting of the amino acid residues at positions 670 to 687 in the amino acid sequence of SEQ ID NO: 1).
  • the L-glutamate oxidase variant of (a) does not contain a region consisting of amino acid residues at positions 467 to 506 and 670 to 687 in the amino acid sequence of SEQ ID NO: 1.
  • the degree of identity percent of the amino acid sequence with respect to the amino acid sequence of SEQ ID NO: 3 in the L-glutamate oxidase mutant of (a) is preferably 92% or more, more preferably 95% or more, still more preferably 97% or more, most. It may preferably be 98% or more or 99% or more.
  • To calculate the amino acid sequence identity percentage using the software GENETYX Ver13.1.1 of Genetics Co., Ltd., using the total length of the polypeptide portion encoded by the ORF, a Muscle alignment, a Clustal W alignment, or a Multiple sequence alignment was performed. It can be performed later by using the numerical value when it is calculated by the setting of Gapps are take into count.
  • the region in which the peptide linker is inserted is (1) a region near the boundary between the ⁇ 1 region and the ⁇ 2 region (a region consisting of amino acid residues at positions 349 to 363 in SEQ ID NO: 3). ), (2) Near the boundary between ⁇ 2 and ⁇ regions (region consisting of amino acid residues 372 to 377 in SEQ ID NO: 3), and (3) Near the boundary between ⁇ and ⁇ regions. It is one or more (eg, 1, 2 or 3) sites selected from the group consisting of sites in the region (region consisting of amino acid residues at positions 466 to 469 in SEQ ID NO: 3).
  • the region in which the peptide linker is inserted is (1) a site in the region near the boundary between the ⁇ 1 region and the ⁇ 2 region, or (2) one of the sites in the region near the boundary between the ⁇ 2 region and the ⁇ region, or them. It may be both.
  • the site near the boundary between the ⁇ 1 region and the ⁇ 2 region is preferably a site in the boundary region between the ⁇ 1 region and the ⁇ 2 region (a region consisting of amino acid residues at positions 349 to 363 in SEQ ID NO: 3), and more preferably. Is the site between the amino acid residues at positions 356 and 357 in SEQ ID NO: 3.
  • the site in the region near the boundary between the ⁇ 2 region and the ⁇ region is a site in the region near the boundary between the ⁇ 2 region and the ⁇ region (the region consisting of amino acid residues at positions 372 to 377 in SEQ ID NO: 3), and is preferably a sequence. It is the site between the amino acid residues at positions 376 and 377 in number 3.
  • the site in the region near the boundary between the ⁇ region and the ⁇ region is a site in the region near the boundary between the ⁇ region and the ⁇ region (the region consisting of amino acid residues at positions 466 to 469 in SEQ ID NO: 3), and is preferably a sequence. It is the site between the amino acid residues at positions 466 and 467 in No. 3.
  • the peptide linker is a peptide linker consisting of 1 to 20 amino acid residues.
  • the peptide linker may have an amino acid sequence different from the partial amino acid sequence of L-glutamate oxidase.
  • the peptide linker may consist of 2 or more, 3 or more, 4 or more, or 5 or more amino acid residues.
  • the peptide linker may also consist of 18 or less, 16 or less, 14 or less, 12 or less, or 10 or less amino acid residues. More specifically, the peptide linker may consist of 2 to 18, 3 to 16, 4 to 14, 5 to 12, or 5 to 10 amino acid residues.
  • the types of amino acid residues that make up the peptide linker are the residues of natural L- ⁇ -amino acids and glycine (G) that make up ordinary proteins. More specifically, such natural L- ⁇ -amino acid residues include L-alanine (A), L-asparagine (N), L-cysteine (C), L-glutamine (Q), and L-.
  • the type of amino acid residue constituting the peptide linker is an amino acid residue that easily constitutes a highly flexible peptide linker.
  • amino acid residues that easily form a highly flexible peptide linker include glycine (G), L-alanine (A), L-serine (S), and L-threonine (T).
  • the peptide linker is GGGGS (SEQ ID NO: 4) or a repeating sequence thereof.
  • the number of repetitions in the repeating sequence is 2 to 4, preferably 2 or 3, and more preferably 2 times.
  • the oxidative activity of L-glutamic acid is an activity that catalyzes the next reaction.
  • the oxidative activity of L-glutamate contained in the L-glutamate oxidase variant of the present invention is not particularly limited as long as it is equal to or higher than that of L-glutamate oxidase consisting of the amino acid sequence of SEQ ID NO: 1, but is preferably a sequence. It may have 1.1 times or more L-glutamate oxidative activity (more preferably 1.2 times or more L-glutamate oxidative activity) as compared with L-glutamate oxidase consisting of the amino acid sequence of No. 1. ..
  • Such oxidative activity of L-glutamic acid can be measured by utilizing the oxidative reaction of L-glutamic acid (10 mM) and its conjugated reaction as described in Examples.
  • the oxidative activity of L-glutamate contained in the L-glutamate oxidase variant of the present invention is particularly high as long as it exhibits higher oxidative activity of L-glutamate than the ⁇ -containing single-chain L-glutamate oxidase described in Patent Document 1. Not limited.
  • the oxidative activity of L-glutamate contained in the L-glutamate oxidase variant of the present invention may be about the same as or higher than that of L-glutamate oxidase consisting of the amino acid sequence of SEQ ID NO: 3.
  • the oxidative activity of L-glutamate contained in the L-glutamate oxidase variant of the present invention is the ⁇ -containing single-chain L-glutamate oxidase described in Patent Document 1, or the L-glutamate oxidase consisting of the amino acid sequence of SEQ ID NO: 3.
  • L-glutamate oxidase consisting of the amino acid sequence of SEQ ID NO: 3 is more preferably 1.1 times or more the oxidative activity of L-glutamate, and even more preferably 1.2 times or more of L-glutamate.
  • Oxidative activity of L-glutamate particularly preferably 1.3 times or more, 1.4 times or more, 1.5 times or more, 1.6 times or more, 1.7 times or more, or 1.8 times or more. May have.
  • the oxidative activity of such L-glutamic acid can be measured by utilizing the oxidative reaction of L-glutamic acid (10 mM) and its conjugated reaction.
  • the L-glutamate oxidase variant of the present invention may have one or more mutations capable of enhancing the oxidative activity of the L-glutamate oxidase variant.
  • mutations include A106, C210, Q235, D236, D237, P244, T311, W313, Q333, I334, M336, Q338, R339, T416, A438, K441, Y455, Q456, Q457 in SEQ ID NO: 3.
  • L505, P558, C561, and P569 include mutations in one or more (eg, 1, 2, or 3) amino acid residues selected from the group.
  • the post-mutation amino acid residues at these sites are the desired native L- ⁇ -amino acid residues that differ from the pre-mutation amino acid residues.
  • desired native L- ⁇ -amino acid residues are L-alanine (A), L-asparagine (N), L-cysteine (C), L-glutamine (Q), L-isoleucine (I), L-isoleucine (L), L-methionine (M), L-phenylalanine (F), L-proline (P), L-serine (S), L-threonine (T), L-tryptophan (W), L -Tyrosine (Y), L-valine (V), L-aspartic acid (D), L-glutamic acid (E), L-arginine (R), L-histidine (H), or L-lysine (K), Alternatively, it is a residue of L-glutamic acid (G).
  • L-glutamate oxidase variants of the invention have more than one mutation
  • such mutations are combinations of D236 with other mutations (eg, D236 and Q338, D236 and R339, D236 and T416), T311. 2 including combinations of and other mutations (eg, T311 and D236, T311 and Q457), and combinations of Q457 and other mutations (eg, Q457 and D236, Q457 and T311, Q457 and Q338, Q457 and R339). It may be one or more mutations.
  • one or more mutations capable of enhancing the oxidative activity of the L-glutamate oxidase variant are A106S, C210S, Q235E, D236E, D237E, P244H, T311S, W313F, Q333E, I334V, I334L, M336L in SEQ ID NO: 3. , Q338E, R339K, T416S, A438P, K441E, Y455F, Q456R, Q457E, Q457K, L505I, P558A, C561S, and one or more amino acid residues (eg, 1, 2, or 3) selected from the group consisting of P569A.
  • amino acid residues eg, 1, 2, or 3
  • mutations are combinations of D236E and other mutations (eg, D236E and Q338E, D236E and R339K, D236E and T416S), T311S. 2 including combinations of and other mutations (eg, T311S and D236E, T311S and Q457E), and combinations of Q457E and other mutations (eg, Q457E and D236E, Q457E and T311S, Q457E and Q338E, Q457E and R339K). It may be one or more mutations.
  • D236E and other mutations eg, D236E and Q338E, D236E and R339K, D236E and T416S
  • T311S. 2 including combinations of and other mutations (eg, T311S and D236E, T311S and Q457E), and combinations of Q457E and other mutations (eg, Q457E and D236E
  • an enzyme of any organism eg, microorganism, animal, and plant
  • an enzyme of a microorganism belonging to the genus Streptomyces can be used. Is preferably used.
  • Streptomyces SP X-119-6 is preferable.
  • the L-glutamate oxidase variant of the present invention may also contain other peptide components (eg, tag portion) at the C-terminus or N-terminus.
  • Other peptide components that can be contained in the L-glutamate oxidase variant of the present invention include, for example, peptide components that facilitate purification of the target protein (eg, tag portions such as histidine tag, Strip-tag II; glutathione-S).
  • -Proteins commonly used for purification of target proteins such as transferases and maltose-binding proteins
  • peptide components that improve the solubility of target proteins eg, Nus-tag
  • peptide components that act as chapelons eg, trigger factors
  • examples thereof include a functional protein or a domain of the protein, or a peptide component as a linker that connects them with an L-glutamate oxidase variant.
  • the L-glutamate oxidase variant of the present invention can be prepared using the transformed microorganism of the present invention expressing the L-glutamate oxidase variant of the present invention, or by using a cell-free system or the like.
  • the transformed microorganism of the present invention can be prepared, for example, by preparing an expression vector of the present invention and then introducing this expression vector into a host.
  • the expression vector of the present invention contains the polynucleotide of the present invention (eg, DNA, RNA) encoding the L-glutamate oxidase variant of the present invention.
  • the expression vectors of the invention further include regions such as regions encoding promoter, terminator and drug (eg, tetracycline, ampicillin, kanamycin, hyglomycin, phosphinosricin) resistance genes.
  • drug eg, tetracycline, ampicillin, kanamycin, hyglomycin, phosphinosricin
  • the expression vector of the present invention may be a plasmid or an integrated vector.
  • the expression vector of the present invention may also be a viral vector or a cell-free vector.
  • the expression vector of the present invention further comprises a polynucleotide encoding another peptide component that can be added to the L-glutamate oxidase variant of the present invention at the 3'or 5'terminal side with respect to the polynucleotide of the present invention.
  • Examples of the polypeptide encoding other peptide components include a polypeptide encoding a peptide component that facilitates purification of the target protein as described above, and a peptide component that improves the solubility of the target protein as described above.
  • Examples include polynucleotides, polynucleotides encoding peptide components that act as chapelons, proteins with other functions or domains of proteins, or polynucleotides encoding peptide components as linkers that link them to L-glutamate oxidase variants.
  • Various expression vectors are available, including polynucleotides encoding other peptide components. Therefore, such an expression vector may be used for producing the expression vector of the present invention.
  • an expression vector containing a polynucleotide encoding a peptide component that facilitates purification of the target protein eg, pET-15b, pET-51b, pET-41a, pMAL-p5G
  • a peptide component that improves the solubility of the target protein eg, pET-15b, pET-51b, pET-41a, pMAL-p5G
  • Expression vector containing a polynucleotide encoding a polypeptide eg, pET-50b
  • an expression vector containing a polynucleotide encoding a peptide component acting as a chaperon eg, pCold TF
  • an expression vector containing a polynucleotide encoding a peptide component as a linker that ligates the L-glutamate oxidase variant can be utilized.
  • the expression vector of the present invention comprises a region of the present invention encoding a cleavage site by a protease. It may be included between a polynucleotide encoding an L-glutamate oxidase variant and a polynucleotide encoding another peptide component.
  • Examples of the host for expressing the L-glutamate oxidase variant of the present invention include Escherichia bacteria such as Escherichia coli and Corinebacterium bacteria [eg, Corinebacterium glutamicum]. , And various prokaryotic cells such as Bacillus subtilis [eg, Bacillus subtilis], Saccharomyces cerevisiae [eg, Saccharomyces cerevisiae], Pihia bacterium [eg, Pihia sti. Various eukaryotic cells can be used, including Pichia stipitis)] and Aspergillus bacteria [eg, Aspergillus oryzae].
  • Escherichia bacteria such as Escherichia coli and Corinebacterium bacteria [eg, Corinebacterium glutamicum].
  • various prokaryotic cells such as Bacillus subtilis [eg, Bacillus subtilis], Saccharomyces cerevisiae [eg, Saccharomyces cerevisiae],
  • a host for expressing the L-glutamate oxidase variant of the present invention a microorganism that does not express a protease capable of cleaving the L-glutamate oxidase variant (eg, a microorganism belonging to the genus Streptomyces) is preferably used. You can also do it.
  • a strain lacking a predetermined gene may be used.
  • the transforming microorganism include a transforming microorganism having an expression vector in the cytoplasm and a transforming microorganism in which a target gene is introduced into the genome.
  • the transformed microorganism of the present invention can be cultured using a predetermined culture device (eg, test tube, flask, jar fermenter), for example, in a medium having the composition described below.
  • Culture conditions can be set as appropriate.
  • the culture temperature may be 10 ° C. to 37 ° C.
  • the pH may be 6.5 to 7.5
  • the culture time may be 1 h to 100 h.
  • the culture may be carried out while controlling the dissolved oxygen concentration.
  • the dissolved oxygen concentration (DO value) in the culture solution may be used as an index for control.
  • the culture may be a batch culture or a fed-batch culture. In the case of fed-batch culture, the culture can be continued by continuously or discontinuously adding a solution serving as a sugar source or a solution containing phosphoric acid to the culture solution.
  • the host to be transformed is as described above, but if Escherichia coli is described in detail, it can be selected from Escherichia coli JM109 strain, DH5 ⁇ strain, HB101 strain, BL21 (DE3) strain and the like, which are subspecies of Escherichia coli K12 strain.
  • a method for transforming and a method for selecting transformed microorganisms are also described in Molecular Cloning: A Laboratory Manual, 3rd edition, Cold Spring Harbor press (2001/01/15) and the like.
  • a method for producing transformed Escherichia coli and producing a predetermined enzyme using the transformed Escherichia coli will be described more specifically as an example.
  • promoter for expressing the polynucleotide of the present invention usually E.I.
  • Promoters used for heterologous protein production in colli can be used, such as PhoA, PhoC, T7 promoter, lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, T5 promoter and the like. Strong promoters are mentioned, with PhoA, PhoC, and lac being preferred.
  • the vector examples include pUC (eg, pUC19, pUC18), pSTV, pBR (eg, pBR322), pHSG (eg, pHSG299, pHSG298, pHSG399, pHSG398), RSF (eg, RSF1010), pACYC (eg, RSF1010), pACYC (eg, pACYC). pACYC177, pACYC184), pMW (eg, pMW119, pMW118, pMW219, pMW218), pQE (eg, pQE30), and derivatives thereof may be used.
  • a vector of phage DNA may be used.
  • an expression vector containing a promoter and capable of expressing the inserted DNA sequence may be used.
  • the vector may be pUC, pSTV, pMW.
  • a terminator which is a transcription termination sequence, may be linked downstream of the polynucleotide of the present invention.
  • examples of such a terminator include a T7 terminator, a fd phage terminator, a T4 terminator, a tetracycline resistance gene terminator, and an Escherichia coli trpA gene terminator.
  • the vector for introducing the polynucleotide of the present invention into Escherichia coli is preferably a so-called multi-copy type, and examples thereof include a plasmid having a replication initiation site derived from ColE1, such as a pUC-based plasmid, a pBR322-based plasmid, or a derivative thereof. Be done.
  • the "derivative” means a plasmid that has been modified by base substitution, deletion, insertion and / or addition.
  • the vector has a marker such as an ampicillin resistance gene.
  • a marker such as an ampicillin resistance gene.
  • an expression vector having a strong promoter is commercially available [eg, pUC system (manufactured by Takara Bio Inc.), pPROK system (manufactured by Clonetech), pKK233-2 (manufactured by Clonetech)].
  • the L-glutamate oxidase variant of the present invention can be obtained by transforming Escherichia coli with the obtained expression vector of the present invention and culturing this Escherichia coli.
  • a medium usually used for culturing Escherichia coli such as M9-casamino acid medium and LB medium
  • the medium may contain a predetermined carbon source, nitrogen source, coenzyme (eg, pyridoxine hydrochloride).
  • coenzyme eg, pyridoxine hydrochloride
  • peptone, yeast extract, NaCl, glucose, sulfonyl 4 , ammonium sulfate, potassium dihydrogen phosphate, ferric sulfate, manganese sulfate, and the like may be used.
  • the culture conditions and production-inducing conditions are appropriately selected according to the types of markers, promoters, host bacteria, etc. of the vector used.
  • the L-glutamate oxidase variant of the present invention is a crushed product by recovering the transformed microorganism of the present invention and then disrupting (eg, sonication, homogenization) or lysing (eg, lysozyme treatment) the cells. And can be obtained as a lysate.
  • the L-glutamate oxidase variant of the present invention can be obtained by subjecting such crushed products and lysates to techniques such as extraction, precipitation, filtration, and column chromatography.
  • the present invention provides a method for analyzing L-glutamic acid.
  • the analytical method of the present invention may include measuring L-glutamate contained in a test sample using the L-glutamate oxidase variant of the present invention.
  • the test sample is not particularly limited as long as it is a sample suspected of containing L-glutamic acid, and is, for example, a biological sample (eg, blood, urine, saliva, tears, etc.), a food or beverage product (eg, an energy drink, etc.). Amino acid drinks, etc.).
  • the L-glutamic acid in the test sample has a high concentration (eg, a concentration of 1 mM or more such as 1 mM or more and less than 1M) even at a low concentration (eg, a concentration of 1 mM or more and less than 1 mM or less than 1 mM). May be good.
  • the analysis method of the present invention is not particularly limited as long as L-glutamate can be measured using the L-glutamate oxidase variant of the present invention, and the produced 2-oxoglutamate may be detected, and 2-oxoglutamate may be detected.
  • NH 3 or H 2 O 2 which is by-produced with the formation of H 2 O 2 may be detected.
  • it may be conjugated with another reaction to detect the product of the conjugate reaction. Examples of such a conjugated reaction include the following conjugated reactions.
  • the measurement of L-glutamate can be performed using TOOS, 4-AA, and peroxidase in addition to the L-glutamate oxidase variant of the present invention.
  • the test sample was mixed with TOOS and 4-AA, and peroxidase in an aqueous solution (eg, buffer), and then the mixed sample was subjected to the above enzymatic reaction, and finally, the dye compound produced.
  • L-glutamic acid is measured by detecting the absorbance (about 555 nm) of. The measurement can be performed qualitatively or quantitatively.
  • the measurement may be performed, for example, based on the endpoint method in which the measurement is performed until all the substrates have reacted, or may be performed based on the rate method (initial velocity method). Since the amount of oxygen required in the oxidation reaction is very small, the required amount of oxygen can be covered by the dissolved oxygen in the reaction system. Therefore, normally, oxygen or a gas containing oxygen is forcibly supplied into the reaction system. do not have to.
  • the L-glutamate oxidase variant of the present invention does not react with amino acids other than L-glutamate (eg, L- ⁇ -amino acid), or has extremely low reactivity with it. Therefore, even when the test sample contains not only L-glutamate but also other amino acids, the amount of L-glutamate in the test sample can be reduced by using the L-glutamate oxidase variant of the present invention. It can be evaluated specifically.
  • amino acids other than L-glutamate eg, L- ⁇ -amino acid
  • the amount of L-glutamate in the test sample can be specifically evaluated.
  • the present invention includes (A) a kit for L-glutamate analysis containing the L-glutamate oxidase variant of the present invention.
  • the kit of the present invention further comprises at least one of (B) a reaction buffer or buffer salt, (C) a hydrogen peroxide detection reagent, (D) an ammonia detection reagent, and (E) a 2-oxoglutaric acid detection reagent. Can be done.
  • reaction buffer solution or buffer salt is used to maintain the pH in the reaction solution at a value suitable for the desired enzymatic reaction.
  • the reagent for detecting hydrogen peroxide is used when detecting hydrogen peroxide by, for example, coloring or fluorescence.
  • a combination of peroxidase and a color former which can be a substrate thereof can be mentioned, and specific examples thereof include, but are not limited to, a combination of horseradish peroxidase and 4-aminoantipyrine and phenol.
  • ammonia detection reagent examples include the indophenol method in which phenol and hypochlorous acid are combined.
  • Examples of the (E) 2-oxoglutaric acid detection reagent include 2-oxoacid reductase.
  • the present invention also provides a detection system for L-glutamate analysis, which comprises (a) a device and (b) an L-glutamate oxidase variant of the present invention.
  • the L-glutamate oxidase variant of the present invention may exist as a unit independent of the microdevice that may be supplied into the device during use, but may be pre-injected, immobilized or placed in the device. good.
  • the L-glutamate oxidase variant of the present invention is provided in a form pre-injected, immobilized or placed in the device. Immobilization or placement of the L-glutamate oxidase variant of the present invention on a device is performed directly or indirectly.
  • a microdevice such as a microchannel chip provided with a channel can be preferably used.
  • the detection system for L-glutamate analysis of the present invention has one or more components selected from the group consisting of (c) a reaction buffer or buffer salt, a hydrogen peroxide detection reagent, an ammonia detection reagent, and a 2-oxoglutaric acid detection reagent. It may contain additional elements.
  • all of the components of (c) may be provided in a form contained in the device.
  • some of the components of (c) may be provided in a form housed in the device and the rest may be provided in a form not housed in the device (eg, in a form housed in a different container). ..
  • the component (c) that is not contained in the device may be used by being injected into the device during the measurement of the target substance.
  • a first area for mixing a sample and a component of (c) to prepare a mixed solution, and the prepared mixed solution are used with the L-glutamate oxidase variant of the present invention.
  • a device comprising a second area for detecting L-glutamate in contact (a device in which the mixing and detection steps are performed in different areas); 2) the sample and the components of (c) and the L of the invention.
  • -A device comprising a zone for detecting L-glutamate by the L-glutamate oxidase variant of the present invention by mixing with a glutamate oxidase variant (a device in which each step of mixing and detection is performed in the same zone); And 3) a flow path that allows mixing of the sample with the components of (c) (and optionally with the L-glutamate oxidase variant of the invention), and L- by the L-glutamate oxidase variant of the invention.
  • a device provided with an area for detecting glutamic acid when a sample is injected into the injection port of the device, the sample etc. is automatically mixed by being sent through a flow path, and L-glutamate in the obtained mixed solution is released.
  • the device of 3 particularly the device of 3 in the form of a microchannel device is preferable.
  • the L-glutamate oxidase variant of the present invention may be provided in a liquid feed flowing through a flow path, or may be provided in a form fixed or arranged in a detection area, but is preferably detected. It is provided in a fixed or placed form in the area.
  • the present invention also provides an enzyme sensor for L-glutamate analysis, which comprises (a) a detection electrode and (b) an L-glutamate oxidase variant of the present invention immobilized or placed on the detection electrode.
  • the L-glutamate oxidase variant of the present invention is fixed or placed directly or indirectly on the electrode.
  • a hydrogen peroxide detection electrode for example, a hydrogen peroxide detection electrode can be used, and more specifically, an enzyme-type hydrogen peroxide detection electrode, a diaphragm-type hydrogen peroxide detection electrode, and the like are examples. Is listed as.
  • L-glutamic acid can be analyzed by detecting hydrogen peroxide generated when L-glutamic acid is oxidized by L-glutamic acid oxidizing activity.
  • the configurations adopted by the known sensors can be used as they are or modified as appropriate.
  • GluOX mutant was prepared as follows. First, the gene of GluOX (SEQ ID NO: 3) was chemically synthesized and cloned into the NdeI-HindIII cloning site of pET-16b (Merck Co., Ltd.). Hereinafter, the plasmid containing the GluOX sequence (SEQ ID NO: 3) to which His-tag is added to the N-terminal is referred to as pET-16b-GluOX. The standard GluOX (SEQ ID NO: 1) was also prepared in the same manner.
  • the GluOX mutant was prepared using the KAPA HiFi HotStart ReadyMix PCR kit (Nippon Genetics Co., Ltd.), using pET-16b-GluOX as a template, according to the general protocol of the site-specific mutagenesis technique, to the GluOX gene. Mutation was introduced. When introducing a single mutation into a specific amino acid, inserting a specific amino acid residue, or deleting a specific amino acid residue, a mutated plasmid was prepared according to this method.
  • Example 2 Expression and purification of GluOX
  • a method for purifying the expression of GluOX of SEQ ID NO: 3 is described.
  • a transformant of Escherichia coli BL21 (DE3) was obtained using pET-16b-GluOX according to a standard method.
  • the transformant of BL21 (DE3) by pET-16b-GluOX will be referred to as pET-16b-GluOX-BL21 (DE3).
  • GluOX The preparation of GluOX was carried out as follows. First, the glycerol stock of pET-16b-GluOX-BL21 (DE3) was inoculated into an LB agar plate containing 100 ⁇ g / mL ampicillin, and cultured at 37 ° C. overnight. 3 mL of LB liquid medium containing 100 ⁇ g / mL ampicillin was placed in a 14 mL round tube, single colonies on the LB plate were inoculated and cultured at 37 ° C. overnight. After putting 6 mL of LB liquid medium containing 100 ⁇ g / mL ampicillin in a 50 mL tube, 60 ⁇ L of the culture solution was added, and the cells were cultured at 37 ° C.
  • Example 3 Mutant screening by activity measurement The activity evaluation of the reference GluOX and GluOX mutants prepared in Examples 1 and 2 was carried out according to the following procedure. First, 0.2M HEPES, pH 7.5 in 100 ⁇ L, 10 mM glutamic acid solution 20 ⁇ L, 30 mM N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3-methoxyaniline solution (TOOS solution) 20 ⁇ L, 0.1 M The absorbance at 555 nm of the mixed solution of 4-aminoantipyrine 2 ⁇ L, 1500 U / mL peroxidase 2 ⁇ L, and ultrapure water 36 ⁇ L was measured with a microplate reader (Varioscan LUX, Thermo Fisher SCIENTIFIC).
  • Table 1 shows the activity of the reference GluOX and the GluOX mutant lacking L467-R506 and R670-S687 (SEQ ID NO: 3) as relative activity when the reference GluOX was used as a control.
  • Table 2 shows the activity of the reference GluOX and the GluOX mutant in which a specific amino acid residue was inserted or mutated with respect to the GluOX mutant lacking L467-R506 and R670-S687 (SEQ ID NO: 3).
  • Example 4 Determining the region near the boundary The structure when the three-dimensional structure (PDB ID: 2E1M) of the heterooctameric ( ⁇ 1 2 ⁇ 2 2 ⁇ 2 ⁇ 2) of the natural GluOX is displayed by PyMOL, which is molecular graphics software. I could not observe a part of. This is because when the three-dimensional structure of a protein is experimentally determined by X-ray crystal structure analysis, it does not have a constant three-dimensional structure due to the high motility of these regions.
  • Table 4 shows the region in which the structure of the amino acid residue in SEQ ID NO: 3 was confirmed in the three-dimensional structure of the hetero octamer ( ⁇ 1 2 ⁇ 2 2 ⁇ 2 ⁇ 2) of the natural GluOX.
  • the region near the boundary was determined so as to include the region where the three-dimensional structure could not be observed. That is, the region near the boundary corresponds to the amino acid sequence of SEQ ID NO: 3 as follows. Region near the boundary between ⁇ 1 region and ⁇ 2 region: Region consisting of amino acid residues at positions 349 to 363; Region near the boundary between ⁇ 2 region and ⁇ region: Region consisting of amino acid residues at positions 372 to 377; Boundary neighborhood region: A region consisting of amino acid residues at positions 466 to 469.
  • the L-glutamate oxidase variant of the present invention has improved enzyme activity as compared with the wild type, rapid and highly sensitive measurement of L-glutamate and / or production of 2-oxoglutamate and / or It is useful as an L-glutamate test reagent.
  • the present invention is useful in a wide range of fields such as biological research, health nutrition, medical care, and food manufacturing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Plant Pathology (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、L-グルタミン酸の測定を可能にする代替的なL-グルタミン酸オキシダーゼを提供する。より具体的には、本発明は、以下(a)または(b)のL-グルタミン酸オキシダーゼ変異体などを提供する: (a)配列番号3のアミノ酸配列に対して90%以上の同一性を示すアミノ酸配列を含み、かつ、L-グルタミン酸の酸化活性を有するL-グルタミン酸オキシダーゼ変異体(但し、配列番号1のアミノ酸配列を含むL-グルタミン酸オキシダーゼを除く);または (b)前記(a)のL-グルタミン酸オキシダーゼ変異体における(1)α1領域とα2領域の境界近傍領域中の部位、(2)α2領域とγ領域の境界近傍領域中の部位、および(3)γ領域とβ領域の境界近傍領域中の部位からなる群より選ばれる1つ以上の部位において、1~20個のアミノ酸残基からなるペプチドリンカーが挿入されており、かつ、L-グルタミン酸の酸化活性を有するL-グルタミン酸オキシダーゼ変異体。

Description

L-グルタミン酸オキシダーゼ変異体
 本発明は、L-グルタミン酸オキシダーゼ変異体などに関する。
 L-グルタミン酸オキシダーゼ(GluOX)は、次の反応を触媒する酵素である(EC1.4.3.11)。
 L-グルタミン酸+O+HO  →  2-オキソグルタル酸+H+NH
 従来、GluOXは、タンパク質の単離精製に基づく解析により、異なるサブユニットを有するヘテロ多量体(αβγ)として活性を発揮することが知られていたが、GluOXをコードする遺伝子については未同定であった。その後、GluOX遺伝子がαβγ含有鎖(単一鎖)を含む未成熟タンパク質(分子量約70kDa)をコードすること、ならびにGluOXは、αβγ含有単一鎖からなるサブユニットを2つ有するホモ2量体((αβγ含有単一鎖))としても活性を保持することが報告された(特許文献1)。その後の詳細な解析の結果、現在では、天然型GluOXは、プロテアーゼによりαβγの3つのセグメントに切断されるのみならず、α領域内においてもプロテアーゼにより切断されて、2つのα断片(必要に応じて、本件ではα1、α2と称する)、βユニット、およびγユニットを含むヘテロ8量体(α1α2βγ)の独特な立体構造をとることで、その活性を発揮すると考えられている(非特許文献1)。
 L-グルタミン酸は、食品中の主要なうまみ成分として知られており、また、血液等の生体試料中にも存在する重要な成分である。L-グルタミン酸は、GluOXを用いて容易に測定することができる。したがって、GluOXは、試料中のL-グルタミン酸の測定に利用されている。
国際公開第2001/079503号
Arima J et al.,FEBS J. 2009 Jul;276(14):3894-903
 本発明の目的は、L-グルタミン酸の測定を可能にするL-グルタミン酸オキシダーゼを提供することである。
 本発明者らは、予想外なことに、特許文献1に記載されるαβγ含有単一鎖のGluOX(配列番号1のアミノ酸配列)におけるγ領域とβ領域の間のプロセシング除去領域(配列番号1のアミノ酸配列における467~506位のアミノ酸残基からなる領域)、およびβ領域下流のプロセシング除去領域(配列番号1のアミノ酸配列における670~687位のアミノ酸残基からなる領域)の双方を欠損させた単一鎖ポリペプチド(配列番号3のアミノ酸配列からなるポリペプチド)が、特許文献1に記載されるαβγ含有単一鎖のGluOXよりも高いL-グルタミン酸の酸化活性を示すことができることを見出した(図1、実施例)。
 本発明者らはまた、上記単一鎖ポリペプチドにおけるα1領域とα2領域の境界近傍領域、α2領域とγ領域の境界近傍領域、およびγ領域とβ領域の境界近傍領域(特に、α1領域とα2領域の境界近傍領域、およびα2領域とγ領域の境界近傍領域)における少なくとも1つ以上の境界近傍領域中にペプチドリンカーを挿入した単一鎖ポリペプチドが上記未成熟タンパク質よりも高いL-グルタミン酸の酸化活性を示すことができることを見出した(図1、実施例)。
 本発明者らはさらに、特許文献1に記載されるαβγ含有単一鎖のGluOXよりも高いL-グルタミン酸の酸化活性を示すことができる複数の変異体を見出すことに成功し、本発明を完成するに至った。
 すなわち、本発明は、以下のとおりである。
〔1〕以下(a)または(b)のL-グルタミン酸オキシダーゼ変異体:
(a)配列番号3のアミノ酸配列に対して90%以上の同一性を示すアミノ酸配列を含み、かつ、L-グルタミン酸の酸化活性を有するL-グルタミン酸オキシダーゼ変異体(但し、配列番号1のアミノ酸配列を含むL-グルタミン酸オキシダーゼを除く);または
(b)前記(a)のL-グルタミン酸オキシダーゼ変異体における(1)α1領域とα2領域の境界近傍領域中の部位、(2)α2領域とγ領域の境界近傍領域中の部位、および(3)γ領域とβ領域の境界近傍領域中の部位からなる群より選ばれる1つ以上の部位において、1~20個のアミノ酸残基からなるペプチドリンカーが挿入されており、かつ、L-グルタミン酸の酸化活性を有するL-グルタミン酸オキシダーゼ変異体であって、
 α1領域とα2領域の境界近傍領域中の部位が、配列番号3における349~363位のアミノ酸残基からなる領域中の部位であり、
 α2領域とγ領域の境界近傍領域中の部位が、配列番号3における372~377位のアミノ酸残基からなる領域中の部位であり、かつ
 γ領域とβ領域の境界近傍領域中の部位が、配列番号3における466~469位のアミノ酸残基からなる領域中の部位である、L-グルタミン酸オキシダーゼ変異体。
〔2〕L-グルタミン酸オキシダーゼ変異体が、ストレプトマイセス属に属する微生物に由来するL-グルタミン酸オキシダーゼの変異体である、〔1〕のL-グルタミン酸オキシダーゼ変異体。
〔3〕ストレプトマイセス属に属する微生物が、ストレプトマイセス・エスピー X-119-6である、〔2〕のL-グルタミン酸オキシダーゼ変異体。
〔4〕前記ペプチドリンカーが、(1)α1領域とα2領域の境界近傍領域中の部位、もしくは(2)α2領域とγ領域の境界近傍領域中の部位の一方、またはそれらの双方に挿入されている、〔1〕~〔3〕のいずれかのL-グルタミン酸オキシダーゼ変異体。
〔5〕α1領域とα2領域の境界近傍領域中の部位が、配列番号3における356位と357位のアミノ酸残基の間の部位であり、
 α2領域とγ領域の境界近傍領域中の部位は、配列番号3における376位と377位のアミノ酸残基の間の部位であり、または
 γ領域とβ領域の境界近傍領域中の部位は、配列番号3における466位と467位のアミノ酸残基の間の部位である、〔1〕~〔4〕のいずれかのL-グルタミン酸オキシダーゼ変異体。
〔6〕L-グルタミン酸オキシダーゼ変異体が、配列番号3におけるA106、C210、Q235、D236、D237、P244、T311、W313、Q333、I334、M336、Q338、R339、T416、A438、K441、Y455、Q456、Q457、L505、P558、C561、およびP569からなる群より選ばれる1つ以上のアミノ酸残基の変異を有する、〔1〕~〔5〕のいずれかのL-グルタミン酸オキシダーゼ変異体。
〔7〕L-グルタミン酸オキシダーゼ変異体が、配列番号3におけるA106S、C210S、Q235E、D236E、D237E、P244H、T311S、W313F、Q333E、I334V、I334L、M336L、Q338E、R339K、T416S、A438P、K441E、Y455F、Q456R、Q457E、Q457K、L505I、P558A、C561S、およびP569Aからなる群より選ばれる1つ以上のアミノ酸残基の変異を有する、〔1〕~〔6〕のいずれかのL-グルタミン酸オキシダーゼ変異体。
〔8〕〔1〕~〔7〕のいずれかのL-グルタミン酸オキシダーゼ変異体を用いて被検試料中に含まれるL-グルタミン酸を測定することを含む、L-グルタミン酸の分析方法。
〔9〕L-グルタミン酸の測定が、〔1〕~〔7〕のいずれかのL-グルタミン酸オキシダーゼ変異体に加えて、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メトキシアニリン(TOOS)および4-アミノアンチピリン、ならびにペルオキシダーゼを用いて行われる、〔8〕の方法。
〔10〕〔1〕~〔7〕のいずれかのL-グルタミン酸オキシダーゼ変異体の存在下でL-グルタミン酸から2-オキソグルタル酸を生成することを含む、2-オキソグルタル酸の製造方法。
〔11〕〔1〕~〔7〕のいずれかのL-グルタミン酸オキシダーゼ変異体をコードするポリヌクレオチド。
〔12〕〔11〕のポリヌクレオチドを含む発現ベクター。
〔13〕〔1〕~〔7〕のいずれかのL-グルタミン酸オキシダーゼ変異体をコードするポリヌクレオチド、及びそれに作動可能に連結されたプロモーターを含む発現単位を含む形質転換微生物。
〔14〕〔1〕~〔7〕のいずれかのL-グルタミン酸オキシダーゼ変異体を、〔13〕の形質転換微生物を用いて生成することを含む、L-グルタミン酸オキシダーゼ変異体の製造方法。
〔15〕〔1〕~〔7〕のいずれかのL-グルタミン酸オキシダーゼ変異体を含む、L-グルタミン酸検出試薬又はキット。
〔16〕反応用緩衝液または緩衝塩、過酸化水素検出試薬、アンモニア検出試薬および2-オキソグルタル酸検出試薬からなる群より選ばれる1つ以上をさらに含む、〔15〕のL-グルタミン酸検出試薬又はキット。
〔17〕(a)デバイス、および(b)〔1〕~〔7〕のいずれかのL-グルタミン酸オキシダーゼ変異体を含む、L-グルタミン酸分析用検出系。
〔18〕(c)反応用緩衝液または緩衝塩、過酸化水素検出試薬、アンモニア検出試薬および2-オキソグルタル酸検出試薬からなる群より選ばれる1つ以上をさらに含む、〔17〕のL-グルタミン酸分析用検出系。
〔19〕(a)検出用電極、および(b)検出用電極に固定または配置された、〔1〕~〔7〕のいずれかのL-グルタミン酸オキシダーゼ変異体を含む、L-グルタミン酸分析用酵素センサー。
 本発明のL-グルタミン酸オキシダーゼ変異体は、L-グルタミン酸に対して高い活性を有するため、L-グルタミン酸の迅速かつ高感度な測定、および/または2-オキソグルタル酸の製造に有用である。本発明のL-グルタミン酸オキシダーゼ変異体はまた、プロテアーゼ処理およびプロテアーゼ処理物についてその後の精製処理が不要であるため、調製が容易である。本発明の分析方法は、例えば、生体研究、健康栄養、医療、食品製造など広範な分野において有用である。
図1は、L-グルタミン酸オキシダーゼ(GluOX)のプロセシングと本発明のL-グルタミン酸オキシダーゼ変異体との間の関係を示す図である。GluOX遺伝子は、α領域(α1領域、α2領域)、β領域、およびγ領域をコードする単一鎖ポリペプチドを天然に発現する。天然では、この単一鎖ポリペプチドは、この単一鎖ポリペプチドを天然に産生する微生物(ストレプトマイセス属に属する微生物)が発現するプロテアーゼによるプロセシングにより切断されて、ヘテロ8量体(α1α2βγ)を形成することが知られている。本発明のGluOX変異体は、(A)この単一鎖ポリペプチドにおけるγ領域およびβ領域間のプロセシング除去領域、およびβ領域下流のプロセシング除去領域の双方を欠損させた短縮型単一鎖ポリペプチド、ならびに(B)上記(A)の短縮型単一鎖ポリペプチドにおける(1)α1領域とα2領域の境界近傍領域中の部位、(2)α2領域とγ領域の境界近傍領域中の部位、および(3)γ領域とβ領域の境界近傍領域中の部位からなる群より選ばれる1つ以上の部位においてペプチドリンカーが挿入されている挿入型単一鎖ポリペプチドに関する。 図2は、ストレプトマイセス・エスピー X-119-6の野生型GluOXのアミノ酸配列(配列番号1)を示す図である。この野生型GluOXのアミノ酸配列(配列番号1)は、配列番号2のヌクレオチド配列によりコードされる。各領域は、配列番号1のアミノ酸配列において、下記のとおり対応する。α領域:1~376位のアミノ酸残基からなる領域(α1領域:1~352位のアミノ酸残基からなる領域;α2領域:361~376位のアミノ酸残基からなる領域);γ領域:377~466位のアミノ酸残基からなる領域;β領域:507~669位のアミノ酸残基からなる領域。プロテアーゼ切断部位(黒三角)は、配列番号1のアミノ酸配列において、下記のとおり対応する。α領域内のプロテアーゼ切断領域:353~360位のアミノ酸残基の間(下線部);α領域とγ領域の境界部位:376位と377位のアミノ酸残基の間;γ領域の下流部位:466位と467位のアミノ酸残基の間;β領域の上流部位:506位と507位のアミノ酸残基の間;β領域の下流領域:664位と669位のアミノ酸残基の間(下線部)。L-グルタミン酸オキシダーゼ変異体に対して導入され得る好ましい点変異の位置は、A106、C210、Q235、D236、D237、P244、T311、W313、Q333、I334、M336、Q338、R339、T416、A438、K441、Y455、Q456、Q457、L545、L598、C601、およびP609である。 図3は、ストレプトマイセス・エスピー X-119-6の野生型GluOXのアミノ酸配列(配列番号1)におけるγ領域およびβ領域間のプロセシング除去領域(配列番号1のアミノ酸配列において467~506位のアミノ酸残基からなる領域)、およびβ領域下流のプロセシング除去領域(配列番号1のアミノ酸配列において670~687位のアミノ酸残基からなる領域)の双方を欠損させた短縮型単一鎖ポリペプチド(配列番号3のアミノ酸配列からなるポリペプチド)を示す図である。各領域は、配列番号3のアミノ酸配列において、下記のとおり対応する。α領域:1~376位のアミノ酸残基からなる領域(α1領域:1~352位のアミノ酸残基からなる領域;α2領域:361~376位のアミノ酸残基からなる領域);γ領域:377~466位のアミノ酸残基からなる領域;β領域:467~629位のアミノ酸残基からなる領域。各近傍領域は、配列番号3のアミノ酸配列において、下記のとおり対応する。α1領域とα2領域の境界近傍領域:349~363位のアミノ酸残基からなる領域;α2領域とγ領域の境界近傍領域:372~377位のアミノ酸残基からなる領域;γ領域とβ領域の境界近傍領域:466~469位のアミノ酸残基からなる領域。下線部は、図2で説明したα領域内のプロテアーゼ切断領域;およびβ領域の下流領域に対応する。L-グルタミン酸オキシダーゼ変異体に対して導入され得る好ましい点変異の位置は、A106、C210、Q235、D236、D237、P244、T311、W313、Q333、I334、M336、Q338、R339、T416、A438、K441、Y455、Q456、Q457、L505(配列番号1におけるL545に対応)、P558(配列番号1におけるL598に対応)、C561(配列番号1におけるC601に対応)、およびP569(配列番号1におけるP609に対応)である。
 本発明は、以下(a)または(b)のL-グルタミン酸オキシダーゼ変異体を提供する:
(a)配列番号3のアミノ酸配列に対して90%以上の同一性を示すアミノ酸配列を含み、かつ、L-グルタミン酸の酸化活性を有するL-グルタミン酸オキシダーゼ変異体(但し、配列番号1のアミノ酸配列を含むL-グルタミン酸オキシダーゼを除く);または
(b)(a)のL-グルタミン酸オキシダーゼ変異体における(1)α1領域とα2領域の境界近傍領域中の部位、(2)α2領域とγ領域の境界近傍領域中の部位、および(3)γ領域とβ領域の境界近傍領域中の部位からなる群より選ばれる1つ以上の部位において、1~20個のアミノ酸残基からなるペプチドリンカーが挿入されており、かつ、L-グルタミン酸の酸化活性を有するL-グルタミン酸オキシダーゼ変異体であって、
 α1領域とα2領域の境界近傍領域中の部位が、配列番号3における349~363位のアミノ酸残基からなる領域中の部位であり、
 α2領域とγ領域の境界近傍領域中の部位が、配列番号3における372~377位のアミノ酸残基からなる領域中の部位であり、かつ
 γ領域とβ領域の境界近傍領域中の部位が、配列番号3における466~469位のアミノ酸残基からなる領域中の部位である、L-グルタミン酸オキシダーゼ変異体。
 (a)のL-グルタミン酸オキシダーゼ変異体は、GluOX遺伝子により天然に発現される単一鎖ポリペプチド(配列番号1のアミノ酸配列)におけるγ領域およびβ領域間のプロセシング除去領域(配列番号1のアミノ酸配列における467~506位のアミノ酸残基からなる領域)、およびβ領域下流のプロセシング除去領域(配列番号1のアミノ酸配列における670~687位のアミノ酸残基からなる領域)の双方を欠損させた短縮型単一鎖ポリペプチド(配列番号3のアミノ酸配列からなるポリペプチド)に対応する。したがって、(a)のL-グルタミン酸オキシダーゼ変異体は、配列番号1のアミノ酸配列における467~506位および670~687位のアミノ酸残基からなる領域を含まない。
 (a)のL-グルタミン酸オキシダーゼ変異体における配列番号3のアミノ酸配列に対するアミノ酸配列の同一性パーセントの程度は、好ましくは92%以上、より好ましくは95%以上、さらにより好ましくは97%以上、最も好ましくは98%以上または99%以上であってもよい。アミノ酸配列の同一性パーセントの算出は、株式会社ゼネティックスのソフトウェアGENETYX Ver13.1.1を使用し、ORFにコードされるポリペプチド部分全長を用いて、Muscle alignmentもしくはClustalW alignmentもしくはMultiple sequence alignmentを行った後にGaps are take into accountの設定で計算させた際の数値を用いて行うことができる。
 (b)のL-グルタミン酸オキシダーゼ変異体において、ペプチドリンカーが挿入されている領域は、(1)α1領域とα2領域の境界近傍領域(配列番号3における349~363位のアミノ酸残基からなる領域)中の部位、(2)α2領域とγ領域の境界近傍領域(配列番号3における372~377位のアミノ酸残基からなる領域)中の部位、および(3)γ領域とβ領域の境界近傍領域(配列番号3における466~469位のアミノ酸残基からなる領域)中の部位からなる群より選ばれる1つ以上(例、1、2または3)の部位である。好ましくは、ペプチドリンカーが挿入されている領域は、(1)α1領域とα2領域の境界近傍領域中の部位、もしくは(2)α2領域とγ領域の境界近傍領域中の部位の一方、またはそれらの双方であってもよい。
 α1領域とα2領域の境界近傍領域中の部位は、好ましくは、α1領域とα2領域の境界領域(配列番号3における349~363位のアミノ酸残基からなる領域)中の部位であり、より好ましくは、配列番号3における356位と357位のアミノ酸残基の間の部位である。
 α2領域とγ領域の境界近傍領域中の部位は、α2領域とγ領域の境界近傍領域(配列番号3における372~377位のアミノ酸残基からなる領域)中の部位であり、好ましくは、配列番号3における376位と377位のアミノ酸残基の間の部位である。
 γ領域とβ領域の境界近傍領域中の部位は、γ領域とβ領域の境界近傍領域(配列番号3における466~469位のアミノ酸残基からなる領域)中の部位であり、好ましくは、配列番号3における466位と467位のアミノ酸残基の間の部位である。
 ペプチドリンカーは、1~20個のアミノ酸残基からなるペプチドリンカーである。ペプチドリンカーは、L-グルタミン酸オキシダーゼが有する部分アミノ酸配列とは異なるアミノ酸配列からなるものであってもよい。ペプチドリンカーは、2個以上、3個以上、4個以上、または5個以上のアミノ酸残基からなるものであってもよい。ペプチドリンカーはまた、18個以下、16個以下、14個以下、12個以下、または10個以下のアミノ酸残基からなるものであってもよい。より具体的には、ペプチドリンカーは、2~18個、3~16個、4~14個、5~12個、または5~10個のアミノ酸残基からなるものであってもよい。
 ペプチドリンカーを構成するアミノ酸残基の種類は、通常のタンパク質を構成する天然L-α-アミノ酸およびグリシン(G)の残基である。より具体的には、このような天然L-α-アミノ酸残基としては、L-アラニン(A)、L-アスパラギン(N)、L-システイン(C)、L-グルタミン(Q)、L-イソロイシン(I)、L-ロイシン(L)、L-メチオニン(M)、L-フェニルアラニン(F)、L-プロリン(P)、L-セリン(S)、L-スレオニン(T)、L-トリプトファン(W)、L-チロシン(Y)、L-バリン(V)、L-アスパラギン酸(D)、L-グルタミン酸(E)、L-アルギニン(R)、L-ヒスチジン(H)、およびL-リジン(K)の残基が挙げられる。好ましくは、ペプチドリンカーを構成するアミノ酸残基の種類は、可撓性が高いペプチドリンカーを構成し易いアミノ酸残基である。可撓性が高いペプチドリンカーを構成し易いアミノ酸残基としては、例えば、グリシン(G)、L-アラニン(A)、L-セリン(S)、およびL-スレオニン(T)が挙げられる。
 好ましくは、ペプチドリンカーは、GGGGS(配列番号4)またはその繰り返し配列である。繰り返し配列における繰り返し回数は、2~4回であるが、好ましくは2または3回であり、より好ましくは2回である。
 L-グルタミン酸の酸化活性は、次の反応を触媒する活性である。
 L-グルタミン酸+O+HO  →  2-オキソグルタル酸+H+NH
 本発明のL-グルタミン酸オキシダーゼ変異体が有するL-グルタミン酸の酸化活性は、配列番号1のアミノ酸配列からなるL-グルタミン酸オキシダーゼのものに比べて同等以上である限り特に限定されないが、好ましくは、配列番号1のアミノ酸配列からなるL-グルタミン酸オキシダーゼに比べて1.1倍以上のL-グルタミン酸の酸化活性(より好ましくは1.2倍以上のL-グルタミン酸の酸化活性)を有していてもよい。このようなL-グルタミン酸の酸化活性は、実施例に記載されるように、L-グルタミン酸(10mM)の酸化反応およびその共役反応を利用して測定することができる。
(L-グルタミン酸の酸化反応)L-グルタミン酸オキシダーゼにより触媒される反応
 L-グルタミン酸+O+HO  →  2-オキソグルタル酸+H+NH
(共役反応)ペルオキシダーゼにより触媒される反応
 H+TOOS+4-AA → 色素化合物(吸光度 約555nm)
TOOS:N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メトキシアニリン
4-AA:4-アミノアンチピリン
 本発明のL-グルタミン酸オキシダーゼ変異体が有するL-グルタミン酸の酸化活性はまた、特許文献1に記載されるαβγ含有単一鎖のL-グルタミン酸オキシダーゼよりも高いL-グルタミン酸の酸化活性を示す限り特に限定されない。好ましくは、本発明のL-グルタミン酸オキシダーゼ変異体が有するL-グルタミン酸の酸化活性は、配列番号3のアミノ酸配列からなるL-グルタミン酸オキシダーゼのものに比べて同程度以上であってもよい。本発明のL-グルタミン酸オキシダーゼ変異体が有するL-グルタミン酸の酸化活性は、特許文献1に記載されるαβγ含有単一鎖のL-グルタミン酸オキシダーゼ、または配列番号3のアミノ酸配列からなるL-グルタミン酸オキシダーゼ(好ましくは、配列番号3のアミノ酸配列からなるL-グルタミン酸オキシダーゼ)に比べて、より好ましくは1.1倍以上のL-グルタミン酸の酸化活性、さらにより好ましくは1.2倍以上のL-グルタミン酸の酸化活性、特に好ましくは1.3倍以上、1.4倍以上、1.5倍以上、1.6倍以上、1.7倍以上、または1.8倍以上のL-グルタミン酸の酸化活性を有していてもよい。このようなL-グルタミン酸の酸化活性は、上述のように、L-グルタミン酸(10mM)の酸化反応およびその共役反応を利用して測定することができる。
 本発明のL-グルタミン酸オキシダーゼ変異体は、L-グルタミン酸オキシダーゼ変異体の酸化活性を増強し得る1つ以上の変異を有していてもよい。このような変異としては、例えば、配列番号3におけるA106、C210、Q235、D236、D237、P244、T311、W313、Q333、I334、M336、Q338、R339、T416、A438、K441、Y455、Q456、Q457、L505、P558、C561、およびP569からなる群より選ばれる1つ以上(例、1、2、または3)のアミノ酸残基の変異が挙げられる。これらの部位における変異後のアミノ酸残基は、変異前のアミノ酸残基と異なる所望の天然L-α-アミノ酸残基である。このような所望の天然L-α-アミノ酸残基は、L-アラニン(A)、L-アスパラギン(N)、L-システイン(C)、L-グルタミン(Q)、L-イソロイシン(I)、L-ロイシン(L)、L-メチオニン(M)、L-フェニルアラニン(F)、L-プロリン(P)、L-セリン(S)、L-スレオニン(T)、L-トリプトファン(W)、L-チロシン(Y)、L-バリン(V)、L-アスパラギン酸(D)、L-グルタミン酸(E)、L-アルギニン(R)、L-ヒスチジン(H)、またはL-リジン(K)、またはL-グルタミン酸(G)の残基である。本発明のL-グルタミン酸オキシダーゼ変異体が2つ以上の変異を有する場合、このような変異は、D236と他の変異との組合せ(例、D236およびQ338、D236およびR339、D236およびT416)、T311と他の変異との組合せ(例、T311およびD236、T311およびQ457)、ならびにQ457と他の変異との組合せ(例、Q457およびD236、Q457およびT311、Q457およびQ338、Q457およびR339)を含む2つ以上の変異であってもよい。
 好ましくは、L-グルタミン酸オキシダーゼ変異体の酸化活性を増強し得る1つ以上の変異は、配列番号3におけるA106S、C210S、Q235E、D236E、D237E、P244H、T311S、W313F、Q333E、I334V、I334L、M336L、Q338E、R339K、T416S、A438P、K441E、Y455F、Q456R、Q457E、Q457K、L505I、P558A、C561S、およびP569Aからなる群より選ばれる1つ以上(例、1、2、または3)のアミノ酸残基の変異である。本発明のL-グルタミン酸オキシダーゼ変異体が2つ以上の変異を有する場合、このような変異は、D236Eと他の変異との組合せ(例、D236EおよびQ338E、D236EおよびR339K、D236EおよびT416S)、T311Sと他の変異との組合せ(例、T311SおよびD236E、T311SおよびQ457E)、ならびにQ457Eと他の変異との組合せ(例、Q457EおよびD236E、Q457EおよびT311S、Q457EおよびQ338E、Q457EおよびR339K)を含む2つ以上の変異であってもよい。
 本発明のL-グルタミン酸オキシダーゼ変異体が由来するL-グルタミン酸オキシダーゼとしては、任意の生物(例、微生物、動物、および植物)の酵素を用いることができるが、ストレプトマイセス属に属する微生物の酵素を用いることが好ましい。ストレプトマイセス属に属する微生物としては、ストレプトマイセス・エスピー X-119-6が好ましい。
 本発明のL-グルタミン酸オキシダーゼ変異体はまた、C末端またはN末端に、他のペプチド成分(例、タグ部分)を含んでいても。本発明のL-グルタミン酸オキシダーゼ変異体に含まれ得る他のペプチド成分としては、例えば、目的タンパク質の精製を容易にするペプチド成分(例、ヒスチジンタグ、Strep-tag II等のタグ部分;グルタチオン-S-トランスフェラーゼ、マルトース結合タンパク質等の目的タンパク質の精製に汎用されるタンパク質)、目的タンパク質の可溶性を向上させるペプチド成分(例、Nus-tag)、シャペロンとして働くペプチド成分(例、トリガーファクター)、他の機能をもつタンパク質あるいはタンパク質のドメインあるいはそれらをL-グルタミン酸オキシダーゼ変異体とつなぐリンカーとしてのペプチド成分が挙げられる。
 本発明のL-グルタミン酸オキシダーゼ変異体は、本発明のL-グルタミン酸オキシダーゼ変異体を発現する本発明の形質転換微生物を用いて、または無細胞系等を用いて、調製することができる。本発明の形質転換微生物は、例えば、本発明の発現ベクターを作製し、次いで、この発現ベクターを宿主に導入することにより作製できる。
 本発明の発現ベクターは、本発明のL-グルタミン酸オキシダーゼ変異体をコードする本発明のポリヌクレオチド(例、DNA、RNA)を含む。本発明の発現ベクターはまた、本発明のポリヌクレオチドに加えて、プロモーター、ターミネーターおよび薬剤(例、テトラサイクリン、アンピシリン、カナマイシン、ハイグロマイシン、ホスフィノスリシン)耐性遺伝子をコードする領域等の領域をさらに含むことができる。本発明の発現ベクターは、プラスミドであっても組込み型(integrative)ベクターであってもよい。本発明の発現ベクターはまた、ウイルスベクターであっても無細胞系用ベクターであってもよい。本発明の発現ベクターはさらに、本発明のポリヌクレオチドに対して3’または5’末端側に、本発明のL-グルタミン酸オキシダーゼ変異体に付加され得る他のペプチド成分をコードするポリヌクレオチドを含んでいてもよい。他のペプチド成分をコードするポリヌクレオチドとしては、例えば、上述したような目的タンパク質の精製を容易にするペプチド成分をコードするポリヌクレオチド、上述したような目的タンパク質の可溶性を向上させるペプチド成分をコードするポリヌクレオチド、シャペロンとして働くペプチド成分をコードするポリヌクレオチド、他の機能をもつタンパク質あるいはタンパク質のドメインあるいはそれらをL-グルタミン酸オキシダーゼ変異体とつなぐリンカーとしてのペプチド成分をコードするポリヌクレオチドが挙げられる。他のペプチド成分をコードするポリヌクレオチドを含む種々の発現ベクターが利用可能である。したがって、本発明の発現ベクターの作製のため、このような発現ベクターを利用してもよい。例えば、目的タンパク質の精製を容易にするペプチド成分をコードするポリヌクレオチドを含む発現ベクター(例、pET-15b、pET-51b、pET-41a、pMAL-p5G)、目的タンパク質の可溶性を向上させるペプチド成分をコードするポリヌクレオチドを含む発現ベクター(例、pET-50b)、シャペロンとして働くペプチド成分をコードするポリヌクレオチドを含む発現ベクター(例、pCold TF)、他の機能をもつタンパク質あるいはタンパク質のドメインあるいはそれらをL-グルタミン酸オキシダーゼ変異体とつなぐリンカーとしてのペプチド成分をコードするポリヌクレオチドを含む発現ベクターを利用することができる。本発明のL-グルタミン酸オキシダーゼ変異体とそれに付加された他のペプチド成分との切断をタンパク質発現後に可能にするため、本発明の発現ベクターは、プロテアーゼによる切断部位をコードする領域を、本発明のL-グルタミン酸オキシダーゼ変異体をコードするポリヌクレオチドと他のペプチド成分をコードするポリヌクレオチドとの間に含んでいてもよい。
 本発明のL-グルタミン酸オキシダーゼ変異体を発現させるための宿主としては、例えばエシェリヒア・コリ(Escherichia coli)等のエシェリヒア属細菌、コリネバクテリウム属細菌〔例、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)〕、およびバチルス属細菌〔例、バチルス・ズブチリス(Bacillus subtilis)〕をはじめとする種々の原核細胞、サッカロマイセス属細菌〔例、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)〕、ピヒア属細菌〔例、ピヒア・スティピティス(Pichia stipitis)〕、アスペルギルス属細菌〔例、アスペルギルス・オリゼ(Aspergillus oryzae)〕をはじめとする種々の真核細胞を用いることができる。また、本発明のL-グルタミン酸オキシダーゼ変異体を発現させるための宿主としては、L-グルタミン酸オキシダーゼ変異体を切断可能なプロテアーゼを発現しない微生物(例、ストレプトマイセス属に属する微生物)を好適に使用することもできる。宿主としては、所定の遺伝子を欠損する株を用いてもよい。形質転換微生物としては、例えば、細胞質中に発現ベクターを保有する形質転換微生物、およびゲノム上に目的遺伝子が導入された形質転換微生物が挙げられる。
 本発明の形質転換微生物は、所定の培養装置(例、試験管、フラスコ、ジャーファーメンター)を用いて、例えば後述の組成を有する培地において培養することができる。培養条件は適宜設定することができる。具体的には、培養温度は10℃~37℃であってもよく、pHは6.5~7.5であってもよく、培養時間は1h~100hであってもよい。また、溶存酸素濃度を管理しつつ培養を行っても良い。この場合、培養液中の溶存酸素濃度(DO値)を制御の指標として用いることがある。大気中の酸素濃度を21%とした場合の相対的な溶存酸素濃度DO値が、例えば1~10%を、好ましくは3%~8%を下回らない様に、通気・攪拌条件を制御することが出来る。また、培養はバッチ培養であっても、フェドバッチ培養であっても良い。フェドバッチ培養の場合は糖源となる溶液やリン酸を含む溶液を培養液に連続的あるいは不連続的に逐次添加して、培養を継続することも出来る。
 形質転換される宿主は、上述したとおりであるが、大腸菌について詳述すると、大腸菌K12株亜種のエシェリヒア コリ JM109株、DH5α株、HB101株、BL21(DE3)株などから選択することが出来る。形質転換を行う方法、および形質転換微生物を選別する方法は、Molecular Cloning: A Laboratory Manual,3rd edition,Cold Spring Harbor press(2001/01/15)などにも記載されている。以下、形質転換された大腸菌を作製し、これを用いて所定の酵素を製造する方法を、一例としてより具体的に説明する。
 本発明のポリヌクレオチドを発現させるプロモーターとしては、通常E.coliにおける異種タンパク質生産に用いられるプロモーターを使用することができ、例えば、PhoA、PhoC、T7プロモーター、lacプロモーター、trpプロモーター、trcプロモーター、tacプロモーター、ラムダファージのPRプロモーター、PLプロモーター、T5プロモーター等の強力なプロモーターが挙げられ、PhoA、PhoC、lacが好ましい。また、ベクターとしては、例えば、pUC(例、pUC19、pUC18)、pSTV、pBR(例、pBR322)、pHSG(例、pHSG299、pHSG298、pHSG399、pHSG398)、RSF(例、RSF1010)、pACYC(例、pACYC177、pACYC184)、pMW(例、pMW119、pMW118、pMW219、pMW218)、pQE(例、pQE30)、およびその誘導体等を用いてもよい。他のベクターとしては、ファージDNAのベクターを利用してもよい。さらに、プロモーターを含み、挿入DNA配列を発現させることができる発現ベクターを使用してもよい。好ましくは、ベクターは、pUC、pSTV、pMWであってもよい。
 また、本発明のポリヌクレオチドの下流に転写終結配列であるターミネーターを連結してもよい。このようなターミネーターとしては、例えば、T7ターミネーター、fdファージターミネーター、T4ターミネーター、テトラサイクリン耐性遺伝子のターミネーター、大腸菌trpA遺伝子のターミネーターが挙げられる。
 本発明のポリヌクレオチドを大腸菌に導入するためのベクターとしては、いわゆるマルチコピー型のものが好ましく、ColE1由来の複製開始点を有するプラスミド、例えばpUC系のプラスミドやpBR322系のプラスミドあるいはその誘導体が挙げられる。ここで、「誘導体」とは、塩基の置換、欠失、挿入および/または付加などによってプラスミドに改変を施したものを意味する。
 また、形質転換微生物を選別するために、ベクターがアンピシリン耐性遺伝子等のマーカーを有することが好ましい。このようなプラスミドとして、強力なプロモーターを持つ発現ベクターが市販されている〔例、pUC系(タカラバイオ社製)、pPROK系(クローンテック製)、pKK233-2(クローンテック製)〕。
 得られた本発明の発現ベクターを用いて大腸菌を形質転換し、この大腸菌を培養することにより、本発明のL-グルタミン酸オキシダーゼ変異体を得ることができる。
 培地としては、M9-カザミノ酸培地、LB培地など、大腸菌を培養するために通常用いる培地を用いてもよい。培地は、所定の炭素源、窒素源、補酵素(例、塩酸ピリドキシン)を含有していてもよい。具体的には、ペプトン、酵母エキス、NaCl、グルコース、MgSO、硫酸アンモニウム、リン酸2水素カリウム、硫酸第二鉄、硫酸マンガン、などを用いても良い。また、培養条件、生産誘導条件は、用いたベクターのマーカー、プロモーター、宿主菌等の種類に応じて適宜選択される。
 本発明のL-グルタミン酸オキシダーゼ変異体を回収するには、以下の方法などがある。本発明のL-グルタミン酸オキシダーゼ変異体は、本発明の形質転換微生物を回収した後、菌体を破砕(例、ソニケーション、ホモジナイゼーション)あるいは溶解(例、リゾチーム処理)することにより、破砕物および溶解物として得ることができる。このような破砕物および溶解物を、抽出、沈澱、濾過、カラムクロマトグラフィー等の手法に供することにより、本発明のL-グルタミン酸オキシダーゼ変異体を得ることができる。
 本発明は、L-グルタミン酸の分析方法を提供する。本発明の分析方法は、本発明のL-グルタミン酸オキシダーゼ変異体を用いて、被検試料中に含まれるL-グルタミン酸を測定することを含み得る。
 被検試料としては、L-グルタミン酸を含有すると疑われる試料である限り特に限定されず、例えば、生体由来試料(例、血液、尿、唾液、涙など)や食飲料品(例、栄養ドリンクやアミノ酸飲料など)が挙げられる。被検試料中のL-グルタミン酸は、低濃度(例、1μM以上1mM未満等の1mM未満の濃度)であっても、高濃度(例、1mM以上1M未満等の1mM以上の濃度)であってもよい。
 本発明の分析方法は、本発明のL-グルタミン酸オキシダーゼ変異体を用いてL-グルタミン酸を測定できる限り特に限定されず、生成した2-オキソグルタル酸を検出してもよく、また、2-オキソグルタル酸の生成に伴い副生するNHまたはHを検出してもよい。あるいは、他の反応と共役させて、共役反応の生成物を検出してもよい。このような共役反応としては、例えば、以下の共役反応が挙げられる。
(L-グルタミン酸の酸化反応)L-グルタミン酸オキシダーゼにより触媒される反応
 L-グルタミン酸+O+HO  →  2-オキソグルタル酸+H+NH
(共役反応)ペルオキシダーゼにより触媒される反応
 H+TOOS+4-AA → 色素化合物(吸光度 約555nm)
TOOSおよび4-AAは上記と同様。
 上記共役反応を利用する場合、L-グルタミン酸の測定は、本発明のL-グルタミン酸オキシダーゼ変異体に加えて、TOOSおよび4-AA、ならびにペルオキシダーゼを用いて行うことができる。具体的には、水溶液(例、緩衝液)中において、被検試料をTOOSおよび4-AA、ならびにペルオキシダーゼと混合し、次いで、混合試料を上記の酵素反応に供し、最後に、生成した色素化合物の吸光度(約555nm)を検出することにより、L-グルタミン酸が測定される。測定は、定性的または定量的に行うことができる。測定は、例えば、全ての基質が反応するまで測定を行うエンドポイント法に基づいて行われてもよいし、レート法(初速度法)に基づいて行われてもよい。なお、酸化反応において必要とされる酸素量は微量であるため、反応系中の溶存酸素により必要な酸素量が賄えることから、通常、反応系中へ酸素や酸素を含む気体を強制的に供給する必要はない。
 本発明のL-グルタミン酸オキシダーゼ変異体は、L-グルタミン酸以外のアミノ酸(例、L-α-アミノ酸)に対して反応しないか、またはそれに対する反応性が極めて低い。したがって、被験試料中に、L-グルタミン酸のみならず、他のアミノ酸が含まれている場合にも、本発明のL-グルタミン酸オキシダーゼ変異体を用いることで、被験試料中のL-グルタミン酸の量を特異的に評価することができる。
 また、本発明のL-グルタミン酸オキシダーゼ変異体を用いた過酸化水素電極を用いることで、被験試料中のL-グルタミン酸の量を特異的に評価することができる。
 さらに、本発明は、(A)本発明のL-グルタミン酸オキシダーゼ変異体を含む、L-グルタミン酸分析用キットを包含する。
 本発明のキットは、(B)反応用緩衝液または緩衝塩、(C)過酸化水素検出試薬、(D)アンモニア検出試薬および(E)2-オキソグルタル酸検出試薬の少なくとも一つをさらに含むことができる。
 (B)反応用緩衝液または緩衝塩は、反応液中のpHを目的の酵素反応に適した値に維持するために用いられる。
 (C)過酸化水素検出用試薬は、過酸化水素の検出を例えば発色や蛍光などによって行う場合に用いる。例えば、ペルオキシダーゼとその基質となり得る発色剤の組み合わせが挙げられ、具体的には、例えば西洋わさびペルオキシダーゼと4―アミノアンチピリンおよびフェノールの組み合わせなどが挙げられるが、この組み合わせに限定されない。
 (D)アンモニア検出試薬としては、例えばフェノールと次亜塩素酸を組み合わせたインドフェノール法などが挙げられる。
 (E)2-オキソグルタル酸検出試薬としては、例えば、2-オキソ酸還元酵素などが挙げられる。
 本発明はまた、(a)デバイス、および(b)本発明のL-グルタミン酸オキシダーゼ変異体を含む、L-グルタミン酸分析用検出系を提供する。
 本発明のL-グルタミン酸オキシダーゼ変異体は、使用の際にデバイス中に供給され得るマイクロデバイスとは独立したユニットとして存在していてもよいが、予めデバイスに、注入、固定または配置されていてもよい。好ましくは、本発明のL-グルタミン酸オキシダーゼ変異体は、予めデバイスに注入、固定または配置された形態で提供される。本発明のL-グルタミン酸オキシダーゼ変異体のデバイスへの固定または配置は、直接的または間接的に行われる。デバイスとしては、例えば、流路を備えるマイクロ流路チップ等のマイクロデバイスを好適に用いることができる。
 本発明のL-グルタミン酸分析用検出系は、(c)反応用緩衝液または緩衝塩、過酸化水素検出試薬、アンモニア検出試薬および2-オキソグルタル酸検出試薬からなる群より選ばれる1つ以上の構成要素をさらに含んでいてもよい。本発明のL-グルタミン酸分析用検出系では、(c)の構成要素の全部がデバイス中に収容された形態で提供されてもよい。あるいは、(c)の構成要素の一部がデバイス中に収容された形態で提供され、残りのものがデバイス中に収容されない形態(例、異なる容器に収容された形態)で提供されてもよい。この場合、デバイス中に収容されない(c)の構成要素は、標的物質の測定の際に、デバイス中に注入されることにより使用されてもよい。
 デバイスとしては、例えば、1)試料と(c)の構成要素とを混合して混合液を調製するための第1区域、および調製された混合液を、本発明のL-グルタミン酸オキシダーゼ変異体と接触させて、L-グルタミン酸を検出するための第2区域を備えるデバイス(混合および検出の各工程が異なる区域中で行われるデバイス);2)試料と(c)の構成要素と本発明のL-グルタミン酸オキシダーゼ変異体とを混合して、本発明のL-グルタミン酸オキシダーゼ変異体によりL-グルタミン酸を検出するための区域を備えるデバイス(混合および検出の各工程が同一区域中で行われるデバイス);ならびに3)試料と(c)の構成要素と(および必要応じて本発明のL-グルタミン酸オキシダーゼ変異体と)の混合を可能にする流路、および本発明のL-グルタミン酸オキシダーゼ変異体によりL-グルタミン酸を検出するための区域を備えるデバイス(デバイスの注入口に試料を注入すると、流路を介して送液されて試料等が自動的に混合され、得られた混合液中のL-グルタミン酸が検出区域中で自動検出されるデバイス)が挙げられる。自動化の観点からは、3)のデバイス、特にマイクロ流路デバイスの形態である3)のデバイスが好ましい。3)のデバイスでは、本発明のL-グルタミン酸オキシダーゼ変異体は、流路を流れる送液中に提供されても、検出区域に固定または配置された形態で提供されてもよいが、好ましくは検出区域に固定または配置された形態で提供される。
 本発明はまた、(a)検出用電極、および(b)検出用電極に固定または配置された本発明のL-グルタミン酸オキシダーゼ変異体を含む、L-グルタミン酸分析用酵素センサーを提供する。本発明のL-グルタミン酸オキシダーゼ変異体は、電極に直接または間接的に固定または配置される。
 前記の検出用電極としては、例えば、過酸化水素検出用電極を用いることが可能であり、より具体的には、酵素式過酸化水素検出用電極や隔膜式過酸化水素検出用電極などが例として挙げられる。この場合、L-グルタミン酸酸化活性によりL-グルタミン酸が酸化された際に生じる過酸化水素を検出することで、L-グルタミン酸の分析が可能となる。それ以外の構成は、公知のセンサーで採用されている構成をそのまま、あるいは適宜改変して利用することができる。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
〔実施例1〕GluOX変異体の調製
 各GluOX変異体を、下記のようにして調製した。まず、GluOX(配列番号3)の遺伝子を化学合成し、pET-16b(メルク株式会社)のNdeI-HindIIIクローニングサイトにクローニングした。以後、His-tagがN末端に付加されたGluOX配列(配列番号3)を含むプラスミドをpET-16b-GluOXと呼ぶ。また、基準GluOX(配列番号1)の調製も同様に実施した。GluOX変異体の調製は、KAPA HiFi HotStart ReadyMix PCR kit(日本ジェネティクス株式会社)を用いて、pET-16b-GluOXを鋳型として部位特異的突然変異導入技術の一般的なプロトコルに従い、GluOX遺伝子への変異導入を行った。特定のアミノ酸に対して単変異導入、特定アミノ酸残基の挿入、特定アミノ酸残基の欠損を行う場合は、すべてこの方法に従い変異導入済みプラスミドを作成した。
〔実施例2〕GluOXの発現と精製
 大腸菌を用いた基準GluOXおよびGluOX変異体の組換え発現系を構築し、全て同じ方法で調製した。ここでは、配列番号3のGluOXの発現精製法を記載する。pET-16b-GluOXを標準的な方法に従って大腸菌BL21(DE3)の形質転換体を取得した。以後、pET-16b-GluOXによるBL21(DE3)の形質転換体をpET-16b-GluOX-BL21(DE3)と呼ぶ。
 GluOXの調製は、下記のようにして行った。まず、pET-16b-GluOX-BL21(DE3)のグリセロールストックから100μg/mLアンピシリンを含むLB寒天プレートへ植菌し、37℃で一晩、静置培養した。100μg/mLアンピシリンを含むLB液体培地3mLを14mLラウンドチューブに入れ、LBプレート上のシングルコロニーを植菌し、37℃で一晩培養した。100μg/mLアンピシリンを含むLB液体培地6mLを50mLチューブに入れた後に、培養液60μLを添加し、OD600の値が0.6程度になるまで37℃で旋回振盪にて培養した。16℃にて30分間静置し、IPTGを終濃度1.0mMとなるように添加し、16℃で旋回振盪にて一晩培養した後に集菌した。
 破砕用バッファー(50mM HEPES,100mM NaCl,pH7.5)にて菌体を懸濁し、超音波破砕機(BIORUPTOR,コスモ・バイオ株式会社)を用いて冷却水循環させながら強度H,10分間、30秒間間隔で破砕した。この破砕液を13000×gで15分間、4℃で遠心し、上清を回収した後に、His SpinTrap (GEヘルスケア・ジャパン株式会社)を用いて精製を行った。平衡化および洗浄バッファーは(50mM HEPES,100mM NaCl,pH7.5)、溶出バッファーは(50mM HEPES,100mM NaCl,500mM imidazole,pH7.5)を使用した。溶出画分を回収し、溶出バッファーで0.01mg/mLとなるように希釈した。
〔実施例3〕活性測定による変異体スクリーニング
 実施例1および実施例2で調製した基準GluOXおよびGluOX変異体の活性評価は下記手順にて行った。まず、0.2M HEPES,pH7.5を100μL、10mM グルタミン酸溶液 20μL、30mM N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メトキシアニリン溶液(TOOS溶液)20μL、0.1M 4-アミノアンチピリン2μL、1500U/mL ペルオキシダーゼ 2μL、超純水36μL、を加え混合した溶液の555nmの吸光度をマイクロプレートリーダー(Varioskan LUX、ThermoFisher SCIENTIFIC社)で測定した。その後、0.01mg/mLに調製したGluOX溶液20μLを添加し、555nmの吸光度の経時変化をマイクロプレートリーダーで測定した。表1は、基準GluOX、ならびにL467-R506およびR670-S687を欠損させたGluOX変異体(配列番号3)の活性を、基準GluOXをコントロールとした際の相対活性で示す。表2は、基準GluOX、ならびにL467-R506およびR670-S687を欠損させたGluOX変異体(配列番号3)に対してある特定のアミノ酸残基を挿入・変異させたGluOX変異体の活性を、基準GluOXをコントロールとした際の相対活性で示す。表3は、L467-R506およびR670-S687を欠損させたGluOX変異体(配列番号3)におけるY376とA377の間にGGGGS(配列番号4)を挿入およびE356とL357の間にGGGGS(配列番号4)を挿入したGluOX変異体(挿入体6)に対してある特定のアミノ酸残基を変異させたGluOX変異体の活性(配列番号3における残基番号を示す)を、挿入体6をコントロールとした際の相対活性で示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
〔実施例4〕境界近傍領域の決定
 分子グラフィクスソフトウェアであるPyMOLで天然型GluOXのヘテロ8量体(α1α2βγ)の立体構造(PDB ID:2E1M)を表示した際に構造の一部が観察できなかった。これはX線結晶構造解析でタンパク質の立体構造を実験的に決定した場合、これらの領域の運動性が高いため、一定の立体構造をとらないことに起因する。表4は天然型GluOXのヘテロ8量体(α1α2βγ)の立体構造において配列番号3におけるアミノ酸残基の構造が確認できた領域を示す。この結果に基づいて、立体構造が観察できなかった領域を含むように境界近傍領域を決定した。すなわち、境界近傍領域は配列番号3のアミノ酸配列において、下記のとおり対応する。α1領域とα2領域の境界近傍領域:349~363位のアミノ酸残基からなる領域;α2領域とγ領域の境界近傍領域:372~377位のアミノ酸残基からなる領域;γ領域とβ領域の境界近傍領域:466~469位のアミノ酸残基からなる領域。
Figure JPOXMLDOC01-appb-T000004
 以上より、本発明のL-グルタミン酸オキシダーゼ変異体は、酵素活性が野生型より向上しているため、L-グルタミン酸の迅速かつ高感度な測定、および/または2-オキソグルタル酸の製造、および/またはL-グルタミン酸検査試薬として有用である。
 本発明は、生体研究、健康栄養、医療、食品製造などの広範な分野において有用である。

Claims (19)

  1.  以下(a)または(b)のL-グルタミン酸オキシダーゼ変異体:
    (a)配列番号3のアミノ酸配列に対して90%以上の同一性を示すアミノ酸配列を含み、かつ、L-グルタミン酸の酸化活性を有するL-グルタミン酸オキシダーゼ変異体(但し、配列番号1のアミノ酸配列を含むL-グルタミン酸オキシダーゼを除く);または
    (b)前記(a)のL-グルタミン酸オキシダーゼ変異体における(1)α1領域とα2領域の境界近傍領域中の部位、(2)α2領域とγ領域の境界近傍領域中の部位、および(3)γ領域とβ領域の境界近傍領域中の部位からなる群より選ばれる1つ以上の部位において、1~20個のアミノ酸残基からなるペプチドリンカーが挿入されており、かつ、L-グルタミン酸の酸化活性を有するL-グルタミン酸オキシダーゼ変異体であって、
     α1領域とα2領域の境界近傍領域中の部位が、配列番号3における349~363位のアミノ酸残基からなる領域中の部位であり、
     α2領域とγ領域の境界近傍領域中の部位が、配列番号3における372~377位のアミノ酸残基からなる領域中の部位であり、かつ
     γ領域とβ領域の境界近傍領域中の部位が、配列番号3における466~469位のアミノ酸残基からなる領域中の部位である、L-グルタミン酸オキシダーゼ変異体。
  2.  L-グルタミン酸オキシダーゼ変異体が、ストレプトマイセス属に属する微生物に由来するL-グルタミン酸オキシダーゼの変異体である、請求項1記載のL-グルタミン酸オキシダーゼ変異体。
  3.  ストレプトマイセス属に属する微生物が、ストレプトマイセス・エスピー X-119-6である、請求項2記載のL-グルタミン酸オキシダーゼ変異体。
  4.  前記ペプチドリンカーが、(1)α1領域とα2領域の境界近傍領域中の部位、もしくは(2)α2領域とγ領域の境界近傍領域中の部位の一方、またはそれらの双方に挿入されている、請求項1~3のいずれか一項記載のL-グルタミン酸オキシダーゼ変異体。
  5.  α1領域とα2領域の境界近傍領域中の部位が、配列番号3における356位と357位のアミノ酸残基の間の部位であり、
     α2領域とγ領域の境界近傍領域中の部位は、配列番号3における376位と377位のアミノ酸残基の間の部位であり、または
     γ領域とβ領域の境界近傍領域中の部位は、配列番号3における466位と467位のアミノ酸残基の間の部位である、請求項1~4のいずれか一項記載のL-グルタミン酸オキシダーゼ変異体。
  6.  L-グルタミン酸オキシダーゼ変異体が、配列番号3におけるA106、C210、Q235、D236、D237、P244、T311、W313、Q333、I334、M336、Q338、R339、T416、A438、K441、Y455、Q456、Q457、L505、P558、C561、およびP569からなる群より選ばれる1つ以上のアミノ酸残基の変異を有する、請求項1~5のいずれか一項記載のL-グルタミン酸オキシダーゼ変異体。
  7.  L-グルタミン酸オキシダーゼ変異体が、配列番号3におけるA106S、C210S、Q235E、D236E、D237E、P244H、T311S、W313F、Q333E、I334V、I334L、M336L、Q338E、R339K、T416S、A438P、K441E、Y455F、Q456R、Q457E、Q457K、L505I、P558A、C561S、およびP569Aからなる群より選ばれる1つ以上のアミノ酸残基の変異を有する、請求項1~6のいずれか一項記載のL-グルタミン酸オキシダーゼ変異体。
  8.  請求項1~7のいずれか一項記載のL-グルタミン酸オキシダーゼ変異体を用いて被検試料中に含まれるL-グルタミン酸を測定することを含む、L-グルタミン酸の分析方法。
  9.  L-グルタミン酸の測定が、請求項1~7のいずれか一項記載のL-グルタミン酸オキシダーゼ変異体に加えて、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メトキシアニリン(TOOS)および4-アミノアンチピリン、ならびにペルオキシダーゼを用いて行われる、請求項8記載の方法。
  10.  請求項1~7のいずれか一項記載のL-グルタミン酸オキシダーゼ変異体の存在下でL-グルタミン酸から2-オキソグルタル酸を生成することを含む、2-オキソグルタル酸の製造方法。
  11.  請求項1~7のいずれか一項記載のL-グルタミン酸オキシダーゼ変異体をコードするポリヌクレオチド。
  12.  請求項11記載のポリヌクレオチドを含む発現ベクター。
  13.  請求項1~7のいずれか一項記載のL-グルタミン酸オキシダーゼ変異体をコードするポリヌクレオチド、及びそれに作動可能に連結されたプロモーターを含む発現単位を含む形質転換微生物。
  14.  請求項1~7のいずれか一項記載のL-グルタミン酸オキシダーゼ変異体を、請求項13記載の形質転換微生物を用いて生成することを含む、L-グルタミン酸オキシダーゼ変異体の製造方法。
  15.  請求項1~7のいずれか一項記載のL-グルタミン酸オキシダーゼ変異体を含む、L-グルタミン酸検出試薬又はキット。
  16.  反応用緩衝液または緩衝塩、過酸化水素検出試薬、アンモニア検出試薬および2-オキソグルタル酸検出試薬からなる群より選ばれる1つ以上をさらに含む、請求項15記載のL-グルタミン酸検出試薬又はキット。
  17.  (a)デバイス、および(b)請求項1~7のいずれか一項記載のL-グルタミン酸オキシダーゼ変異体を含む、L-グルタミン酸分析用検出系。
  18.  (c)反応用緩衝液または緩衝塩、過酸化水素検出試薬、アンモニア検出試薬および2-オキソグルタル酸検出試薬からなる群より選ばれる1つ以上をさらに含む、請求項17記載のL-グルタミン酸分析用検出系。
  19.  (a)検出用電極、および(b)検出用電極に固定または配置された、請求項1~7のいずれか一項記載のL-グルタミン酸オキシダーゼ変異体を含む、L-グルタミン酸分析用酵素センサー。
PCT/JP2021/011898 2020-03-24 2021-03-23 L-グルタミン酸オキシダーゼ変異体 WO2021193598A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21776970.2A EP4130023A4 (en) 2020-03-24 2021-03-23 L-GLUTAMIC ACID OXIDAZE MUTANT
JP2022510522A JPWO2021193598A1 (ja) 2020-03-24 2021-03-23
US17/947,596 US20230203456A1 (en) 2020-03-24 2022-09-19 L-glutamate oxidase mutant

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-052809 2020-03-24
JP2020052809 2020-03-24
JP2020139357 2020-08-20
JP2020-139357 2020-08-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/947,596 Continuation US20230203456A1 (en) 2020-03-24 2022-09-19 L-glutamate oxidase mutant

Publications (1)

Publication Number Publication Date
WO2021193598A1 true WO2021193598A1 (ja) 2021-09-30

Family

ID=77890689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011898 WO2021193598A1 (ja) 2020-03-24 2021-03-23 L-グルタミン酸オキシダーゼ変異体

Country Status (4)

Country Link
US (1) US20230203456A1 (ja)
EP (1) EP4130023A4 (ja)
JP (1) JPWO2021193598A1 (ja)
WO (1) WO2021193598A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140286A1 (ja) 2022-01-18 2023-07-27 キッコーマン株式会社 組換え発現グルタミン酸オキシダーゼ
WO2024090562A1 (ja) * 2022-10-27 2024-05-02 キッコーマン株式会社 Fad型グルタミン酸デヒドロゲナーゼ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934882A (ja) * 1982-08-23 1984-02-25 Yamasa Shoyu Co Ltd バイオセンサ−
WO2001079503A1 (fr) 2000-04-19 2001-10-25 Yamasa Corporation L-glutamate oxydase
CN106282205A (zh) * 2015-06-12 2017-01-04 上海市农业科学院 一种高比活l-谷氨酸氧化酶基因多位点突变体及其制备方法和应用
JP2017012169A (ja) * 2015-07-06 2017-01-19 ヤマサ醤油株式会社 L−グルタミン酸測定キット
CN109266664A (zh) * 2018-10-23 2019-01-25 南京工业大学 一种利用融合截短表达策略提高谷氨酸氧化酶稳定性的方法
CN110283837A (zh) * 2019-04-19 2019-09-27 中国科学院天津工业生物技术研究所 一种高酶活性l-谷氨酸氧化酶突变体及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013146264A (ja) * 2011-12-22 2013-08-01 Okayama Univ アミノ酸オキシダーゼ固定化体及びアミノ酸測定装置
WO2014150883A1 (en) * 2013-03-15 2014-09-25 Abbott Point Of Care Inc. Glutamate oxidase mutagenesis for diagnostic testing
CN110283800B (zh) * 2019-08-26 2019-11-05 中国科学院天津工业生物技术研究所 谷氨酸氧化酶突变体、双酶共表达载体及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934882A (ja) * 1982-08-23 1984-02-25 Yamasa Shoyu Co Ltd バイオセンサ−
WO2001079503A1 (fr) 2000-04-19 2001-10-25 Yamasa Corporation L-glutamate oxydase
CN106282205A (zh) * 2015-06-12 2017-01-04 上海市农业科学院 一种高比活l-谷氨酸氧化酶基因多位点突变体及其制备方法和应用
JP2017012169A (ja) * 2015-07-06 2017-01-19 ヤマサ醤油株式会社 L−グルタミン酸測定キット
CN109266664A (zh) * 2018-10-23 2019-01-25 南京工业大学 一种利用融合截短表达策略提高谷氨酸氧化酶稳定性的方法
CN110283837A (zh) * 2019-04-19 2019-09-27 中国科学院天津工业生物技术研究所 一种高酶活性l-谷氨酸氧化酶突变体及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARIMA J ET AL., FEBS J, vol. 276, no. 14, July 2009 (2009-07-01), pages 3894 - 903
See also references of EP4130023A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140286A1 (ja) 2022-01-18 2023-07-27 キッコーマン株式会社 組換え発現グルタミン酸オキシダーゼ
KR20240133718A (ko) 2022-01-18 2024-09-04 기꼬만 가부시키가이샤 재조합 발현 글루타민산 옥시다아제
WO2024090562A1 (ja) * 2022-10-27 2024-05-02 キッコーマン株式会社 Fad型グルタミン酸デヒドロゲナーゼ

Also Published As

Publication number Publication date
JPWO2021193598A1 (ja) 2021-09-30
US20230203456A1 (en) 2023-06-29
EP4130023A1 (en) 2023-02-08
EP4130023A4 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
US9453206B2 (en) Modified leucine dehydrogenase
US20230203456A1 (en) L-glutamate oxidase mutant
US20170268033A1 (en) Method of Analyzing L-Tryptophan in Biological Samples, and Kit Used Therein
US9976126B2 (en) Modified glycine oxidase
US20220235333A1 (en) Modified Phenylalanine Dehydrogenase
US20230295600A1 (en) Mutated histidine decarboxylase and use thereof
US10961560B2 (en) Tryptophan oxidase and use thereof
JP7521178B2 (ja) アミノ酸の定量方法
JP7039897B2 (ja) ヒスチジンの測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510522

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021776970

Country of ref document: EP

Effective date: 20221024