WO2021193469A1 - センサ - Google Patents

センサ Download PDF

Info

Publication number
WO2021193469A1
WO2021193469A1 PCT/JP2021/011508 JP2021011508W WO2021193469A1 WO 2021193469 A1 WO2021193469 A1 WO 2021193469A1 JP 2021011508 W JP2021011508 W JP 2021011508W WO 2021193469 A1 WO2021193469 A1 WO 2021193469A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
diaphragm portion
recess
side wall
wall member
Prior art date
Application number
PCT/JP2021/011508
Other languages
English (en)
French (fr)
Inventor
大喜 辻
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180024990.0A priority Critical patent/CN115335675A/zh
Priority to JP2022510449A priority patent/JP7400947B2/ja
Priority to DE112021000789.0T priority patent/DE112021000789T5/de
Publication of WO2021193469A1 publication Critical patent/WO2021193469A1/ja
Priority to US17/951,154 priority patent/US20230017253A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0075Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a ceramic diaphragm, e.g. alumina, fused quartz, glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms

Definitions

  • the present invention relates to a sensor that detects a force such as pressure.
  • Patent Document 1 has a detection element including an element substrate, a fixed electrode provided on the element substrate, and a membrane including a diaphragm portion arranged to face the fixed electrode at intervals. Capacitive pressure sensors are disclosed. A recess is provided in the central portion of the outer surface of the membrane. As a result, when the element substrate is bent and deformed, the membrane is bent and deformed so that the fixed electrode and the inner surface of the diaphragm portion are substantially parallel to each other.
  • an object of the present invention is to suppress a change in detection sensitivity that occurs when the membrane is in a plane stress state in a sensor that detects a force such as pressure.
  • the element board A membrane having an outer surface and an inner surface opposite to the outer surface and including a diaphragm portion, A side wall member provided on the element substrate and supporting the outer portion of the diaphragm portion on the inner surface of the membrane, and A fixed electrode provided on the element substrate in a state of being surrounded by the side wall member, facing the inner surface of the membrane at intervals, and forming a capacitance with the diaphragm portion.
  • a detection element that includes Provided is a sensor in which a first recess is provided between the center of the diaphragm portion and the side wall member in the thickness direction of the membrane on the outer surface of the membrane.
  • the present invention in a sensor that detects a force such as pressure, it is possible to suppress a change in detection sensitivity that occurs when the membrane is in a plane stress state.
  • FIG. 1 Perspective view of the sensor according to the first embodiment of the present invention.
  • Top view of the sensor according to the first embodiment of the present invention An exploded perspective view of a detection element in the sensor according to the first embodiment of the present invention.
  • Cross-sectional view of the detection element in the natural state of the sensor according to the comparative example Cross-sectional view of the sensor according to the comparative example in a state where tensile stress is applied to the detection element.
  • Cross-sectional view of the detection element in the natural state of the sensor according to the embodiment Cross-sectional view of the sensor according to the embodiment in a state where tensile stress is applied to the detection element.
  • Top view of the detection element in the sensor according to the second embodiment of the present invention Cross-sectional view of the detection element in the sensor according to the second embodiment of the present invention along the CC line of FIG.
  • Top view of the detection element in the sensor according to the third embodiment of the present invention Top view of the detection element in the sensor according to the third embodiment of the present invention.
  • Top view of the detection element in the sensor according to the sixth embodiment of the present invention Top view of the detection element in the sensor according to the seventh embodiment of the present invention.
  • the sensor according to one aspect of the present invention includes an element substrate, an outer surface, and an inner surface which is a surface opposite to the outer surface, and is provided on the element substrate and a membrane including a diaphragm portion.
  • a side wall member that supports the outer portion of the diaphragm portion on the inner surface of the membrane is provided on the element substrate while being surrounded by the side wall member, and faces the inner surface of the membrane at intervals.
  • a detection element including a fixed electrode that forms a capacitance between the diaphragm portion and the center and side walls of the diaphragm portion in the thickness direction of the membrane on the outer surface of the membrane.
  • a first recess is provided between the member and the member.
  • the first recess may be provided in the diaphragm portion along the side wall member in the thickness direction.
  • the first recess may be a straight line extending continuously along the side wall member in the thickness direction.
  • the first recess may extend into a portion of the membrane supported by the side wall member.
  • the first recess may be a plurality, and may surround the center of the membrane in the thickness direction.
  • the first recess may be plural, and may be provided point-symmetrically with the center of the membrane as the center of symmetry in the thickness direction.
  • the two first recesses may be parallel to each other with the center of the membrane in the thickness direction.
  • a first groove may be provided on the surface of the element substrate in contact with the side wall member.
  • a second recess may be provided on the outer surface of the membrane, which overlaps with the side wall member of the membrane in the thickness direction.
  • the second recess may be provided. , It overlaps with at least a part of the first groove in the thickness direction.
  • the side wall member may be provided with a second groove, in which case the second groove overlaps with at least a part of the first groove in the thickness direction and is second. It overlaps with at least a part of the recess.
  • the resin package has an exposed hole, and a part of the detection element is provided. It may be exposed to the outside in the exposed hole.
  • FIG. 1 is a perspective view of the sensor according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1 of the sensor according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along the line BB of FIG. 1 of the sensor according to the first embodiment of the present invention.
  • FIG. 4 is a top view of the sensor according to the first embodiment of the present invention.
  • the XYZ Cartesian coordinate system shown in the figure is for facilitating the understanding of the present invention, and does not limit the invention.
  • the sensor 10 includes a detection element 12, a package substrate 14, and a resin package 16.
  • the sensor 10 is a capacitance type pressure sensor, and the pressure can be detected by the detection element 12.
  • the detection element 12 is mounted on the package substrate 14.
  • the resin package 16 is provided on the package substrate 14 and includes an exposed hole 16a.
  • the detection element 12 is covered with the resin package 16 in a state where a part of the detection element 12 is exposed to the outside in the exposed hole 16a.
  • FIG. 5 is an exploded perspective view of the detection element in the sensor according to the first embodiment of the present invention.
  • the detection element 12 has an element substrate 20, a membrane 22, a side wall member 24, and a fixed electrode 26.
  • the element substrate 20 is, for example, a silicon substrate and includes terminals (not shown) that are electrically connected to the package substrate 14.
  • the membrane 22 is a flexible, thin plate-like member having a thickness of, for example, 3.9 ⁇ m.
  • the membrane 22 has conductivity.
  • the membrane 22 includes an outer surface 22a and an inner surface 22b.
  • the outer surface 22a is a surface on which the pressure to be detected acts.
  • the inner surface 22b is a surface opposite to the outer surface 22a.
  • the membrane 22 includes a diaphragm portion 22c. The diaphragm portion 22c is flexed and deformed by receiving pressure at its central portion.
  • the side wall member 24 is a frame-shaped member provided on the element substrate 20.
  • the wall member 24 has a rectangular shape in the thickness direction of the membrane 22.
  • the thickness direction of the membrane 22 is the Z-axis direction of the XYZ Cartesian coordinate system shown in the figure. Therefore, the thickness direction view of the membrane 22 is the Z-axis direction view.
  • the side wall member 24 has an insulating property.
  • the side wall member 24 supports the membrane 22. Specifically, the side wall member 24 supports the outer portion of the diaphragm portion 22c on the inner surface 22b of the membrane 22. As a result, the diaphragm portion 22c can be flexed and deformed in the thickness direction of the membrane 22. In other words, the portion of the membrane 22 that is not supported by the side wall member 24 is the diaphragm portion 22c.
  • the fixed electrode 26 is provided on the element substrate 20 and is surrounded by the side wall member 24.
  • the fixed electrode 26 is made of, for example, conductive polysilicon. Further, the fixed electrode 26 faces the inner surface 22b of the membrane 22 at a distance. A capacitance is formed between the fixed electrode 26 and the diaphragm portion 22c.
  • the diaphragm portion 22c flexes and deforms convexly toward the fixed electrode 26 according to the magnitude of the pressure.
  • the distance between the diaphragm portion 22c and the fixed electrode 26 changes, and the absolute value of the capacitance between the diaphragm portion 22c and the fixed electrode 26 changes. Based on this change in the absolute value of the capacitance, the magnitude of the pressure acting on the outer surface 22a of the membrane 22 can be detected.
  • a plurality of recesses 22d are provided on the outer surface 22a of the membrane 22.
  • the recess 22d is a first recess.
  • a recess 22d is provided between the center C of the diaphragm portion 22c and the side wall member 24 in the thickness direction of the membrane 22.
  • the recess 22d is, for example, a linear groove having a width of 12 ⁇ m and a depth of 0.8 ⁇ m.
  • the depth of the recess 22d is preferably half or less, preferably 25% or less of the thickness of the membrane 22 in order to suppress a decrease in the rigidity of the membrane 22.
  • the recess 22d is provided in the diaphragm portion 22c so as to continuously extend along the side wall member 24 in the thickness direction of the membrane 22. Further, the recess 22d extends in the longitudinal direction of the diaphragm portion 22c in the thickness direction of the membrane 22.
  • the longitudinal direction of the diaphragm portion 22c is the X-axis direction of the XYZ Cartesian coordinate system shown in the figure.
  • the recess 22d surrounds the center C of the membrane 22 and is provided point-symmetrically with the center C as the center of symmetry. That is, in the first embodiment, two recesses 22d are provided so as to sandwich the center C and parallel to each other at the same distance from the center C.
  • the recess 22d extends to the outside of the diaphragm portion 22c, that is, to the inside of the membrane 22 supported by the side wall member 24.
  • the recess 22d is within the region surrounded by the side wall member 24 in the membrane 22 in the thickness direction of the membrane 22, that is, It is located in the diaphragm portion 22c.
  • the recess 22d is provided to suppress a change in detection sensitivity that occurs when the membrane 22 is in a plane stress state. Specifically, as shown in FIGS. 1 to 3, a compressive stress or a tensile stress in the plane direction of the membrane 22 is detected by a thermal expansion or thermal contraction of the resin package 16 itself, an external force acting on the resin package 16, or the like. Join 12
  • the plane direction of the membrane 22 is the X-axis direction and the Y-axis direction of the XYZ Cartesian coordinate system shown in the figure. As a result, the membrane 22 is in a plane stress state.
  • the plane stress state of the membrane 22 will be described with reference to the drawings.
  • FIG. 6A shows a cross-sectional view of the detection element in the natural state of the sensor according to the comparative example.
  • FIG. 6B shows a cross-sectional view of the sensor according to the comparative example in a state where the tensile stress of the detection element is applied.
  • FIG. 6C shows a cross-sectional view of the sensor according to the comparative example in a state where the compressive stress of the detection element is applied.
  • FIG. 7A shows a cross-sectional view of the detection element in the natural state of the sensor according to the embodiment.
  • FIG. 7B shows a cross-sectional view of the sensor according to the embodiment in a state where tensile stress is applied to the detection element.
  • the natural state is a state in which compressive stress or tensile stress in the plane direction of the membrane is not applied to the detection element, that is, a state in which the membrane is not in the plane stress state.
  • the detection element 112 in the sensor according to the comparative example is not provided with a recess on the outer surface 122a of the membrane 122.
  • the diaphragm portion 122c when the pressure P does not act on the outer surface 122a of the membrane 122 in the natural state is shown by a alternate long and short dash line, and the diaphragm portion 122c when the pressure P acts on the outer surface 122a of the membrane 122. Is shown by a solid line.
  • the diaphragm portion 122c when the pressure P does not act on the outer surface 122a of the membrane 122 is substantially flat. Further, as shown in FIG.
  • the diaphragm portion 122c when the pressure P acts on the outer surface 122a of the membrane 122 is flexed and deformed convexly toward the fixed electrode 126 side.
  • the distance ⁇ dn between the diaphragm portion 122c and the fixed electrode 126 becomes a length corresponding to the pressure P.
  • the pressure P is applied to the outer surface 122a of the membrane 122 in a state where the tensile stress Ft in the plane direction of the membrane 122 is applied to the detection element 112, that is, in a state where the membrane 122 is in a plane stress state due to the tensile stress Ft.
  • the diaphragm portion 122c when not acting is shown by a two-point chain line, and the diaphragm portion 122c when the pressure P acts on the outer surface 122a of the membrane 122 is shown by a solid line.
  • the diaphragm portion 122c is substantially flat when the pressure P does not act on the outer surface 122a of the membrane 122 in a state where the membrane 122 is in a plane stress state due to the tensile stress Ft.
  • the diaphragm portion 122c when the pressure P acts on the outer surface 122a of the membrane 122 flexes and deforms convexly toward the fixed electrode 126. doing.
  • the amount of deformation of the diaphragm portion 122c is smaller than that in the natural state shown in FIG. 6A.
  • the distance ⁇ dt between the diaphragm portion 122c and the fixed electrode 126 is larger than the distance ⁇ dn in the natural state shown in FIG. 6A.
  • the pressure P is applied to the outer surface 122a of the membrane 122 in a state where the compressive stress Fc in the plane direction of the membrane 122 is applied to the detection element 112, that is, in a state where the membrane 122 is in a plane stress state due to the compressive stress Fc.
  • the diaphragm portion 122c when not acting is shown by a two-point chain line, and the diaphragm portion 122c when the pressure P acts on the outer surface 122a of the membrane 122 is shown by a solid line.
  • the diaphragm portion 122c is substantially flat when the pressure P does not act on the outer surface 122a of the membrane 122 in a state where the membrane 122 is in a plane stress state due to the compressive stress Fc.
  • the diaphragm portion 122c when the pressure P acts on the outer surface 122a of the membrane 122 flexes and deforms convexly toward the fixed electrode 126. doing.
  • the amount of deformation of the diaphragm portion 122c is larger than that in the natural state shown in FIG. 6A.
  • the distance ⁇ dc between the diaphragm portion 122c and the fixed electrode 126 is smaller than the distance ⁇ dn in the natural state shown in FIG. 6A, even though the same pressure P acts on the membrane 122.
  • the detection element 112 in the sensor according to the comparative example although the same pressure P acts on the membrane 122, it is in a natural state or the membrane 122 is in a plane stress state.
  • the distance between the diaphragm portion 122c and the fixed electrode 126 differs depending on whether or not the pressure is increased. Further, even when the membrane 122 is in a plane stress state, the distance between the diaphragm portion 122c and the fixed electrode 126 differs depending on whether the stress is tensile or compressive, that is, the direction of the stress generated in the membrane 122 is different. ..
  • the detection sensitivity changes as compared with the natural state.
  • the change in the detection sensitivity is suppressed even when the membrane 22 is in a plane stress state. This will be described with reference to FIGS. 7A to 7C.
  • the diaphragm portion 22c when the pressure P does not act on the outer surface 22a of the membrane 22 in the natural state is shown by a chain line, and the diaphragm portion 22c when the pressure P acts on the outer surface 22a of the membrane 22. Is shown by a solid line.
  • the diaphragm portion 22c when the pressure P does not act on the outer surface 22a of the membrane 22 is substantially flat.
  • the diaphragm portion 22c when the pressure P acts on the outer surface 22a of the membrane 22 is flexed and deformed convexly toward the fixed electrode 26 side.
  • the distance ⁇ dn between the diaphragm portion 22c and the fixed electrode 26 becomes a length corresponding to the pressure P.
  • the pressure P is applied to the outer surface 122a of the membrane 122 in a state where the tensile stress Ft in the plane direction of the membrane 22 is applied to the detection element 112, that is, in a state where the membrane 22 is in a plane stress state due to the tensile stress Ft.
  • the diaphragm portion 122c when not acting is shown by a two-point chain line, and the diaphragm portion 122c when the pressure P acts on the outer surface 122a of the membrane 122 is shown by a solid line. As shown in FIG.
  • the diaphragm portion 22c when the pressure P does not act on the outer surface 22a of the membrane 22 is very slightly fixed electrode 26. It is flexed and deformed to the side. This deflection deformation is due to the difference between the distribution of tensile stress on the outer surface 22a of the membrane 22 and the distribution of tensile stress on the inner surface 22b.
  • the tensile stress generated in the region of the outer surface 22a sandwiched between the plurality of recesses 22d is smaller than the tensile stress generated in the region of the inner surface 22b opposite to the region. Therefore, the region of the inner surface 22b is distorted in the direction of being greatly extended as compared with the region of the outer surface 22a. As a result, the diaphragm portion 22c is slightly flexed and deformed so that the inner surface 22b becomes convex.
  • the diaphragm portion 22c is slightly flexed and deformed so that the inner surface 22b becomes convex, so that the absolute value of the capacitance between the diaphragm portion 22c and the fixed electrode 26 increases.
  • the diaphragm portion 22c flexes convexly toward the fixed electrode 26 side and is easily deformed.
  • the diaphragm portion 22c when the pressure P acts on the outer surface 22a of the membrane 22 is the same as in the natural state shown in FIG. 7A. In addition, it is flexed and deformed convexly toward the fixed electrode 26 side. The amount of deformation of the diaphragm portion 22c is almost the same as that in the natural state shown in FIG. 7A. As described above, if the cross-sectional shape, width, depth, etc.
  • the distance ⁇ dt between the diaphragm portion 22c and the fixed electrode 26 when the same pressure P acts on the membrane 22 is , Is substantially equal to the distance ⁇ dn in the natural state shown in FIG. 7A.
  • the pressure P is applied to the outer surface 22a of the membrane 22 in a state where the compressive stress Fc in the plane direction of the membrane 22 is applied to the detection element 112, that is, in a state where the membrane 22 is in a plane stress state due to the compressive stress Fc.
  • the diaphragm portion 22c when not acting is shown by a two-point chain line, and the diaphragm portion 22c when the pressure P acts on the outer surface 22a of the membrane 22 is shown by a solid line. As shown in FIG.
  • the diaphragm portion 22c when the pressure P does not act on the outer surface 22a of the membrane 22 is very slightly fixed electrode 26. It is flexed and deformed convexly to the side opposite to the side, that is, to the outer side. This deflection deformation is due to the difference between the distribution of compressive stress on the outer surface 22a of the membrane 22 and the distribution of compressive stress on the inner surface 22b.
  • the compressive stress generated in the region of the outer surface 22a sandwiched between the plurality of recesses 22d is smaller than the compressive stress generated in the region of the inner surface 22b opposite to the region. Therefore, the region of the inner surface 22b is distorted in a direction of being greatly shrunk as compared with the region of the outer surface 22a. As a result, the diaphragm portion 22c is slightly flexed and deformed so that the inner surface 22b becomes concave.
  • the diaphragm portion 22c is slightly flexed and deformed so that the inner surface 22b is concave, so that the absolute value of the capacitance between the diaphragm portion 22c and the fixed electrode 26 is reduced.
  • the diaphragm portion 22c flexes convexly toward the fixed electrode 26 side and is less likely to be deformed.
  • the diaphragm portion 22c when the pressure P acts on the outer surface 22a of the membrane 22 is the same as in the natural state shown in FIG. 7A. In addition, it is flexed and deformed convexly toward the fixed electrode 26 side. The amount of deformation of the diaphragm portion 22c is almost the same as that in the natural state shown in FIG. 7A. As described above, if the cross-sectional shape, width, depth, etc.
  • the distance ⁇ dc between the diaphragm portion 22c and the fixed electrode 26 when the same pressure P acts on the membrane 22 is , Is substantially equal to the distance ⁇ dn in the natural state shown in FIG. 7A.
  • the recess 22d is provided on the outer surface 22a of the membrane 22, regardless of whether the membrane 22 is in a natural state or a plane stress state, and Even if the membrane 22 is in a plane stress state, if the same pressure P acts on the membrane 22 regardless of the difference between tensile stress and compressive stress, that is, the difference in the direction of the stress generated in the membrane 22, the diaphragm portion
  • the distances between 22c and the fixed electrode 26 are substantially equal. That is, in the detection element 12 in the sensor 10 according to the first embodiment, even if the membrane 22 is in a plane stress state, the detection sensitivity hardly changes as compared with the natural state, and the change in the detection sensitivity is suppressed. be able to.
  • the recess 22d is provided on the outer surface 22a of the membrane 22, the diaphragm portion 22c is locally thinned, and the diaphragm portion 22c is easily deformed. As a result, the detection sensitivity is increased, and the noise contained in the signal output from the sensor 10 is reduced.
  • the sensor 10 for detecting pressure it is possible to suppress a change in detection sensitivity caused when the membrane 22 is in a plane stress state.
  • the second embodiment is an improved form of the first embodiment described above. Therefore, the sensor according to the second embodiment will be described focusing on the points different from the first embodiment described above.
  • FIG. 8 is a top view of the detection element in the sensor according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view taken along the line CC of FIG. 8 of the detection element in the sensor according to the second embodiment of the present invention.
  • a plurality of grooves 220a are provided on the element substrate 220.
  • the groove 220a is provided on the surface of the element substrate 220 at a portion in contact with the side wall member 224 so as to surround the fixed electrode 226.
  • the groove 220a is the first groove.
  • a plurality of recesses 222e are provided on the outer surface 222a of the membrane 222.
  • the recess 222d is the first recess
  • the recess 222e is the second recess.
  • a recess 222e is formed in a portion of the membrane 222 around the diaphragm portion 222c, that is, a portion of the membrane 222 that overlaps with the side wall member 224 in the thickness direction of the membrane 222. It is provided.
  • the thickness direction of the membrane 222 is the Z-axis direction of the XYZ Cartesian coordinate system shown in the figure. Therefore, the thickness direction view of the membrane 222 is the Z-axis direction view. Further, in the thickness direction of the membrane 222, the recess 222e overlaps at least a part of the groove 220a.
  • a plurality of grooves 224a are provided on the side wall member 224.
  • the groove 224a penetrates the side wall member 224 in the thickness direction of the membrane 222.
  • the groove 224a overlaps with at least a part of the groove 220a and also overlaps with at least a part of the recess 222e in the thickness direction of the membrane 222.
  • the groove 224a is a second groove.
  • the groove 220a, the recess 222e, and the groove 224a surround the diaphragm portion 222c in the thickness direction of the membrane 222. Therefore, the groove 220a, the recess 222e, and the groove 224a function as dampers that absorb the stress and reduce the force transmitted to the diaphragm portion 222c when the compressive stress or the tensile stress in the plane direction of the membrane 222 is applied to the detection element 12. do. As a result, the stress generated in the diaphragm portion 222c is reduced, and the change in detection sensitivity is further suppressed even when the membrane 222 is in a plane stress state.
  • the plane direction of the membrane 222 is the X-axis direction and the Y-axis direction of the XYZ Cartesian coordinate system shown in the figure.
  • the element substrate 220 may be thickened in order to further reduce the stress generated in the diaphragm portion 222c. As a result, the element substrate 220 can be provided with rigidity against compressive stress or tensile stress in the plane direction. As a result, the stress generated in the diaphragm portion 222c is further reduced.
  • the groove 220a, the recess 222e, and the groove 224a may be annular in the thickness direction of the membrane 222. That is, the number and shape of the grooves 220a, the recess 222e, and the grooves 224a are not limited as long as they are provided at positions outside the diaphragm portion 222c in the thickness direction of the membrane 222.
  • two recesses 22d are provided parallel to each other at an equal distance from the center C of the membrane 22.
  • the recess provided in the membrane can have various forms.
  • FIG. 10 is a top view of the detection element in the sensor according to the third embodiment of the present invention.
  • FIG. 11 is a top view of the detection element in the sensor according to the fourth embodiment of the present invention.
  • FIG. 12 is a top view of the detection element in the sensor according to the fifth embodiment of the present invention.
  • FIG. 13 is a top view of the detection element in the sensor according to the sixth embodiment of the present invention.
  • FIG. 14 is a top view of the detection element in the sensor according to the seventh embodiment of the present invention.
  • two recesses 322d and two recesses 322f are provided on the outer surface 322a of the membrane 322.
  • recesses 322d and 322f are provided between the center C of the diaphragm portion 322c and the side wall member 324 in the thickness direction of the membrane 322.
  • the recesses 322d and 322f are provided in the diaphragm portion 322c along the side wall member 324 in the thickness direction of the membrane 322.
  • the recesses 322d and 322f surround the center C of the membrane 322.
  • the recesses 322d and 322f are first recesses.
  • the recess 322d extends in the longitudinal direction of the diaphragm portion 322c in the thickness direction of the membrane 322.
  • the longitudinal direction of the diaphragm portion 322c is the X-axis direction of the XYZ Cartesian coordinate system shown in the figure.
  • the recess 322d extends to the outside of the diaphragm portion 322c, that is, to the portion of the membrane 322 supported by the side wall member 324.
  • the recess 322d is provided point-symmetrically with the center C as the center of symmetry. That is, two recesses 322d are provided parallel to each other at the same distance from the center C.
  • the recess 322f extends in the lateral direction of the diaphragm portion 322c in the thickness direction of the membrane 322.
  • the lateral direction of the diaphragm portion 322c is the Y-axis direction of the XYZ Cartesian coordinate system shown in the figure.
  • the recess 322f is provided point-symmetrically with the center C as the center of symmetry. That is, two recesses 322f are provided parallel to each other at the same distance from the center C.
  • two recesses 422d are provided on the outer surface 422a of the membrane 422.
  • the entire recess 422d is located in the diaphragm portion 422c.
  • two recesses 522d and two recesses 522f are provided on the outer surface 522a of the membrane 522.
  • recesses 522d and 522f are provided between the center C of the diaphragm portion 522c and the side wall member 524 in the thickness direction of the membrane 522.
  • the recesses 522d and 522f are provided in the diaphragm portion 522c along the side wall member 524 in the thickness direction of the membrane 522.
  • the recesses 522d and 522f surround the center C of the membrane 522.
  • the recesses 522d and 522f are first recesses.
  • the entire recess 322d and 322f is located in the diaphragm portion 522c.
  • the recess 522d extends in the longitudinal direction of the diaphragm portion 522c in the thickness direction of the membrane 522.
  • the longitudinal direction of the diaphragm portion 322c is the X-axis direction of the XYZ Cartesian coordinate system shown in the figure.
  • the recess 322d is provided point-symmetrically with the center C as the center of symmetry. That is, two recesses 322d are provided parallel to each other at the same distance from the center C.
  • the recess 522f extends in the lateral direction of the diaphragm portion 522c in the thickness direction of the membrane 522.
  • the lateral direction of the diaphragm portion 522c is the Y-axis direction of the XYZ Cartesian coordinate system shown in the figure.
  • the recess 522f is provided point-symmetrically with the center C as the center of symmetry. That is, two recesses 322f are provided parallel to each other at the same distance from the center C.
  • each recesses 622d and two recesses 622f are provided on the outer surface 622a of the membrane 622.
  • recesses 622d and 622f are provided between the center C of the diaphragm portion 622c and the side wall member 624 in the thickness direction of the membrane 622.
  • the recesses 622d and 622f are provided in the diaphragm portion 622c along the side wall member 624 in the thickness direction of the membrane 622.
  • the recesses 622d and 622f surround the center C of the membrane 622.
  • the recesses 622d and 622f are first recesses.
  • the entire recesses 622d and 622f are located in the diaphragm portion 622c.
  • the recess 622d extends in the longitudinal direction of the diaphragm portion 622c in the thickness direction of the membrane 622.
  • the longitudinal direction of the diaphragm portion 622c is the X-axis direction of the XYZ Cartesian coordinate system shown in the figure.
  • the recess 622d is provided point-symmetrically with the center C as the center of symmetry. That is, four recesses 622d are provided parallel to each other at the same distance from the center C.
  • the recess 622f extends in the lateral direction of the diaphragm portion 622c in the thickness direction of the membrane 622.
  • the lateral direction of the diaphragm portion 622c is the Y-axis direction of the XYZ Cartesian coordinate system shown in the figure.
  • the recess 622f is provided point-symmetrically with the center C as the center of symmetry. That is, two recesses 622f are provided parallel to each other at the same distance from the center C.
  • the recess 722d is provided on the outer surface 722a of the membrane 722. Specifically, as shown in FIG. 14, a recess 722d is provided between the center C of the diaphragm portion 722c and the side wall member 724 in the thickness direction of the membrane 722. The recess 722d is provided in the diaphragm portion 722c along the side wall member 724 in the thickness direction of the membrane 722. The recess 722d is annular in the thickness direction of the membrane 722 and surrounds the center C of the membrane 722. The recess 722d is a first recess. The entire recess 722d is located in the diaphragm portion 722c.
  • a first recess is provided on the outer surface of the membrane between the center of the diaphragm portion and the side wall member in the thickness direction of the membrane.
  • the first recess is provided not on the center side of the diaphragm portion but on the side wall member side, that is, along the side wall member in the thickness direction of the membrane.
  • the diaphragm portion can be flexed and deformed into its centrally symmetric shape.
  • the diaphragm portion can be flexed and deformed into a more centrally symmetric shape.
  • the senor 10 is a capacitance type pressure sensor.
  • the embodiments of the present invention are not limited to this.
  • the sensor may be a piezoresistive pressure sensor in which the electrical resistance of the membrane changes as the membrane is deformed by receiving pressure.
  • the sensor is not limited to the one that detects the pressure, and may be a sensor that detects the vibration or force applied to the membrane by the amount of deformation of the membrane, for example, a differential pressure sensor or a force sensor.
  • the detection element 12 is covered with the resin package 16.
  • the sensor according to the present invention may be a sensor having a structure in which tensile stress or compressive stress can act on the detection element in the plane direction of the membrane.
  • the senor according to the embodiment of the present invention includes a device substrate, an outer surface, and an inner surface which is a surface opposite to the outer surface, and includes a membrane including a diaphragm portion.
  • a detection element provided on the element substrate and including a side wall member on the inner surface of the membrane that supports the outer portion of the diaphragm portion, and a thickness direction view of the membrane on the outer surface of the membrane.
  • a first recess is provided between the center of the diaphragm portion and the side wall member.
  • the present invention is applicable to a sensor that detects pressure and the like.

Abstract

センサは、素子基板と、外側表面と外側表面に対して反対側の面である内側表面とを備え、ダイアフラム部を含むメンブレンと、素子基板に設けられ、メンブレンの内側表面における、ダイアフラム部外側の部分を支持する側壁部材と、側壁部材に囲まれた状態で素子基板上に設けられ、メンブレンの内側表面に対して間隔をあけて対向し、ダイアフラム部との間に静電容量を形成する固定電極と、を含む検出素子を有する。メンブレンの外側表面における、メンブレンの厚さ方向視で、ダイアフラム部の中心と側壁部材との間に、第1の凹部が設けられている。

Description

センサ
 本発明は、圧力などの力を検出するセンサに関する。
 例えば、特許文献1には、素子基板と、素子基板上に設けられた固定電極と、固定電極に対して間隔をあけて対向配置されたダイアフラム部を含むメンブレンと、を備える検出素子を有する、静電容量型圧力センサが開示されている。メンブレンの外側表面の中央部分には凹部が設けられている。これにより、素子基板が曲げ変形したときに、固定電極とダイアフラム部の内側表面とが実質的に平行になるように、メンブレンが曲げ変形する。
国際公開第2014/191914号
 しかしながら、特許文献1に記載された静電容量型圧力センサの場合、メンブレンの平面方向の圧縮応力または引っ張り応力が検出素子に加わると、すなわちメンブレンが平面応力状態になると、ダイアフラム部を含むメンブレンの変形剛性が減少または増加し、その結果としてセンサの検出感度が変化する。このように、平面応力状態になって変形剛性が増減することは、ストレス・スティフニング効果と呼ばれている。
 そこで、本発明は、圧力などの力を検出するセンサにおいて、メンブレンが平面応力状態になって生じる検出感度の変化を抑制することを課題とする。
 上記技術的課題を解決するために、本発明の一態様によれば、
 素子基板と、
 外側表面と、前記外側表面に対して反対側の面である内側表面とを備え、ダイアフラム部を含むメンブレンと、
 前記素子基板に設けられ、前記メンブレンの前記内側表面における、前記ダイアフラム部外側の部分を支持する側壁部材と、
 前記側壁部材に囲まれた状態で前記素子基板上に設けられ、前記メンブレンの内側表面に対して間隔をあけて対向し、前記ダイアフラム部との間に静電容量を形成する固定電極と、を含む検出素子を有し、
 前記メンブレンの外側表面における、前記メンブレンの厚さ方向視で、前記ダイアフラム部の中心と側壁部材との間に、第1の凹部が設けられている、センサが提供される。
 本発明によれば、圧力などの力を検出するセンサにおいて、メンブレンが平面応力状態になって生じる検出感度の変化を抑制することができる。
本発明の実施の形態1に係るセンサの斜視図 本発明の実施の形態1に係るセンサの図1のA-A線に沿った断面図 本発明の実施の形態1に係るセンサの図1のB-B線に沿った断面図 本発明の実施の形態1に係るセンサの上面図 本発明の実施の形態1に係るセンサにおける検出素子の分解斜視図 比較例に係るセンサにおける検出素子の自然状態の断面図 比較例に係るセンサにおける検出素子の引っ張り応力が加わった状態の断面図 比較例に係るセンサにおける検出素子の圧縮応力が加わった状態の断面図 実施例に係るセンサにおける検出素子の自然状態の断面図 実施例に係るセンサにおける検出素子の引っ張り応力が加わった状態の断面図 実施例に係るセンサにおける検出素子の圧縮応力が加わった状態の断面図 本発明の実施の形態2に係るセンサにおける検出素子の上面図 本発明の実施の形態2に係るセンサにおける検出素子の図8のC-C線に沿った断面図 本発明の実施の形態3に係るセンサにおける検出素子の上面図 本発明の実施の形態4に係るセンサにおける検出素子の上面図 本発明の実施の形態5に係るセンサにおける検出素子の上面図 本発明の実施の形態6に係るセンサにおける検出素子の上面図 本発明の実施の形態7に係るセンサにおける検出素子の上面図
 本発明の一態様のセンサは、素子基板と、外側表面と、前記外側表面に対して反対側の面である内側表面とを備え、ダイアフラム部を含むメンブレンと、前記素子基板に設けられ、前記メンブレンの前記内側表面における、前記ダイアフラム部外側の部分を支持する側壁部材と、前記側壁部材に囲まれた状態で前記素子基板上に設けられ、前記メンブレンの内側表面に対して間隔をあけて対向し、前記ダイアフラム部との間に静電容量を形成する固定電極と、を含む検出素子を有し、前記メンブレンの外側表面における、前記メンブレンの厚さ方向視で、前記ダイアフラム部の中心と側壁部材との間に、第1の凹部が設けられている。
 このような態様によれば、圧力などの力を検出するセンサにおいて、メンブレンが平面応力状態になって生じる検出感度の変化を抑制することができる。
 例えば、前記第1の凹部が、前記厚さ方向視で前記側壁部材に沿って、前記ダイアフラム部に設けられてもよい。
 例えば、前記第1の凹部が、前記厚さ方向視で前記側壁部材に沿って連続的に延在する直線状であってもよい。
 例えば、前記第1の凹部が、前記側壁部材によって支持されている前記メンブレンの部分内まで延在してもよい。
 例えば、前記第1の凹部は複数であり、前記厚さ方向視で前記メンブレンの中心を囲んでもよい。
 例えば、前記第1の凹部は複数であり、前記厚さ方向視で前記メンブレンの中心を対称の中心とする点対称に設けられてもよい。
 例えば、2つの前記第1の凹部が、前記厚さ方向視で前記メンブレンの中心を挟んで互いに平行であってもよい。
 例えば、前記素子基板の表面における前記側壁部材と接触している部分に、第1の溝が設けられてもよい。
 例えば、前記メンブレンの外側表面であって、前記厚さ方向視で前記メンブレンにおける前記側壁部材と重なっている部分に、第2の凹部が設けられてもよく、この場合、前記第2の凹部は、前記厚さ方向視で前記第1の溝の少なくとも一部と重なっている。
 例えば、前記側壁部材に第2の溝が設けられてもよく、この場合、前記第2の溝は、前記厚さ方向視で前記第1の溝の少なくとも一部と重なっているとともに、第2の凹部の少なくとも一部と重なっている。
 例えば、前記検出素子が搭載されるパッケージ基板と、前記パッケージ基板上に設けられ、前記検出素子を覆う樹脂パッケージと、を有し、前記樹脂パッケージが露出穴を備え、前記検出素子の一部が前記露出穴において外部に露出してもよい。
 以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
 図1は、本発明の実施の形態1に係るセンサの斜視図である。図2は、本発明の実施の形態1に係るセンサの図1のA-A線に沿った断面図である。図3は、本発明の実施の形態1に係るセンサの図1のB-B線に沿った断面図である。図4は、本発明の実施の形態1に係るセンサの上面図である。なお、図に示すX-Y-Z直交座標系は本発明の理解を容易にするためのものであって、発明を限定するものではない。
 図1~図4に示すように、センサ10は、検出素子12と、パッケージ基板14と、樹脂パッケージ16とを有する。センサ10は静電容量型圧力センサであり、検出素子12によって圧力を検出することができる。検出素子12は、パッケージ基板14に搭載されている。樹脂パッケージ16は、パッケージ基板14上に設けられており、露出穴16aを備えている。検出素子12の一部が露出穴16aにおいて外部に露出した状態で、検出素子12は樹脂パッケージ16によって覆われている。
 図5は、本発明の実施の形態1に係るセンサにおける検出素子の分解斜視図である。
 図5に示すように、検出素子12は、素子基板20と、メンブレン22と、側壁部材24と、固定電極26とを有する。
 素子基板20は、例えばシリコン基板であって、パッケージ基板14と電気的に接続される端子(図示せず)を備える。
 メンブレン22は、可撓性を有し、例えば厚さが3.9μmの薄板状の部材である。メンブレン22は、導電性を有する。また、メンブレン22は、外側表面22aと、内側表面22bとを備える。外側表面22aは、検出対象の圧力が作用する面である。内側表面22bは、外側表面22aに対して反対側の面である。メンブレン22は、ダイアフラム部22cを含む。ダイアフラム部22cは、その中央部分に圧力を受けてたわみ変形する。
 側壁部材24は、素子基板20上に設けられた、枠状の部材である。壁部材24は、メンブレン22の厚さ方向視で矩形状である。なお、メンブレン22の厚さ方向は、図に示すX-Y-Z直交座標系のZ軸方向である。このため、メンブレン22の厚さ方向視とは、Z軸方向視である。側壁部材24は、絶縁性を有する。また、側壁部材24は、メンブレン22を支持する。具体的には、側壁部材24は、メンブレン22の内側表面22bにおけるダイアフラム部22c外側の部分を支持する。これにより、ダイアフラム部22cは、メンブレン22の厚さ方向にたわみ変形することができる。言い換えると、メンブレン22における側壁部材24によって支持されていない部分が、ダイアフラム部22cである。
 固定電極26は、素子基板20上に設けられ、側壁部材24によって囲まれている。固定電極26は、例えば、導電性ポリシリコンから作製されている。また、固定電極26は、メンブレン22の内側表面22bに対して間隔をあけて対向している。固定電極26とダイアフラム部22cとの間に、静電容量が形成されている。
 図1~図3に示すように、メンブレン22の外側表面22aの一部、すなわちダイアフラム部22cは、樹脂パッケージ16の露出穴16aにおいて外部に露出している。これにより、ダイアフラム部22cに圧力が作用する。
 外部に露出しているメンブレン22の外側表面22aの一部に圧力が作用すると、その圧力の大きさに応じてダイアフラム部22cが、固定電極26側に凸にたわみ変形する。それにより、ダイアフラム部22cと固定電極26との間の距離が変化し、ダイアフラム部22cと固定電極26との間の静電容量の絶対値が変化する。この静電容量の絶対値の変化に基づいて、メンブレン22の外側表面22aに作用する圧力の大きさを検出することができる。
 また、本実施の形態1においては、図5に示すように、複数の凹部22dがメンブレン22の外側表面22aに設けられている。凹部22dは、第1の凹部である。具体的には、図4に示すように、メンブレン22の厚さ方向視で、ダイアフラム部22cの中心Cと側壁部材24との間に、凹部22dが設けられている。本実施の形態1では、凹部22dは、例えば幅が12μmであって、深さが0.8μmの直線状の溝である。凹部22dの深さは、メンブレン22の剛性の低下を抑制するために、メンブレン22の厚さの半分以下、好ましくは、25%以下がよい。また、凹部22dは、メンブレン22の厚さ方向視で側壁部材24に沿って連続的に延在するように、ダイアフラム部22cに設けられている。さらに、凹部22dは、メンブレン22の厚さ方向視で、ダイアフラム部22cの長手方向に延びている。ダイアフラム部22cの長手方向は、図に示すX-Y-Z直交座標系のX軸方向である。本実施の形態1では、凹部22dは、メンブレン22の中心Cを囲み、また、中心Cを対称の中心とする点対称に設けられている。すなわち、本実施の形態1では、中心Cを挟むように、またその中心Cから等しい距離で互いに平行に、2つの凹部22dが設けられている。
 なお、本実施の形態1では、凹部22dは、ダイアフラム部22cの外部、すなわち側壁部材24によって支持されているメンブレン22の部分内まで延在している。これにより、メンブレン22が側壁部材24に対して所望の位置からずれて設けられても、凹部22dは、メンブレン22の厚さ方向視で、メンブレン22における側壁部材24によって囲われた領域内、すなわちダイアフラム部22c内に位置する。
 凹部22dは、メンブレン22が平面応力状態になって生じる検出感度の変化を抑制するために設けられている。具体的には、図1~図3に示すように、樹脂パッケージ16自体の熱膨張または熱収縮、樹脂パッケージ16に作用する外力などにより、メンブレン22の平面方向の圧縮応力または引っ張り応力が検出素子12に加わる。なお、メンブレン22の平面方向は、図に示すX-Y-Z直交座標系のX軸方向およびY軸方向である。それにより、メンブレン22が平面応力状態になる。メンブレン22の平面応力状態について、図を参照しながら説明する。
 図6Aは、比較例に係るセンサにおける検出素子の自然状態の断面図を示す。図6Bは、比較例に係るセンサにおける検出素子の引っ張り応力が加わった状態の断面図を示す。図6Cは、比較例に係るセンサにおける検出素子の圧縮応力が加わった状態の断面図を示す。図7Aは、実施例に係るセンサにおける検出素子の自然状態の断面図を示す。図7Bは、実施例に係るセンサにおける検出素子の引っ張り応力が加わった状態の断面図を示す。図7Cは、実施例に係るセンサにおける検出素子の圧縮応力が加わった状態の断面図を示す。ここで、自然状態とは、メンブレンの平面方向の圧縮応力または引っ張り応力が検出素子に加わっていない状態、すなわち、メンブレンが平面応力状態ではない状態である。
 図6A~図6Cに示すように、比較例に係るセンサにおける検出素子112では、メンブレン122の外側表面122aに凹部が設けられていない。
 図6Aでは、自然状態において、圧力Pがメンブレン122の外側表面122aに作用していないときのダイアフラム部122cを一点鎖線で示し、圧力Pがメンブレン122の外側表面122aに作用したときのダイアフラム部122cを実線で示している。図6Aに示すように、自然状態において、圧力Pがメンブレン122の外側表面122aに作用していないときのダイアフラム部122cは、実質的に平坦である。また、図6Aに示すように、自然状態において、圧力Pがメンブレン122の外側表面122aに作用したときのダイアフラム部122cは、固定電極126側に凸にたわみ変形している。その結果、ダイアフラム部122cと固定電極126との間の距離Δdnが圧力Pに対応する長さになる。
 図6Bでは、メンブレン122の平面方向の引っ張り応力Ftが検出素子112に加わっている状態、すなわち、引っ張り応力Ftによってメンブレン122が平面応力状態である状態において、圧力Pがメンブレン122の外側表面122aに作用していないときのダイアフラム部122cを二点鎖線で示し、圧力Pがメンブレン122の外側表面122aに作用したときのダイアフラム部122cを実線で示している。図6Bに示すように、引っ張り応力Ftによってメンブレン122が平面応力状態である状態において、圧力Pがメンブレン122の外側表面122aに作用していないときのダイアフラム部122cは、実質的に平坦である。
 図6Bに示すように、引っ張り応力Ftによってメンブレン122が平面応力状態である状態において、圧力Pがメンブレン122の外側表面122aに作用したときのダイアフラム部122cは、固定電極126側に凸にたわみ変形している。しかし、ダイアフラム部122cの変形量は、図6Aに示す自然状態における場合に比べて小さい。その結果、同一の圧力Pがメンブレン122に作用しているにもかかわらず、ダイアフラム部122cと固定電極126との間の距離Δdtは、図6Aに示す自然状態における距離Δdnに比べて大きくなる。
 すなわち、メンブレン122の平面方向の引っ張り応力Ftが検出素子112に加わっている場合、メンブレン122は、その厚さ方向の変形剛性が自然状態に比べて増加し、厚さ方向に変形しにくい状態になっている。
 図6Cでは、メンブレン122の平面方向の圧縮応力Fcが検出素子112に加わっている状態、すなわち、圧縮応力Fcによってメンブレン122が平面応力状態である状態において、圧力Pがメンブレン122の外側表面122aに作用していないときのダイアフラム部122cを二点鎖線で示し、圧力Pがメンブレン122の外側表面122aに作用したときのダイアフラム部122cを実線で示している。図6Cに示すように、圧縮応力Fcによってメンブレン122が平面応力状態である状態において、圧力Pがメンブレン122の外側表面122aに作用していないときのダイアフラム部122cは、実質的に平坦である。
 図6Cに示すように、圧縮応力Fcによってメンブレン122が平面応力状態である状態において、圧力Pがメンブレン122の外側表面122aに作用したときのダイアフラム部122cは、固定電極126側に凸にたわみ変形している。しかし、ダイアフラム部122cの変形量は、図6Aに示す自然状態における場合に比べて大きい。その結果、同一の圧力Pがメンブレン122に作用しているにもかかわらず、ダイアフラム部122cと固定電極126との間の距離Δdcは、図6Aに示す自然状態における距離Δdnに比べて小さくなる。
 すなわち、メンブレン122の平面方向の圧縮応力Fcが検出素子112に加わっている場合、メンブレン122は、その厚さ方向の変形剛性が自然状態に比べて減少し、厚さ方向に変形しやすい状態になっている。
 このように、メンブレン122の平面方向に引っ張り応力または圧縮応力がメンブレン122に加わることにより、すなわちメンブレン122が平面応力状態になることにより、そのメンブレン122の厚さ方向の変形剛性が増減する現象は、ストレス・スティフニング効果と呼ばれている。
 図6A~図6Cに示すように、比較例に係るセンサにおける検出素子112では、同一の圧力Pがメンブレン122に作用しているにもかかわらず、自然状態であるか、メンブレン122が平面応力状態であるかの違いにより、ダイアフラム部122cと固定電極126との間の距離が異なる。また、メンブレン122が平面応力状態であっても、引っ張り応力か圧縮応力かの違い、すなわち、メンブレン122に発生する応力の向きの違いにより、ダイアフラム部122cと固定電極126との間の距離が異なる。このように、比較例に係るセンサにおける検出素子112では、メンブレン122が平面応力状態になると、自然状態に比べて検出感度が変化する。
 本実施の形態1では、複数の凹部22dがダイアフラム部22cに設けられているため、メンブレン22が平面応力状態になっても検出感度の変化が抑制される。図7A~図7Cを用いて説明する。
 図7Aでは、自然状態において、圧力Pがメンブレン22の外側表面22aに作用していないときのダイアフラム部22cを一点鎖線で示し、圧力Pがメンブレン22の外側表面22aに作用したときのダイアフラム部22cを実線で示している。図7Aに示すように、自然状態において、圧力Pがメンブレン22の外側表面22aに作用していないときのダイアフラム部22cは、実質的に平坦である。また、図7Aに示すように、自然状態において、圧力Pがメンブレン22の外側表面22aに作用したときのダイアフラム部22cは、固定電極26側に凸にたわみ変形している。その結果、ダイアフラム部22cと固定電極26との間の距離Δdnが圧力Pに対応する長さになる。
 図7Bでは、メンブレン22の平面方向の引っ張り応力Ftが検出素子112に加わっている状態、すなわち、引っ張り応力Ftによってメンブレン22が平面応力状態である状態において、圧力Pがメンブレン122の外側表面122aに作用していないときのダイアフラム部122cを二点鎖線で示し、圧力Pがメンブレン122の外側表面122aに作用したときのダイアフラム部122cを実線で示している。図7Bに示すように、引っ張り応力Ftによってメンブレン22が平面応力状態である状態において、圧力Pがメンブレン22の外側表面22aに作用していないときのダイアフラム部22cは、ごくわずかに、固定電極26側に凸にたわみ変形している。このたわみ変形は、メンブレン22の外側表面22aにおける引っ張り応力の分布と、内側表面22bにおける引っ張り応力の分布とが異なることによる。
 具体的には、複数の凹部22dに挟まれた外側表面22aの領域に発生する引っ張り応力は、その領域に対して反対側の内側表面22bの領域に発生する引っ張り応力に比べて小さい。そのために、内側表面22bの領域の方が、外側表面22aの領域に比べて大きく伸びる方向にひずむ。その結果、ダイアフラム部22cは、内側表面22bが凸状になるように、わずかにたわみ変形する。
 このように、ダイアフラム部22cが、内側表面22bが凸状になるように、わずかにたわみ変形することにより、ダイアフラム部22cと固定電極26との間の静電容量の絶対値が増加する。また、ダイアフラム部22cが固定電極26側に凸にたわみ変形しやすくなる。
 図7Bに示すように引っ張り応力Ftによってメンブレン22が平面応力状態である状態において、圧力Pがメンブレン22の外側表面22aに作用したときのダイアフラム部22cは、図7Aに示す自然状態における場合と同様に、固定電極26側に凸にたわみ変形している。ダイアフラム部22cの変形量は、図7Aに示す自然状態における場合とほぼ同じである。このように、凹部22dの断面形状、幅、深さなどが適切であれば、同一の圧力Pがメンブレン22に作用している場合における、ダイアフラム部22cと固定電極26との間の距離Δdtは、図7Aに示す自然状態における距離Δdnと実質的に等しくなる。
 図7Cでは、メンブレン22の平面方向の圧縮応力Fcが検出素子112に加わっている状態、すなわち、圧縮応力Fcによってメンブレン22が平面応力状態である状態において、圧力Pがメンブレン22の外側表面22aに作用していないときのダイアフラム部22cを二点鎖線で示し、圧力Pがメンブレン22の外側表面22aに作用したときのダイアフラム部22cを実線で示している。図6Cに示すように、圧縮応力Fcによってメンブレン22が平面応力状態である状態において、圧力Pがメンブレン22の外側表面22aに作用していないときのダイアフラム部22cは、ごくわずかに、固定電極26側とは反対側、すなわち、外部側に凸にたわみ変形している。このたわみ変形は、メンブレン22の外側表面22aにおける圧縮応力の分布と、内側表面22bにおける圧縮応力の分布とが異なることによる。
 具体的には、複数の凹部22dに挟まれた外側表面22aの領域に発生する圧縮応力は、その領域に対して反対側の内側表面22bの領域に発生する圧縮応力に比べて小さい。そのために、内側表面22bの領域の方が、外側表面22aの領域に比べて大きく縮む方向にひずむ。その結果、ダイアフラム部22cは、内側表面22bが凹状になるように、わずかにたわみ変形する。
 このように、ダイアフラム部22cが、内側表面22bが凹状になるように、わずかにたわみ変形することにより、ダイアフラム部22cと固定電極26との間の静電容量の絶対値が減少する。また、ダイアフラム部22cが固定電極26側に凸にたわみ変形しにくくなる。
 図7Cに示すように圧縮応力Fcによってメンブレン22が平面応力状態である状態において、圧力Pがメンブレン22の外側表面22aに作用したときのダイアフラム部22cは、図7Aに示す自然状態における場合と同様に、固定電極26側に凸にたわみ変形している。ダイアフラム部22cの変形量は、図7Aに示す自然状態における場合とほぼ同じである。このように、凹部22dの断面形状、幅、深さなどが適切であれば、同一の圧力Pがメンブレン22に作用している場合における、ダイアフラム部22cと固定電極26との間の距離Δdcは、図7Aに示す自然状態における距離Δdnと実質的に等しくなる。
 図7A~図7Cに示すように、凹部22dがメンブレン22の外側表面22aに設けられていることにより、自然状態であるか、メンブレン22が平面応力状態であるかの違いにかかわらず、また、メンブレン22が平面応力状態であっても、引っ張り応力か圧縮応力かの違い、すなわち、メンブレン22に発生する応力の向きの違いに関係なく、同一の圧力Pがメンブレン22に作用すれば、ダイアフラム部22cと固定電極26との間の距離が実質的に等しくなる。すなわち、本実施の形態1に係るセンサ10における検出素子12では、メンブレン22が平面応力状態になっても、自然状態に比べて検出感度が変化することがほとんどなく、検出感度の変化を抑制することができる。
 なお、副次的な効果として、凹部22dがメンブレン22の外側表面22aに設けられていることにより、ダイアフラム部22cが局所的に薄くなり、ダイアフラム部22cが変形しやすい。その結果、検出感度が高くなり、センサ10から出力される信号に含まれるノイズが低減する。
 以上のような本実施の形態1によれば、圧力を検出するセンサ10において、メンブレン22が平面応力状態になって生じる検出感度の変化を抑制することができる。
(実施の形態2)
 本実施の形態2は、上述の実施の形態1の改良形態である。したがって、上述の実施の形態1と異なる点を中心にして、本実施の形態2に係るセンサを説明する。
 図8は、本発明の実施の形態2に係るセンサにおける検出素子の上面図である。図9は、本発明の実施の形態2に係るセンサにおける検出素子の図8のC-C線に沿った断面図である。
 図8および図9に示すように、本実施の形態2に係るセンサにおける検出素子212では、複数の溝220aが素子基板220に設けられている。溝220aは、素子基板220の表面における側壁部材224と接触している部分に、固定電極226を囲んで設けられている。溝220aは、第1の溝である。
 また、本実施の形態2では、複数の凹部222dに加えて、複数の凹部222eが、メンブレン222の外側表面222aに設けられている。凹部222dは第1の凹部であり、凹部222eは第2の凹部である。
 具体的には、図8に示すように、メンブレン222におけるダイアフラム部222cの周囲の部分、すなわち、メンブレン222の厚さ方向視で、メンブレン222における側壁部材224と重なっている部分に、凹部222eが設けられている。なお、メンブレン222の厚さ方向は、図に示すX-Y-Z直交座標系のZ軸方向である。このため、メンブレン222の厚さ方向視とは、Z軸方向視である。さらには、メンブレン222の厚さ方向視で、凹部222eは、溝220aの少なくとも一部と重なっている。
 さらに、図9に示すように、本実施の形態2では、複数の溝224aが側壁部材224に設けられている。溝224aは、メンブレン222の厚さ方向において、側壁部材224を貫通している。溝224aは、メンブレン222の厚さ方向視で、溝220aの少なくとも一部と重なっているとともに、凹部222eの少なくとも一部と重なっている。溝224aは、第2の溝である。
 図8に示すように、溝220a、凹部222e、溝224aは、メンブレン222の厚さ方向視で、ダイアフラム部222cを囲んでいる。そのため、溝220a、凹部222e、溝224aは、メンブレン222の平面方向の圧縮応力または引っ張り応力が検出素子12に加わったとき、応力を吸収してダイアフラム部222cに伝わる力を低減する、ダンパーとして機能する。その結果、ダイアフラム部222cに発生する応力が低減され、メンブレン222が平面応力状態になっても検出感度の変化がより抑制される。なお、メンブレン222の平面方向は、図に示すX-Y-Z直交座標系のX軸方向およびY軸方向である。
 なお、ダイアフラム部222cに発生する応力をさらに低減するために、素子基板220を厚くしてもよい。これにより、素子基板220は、平面方向の圧縮応力または引っ張り応力に対する剛性を備えることができる。その結果として、ダイアフラム部222cに発生する応力がさらに低減される。
 また、溝220a、凹部222e、溝224aは、メンブレン222の厚さ方向視で、環状であってもよい。すなわち、溝220a、凹部222e、溝224aは、メンブレン222の厚さ方向視で、ダイアフラム部222cの外側の位置に設けられていれば、その個数や形状は問わない。
 以上のような本実施の形態2によれば、上述の実施の形態1と同様に、圧力を検出するセンサにおいて、メンブレン222が平面応力状態になって生じる検出感度の変化を抑制することができる。
 以上、複数の実施の形態を挙げて本発明を説明したが、本発明の実施の形態はこれらに限らない。
 例えば、上述の実施の形態1では、図4に示すように、メンブレン22の中心Cから等しい距離で互いに平行に、2つの凹部22dが設けられている。しかしながら、本発明の実施の形態はこれに限らない。メンブレンに設けられる凹部は、様々な形態が可能である。
 図10は、本発明の実施の形態3に係るセンサにおける検出素子の上面図である。図11は、本発明の実施の形態4に係るセンサにおける検出素子の上面図である。図12は、本発明の実施の形態5に係るセンサにおける検出素子の上面図である。図13は、本発明の実施の形態6に係るセンサにおける検出素子の上面図である。図14は、本発明の実施の形態7に係るセンサにおける検出素子の上面図である。
 図10に示すように、本発明の実施の形態3に係るセンサにおける検出素子312では、2つの凹部322dと、2つの凹部322fとが、メンブレン322の外側表面322aに設けられている。具体的には、図10に示すように、メンブレン322の厚さ方向視で、ダイアフラム部322cの中心Cと側壁部材324との間に、凹部322d、322fが設けられている。凹部322d、322fは、メンブレン322の厚さ方向視で側壁部材324に沿って、ダイアフラム部322cに設けられている。凹部322d、322fは、メンブレン322の中心Cを囲んでいる。凹部322d、322fは、第1の凹部である。
 凹部322dは、メンブレン322の厚さ方向視で、ダイアフラム部322cの長手方向に延びている。ダイアフラム部322cの長手方向は、図に示すX-Y-Z直交座標系のX軸方向である。凹部322dは、ダイアフラム部322cの外部、すなわち側壁部材324によって支持されているメンブレン322の部分まで延在している。凹部322dは、中心Cを対称の中心とする点対称に設けられている。すなわち、中心Cから等しい距離で互いに平行に、2つの凹部322dが設けられている。
 凹部322fは、メンブレン322の厚さ方向視で、ダイアフラム部322cの短手方向に延びている。ダイアフラム部322cの短手方向は、図に示すX-Y-Z直交座標系のY軸方向である。凹部322fは、中心Cを対称の中心とする点対称に設けられている。すなわち、中心Cから等しい距離で互いに平行に、2つの凹部322fが設けられている。
 図11に示すように、本発明の実施の形態4に係るセンサにおける検出素子412では、2つの凹部422dがメンブレン422の外側表面422aに設けられている。凹部422dは、その全体がダイアフラム部422c内に位置する。
 図12に示すように、本発明の実施の形態5に係るセンサにおける検出素子512では、2つの凹部522dと、2つの凹部522fとが、メンブレン522の外側表面522aに設けられている。具体的には、図12に示すように、メンブレン522の厚さ方向視で、ダイアフラム部522cの中心Cと側壁部材524との間に、凹部522d、522fが設けられている。凹部522d、522fは、メンブレン522の厚さ方向視で側壁部材524に沿って、ダイアフラム部522cに設けられている。凹部522d、522fは、メンブレン522の中心Cを囲んでいる。凹部522d、522fは、第1の凹部である。凹部322d、322fは、その全体がダイアフラム部522c内に位置する。
 凹部522dは、メンブレン522の厚さ方向視で、ダイアフラム部522cの長手方向に延びている。ダイアフラム部322cの長手方向は、図に示すX-Y-Z直交座標系のX軸方向である。凹部322dは、中心Cを対称の中心とする点対称に設けられている。すなわち、中心Cから等しい距離で互いに平行に、2つの凹部322dが設けられている。
 凹部522fは、メンブレン522の厚さ方向視で、ダイアフラム部522cの短手方向に延びている。ダイアフラム部522cの短手方向は、図に示すX-Y-Z直交座標系のY軸方向である。凹部522fは、中心Cを対称の中心とする点対称に設けられている。すなわち、中心Cから等しい距離で互いに平行に、2つの凹部322fが設けられている。
 図13に示すように、本発明の実施の形態6に係るセンサにおける検出素子612では、4つの凹部622dと、2つの凹部622fとが、メンブレン622の外側表面622aに設けられている。具体的には、図13に示すように、メンブレン622の厚さ方向視で、ダイアフラム部622cの中心Cと側壁部材624との間に、凹部622d、622fが設けられている。凹部622d、622fは、メンブレン622の厚さ方向視で側壁部材624に沿って、ダイアフラム部622cに設けられている。凹部622d、622fは、メンブレン622の中心Cを囲んでいる。凹部622d、622fは、第1の凹部である。凹部622d、622fは、その全体がダイアフラム部622c内に位置する。
 凹部622dは、メンブレン622の厚さ方向視で、ダイアフラム部622cの長手方向に延びている。ダイアフラム部622cの長手方向は、図に示すX-Y-Z直交座標系のX軸方向である。凹部622dは、中心Cを対称の中心とする点対称に設けられている。すなわち、中心Cから等しい距離で互いに平行に、4つの凹部622dが設けられている。
 凹部622fは、メンブレン622の厚さ方向視で、ダイアフラム部622cの短手方向に延びている。ダイアフラム部622cの短手方向は、図に示すX-Y-Z直交座標系のY軸方向である。凹部622fは、中心Cを対称の中心とする点対称に設けられている。すなわち、中心Cから等しい距離で互いに平行に、2つの凹部622fが設けられている。
 図14に示すように、本発明の実施の形態7に係るセンサにおける検出素子712では、凹部722dが、メンブレン722の外側表面722aに設けられている。具体的には、図14に示すように、メンブレン722の厚さ方向視で、ダイアフラム部722cの中心Cと側壁部材724との間に、凹部722dが設けられている。凹部722dは、メンブレン722の厚さ方向視で側壁部材724に沿って、ダイアフラム部722cに設けられている。凹部722dは、メンブレン722の厚さ方向視で環状であり、メンブレン722の中心Cを囲んでいる。凹部722dは、第1の凹部である。凹部722dは、その全体がダイアフラム部722c内に位置する。
 すなわち、本発明に係る実施の形態においては、メンブレンの厚さ方向視で、ダイアフラム部の中心と側壁部材との間であって、メンブレンの外側表面に第1の凹部が設けられている。
 また、好ましくは、第1の凹部は、ダイアフラム部の中心側ではなく、側壁部材側、すなわちメンブレンの厚さ方向視で側壁部材に沿って設けられている。これにより、メンブレンが平面応力状態になって生じる検出感度の変化を、効率的に抑制することができる。これと異なり、中心側に第1の凹部が配置される場合、平面応力状態のメンブレンにおいて、ダイアフラム部の外側表面における応力分布と内側表面における応力分布の違いが小さくなり、第1の凹部の効果が低減する。
 さらに、好ましくは、第1の凹部は複数あって、その複数の第1の凹部が、メンブレン厚さ方向視で、メンブレンの中心を囲むように設けられる。これにより、ダイアフラム部は、その中心対称な形状にたわみ変形することができる。
 さらにまた、好ましくは、第1の凹部は複数あって、その複数の第1の凹部が、メンブレンの厚さ方向視で、メンブレンの中心を対称の中心とする点対称に設けられる。これにより、ダイアフラム部は、より中心対称な形状にたわみ変形することができる。
 加えて、例えば、上述の実施の形態1の場合、センサ10は、静電容量型の圧力センサである。しかしながら、本発明の実施の形態はこれに限らない。例えば、センサは、メンブレンが圧力を受けて変形することによってその電気抵抗が変化する、ピエゾ抵抗型圧力センサであってもよい。また、センサは、圧力を検出するものに限らず、メンブレンに印加された振動や力をメンブレンの変形量によって検出するセンサ、例えば差圧センサ、フォースセンサなどであってもよい。
 加えてまた、上述の実施の形態1の場合、図1に示すように、検出素子12は樹脂パッケージ16に覆われている。しかしながら、本発明の実施の形態はこれに限らない。本発明に係るセンサは、検出素子に対してそのメンブレンの平面方向に引っ張り応力または圧縮応力が作用しうる構造を備えるセンサであればよい。
 すなわち、本発明の実施の形態に係るセンサは、広義には、素子基板と、外側表面と、前記外側表面に対して反対側の面である内側表面とを備え、ダイアフラム部を含むメンブレンと、前記素子基板に設けられ、前記メンブレンの前記内側表面における、前記ダイアフラム部外側の部分を支持する側壁部材と、を含む検出素子を有し、前記メンブレンの外側表面における、前記メンブレンの厚さ方向視で、前記ダイアフラム部の中心と側壁部材との間に、第1の凹部が設けられているものである。
 以上、複数の実施の形態を挙げて本発明を説明したが、ある実施の形態に対して少なくとも1つの別の実施の形態を全体としてまたは部分的に組み合わせて本発明に係るさらなる実施の形態とすることが可能であることは、当業者にとって明らかである。
 本発明は、圧力などを検出するセンサに適用可能である。

Claims (11)

  1.  素子基板と、
     外側表面と、前記外側表面に対して反対側の面である内側表面とを備え、ダイアフラム部を含むメンブレンと、
     前記素子基板に設けられ、前記メンブレンの前記内側表面における、前記ダイアフラム部外側の部分を支持する側壁部材と、
     前記側壁部材に囲まれた状態で前記素子基板上に設けられ、前記メンブレンの内側表面に対して間隔をあけて対向し、前記ダイアフラム部との間に静電容量を形成する固定電極と、を含む検出素子を有し、
     前記メンブレンの外側表面における、前記メンブレンの厚さ方向視で、前記ダイアフラム部の中心と側壁部材との間に、第1の凹部が設けられている、センサ。
  2.  前記第1の凹部が、前記厚さ方向視で前記側壁部材に沿って、前記ダイアフラム部に設けられている、請求項1に記載のセンサ。
  3.  前記第1の凹部が、前記厚さ方向視で前記側壁部材に沿って連続的に延在する直線状である、請求項2に記載のセンサ。
  4.  前記第1の凹部が、前記側壁部材によって支持されている前記メンブレンの部分内まで延在する、請求項3に記載のセンサ。
  5.  前記第1の凹部は複数であり、前記厚さ方向視で前記メンブレンの中心を囲む、請求項1から4のいずれか一項に記載のセンサ。
  6.  前記第1の凹部は複数であり、前記厚さ方向視で前記メンブレンの中心を対称の中心とする点対称に設けられている、請求項1から5のいずれか一項に記載のセンサ。
  7.  2つの前記第1の凹部が、前記厚さ方向視で前記メンブレンの中心を挟んで互いに平行である、請求項5または6に記載のセンサ。
  8.  前記素子基板の表面における前記側壁部材と接触している部分に、第1の溝が設けられている、請求項1から7のいずれか一項に記載のセンサ。
  9.  前記メンブレンの外側表面であって、前記厚さ方向視で前記メンブレンにおける前記側壁部材と重なっている部分に、第2の凹部が設けられており、
     前記第2の凹部は、前記厚さ方向視で前記第1の溝の少なくとも一部と重なっている、請求項8に記載のセンサ。
  10.  前記側壁部材に第2の溝が設けられており、
     前記第2の溝は、前記厚さ方向視で前記第1の溝の少なくとも一部と重なっているとともに、第2の凹部の少なくとも一部と重なっている、請求項9に記載のセンサ。
  11.  前記検出素子が搭載されるパッケージ基板と、
     前記パッケージ基板上に設けられ、前記検出素子を覆う樹脂パッケージと、を有し、
     前記樹脂パッケージが露出穴を備え、前記検出素子の一部が前記露出穴において外部に露出している、請求項1から10のいずれか一項に記載のセンサ。
PCT/JP2021/011508 2020-03-27 2021-03-19 センサ WO2021193469A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180024990.0A CN115335675A (zh) 2020-03-27 2021-03-19 传感器
JP2022510449A JP7400947B2 (ja) 2020-03-27 2021-03-19 センサ
DE112021000789.0T DE112021000789T5 (de) 2020-03-27 2021-03-19 Sensor
US17/951,154 US20230017253A1 (en) 2020-03-27 2022-09-23 Sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-057334 2020-03-27
JP2020057334 2020-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/951,154 Continuation US20230017253A1 (en) 2020-03-27 2022-09-23 Sensor

Publications (1)

Publication Number Publication Date
WO2021193469A1 true WO2021193469A1 (ja) 2021-09-30

Family

ID=77891760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011508 WO2021193469A1 (ja) 2020-03-27 2021-03-19 センサ

Country Status (5)

Country Link
US (1) US20230017253A1 (ja)
JP (1) JP7400947B2 (ja)
CN (1) CN115335675A (ja)
DE (1) DE112021000789T5 (ja)
WO (1) WO2021193469A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050241944A1 (en) * 2002-10-11 2005-11-03 Infineon Technologies Ag Membrane and method for the production of the same
US20100140725A1 (en) * 2007-03-05 2010-06-10 Endress + Hauser Gmbh + Co. Kg Pressure sensor
JP2014511775A (ja) * 2011-04-14 2014-05-19 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 変更した応力特性を有する薄膜を形成する方法
WO2015076158A1 (ja) * 2013-11-20 2015-05-28 日立オートモティブシステムズ株式会社 圧力センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050241944A1 (en) * 2002-10-11 2005-11-03 Infineon Technologies Ag Membrane and method for the production of the same
US20100140725A1 (en) * 2007-03-05 2010-06-10 Endress + Hauser Gmbh + Co. Kg Pressure sensor
JP2014511775A (ja) * 2011-04-14 2014-05-19 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 変更した応力特性を有する薄膜を形成する方法
WO2015076158A1 (ja) * 2013-11-20 2015-05-28 日立オートモティブシステムズ株式会社 圧力センサ

Also Published As

Publication number Publication date
DE112021000789T5 (de) 2022-12-01
JP7400947B2 (ja) 2023-12-19
JPWO2021193469A1 (ja) 2021-09-30
CN115335675A (zh) 2022-11-11
US20230017253A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
EP1840581B1 (en) Capacitive sensor
US6006607A (en) Piezoresistive pressure sensor with sculpted diaphragm
KR20190100316A (ko) 토크 센서
CN109470385B (zh) 多轴力传感器、制造多轴力传感器的方法以及用于操作多轴力传感器的方法
US20120160029A1 (en) Acceleration sensor
US8365597B2 (en) Apparatus having a movable body
JPH0425735A (ja) 半導体圧力・差圧測定ダイヤフラム
WO2021193469A1 (ja) センサ
JP2007225344A (ja) 圧力センサ
JPH1026571A (ja) 力・加速度・磁気の検出装置
JP2009294019A (ja) 加速度センサ
US9726690B2 (en) Angular acceleration sensor and acceleration sensor
JP2006250702A (ja) 加速度センサ
US11493396B2 (en) Pressure detection element and pressure detection apparatus
US9972724B2 (en) Acceleration sensor and mounting structure of acceleration sensor
CN113063542B (zh) 差压计
WO2020184206A1 (ja) 圧力センサ
JP2005098891A (ja) 静電容量式センサ
CN111886485B (zh) 压力传感器
WO2023188653A1 (ja) 加速度センサ
JP6044320B2 (ja) 物理量センサ
US20230314244A1 (en) Force sensor device
JPH08233855A (ja) 静電容量式加速度センサ
JPH04127537U (ja) 力検出装置
JP2016138844A (ja) 歪センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510449

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21775027

Country of ref document: EP

Kind code of ref document: A1