WO2021193301A1 - 光照射装置、およびこれを備える露光装置 - Google Patents

光照射装置、およびこれを備える露光装置 Download PDF

Info

Publication number
WO2021193301A1
WO2021193301A1 PCT/JP2021/010914 JP2021010914W WO2021193301A1 WO 2021193301 A1 WO2021193301 A1 WO 2021193301A1 JP 2021010914 W JP2021010914 W JP 2021010914W WO 2021193301 A1 WO2021193301 A1 WO 2021193301A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
angle
light source
polarizing element
irradiation device
Prior art date
Application number
PCT/JP2021/010914
Other languages
English (en)
French (fr)
Inventor
智彦 井上
山下 健一
松本 弘
池田 富彦
Original Assignee
フェニックス電機株式会社
ナカンテクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フェニックス電機株式会社, ナカンテクノ株式会社 filed Critical フェニックス電機株式会社
Priority to EP21776652.6A priority Critical patent/EP4130862A4/en
Priority to KR1020227028670A priority patent/KR20220129605A/ko
Priority to CN202180015510.4A priority patent/CN115210636B/zh
Priority to US17/906,520 priority patent/US20230124785A1/en
Publication of WO2021193301A1 publication Critical patent/WO2021193301A1/ja
Priority to IL296150A priority patent/IL296150A/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2008Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the reflectors, diffusers, light or heat filtering means or anti-reflective means used
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/201Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by an oblique exposure; characterised by the use of plural sources; characterised by the rotation of the optical device; characterised by a relative movement of the optical device, the light source, the sensitive system or the mask
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings

Definitions

  • the present invention relates to a light irradiation device mainly used for exposure when manufacturing a liquid crystal panel, and an exposure device including the light irradiation device.
  • liquid crystal display When using a liquid crystal display as a TN type display panel, it does not operate normally just by enclosing the liquid crystal between two glass substrates and applying a voltage to the transparent electrodes formed on the inner surfaces of these glass plates. This is because the liquid crystal molecules are in a disjointed state.
  • the liquid crystal In order for the liquid crystal to operate in the normal TN method, it is necessary to orient the liquid crystal molecules in a certain direction and to make the rising direction of the liquid crystal molecules constant. Specifically, the liquid crystal molecules are oriented in a direction tilted by about 3 ° with respect to the glass substrate, and this tilt angle is called a pre-tilt angle.
  • one glass substrate is arranged so as to be oriented in the X direction, and the other glass substrate facing the other is arranged in the Y direction orthogonal to the X direction.
  • the liquid crystal alignment treatment is required for the production of the liquid crystal panel, and the rubbing treatment for physically rubbing the surface of the glass substrate has been performed conventionally (for example, Patent Document 1).
  • This rubbing treatment is a treatment method for forming a film capable of orienting liquid crystal molecules in a certain direction by rubbing an organic polymer film formed on a glass substrate with a cloth having long hairs in a predetermined direction. Is.
  • liquid crystal panels With the spread of rubbing processing and the generalization of the TN method, which has a high response speed, liquid crystal panels can be mass-produced at low cost with stable performance, and are used for display monitors and game machines for OA devices such as personal computers. There is a history that LCD monitors have become widespread as monitors.
  • the rubbing method has problems related to reliability, such as poor uniformity, the possibility of electrostatic breakdown of the TFT, and adhesion of powder dust generated during rubbing.
  • the pre-tilt angle that can be achieved by the rubbing method is about 3 ° in the TN method that represents the horizontally oriented liquid crystal mode as described above, and constitutes a liquid crystal mode display panel that supports high-speed response with low voltage drive. There was a difficulty in doing so.
  • the exposure material is set to have photosensitive characteristics so as to react to light in a specific wavelength band.
  • the light is composed of many emission lines of mercury rays. You can see that there is.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a light irradiation device for an exposure device capable of performing a light alignment process with a simple configuration.
  • a light source with multiple LEDs and It is provided with a polarizing element that receives the light from the light source and irradiates the work with the transmitted light.
  • the optical axis of each LED has a first angle with respect to the work.
  • a light irradiation device characterized in that a second angle, which is half of the light distribution angle of the light emitted from each of the LEDs, is smaller than the first angle.
  • the light irradiation device further includes a light transmitting plate arranged in parallel with the work between the light source and the polarizing element.
  • a light source with multiple LEDs and A polarizing element that receives light from the light source and irradiates the work with the transmitted light. It is provided with an optical filter that selectively transmits light having a predetermined wavelength or higher among the light radiated from the light source.
  • the optical filter is characterized in that the transmittance of the light having a predetermined wavelength or more is increased as the incident angle of the light having a predetermined wavelength or more with respect to the optical filter is increased.
  • Equipment is provided.
  • a light source with multiple LEDs and A polarizing element that receives light from the light source and irradiates the work with the transmitted light It is provided with a cover member that transmits light from the light source.
  • the polarizing element has a surface on which a wire grid is formed.
  • the cover member is arranged at a position facing the forming surface of the polarizing element.
  • a light irradiation device characterized in that the space between the cover member and the forming surface is hermetically sealed.
  • An exposure apparatus including the above-mentioned light irradiation apparatus is provided.
  • the optical axes of a plurality of LEDs are tilted by a first angle with respect to the work, and a second angle corresponding to half of the orientation angle of the light emitted from each LED is set.
  • a second angle corresponding to half of the orientation angle of the light emitted from each LED is set.
  • the light irradiation device 10 (Structure of the light irradiation device 10 according to the first embodiment)
  • the light irradiation device 10 is incorporated and used in the exposure device mainly for exposure when manufacturing a liquid crystal panel.
  • the light irradiation device 10 generally includes a light source 12 and a polarizing element 14.
  • the light source 12 is a member that irradiates the exposure light L toward the exposure surface A on which the work (exposure object) X is placed, and a plurality of LEDs 16 are used in the first embodiment. Since these LEDs 16 irradiate the work X moving in a certain direction on the exposure surface A with the exposure light L so as to scan the work X, a plurality of the light sources 12 are directed in directions orthogonal to the moving direction of the work X. It is formed by arranging the LEDs 16 of the above in substantially series.
  • each LED 16 constituting the light source 12 has a first angle ⁇ 1 (that is, an incident angle ⁇ 1) with respect to the work X so that the optical axis CL of these LEDs 16 has a first angle ⁇ 1 (that is, an incident angle ⁇ 1) with respect to the work X (that is, an exposed surface). It is arranged at an angle (relative to A).
  • the second angle ⁇ 2 which is half of the light distribution angle of the light L emitted from each LED 16, is set to be smaller than the above-mentioned first angle ⁇ 1.
  • the polarizing element 14 is an element that transmits and polarizes only an optical component that vibrates in one direction among the light emitted from the light source 12, and in the first embodiment, a wire grid polarizing element is used.
  • the wire grid polarizing element has a wire grid formed on one surface of a transparent substrate (glass substrate).
  • the formation surface 18 of the wire grid may be the surface of the polarizing element 14 on the light source 12 side or the surface opposite to the light source 12. Further, it is preferable that the polarizing element 14 is arranged so as to be parallel to the work X (exposed surface A).
  • the optical axes CL of the plurality of LEDs 16 are tilted by the first angle ⁇ 1 with respect to the work X, which corresponds to half of the orientation angle of the light L emitted from each LED 16.
  • the second angle ⁇ 2 is smaller than this first angle ⁇ 1
  • all the light L emitted from each LED 16 is directed toward the optical axis CL side of the LED 16 rather than the perpendicular line from the LED 16 toward the work X. become.
  • the light irradiation device 10 according to the second embodiment is a light irradiation device 10 according to the first embodiment to which a light transmitting plate 20 is added.
  • the light transmitting plate 20 is, for example, a glass plate that transmits light L from the light source 12, and is arranged parallel to the work X between the light source 12 and the polarizing element 14. It is preferable that the surface (both sides) of the light transmitting plate 20 is not subjected to antireflection treatment such as an antireflection film.
  • the incident angle of the light L reaching the work X with respect to the work X can be limited to a predetermined value or less, so that a more stable photoalignment process of the pretilt angle can be realized.
  • the light irradiation device 10 according to the third embodiment generally includes a light source 12, a polarizing element 14, and an optical filter 30.
  • the light source 12 is a member that irradiates the exposure light L toward the exposure surface A on which the work X is placed, and a plurality of LEDs 16 are used. Since these LEDs 16 irradiate the work X moving in a certain direction on the exposure surface A with the exposure light L so as to scan the work X, a plurality of the light sources 12 are directed in directions orthogonal to the moving direction of the work X. It is formed by arranging the LEDs 16 of the above in substantially series.
  • the first angle ⁇ 1 and the second angle ⁇ 2 are not necessary to specify the first angle ⁇ 1 and the second angle ⁇ 2 as in the first and second embodiments, and the first angle ⁇ 1 and the second angle ⁇ 1 and the second angle ⁇ 2 need to be defined.
  • the angle ⁇ 2 of is arbitrary.
  • the first angle ⁇ 1 and the second angle ⁇ 2 may be defined as in the first and second embodiments.
  • the polarizing element 14 is an element that transmits and polarizes only the light component that vibrates in one direction among the light emitted from the light source 12, and the wire grid polarizing element is used as in the first and second embodiments. ..
  • the surface 18 on which the wire grid is formed may be the surface of the polarizing element 14 on the light source 12 side or the surface opposite to the light source 12. Further, it is preferable that the polarizing element 14 is arranged so as to be parallel to the work X (exposed surface A).
  • the optical filter 30 is arranged between the light source 12 and the polarizing element 14, and is a member that selectively transmits light L having a predetermined wavelength or more among the light L emitted from the light source 12 and has a surface surface. A wavelength selection film is formed on the surface. Further, it is preferable that the optical filter 30 is arranged so as to be parallel to the work X (exposure surface A) like the polarizing element 14. As the optical filter 30, if the conditions described below are satisfied, a long-pass filter that transmits light having a predetermined wavelength or higher, or a long-pass filter that transmits light in a predetermined wavelength range and has a longer wavelength and a shorter wavelength than that. A bandpass filter that blocks light of a wavelength can be used. Further, the optical filter 30 may be arranged on the side opposite to the light source 12 side of the polarizing element 14.
  • the optical filter 30 has an angle dependence, the incident angle ⁇ 1 of the light entering the optical filter 30 becomes large, and the wavelength region of the light transmitted through the optical filter 30 is on the low wavelength side. It will spread.
  • An example of this is shown in FIG.
  • the incident angle ⁇ 1 of light with respect to the optical filter 30 is 0 ° (that is, when light is incident perpendicular to the optical filter 30)
  • the transmittance of light at 325 nm is about 5%. be.
  • the transmittance of the light of 325 nm increases to 15%, 70%, and 95%.
  • the transmittance of the light L having a predetermined wavelength or more increases as the incident angle ⁇ 1 of the light L having a predetermined wavelength or more with respect to the optical filter 30 increases.
  • light L having a desired wavelength or higher can be sufficiently transmitted at the incident angle (first angle ⁇ 1) to the optical filter 30 corresponding to the desired pretilt angle.
  • the light irradiation device 10 according to the third embodiment According to the light irradiation device 10 according to the third embodiment, among the light L emitted from the light source 12, the light L having a small incident angle ⁇ 1 on the optical filter 30 (light incident substantially perpendicular to the optical filter 30). Is difficult to pass through the optical filter 30, and exposure can be performed centering on the light L close to the desired incident angle ⁇ 1 with respect to the work X, so that a more stable pretilt angle can be obtained.
  • the light irradiation device 10 according to the fourth embodiment generally includes a light source 12, a polarizing element 14, and a cover member 40.
  • the light source 12 is a member that irradiates the exposure light L toward the exposure surface A on which the work X is placed, as in the above-described embodiment, and a plurality of LEDs 16 are used. Since these LEDs 16 irradiate the work X moving in a certain direction on the exposure surface A with the exposure light L so as to scan the work X, a plurality of the light sources 12 are directed in directions orthogonal to the moving direction of the work X. It is formed by arranging the LEDs 16 of the above in substantially series.
  • the first angle ⁇ 1 and the second angle ⁇ 2 are not necessary to specify the first angle ⁇ 1 and the second angle ⁇ 2 as in the first and second embodiments, and the first angle ⁇ 1 and the second angle ⁇ 1 and the second angle ⁇ 2 need to be defined.
  • the angle ⁇ 2 of is arbitrary.
  • the first angle ⁇ 1 and the second angle ⁇ 2 may be defined as in the first and second embodiments.
  • the polarizing element 14 is an element that transmits and polarizes only the light component that vibrates in one direction among the light emitted from the light source 12, and the wire grid polarizing element is used as in the first and second embodiments. ..
  • the surface 18 on which the wire grid is formed may be the surface of the polarizing element 14 on the light source 12 side or the surface opposite to the light source 12. Further, it is preferable that the polarizing element 14 is arranged so as to be parallel to the work X (exposed surface A).
  • the cover member 40 is, for example, a glass plate that transmits light L from the light source 12, and is arranged substantially parallel to the work X at a position facing the wire grid forming surface 18 of the polarizing element 14. That is, as shown in the drawing, when the wire grid forming surface 18 of the polarizing element 14 is formed on the side opposite to the light source 12 side, the cover member 40 is also arranged on the side opposite to the light source 12 side of the polarizing element 14. NS. On the contrary, when the wire grid forming surface 18 of the polarizing element 14 is formed on the light source 12 side (not shown), the cover member 40 is also arranged on the light source 12 side of the polarizing element 14.
  • the surface (both sides) of the cover member 40 does not need to be subjected to antireflection treatment such as an antireflection film, but it is preferable to perform antireflection treatment such as an antireflection film on one or both surfaces. be.
  • the space S between the cover member 40 and the wire grid forming surface 18 of the polarizing element 14 is sealed.
  • a holding frame 42 for holding the peripheral edges of the cover member 40 and the polarizing element 14 may be provided, and the holding frame 42 may seal the space S between the cover member 40 and the wire grid forming surface 18 of the polarizing element 14. Conceivable.
  • the wire grid is heated by the light L from the light source 12 and the temperature of the enclosed space rises undesirably to damage the wire grid forming surface 18 and the like. Is.
  • the members constituting the space S such as the cover member 40, the polarizing element 14, or the holding frame 42 may be cooled by a method such as forced air cooling or water cooling.
  • Modification example 1 The configurations of the light irradiation devices 10 according to the first to fourth embodiments described above can be combined with each other. For example, by combining the optical filter 30 of the third embodiment and the cover member 40 of the fourth embodiment, as shown in FIG. 6, the optical filter 30, the polarizing element 14, and the cover member are sequentially arranged from the side closer to the light source 12. The light irradiation device 10 in which the 40 is arranged can be formed.
  • the positions of the polarizing element 14 and the cover member 40 may be reversed to form the light irradiation device 10 in which the optical filter 30, the cover member 40, and the polarizing element 14 are arranged in order from the side closer to the light source 12.
  • the optical filter 30 is arranged at the position closest to the work, and the cover member 40, the polarizing element 14, and the optical filter 30 are arranged in this order from the side closest to the light source 12.
  • the device 10 may be formed.
  • the number of the lenses 50 may be one or two or more as shown in the figure.
  • the reflector 52 for controlling the light distribution angle of the light L from the LED 16 with respect to the light source 12 used in the light irradiation device 10 according to the first to fourth embodiments described above. May be further provided.
  • the lens 50 and the reflector 52 may be combined to control the light distribution angle of the light L from the LED 16.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Polarising Elements (AREA)

Abstract

簡便な構成で光配向処理を実施できる露光装置用の光照射装置を提供する。 光照射装置10を、複数のLED16を有する光源12と、光源12からの光Lを受け、透過させた光LをワークXに照射する偏光素子14とで構成する。そして、各LED16の光軸CLがワークXに対して第1の角度θ1を有するように設定し、かつ、各LED16から放射される光Lの配光角の半分である第2の角度θ2が第1の角度θ1よりも小さくなるように設定する。

Description

光照射装置、およびこれを備える露光装置
 本発明は、主に液晶パネルを製造する際の露光用に用いられる光照射装置、およびこれを備える露光装置に関する。
 液晶をTN方式の表示パネルとして使用する際、2枚のガラス基板の間に液晶を封入してこれらガラス板の内面に形成された透明電極に電圧を印加しただけでは正常も動作しない。これは液晶分子がバラバラの状態にあるからである。
 液晶に正常なTN方式の動作をさせるためには、液晶分子を一定方向に配向させるとともに、液晶分子の立ち上がり方向を一定にする必要がある。具体的には、ガラス基板に対して3°程度傾く方向に液晶分子を配向させており、この傾きの角度はプレチルト角と呼ばれている。
 そして、液晶の配向性能をもつ一対のガラス基板のうち、一方のガラス基板をX方向に配向するように配置し、対面する他方のガラス基板をX方向と直交するY方向に配置する。(TN方式)
 このように、液晶パネルの製造には液晶配向処理が必要であり、従前より、ガラス基板の表面を物理的に擦るラビング処理が行われてきた(例えば、特許文献1)。このラビング処理とは、ガラス基板上に形成された有機高分子膜を毛足の長い布等で所定の方向に擦ることにより、液晶分子を一定方向に配向させることのできる膜を形成する処理方法である。
 ラビング処理が普及して、応答速度が速いTN方式が一般的になったことにより、液晶パネルが安定した性能で安価に量産できるようになってパソコン等のOA機器用の表示モニターやゲーム機用のモニターとして液晶モニターが普及した経緯がある。
 しかし、ラビング方式には、均一性に乏しいこと、TFTの静電破壊が生じる可能性があること、さらに、ラビング時に生じる粉末ごみが付着するといった信頼性に係わる問題があった。
 加えて、ラビング方式で達成できるプレチルト角は、上述のように水平配向液晶モードを代表するTN方式においては3°程度であり、低電圧駆動で、高速応答に対応した液晶モードの表示パネルを構成するためには難があった。
 このようなラビング方式の問題に対応するため、現在では、光配向処理を実施できる露光機が提案されており、この露光機には、光源としてロングアークの水銀灯での使用が試みられている。
特開2007-17475号公報
 しかしながら、ロングアークの水銀灯を用いた露光機にも問題があると考えられる。一般に、露光材料には特定の波長帯域の光に反応するように感光特性が設定されているところ、水銀灯からの光の分光特性を見ると、当該光は多くの水銀線の輝線で構成されていることがわかる。
 このため、水銀灯を露光用の光源とした場合、露光材料の感光特性から外れた波長の光が多くなることから、当該感光波長帯域を外れた波長の光によって露光材料を過露光させてしまうおそれがあると考えられる。
 もちろん、感光特性から外れた波長の光線(短波側および長波側)を選択波長反射膜によってカットすることも可能であるが、狭帯域のカットフィルター(バンドパスフィルタ)が必要となり、かつ、高い精度が要求されることから、結果として装置のコストアップにつながってしまう。
 また、ロングアークの水銀灯から放射される光は広範囲に拡散するので、光配向処理を実施するために重要な水銀灯からの光の照射角の制御が難しく、例えばルーバー等で余分な光を遮る手法も検討されているが、この場合、水銀灯から放射される光の利用効率が低下するという別の問題がある。
 さらに、コリメートされた(平行化された)光をガラス基板に対して斜めに照射する方法もあるが、この手法は光学系が複雑になることから装置が大型で高価になるという問題があると考えられる。
 本発明は、上述した問題に鑑みてなされたものであり、その目的は、簡便な構成で光配向処理を実施できる露光装置用の光照射装置を提供することにある。
 本発明の一局面によれば、
 複数のLEDを有する光源と、
 前記光源からの光を受け、透過させた前記光をワークに照射する偏光素子とを備えており、
 前記各LEDの光軸は、前記ワークに対して第1の角度を有しており、
 前記各LEDから放射される前記光の配光角の半分である第2の角度は、前記第1の角度よりも小さいことを特徴とする
 光照射装置が提供される。
 好適には、
 前記光照射装置は、前記光源と前記偏光素子との間において前記ワークと平行に配設されている透光板をさらに備えている。
 本発明の別の局面によれば、
 複数のLEDを有する光源と、
 前記光源からの光を受け、透過させた前記光をワークに照射する偏光素子と、
 前記光源から放射された光のうち所定の波長以上の光を選択的に透過する光学フィルターとを備えており、
 前記光学フィルターは、前記光学フィルターに対する所定の波長以上の前記光の入射角が大きくなるに連れて、所定の波長以上の前記光の透過率を高めるようになっていることを特徴とする
 光照射装置が提供される。
 本発明のさらに別の局面によれば、
 複数のLEDを有する光源と、
 前記光源からの光を受け、透過させた前記光をワークに照射する偏光素子と、
 前記光源からの光を透過するカバー部材とを備えており、
 前記偏光素子は、ワイヤーグリッドの形成面を有しており、
 前記カバー部材は、前記偏光素子における前記形成面に対向する位置に配設されており、
 前記カバー部材と前記形成面との間の空間は密閉されていることを特徴とする
 光照射装置が提供される。
 本発明の他の局面によれば、
 上述した光照射装置を備える露光装置が提供される。
 本発明に係る光照射装置によれば、複数のLEDの光軸をワークに対して第1の角度だけ傾け、各LEDから放射される光の配向角の半分に相当する第2の角度をこの第1の角度よりも小さく設定することにより、各LEDから放射された光のすべてがLEDからワークに向かう垂線よりもLEDの光軸側に向かう。
 これにより、簡便な構成で実効的な照射角を有する光の量が多い光配向処理を実施できる露光装置用の光照射装置を提供することができた。
本発明が適用された第1実施形態に係る光照射装置10を示す図である。 本発明が適用された第2実施形態に係る光照射装置10を示す図である。 本発明が適用された第3実施形態に係る光照射装置10を示す図である。 光学フィルター30の光透過特性を説明するためのグラフである。 本発明が適用された第4実施形態に係る光照射装置10を示す図である。 変形例1に係る光照射装置10を示す図である。 変形例1に係る光照射装置10を示す図である。 変形例2に係る光源12を示す図である。 変形例2に係る光源12を示す図である。 変形例2に係る光源12を示す図である。
(第1実施形態に係る光照射装置10の構成)
 本発明が適用された第1実施形態に係る光照射装置10について以下に説明する。光照射装置10は、主に液晶パネルを製造する際の露光の為に露光装置に組み込まれて用いられる。この光照射装置10は、図1に示すように、大略、光源12と、偏光素子14とを備えている。
 光源12は、ワーク(露光対象物)Xが載置される露光面Aに向けて露光用光Lを照射する部材であり、第1実施形態では複数のLED16が使用されている。これらLED16は露光面A上を一定方向に移動していくワークXに対して走査するように露光用光Lを照射していくので、当該光源12はワークXの移動方向に直交する方向に複数のLED16を略直列に配置することによって形成されている。
 また、光源12を構成する各LED16は、これらLED16の光軸CLがワークXに対して第1の角度θ1(つまり、入射角θ1)を有するように、ワークXに対して(つまり、露光面Aに対して)傾けて配置されている。角度成分のバラツキが少ない光を斜めから照射して作成した配向膜を液晶パネルに使用することにより、安定したプレチルト角と配向状態とを出現させることが可能となり、任意の配向モードの液晶パネルが実現できる。
 さらに、各LED16から放射される光Lの配光角の半分である第2の角度θ2は、上述した第1の角度θ1よりも小さくなるように設定されている。
 偏光素子14は、光源12から照射された光のうち一方向に振動する光成分のみを透過して偏光する素子であり、第1実施形態では、ワイヤーグリッド偏光素子が使用されている。ワイヤーグリッド偏光素子は、透明基板(ガラス基板)の一方の表面にワイヤーグリッドを形成したものである。この第1実施形態では、ワイヤーグリッドの形成面18は、偏光素子14における光源12側の面であってもよいし、光源12とは反対側の面であってもよい。また、偏光素子14はワークX(露光面A)に対して平行となるように配設されるのが好適である。
(第1実施形態に係る光照射装置10の効果)
 第1実施形態に係る光照射装置10によれば、複数のLED16の光軸CLをワークXに対して第1の角度θ1だけ傾け、各LED16から放射される光Lの配向角の半分に相当する第2の角度θ2をこの第1の角度θ1よりも小さく設定することにより、各LED16から放射された光LのすべてがLED16からワークXに向かう垂線よりもLED16の光軸CL側に向かうようになる。
 これにより、簡便な構成で実効的な照射角を有する光の量が多い光配向処理を実施できる露光装置用の光照射装置10を提供することができる。
(第2実施形態に係る光照射装置10の構成)
 第2実施形態に係る光照射装置10は、図2に示すように、上述した第1実施形態に係る光照射装置10に透光板20が加えられたものである。
 透光板20は、光源12からの光Lを透過する例えばガラス製の板材であり、光源12と偏光素子14との間において、ワークXと平行に配設されている。なお、透光板20の表面(両面とも)には、反射防止膜等の反射防止処理をしないようにするのが好適である。
(第2実施形態に係る光照射装置10の効果)
 第2実施形態に係る光照射装置10によれば、光源12から放射された光Lのうち透光板20に対する入射角θ3が大きい光Lは当該透光板20の表面で反射するので偏光素子14やワークXには届かなくなる。
 これにより、ワークXまで届く光Lの当該ワークXに対する入射角を所定の値以下に制限することができるので、より安定したプレチルト角の光配向処理を実現することができる。
(第3実施形態に係る光照射装置10の構成)
 第3実施形態に係る光照射装置10は、図3に示すように、大略、光源12と、偏光素子14と、光学フィルター30とを備えている。
 光源12は、第1,第2実施形態と同様に、ワークXが載置される露光面Aに向けて露光用光Lを照射する部材であり、複数のLED16が使用されている。これらLED16は露光面A上を一定方向に移動していくワークXに対して走査するように露光用光Lを照射していくので、当該光源12はワークXの移動方向に直交する方向に複数のLED16を略直列に配置することによって形成されている。
 なお、第3実施形態に係る光照射装置10では、第1,第2実施形態と同様に第1の角度θ1および第2の角度θ2を規定する必要はなく、第1の角度θ1および第2の角度θ2は任意である。もちろん、第1,第2実施形態と同様に第1の角度θ1および第2の角度θ2を規定してもよい。
 偏光素子14は、光源12から照射された光のうち一方向に振動する光成分のみを透過して偏光する素子であり、第1,2実施形態と同様、ワイヤーグリッド偏光素子が使用されている。
 なお、ワイヤーグリッドの形成面18は、偏光素子14における光源12側の面であってもよいし、光源12とは反対側の面であってもよい。また、偏光素子14はワークX(露光面A)に対して平行となるように配設されるのが好適である。
 光学フィルター30は、光源12と偏光素子14との間に配設されており、光源12から放射された光Lのうち所定の波長以上の光Lを選択的に透過する部材であって、表面に波長選択膜が形成されている。また、光学フィルター30は、偏光素子14と同様、ワークX(露光面A)に対して平行となるように配設されるのが好適である。なお、光学フィルター30としては、以下に説明する条件を満たすものであれば、所定の波長以上の光を透過するロングパスフィルタや、所定の波長範囲の光を透過し、それよりも長波長および短波長の光を遮断するバンドパスフィルタを使用することができる。さらに、光学フィルター30は、偏光素子14の光源12側とは反対側に配設してもよい。
 ここで、光学フィルター30は、角度依存性を有しており、当該光学フィルター30に入る光の入射角θ1が大きくなるとともに、この光学フィルター30を透過する光の波長の領域が低波長側に広がっていく。このことの一例を図4に示す。例えば325nmの光について考えたとき、光学フィルター30に対する光の入射角θ1が0°の場合(つまり、光学フィルター30に対して垂直に入射する場合)、325nmの光の透過率は約5%である。
 そして、光学フィルター30に対する325nmの光の入射角を15°,30°,45°と大きくしていくと、この325nmの光の透過率は15%,70%,95%と高くなっていく。
 このような光学フィルター30の性質を利用して、光学フィルター30を当該光学フィルター30に対する所定の波長以上の光Lの入射角θ1が大きくなるに連れて、所定の波長以上の光Lの透過率を高めるように設定することで、所望のプレチルト角に対応する光学フィルター30への入射角(第1の角度θ1)の時に所望の波長以上の光Lを十分に透過することができる。
(第3実施形態に係る光照射装置10の効果)
 第3実施形態に係る光照射装置10によれば、光源12から放射される光Lのうち光学フィルター30への入射角θ1が小さい光L(光学フィルター30に対して略垂直に入射する光)は当該光学フィルター30を透過し難くなり、ワークXに対する所望の入射角θ1に近い光Lを中心として露光を行うことができるので、より安定したプレチルト角を得ることができる。
(第4実施形態に係る光照射装置10の構成)
 第4実施形態に係る光照射装置10は、図5に示すように、大略、光源12と、偏光素子14と、カバー部材40とを備えている。
 光源12は、上述した実施形態と同様に、ワークXが載置される露光面Aに向けて露光用光Lを照射する部材であり、複数のLED16が使用されている。これらLED16は露光面A上を一定方向に移動していくワークXに対して走査するように露光用光Lを照射していくので、当該光源12はワークXの移動方向に直交する方向に複数のLED16を略直列に配置することによって形成されている。
 なお、第4実施形態に係る光照射装置10でも、第1,第2実施形態と同様に第1の角度θ1および第2の角度θ2を規定する必要はなく、第1の角度θ1および第2の角度θ2は任意である。もちろん、第1,第2実施形態と同様に第1の角度θ1および第2の角度θ2を規定してもよい。
 偏光素子14は、光源12から照射された光のうち一方向に振動する光成分のみを透過して偏光する素子であり、第1,2実施形態と同様、ワイヤーグリッド偏光素子が使用されている。
 なお、ワイヤーグリッドの形成面18は、偏光素子14における光源12側の面であってもよいし、光源12とは反対側の面であってもよい。また、偏光素子14はワークX(露光面A)に対して平行となるように配設されるのが好適である。
 カバー部材40は、光源12からの光Lを透過する例えばガラス製の板材であり、偏光素子14におけるワイヤーグリッドの形成面18に対向する位置において、ワークXと略平行に配設されている。つまり、図示するように偏光素子14におけるワイヤーグリッドの形成面18が光源12側とは反対側に形成されている場合、カバー部材40も偏光素子14における光源12側とは反対側に配設される。逆に、偏光素子14におけるワイヤーグリッドの形成面18が光源12側に形成されている場合(図示せず)、カバー部材40も偏光素子14における光源12側に配設される。
 なお、カバー部材40の表面(両面とも)には、反射防止膜等の反射防止処理をしなくてもよいが、一方または両方の表面に反射防止膜等の反射防止処理を行うのが好適である。
 また、カバー部材40と偏光素子14におけるワイヤーグリッドの形成面18との間の空間Sは密閉するのが好適である。例えば、カバー部材40および偏光素子14の周縁を保持する保持枠42を設け、当該保持枠42でカバー部材40と偏光素子14におけるワイヤーグリッドの形成面18との間の空間Sを密閉することが考えられる。
 なお、上述した「密閉」とは、当該空間Sにシロキサン化合物等の微小固形物が侵入しない程度の意味であり、完全な意味での「密閉」は必要ない。
 また、偏光素子14にはいわゆる「反射タイプ」のワイヤーグリッドを用いるのが好適である。「反射タイプ」であれば、光源12からの光Lによってワイヤーグリッドが加熱され、密閉された空間の温度が不所望に上昇することによってワイヤーグリッドの形成面18等を損傷させる可能性が低いからである。
 さらに、密閉された空間Sを冷却することを目的として、カバー部材40、偏光素子14、あるいは保持枠42といった当該空間Sを構成する部材を強制空冷または水冷といった方法によって冷却してもよい。
(第4実施形態に係る光照射装置10の構成)
 第4実施形態に係る光照射装置10によれば、偏光素子14におけるワイヤーグリッドの形成面18に対向する位置にカバー部材40が配設されているので、例えば光照射装置10のメンテナンス等の際に誤ってワイヤーグリッドの形成面18を損傷させるのを回避できるとともに、ワイヤーグリッドの形成面18にシロキサン化合物等の微小固形物による汚れが付着するのを回避できる。
(変形例1)
 上述した第1から第4実施例に係る光照射装置10の構成は、互いに組み合わせることができる。例えば、第3実施例の光学フィルター30と第4実施例のカバー部材40とを組み合わせることにより、図6に示すように、光源12に近い側から順に、光学フィルター30、偏光素子14、カバー部材40が配置された光照射装置10を形成できる。
 もちろん、偏光素子14およびカバー部材40の位置を逆にして、光源12に近い側から順に、光学フィルター30、カバー部材40、偏光素子14が配置された光照射装置10を形成してもよい。
 さらに言えば、図7に示すように、光学フィルター30をワークに最も近い位置に配置して、光源12に近い側から順に、カバー部材40、偏光素子14、光学フィルター30が配置された光照射装置10を形成してもよい。
(変形例2)
 また、上述した第1から第4実施例に係る光照射装置10で使用されている光源12に対し、図8に示すように、LED16からの光Lの配光角を制御するためのレンズ50をさらに設けてもよい。このレンズ50の数は、図示するように1つであってもよいし、2つ以上であってもよい。
 さらに、上述した第1から第4実施例に係る光照射装置10で使用されている光源12に対し、図9に示すように、LED16からの光Lの配光角を制御するためのリフレクター52をさらに設けてもよい。
 また、図10に示すように、レンズ50とリフレクター52とを組み合わせてLED16からの光Lの配光角を制御してもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上述した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10…光照射装置、12…光源、14…偏光素子、16…LED、18…ワイヤーグリッドの形成面
 20…透光板
 30…光学フィルター
 40…カバー部材、42…保持枠
 50…レンズ、52…リフレクター
 X…ワーク(露光対象物)、A…露光面、L…露光用光、CL…(LED16の)光軸、θ1…第1の角度、θ2…第2の角度、θ3…(透光板20への)入射角、S…(カバー部材40とワイヤーグリッドの形成面18との間の)空間

Claims (5)

  1.  複数のLEDを有する光源と、
     前記光源からの光を受け、透過させた前記光をワークに照射する偏光素子とを備えており、
     前記各LEDの光軸は、前記ワークに対して第1の角度を有しており、
     前記各LEDから放射される前記光の配光角の半分である第2の角度は、前記第1の角度よりも小さいことを特徴とする
     光照射装置。
  2.  前記光源と前記偏光素子との間において前記ワークと平行に配設されている透光板をさらに備えている
     請求項1に記載の光照射装置。
  3.  複数のLEDを有する光源と、
     前記光源からの光を受け、透過させた前記光をワークに照射する偏光素子と、
     前記光源から放射された光のうち所定の波長以上の光を選択的に透過する光学フィルターとを備えており、
     前記光学フィルターは、前記光学フィルターに対する所定の波長以上の前記光の入射角が大きくなるに連れて、所定の波長以上の前記光の透過率を高めるようになっていることを特徴とする
     光照射装置。
  4.  複数のLEDを有する光源と、
     前記光源からの光を受け、透過させた前記光をワークに照射する偏光素子と、
     前記光源からの光を透過するカバー部材とを備えており、
     前記偏光素子は、ワイヤーグリッドの形成面を有しており、
     前記カバー部材は、前記偏光素子における前記形成面に対向する位置に配設されており、
     前記カバー部材と前記形成面との間の空間は密閉されていることを特徴とする
     光照射装置。
  5.  請求項1から4のいずれか1項に記載の光照射装置を備える露光装置。
PCT/JP2021/010914 2020-03-24 2021-03-17 光照射装置、およびこれを備える露光装置 WO2021193301A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21776652.6A EP4130862A4 (en) 2020-03-24 2021-03-17 LIGHT IRRADIATION DEVICE AND EXPOSURE APPARATUS PROVIDED WITH SAME
KR1020227028670A KR20220129605A (ko) 2020-03-24 2021-03-17 광 조사 장치 및 이를 구비하는 노광 장치
CN202180015510.4A CN115210636B (zh) 2020-03-24 2021-03-17 光照射装置以及具备该光照射装置的曝光装置
US17/906,520 US20230124785A1 (en) 2020-03-24 2021-03-17 Light irradiation device, and exposure apparatus provided therewith
IL296150A IL296150A (en) 2020-03-24 2022-09-01 Light projection device and light exposure device provided with it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-053452 2020-03-24
JP2020053452A JP6989977B2 (ja) 2020-03-24 2020-03-24 光照射装置、およびこれを備える露光装置

Publications (1)

Publication Number Publication Date
WO2021193301A1 true WO2021193301A1 (ja) 2021-09-30

Family

ID=77886509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010914 WO2021193301A1 (ja) 2020-03-24 2021-03-17 光照射装置、およびこれを備える露光装置

Country Status (8)

Country Link
US (1) US20230124785A1 (ja)
EP (1) EP4130862A4 (ja)
JP (1) JP6989977B2 (ja)
KR (1) KR20220129605A (ja)
CN (1) CN115210636B (ja)
IL (1) IL296150A (ja)
TW (1) TW202138888A (ja)
WO (1) WO2021193301A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512850A (ja) * 1997-08-05 2001-08-28 エルシコン・インコーポレーテッド 液晶を整合するための露光システム及び方法
JP2005010408A (ja) * 2003-06-18 2005-01-13 Sony Corp 光配向処理方法および液晶表示装置の製造方法
JP2006323060A (ja) * 2005-05-18 2006-11-30 Ushio Inc 偏光光照射装置
JP2007017475A (ja) 2005-07-05 2007-01-25 Sanyo Epson Imaging Devices Corp ラビング処理方法及びこのラビング処理方法を用いた液晶表示パネルの製造方法
JP2016153920A (ja) * 2016-05-19 2016-08-25 ウシオ電機株式会社 偏光光照射装置
CN209014871U (zh) * 2018-07-16 2019-06-21 香港科技大学 用于光取向的曝光头和曝光系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708287B2 (ja) * 2006-08-25 2011-06-22 富士フイルム株式会社 光学フィルムの製造方法、光学フィルム、偏光板、転写材料、液晶表示装置、及び偏光紫外線露光装置
JP4968165B2 (ja) * 2008-04-24 2012-07-04 ウシオ電機株式会社 光配向用偏光光照射装置
JP2018017952A (ja) * 2016-07-29 2018-02-01 ウシオ電機株式会社 光照射装置および光照射方法
JP2019211725A (ja) * 2018-06-08 2019-12-12 株式会社ブイ・テクノロジー 光照射装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512850A (ja) * 1997-08-05 2001-08-28 エルシコン・インコーポレーテッド 液晶を整合するための露光システム及び方法
JP2005010408A (ja) * 2003-06-18 2005-01-13 Sony Corp 光配向処理方法および液晶表示装置の製造方法
JP2006323060A (ja) * 2005-05-18 2006-11-30 Ushio Inc 偏光光照射装置
JP2007017475A (ja) 2005-07-05 2007-01-25 Sanyo Epson Imaging Devices Corp ラビング処理方法及びこのラビング処理方法を用いた液晶表示パネルの製造方法
JP2016153920A (ja) * 2016-05-19 2016-08-25 ウシオ電機株式会社 偏光光照射装置
CN209014871U (zh) * 2018-07-16 2019-06-21 香港科技大学 用于光取向的曝光头和曝光系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130862A4

Also Published As

Publication number Publication date
US20230124785A1 (en) 2023-04-20
EP4130862A1 (en) 2023-02-08
IL296150A (en) 2022-11-01
JP2021152617A (ja) 2021-09-30
CN115210636B (zh) 2024-04-23
JP6989977B2 (ja) 2022-01-12
EP4130862A4 (en) 2024-04-24
CN115210636A (zh) 2022-10-18
TW202138888A (zh) 2021-10-16
KR20220129605A (ko) 2022-09-23

Similar Documents

Publication Publication Date Title
JP3075917B2 (ja) 液晶表示装置、その製造方法およびその製造装置
US6292296B1 (en) Large scale polarizer and polarizer system employing it
JP2928226B2 (ja) 液晶表示素子の配向膜光配向用偏光光照射装置
WO2021193301A1 (ja) 光照射装置、およびこれを備える露光装置
CN103620487B (zh) 光定向照射装置
JP4057614B2 (ja) 液晶表示装置および液晶表示装置の製造方法
JP2022031802A (ja) 光照射装置、およびこれを備える露光装置
CN110998425A (zh) 液晶显示面板和液晶显示面板的制造方法
JP2009139623A (ja) 液晶レンズ
WO2022153672A1 (ja) 光照射装置、およびこれを備える露光装置
JP7142380B2 (ja) 光照射装置、およびこれを備える露光装置
JP7257719B2 (ja) 光照射装置、およびこれを備える露光装置
JP2010506205A (ja) 偏光板及びこれを含む偏光照射装置
TW201921131A (zh) 光配向用曝光裝置
US20230205017A1 (en) Light emitting device and exposure apparatus including same
JP2000171676A (ja) 大面積偏光板を採り入れた偏光装置
KR101659698B1 (ko) 액정 표시 장치의 제조 방법 및 액정 표시 장치의 제조 장치
JP7193196B2 (ja) 配向膜露光装置用の測定機構、および配向膜露光装置の調整方法
KR20030039401A (ko) 광배향을 이용한 엘코스 액정디스플레이 장치 및 그제조방법
KR101096697B1 (ko) 편광시스템 및 그를 이용한 uv조사장치
JPH1172749A (ja) 液晶分子配向基板の照射光学系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021776652

Country of ref document: EP

Effective date: 20221024