WO2021193217A1 - 水分検出センサ - Google Patents
水分検出センサ Download PDFInfo
- Publication number
- WO2021193217A1 WO2021193217A1 PCT/JP2021/010498 JP2021010498W WO2021193217A1 WO 2021193217 A1 WO2021193217 A1 WO 2021193217A1 JP 2021010498 W JP2021010498 W JP 2021010498W WO 2021193217 A1 WO2021193217 A1 WO 2021193217A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode film
- main surface
- detection sensor
- porous body
- moisture detection
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/22—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
Definitions
- the present invention relates to a sensor that is inserted into a detection target such as soil and detects the water content of the detection target.
- Patent Document 1 Patent Document 2, and Patent Document 3 describe sensors for detecting soil moisture.
- the sensor described in Patent Document 1 has a structure in which a detection electrode is surrounded by a housing including a porous body.
- the sensors described in Patent Documents 2 and 3 have a structure in which a porous body is attached to the peripheral surface of a cylindrical base material.
- Japanese Unexamined Patent Publication No. 2008-32550 Japanese Unexamined Patent Publication No. 2012-242127 Japanese Unexamined Patent Publication No. 2013-57574
- Patent Document 1 Patent Document 2, and Patent Document 3 are complicated, and these sensors are difficult to manufacture.
- Patent Document 1 since the structure is complicated, the sensors described in Patent Document 1, Patent Document 2, and Patent Document 3 are easily damaged during use, for example, when they are inserted into soil. That is, if the structure is complicated, when it is inserted into the soil, for example, a portion where breaking stress or the like is likely to be applied increases, and damage is likely to occur.
- an object of the present invention is to provide a sensor having a simple structure and which is not easily damaged during use.
- the moisture detection sensor of the present invention includes an insulating substrate, a porous body, a first electrode film, and a second electrode film.
- the insulating substrate has a first main surface and a second main surface, and includes a recess recessed from the second main surface.
- the porous body is arranged in the recess.
- the first electrode film and the second electrode film are arranged on the first main surface side or the second main surface side of the substrate.
- the first electrode film and the second electrode film overlap the porous body when viewed in a direction orthogonal to the first main surface and the second main surface.
- the porous body has a shape that does not protrude from the first main surface and the second main surface.
- the moisture detection sensor is formed by the substrate, the porous body housed in the substrate, and the two electrode membranes. Therefore, the moisture detection sensor has a simple structure. Further, since the porous body does not protrude from the substrate, even if the substrate is inserted into a detection object such as soil, the load at the time of insertion into the porous body is less likely to be applied, and the porous body is less likely to be damaged.
- FIG. 1 is an external perspective view of the moisture detection sensor according to the first embodiment.
- 2 (A) and 2 (C) are plan views of the moisture detection sensor according to the first embodiment,
- FIG. 2 (B) is a side view thereof, and
- FIG. 2 (D) is a side view thereof. It is a side sectional view.
- FIG. 3 is an enlarged side sectional view of the porous body in the moisture detection sensor according to the first embodiment and the portion of the electrode film for detection.
- 4 (A) and 4 (B) are a plan view and a side sectional view showing a state in each one of the manufacturing processes of the moisture detection sensor according to the first embodiment.
- 5 (A) and 5 (C) are plan views of the moisture detection sensor according to the second embodiment, FIG.
- FIG. 5 (B) is a side view thereof
- FIG. 5 (D) is a plan view thereof.
- FIG. 6 (A) and 6 (C) are plan views of the moisture detection sensor according to the third embodiment
- FIG. 6 (B) is a side view thereof
- FIG. 6 (D) is a plan view thereof.
- FIG. 7A is a plan view of the moisture detection sensor according to the fourth embodiment
- FIG. 7B is a side sectional view thereof
- 8 (A) and 8 (C) are plan views of the moisture detection sensor according to the fifth embodiment
- FIG. 8 (B) is a side view thereof
- FIG. 8 (D) is a plan view thereof.
- FIG. 9 is a side sectional view of the moisture detection sensor according to the sixth embodiment
- FIG. 10 is a side sectional view of the moisture detection sensor according to the seventh embodiment.
- FIG. 1 is an external perspective view of the moisture detection sensor according to the first embodiment.
- 2 (A) and 2 (C) are plan views of the moisture detection sensor according to the first embodiment,
- FIG. 2 (B) is a side view thereof, and
- FIG. 2 (D) is a plan view thereof. It is a side sectional view.
- FIG. 2D is a diagram showing a cross section taken along the line AA shown in FIG. 2A. In the plan view of FIG. 2C, the insulating film is omitted.
- the moisture detection sensor 10 includes a substrate 20, a porous body 30, an electrode film 41, and an electrode film. 42, an insulating film 51, and an insulating film 61 are provided.
- the electrode film 41 corresponds to the "first electrode film” of the present invention
- the electrode film 42 corresponds to the "second electrode film” of the present invention.
- the substrate 20 has an insulating property.
- the substrate 20 is formed of a glass epoxy substrate.
- the substrate 20 has a main surface 201 and a main surface 202 that are orthogonal to each other in the thickness direction.
- the main surface 201 corresponds to the "first main surface” of the present invention
- the main surface 202 corresponds to the "second main surface” of the present invention.
- the plan view means a state of the substrate 20 viewed in a direction orthogonal to the main surface 201 and the main surface 202.
- the substrate 20 is rectangular in a plan view.
- the substrate 20 has a shape that is long in one direction (longitudinal direction) and short in the other direction (short direction) that is orthogonal to the thickness direction.
- the substrate 20 is formed with a recess 21 penetrating from the main surface 201 to the main surface 202.
- the recess 21 has a rectangular parallelepiped shape.
- the recess 21 is arranged near one end of the substrate 20 in the longitudinal direction.
- the porous body 30 is a rectangular parallelepiped.
- the porous body 30 is made of, for example, gypsum.
- the porous body 30 may be made of another material such as ceramic.
- the porous body 30 is arranged in the recess 21. More specifically, the porous body 30 is filled in the recess 21, and the side surface of the porous body 30 is in contact with the inner wall surface of the recess 21.
- the porous body 30 has a shape that does not protrude from the main surface 201 and the main surface 202. That is, one end face orthogonal to the side surface of the porous body 30 is flush with the main surface 201, and the other end face is flush with the main surface 202.
- the flushing referred to here is a range including a manufacturing error, and within this range, between one end surface of the porous body 30 and the main surface 201, or between the other end surface and the main surface of the porous body 30. There may be a step between it and 202.
- the insulating film 51 is formed on the main surface 201 of the substrate 20.
- the insulating film 51 is formed on the entire surface of the main surface 201, but at least the recess 21 is formed. It suffices if it is formed so as to block.
- the insulating film 51 may be thinner than the substrate 20 and at least thick enough to form and support the electrode film 41 and the electrode film 42.
- the electrode film 41 and the electrode film 42 are arranged on the surface of the insulating film 51 opposite to the substrate 20 side. In other words, the electrode film 41 and the electrode film 42 are arranged on the main surface 201 side of the substrate 20.
- the electrode film 41 and the electrode film 42 are rectangular in a plan view.
- the electrode film 41 and the electrode film 42 overlap the porous body 30 in a plan view.
- the electrode film 41 and the electrode film 42 are arranged so that their side surfaces are close to each other.
- the wiring electrode film 411 and the wiring electrode film 421 are arranged on the surface of the insulating film 51 on which the electrode film 41 and the electrode film 42 are arranged.
- the wiring electrode film 411 and the wiring electrode film 421 mainly have a shape extending in the longitudinal direction of the substrate 20.
- the wiring electrode film 411 is connected to the electrode film 41.
- the wiring electrode film 421 is connected to the electrode film 42.
- the wiring electrode film 411 and the wiring electrode film 421 are electrically connected to external circuit elements (for example, a circuit unit for extracting a capacitance value and a processing circuit unit for estimating the amount of water), which are not shown.
- the insulating film 61 is arranged in contact with the surface of the insulating film 51 on which the electrode film 41, the electrode film 42, the wiring electrode film 411, and the wiring electrode film 421 are arranged. That is, the electrode film 41, the electrode film 42, the wiring electrode film 411, and the wiring electrode film 421 are arranged so as to be sandwiched between the insulating film 51 and the insulating film 61, respectively.
- An opening is formed in the insulating film 51 and the insulating film 61 at a position overlapping the region (non-formed portion of the electrode) between the electrode film 41 and the electrode film 42. That is, the insulating film 51 and the insulating film 61 have a region in which the insulating film is not formed at a position overlapping the region (non-formed portion of the electrode) between the electrode film 41 and the electrode film 42. As a result, the porous body 30 is exposed to the outside on the main surface 201 side of the substrate 20.
- FIG. 3 is an enlarged side sectional view of the porous body in the moisture detection sensor according to the first embodiment and the portion of the electrode film for detection.
- the porous body 30 has a predetermined relative permittivity. Therefore, as shown in FIG. 3, a structure is realized in which the electric field generated from the electrode film 41 reaches the electrode film 42 through the porous body 30. That is, a capacitor is formed in which the electrode film 41 and the electrode film 42 are paired electrodes, and the porous body 30 of the dielectric is arranged between them.
- the dielectric constant of the porous body 30 changes depending on the amount of water retained. Therefore, by detecting the capacitance between the electrode film 41 and the electrode film 42, it is possible to detect a change in the dielectric constant of the porous body 30, thereby detecting the amount of water.
- the moisture detection sensor 10 detects the moisture contained in the object to be detected (for example, soil) as follows.
- the moisture detection sensor 10 is arranged so that the porous body 30 enters the detection target (for example, soil).
- the dielectric constant of the porous body containing water changes from the dielectric constant of the porous body 30 containing no water. That is, the dielectric constant of the porous body 30 alone does not change, but the dielectric constant of the porous body 30 as an integral body changes with respect to the dielectric constant of the porous body 30 alone, depending on the water content. do.
- the capacitance between the electrode film 41 and the electrode film 42 changes.
- the detection capacity corresponding to the water content of the detection target is output. By measuring this detection capacity, the water content of the detection target can be detected.
- the porous body 30 does not protrude from the main surface 201 and the main surface 202 of the substrate 20. Therefore, when the moisture detection sensor 10 is inserted into the object to be detected, it is difficult for the porous body 30 to be subjected to breaking stress. Therefore, the porous body 30 is not easily damaged. That is, the moisture detection sensor 10 is not easily damaged.
- the electrode film 41 and the electrode film 42 are on the outer side of the main surface 201, their thickness is extremely thin, for example, about 1 mm at the maximum. Therefore, the breaking stress at the time of insertion is hardly applied to the electrode film 41 and the electrode film 42. Therefore, the moisture detection sensor 10 is not easily damaged. Further, the electrode film 41 and the electrode film 42 are covered on the outer surface side by the insulating film 61. Therefore, the electrode film 41 and the electrode film 42 are less likely to be damaged, and thus the moisture detection sensor 10 is more difficult to be damaged.
- the moisture detection sensor 10 has a structure in which a recess 21 is provided in the substrate 20 and the porous body 30 is arranged in the recess 21 to form a flat film-shaped electrode film 41 and an electrode film 42. Therefore, the moisture detection sensor 10 has a simple structure and is easy to manufacture.
- the electrode film 41 and the electrode film 42 are close to the same end surface of the porous body 30 and are arranged side by side along this surface. Therefore, the distance between the electrode film 41 and the electrode film 42 can be set to a desired distance regardless of the volume of the porous body 30. In other words, the pattern of the electric field distribution generated between the electrode film 41 and the electrode film 42 via the porous body 30 (see the dotted arrow in FIG. 3) can be controlled to a desired shape. Thereby, the distance between the electrodes as a capacitor can be adjusted, the detection capacitance can be adjusted, and the desired detection sensitivity with respect to the water content can be realized.
- the electrode film 41 and the electrode film 42 are arranged on the same end face of the porous body 30, and this end face has a region in which the electrode film 41 and the electrode film 42 are not arranged.
- the amount of water passing through the porous body 30 can be adjusted by providing openings in the insulating film 51 and the insulating film 61 in this portion.
- the electrode film 41 and the electrode film 42 are arranged on the same end face of the porous body 30, the positional relationship between the electrode film 41 and the electrode film 42 can be realized with high accuracy. More specifically, it is possible to adopt a technique for forming an electrode pattern on a circuit board. For example, the electrode film 41 or the electrode film 42 is subjected to a patterning process or the like using the insulating film 51 or the insulating film 61 as a base material. Can be formed using. As a result, the shape and formation position of the electrode film 41 and the electrode film 42 can be realized with high accuracy, and the positional relationship between the electrode film 41 and the electrode film 42 can be realized with high accuracy.
- the moisture detection sensor 10 includes an insulating film 51 between the electrode film 41 and the electrode film 42 and the porous body 30. As a result, it is possible to suppress the flow of a conduction current through the porous body 30 between the electrode film 41 and the electrode film 42. Therefore, it is possible to suppress that the change in the resistivity of the porous body 30 affects the detection capacity. As a result, the water content detection sensor 10 can detect the water content with higher accuracy.
- the moisture detection sensor 10 having such a configuration can be manufactured, for example, as follows.
- 4 (A) and 4 (B) are a plan view and a side sectional view showing a state in each one of the manufacturing processes of the moisture detection sensor according to the first embodiment.
- a recess 21 is formed in the substrate 20.
- an insulating film 51 on which the electrode film 41, the electrode film 42, the wiring electrode film 411, and the wiring electrode film 421 are formed is arranged on the main surface 201 of the substrate 20. do.
- the porous body 30 is filled in the recess 21 in which one opening is closed by the insulating film 51 and solidified.
- the insulating film 61 is arranged so as to cover the electrode film 41, the electrode film 42, the wiring electrode film 411, and the wiring electrode film 421.
- the moisture detection sensor 10 can be easily manufactured by a simple manufacturing process.
- FIGS. 5 (A) and 5 (C) are plan views of the moisture detection sensor according to the second embodiment
- FIG. 5 (B) is a side view thereof
- FIG. 5 (D) is a plan view thereof. It is a side sectional view.
- FIG. 5D is a diagram showing a cross section taken along the line BB shown in FIG. 5A.
- the insulating film is omitted.
- the moisture detection sensor 10A according to the second embodiment detects moisture according to the first embodiment.
- the difference is that the electrode films are arranged on both the main surface 201 and the main surface 202 with respect to the sensor 10.
- the other configuration of the moisture detection sensor 10A is the same as that of the moisture detection sensor 10, and the description of the same parts will be omitted.
- the moisture detection sensor 10A includes an insulating film 52, an insulating film 62, an electrode film 71, an electrode film 72, a wiring electrode film 711, and a wiring electrode film 721.
- the insulating film 52 is formed on the main surface 202 of the substrate 20. Like the insulating film 51, the insulating film 52 may be formed so as to close at least the recess 21. The insulating film 52 may be thinner than the substrate 20 and may be at least thin enough to form and support the electrode film 71 and the electrode film 72.
- the electrode film 71 and the electrode film 72 are arranged on the surface of the insulating film 52 opposite to the substrate 20 side. In other words, the electrode film 71 and the electrode film 72 are arranged on the main surface 202 side of the substrate 20.
- the electrode film 71 and the electrode film 72 are rectangular in a plan view.
- the electrode film 71 and the electrode film 72 overlap the porous body 30 in a plan view.
- the electrode film 71 and the electrode film 72 are arranged so that their side surfaces are close to each other. At this time, it is preferable that the electrode film 71 overlaps the electrode film 41, that is, faces the electrode film 41 via the porous body 30. Similarly, it is preferable that the electrode film 72 overlaps the electrode film 42, that is, faces the electrode film 42 via the porous body 30. However, the electrode film 71 and the electrode film 41 do not have to face each other via the porous body 30, and similarly, the electrode film 72 and the electrode film 42 do not have to face each other through the porous body 30. ..
- the wiring electrode film 711 and the wiring electrode film 721 are arranged on the surface of the insulating film 52 on which the electrode film 71 and the electrode film 72 are arranged.
- the wiring electrode film 711 and the wiring electrode film 721 mainly have a shape extending in the longitudinal direction of the substrate 20.
- the wiring electrode film 711 is connected to the electrode film 71.
- the wiring electrode film 721 is connected to the electrode film 72.
- the insulating film 62 is arranged in contact with the surface of the insulating film 52 on which the electrode film 71, the electrode film 72, the wiring electrode film 711, and the wiring electrode film 721 are arranged. That is, the electrode film 71, the electrode film 72, the wiring electrode film 711, and the wiring electrode film 721 are arranged so as to be sandwiched between the insulating film 52 and the insulating film 62, respectively.
- An opening is formed in the insulating film 51 and the insulating film 61 at a position overlapping the region (non-formed portion of the electrode) between the electrode film 41 and the electrode film 42. That is, the insulating film 51 and the insulating film 61 have a region in which the insulating film is not formed at a position overlapping the region (non-formed portion of the electrode) between the electrode film 41 and the electrode film 42.
- the porous body 30 is exposed to the outside on the main surface 201 side of the substrate 20. Since the electrode film 41 and the electrode film 42 are sandwiched between the insulating film 51 and the insulating film 61, they are not exposed to the outside. As a result, the water can flow into the porous body 30 from the main surface 201 side of the substrate 20 without bringing the electrode film 41 and the electrode film 42 into contact with water.
- An opening is formed in the insulating film 52 and the insulating film 62 at a position overlapping the region (non-formed portion of the electrode) between the electrode film 71 and the electrode film 72. That is, the insulating film 52 and the insulating film 62 have a region in which the insulating film is not formed at a position overlapping the region (non-formed portion of the electrode) between the electrode film 71 and the electrode film 72.
- the porous body 30 is exposed to the outside on the main surface 202 side of the substrate 20. Since the electrode film 71 and the electrode film 72 are sandwiched between the insulating film 52 and the insulating film 62, they are not exposed to the outside. As a result, the water can flow into the porous body 30 from the main surface 202 side of the substrate 20 without bringing the electrode film 71 and the electrode film 72 into contact with water.
- Flow path can be configured.
- At least one of the electrode film 41, the electrode film 42, the electrode film 71, and the electrode film 72 corresponds to the "first electrode film”, and the electrodes arranged or opposed to the "first electrode film” correspond to the "second electrode film”. handle.
- the moisture detection sensor 10A can realize a sensor having a simple structure and not easily damaged during use. Further, the moisture detection sensor 10A can improve the detection accuracy by using a plurality of electrode films. That is, by obtaining a plurality of types of detection capacities, the detection accuracy can be improved as compared with obtaining one type of detection capacities.
- FIGS. 6 (A) and 6 (C) are plan views of the moisture detection sensor according to the third embodiment
- FIG. 6 (B) is a side view thereof
- FIG. 6 (D) is a plan view thereof. It is a side sectional view.
- FIG. 6D is a diagram showing a cross section taken along the line CC shown in FIG. 6A.
- the insulating film is omitted.
- the moisture detection sensor 10B detects moisture according to the first embodiment.
- the difference is that the electrode film 81 and the electrode film 82 are added to the sensor 10.
- Other configurations of the moisture detection sensor 10B are the same as those of the moisture detection sensor 10, and the description of the same parts will be omitted.
- the electrode film 81 and the electrode film 82 are arranged on the surface of the insulating film 51 opposite to the substrate 20 side.
- the electrode film 81 and the electrode film 82 are arranged on the main surface 201 side of the substrate 20, and are arranged on the same surface as the electrode film 41 and the electrode film 42.
- the electrode film 81 and the electrode film 82 correspond to the “third electrode film” and the “fourth electrode film” of the present invention.
- the electrode film 81 and the electrode film 82 are rectangular in a plan view.
- the electrode film 81 and the electrode film 82 are arranged at positions that do not overlap the porous body 30 and face the substrate 20 in a plan view.
- the electrode film 81 and the electrode film 82 are arranged so that their side surfaces are close to each other.
- the electrode film 81 and the electrode film 82 are arranged apart from each other at a distance that does not affect the capacitance measurement between the electrode film 41 and the electrode film 42.
- the wiring electrode film 811 and the wiring electrode film 821 are arranged on the surface of the insulating film 51 on which the electrode film 81 and the electrode film 82 are arranged.
- the wiring electrode film 811 and the wiring electrode film 821 mainly have a shape extending in the longitudinal direction of the substrate 20.
- the wiring electrode film 811 is connected to the electrode film 81.
- the wiring electrode film 821 is connected to the electrode film 82.
- the moisture detection sensor 10B can realize a sensor having a simple structure and not easily damaged during use. Further, the moisture detection sensor 10B can use the detection capacitance between the electrode film 81 and the electrode film 82 as a reference. By using the detection capacity of the reference, the estimation calculation accuracy of the water content is improved, and the water content detection sensor 10B can detect the water content of the detection target object more accurately.
- FIG. 7A is a plan view of the moisture detection sensor according to the fourth embodiment
- FIG. 7B is a side sectional view thereof.
- FIG. 7B is a diagram showing a DD cross section shown in FIG. 7A. In the plan view shown in FIG. 7A, the insulating film is omitted.
- the moisture detection sensor 10C according to the fourth embodiment has an electrode film 41 and an electrode film with respect to the moisture detection sensor 10A according to the second embodiment. 42, the electrode film 71, and the electrode film 72 are replaced with the electrode film 41C, the electrode film 42C, the electrode film 71C, and the electrode film 72C.
- Other configurations of the moisture detection sensor 10C are the same as those of the moisture detection sensor 10A, and the description of the same parts will be omitted.
- the moisture detection sensor 10C includes an electrode film 41C, an electrode film 42C, an electrode film 71C, and an electrode film 72C.
- the electrode film 41C and the electrode film 42C are arranged on the main surface 201 side of the substrate 20.
- the electrode film 41C and the electrode film 42C overlap the porous body 30 in a plan view, and a part of the electrode film 41C overlaps the substrate 20.
- the electrode film 41C and the electrode film 42C have a shape that straddles the contact portion between the porous body 30 and the substrate 20 in a plan view.
- the electrode film 71C and the electrode film 72C are arranged on the main surface 202 side of the substrate 20.
- the electrode film 71C and the electrode film 72C overlap the porous body 30 in a plan view, and a part of the electrode film 71C overlaps the substrate 20.
- the electrode film 71C and the electrode film 72C have a shape that straddles the contact portion between the porous body 30 and the substrate 20 in a plan view.
- the electrode film 71C and the electrode film 41C overlap in a plan view, and the electrode film 72C and the electrode film 42C overlap in a plan view.
- An opening is formed in the insulating film 51 and the insulating film 61 at a position overlapping the region (non-formed portion of the electrode) between the electrode film 41C and the electrode film 42C.
- the porous body 30 is exposed to the outside on the main surface 201 side of the substrate 20. Since the electrode film 41C and the electrode film 42C are sandwiched between the insulating film 52 and the insulating film 62, they are not exposed to the outside. As a result, the water can flow into the porous body 30 from the main surface 201 side of the substrate 20 without bringing the electrode film 41C and the electrode film 42C into contact with water.
- An opening is formed in the insulating film 52 and the insulating film 62 at a position overlapping the region (non-formed portion of the electrode) between the electrode film 71C and the electrode film 72C.
- the porous body 30 is exposed to the outside on the main surface 202 side of the substrate 20. Since the electrode film 71C and the electrode film 72C are sandwiched between the insulating film 52 and the insulating film 62, they are not exposed to the outside. As a result, the water can flow into the porous body 30 from the main surface 202 side of the substrate 20 without bringing the electrode film 71C and the electrode film 72C into contact with water.
- Flow path can be configured.
- the moisture detection sensor 10C can realize a sensor having a simple structure and not easily damaged during use. Further, in the moisture detection sensor 10C, the area where the electrode film 41C, the electrode film 42C, the electrode film 71C, and the electrode film 72C face each other of the porous body 30 can be increased. As a result, the moisture detection sensor 10C can obtain a larger detection capacity. Therefore, the moisture detection sensor 10C can improve the moisture detection sensitivity.
- FIGS. 8 (A) and 8 (C) are plan views of the moisture detection sensor according to the fifth embodiment
- FIG. 8 (B) is a side view thereof
- FIG. 8 (D) is a plan view thereof. It is a side sectional view.
- FIG. 8D is a diagram showing a cross section taken along the line EE shown in FIG. 8A.
- the insulating film is omitted.
- the moisture detection sensor 10D detects moisture according to the first embodiment.
- the sensor 10 is different in that the electrode film 41D and the electrode film 42D are provided in place of the electrode film 41 and the electrode film 42.
- Other configurations of the moisture detection sensor 10D are the same as those of the moisture detection sensor 10, and the description of the same parts will be omitted.
- the moisture detection sensor 10D includes an electrode film 41D and an electrode film 42D.
- the electrode film 41D is arranged on the main surface 201 side of the substrate 20.
- the electrode film 41D overlaps the porous body 30 and a part of the electrode film 41D overlaps the substrate 20 in a plan view.
- the outer shape of the electrode film 41D is larger than the outer shape of the porous body 30.
- the electrode film 41D has a shape that straddles the contact portion between the porous body 30 and the substrate 20 in a plan view.
- the electrode film 41D has an opening 410D in the central portion overlapping the porous body 30.
- the opening 410D is a portion of the electrode film 41D where no electrode is formed.
- the electrode film 41D corresponds to the "first electrode film” of the present invention, and the opening 410D corresponds to the "first opening” of the present invention.
- the insulating film 51 and the insulating film 61 are also opened in accordance with the opening 410D.
- the electrode film 42D is arranged on the main surface 202 side of the substrate 20.
- the electrode film 42D overlaps the porous body 30 and a part of the electrode film 42D overlaps the substrate 20 in a plan view.
- the outer shape of the electrode film 42D is larger than the outer shape of the porous body 30.
- the electrode film 42D has a shape that straddles the contact portion between the porous body 30 and the substrate 20 in a plan view.
- the electrode film 42D has an opening 420D in the central portion overlapping the porous body 30.
- the opening 420D is a portion of the electrode film 42D where no electrode is formed.
- the electrode film 42D corresponds to the "second electrode film” of the present invention, and the opening 420D corresponds to the "second opening” of the present invention.
- the insulating film 52 and the insulating film 62 are also opened in accordance with the opening 420D.
- the electrode film 42D and the electrode film 41D overlap each other. Further, in a plan view, the opening 410D and the opening 420D overlap.
- the opening 410D and the opening 420D are preferably overlapped, but may not be overlapped.
- the moisture detection sensor 10D can realize a sensor having a simple structure and not easily damaged during use. Further, by having the openings 410D and 420D on both sides of the main surface 201 and the main surface 202 of the substrate 20, the water content on both sides can be averaged and measured. Further, the moisture detection sensor 10D can adjust the flow rate of moisture to the porous body 30 by adjusting the opening area of the opening 410D or the opening 420D. As a result, the moisture detection sensor 10 can adjust the moisture detection sensitivity.
- the electrode film 41D and a part of the electrode film 42D face the substrate 20.
- at least one of the electrode film 41D and the electrode film 42D does not have to overlap the substrate 20.
- the outer shape of at least one of the electrode film 41D and the electrode film 42D may be smaller than the outer shape of the porous body 30.
- FIG. 9 is a side sectional view of the moisture detection sensor according to the sixth embodiment.
- the cross-sectional view shown in FIG. 9 shows a cross-sectional view similar to the cross-sectional view shown in the first embodiment described above.
- the moisture detection sensor 10E according to the sixth embodiment is different from the moisture detection sensor 10 according to the first embodiment in that the recess 21 has a bottom surface.
- Other configurations of the moisture detection sensor 10E are the same as those of the moisture detection sensor 10, and the description of the same parts will be omitted.
- the moisture detection sensor 10E includes a substrate 20E.
- the substrate 20E is realized by a laminated substrate. More specifically, the substrate 20E includes an insulator layer 221 and an insulator layer 222, and an insulating adhesive layer 230. The insulator layer 221 and the insulator layer 222 are laminated and adhered by an insulating adhesive layer 230.
- a recess 21 is formed in the insulator layer 221.
- the recess 21 penetrates between both main surfaces of the insulator layer 221.
- the porous body 30 is arranged in the recess 21.
- An electrode film 41 and an electrode film 42 are formed on the insulator layer 222.
- the insulator layer 222 is also formed with a wiring electrode connected to the electrode film 41 and the electrode film 42.
- the insulator layer 222 is adhered to the insulator layer 221 using the adhesive layer 230 with the surface on which the electrode film 41 and the electrode film 42 are formed as the insulator layer 221 side. At this time, in a plan view, the electrode film 41 and the electrode film 42 overlap the recess 21, that is, the porous body 30.
- the moisture detection sensor 10E has a recess 21 that does not penetrate the substrate 20E. Even in such a configuration, the moisture detection sensor 10E can realize a sensor having a simple structure and not easily damaged during use.
- FIG. 10 is a side sectional view of the moisture detection sensor according to the seventh embodiment.
- the cross-sectional view shown in FIG. 10 shows a cross-sectional view similar to the cross-sectional view shown in the first embodiment described above.
- the moisture detection sensor 10F according to the seventh embodiment is different from the moisture detection sensor 10 according to the first embodiment in that it includes a recess 21F.
- Other configurations of the moisture detection sensor 10F are the same as those of the moisture detection sensor 10, and the description of the same parts will be omitted.
- the substrate 20 has a recess 21F.
- the recess 21F has a shape recessed from the main surface 202 and does not reach the main surface 201. In other words, the recess 21F does not penetrate the substrate 20.
- the electrode film 41 and the electrode film 42 are arranged on the main surface 201 of the substrate 20.
- the electrode film 41 and the electrode film 42 may be fixed to the main surface 201 of the substrate 20 by using an insulating adhesive, or may be patterned by plating, vapor deposition, or the like.
- the wiring electrode film 411 and the wiring electrode film 421 (not shown) can also be arranged by the same method.
- the moisture detection sensor 10F can realize a sensor having a simple structure and not easily damaged during use.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
水分検出センサ(10)は、基板(20)、多孔体(30)、電極膜(41)、および、電極膜(42)を備える。基板(20)は、主面(201)と主面(202)とを有し、主面(202)から凹む凹部(21)を備える。多孔体(30)は、凹部(21)に配置されている。電極膜(41)と電極膜(42)は、基板(20)の主面(201)に配置されている。主面(201)に直交する方向に視て、電極膜(41)と電極膜(42)は、多孔体(30)に重なる。多孔体(30)は、主面(201)と主面(202)から突出しない形状である。
Description
本発明は、土壌等の検出対象物に差し込まれ、検出対象物の水分を検出するセンサに関する。
特許文献1、特許文献2、特許文献3には、土壌の水分を検出するセンサが記載されている。特許文献1に記載のセンサは、多孔体を含む筐体によって、検出電極を囲む構造を備える。特許文献2、および、特許文献3に記載のセンサは、円筒形状の基材の周面に多孔体を取り付ける構造を備える。
しかしながら、特許文献1、特許文献2、特許文献3に記載されたセンサの構造は、複雑であり、これらのセンサは、製造し難い。
また、構造が複雑であることから、特許文献1、特許文献2、特許文献3に記載されたセンサは、使用時、例えば、土壌に挿入する際に破損し易い。すなわち、構造が複雑であると、土壌に挿入する際に、例えば、破断応力等が加わり易い部分が増加してしまい、破損が生じ易い。
したがって、本発明の目的は、簡素な構造で、且つ、使用時に破損し難いセンサを提供することにある。
この発明の水分検出センサは、絶縁性の基板、多孔体、第1電極膜、および、第2電極膜を備える。絶縁性の基板は、第1主面と第2主面とを有し、第2主面から凹む凹部を備える。多孔体は、凹部に配置されている。第1電極膜および第2電極膜は、基板の第1主面側または第2主面側に配置されている。第1主面および第2主面に直交する方向に視て、第1電極膜および第2電極膜は、多孔体に重なる。多孔体は、第1主面および第2主面から突出しない形状である。
この構成では、基板、基板に収容された多孔体、2個の電極膜によって水分検出センサが形成される。したがって、水分検出センサは、簡素な構造からなる。また、多孔体が基板から突出していないので、基板を土壌等の検出対象物に差し込んでも、多孔体に差し込み時の負荷がかかり難く、多孔体は破損し難い。
この発明によれば、簡素な構造で、且つ、使用時に破損し難いセンサを実現できる。
(第1の実施形態)
本発明の第1の実施形態に係る水分検出センサについて、図を参照して説明する。図1は、第1の実施形態に係る水分検出センサの外観斜視図である。図2(A)、図2(C)は、第1の実施形態に係る水分検出センサの平面図であり、図2(B)は、その側面図であり、図2(D)は、その側面断面図である。図2(D)は、図2(A)に示すA-A断面を示す図である。なお、図2(C)の平面図では、絶縁膜を省略して記載している。
本発明の第1の実施形態に係る水分検出センサについて、図を参照して説明する。図1は、第1の実施形態に係る水分検出センサの外観斜視図である。図2(A)、図2(C)は、第1の実施形態に係る水分検出センサの平面図であり、図2(B)は、その側面図であり、図2(D)は、その側面断面図である。図2(D)は、図2(A)に示すA-A断面を示す図である。なお、図2(C)の平面図では、絶縁膜を省略して記載している。
図1、図2(A)、図2(B)、図2(C)、図2(D)に示すように、水分検出センサ10は、基板20、多孔体30、電極膜41、電極膜42、絶縁膜51、および、絶縁膜61を備える。電極膜41は、本発明の「第1電極膜」に対応し、電極膜42は、本発明の「第2電極膜」に対応する。
基板20は、絶縁性を有する。例えば、基板20は、ガラスエポキシ基板によって形成されている。基板20は、厚み方向に直交する主面201と主面202とを有する。主面201が、本発明の「第1主面」に対応し、主面202が、本発明の「第2主面」に対応する。以下、平面視とは、基板20の主面201および主面202に直交する方向に視た状態を意味する。
基板20は、平面視して矩形である。言い換えれば、基板20は、厚み方向に直交する一方向に長く(長手方向)、もう一方向に短い(短手方向)形状である。
基板20には、主面201から主面202まで貫通する凹部21が形成されている。図1、図2(A)、図2(B)、図2(C)、図2(D)の例であれば、凹部21は、直方体形状である。凹部21は、基板20の長手方向の一方端付近に配置されている。
多孔体30は、直方体である。多孔体30は、例えば、石膏からなる。ただし、多孔体30は、他の材料、例えばセラミック等であってもよい。
多孔体30は、凹部21に配置されている。より具体的には、多孔体30は、凹部21に充填されており、多孔体30の側面は、凹部21の内壁面に当接している。
多孔体30は、主面201および主面202から突出しない形状である。すなわち、多孔体30の側面に直交する一方端面は、主面201と面一であり、他方端面は、主面202と面一である。なお、ここで言う面一とは、製造上の誤差を含む範囲であり、この範囲内において、多孔体30の一方端面と主面201との間、または、多孔体30の他方端面と主面202との間に、段差があってもよい。
絶縁膜51は、基板20の主面201に形成されている。図1、図2(A)、図2(B)、図2(C)、図2(D)の例では、絶縁膜51は、主面201の全面に形成されているが、少なくとも凹部21を塞ぐように形成されていればよい。絶縁膜51は、基板20よりも薄く、少なくとも電極膜41と電極膜42が形成、支持可能な程度の厚みであればよい。
電極膜41と電極膜42は、絶縁膜51における基板20側と反対側の面に配置される。言い換えれば、電極膜41と電極膜42は、基板20の主面201側に配置される。
電極膜41と電極膜42は、平面視して、矩形である。電極膜41と電極膜42は、平面視して、多孔体30に重なっている。
電極膜41と電極膜42は、それぞれの側面が近接した状態で配置される。
絶縁膜51における電極膜41と電極膜42とが配置される面には、配線電極膜411と配線電極膜421とが配置される。配線電極膜411と配線電極膜421は、主として、基板20の長手方向に延びる形状である。配線電極膜411は、電極膜41に接続する。配線電極膜421は、電極膜42に接続する。配線電極膜411と配線電極膜421とは、それぞれ図示しない外部の回路要素(例えば、容量値を抽出する回路部や、水分量を推定する処理回路部)に電気的に接続される。
絶縁膜61は、絶縁膜51における電極膜41、電極膜42、配線電極膜411、および、配線電極膜421が配置される面に当接して、配置される。すなわち、電極膜41、電極膜42、配線電極膜411、および、配線電極膜421は、それぞれに、絶縁膜51と絶縁膜61とに挟まれるように配置される。
絶縁膜51および絶縁膜61には、電極膜41と電極膜42との間の領域(電極の非形成部)に重なる位置に、開口が形成されている。すなわち、絶縁膜51および絶縁膜61は、電極膜41と電極膜42との間の領域(電極の非形成部)に重なる位置に、絶縁膜が形成されていない領域がある。これにより、多孔体30は、基板20の主面201側において外部に露出する。
図3は、第1の実施形態に係る水分検出センサにおける多孔体、および、検出用の電極膜の部分を拡大した側面断面図である。多孔体30は、所定の比誘電率を有する。したがって、図3に示すように、電極膜41から発生する電界が、多孔体30を通じて、電極膜42に達する構造が実現される。すなわち、電極膜41と電極膜42とを対の電極として、その間に誘電体の多孔体30が配置されるキャパシタが形成される。
水の比誘電率は、比較的高く、80程度であるため、多孔体30は、保持する水分量によって、誘電率が変化する。したがって、電極膜41と電極膜42との間の静電容量を検出することで、多孔体30の誘電率の変化を検出でき、これにより、水分量を検出できる。
この原理を利用し、水分検出センサ10は、検出対象物(例えば、土壌)に含有する水分を、次のように、検出する。
水分検出センサ10は、多孔体30が検出対象物(例えば、土壌)内に入り込むように、配置される。この状態で、検出対象物からの水分が多孔体30に入り込むと、水分を含んだ状態の多孔体の誘電率は、水分を含んでいない多孔体30の誘電率から変化する。すなわち、多孔体30単体の誘電率は変化しないが、水分の含有状態に応じて、水分と多孔体30とを一体としたものとしての誘電率は、多孔体30単体の誘電率に対して変化する。これにより、電極膜41と電極膜42との間の静電容量が変化する。言い換えれば、検出対象物の水分量に応じた検出容量が出力される。この検出容量を計測することによって、検出対象物の水分量を検出できる。
そして、水分検出センサ10は、多孔体30が基板20の主面201および主面202から突出していない。したがって、水分検出センサ10を検出対象物に差し込むときに、多孔体30に破断応力がかかり難い。したがって、多孔体30は、破損し難い。すなわち、水分検出センサ10は、破損し難い。
なお、電極膜41および電極膜42は、主面201よりも外方にあるが、その厚みは極薄く、例えば、最大でも1mm程度の厚みである。そのため、差し込み時の破断応力は、電極膜41および電極膜42に殆どかからない。したがって、水分検出センサ10は、破損し難い。さらに、電極膜41および電極膜42は、絶縁膜61によって外面側が覆われている。したがって、電極膜41および電極膜42は、さらに破損し難く、よって、水分検出センサ10は、さらに破損し難い。
また、水分検出センサ10は、基板20に凹部21を設け、多孔体30を凹部21に配置し、平膜状の電極膜41および電極膜42を形成するだけの構造である。したがって、水分検出センサ10は、簡素な構造であり、製造が容易である。
また、水分検出センサ10では、電極膜41と電極膜42は、多孔体30の同じ端面に近接し、この面に沿って並んで配置される。したがって、電極膜41と電極膜42との間隔は、多孔体30の体積によらず、所望の距離にできる。言い換えれば、電極膜41と電極膜42との間で多孔体30を介して生じる電界分布のパターン(図3の点線矢印参照)を所望の形状に制御できる。これにより、キャパシタとしての電極間距離を調整でき、検出容量を調整可能であり、水分量に対する所望の検出感度を実現できる。
また、水分検出センサ10では、電極膜41と電極膜42は、多孔体30の同じ端面に配置され、この端面は、電極膜41と電極膜42とが配置されていない領域を有する。これにより、この部分の絶縁膜51と絶縁膜61に開口を設けることで、多孔体30を通過する水分量を調整できる。
また、水分検出センサ10では、電極膜41と電極膜42とは、多孔体30の同じ端面に配置されるので、電極膜41と電極膜42との位置関係を高精度に実現できる。より具体的には、回路基板における電極パターンの形成技術を採用することが可能であり、例えば、絶縁膜51または絶縁膜61を基材として、電極膜41と電極膜42とは、パターニング処理等を用いて形成できる。これにより、電極膜41と電極膜42との形状および形成位置を高精度に実現でき、電極膜41と電極膜42との位置関係を高精度に実現できる。
また、水分検出センサ10は、電極膜41および電極膜42と多孔体30との間に、絶縁膜51を備える。これにより、電極膜41と電極膜42との間で、多孔体30を介した導通電流が流れることを抑制できる。したがって、多孔体30の抵抗率の変化が検出容量に影響を与えることを抑制できる。この結果、水分検出センサ10は、水分量を、より高精度に検出できる。
このような構成の水分検出センサ10は、例えば、次のように製造できる。図4(A)、図4(B)は、第1の実施形態に係る水分検出センサの製造工程のそれぞれ一過程での状態を示す平面図および側面断面図である。
まず、図4(A)に示すように、基板20に凹部21を形成する。次に、図4(B)に示すように、基板20の主面201に、電極膜41、電極膜42、配線電極膜411、および、配線電極膜421が形成された絶縁膜51を配設する。
次に、絶縁膜51によって一方の開口が塞がれた凹部21に、多孔体30を充填させ、固化する。そして、電極膜41、電極膜42、配線電極膜411、および、配線電極膜421を覆うように、絶縁膜61を配設する。
このように、水分検出センサ10は、簡素な製造工程で、容易に製造できる。
(第2の実施形態)
本発明の第2の実施形態に係る水分検出センサについて、図を参照して説明する。図5(A)、図5(C)は、第2の実施形態に係る水分検出センサの平面図であり、図5(B)は、その側面図であり、図5(D)は、その側面断面図である。図5(D)は、図5(A)に示すB-B断面を示す図である。なお、図5(A)、図5(C)に示す平面図では、絶縁膜を省略して記載している。
本発明の第2の実施形態に係る水分検出センサについて、図を参照して説明する。図5(A)、図5(C)は、第2の実施形態に係る水分検出センサの平面図であり、図5(B)は、その側面図であり、図5(D)は、その側面断面図である。図5(D)は、図5(A)に示すB-B断面を示す図である。なお、図5(A)、図5(C)に示す平面図では、絶縁膜を省略して記載している。
図5(A)、図5(B)、図5(C)、図5(D)に示すように、第2の実施形態に係る水分検出センサ10Aは、第1の実施形態に係る水分検出センサ10に対して、主面201と主面202の両方に、電極膜が配置されている点で異なる。水分検出センサ10Aの他の構成は、水分検出センサ10と同様であり、同様の箇所の説明は省略する。
水分検出センサ10Aは、絶縁膜52、絶縁膜62、電極膜71、電極膜72、配線電極膜711、および、配線電極膜721を備える。
絶縁膜52は、基板20の主面202に形成されている。絶縁膜52は、絶縁膜51と同様に、少なくとも凹部21を塞ぐように形成されていればよい。絶縁膜52は、基板20よりも薄く、少なくとも電極膜71と電極膜72が形成、支持可能な程度の薄さであればよい。
電極膜71と電極膜72は、絶縁膜52における基板20側と反対側の面に配置される。言い換えれば、電極膜71と電極膜72は、基板20の主面202側に配置される。
電極膜71と電極膜72は、平面視して、矩形である。電極膜71と電極膜72は、平面視して、多孔体30に重なっている。
電極膜71と電極膜72は、それぞれの側面が近接した状態で配置される。この際、電極膜71は、電極膜41に重なっている、すなわち、多孔体30を介して対向していることが好ましい。同様に、電極膜72は、電極膜42に重なっている、すなわち、多孔体30を介して対向していることが好ましい。ただし、電極膜71と電極膜41は、多孔体30を介して対向していなくてもよく、同様に、電極膜72と電極膜42は、多孔体30を介して対向していなくてもよい。
絶縁膜52における電極膜71と電極膜72とが配置される面には、配線電極膜711と配線電極膜721とが配置される。配線電極膜711と配線電極膜721は、主として、基板20の長手方向に延びる形状である。配線電極膜711は、電極膜71に接続する。配線電極膜721は、電極膜72に接続する。
絶縁膜62は、絶縁膜52における電極膜71、電極膜72、配線電極膜711、および、配線電極膜721が配置される面に当接して、配置される。すなわち、電極膜71、電極膜72、配線電極膜711、および、配線電極膜721は、それぞれに、絶縁膜52と絶縁膜62とに挟まれるように配置される。
絶縁膜51および絶縁膜61には、電極膜41と電極膜42との間の領域(電極の非形成部)に重なる位置に、開口が形成されている。すなわち、絶縁膜51および絶縁膜61は、電極膜41と電極膜42との間の領域(電極の非形成部)に重なる位置に、絶縁膜が形成されていない領域がある。これにより、多孔体30は、基板20の主面201側において外部に露出する。電極膜41と電極膜42は、絶縁膜51および絶縁膜61に挟まれているため、外部に露出していない。これにより、電極膜41と電極膜42を水分に触れさせることなく、基板20の主面201側から多孔体30に水分を流入させることができる。
絶縁膜52および絶縁膜62には、電極膜71と電極膜72との間の領域(電極の非形成部)に重なる位置に、開口が形成されている。すなわち、絶縁膜52および絶縁膜62は、電極膜71と電極膜72との間の領域(電極の非形成部)に重なる位置に、絶縁膜が形成されていない領域がある。これにより、多孔体30は、基板20の主面202側において外部に露出する。電極膜71と電極膜72は、絶縁膜52および絶縁膜62に挟まれているため、外部に露出していない。これにより、電極膜71と電極膜72を水分に触れさせることなく、基板20の主面202側から多孔体30に水分を流入させることができる。
また、基板20の主面201側および主面202側の両側において、多孔体30が露出することで、主面201側から主面202側または、主面202側から主面201側への水分の流路を構成することができる。
この構成では、電極膜41、電極膜42、電極膜71、および、電極膜72の少なくとも1つが「第1電極膜」に対応し、これに並ぶまたは対向する電極が「第2電極膜」に対応する。
このような構成によって、水分検出センサ10Aは、簡素な構造で、且つ、使用時に破損し難いセンサを実現できる。また、水分検出センサ10Aは、複数の電極膜を用いることで、検出精度を向上できる。すなわち、複数種類の検出容量を得られることで、1種類の検出容量を得るよりも、検出精度を向上できる。
(第3の実施形態)
本発明の第3の実施形態に係る水分検出センサについて、図を参照して説明する。図6(A)、図6(C)は、第3の実施形態に係る水分検出センサの平面図であり、図6(B)は、その側面図であり、図6(D)は、その側面断面図である。図6(D)は、図6(A)に示すC-C断面を示す図である。なお、図6(A)、図6(C)に示す平面図では、絶縁膜を省略して記載している。
本発明の第3の実施形態に係る水分検出センサについて、図を参照して説明する。図6(A)、図6(C)は、第3の実施形態に係る水分検出センサの平面図であり、図6(B)は、その側面図であり、図6(D)は、その側面断面図である。図6(D)は、図6(A)に示すC-C断面を示す図である。なお、図6(A)、図6(C)に示す平面図では、絶縁膜を省略して記載している。
図6(A)、図6(B)、図6(C)、図6(D)に示すように、第3の実施形態に係る水分検出センサ10Bは、第1の実施形態に係る水分検出センサ10に対して、電極膜81と電極膜82が追加された点で異なる。水分検出センサ10Bの他の構成は、水分検出センサ10と同様であり、同様の箇所の説明は省略する。
電極膜81と電極膜82は、絶縁膜51における基板20側と反対側の面に配置される。言い換えれば、電極膜81と電極膜82は、基板20の主面201側に配置され、電極膜41と電極膜42と同じ面に配置される。電極膜81と電極膜82とが、本発明の「第3電極膜」と「第4電極膜」とに対応する。
電極膜81と電極膜82は、平面視して、矩形である。電極膜81と電極膜82は、平面視して、多孔体30に重ならない位置であり、基板20に対向する位置に配置される。
電極膜81と電極膜82は、それぞれの側面が近接した状態で配置される。電極膜81と電極膜82とは、電極膜41と電極膜42との容量測定に影響を与えない距離で離間して配置されている。
絶縁膜51における電極膜81と電極膜82とが配置される面には、配線電極膜811と配線電極膜821とが配置される。配線電極膜811と配線電極膜821は、主として、基板20の長手方向に延びる形状である。配線電極膜811は、電極膜81に接続する。配線電極膜821は、電極膜82に接続する。
このような構成によって、水分検出センサ10Bは、簡素な構造で、且つ、使用時に破損し難いセンサを実現できる。また、水分検出センサ10Bは、電極膜81と電極膜82との間の検出容量を、リファレンスとして利用できる。リファレンスの検出容量を用いることで、水分量の推定算出精度が向上し、水分検出センサ10Bは、検出対象物の水分を、より精度良く検出できる。
(第4の実施形態)
本発明の第4の実施形態に係る水分検出センサについて、図を参照して説明する。図7(A)は、第4の実施形態に係る水分検出センサの平面図であり、図7(B)は、その側面断面図である。図7(B)は、図7(A)に示すD-D断面を示す図である。なお、図7(A)に示す平面図では、絶縁膜を省略して記載している。
本発明の第4の実施形態に係る水分検出センサについて、図を参照して説明する。図7(A)は、第4の実施形態に係る水分検出センサの平面図であり、図7(B)は、その側面断面図である。図7(B)は、図7(A)に示すD-D断面を示す図である。なお、図7(A)に示す平面図では、絶縁膜を省略して記載している。
図7(A)、図7(B)に示すように、第4の実施形態に係る水分検出センサ10Cは、第2の実施形態に係る水分検出センサ10Aに対して、電極膜41、電極膜42、電極膜71、および、電極膜72に代えて、電極膜41C、電極膜42C、電極膜71C、および、電極膜72Cを備える点で異なる。水分検出センサ10Cの他の構成は、水分検出センサ10Aと同様であり、同様の箇所の説明は省略する。
水分検出センサ10Cは、電極膜41C、電極膜42C、電極膜71C、および、電極膜72Cを備える。
電極膜41Cと電極膜42Cは、基板20の主面201側に配置される。電極膜41Cと電極膜42Cは、平面視において、多孔体30に重なるとともに、一部は、基板20に重なる。言い換えれば、電極膜41Cと電極膜42Cとは、平面視において、多孔体30と基板20との当接部を跨ぐ形状である。
電極膜71Cと電極膜72Cは、基板20の主面202側に配置される。電極膜71Cと電極膜72Cは、平面視において、多孔体30に重なるとともに、一部は、基板20に重なる。言い換えれば、電極膜71Cと電極膜72Cとは、平面視において、多孔体30と基板20との当接部を跨ぐ形状である。
電極膜71Cと電極膜41Cは、平面視において重なっており、電極膜72Cと電極膜42Cは、平面視において重なっている。
絶縁膜51および絶縁膜61には、電極膜41Cと電極膜42Cとの間の領域(電極の非形成部)に重なる位置に、開口が形成されている。これにより、多孔体30は、基板20の主面201側において外部に露出する。電極膜41Cと電極膜42Cは、絶縁膜52および絶縁膜62に挟まれているため、外部に露出していない。これにより、電極膜41Cと電極膜42Cを水分に触れさせることなく、基板20の主面201側から多孔体30に水分を流入させることができる。絶縁膜52および絶縁膜62には、電極膜71Cと電極膜72Cとの間の領域(電極の非形成部)に重なる位置に、開口が形成されている。これにより、多孔体30は、基板20の主面202側において外部に露出する。電極膜71Cと電極膜72Cは、絶縁膜52および絶縁膜62に挟まれているため、外部に露出していない。これにより、電極膜71Cと電極膜72Cを水分に触れさせることなく、基板20の主面202側から多孔体30に水分を流入させることができる。
また、基板20の主面201側および主面202側の両側において、多孔体30が露出することで、主面201側から主面202側または、主面202側から主面201側への水分の流路を構成することができる。
このような構成によって、水分検出センサ10Cは、簡素な構造で、且つ、使用時に破損し難いセンサを実現できる。さらに、水分検出センサ10Cは、電極膜41C、電極膜42C、電極膜71C、および、電極膜72Cが多孔体30の対向する面積を大きくできる。これにより、水分検出センサ10Cは、より大きな検出容量を得ることができる。したがって、水分検出センサ10Cは、水分の検出感度を向上できる。
(第5の実施形態)
本発明の第5の実施形態に係る水分検出センサについて、図を参照して説明する。図8(A)、図8(C)は、第5の実施形態に係る水分検出センサの平面図であり、図8(B)は、その側面図であり、図8(D)は、その側面断面図である。図8(D)は、図8(A)に示すE-E断面を示す図である。なお、図8(A)、図8(C)に示す平面図では、絶縁膜を省略して記載している。
本発明の第5の実施形態に係る水分検出センサについて、図を参照して説明する。図8(A)、図8(C)は、第5の実施形態に係る水分検出センサの平面図であり、図8(B)は、その側面図であり、図8(D)は、その側面断面図である。図8(D)は、図8(A)に示すE-E断面を示す図である。なお、図8(A)、図8(C)に示す平面図では、絶縁膜を省略して記載している。
図8(A)、図8(B)、図8(C)、図8(D)に示すように、第5の実施形態に係る水分検出センサ10Dは、第1の実施形態に係る水分検出センサ10に対して、電極膜41と電極膜42に代えて、電極膜41Dと電極膜42Dを備える点で異なる。水分検出センサ10Dの他の構成は、水分検出センサ10と同様であり、同様の箇所の説明は省略する。
水分検出センサ10Dは、電極膜41Dと電極膜42Dを備える。
電極膜41Dは、基板20の主面201側に配置される。電極膜41Dは、平面視において、多孔体30に重なるとともに、一部は、基板20に重なる。平面視において、電極膜41Dの外形は、多孔体30の外形よりも大きい。言い換えれば、電極膜41Dは、平面視において、多孔体30と基板20との当接部を跨ぐ形状である。
電極膜41Dには、多孔体30に重なる中央部に開口410Dを有する。開口410Dは、電極膜41Dにおける電極が形成されていない部分である。電極膜41Dが本発明の「第1電極膜」に対応し、開口410Dが、本発明の「第1開口」に対応する。なお、この開口410Dに合わせて、絶縁膜51および絶縁膜61も開口している。
電極膜42Dは、基板20の主面202側に配置される。電極膜42Dは、平面視において、多孔体30に重なるとともに、一部は、基板20に重なる。平面視において、電極膜42Dの外形は、多孔体30の外形よりも大きい。言い換えれば、電極膜42Dは、平面視において、多孔体30と基板20との当接部を跨ぐ形状である。
電極膜42Dには、多孔体30に重なる中央部に開口420Dを有する。開口420Dは、電極膜42Dにおける電極が形成されていない部分である。電極膜42Dが本発明の「第2電極膜」に対応し、開口420Dが、本発明の「第2開口」に対応する。なお、この開口420Dに合わせて、絶縁膜52および絶縁膜62も開口している。
平面視において、電極膜42Dと電極膜41Dは、重なっている。さらに、平面視において、開口410Dと開口420Dは、重なっている。なお、開口410Dと開口420Dは、重なっていることが好ましいが、重なっていなくてもよい。
このような構成によって、水分検出センサ10Dは、簡素な構造で、且つ、使用時に破損し難いセンサを実現できる。また、基板20の主面201と主面202の両面に開口410Dと420Dを持つことで、両面の水分量を平均化して測定することができる。さらに、水分検出センサ10Dは、開口410Dまたは開口420Dの開口面積を調整することによって、多孔体30への水分の流量を調整できる。これにより、水分検出センサ10は、水分の検出感度を調整できる。
なお、水分検出センサ10Cでは、電極膜41Dおよび電極膜42Dの一部が基板20に対向する態様を示した。しかしながら、電極膜41Dおよび電極膜42Dの少なくとも一方は、基板20に重ならなくてもよい。言い換えれば、電極膜41Dおよび電極膜42Dの少なくとも一方については、その外形が多孔体30の外形よりも小さくてもよい。
(第6の実施形態)
本発明の第6の実施形態に係る水分検出センサについて、図を参照して説明する。図9は、第6の実施形態に係る水分検出センサの側面断面図である。図9に示す断面図は、上述の第1の実施形態に示した断面図と同様の断面を示す。
本発明の第6の実施形態に係る水分検出センサについて、図を参照して説明する。図9は、第6の実施形態に係る水分検出センサの側面断面図である。図9に示す断面図は、上述の第1の実施形態に示した断面図と同様の断面を示す。
図9に示すように、第6の実施形態に係る水分検出センサ10Eは、第1の実施形態に係る水分検出センサ10に対して、凹部21が底面を有する点で異なる。水分検出センサ10Eの他の構成は、水分検出センサ10と同様であり、同様の箇所の説明は省略する。
水分検出センサ10Eは、基板20Eを備える。基板20Eは、積層基板によって実現される。より具体的には、基板20Eは、絶縁体層221、絶縁体層222、および、絶縁性の接着層230を備える。絶縁体層221と絶縁体層222は積層されており、絶縁性の接着層230によって接着されている。
絶縁体層221には、凹部21が形成されている。凹部21は、絶縁体層221の両主面間を貫通する。そして、多孔体30は、この凹部21に配置される。絶縁体層222には、電極膜41および電極膜42が形成されている。なお、図示を省略しているが、絶縁体層222には、電極膜41および電極膜42に接続する配線電極も形成されている。絶縁体層222は、電極膜41および電極膜42が形成されている面を、絶縁体層221側として、接着層230を用いて、絶縁体層221に接着される。この際、平面視において、電極膜41および電極膜42は、凹部21すなわち多孔体30に重なる。
このような構成によって、水分検出センサ10Eは、基板20Eを貫通しない凹部21を有する。そして、このような構成においても、水分検出センサ10Eは、簡素な構造で、且つ、使用時に破損し難いセンサを実現できる。
(第7の実施形態)
本発明の第7の実施形態に係る水分検出センサについて、図を参照して説明する。図10は、第7の実施形態に係る水分検出センサの側面断面図である。図10に示す断面図は、上述の第1の実施形態に示した断面図と同様の断面を示す。
本発明の第7の実施形態に係る水分検出センサについて、図を参照して説明する。図10は、第7の実施形態に係る水分検出センサの側面断面図である。図10に示す断面図は、上述の第1の実施形態に示した断面図と同様の断面を示す。
図10に示すように、第7の実施形態に係る水分検出センサ10Fは、第1の実施形態に係る水分検出センサ10に対して、凹部21Fを備える点で異なる。水分検出センサ10Fの他の構成は、水分検出センサ10と同様であり、同様の箇所の説明は省略する。
水分検出センサ10Fでは、基板20は、凹部21Fを有する。凹部21Fは、主面202から凹む形状であり、主面201に達していない。言い換えれば、凹部21Fは、基板20を貫通していない。
電極膜41および電極膜42は、基板20の主面201に配置されている。電極膜41および電極膜42は、例えば、基板20の主面201に、絶縁性接着材を用いて固定されていてもよく、めっきや蒸着等によってパターン形成してもよい。なお、配線電極膜411および図示を省略している配線電極膜421も同様の方法によって配置できる。
このような構成においても、水分検出センサ10Fは、簡素な構造で、且つ、使用時に破損し難いセンサを実現できる。
なお、上述の各実施形態の構成は、適宜組み合わせることが可能であり、それぞれの組合せに応じた作用効果を奏することができる。
10、10A、10B、10C、10D、10E、10F:水分検出センサ
20、20E:基板
21、21F:凹部
30:多孔体
41、41C、41D、42、42C、42D、71、71C、72、72C、81、82:電極膜
51、52、61、62:絶縁膜
201、202:主面
221、222:絶縁体層
230:接着層
410D、420D:開口
411、421、711、721、811、821:配線電極膜
20、20E:基板
21、21F:凹部
30:多孔体
41、41C、41D、42、42C、42D、71、71C、72、72C、81、82:電極膜
51、52、61、62:絶縁膜
201、202:主面
221、222:絶縁体層
230:接着層
410D、420D:開口
411、421、711、721、811、821:配線電極膜
Claims (10)
- 第1主面と第2主面とを有し、前記第2主面から凹む凹部を備える絶縁性の基板と、
前記凹部に配置された多孔体と、
前記基板の前記第1主面側または前記第2主面側に配置された、第1電極膜および第2電極膜と、
を備え、
前記第1主面および前記第2主面に直交する方向に視て、前記第1電極膜および前記第2電極膜は、前記多孔体に重なり、
前記多孔体は、前記第1主面および前記第2主面から突出しない形状である、
水分検出センサ。 - 前記第1電極膜および前記第2電極膜は、前記第1主面側に配置されている、
請求項1に記載の水分検出センサ。 - 前記第1電極膜は、前記第1主面側に配置され、
前記第2電極膜は、前記第2主面側に配置されている、
請求項1に記載の水分検出センサ。 - 前記第1電極膜は、電極が形成されていない第1開口を有し、
前記第2電極膜は、電極が形成されていない第2開口を有する、
請求項3に記載の水分検出センサ。 - 前記第1主面および前記第2主面に直交する方向に視て、前記第1開口および前記第2開口は、前記多孔体に重なる、
請求項4に記載の水分検出センサ。 - 前記第1電極膜および前記第2電極膜の少なくとも一方は、前記多孔体とともに、前記基板にも重なっている、
請求項1乃至請求項5のいずれかに記載の水分検出センサ。 - 前記凹部は、前記基板を、前記第2主面から前記第1主面まで貫通している、
請求項1乃至請求項6のいずれかに記載の水分検出センサ。 - 前記多孔体は、前記凹部に充填されている、
請求項1乃至請求項7のいずれかに記載の水分検出センサ。 - 前記第1電極膜および前記第2電極膜と前記多孔体との間に配置され、前記多孔体よりも薄い絶縁膜を備える、
請求項1乃至請求項8のいずれかに記載の水分検出センサ。 - 前記多孔体に重ならない位置に、互いに距離をおいて配置された第3電極膜と第4電極膜とを備える、
請求項1乃至請求項9のいずれかに記載の水分検出センサ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020056939 | 2020-03-27 | ||
JP2020-056939 | 2020-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021193217A1 true WO2021193217A1 (ja) | 2021-09-30 |
Family
ID=77892062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/010498 WO2021193217A1 (ja) | 2020-03-27 | 2021-03-16 | 水分検出センサ |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021193217A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022149320A1 (ja) * | 2021-01-06 | 2022-07-14 | 株式会社村田製作所 | 水分検出センサ |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005201753A (ja) * | 2004-01-15 | 2005-07-28 | Kett Electric Laboratory | 水分検出ユニット及び水分測定装置 |
JP2008107166A (ja) * | 2006-10-24 | 2008-05-08 | Denso Corp | 湿度センサ及びその製造方法 |
JP2008151524A (ja) * | 2006-12-14 | 2008-07-03 | Matsushita Electric Ind Co Ltd | 結露センサ |
JP2013057574A (ja) * | 2011-09-07 | 2013-03-28 | Fujitsu Ltd | 土壌センサ |
US20150129538A1 (en) * | 2012-05-15 | 2015-05-14 | Commissariat À L' Énergie Atomique Et Aux Énergies Alternatives | Method for producing a capacitive sensor |
-
2021
- 2021-03-16 WO PCT/JP2021/010498 patent/WO2021193217A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005201753A (ja) * | 2004-01-15 | 2005-07-28 | Kett Electric Laboratory | 水分検出ユニット及び水分測定装置 |
JP2008107166A (ja) * | 2006-10-24 | 2008-05-08 | Denso Corp | 湿度センサ及びその製造方法 |
JP2008151524A (ja) * | 2006-12-14 | 2008-07-03 | Matsushita Electric Ind Co Ltd | 結露センサ |
JP2013057574A (ja) * | 2011-09-07 | 2013-03-28 | Fujitsu Ltd | 土壌センサ |
US20150129538A1 (en) * | 2012-05-15 | 2015-05-14 | Commissariat À L' Énergie Atomique Et Aux Énergies Alternatives | Method for producing a capacitive sensor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022149320A1 (ja) * | 2021-01-06 | 2022-07-14 | 株式会社村田製作所 | 水分検出センサ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9239308B2 (en) | Humidity detection sensor and a method for manufacturing the same | |
US8188555B2 (en) | Capacitive sensor and manufacturing method therefor | |
US8747635B2 (en) | Gas sensor | |
US7387024B2 (en) | Capacitive type humidity sensor | |
US20090095073A1 (en) | Impedance sensor | |
CN103376279B (zh) | 湿度传感器装置 | |
JP5913577B2 (ja) | 圧力及び/又は力を測定するためのセンサ | |
WO2021193217A1 (ja) | 水分検出センサ | |
JP2019109224A (ja) | 導電率センサ | |
JP2000241343A (ja) | 測定装置並びに該測定装置の製法 | |
JP2007139447A (ja) | 薄膜の透湿度測定装置および透湿度測定方法 | |
KR101040083B1 (ko) | 나노와이어 트랜지스터 센서, 제조방법 및 이를 이용한 생체분자 검출장치 | |
JPH11311561A (ja) | 水位センサ | |
US20060055502A1 (en) | Humidity sensor | |
CN109690301B (zh) | 容量型气体传感器 | |
JP2000121661A (ja) | 加速度センサ及び加速度検出装置 | |
JP2010060546A (ja) | 電流センサ | |
JP2014126454A (ja) | 静電容量式検出装置 | |
WO2021230263A1 (ja) | 水分検出センサ | |
JP5825181B2 (ja) | 湿度センサ | |
JP5451509B2 (ja) | 厚さ測定方法 | |
JP6424528B2 (ja) | ガスセンサ素子 | |
JPS6117945A (ja) | 湿度素子 | |
WO2019103116A1 (ja) | 湿度検知装置 | |
JPWO2023181593A5 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21775097 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21775097 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |