WO2021192941A1 - 通信装置及び通信方法 - Google Patents

通信装置及び通信方法 Download PDF

Info

Publication number
WO2021192941A1
WO2021192941A1 PCT/JP2021/008856 JP2021008856W WO2021192941A1 WO 2021192941 A1 WO2021192941 A1 WO 2021192941A1 JP 2021008856 W JP2021008856 W JP 2021008856W WO 2021192941 A1 WO2021192941 A1 WO 2021192941A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
communication
frame
field
antenna
Prior art date
Application number
PCT/JP2021/008856
Other languages
English (en)
French (fr)
Inventor
裕幸 本塚
坂本 剛憲
誠隆 入江
ヤオ ハン ガイアス ウィー
ホン チェン マイケル シム
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to DE112021001897.3T priority Critical patent/DE112021001897T5/de
Priority to CN202180019680.XA priority patent/CN115280849A/zh
Publication of WO2021192941A1 publication Critical patent/WO2021192941A1/ja
Priority to US17/951,831 priority patent/US20230016300A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • This disclosure relates to communication devices and communication methods.
  • a method for high-speed and low-delay communication using a wide frequency band at a carrier frequency of 10 GHz or higher is being studied.
  • the antenna can be miniaturized because the wavelength is short, and the communication distance is extended by avoiding a large propagation loss, so that the directivity is high.
  • Beamforming technology using an antenna whose directivity can be electrically controlled is being studied.
  • Non-Patent Document 1 As a millimeter-wave wireless LAN communication standard using the 60 GHz band, there is an IEEE802.11ad-2012 standard (Non-Patent Document 1).
  • the IEEE802.11ad-2012 standard defines a beamforming protocol.
  • the IEEE802.11ad-2012 standard stipulates a wireless communication system that assumes a fixed radio and a radio that is carried by the moving speed of a pedestrian, and is a high-speed radio such as a car or a train. It is not supposed to be mounted on a mobile body for millimeter-wave communication.
  • the non-limiting embodiment of the present disclosure contributes to the provision of a communication device and a communication method capable of mounting on a high-speed mobile body and performing millimeter-wave communication.
  • the communication device controls transmission / reception of a first control frame and a first data frame used for communication with another communication device, and is used for communication with the other communication device.
  • a control circuit that controls transmission / reception of a second data frame, a first wireless circuit that wirelessly communicates the first control frame and the first data frame using an omnidirectional first antenna, and the second control.
  • the frame and the second data frame include a second wireless circuit that wirelessly communicates with the second antenna using a directional second antenna, and the first wireless circuit is the other of the first control frames.
  • it can be mounted on a high-speed mobile body to perform millimeter-wave communication.
  • FIG. 6 shows a radio link established by applying the procedure of FIGS. 6A to 6D.
  • FIG. 1A is a diagram showing an example of a system configuration of a V2X (Vehicle to Everything) communication system 1.
  • V2X Vehicle to Everything
  • the vehicles 10 (10a, 10b, 10c, 10d, 10e, 10f, 10g, 10h, 10i, 10j, 10k, 10m) are the communication devices 100 (100a, 100b, 100c, 100d, 100e, 100f, respectively). , 100g, 100h, 100i, 100j, 100k, 100m).
  • each of the pedestrians 20 (20a, 20b, 20c) is provided with a communication device 100 (100n, 100p, 100q).
  • each of the roadside units 30 (30a, 30b) includes a communication device 100 (100r, 100s).
  • the vehicle 10, the pedestrian 20, and the roadside unit 30 may each be provided with a plurality of communication devices 100.
  • the communication device 100 has a communication function compliant with the millimeter wave communication method.
  • IEEE802.11ad standard IEEE802.11-2016 standard
  • IEEE802.11ay standard (draft)
  • IEEE802.11bd standard (draft)
  • IEEE802.153c Standard
  • IEEE802.153e Standard
  • 3GPP NR New Radio
  • FIG. 1B is a diagram showing an example of a wireless link between communication devices in the V2X communication system according to the first embodiment.
  • FIG. 1B shows an example of a wireless link between communication devices 100 in communication system 1.
  • the dashed arrows between the communication devices 100 indicate wireless links, respectively.
  • the communication device 100a has a wireless link with the communication devices 100b, 100e, 100r, that is, can communicate with each other, but may not have a wireless link with the communication device 100c, for example.
  • there may be no link between the communication devices 100 because the distance between the communication devices 100 is large or there is a shield such as another vehicle between the communication devices.
  • FIG. 1B shows an example of a wireless link between communication devices 100 in communication system 1.
  • the dashed arrows between the communication devices 100 indicate wireless links, respectively.
  • the communication device 100a has a wireless link with the communication devices 100b, 100e, 100r, that is, can communicate with each other, but may not have a wireless link with the communication device 100c,
  • the communication system 1 that performs V2X communication has one or more wireless links between each of the plurality of communication devices 100, and when the vehicle 10 and the pedestrian 20 move, the plurality of communication systems 1
  • the presence or absence and quality of wireless links between each of the communication devices 100 of the above vary.
  • FIG. 2 is a diagram showing an example of the configuration of a communication device conforming to the IEEE802.11ad standard.
  • FIG. 2 shows the configuration of the communication device 100.
  • the communication device 100 includes an antenna 101, a wireless circuit 102, a MAC (Media Access Control) control circuit 103, a host CPU (Central Processing Unit) 104, and a peripheral device 105.
  • the host CPU 104 and the MAC control circuit 10a may be collectively referred to as a control circuit.
  • Antenna 101 may include one or more antenna elements. Further, the antenna 101 may be, for example, a phased array antenna or an array antenna. The transmitting antenna and the receiving antenna may be provided separately or may be shared. The antenna 101 may have a function of switching the antenna directivity (for example, referred to as a beam steering function or a beam forming function). The procedure for selecting the directivity for communicating with the communication device of the communication destination with good quality is called beamforming training.
  • the wireless circuit 102 includes an RF (Radio Frequency) circuit and a PHY (PHYsical layer) control circuit, and controls the transmission and reception of packets specified in the IEEE802.11ad standard and the like.
  • the wireless circuit 102 may be called a transceiver.
  • the MAC control circuit 103 controls transmission / reception of MAC frames (control frames) specified in the IEEE802.11ad standard, for example. Further, the MAC control circuit 103 controls the wireless circuit 102, and for example, a procedure for discovering a communication device of a communication destination (called discovery or scan), a beamforming training procedure, and RTS / CTS (Request to Send / Clear to). Send) Control the procedure.
  • discovery or scan a procedure for discovering a communication device of a communication destination
  • RTS / CTS Request to Send / Clear to.
  • Send Control the procedure.
  • the host CPU 104 controls the MAC control circuit 103, for example, executes a device driver and supplicant software. It also runs the OS (Operating System) and application software.
  • OS Operating System
  • the peripheral device 105 is connected to the host CPU 104 and is used by the host CPU 104 to execute software, for example, HDD (Hard Disk Drive), SSD (Solid State Drive), Ethernet (registration). It may include network expansion devices such as controllers and Ethernet boards, and peripheral devices used in GNSS (Global Navigation Satellite System) application software.
  • HDD Hard Disk Drive
  • SSD Solid State Drive
  • Ethernet registration
  • network expansion devices such as controllers and Ethernet boards
  • GNSS Global Navigation Satellite System
  • FIG. 3A is a diagram showing an example of a procedure in which a communication device conforming to the IEEE802.11ad standard establishes a communication link.
  • FIG. 3B is a diagram showing another example of a procedure in which a communication device conforming to the IEEE802.11ad standard establishes a communication link.
  • FIG. 3C is a diagram showing another example of the procedure for establishing a communication link between communication devices conforming to the IEEE802.11ad standard.
  • the communication device 100a uses a plurality of DMG (Directional Multi Gigabit) Beacon frames in which the value of the Discovery Mode (DM) subfield is set to 1 (flagged), and the antenna directivity of the antenna 101. Send while changing. Further, the communication device 100d transmits a plurality of DMG (Directional MultiGigabit) Beacon frames while changing the antenna directivity of the antenna 101.
  • DMG Directional Multi Gigabit
  • the communication device 100a when the communication devices 100b and 100c respond to the DMG Beacon frame transmitted by the communication device 100a, the communication device 100a performs an association procedure with the communication devices 100b and 100c and performs a PBSS (Personal Basic Service Set). ) Start 1001a.
  • the communication device 100a becomes a PCP (PBSSControlPoint) and schedules the PBSS1001a.
  • PCP PBSSControlPoint
  • the communication device 100b transmits a plurality of DMG Beacon frames in which the value of the Discovery Mode subfield is set to 1, while changing the antenna directivity of the antenna 101, and when the communication device 100c responds, the communication device 100c participates in the PBSS 1001a. Recognize that you are doing.
  • the communication devices 100a, 100b, and 100c each determine whether or not data communication is possible and whether or not beamforming training can be executed according to the scheduling information notified by the communication device 100a, and communicate with the communication device 100 participating in the PBSS 1001a. ..
  • the communication device 100d transmits a plurality of DMG Beacon frames in which the value of the Discovery Mode subfield is set to 1, and if the responding communication device 100e does not participate in any PBSS, the communication device 100d is set as the PCP.
  • PBSS1001b is started and communicates with the communication device 100 (100e) participating in PBSS1001b.
  • the communication devices 100a and 100d that transmitted the DMG Beacon were selected as the PCP, but another communication device 100 may be selected as the PCP.
  • the communication device 100b or the communication device 100c may be the PCP of PBSS1001a
  • the communication device 100e may be the PCP of PBSS1001b.
  • the communication devices 100b and 100c are connected to the DMG Beacon transmitted by the communication device 100d. Although it responds, since the communication devices 100b and 100c have already participated in PBSS1001a, it is not necessary to participate in PBSS1001b. In this case, it is difficult for the communication devices 100b and 100c and the communication device 100d to communicate with each other.
  • FIG. 4 is a diagram showing another example of the configuration of the communication device.
  • FIG. 4 shows an example of the configuration of the communication device 200 for the communication devices 100b and 100c and the communication device 100d to communicate with each other in the same situation as in FIG. 3C.
  • the communication device 200 includes a plurality of MAC control circuits 103.
  • the communication device 200 of FIG. 4 includes two MAC control circuits 103a and 103b.
  • the MAC control circuits 103a and 103b may be configured to include two MAC control circuits 103 of FIG. 2, and as another example, the MAC control circuits 103a and 103b are MAC control circuits in which one circuit is two. It may be configured by using software having the same function as 103. For example, the CPU (not shown), DSP (Digital Signal Processor: not shown), FPGA (Field Programmable Gate Array: not shown), and ASIC (Application Specific Integrated Circuit) included in the MAC control circuit 103 of FIG. The processing performance may be improved, and the software may be configured to have functions equivalent to those of the two MAC control circuits 103a and 103b in a pseudo manner.
  • FIG. 5 is a diagram showing another example of the procedure in which the communication device according to the first embodiment establishes a communication link.
  • the communication devices 200 (200a, 200b, 200c, 200d, 200e) are the same as in FIG. The communication device 200e participates), and the state in which the communication device 200d approaches the communication devices 200b and 200c is shown.
  • the MAC control circuit 103a controls participation in the PBSS1001a, and controls communication according to scheduling information from the communication device 200a which is a PCP. It is said that the communication devices 200b and 200c synchronize with the communication device 200a to control the communication according to the scheduling information from the communication device 200a which is a PCP.
  • the communication devices 200b and 200c may perform an association procedure with the communication device 200d using the other MAC control circuit 103b and participate in the PBSS 1001b. That is, the communication device 200 may participate in a plurality of PBSSs according to the number of MAC control circuits 103 included.
  • the number of PBSSs that can participate in the communication device 200 is limited by the number of MAC control circuits 103 included in the communication device 200.
  • the communication device 200f which is the PCP of the PBSS 1001c (not shown)
  • the communication device 200b has already participated in the two PBSSs.
  • the communication device 200 includes a plurality of MAC control circuits 103a and 103b, or uses a circuit having improved processing performance of the MAC control circuit 103 of FIG. 2, the circuit scale increases and the power consumption increases. ..
  • FIG. 6A is a diagram showing an example of a procedure in which the communication device according to the first embodiment establishes a communication link.
  • FIG. 6B is a diagram showing another example of the procedure in which the communication device according to the first embodiment establishes a communication link.
  • FIG. 6C is a diagram showing another example of the procedure in which the communication device according to the first embodiment establishes a communication link.
  • FIG. 6D is a diagram showing another example of the procedure in which the communication device according to the first embodiment establishes a communication link.
  • 6A to 6E show a method in which the communication devices 300 (300a, 300b, 300c, 300d, 300e) communicate with each other.
  • the configuration of the communication device 300 is the same as that of the communication device 100 in FIG. 2, but the MAC control circuit 103 and the host CPU 104 perform different operations by a control method different from those in FIGS. 3A to 3C.
  • the communication devices 300a and 300d use the antenna 101 for a plurality of DMG Beacon frames in which the value of the OCB Mode (Outside the Context of a BSS: does not participate in BSS) subfield is set to 1 (flagged). Transmit while changing the antenna directivity of.
  • the OCBMode subfield contains a value indicating whether or not the communication device 300 communicates with each other without participating in the BSS. Further, when the value of the OCB Mode subfield is 1, it indicates that the communication device 300 transmits the data frame without performing the association.
  • the communication devices 300d and 300e may transmit by setting the value of the Discovery Mode subfield to 1 in addition to the OCB Mode subfield.
  • FIG. 7A is a diagram showing an example of the format of the DMG Beacon frame according to the first embodiment.
  • FIG. 7A shows the format of the DMG Beacon frame.
  • the DMG Beacon frame includes a Frame Control field, a Duration field, a BSSID field, a Frame Body field, and an FCS field.
  • the Frame Control field contains information indicating the type of frame and indicates that it is a DMG Beacon frame.
  • the Duration field indicates the time until the end of transmission of the plurality of DMG Beacon when the communication device 300 transmits a plurality of DMG Beacon frames.
  • BSSID Basic Service Set Identifier
  • the communication device 300 sets the value of the BSSID field to a value indicating a wildcard (all bits are 1).
  • FCS Field Check Sequence
  • error detection code as an example, a CRC: Cyclic Redundancy Check code
  • Frame Body includes Timestamp field, Sector Sweep field, Beacon Interval field, Beacon Interval Control field, and DMG Parameters field.
  • one or more fields that are not essential may be added.
  • Timestamp field contains information for time synchronization between communication devices.
  • the Sector Sweep field includes information related to directivity such as a sector number and an antenna array number when the communication device 300 transmits a plurality of DMG Beacon frames while changing the antenna directivity of the antenna 101.
  • the other communication device that has received the DMG Beacon frame notifies the communication device 300 of the sector number and the antenna array number included in the DMG Beacon frame having the best reception quality in the SSW frame (described later). As a result, the communication device 300 can select the best sector number and antenna array number (that is, the best directivity) and transmit the data frame.
  • Beacon Interval fields are CC Present subfield, Discovery Mode subfield, Next Beacon subfield, ATI Present subfield, A-BFT Length subfield, FSS subfield, IsResponderTXSS subfield, NextA-BFT subfield, Fragmented TXSS subfield. Includes fields, TXSSSpan subfields, NBIsA-BFT subfields, A-BFTCount subfields, NA-BFT inAnt subfields, PCPAssociationReady subfields, and Reserved bits.
  • the communication device 300 sets the value of the Discovery Mode subfield to 1. As a result, the communication device 300 indicates that the transmitting DMG Beacon does not notify the BSS synchronization information.
  • NextBeacon subfield ATIPresent subfield, A-BFTLength subfield, FSS subfield, IsResponderTXSS subfield, NextA-BFT subfield, Fragmented TXSS subfield, TXSSSpan subfield, NBIsA-BFT subfield, The description of the A-BFT Count subfield, the NA-BFT in Ant subfield, the PCP Association Ready subfield, and the Reserved bit is omitted (see Non-Patent Document 1).
  • the DMGParameters field includes a BSSType subfield, a CBAPOnly subfield, a CBAPSource subfield, a DMGPrivacy subfield, an ECAPCPolicyEnforced subfield, an OCBMode subfield, and a Reserved bit.
  • FIG. 7B is a diagram showing an example of the value and description of the BSS Type subfield according to the first embodiment.
  • FIG. 7B shows the value and description of the BSS Type subfield.
  • the value of the BSS Type subfield is set to 3.
  • the value of the BSS Type subfield is set to 2.
  • the communication device 100b may transmit a DMG Beacon frame to discover the communication device 100d (not shown), but at this time, the communication device 100b is a BSS Type subfield of the DMG Beacon frame. By setting the value of to 2, the communication device 100d, which is a PCP, responds.
  • the communication device 300 sets the value of the BSS Type field to 1 or 0 so that the other communication device sends an SSW frame with the value of the OCB Response subfield (described later) set to 1 and responds to the DMG Beacon frame. Set.
  • the communication device 300 sets the value of the BSS Type subfield to 0 when performing communication with another communication device corresponding to the OCB mode and / or connecting to an existing AP or PCP.
  • the communication device 300 does not use the AP or PCP and does not schedule the communication timing. Therefore, the value of the CBAP Only field in FIG. 7A is set to 1.
  • the OCBMode subfield is a field added by using the reserved bit in the IEEE802.11ad standard. That is, communication devices (communication devices 100 and 200) that support the IEEE802.11ad standard and do not support OCB mode ignore the OCBMode subfield, and the value indicated by BSSType matches the role of communication devices 100 and 200. In case, it responds to the DMG Beacon frame.
  • the OCBMode subfield may be included in the BeaconIntervalControl field and other fields instead of being included in the DMGParameters field.
  • an OCB Parameters (example, not shown) field is added as an optional field of the DMG Beacon frame, and if the OCB Parameters field exists in the DMG Beacon frame, it means that OCB mode is supported, and the OCB Parameters field does not exist. If so, it may indicate that OCB mode is not supported.
  • the communication device 300 may receive a response from the communication device corresponding to the OCB mode and the communication devices 100 and 200 not supporting the OCB mode.
  • the communication device 300 may transmit a probe request frame and perform an active scan procedure described in the IEEE802.11ad standard. That is, the communication device 300 can communicate with a communication device that supports the OCB mode and a communication device that does not support the OCB mode.
  • Non-Patent Document 1 The explanation of other subfields (CBAPOnly subfield, CBAPSource subfield, DMGPrivacy subfield, ECAPCPolicyEnforced subfield, Reserved bit) of the DMGParameters field is omitted (see Non-Patent Document 1).
  • the communication devices 300b and 300c when the communication devices 300b and 300c receive the DMG Beacon frame of FIG. 7A from the communication device 300a, they transmit an SSW (Sector SWeep) frame and respond (see FIG. 8 below).
  • the communication device 300a does not start PBSS, and the communication devices 300b and 300c do not perform an association procedure with the communication device 300a, but the communication device 300a and the communication device 300b may communicate with each other. Further, the communication device 300a and the communication device 300c may communicate with each other.
  • the details of the procedure until the combination of the communication device 300a and the communication device 300b and the combination of the communication device 300a and the communication device 300c communicate with each other will be described later with reference to FIG.
  • the communication devices 300d and 300e similarly communicate with each other without starting the PBSS and performing the association procedure.
  • FIG. 6C will be described as a method in which the communication devices 300d and 300b and the communication devices 300d and 300c communicate with each other when the communication devices 300d approach the communication devices 300b and 300c.
  • the communication device 300d transmits the DMG Beacon frame a plurality of times while setting the value of the OCB Mode subfield of the DMG Beacon frame of FIG. 7A to 1 and changing the antenna directivity of the antenna 101.
  • the communication devices 300b and 300c receive the DMG Beacon frame of FIG. 7A from the communication device 300d, the communication devices 300b and 300c transmit an SSW frame and respond.
  • the communication device 300d does not start PBSS, and the communication devices 300b and 300c do not perform an association procedure with the communication device 300d, but the communication device 300d and the communication device 300b may communicate with each other, and also communicate.
  • the device 300d and the communication device 300c may communicate with each other.
  • the procedure in which the communication device 300d communicates with the communication devices 300b and 300c is the same as the procedure in which the communication device 300a communicates with the communication devices 300b and 300c in FIG. 6A.
  • the procedure for the communication device 300d to communicate with the communication devices 300b and 300c does not depend on whether or not the communication device 300d has already communicated with the communication device 300e.
  • the communication device 300e may communicate with the communication devices 300b and 300c using the DMG Beacon frame of FIG. 7A, similarly to the communication device 300d of FIG. 6C.
  • FIG. 6E shows a radio link established by applying the procedure of FIGS. 6A to 6D.
  • the set of the communication device 300b and the communication device 300d the set of the communication device 300c and the communication device 300d, the set of the communication device 300b and the communication device 300e, and the set of the communication device 300c and the communication device 300e.
  • a wireless link can be established with. Therefore, the communication device 300 using the DMG Beacon frame of FIG. 7A can communicate with a larger number of communication devices.
  • the communication device 300 does not require a plurality of MAC control circuits 103, so that the circuit scale is small and the power consumption is small.
  • FIG. 8A is a diagram showing an example of the SSW frame format according to the first embodiment.
  • the SSW frame includes a Frame Control field, a Duration field, an RA (Receiver Address) field, a TA (Transmitter Address) field, an SSW field, an SSW Feedback field, and an FCS field.
  • RA Receiveiver Address
  • TA Transmitter Address
  • the Frame Control field contains information indicating the type of frame and includes information indicating that it is an SSW frame.
  • the Duration field indicates the time to complete SLS (Sector Level Sweep, a form of beamforming training).
  • the RA and TA fields contain the MAC addresses of the communication devices that receive and transmit SSW frames, respectively.
  • the SSW field contains information required for SLS such as sector number and antenna array number.
  • the SSW Feedback fields are Sector Select subfield, DMG Antenna Select subfield, SNR Report subfield, Poll Required subfield, OCB Response subfield, Reserved bit, Unsolicited RSS Enabled subfield, EDMG Extension Flag. Includes subfields.
  • the OCB Response subfield indicates that the communication device 300 transmits a data frame without associating (referred to as OCB mode).
  • OCB mode a data frame without associating
  • the communication device 300 receives a DMG Beacon frame in which the value of the OCB mode subfield is set to 1 from another communication device, the communication device 300 transmits an SSW frame in which the value of the OCB mode subfield is set to 1.
  • the OCB Response subfield may be another subfield name such as OCBMode subfield or OCBSupported.
  • the communication device 300 may transmit a Short SSW packet instead of the SSW frame shown in FIG. 8A.
  • FIG. 8B is a diagram showing an example of the format of the Short SSW packet payload according to the first embodiment.
  • the Short SSW packet includes the Packet Type field, Direction field, OCB Response field, Source AID field, Destination AID field, CDOWN field, RF Chain ID field, Short SSW Feedback field, and FCS field.
  • the OCB Response subfield indicates that the communication device 300 supports the OCB mode.
  • the communication device 300 receives a DMG Beacon frame in which the value of the OCB Mode subfield is set to 1 from another communication device, the communication device 300 transmits a Short SSW packet in which the value of the OCB Response field is set to 1.
  • Non-Patent Document 1 Description of other fields (Packet Type field, Direction field, Source AID field, Destination AID field, CDOWN field, RF Chain ID field, Short SSW Feedback field, FCS field) of the Short SSW packet is omitted (Non-Patent Document 1). reference).
  • FIG. 9 is a flowchart showing an example of a procedure in which the communication device according to the first embodiment performs millimeter wave communication.
  • FIG. 9 shows a procedure in which the communication device 300a communicates with the communication device 300b.
  • Step S1001 The communication device 300a receives a scan start instruction (not shown) and starts the operation of step S1001.
  • the communication device 300a sets the values of the Discovery Mode subfield and the OCB Mode subfield of the DMG Beacon frame of FIG. 7A to 1 and transmits the communication device 300a.
  • the communication device 300a may transmit a plurality of DMG Beacon frames while changing the antenna directivity of the antenna 101.
  • Step S1003 When the communication device 300a receives the SSW frame in the A-BFT, the communication device 300a proceeds to step S1004 (Yes in step S1003). If the communication device 300a does not receive the SSW frame, the communication device 300a returns to step S1001 (No in step S1003).
  • Step S1004 If Yes in step S1003, the communication device 300a transmits an SSW feedback frame to the source of the SSW frame (for example, the communication device 300b).
  • Step S1005 The communication device 300a determines the end of scanning, and when it is completed, proceeds to step S1006 (Yes in step S1005).
  • the communication device 300a may determine that the scan is completed when a predetermined scan time elapses after the start of the scan in step S1001.
  • the scan time may be included in the scan start instruction in step S1001 and, as an example, the host CPU 104 may notify the MAC control circuit 103. If the scanning is not completed, the communication device 300a returns to step S1001 (No in step S1005).
  • the communication device 300a can communicate with many communication devices within the allowable delay time.
  • the scan time is, for example, 200 ms or more and less than 300 ms.
  • the communication device 300a When the communication device 300a receives at least one SSW frame having an OCB Mode subfield value of 1, it may determine Yes in step S1005 regardless of whether or not the scan time has elapsed. That is, the order of step S1005 and step 1006 (described later) may be exchanged. As a result, the communication device 300a can discover another communication device 300b that corresponds to the OCB mode and is capable of communicating with the communication device 300a with a small delay time, and can start communication.
  • Step S1006 When the communication device 300a receives at least one SSW frame in which the value of the OCB Mode subfield of the SSW frame is 1, the communication device 300a proceeds to step S1007 (Yes in step S1006). If No in step S1006, the communication device 300a ends the process.
  • Step S1007 The communication device 300a performs SLS (Sector Level Sweep, a form of beamforming training) with the communication device 300b (a communication device that transmits an SSW frame having an OCB Mode subfield value of 1), and transmits and transmits. Train the receiving antenna.
  • the communication devices 300a and 300b can select the directivity of the transmitting antenna and the receiving antenna so as to improve the communication quality, and can increase the data rate.
  • the communication device 300a may execute BRP (Beam Refinement Protocol) in step S1007.
  • BRP is a method of improving the communication quality by controlling the directivity of the antenna 101 more precisely than SLS.
  • Step S1008 If the SLS is not normally completed in step S1007 (No in step S1008), the communication device 300a returns to step S1007. If the SLS is not normally completed in step S1007, the communication device 300a may repeat step S1007 several times, and may return to step S1001 if the SLS is not normally completed.
  • the reason why SLS is not completed normally is that the distance between the communication devices 300a and 300b increases due to the movement of vehicles and pedestrians equipped with the communication devices 300a and 300b, and the shield between the communication devices 300a and 300b. There are cases where it is difficult to establish a wireless link due to an object (for example, another vehicle) entering. In this case, the communication device 300a can find another communication device capable of communicating by returning to step S1001 and reconnecting to the communication device 300b after the shield moves. ..
  • the communication device 300a proceeds to step S1009 when SLS is normally completed in step S1007 (Yes in step S1008).
  • Step S1009 The communication device 300a sets the antenna 101 to the directivity selected in step S1007, and transmits a data frame.
  • Step S1010 The communication device 300a is stepped when the link quality is deteriorated, for example, when the received power or the S / N (Signal to Noise) ratio is lowered, or when the packet error rate is increased.
  • SLS may be performed with the communication device 300b (Yes in step S1010).
  • the communication device 300a proceeds to step S1011 (No in step S1010).
  • the communication device 300a may return to step S1007 and execute SLS after a certain period of time has elapsed, regardless of the link quality.
  • Step S1011 When a predetermined time (Beacon Interval: Beacon Interval) has elapsed since the start of transmission of the DMG Beacon frame in step S1001, the communication device 300a returns to step S1001 and returns to DMG Beacon. Send the frame. This is for discovering a communication device approaching the communication device 300a and starting communication while a predetermined time has elapsed. On the other hand, the communication device 300a returns to step S1009 and transmits a data frame until a predetermined time elapses (No in step S1011).
  • Beacon Interval Beacon Interval
  • the time (beacon interval) for the communication device 300a to repeat step S1001 may be randomly determined between 10 TU (Time Unit: 1 TU is 1.024 milliseconds) and less than 200 TU each time step S1001 is performed.
  • the communication device 300a may change the time interval for executing SLS according to the moving speed of the vehicle 10a or the pedestrian 20a equipped with the communication device 300a.
  • the moving speed of the vehicle 10a or the pedestrian 20a is high, the quality of the wireless link can be maintained by shortening the time interval for executing the SLS, and the moving speed of the vehicle 10a or the pedestrian 20a is slow or stops.
  • By lengthening the time interval for executing SLS when this is the case it is possible to reduce the decrease in data rate due to the overhead of SLS and the interference with other communication devices.
  • the communication device 300a When the communication device 300a operates in OCB mode, that is, the communication device 300a transmits by setting the value of the OCB Mode subfield of the DMG Beacon frame of FIG. 7A to 1, and the value of the OCB Response subfield is set to 1.
  • the communication device 300a may shorten the time interval between the communication device 300b and the SLS.
  • the communication device 100a when the communication device 100a does not operate in the OCB mode, that is, when the communication device 100b receives an SSW frame in which the value of the OCB Response subfield is 0, the communication device 100a has time to execute the communication device 100b and SLS. The interval may be increased.
  • the quality of the wireless link can be maintained high by shortening the time interval for executing the SLS.
  • the communication device 100b that does not support OCB mode is installed in a device that does not move, such as a base station or access point, increasing the time interval for executing SLS can reduce the data rate due to the overhead of SLS and other communications. Interference with the device can be reduced.
  • the communication device 300 mounted on the vehicle 10, the pedestrian 20, and the moving subject has many wireless links between the large number of communication devices shown in FIG. 1B, from FIG. 6A. As shown in FIG. 6E, the wireless link can be flexibly changed according to the movement of the communication device. Further, although the communication device 300 mounted on the roadside unit 30 does not move, by using the OCB mode, communication is performed with the communication device 300 mounted on the vehicle 10 and the pedestrian 20 in a single mode (OCB mode). It can be done and MAC control can be simplified.
  • the moving communication device 300 communicates using a non-moving base station or access point and directly communicates with another moving communication device 300, scheduling is performed by performing an association without using the OCB mode. Since such functions can be utilized, efficient communication is possible.
  • the communication device 300a When the communication device 300a receives at least one SSW frame in which the value of the OCB Response subfield is 0 in step S1002 (for example, the source is the communication device 100b), the communication device 300a receives the SSW feedback frame in step S1004. Is transmitted, the probe request frame may be received, or the probe request frame may be transmitted, and further, after the scanning is completed, the association procedure with the communication device 100b may be started.
  • step S1006 when the communication device 300a receives an SSW frame in step S1006 in which the value of the OCB Response subfield is 0 (No in step S1006), the flow of FIG. 9 ends, and the procedure of FIGS. 3A to 3C is followed.
  • the communication device 300a receives an SSW frame in step S1006 in which the value of the OCB Response subfield is 1 (YES in step S1006) after performing the procedure for starting or participating in PBSS defined in the IEEE802.11ad standard, the step in FIG. 9 By performing the procedure after S1007, a large number of wireless links can be established as shown in FIGS. 6A to 6E.
  • the communication device 300 can communicate with each communication device in a situation where the communication device 300 that supports the OCB mode and the communication device that does not support the OCB mode and conforms to IEEE802.11ad coexist.
  • a BRP (Beam Refinement Protocol) procedure may be performed.
  • the communication devices 300a and 300b establish a wireless link according to the procedure of steps S1001 to S1006, the communication device 300 can perform beamforming with low delay and high accuracy by performing BRP instead of SLS. can.
  • the communication device 300 performs SLS as described above. The probability of successful beamforming can be increased.
  • FIG. 10 is a sequence diagram illustrating an example of a procedure in which the communication device according to the first embodiment performs millimeter wave communication.
  • the details of the procedure (see FIG. 6C) in which the communication device (STA: STAtion) 300d communicates with the communication devices 300b and 300c will be described with reference to FIG.
  • "MAC” represents the operation of the MAC control circuit 103 as an example.
  • “Higher layer entities” represents the operation of the host CPU 104 as an example. Further, “higher layer entities” may be software such as SME (Station Management Entity: terminal management unit), supplicant, driver, OS, as an example.
  • SME Stator Management Entity: terminal management unit
  • supplicant driver
  • OS OS
  • MLME MAC Layer Management Entity
  • MAC SAP Service Access Point
  • MAC SAP includes definitions of primitives prefixed with MLME-and may be used to control a MAC (MAC control circuit 103).
  • MAC SAP includes a primitive definition prefixed with MA- and may be used to control data transmission / reception in the MAC (MAC control circuit 103).
  • the interface specifications and primitives of MLMESAP and MACSAP are specified for convenience, and the signals exchanged between the MAC control circuit 103 and the host CPU 104 depend on the implementation. Examples of signals exchanged between the MAC control circuit 103 and the host CPU 104 include PCI Express signals, USB (Universal Serial Bus) signals, serial communication signals, and function calls. Further, a part of the higher layer entities may be implemented as a part of the MAC control circuit 103. In this case, the interface specifications and primitives of MLMESAP and MACSAP are internal signals of the MAC control circuit 103.
  • the interface specifications and primitives of MLMESAP and MACSAP do not limit the operation of the communication device 300, and describe the contents and transmission / reception order of a series of frames exchanged between the communication device 300d and the communication device 300b. Used to do.
  • Step S1100 the MLME-SCAN.request issued to the MAC by the higher layer entities means a scan start instruction.
  • the MAC control circuit 103 of the communication device 300d starts the procedure of FIG. 9 from step S1001 with MLME-SCAN.request as an opportunity.
  • the MAC of the communication device 300d transmits a DMG Beacon frame in which the value of the Discovery Mode subfield is set to 1 and the value of the OCB Mode subfield is set to 1 (corresponding to step S1001 in FIG. 9).
  • the communication devices 300b and 300c each receive the DMG Beacon frame.
  • the MACs of the communication devices 300b and 300c transmit an SSW frame in which the OCB Response field is set to 1 as a response to the DMG Beacon frame (corresponding to step S1003 in FIG. 9).
  • the communication devices 300b and 300c are communication devices by transmitting the transmission timing of the SSW frame in a randomly selected time slot based on the A-BFT (Association Beamforming Training) method described in the IEEE802.11ad standard. Conflicts between the transmission of the 300b and the transmission of the communication device 300c may be avoided.
  • the communication device 300d When the communication device 300d receives the SSW frame from the communication devices 300b and 300c, the communication device 300d transmits the SSW feedback frame (corresponding to step 1004 in FIG. 9).
  • the MAC of the communication device 300d completes the scan and issues the MLME-SCAN.confirm primitive to the higher layer entities.
  • the MLME-SCAN.confirm primitive is the MAC address of the source communication devices 300b and 300c that received the SSW frame in step S1002, the link quality information, and information indicating whether or not the communication devices 300b and 300c each support OCB mode. including.
  • the MAC control circuit 103 notifies the host CPU 104 of the information included in the MLME-SCAN.confirm as scan report information.
  • the supplicant software executed on the host CPU 104 may display the scan report information on the display included in the peripheral device 105. Further, the supplicant software may determine step S1006 in FIG. 9 based on the scan report information to determine whether to associate with PBSS or perform communication in OCB mode (steps S1007 to 1010). good.
  • Step S1101 The higher layer entities of the communication device 300d determine in step S1006, and if Yes, issue the MLME-BF-TRAINING.request primitive to the MAC and start SLS with the communication device 300b (FIG. 9). Corresponds to step S1007).
  • SLS includes transmission of SSW frames by the communication device 300d (ISS: Initiator Sector Sweep), transmission of SSW frames by the communication device 300b (RSS: Responder Sector Sweep), transmission of SSW feedback frames by the communication device 300d, and communication device 300b. Includes sending of SSW Ack (Acknowledgment) frames by.
  • the MAC of the communication device 300d issues the MLME-BF-TRAINING.confirm primitive to the higher layer entities.
  • the communication device 300d may issue the MLME-BF-TRAINING.confirm primitive regardless of whether the SLS is successful or not.
  • Information on whether SLS was successful, reception quality, and information on each field included in the SSW frame may be included in the MLME-BF-TRAINING.confirm primitive to notify the higher layer entities.
  • the MAC of the communication device 300b issues the MLME-BF-TRAINING.indicate primitive to the higher layer entities.
  • the communication device 300b may issue the MLME-BF-TRAINING.indicate primitive regardless of whether the SLS is successful or not.
  • Information on whether SLS was successful, reception quality, and information on each field included in the SSW frame may be included in the MLME-BF-TRAINING.indicate primitive to notify the higher layer entities.
  • the higher layer entities of the communication device 300d may issue the MLME-BF-TRAINING.request primitive to the MAC and start the SLS with the communication device 300c.
  • Step S1102 The higher layer entities of the communication device 300d make a determination in step S1008 based on the information contained in the MLME-BF-TRAINING.confirm primitive. If the SLS is successful as a result of the determination in step S1008, the higher layer entities issues the MA-UNITDATA.request primitive to the MAC of the communication device 300d and requests the execution of the data transmission process.
  • the MA-UNITDATA.request primitive contains a destination address and transmission data.
  • the MAC of the communication device 300d transmits an RTS (Request to Send) frame, receives a DMG CTS (Clear to Send) frame, transmits a data frame, and receives an Ack frame (in step S1008 of FIG. 9). Equivalent).
  • the communication device 300d transmits the RTS frame and the data frame by setting the antenna directivity selected by the SLS in step S1007 in the antenna 101.
  • the communication device 300b uses a Quasi-Omni (pseudo-omnidirectional) antenna (antenna 101 is Quasi-Omni). (Set to) to receive.
  • the antenna 101 is set to the directivity determined by the SLS in step S1007, and the data frame is set. Receive. As a result, the quality of the wireless link can be improved and the data rate can be increased.
  • the communication device 300d may transmit a DMG CTS to self frame (DMG CTS frame whose destination is set to the address of the communication device 300d) instead of the RTS frame.
  • the communication device 300d may transmit a data frame following the DMG CTS to self frame.
  • step S1007 The antenna 101 is set to the antenna directivity determined by the SLS of the above, and the data frame is received.
  • the MAC of the communication device 300b issues the MA-UNITDATA.indication primitive to the higher layer entities after transmitting the Ack frame.
  • the MA-UNITDATA.indication primitive includes source and destination addresses, received data (contents of the data frame received from the communication device 300d), and information on whether or not the reception was successful (for example, a bit error in the received data frame). If is included, reception fails) is included.
  • the higher layer entities of the communication device 300b acquire the received data from the MA-UNITDATA.indication primitive and pass it to the OS or application software when the reception success is notified by the MA-UNITDATA.indication primitive.
  • the MAC of the communication device 300d issues the MA-UNITDATA.STATUS.indication primitive to the higher layer entities when the Ack frame is received or the time when the Ack frame is expected to be received has passed.
  • the MA-UNITDATA.STATUS.indication primitive contains information on whether the data frame was successfully transmitted. When the communication device 300d receives the Ack frame, the transmission of the data frame is successful.
  • the higher layer entities of the communication device 300d When the higher layer entities of the communication device 300d receive the MA-UNITDATA.STATUS.indication primitive, they may newly issue the MA-UNITDATA.request primitive to the MAC and request data transmission to the communication device 300c ( Not shown). Further, the communication with the communication device 300b may be repeated.
  • the higher layer entities of the communication devices 300b and 300c are notified by the MAC of the success of SLS by the MLME-BF-TRAINING.indication primitive, or the MA-UNITDATA.STATUS.indication primitive or MA-UNITDATA.indication primitive, respectively.
  • the MA-UNITDATA.request primitive may be issued to the MAC to request data transmission to the communication device 300d (not shown).
  • the higher layer entities of the communication device 300d are not limited to the procedure shown in FIG. 10, and when the SLS with the communication device 300b is completed and the MLME-BF-TRAINING.confirm primitive is notified, the MA-UNITDATA.request primitive May be issued to the MAC to request data transmission to the communication device 300b (not shown).
  • the communication device 300 transmits the DMG Beacon frame including the signal supporting the OCB mode and receives the SSW frame including the signal supporting the OCB mode
  • the communication device 300 receives the SSW frame including the signal supporting the OCB mode. Since the transmission is performed, the circuit scale of the MAC control circuit 103 can be reduced, the power consumption can be reduced, and communication can be performed with a large number of moving communication devices.
  • the communication device 300 transmits the DMG Beacon frame with the value of the OCB Mode subfield set to 1, receives the SSW frame having the value of the OCB Response field of 1, and executes beamforming training. By doing so, communication in OCB mode was started.
  • the communication device 500 of the present modification receives the DMG Beacon frame, the feedback information is included in the DMG Beacon frame transmitted by the communication device 500 instead of transmitting the SSW frame. As a result, the communication device 500 can omit the transmission of the SSW frame and reduce the interference with other communication devices.
  • FIG. 11 is a flowchart showing an example of the operation of the communication device according to the modified example of the first embodiment.
  • the communication device 500 receives a plurality of DMG Beacon frames transmitted by another communication device while changing the directivity (sector) of the antenna.
  • the communication device 500 records the sector number (referred to as the best sector information) included in the DMG Beacon frame whose reception quality is good.
  • the communication device 500 records the best sector information for each source.
  • the communication device 500 includes the best sector information in the DMG Beacon frame and transmits the information.
  • FIG. 12A is a diagram showing an example of the format of the DMG Beacon frame according to the modified example of the first embodiment.
  • FIG. 12B is a diagram showing an example of the format of the SSW Feedback element according to the modified example of the first embodiment.
  • FIG. 12A shows the format of the DMG Beacon frame transmitted by the communication device 500 in step S2002.
  • the DMG Beacon frame of FIG. 12A includes a DMG Beacon Sector Feedback field in the DMG Parameters field. Further, the Optional field includes one or more SSW Feedback elements shown in FIG. 12B.
  • the fields and subfields included in the DMG Beacon frame of FIG. 7A, which are the same as the subfields, will not be described.
  • the DMG Beacon Sector Feedback subfield contains a bit indicating whether or not to support reception of the SSW Feedback element.
  • FIG. 12B shows the format of the SSW Feedback element.
  • the SSW Feedback element includes an Element ID field, a Length field, an Element ID Extension, a Target MAC Address field, and a Sector Sweep (SSW) Feedback field.
  • Element ID field includes an Element ID field, a Length field, an Element ID Extension, a Target MAC Address field, and a Sector Sweep (SSW) Feedback field.
  • SSW Sector Sweep
  • the Element ID field and the Element ID Extension field include information for identifying the element type (indicating that it is an SSW Feedback element) by combining the values of the Element ID field and the Element ID Extension field.
  • the Length field indicates the length of the element (data length).
  • the Target MAC Address field includes the MAC address indicating the notification destination of the information in the Sector Sweep Feedback field. For example, when the Sector Sweep Feedback field contains the best sector information of the communication device 500b, the MAC address of the communication device 500b is included in the Target MAC Address field.
  • the communication device 500 may notify a plurality of communication devices of the best sector information by including each of the Target MAC Address field and the Sector Sweep Feedback field in the plurality of SSW Feedback elements.
  • the format of the Sector Sweep Feedback field is the same as that of the Sector Sweep Feedback field in FIG. 8A, so the description thereof will be omitted.
  • Step S2003 The other communication device (referred to as the communication device 500b) that has received the DMG Beacon frame of FIG. 12A checks whether or not the MAC address of the communication device 500b is included in the Target MAC Address field of the SSW Feedback element. If it is included, a BRP (Beam Refinement Protocol) frame may be transmitted to the communication device 500 to perform beamforming training. When the communication device 500 receives the BRP frame, the communication device 500 may perform beamforming training of the transmitting antenna and the receiving antenna.
  • BRP Beam Refinement Protocol
  • the communication device 500b may transmit an SSW frame and perform SLS when the communication device 500 does not respond to the transmitted BRP frame.
  • Step S2004 When the beamforming training by BRP or SLS is completed in step S2003, the communication device 500 transmits and receives a data frame.
  • FIG. 13 is a sequence diagram illustrating an example of a procedure in which the communication device according to the modified example of the first embodiment performs millimeter wave communication.
  • a procedure in which the communication devices 500a, 500b, and 500c communicate with each other using the procedure of FIG. 11 will be described in detail with reference to FIG.
  • the communication device 500a transmits a plurality of DMG Beacon frames while changing the antenna directivity of the transmitting antenna.
  • the communication device 500a may transmit by setting the value of the DMG Beacon Sector Feedback subfield to 1 in the DMG Beacon frame of FIG. 12A.
  • the communication devices 500b and 500c receive the DMG Beacon frame and record the best sector information (corresponding to step S2001).
  • the communication device 500c includes the best sector information of the communication device 500a in the SSW Feedback element of FIG. 12B and transmits the DMG Beacon frame of FIG. 12A (corresponding to step S2002).
  • the communication devices 500a and 500b receive the DMG Beacon frame, check whether or not the address of the communication devices 500a and 500b is included in the Target MAC Address field of the SSW Feedback element, and acquire the best sector information.
  • the communication device 500a sets the directivity of the antenna 101 using the best sector information included in the received DMG Beacon frame, and transmits the BRP frame to the communication device 500c.
  • the communication device 500c receives the BRP frame and performs beamforming training with the communication device 500a (corresponding to step S2003).
  • step S2003 the communication device 500a transmits a Probe Request frame to the communication device 500c, receives the Probe Response frame to acquire detailed information (Capability information) of the communication device 500c, and then transmits the BRP frame. May be good.
  • BRP and data frames can be transmitted and received using the BRP extension function and MIMO function based on the information included in the detailed information of the communication device 500c that indicates whether or not the BRP extension function and MIMO function are supported. , The execution time of beamforming training can be shortened, and data communication can be performed efficiently.
  • the communication devices 500a and 500c transmit and receive data frames (corresponding to step S2004).
  • the communication device 500b transmits a DMG Beacon frame including the best sector information of the communication device 500a (corresponding to step S2002), executes BRP (corresponds to step S2003), and performs data communication. (Corresponding to step S2004).
  • the communication device 500 may transmit an SSW frame to perform beamforming training by SLS (step S4001).
  • the communication device 500a includes the best sector information of the communication devices 500b and 500c in the SSW Feedback element, and transmits a DMG Beacon frame (corresponding to step S2002).
  • the communication device 500b selects 16 sectors (directivity) as an example based on the received best sector information, and transmits 16 SSW frames (step S4001). As an example, the communication device 500b may select one sector number included in the best sector information and 15 sectors having a directivity close to that of the best sector and use it for transmitting the SSW frame in step S2005.
  • the communication device 500a When the communication device 500a receives the SSW frame, the communication device 500a transmits the SSW Feedback frame to the communication device 500b (step S4002). Further, the communication devices 500a and 500b perform BRP (corresponding to step S2003) and perform data communication (corresponding to step S2004).
  • the communication device 500a may omit the transmission of the best sector information to the communication device 500 for which the wireless link has already been established. As a result, the communication device 500a can reduce the amount of data in the DMG Beacon frame, shorten the delay related to transmission, and reduce the interference with other communication devices 500.
  • the communication device 500a since the communication device 500a establishes a wireless link with the communication devices 500b and 500c in step S2003, the best sector information of the communication devices 500b and 500c may be transmitted without being included in the DMG Beacon frame. In this case, the communication device 500 may omit the procedure of steps S4001 and S4002.
  • the communication device 500 may transmit the DMG Beacon frame in a predetermined time cycle. That is, the communication device 500 may periodically perform steps S2001 or S2002. This cycle (Beacon Interval) may be randomly selected between 10 TU and less than 200 TU each time step S2001 or S2002 is executed.
  • This cycle Beacon Interval
  • the communication device 500 transmits the DMG Beacon frame including the best sector information (step S2002), the wireless link is established and the BRP is performed without transmitting and receiving the SSW frame, so that the data frame is transmitted and received.
  • the delay until the start of the SSW frame can be reduced, and the interference with the other communication device 500 due to the transmission of the SSW frame can be reduced.
  • the communication device 500 performs SLS by reducing the number of SSW frames transmitted based on the best sector information, the delay until the start of transmission / reception of data frames can be reduced, and other SSW frames can be transmitted. Interference with the communication device 500 can be reduced.
  • FIG. 14 is a diagram showing an example of the configuration of the communication device 400 according to the second embodiment.
  • the communication device 400 includes a 60 GHz antenna 101a, a 60 GHz wireless circuit 102a, a 60 GHz MAC control circuit 103a, a host CPU 104, a peripheral device 105, a 5.9 GHz antenna 401, a 5.9 GHz wireless circuit 402, and a 5.9 GHz MAC control circuit 403.
  • the same components as those of the communication devices 100 and 300 of FIG. 2 are numbered the same, and the description thereof will be omitted.
  • FIG. 1 The same components as those of the communication devices 100 and 300 of FIG. 2 are numbered the same, and the description thereof will be omitted.
  • the 60 GHz antenna 101a, the 60 GHz wireless circuit 102a, and the 60 GHz MAC control circuit 103a are the antenna 101, the wireless circuit 102, and the wireless circuit 102 of FIG. It is a component of the same operation as the MAC control circuit 103, but is specified as "60 GHz".
  • the communication device 400 can transmit low-capacity data to a large number of communication devices in a wide range by performing broadcast transmission using an omnidirectional antenna in the 5.9 GHz band (as shown in FIG. 1A). Status).
  • the communication device 400 does not require discovery of the destination communication device because it performs broadcast transmission, and does not require beamforming training by using an omnidirectional antenna. The delay until the start of data communication is small. Further, the communication device 400 is capable of large-capacity communication by providing a communication function in the 60 GHz band.
  • the 5.9GHz antenna 401 transmits and receives radio signals in the 5.9GHz band.
  • the 5.9 GHz antenna 401 may be an omnidirectional antenna.
  • the 5.9 GHz radio circuit 402 transmits and receives a radio signal conforming to the communication standard physical layer of the 5.9 GHz band, for example, the IEEE 802.11p standard.
  • the 5.9GHz MAC control circuit 403 performs MAC control in accordance with the 5.9GHz band communication standard MAC layer, for example, the IEEE802.11p standard and the IEEE1609 standard.
  • IEEE802.11p is shown as an example of the standard to which the 5.9GHz wireless circuit 402 complies, but for example, IEEE802.11-2016, DSRC (Dedicated Short Range Communications) standard, LTE-V2X (Long Term Evolution) -V2X), C-V2X (Cellular V2X) may be used.
  • the 5.9 GHz band is shown as an example of the band in which the 5.9 GHz wireless circuit 402 performs wireless communication.
  • the 760 MHz band ARIB STD-T109: Association of Radio Industries and Businesses standard T109
  • the 2.4 GHz band are shown as other examples.
  • 5 GHz band, 6 GHz band wireless LAN (Wi-Fi or IEEE802.11) may be used.
  • IEEE802.11p and IEEE1609 are shown as examples of standards to which the 5.9GHz MAC control circuit 403 conforms.
  • IEEE802.11-2016 WAVE (Wireless Access in Vehicle Environment) standard
  • LTE-V2X It may be (LongTermEvolution-V2X) or C-V2X (CellularV2X).
  • the 5.9GHz wireless circuit 402 may perform MAC control operation in compliance with the corresponding standard.
  • 5.9GHz MAC control circuit 403 may perform MAC control operation in compliance with the corresponding standard.
  • FIG. 15 is a flowchart showing an example of a procedure in which the communication device according to the second embodiment performs millimeter wave communication.
  • FIG. 15 shows a procedure in which the communication device 400 communicates in the V2X communication system 1.
  • the communication device 400 transmits advertisement information including information on a channel for communication in the 60 GHz band using the 5.9 GHz band radio.
  • the advertisement information may be included in the WSA (WAVE Service Advertisement) frame described in the IEEE 1609.3-2016 standard (Non-Patent Document 2).
  • FIG. 16 is a diagram showing an example of the WSA frame format according to the second embodiment.
  • the WSA frame includes a WSAVersion field, a WSAHeaderOptionIndicator field, a WSAIdentifier field, a ContentCount field, a WAVEInformationElementExtension field, a ServiceInfo segment, a ChannelInfo segment, and a WAVERoutingAdvert. (Advertisement).
  • the WSAVersion field indicates the version information of the WSA frame.
  • the WSA Header Option Indicator field indicates whether or not the optional fields WAVE Information Element Extension field, Service Info segment, Channel Info segment, and WAVE Routing Advertisement field are included in the WSA frame.
  • the WSA Identifier field represents the identification information of the WSA frame.
  • the communication device 400 may repeatedly transmit a WSA frame containing the same value, but when transmitting a WSA frame different from the previous one, a value different from the previous one is set in the WSA Identifier field. Further, when the communication device 400 repeatedly transmits the same WSA frame as the previous time, the communication device 400 may transmit while increasing the value of the Content Count field.
  • the WAVEInformationElementExtension field can include a plurality of information elements and may include information related to services provided by 5.9 GHz communication and 60 GHz communication.
  • the Service Info segment includes a Service Info Count field, a PSID field, a Channel Index field, a Reserved bit, a Service Info Option Indicator field, and a Service Info WAVE Information Element Extension field.
  • the Service Info segment may include a plurality of sets of fields excluding the Service Info Count field.
  • the ServiceInfoCount field indicates how many sets of subsequent fields (PSID to WAVEInformationElementExtension fields) are included.
  • the PSID (Provide Service Identifier) field contains values related to the application provided for 5.9 GHz communication and 60 GHz communication.
  • the correspondence between the PSID value and the content is specified in the IEEE 1609.12 standard.
  • the ChannelIndex field includes a value indicating which radio channel provides the service indicated by the WAVEInformationElementExtension field from the PSID of the ServiceInfo segment.
  • the Channel Info segment of the WSA frame (discussed in detail below) contains a set of four channel information and the value of the Channel Index field is 2, then in the channel where the information is shown second in the Channel Info segment of the WSA frame. , Indicates that the service will be provided.
  • the Service Info Option Indicator field indicates whether or not the subsequent field, the Service Info WAVE Information Element Extension field, is included.
  • the Service Info WAVE Information Element Extension field contains information about services provided in the same way as the WAVE Information Element Extension field described above, but includes information about services specific to the channel specified by the Channel Index field.
  • FIG. 17 is a diagram showing an example of the format of the Channel Info segment according to the second embodiment.
  • the Channel Info segment includes a Channel Info Count field, an Operating Class field, a Channel Number field, a Transmit Power Level field, an Adaptable field, a Data Rate field, a Channel Info Option Indicator field, and a Channel Info WAVE information Element Extension field.
  • the Channel Info segment may include a plurality of sets (hereinafter referred to as channel information) from the Operating Class field excluding the Channel Info Count field to the Channel Info WAVE information Element Extension field, and the Channel Info Count field indicates the number of sets.
  • the WSA frame of FIG. 16 contains two channel information of the 5.9 GHz band and the 60 GHz band, and the value of the Channel Info Count field is 2.
  • the Operating Class field contains a number that identifies a set of frequency bands and channels as defined in the IEEE 802.11 standard. As an example, when communicating in the United States with a channel width of 10 MHz in the 5.9 GHz band, the value of the Operating Class field of the channel information in the 5.9 GHz band is 17. As another example, when communicating in Japan with a channel width of 2.16 GHz in the 60 GHz band, the value of the Operating Class field of the channel information in the 60 GHz band is 59.
  • the Channel Number field is the channel number in the Operating Class defined in the IEEE 802.11 standard. As an example, in Operating Class 17 in the United States, the value of the Channel Number field of the 5.9 GHz band channel information is one of 171 to 184. As another example, in the Operating Class 59 in Japan, the value of the Channel Number field is one of 1 to 29.
  • the Transmit Power Level field includes the value (unit: dBm) of the transmission power (EIRP: equivalent isotropic radiated power) in the channel.
  • the Adaptable field is used in combination with the Data Rate field.
  • the value of the Data Rate field indicates the minimum data rate when the communication device 400 performs transmission.
  • the communication device 400 transmits at a fixed data rate according to the value of the Data Rate field.
  • the value indicated by the Data Rate field is 1 Mbit / s or more and 63.5 Mbit / s in the IEEE1609.3 standard.
  • the value of the Data Rate field may be read according to the value of the Operating Class field. As an example, if the value of the Operating Class field indicates the 60 GHz band such as 59 in Japan, read the value of the Data Rate field as 1000 times the value in the case of the 5.9 GHz band, and 1 Gbit / s or more and 63.5 Gbit / s. It may indicate the value of the range.
  • the Data Rate value is set to a value indicating the maximum value of 63.5 Mbit / s or more, and the subfield indicating the data rate in the 60 GHz band channel is set to Channel Info, which will be described later. It may be included in the optional WAVE Information Element Extension field.
  • the Channel Info Option Indicator field indicates whether or not the Channel Info WAVE Information Element Extension field is included in the channel information.
  • the ChannelInfoWAVEInformationElementExtension field contains information about the services provided similar to the WAVEInformationElementExtension field described above (see Figure 16), but is specific to the channel specified by the Operating Class and Channel Number fields. Contains service information.
  • the communication device 400 When the communication device 400 includes the information about the 60 GHz band channel in the WSA frame and transmits it, the communication device 400 includes the DMG Information element shown in FIG. 17 in the Channel Info WAVE Information Element Extension field and transmits the information.
  • the DMG Information element includes a WAVE Element ID field, a Primary Channel Number field, a PHY Type field, a DMG Beacon Required field, a BTI SSW Feedback field, an Address Included field, a Reserved bit, and a MAC Address field.
  • the WAVEElement ID field indicates an identification number indicating the type of element (DMGInformation element in FIG. 17).
  • the Primary Channel Number field indicates the number of the primary channel in the 60 GHz band.
  • the PHY Type field indicates the wireless communication standard used by the communication device 400 in the 60 GHz band.
  • DMG Directional Multi Gigabit
  • EDMG Enhanced Directional Multi Gigabit
  • the DMG Beacon Required field indicates whether or not the communication device 400 needs to receive the DMG Beacon frame first when communicating with another communication device that has received the WSA frame shown in FIG. Details will be described later.
  • the BITSSWFeedback field indicates whether or not the communication device 400 supports the method of performing SSW feedback using the DMG Beacon of FIG.
  • the Address included field indicates whether or not the MAC Address field is included.
  • the MAC Address field indicates the MAC address used by the communication device 400 in the 60 GHz band.
  • the communication device 400 uses the MAC address used in the 5.9 GHz band included in the header (not shown) of the WSA frame in the 60 GHz band.
  • the communication device 400 may use the same MAC address as the 5.9 GHz band, or may use a different MAC address.
  • Step S3001b and subsequent steps in FIG. 15 will be described. If the other communication device that received the WSA frame (advertisement information) supports the operation in the frequency band in the Operating Class shown in the Operating Class field and supports the communication standard shown in the PHY Type, the other communication device is the Primary Channel. Frames are transmitted on the primary channel indicated by the field.
  • the communication device 400 sets the value of the DMG Beacon Required field included in the WSA frame to 0 and transmits (Yes in step S3001b)
  • the communication device 400 receives the SSW frame from another communication device (step S3002), and sets the value in the WSA frame.
  • the value of the included DMG Beacon Required field is set to 1 and transmission is performed (No in step S3001b)
  • a DMG Beacon frame is received from another communication device (step S3012). If a WSA frame that does not include channel information in the 60 GHz band is received in step S3001b, an association procedure with PBSS / BSS may be performed.
  • the communication device 400 After receiving the SSW frame for ISS in step S3002, the communication device 400 transmits the SSW frame for RSS and responds (step S3003). After another communication device responds to the SSW frame for RSS and receives the SSW Feedback frame (step S3004), the communication device 400 transmits an SSWAck frame to notify the other communication device of the success of SLS. (Step S3005).
  • FIG. 18 is a diagram showing an example of the SSW frame format according to the second embodiment.
  • the format of the SSW frame transmitted by the communication device 400 in step S3002 will be described with reference to FIG.
  • the SSW frame of FIG. 18 includes an OCB Mode subfield in the SSW Feedback field. The description of other fields and subfields of the SSW frame will be omitted (see Non-Patent Document 1).
  • the communication device 400 When the communication device 400 supports the OCB mode in step S3002, the communication device 400 sets the OCB Mode subfield to 1 and transmits an SSW frame. When the OCB mode is supported in step S3003, the other communication device 400 may transmit by setting the value of the OCB Response subfield of the SSW frame of FIG. 8A to 1.
  • the communication device 400 After receiving the DMG Beacon frame in step S3012, the communication device 400 transmits an SSW frame for RSS and responds (step S3013). When another communication device responds to the SSW frame for RSS and the communication device 400 receives the SSW Feedback frame from the other communication device (step S3014), the SLS is successful.
  • the communication device 400 may transmit the DMG Beacon frame of FIG. 7A by setting the value of the OCB Mode subfield to 1 in step S3012. In step S3013, the other communication device 400 may transmit the SSW frame of FIG. 8A with the value of the OCB Response subfield set to 1.
  • the communication device 400 When the communication device 400 succeeds in SLS with another communication device in step S3005 or S3014, the communication device 400 receives a 60 GHz band data frame from the other communication device. In step S3006, the communication device 400 may transmit a data frame to another communication device.
  • FIG. 19 is a sequence diagram showing an example of a procedure in which the communication device according to the second embodiment performs millimeter wave communication.
  • a method in which the communication device 400d communicates with a plurality of other communication devices 400b and 400c using the procedure of FIG. 2 will be described with reference to FIG.
  • “higher layer entities” represents the operation of the host CPU 104 as an example. Further, “higher layer entities” may be software such as SME (Station Management Entity: terminal management unit), supplicant, driver, OS, and IEEE1609 standard compliant software as an example.
  • SME Stimulation Management Entity: terminal management unit
  • supplicant driver
  • OS OS
  • IEEE1609 Standard compliant software
  • the communication device 400 may operate the IEEE1609 standard compliant software on the 60 GHz MAC control circuit 103 and the 5.9 GHz MAC control circuit 403. Further, the communication device 400 includes a MAC control circuit 413 (not shown) so as to perform common processing performed by the 60 GHz MAC control circuit 103 and the 5.9 GHz MAC control circuit 403, and the IEEE 1609 standard compliant software is applied to the MAC control circuit 413. May be executed in.
  • 60GHz MAC represents the operation of the 60GHz MAC control circuit 103.
  • 5.9GHz MAC represents the operation of the 5.9GHz MAC control circuit 403.
  • the higher layer entities of the communication device 400d generate the WSA frame including the channel information of the 5.9 GHz band and the 60 GHz band shown in FIGS. 16 and 17, issue the MA-UNITDATA.request primitive, and transmit the WSA frame at 5.9 GHz. Request to MAC.
  • the 5.9GHz MAC of the communication device 400d broadcasts the WSA frame in the 5.9GHz band wireless communication. Since the plurality of communication devices can receive the frame data by the broadcast transmission, the communication devices 400b and 400c receive the WSA frame (corresponding to step S3001a).
  • the 5.9GHz MAC of the communication devices 400b and 400c After receiving the WSA frame, the 5.9GHz MAC of the communication devices 400b and 400c issues the MA-UNITDATA.indication primitive, notifies that the data has been received, and sends the data of the WSA frame to each higher layer entities. Notice.
  • the higher layer entities of the communication devices 400b and 400c start 60 GHz band communication based on the channel information included in the received WSA frame.
  • the higher layer entities of the communication devices 400b and 400c issue the MLME-BF-TRAINING.request primitive and request the execution of SLS to each 60 GHz MAC (step). Equivalent to S3002).
  • the higher layer entities of the communication devices 400b and 400c are parameters of the MLME-BF-TRAINING.request primitive so that beamforming is performed on the specified primary channel in the 60 GHz band based on the information contained in the Primary Channel Number field of the WSA frame. To set. Further, the higher layer entities of the communication devices 400b and 400c determine the destination of the SSW frame based on the Address Included field and the MAC Address field (if any) of the WSA frame, and the parameters of the MLME-BF-TRAINING.request primitive. Set as.
  • the 60 GHz MAC of the communication devices 400b and 400c transmits an SSW frame (ISS) (corresponding to step S3003), receives an SSW frame (RSS) (corresponds to step S3004), and then transmits an SSW Feedback frame (corresponds to step S3005). Equivalent to), complete SLS.
  • the 60GHz MAC of the communication devices 400b and 400c starts transmitting the SSW frame (ISS) after waiting for a random time so that the transmission of the SSW frame does not conflict with each other. You may. Further, the higher layer entities of the communication devices 400b and 400c may issue the MLME-BF-TRAINING.request primitive after receiving the WSA frame and waiting for a random time.
  • the 60GHz MAC of the communication devices 400b and 400c issues the MLME-BF-TRAINING.confirm primitive and notifies the higher layer entities of the completion of the beamforming training.
  • the 60 GHz MAC of the communication device 400d issues the MLME-BF-TRAINING.indication primitive to notify the higher layer entities of the beamforming training.
  • Data communication is possible between communication devices that have completed beamforming training.
  • the higher layer entities of the communication device 400b issue a MA-UNITDATA.request primitive to request data transmission to the 60 GHz MAC.
  • the 60 GHz MAC of the communication device 400b completes data transmission by transmitting an RTS frame, receiving a DMG CTS frame, transmitting a data frame, and receiving an ACK frame.
  • the 60 GHz MAC of the communication device 400b issues a MA-UNITDATA.STATUS.indication primitive to notify the higher layer entities of the completion of data transmission.
  • the 60GHz MAC of the communication device 400d issues the MA-UNITDATA. Indication primitive and notifies the higher layer entities that the data has been received in the 60GHz band.
  • the delay can be shortened and data transmission to the communication devices 400b and 400c can be started at an early stage. Further, since the communication device 400d broadcasts the advertisement information at 5.9 GHz including the 60 GHz band channel information, the MAC address, and the primary channel information, the frame length is shorter than the DMG Beacon frame (see Non-Patent Document 1). Beam forming can be performed by receiving the SSW frame (FIG. 18), and the delay until the start of data transmission in the 60 GHz band can be shortened.
  • the communication device 400 can transmit low-capacity data to a large number of communication devices in a wide range by performing broadcast transmission using an omnidirectional antenna in the 5.9 GHz band.
  • the communication device 400 does not require discovery of the destination communication device because it performs broadcast transmission, and does not require beamforming training by using an omnidirectional antenna. The delay until the start of data communication can be reduced.
  • the communication device 400 is capable of large-capacity communication by providing a communication function in the 60 GHz band.
  • the notation "... part” used for each component is “... circuitry”, “... device”, “... unit”, or “... unit”. It may be replaced with another notation such as "... module”.
  • Each functional block used in the description of the above embodiment is partially or wholly realized as an LSI which is an integrated circuit, and each process described in the above embodiment is partially or wholly. It may be controlled by one LSI or a combination of LSIs.
  • the LSI may be composed of individual chips, or may be composed of one chip so as to include a part or all of functional blocks.
  • the LSI may include data input and output.
  • LSIs may be referred to as ICs, system LSIs, super LSIs, and ultra LSIs depending on the degree of integration.
  • the method of making an integrated circuit is not limited to LSI, and may be realized by a dedicated circuit, a general-purpose processor, or a dedicated processor. Further, an FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connection and settings of the circuit cells inside the LSI may be used.
  • FPGA Field Programmable Gate Array
  • the present disclosure may be realized as digital processing or analog processing.
  • Non-limiting examples of communication devices include telephones (mobile phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital stills / video cameras, etc.). ), Digital players (digital audio / video players, etc.), wearable devices (wearable cameras, smart watches, tracking devices, etc.), game consoles, digital book readers, telehealth telemedicines (remote health) Care / medicine prescription) devices, vehicles with communication functions or mobile transportation (automobiles, planes, ships, etc.), and combinations of the above-mentioned various devices can be mentioned.
  • communication devices include telephones (mobile phones, smartphones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital stills / video cameras, etc.). ), Digital players (digital audio / video players, etc.), wearable devices (wearable cameras, smart watches, tracking devices, etc.), game consoles, digital book readers, telehealth telemedicines (
  • Communication devices are not limited to those that are portable or mobile, but any type of device, device, system that is not portable or fixed, such as a smart home device (home appliances, lighting equipment, smart meters or Includes measuring instruments, control panels, etc.), vending machines, and any other "Things” that can exist on the IoT (Internet of Things) network.
  • a smart home device home appliances, lighting equipment, smart meters or Includes measuring instruments, control panels, etc.
  • vending machines and any other "Things” that can exist on the IoT (Internet of Things) network.
  • Communication includes data communication using a combination of these, in addition to data communication using a cellular system, wireless LAN system, communication satellite system, etc.
  • the communication device also includes a device such as a controller or a sensor that is connected or connected to a communication device that executes the communication function described in the present disclosure.
  • a device such as a controller or a sensor that is connected or connected to a communication device that executes the communication function described in the present disclosure.
  • it includes controllers and sensors that generate control and data signals used by communication devices that perform the communication functions of the communication device.
  • Communication devices also include infrastructure equipment that communicates with or controls these non-limiting devices, such as base stations, access points, and any other device, device, or system. ..
  • the communication device is A control circuit that controls transmission / reception of a first control frame and a first data frame used for communication with another communication device, and controls transmission / reception of a second control frame and a second data frame used for communication with the other communication device.
  • a first wireless circuit that wirelessly communicates the first control frame and the first data frame using an omnidirectional first antenna.
  • the second control frame and the second data frame include a second radio circuit that wirelessly communicates with the second data frame using a directional second antenna.
  • the first wireless circuit receives a WSA frame containing information on wireless communication using the second wireless circuit from the other communication device among the first control frames. Based on the WSA frame, the control circuit determines that the association procedure is not executed between the communication device and the other communication device.
  • control circuit has an SSW frame or DMG for ISS (Initiator Sector Sweep) with respect to the other communication device according to information on wireless communication using the second wireless circuit.
  • the Beacon frame is transmitted from the second radio circuit to control the antenna directivity training of the second antenna.
  • the second radio from the other communication device A second WSA frame containing information on wireless communication using a circuit is received, transmission / reception control of the first control frame and the first data frame is performed via the first antenna, and a second antenna having a directional second antenna is provided.
  • a control circuit that controls transmission / reception of a second control frame and a second data frame used for communication with the other communication device via a wireless circuit is based on the WSA frame, and the communication device and the other communication device In between, it is determined that the association procedure will not be executed.
  • the control circuit makes an SSW frame or DMG for ISS (Initiator Sector Sweep) with respect to the other communication device according to information on wireless communication using the second wireless circuit.
  • the Beacon frame is transmitted from the second radio circuit to control the antenna directivity training of the second antenna.
  • the present disclosure is suitable for, for example, millimeter-wave communication mounted on a high-speed mobile body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信装置は、他の通信装置との通信に用いる第1制御フレーム及び第1データフレームの送受信制御を行い、前記他の通信装置との通信に用いる第2制御フレーム及び第2データフレームの送受信制御を行う制御回路と、前記第1制御フレーム及び前記第1データフレームを、無指向性の第1アンテナを用いて、無線通信する第1無線回路と、前記第2制御フレーム及び前記第2データフレームを、有指向性の第2アンテナを用いて、無線通信する第2無線回路と、を含み、前記第1無線回路が、前記第1制御フレームのうち、前記他の通信装置から、前記第2無線回路を用いた無線通信に関する情報を含むWSAフレームを受信した場合、前記制御回路は、前記WSAフレームに基づいて、通信装置と前記他の通信装置と間で、アソシエーション手続きを実行しないと判断する。

Description

通信装置及び通信方法
 本開示は、通信装置及び通信方法に関する。
 10GHz以上のキャリア周波数において広い周波数帯域を用い、高速かつ低遅延な通信を行う方式が検討されている。例えば、10GHz以上の高い周波数帯においては、波長が短いためにアンテナの小型化が可能であるというメリットを生かし、また、大きな伝搬損失を回避して通信距離を拡大するため、指向性が高く、指向性を電気的に制御可能なアンテナを用いたビームフォーミング技術の検討がなされている。
 60GHz帯を用いたミリ波無線LAN通信規格として、IEEE802.11ad-2012規格(非特許文献1)がある。IEEE802.11ad-2012規格では、ビームフォーミングプロトコルが規定されている。
IEEE802.11ad-2012 IEEE1609.3-2016
 IEEE802.11ad-2012規格は、固定された無線機、及び、およそ歩行者の移動速度により持ち運ばれる無線機を想定した無線通信方式が規定されており、例えば、自動車、又は、列車といった高速な移動体に搭載してミリ波通信を行うことは想定されていない。
 本開示の非限定的な実施例は、高速な移動体に搭載してミリ波通信を行うことができる通信装置及び通信方法の提供に資する。
 本開示の一態様に係る通信装置は、他の通信装置との通信に用いる第1制御フレーム及び第1データフレームの送受信制御を行い、前記他の通信装置との通信に用いる第2制御フレーム及び第2データフレームの送受信制御を行う制御回路と、前記第1制御フレーム及び前記第1データフレームを、無指向性の第1アンテナを用いて、無線通信する第1無線回路と、前記第2制御フレーム及び前記第2データフレームを、有指向性の第2アンテナを用いて、無線通信する第2無線回路と、を含み、前記第1無線回路が、前記第1制御フレームのうち、前記他の通信装置から、前記第2無線回路を用いた無線通信に関する情報を含むWSAフレームを受信した場合、前記制御回路は、前記WSAフレームに基づいて、通信装置と前記他の通信装置と間で、アソシエーション手続きを実行しないと判断する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一態様によれば、高速な移動体に搭載してミリ波通信を行うことができる。
 本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
実施の形態1に係るV2X通信システムのシステム構成の一例を示す図 実施の形態1に係るV2X通信システムにおける通信装置間の無線リンクの一例を示す図 IEEE802.11ad規格に準拠した通信装置の構成の一例を示す図 IEEE802.11ad規格に準拠した通信装置が通信リンクを確立する手順の一例を示す図 IEEE802.11ad規格に準拠した通信装置が通信リンクを確立する手順の他の一例を示す図 IEEE802.11ad規格に準拠した通信装置間の通信リンクを確立する手順の他の一例を示す図 実施の形態1に係る通信装置の構成の一例を示す図 実施の形態1に係る通信装置が通信リンクを確立する手順の他の一例を示す図 実施の形態1に係る通信装置が通信リンクを確立する手順の一例を示す図 実施の形態1に係る通信装置が通信リンクを確立する手順の他の一例を示す図 実施の形態1に係る通信装置が通信リンクを確立する手順の他の一例を示す図 実施の形態1に係る通信装置が通信リンクを確立する手順の他の一例を示す図 図6Aから図6Dの手順を適用することによって確立された無線リンクを示す図 実施の形態1に係るDMG Beaconフレームのフォーマットの一例を示す図 実施の形態1に係るBSS Typeサブフィールドの値と説明の一例を示す図 実施の形態1に係るSSWフレームのフォーマットの一例を示す図 実施の形態1に係るShort SSWパケットペイロードのフォーマットの一例を示す図 実施の形態1に係る通信装置がミリ波通信を行う手順の一例を示すフローチャート 実施の形態1に係る通信装置がミリ波通信を行う手順の一例を説明するシーケンス図 実施の形態1の変形例に係る通信装置の動作の一例を示すフローチャート 実施の形態1の変形例に係るDMG Beaconフレームのフォーマットの一例を示す図 実施の形態1の変形例に係るSSW Feedbackエレメントのフォーマットの一例を示す図 実施の形態1の変形例に係る通信装置がミリ波通信を行う手順の一例を説明するシーケンス図 実施の形態2に係る通信装置の構成の一例を示す図 実施の形態2に係る通信装置がミリ波通信を行う手順の一例を示すフローチャート 実施の形態2に係るWSAフレームのフォーマットの一例を示す図 実施の形態2に係るChannel Infoセグメントのフォーマットの一例を示す図 実施の形態2に係るSSWフレームのフォーマットの一例を示す図 実施の形態2に係る通信装置がミリ波通信を行う手順の一例を示すシーケンス図
 以下、図面を適宜参照して、本発明の実施の形態について、詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
 また、各図面において、共通の構成要素には同一の符号が付される。また、同種の要素を区別して説明する場合には、「車両10A」、「車両10B」のように参照符号を使用し、同種の要素を区別しないで説明する場合には、「車両10」のように参照符号のうちの共通番号を使用することがある。なお、「車両」は、「移動体」あるいは「モビリティ」と呼んでもよい。
(実施の形態1)
 図1Aは、V2X(Vehicle to Everything)通信システム1のシステム構成の一例を示す図である。
 通信システム1において、車両10(10a、10b、10c、10d、10e、10f、10g、10h、10i、10j、10k、10m)はそれぞれ、通信装置100(100a、100b、100c、100d、100e、100f、100g、100h、100i、100j、100k、100m)を備える。また、歩行者20(20a、20b、20c)はそれぞれ、通信装置100(100n、100p、100q)を備える。また、路側機30(30a、30b)は、それぞれ、通信装置100(100r、100s)を備える。
 なお、車両10、歩行者20、路側機30は、それぞれ、複数の通信装置100を備えてもよい。
 通信装置100は、ミリ波通信方式に準拠した通信機能を備える。IEEE802.11ad規格、IEEE802.11-2016規格、IEEE802.11ay規格(ドラフト)、IEEE802.11bd規格(ドラフト)、IEEE802.15.3c規格、IEEE802.15.3e規格、3GPP NR(New Radio)方式に準拠してもよい。
 図1Bは、実施の形態1に係るV2X通信システムにおける通信装置間の無線リンクの一例を示す図である。図1Bは、通信システム1における通信装置100間の無線リンクの一例を示す。通信装置100間の破線矢印は、それぞれ無線リンクを示す。一例として、通信装置100aは、通信装置100b、100e、100rと無線リンクを持つ、つまり、相互に通信が可能であるが、例えば、通信装置100cとは無線リンクを持たない場合がある。たとえば、通信装置100間の距離が大きい、通信装置間に他の車などの遮蔽物がある、といった理由から通信装置100間のリンクが無い場合がある。図1Bに示すように、V2X通信を行う通信システム1は、複数の通信装置100のそれぞれの間に1つ以上の無線リンクを持ち、また、車両10、歩行者20が移動した場合に、複数の通信装置100のそれぞれの間の無線リンクの有無や品質が変動する。
 図2は、IEEE802.11ad規格に準拠した通信装置の構成の一例を示す図である。図2は、通信装置100の構成を示す。通信装置100は、アンテナ101、無線回路102、MAC(Media Access Control)制御回路103、ホストCPU(Central Processing Unit)104、周辺機器105を備える。なお、ホストCPU104とMAC制御回路10aをまとめて制御回路と称してもよい。
 アンテナ101は、1つ以上のアンテナ素子を含んでよい。また、アンテナ101は、例えば、フェーズドアレイアンテナ、アレイアンテナであってもよい。送信アンテナと受信アンテナを個別に備えてもよく、共用であってもよい。アンテナ101は、アンテナ指向性を切り替える機能(例えば、ビームステアリング機能、ビームフォーミング機能、と呼ぶ)を持ってもよい。通信先の通信装置と良好な品質で通信を行うための指向性を選択する手順を、ビームフォーミングトレーニングと呼ぶ。
 無線回路102は、RF(Radio Frequency:高周波)回路、PHY(PHYsical layer:物理層)制御回路、を含み、IEEE802.11ad規格等に規定されるパケットの送受信制御を行う。無線回路102をトランシーバと呼ぶ場合がある。
 MAC制御回路103は、例えば、IEEE802.11ad規格に規定されるMACフレーム(制御フレーム)の送受信制御を行う。また、MAC制御回路103は、無線回路102の制御を行い、例えば、通信先の通信装置を発見する手順(ディスカバリやスキャンと呼ばれる)、ビームフォーミングトレーニング手順、RTS/CTS(Request to Send/Clear to Send)手順の制御を行う。
 ホストCPU104は、MAC制御回路103の制御を行う、例えば、デバイスドライバ、サプリカントソフトウェアを実行する。また、OS(Operating System)やアプリケーションソフトウェアを実行する。
 周辺機器105は、ホストCPU104に接続され、ホストCPU104がソフトウェアを実行するために利用される、例えば、HDD(Hard Disk Drive:ハードディスクドライブ)、SSD(Solid State Drive:ソリッドステートドライブ)、イーサネット(登録商標)コントローラ・イーサネットボードといったネットワーク拡張機器、GNSS(Global Navigation Satellite System:全球測位衛星システム)のアプリケーションソフトウェアに利用される周辺機器を含んでよい。
 次に、IEEE802.11ad規格に準拠した通信装置100a、100b、100c、100d、100eが通信リンクを確立する方法について説明する。図3Aは、IEEE802.11ad規格に準拠した通信装置が通信リンクを確立する手順の一例を示す図である。図3Bは、IEEE802.11ad規格に準拠した通信装置が通信リンクを確立する手順の他の一例を示す図である。図3Cは、IEEE802.11ad規格に準拠した通信装置間の通信リンクを確立する手順の他の一例を示す図である。
 図3Aにおいて、通信装置100aは、ディスカバリモード(DM:Discovery Mode)サブフィールドの値を1に設定した(フラグを立てた)複数のDMG(Directional Multi Gigabit) Beaconフレームを、アンテナ101のアンテナ指向性を変えながら送信する。また、通信装置100dは、複数のDMG(Directional Multi Gigabit) Beaconフレームを、アンテナ101のアンテナ指向性を変えながら送信する。
 図3Bにおいて、通信装置100aが送信するDMG Beaconフレームに対し、通信装置100b、100cが応答した場合、通信装置100aは、通信装置100b、100cに対してアソシエーション手続きを行い、PBSS(Personal Basic Service Set)1001aを開始する。通信装置100aは、PCP(PBSS Control Point)となり、PBSS1001aのスケジューリングを行う。
 通信装置100bは、Discovery Modeサブフィールドの値を1に設定した複数のDMG Beaconフレームを、アンテナ101のアンテナ指向性を変えながら送信し、通信装置100cが応答した場合、通信装置100cがPBSS1001aに参加していることを認識する。
 通信装置100a、100b、100cは、それぞれ、通信装置100aが通知するスケジューリング情報に従い、データ通信の可否やビームフォーミングトレーニングの実行可否を判断し、PBSS1001aに参加する通信装置100と、相互に通信を行う。
 同様に、通信装置100dは、Discovery Modeサブフィールドの値を1に設定した複数のDMG Beaconフレームを送信し、応答した通信装置100eがいずれのPBSSにも参加しない場合、通信装置100dをPCPとするPBSS1001bを開始し、PBSS1001bに参加する通信装置100(100e)と相互に通信を行う。
 なお、図3Bにおいて、DMG Beaconを送信した通信装置100a、100dがPCPに選択されたが、他の通信装置100がPCPとして選択されてもよい。一例として、通信装置100bまたは通信装置100cがPBSS1001aのPCPであってもよく、通信装置100eがPBSS1001bのPCPであってもよい。
 図3Cにおいて、通信装置100dを備える車両10d(図示せず)が移動し、通信装置100b、100cとの通信圏内まで接近した場合、通信装置100b、100cは、通信装置100dが送信したDMG Beaconに応答するが、通信装置100b、100cはすでにPBSS1001aに参加しているため、PBSS1001bに参加しなくてもよい。この場合、通信装置100b、100cと、通信装置100dは、相互に通信することが困難である。
 図4は、通信装置の構成の他の一例を示す図である。図4は、図3Cと同様の状況において、通信装置100b、100cと、通信装置100dが相互に通信を行うための通信装置200の構成の一例を示す。通信装置200は、複数のMAC制御回路103を備える。一例として、図4の通信装置200は、2つのMAC制御回路103a、103bを備える。
 MAC制御回路103a、103bは、図2のMAC制御回路103を2つ備えることで構成されてもよく、また別の例として、MAC制御回路103a、103bは、1つの回路が2つのMAC制御回路103と同等の機能を具備するソフトウェアを用いて構成されてもよい。例えば、図2のMAC制御回路103に含まれるCPU(図示せず)、DSP(Digital Signal Processor:図示せず)、FPGA(Field Programmable Gate Array:図示せず)、ASIC(Application Specific Integrated Circuit)の処理性能を高め、ソフトウェアにより疑似的に2つのMAC制御回路103a、103bと同等の機能を具備するよう構成してもよい。
 図5は、実施の形態1に係る通信装置が通信リンクを確立する手順の他の一例を示す図である。図5は、通信装置200(200a、200b、200c、200d、200e)が、図3Cと同様にPBSS1001a(通信装置200aがPCP、通信装置200b、200cが参加)とPBSS1001b(通信装置200dがPCP、通信装置200eが参加)を構成し、通信装置200dが、通信装置200b、200cに接近した状態について示す。
 通信装置200b、200cのそれぞれは、MAC制御回路103aがPBSS1001aへの参加を制御し、PCPである通信装置200aからのスケジューリング情報に従い、通信の制御を行う。なお、通信装置200b、200cが、PCPである通信装置200aからのスケジューリング情報に従い、通信の制御を行うことを、通信装置200b、200cは、通信装置200aに同期するという。
 通信装置200b、200cは、通信装置200dに接近した場合、他方のMAC制御回路103bを用いて、通信装置200dとアソシエーション手続きを行い、PBSS1001bへ参加してもよい。つまり、通信装置200は、具備するMAC制御回路103の数に応じて、複数のPBSSに参加してもよい。
 しかしながら、通信装置200は、参加できるPBSSの数は、具備するMAC制御回路103の数に制約される。例えば、図5において、PBSS1001c(図示せず)のPCPである通信装置200f(図示せず)が、通信装置200bに接近した場合に、通信装置200bは既に2つのPBSSに参加しているので、さらにPBSS1001cに参加して通信装置200fと通信することは困難である。
 また、通信装置200は、複数のMAC制御回路103a、103bを備えるため、または、図2のMAC制御回路103の処理性能を高めた回路を用いるため、回路規模が増大し、消費電力が増大する。
 次に、V2X通信システムにおいて、回路規模を増大せずに周囲の通信装置と相互に通信を可能とする方法について述べる。
 図6Aは、実施の形態1に係る通信装置が通信リンクを確立する手順の一例を示す図である。図6Bは、実施の形態1に係る通信装置が通信リンクを確立する手順の他の一例を示す図である。図6Cは、実施の形態1に係る通信装置が通信リンクを確立する手順の他の一例を示す図である。図6Dは、実施の形態1に係る通信装置が通信リンクを確立する手順の他の一例を示す図である。図6Aから図6Eは、通信装置300(300a、300b、300c、300d、300e)が相互に通信を行う方法を示す。通信装置300の構成は、図2における通信装置100と同様であるが、MAC制御回路103及びホストCPU104は、図3A~図3Cとは異なる制御方法により、異なる動作を行う。
 図6Aにおいて、通信装置300a、300dは、OCB Mode(Outside the Context of a BSS:BSSに参加しない)サブフィールドの値を1に設定した(フラグを立てた)複数のDMG Beaconフレームを、アンテナ101のアンテナ指向性を変えながら送信する。OCB Modeサブフィールドは、通信装置300がBSSに参加せずに相互に通信を行うか否かを示す値を含む。また、OCB Modeサブフィールドの値が1である場合、通信装置300がアソシエーションを行わずにデータフレームの送信を行うことを示す。なお、通信装置300d、300eは、OCB Modeサブフィールドに加え、Discovery Modeサブフィールドの値を1に設定して送信してもよい。
 図7Aは、実施の形態1に係るDMG Beaconフレームのフォーマットの一例を示す図である。図7Aは、DMG Beaconフレームのフォーマットを示す。DMG Beaconフレームは、Frame Controlフィールド、Durationフィールド、BSSIDフィールド、Frame Bodyフィールド、FCSフィールドを含む。
 Frame Controlフィールドは、フレームの種類を示す情報を含み、DMG Beaconフレームであることを示す。Durationフィールドは、通信装置300が複数のDMG Beaconフレームを送信する場合、複数のDMG Beaconの送信終了までの時間を示す。
 BSSID(Basic Service Set Identifier)は、BSSの識別番号を示す。通信装置300は、OCBモードで通信を行う場合、BSSIDフィールドの値を、ワイルドカードを示す値(全てのビットが1)に設定する。
 Frame Bodyは、複数のフィールドを含む(後述)。FCS(Field Check Sequence)は、誤り検出符号(一例として、CRC:Cyclic Redundancy Check符号)を含む。
 Frame Bodyは、Timestampフィールド、Sector Sweepフィールド、Beacon Intervalフィールド、Beacon Interval Controlフィールド、DMG Parametersフィールドを含む。また、必須ではない1以上のフィールド(Optional fieldsという)を追加してもよい。
 Timestampフィールドは、通信装置間で時刻同期を行うための情報を含む。
 Sector Sweepフィールドは、通信装置300が、アンテナ101のアンテナ指向性を変えながら複数のDMG Beaconフレームを送信する場合、セクタ番号やアンテナアレイ番号といった指向性に関連する情報を含む。DMG Beaconフレームを受信した他の通信装置は、受信品質が最良のDMG Beaconフレームに含まれるセクタ番号、アンテナアレイ番号をSSWフレーム(後述)に含めて通信装置300へ通知する。これにより、通信装置300は、最良のセクタ番号、アンテナアレイ番号(つまり、最良の指向性)を選択してデータフレームを送信することができる。
 Beacon Intervalフィールドは、CC Presentサブフィールド、Discovery Modeサブフィールド、Next Beaconサブフィールド、ATI Presentサブフィールド、A-BFT Lengthサブフィールド、FSSサブフィールド、IsResponderTXSSサブフィールド、Next A-BFTサブフィールド、Fragmented TXSSサブフィールド、TXSS Spanサブフィールド、N BIs A-BFTサブフィールド、A-BFT Countサブフィールド、N A-BFT in Antサブフィールド、PCP Association Readyサブフィールド、Reserved(予約)ビットを含む。
 通信装置300は、Discovery Modeサブフィールドの値を1に設定する。これにより、通信装置300は、送信するDMG Beaconが、BSSの同期情報を通知するものではないことを示す。
 Next Beaconサブフィールド、ATI Presentサブフィールド、A-BFT Lengthサブフィールド、FSSサブフィールド、IsResponderTXSSサブフィールド、Next A-BFTサブフィールド、Fragmented TXSSサブフィールド、TXSS Spanサブフィールド、N BIs A-BFTサブフィールド、A-BFT Countサブフィールド、N A-BFT in Antサブフィールド、PCP Association Readyサブフィールド、Reserved(予約)ビットの説明は省略する(非特許文献1を参照)。
 DMG Parametersフィールドは、BSS Typeサブフィールド、CBAP Onlyサブフィールド、CBAP Sourceサブフィールド、DMG Privacyサブフィールド、ECAPC Policy Enforcedサブフィールド、OCB Modeサブフィールド、Reserved(予約)ビットを含む。
 図7Bは、実施の形態1に係るBSS Typeサブフィールドの値と説明の一例を示す図である。図7Bに、BSS Typeサブフィールドの値と説明を示す。通信装置300が送信したDMG Beaconフレームに対し、APが応答する場合、BSS Typeサブフィールドの値を3に設定する。通信装置300が送信したDMG Beaconフレームに対し、PCPが応答する場合、BSS Typeサブフィールドの値を2に設定する。一例として、図3Cにおいて、通信装置100bは、DMG Beaconフレームを送信して通信装置100dを発見してもよいが(図示なし)、このとき、通信装置100bは、DMG BeaconフレームのBSS Typeサブフィールドの値を、2に設定することで、PCPである通信装置100dが応答する。
 他の通信装置が、OCB Responseサブフィールド(後述)の値を1に設定したSSWフレームを送信してDMG Beaconフレームに応答するように、通信装置300は、BSS Typeフィールドの値を1または0に設定する。通信装置300は、OCBモードに対応した他の通信装置通信を行い、または/および、既存のAP、PCPに接続する場合、BSS Typeサブフィールドの値を0に設定する。
 通信装置300は、OCBモードにおいては、APやPCPを用いず、通信タイミングのスケジューリングを行わないため、図7AのCBAP Onlyフィールドの値を1に設定する。
 通信装置300は、OCBモードを用いるため、OCB Modeサブフィールドの値を1に設定する。OCB Modeサブフィールドは、IEEE802.11ad規格における予約ビットを利用し、追加されたフィールドである。つまり、IEEE802.11ad規格に対応し、OCBモードをサポートしない通信装置(通信装置100、200)は、OCB Modeサブフィールドを無視し、BSS Typeが示す値が通信装置100、200の役割に一致する場合に、DMG Beaconフレームへ応答を行う。
 なお、OCB Modeサブフィールドを、DMG Parametersフィールドに含める代わりに、Beacon Interval Controlフィールドや他のフィールドに含めてもよい。また、DMG Beaconフレームのオプションフィールドとして、OCB Parameters(一例、図示なし)フィールドを追加し、DMG BeaconフレームにOCB Parametersフィールドが存在する場合、OCBモードをサポートすることを表し、OCB Parametersフィールドが存在しない場合、OCBモードをサポートしないことを表すようにしてもよい。
 通信装置300は、図7AのDMG Beaconフレームを送信した場合、OCBモードに対応した通信装置及びOCBモードに対応しない通信装置100、200から応答を受ける場合がある。通信装置300は、OCBモードに対応しない通信装置からの応答を受けた場合、プローブ要求フレームを送信し、IEEE802.11ad規格に記載されるアクティブスキャン手順を行ってもよい。つまり、通信装置300は、OCBモードに対応した通信装置及びOCBモードに対応しない通信装置と通信を行うことができる。
 DMG Parametersフィールドの他のサブフィールド(CBAP Onlyサブフィールド、CBAP Sourceサブフィールド、DMG Privacyサブフィールド、ECAPC Policy Enforcedサブフィールド、Reserved(予約)ビット)の説明は省略する(非特許文献1を参照)。
 図6Bにおいて、通信装置300b、300cは、通信装置300aから図7AのDMG Beaconフレームを受信した場合、SSW(Sector SWeep)フレームを送信して応答する(後述、図8を参照)。図6Bにおいて、通信装置300aは、PBSSを開始せず、通信装置300b、300cは、通信装置300aとアソシエーション手続きを行わないが、通信装置300aと通信装置300bとは相互に通信を行ってよく、また、通信装置300aと通信装置300cとは相互に通信を行ってもよい。なお、図6Bにおいて、通信装置300aと通信装置300bとの組み合わせと、通信装置300aと通信装置300cの組み合わせが相互に通信を行うまでの手順の詳細を、図10を用いて後述する。
 なお、図6Bにおいて、通信装置300d、300eは、同様に、PBSSの開始及びアソシエーション手続きをおこなわず、相互に通信を行う。
 図6Cを用いて、通信装置300dが、通信装置300b、300cに近づいた場合に、通信装置300dと300b、及び通信装置300dと300cが通信を行う方法を説明する。
 通信装置300dは、図7AのDMG BeaconフレームをOCB Modeサブフィールドの値を1に設定し、アンテナ101のアンテナ指向性を変更しながら、DMG Beaconフレームを複数回送信する。通信装置300b、300cは、図7AのDMG Beaconフレームを通信装置300dから受信した場合、SSWフレームを送信して応答する。通信装置300dは、PBSSを開始せず、通信装置300b、300cは、通信装置300dとアソシエーション手続きを行わないが、通信装置300dと通信装置300bとは相互に通信を行ってもよく、また、通信装置300dと通信装置300cとは相互に通信を行ってもよい。
 つまり、図6Cにおいて、通信装置300dが通信装置300b、300cと通信を行う手順は、図6Aにおいて、通信装置300aが通信装置300b、300cと通信を行う手順と同様である。通信装置300dが通信装置300b、300cと通信を行う手順は、通信装置300dが通信装置300eと既に通信を行ったか否かによらない。
 なお、図6Dにおいて、通信装置300eは、図6Cの通信装置300dと同様に、図7AのDMG Beaconフレームを用いて、通信装置300b、300cと通信を行ってもよい。
 図6Eは、図6Aから図6Dの手順を適用することによって確立された無線リンクを示す。図3Cと異なり、通信装置300bと通信装置300dとの組、通信装置300cと通信装置300dとの組、通信装置300bと通信装置300eとの組、通信装置300cと通信装置300eとの組の間で無線リンクが確立できる。このため、図7AのDMG Beaconフレームを用いた通信装置300は、より多数の通信装置との間で通信が可能となる。また、通信装置300は、図4の通信装置200と異なり、複数のMAC制御回路103を必要としないため、回路規模が小さく、消費電力が小さい。
 図8Aは、実施の形態1に係るSSWフレームのフォーマットの一例を示す図である。SSWフレームは、Frame Controlフィールド、Durationフィールド、RA(Receiver Address)フィールド、TA(Transmitter Address)フィールド、SSWフィールド、SSW Feedbackフィールド、FCSフィールドを含む。
 Frame Controlフィールドは、フレームの種類を示す情報を含み、SSWフレームであることを示す情報を含む。Durationフィールドは、SLS(Sector Level Sweep、ビームフォーミングトレーニングの一形態)の完了までの時間を示す。RA、TAフィールドは、それぞれ、SSWフレームを受信、送信する通信装置のMACアドレスを含む。SSWフィールドは、セクタ番号、アンテナアレイ番号といったSLSに必要な情報を含む。
 SSW Feedbackフィールドは、Sector Selectサブフィールド、DMG Antenna Selectサブフィールド、SNR Reportサブフィールド、Poll Requiredサブフィールド、OCB Response(OCB応答)サブフィールド、Reserved(予約)ビット、Unsolicited RSS Enabledサブフィールド、EDMG Extension Flagサブフィールドを含む。
 OCB Responseサブフィールドは、通信装置300が、アソシエーションを行わずにデータフレームを送信する(OCBモードという)ことを示す。通信装置300は、他の通信装置からOCBモードサブフィールドの値を1に設定したDMG Beaconフレームを受信した場合、OCBモードサブフィールドの値を1に設定したSSWフレームを送信する。
 OCB Responseサブフィールドは、OCB Mode(OCBモード)サブフィールド、OCB Supported(OCBをサポートする)といった他のサブフィールド名であってもよい。
 SSW Feedbackフィールドの他のサブフィールド(Sector Selectサブフィールド、DMG Antenna Selectサブフィールド、SNR Reportサブフィールド、Poll Requiredサブフィールド、Reserved(予約)ビット、Unsolicited RSS Enabledサブフィールド、EDMG Extension Flagサブフィールド)の説明は省略する(非特許文献1を参照)。
 通信装置300は、図8AのSSWフレームの代わりに、Short SSWパケットを送信してもよい。図8Bは、実施の形態1に係るShort SSWパケットペイロードのフォーマットの一例を示す図である。
 Short SSW パケットは、Packet Typeフィールド、Directionフィールド、OCB Responseフィールド、Source AIDフィールド、Destination AIDフィールド、CDOWNフィールド、RF Chain IDフィールド、Short SSW Feedbackフィールド、FCSフィールドを含む。
 OCB Responseサブフィールドは、通信装置300が、OCBモードをサポートすることを示す。通信装置300は、他の通信装置からOCB Modeサブフィールドの値を1に設定したDMG Beaconフレームを受信した場合、OCB Responseフィールドの値を1に設定したShort SSWパケットを送信する。
 Short SSW パケットの他のフィールド(Packet Typeフィールド、Directionフィールド、Source AIDフィールド、Destination AIDフィールド、CDOWNフィールド、RF Chain IDフィールド、Short SSW Feedbackフィールド、FCSフィールド)の説明は省略する(非特許文献1を参照)。
 図9は、実施の形態1に係る通信装置がミリ波通信を行う手順の一例を示すフローチャートである。図9に、通信装置300aが通信装置300bと通信を行う手順を示す。
 (ステップS1001)通信装置300aは、スキャン開始指示(図示せず)を受け、ステップS1001の動作を開始する。通信装置300aは、図7AのDMG BeaconフレームのDiscovery Modeサブフィールド及び、OCB Modeサブフィールドの値を1に設定し、送信する。通信装置300aは、アンテナ101のアンテナ指向性を変えながら、複数のDMG Beaconフレームを送信してもよい。
 (ステップS1003)通信装置300aは、A-BFTにおいてSSWフレームを受信した場合、ステップS1004へ進む(ステップS1003においてYes)。通信装置300aは、SSWフレームを受信しない場合、ステップS1001へ戻る(ステップS1003においてNo)。
 (ステップS1004)通信装置300aは、ステップS1003においてYesの場合、SSWフレームの送信元(一例として、通信装置300bとする)に対し、SSWフィードバックフレームを送信する。
 (ステップS1005)通信装置300aは、スキャン終了の判定を行い、終了時は、ステップS1006へ進む(ステップS1005のYes)。通信装置300aは、ステップS1001のスキャン開始後、所定のスキャン時間が経過した場合、スキャン終了と判断してもよい。スキャン時間は、ステップS1001のスキャン開始指示に含めて、一例として、ホストCPU104がMAC制御回路103へ通知してもよい。通信装置300aは、スキャン終了しない場合、ステップS1001へ戻る(ステップS1005においてNo)。
 スキャン時間を、許容できる遅延時間に基づき定めることによって、通信装置300aは、許容される遅延時間の中で多くの通信装置と通信を行うことができる。スキャン時間は、一例として、200ミリ秒以上300ミリ秒未満である。
 通信装置300aは、OCB Modeサブフィールドの値が1であるSSWフレームを少なくとも1つ受信した場合、ステップS1005において、スキャン時間が経過したか否かによらず、Yesと判定してもよい。つまり、ステップS1005とステップ1006(後述)の順序を入れ替えてもよい。これにより、通信装置300aは、OCBモードに対応し、通信装置300aと通信可能である他の通信装置300bを、少ない遅延時間で発見し、通信を開始することができる。
 (ステップS1006)通信装置300aは、SSWフレームのOCB Modeサブフィールドの値が1であるSSWフレームを少なくとも1つ受信した場合、ステップS1007へ進む(ステップS1006のYes)。ステップS1006においてNoである場合、通信装置300aは処理を終了する。
 (ステップS1007)通信装置300aは、通信装置300b(OCB Modeサブフィールドの値が1であるSSWフレームを送信した通信装置)とSLS(Sector Level Sweep、ビームフォーミングトレーニングの一形態)を行い、送信及び受信アンテナのトレーニングを行う。これにより、通信装置300a、300bは、通信品質を高めるように送信アンテナ及び受信アンテナの指向性を選択でき、データレートを高めることができる。
 通信装置300aは、ステップS1007において、BRP(Beam Refinement Protocol)を実行してもよい。BRPは、SLSに比べより精密にアンテナ101の指向性制御を行い、通信品質を高める方式である。
 (ステップS1008)通信装置300aは、ステップS1007においてSLSが正常に完了しない場合(ステップS1008のNo)、ステップS1007へ戻る。通信装置300aは、ステップS1007においてSLSが正常に完了しない場合、何度かステップS1007を繰り返し、なお正常に完了しない場合にステップS1001へ戻るようにしてもよい。
 SLSが正常に完了しない理由として、通信装置300a、300bが搭載された車両や歩行者が移動したために通信装置300a、300bの間の距離が広がった場合や、通信装置300aと300bの間に遮蔽物(一例として、他の車両)が進入して無線リンクの確立が困難な場合、などがある。この場合、通信装置300aは、ステップS1001に戻り手順を行うことにより、通信可能な他の通信装置を発見したり、遮蔽物が移動した後に再び通信装置300bと接続したりすることが可能となる。
 通信装置300aは、ステップS1007においてSLSが正常に完了した場合(ステップS1008のYes)、ステップS1009へ進む。
 (ステップS1009)通信装置300aは、ステップS1007において選択した指向性にアンテナ101を設定し、データフレームを送信する。
 (ステップS1010)通信装置300aは、リンク品質が低下した場合、一例として、受信電力やS/N(Signal to Noise:信号対ノイズ)比が低下した場合、またはパケットエラー率が増加した場合、ステップS1007に戻り、通信装置300bとSLSを行ってもよい(ステップS1010のYes)。一方、通信装置300aは、リンク品質が低下しなかった場合、ステップS1011へ進む(ステップS1010においてNo)。なお、通信装置300aは、リンク品質によらず、一定時間経過した場合にステップS1007へ戻りSLSを実行してもよい。
 (ステップS1011)通信装置300aは、ステップS1001においてDMG Beaconフレームの送信を開始してから所定の時間(Beacon Interval:ビーコンインターバル)が経過した場合(ステップS1011のYes)、ステップS1001に戻り、DMG Beaconフレームの送信を行う。これは、所定の時間が経過する間に、通信装置300aに接近した通信装置を発見し、通信を開始するためである。一方、通信装置300aは、所定の時間が経過するまでは、ステップS1009に戻り、データフレームの送信を行う(ステップS1011においてNo)。
 通信装置300aがステップS1001を繰り返す時間(ビーコンインターバル)は、ステップS1001を行う毎に、10TU(Time Unit:1TUは1.024ミリ秒)以上200TU未満の間で、ランダムに決定してもよい。
 通信装置300aは、通信装置300aを備える車両10a又は歩行者20aの移動速度に応じて、SLSを実行する時間間隔を変更してもよい。車両10a又は歩行者20aの移動速度が速い場合にSLSを実行する時間間隔を短くすることで無線リンクの品質を高く保つことができ、車両10a又は歩行者20aの移動速度が遅い、又は停止している場合にSLSを実行する時間間隔を長くすることで、SLSのオーバーヘッドによるデータレートの低下や、他の通信装置への干渉を低減することができる。
 通信装置300aがOCBモードで動作する場合、つまり、通信装置300aが図7AのDMG BeaconフレームのOCB Modeサブフィールドの値を1に設定して送信し、OCB Responseサブフィールドの値を1に設定された図8のSSWフレームを通信装置300bから受信した場合、通信装置300aは、通信装置300bとSLSを実行する時間間隔を短くしてよい。
 また、通信装置100aがOCBモードで動作しない場合、つまり、通信装置100bからOCB Responseサブフィールドの値が0であるSSWフレームを受信した場合、通信装置100aは、通信装置100bとSLSを実行する時間間隔を長くしてもよい。
 これにより、OCBモードをサポートする通信装置300bが車両に搭載される場合、SLSを実行する時間間隔を短くすることで無線リンクの品質を高く保つことができる。OCBモードをサポートしない通信装置100bが移動しない機器、例えば基地局やアクセスポイントに搭載される場合、SLSを実行する時間間隔を長くすることで、SLSのオーバーヘッドによるデータレートの低下や、他の通信装置への干渉を低減することができる。
 車両10、歩行者20、移動する主体に搭載される通信装置300は、OCBモードを用いることによって、図1Bに示した多数の通信装置間で多くの無線リンクが存在する状況において、図6Aから図6Eに示したように通信装置の移動に応じて無線リンクを柔軟に変更できる。また、路側機30に搭載される通信装置300は、移動しないが、OCBモードを用いることによって、車両10、歩行者20に搭載される通信装置300と単一のモード(OCBモード)によって通信を行うことができ、MAC制御を簡易にすることができる。
 一方、移動する通信装置300が、移動しない基地局やアクセスポイントを用いて通信を行い、移動する他の通信装置300と直接通信を行う場合、OCBモードを用いず、アソシエーションを行うことによって、スケジューリングといった機能を活用できるため、効率的な通信が可能である。
 なお、通信装置300aは、ステップS1002において、OCB Responseサブフィールドの値が0であるSSWフレームを少なくとも1つ受信した場合(一例として、送信元を通信装置100bとする)、ステップS1004においてSSWフィードバックフレームを送信した後、プローブ要求フレームを受信し、または、プローブ要求フレームを送信し、さらに、スキャン終了後、通信装置100bとのアソシエーション手続きを開始してもよい。
 例えば、通信装置300aは、ステップS1006において、OCB Responseサブフィールドの値が0であるSSWフレームを受信した場合(ステップS1006のNo)、図9のフローは終了し、図3Aから図3Cの手順によりIEEE802.11ad規格に定めるPBSS開始または参加の手順を行い、通信装置300aは、ステップS1006においてOCB Responseサブフィールドの値が1であるSSWフレームを受信した場合(ステップS1006のYES)、図9のステップS1007以後の手順を行うことで、図6Aから図6Eに示すように、多数の無線リンクを確立することができる。
 このため、通信装置300は、OCBモードをサポートする通信装置300と、OCBモードをサポートしないIEEE802.11ad準拠の通信装置とが混在する状況において、それぞれの通信装置と通信することができる。
 なお、ステップS1007において、通信装置300は、SLSを行うとしたが、BRP(Beam Refinement Protocol)の手続きを行ってもよい。ステップS1001からS1006の手順により、通信装置300a、300bが無線リンクを確立している場合、通信装置300は、SLSの代わりにBRPを行うことにより、低遅延で高精度なビームフォーミングを行うことができる。一方、ステップS1010において無線リンクが切断されたと判定された場合や、S/N比が低くBRPが成功する確率が低いと想定される場合、通信装置300は、前述の通りSLSを行うことで、ビームフォーミングが成功する確率を高めることができる。
 図10は、実施の形態1に係る通信装置がミリ波通信を行う手順の一例を説明するシーケンス図である。図10を用いて、通信装置(STA:STAtion)300dが、通信装置300b、300cと通信を行う手順(図6Cを参照)の詳細について説明する。図10において、”MAC”は、一例として、MAC制御回路103の動作を表す。”higher layer entities”は、一例として、ホストCPU104の動作を表す。また、”higher layer entities”は、一例として、SME(Station Management Entity:端末管理部)、サプリカント、ドライバ、OSといったソフトウェアであってもよい。
 MACにおいては、MLME(MAC Layer Management Entity)SAP(Service Access Point)と呼ばれるインターフェース仕様が規定されている。MLME SAPは、MLME-と接頭辞が付与されたプリミティブの定義を含み、MAC(MAC制御回路103)を制御するために用いてもよい。また、MACにおいては、MAC SAPと呼ばれるインターフェース仕様が規定されている。MAC SAPは、MA-と接頭辞が付与されたプリミティブ定義を含み、MAC(MAC制御回路103)におけるデータ送受信の制御を行うために用いてもよい。
 なお、MLME SAP及びMAC SAPのインターフェース仕様及びプリミティブは、便宜上規定されたものであり、MAC制御回路103とホストCPU104の間でやり取りされる信号は、実装に依存する。MAC制御回路103とホストCPU104の間でやり取りされる信号の一例として、PCI Express信号、USB(Universal Serial Bus)信号、シリアル通信信号、関数呼び出しがある。また、higher layer entitiesの一部は、MAC制御回路103の一部として実装されてもよい。この場合、MLME SAP及びMAC SAPのインターフェース仕様及びプリミティブは、MAC制御回路103の内部信号となる。
 したがって、MLME SAP及びMAC SAPのインターフェース仕様及びプリミティブは、通信装置300の動作を限定するものではなく、通信装置300dと通信装置300bとの間でやり取りされる一連のフレームの内容及び送受信順序について説明するために用いられる。
 (ステップS1100)図10において、higher layer entitiesがMACに対して発行するMLME-SCAN.requestは、スキャン開始指示を意味する。通信装置300dのMAC制御回路103は、MLME-SCAN.requestを契機として、図9の手順をステップS1001より開始する。
 通信装置300dのMACは、Discovery Modeサブフィールドの値を1に、OCB Modeサブフィールドの値を1に設定したDMG Beaconフレームを送信する(図9のステップS1001に相当)。通信装置300b、300cはそれぞれ、DMG Beaconフレームを受信する。
 通信装置300b、300cのMACは、DMG Beaconフレームへの応答として、OCB Responseフィールドを1に設定したSSWフレームを送信する(図9のステップS1003に相当)。なお、通信装置300b、300cは、IEEE802.11ad規格に記載されたA-BFT(Association Beamforming Training)の方法に基づき、SSWフレームの送信タイミングをランダムに選択したタイムスロットにおいて送信することにより、通信装置300bの送信と通信装置300cの送信の競合を避けてもよい。
 通信装置300dは、通信装置300b、300cからのSSWフレームを受信した場合、SSWフィードバックフレームを送信する(図9のステップ1004に相当)。
 通信装置300dのMACは、スキャン時間が経過した場合、スキャンを完了し、higher layer entities に対し、MLME-SCAN.confirmプリミティブを発行する。MLME-SCAN.confirmプリミティブは、ステップS1002においてSSWフレームを受信した送信元通信装置300b、300cのMACアドレス、リンク品質情報、通信装置300b、300cがそれぞれOCBモードをサポートしているか否かを示す情報を含む。MLME-SCAN.confirmプリミティブの具現化の一例として、MAC制御回路103は、スキャンレポート情報としてMLME-SCAN.confirmに含む情報を、ホストCPU104へ通知する。
 このとき、一例として、ホストCPU104上で実行されるサプリカントソフトウェアは、スキャンレポート情報を周辺機器105に含まれるディスプレイに表示してもよい。また、サプリカントソフトウェアは、スキャンレポート情報に基づき、図9のステップS1006の判定を行い、PBSSへのアソシエーションを行うか、OCBモードでの通信(ステップS1007から1010)を行うかを決定してもよい。
 (ステップS1101)通信装置300dのhigher layer entitiesは、ステップS1006の判定を行い、Yesの場合、MLME-BF-TRAINING.requestプリミティブをMACへ発行し、通信装置300bとのSLSを開始する(図9のステップS1007に相当)。SLSは、通信装置300dによるSSWフレームの送信(ISS:Initiator Sector Sweepという)、通信装置300bによるSSWフレームの送信(RSS:Responder Sector Sweepという)、通信装置300dによるSSWフィードバックフレームの送信、通信装置300bによるSSW Ack(Acknowledgement:受信確認に相当)フレームの送信を含む。
 通信装置300dのMACは、SLSを完了した場合、MLME-BF-TRAINING.confirmプリミティブを、higher layer entitiesに対し発行する。なお、通信装置300dは、SLSが成功したか否かによらず、MLME-BF-TRAINING.confirmプリミティブを発行してもよい。SLSが成功したか否かの情報や、受信品質、SSWフレームに含まれる各フィールドの情報をMLME-BF-TRAINING.confirmプリミティブに含めてhigher layer entitiesに通知してもよい。
 通信装置300bのMACは、SLSを完了した場合、MLME-BF-TRAINING.indicateプリミティブを、higher layer entitiesに対し発行する。なお、通信装置300bは、SLSが成功したか否かによらず、MLME-BF-TRAINING.indicateプリミティブを発行してもよい。SLSが成功したか否かの情報や、受信品質、SSWフレームに含まれる各フィールドの情報をMLME-BF-TRAINING.indicateプリミティブに含めてhigher layer entitiesに通知してもよい。
 通信装置300dのhigher layer entitiesは、通信装置300bとのSLSを完了した場合、MLME-BF-TRAINING.requestプリミティブをMACに対し発行し、通信装置300cとのSLSを開始してもよい。
 (ステップS1102)通信装置300dのhigher layer entitiesは、MLME-BF-TRAINING.confirmプリミティブに含まれる情報に基づき、ステップS1008の判定を行う。ステップS1008の判定の結果、SLSに成功した場合、higher layer entitiesは、通信装置300dのMACに対し、MA-UNITDATA.requestプリミティブを発行し、データ送信処理の実行を要求する。MA-UNITDATA.requestプリミティブは、送信先アドレスや送信データを含む。
 通信装置300dのMACは、データ送信において、RTS(Request to Send)フレームの送信、DMG CTS(Clear to Send)フレームの受信、データフレームの送信、Ackフレームの受信を行う(図9のステップS1008に相当)。
 通信装置300dは、RTSフレームの送信、データフレームの送信を、ステップS1007のSLSにより選択したアンテナ指向性をアンテナ101に設定して送信を行う。通信装置300bは、RTSフレームを受信する際には、いずれの通信装置からフレームが送信されるか未知であるから、Quasi-Omni(疑似無指向性)アンテナを用いて(アンテナ101をQuasi-Omniに設定して)受信を行う。
 通信装置300bは、DMG CTSフレームを送信した後、通信装置300dからデータフレームが送信されることが期待されるため、ステップS1007のSLSにより決定した指向性にアンテナ101を設定して、データフレームの受信を行う。これにより、無線リンクの品質を高め、データレートを高めることができる。
 なお、通信装置300dは、RTSフレームの代わりに、DMG CTS to selfフレーム(宛先を通信装置300dのアドレスに設定したDMG CTSフレーム)を送信してもよい。通信装置300dは、DMG CTS to selfフレームに続けて、データフレームの送信を行ってよい。
 通信装置300bは、DMG CTS to selfフレームを受信した場合、DMG CTSフレームの送信は行わなくてもよいが、次に通信装置300dからのデータフレームが送信されることが想定されるため、ステップS1007のSLSにより決定したアンテナ指向性にアンテナ101を設定して、データフレームの受信を行う。
 通信装置300bのMACは、Ackフレームを送信した後、MA-UNITDATA.indicationプリミティブをhigher layer entitiesへ発行する。MA-UNITDATA.indicationプリミティブには、送信元及び送信先アドレス、受信データ(通信装置300dから受信したデータフレームの内容)、受信に成功したか否かの情報(例えば、受信したデータフレームにビット誤りが含まれる場合、受信失敗とする)を含む。
 通信装置300bのhigher layer entitiesは、MA-UNITDATA.indicationプリミティブにより受信成功が通知された場合、受信データをMA-UNITDATA.indicationプリミティブから取得し、OSやアプリケーションソフトウェアへ受け渡す。
 通信装置300dのMACは、Ackフレームを受信した場合、又は、Ackフレームの受信が期待される時刻を過ぎた場合、MA-UNITDATA.STATUS.indicationプリミティブをhigher layer entitiesへ発行する。MA-UNITDATA.STATUS.indicationプリミティブは、データフレームの送信に成功したか否かの情報を含む。通信装置300dがAckフレームを受信した場合、データフレームの送信は成功である。
 通信装置300dのhigher layer entitiesは、MA-UNITDATA.STATUS.indicationプリミティブを受信した場合、新たにMA-UNITDATA.requestプリミティブをMACへ発行し、通信装置300cへのデータ送信を要求してもよい(図示無し)。また、通信装置300bとの通信を繰り返し行ってもよい。
 通信装置300b、300cのhigher layer entitiesは、それぞれ、MLME-BF-TRAINING.indicationプリミティブによりSLSの成功がMACより通知された場合、または、MA-UNITDATA.STATUS.indicationプリミティブまたはMA-UNITDATA.indicationプリミティブによりデータ送信または受信の完了が通知された場合(図示無し)、MA-UNITDATA.requestプリミティブをMACへ発行し、通信装置300dへのデータ送信を要求(図示無し)してもよい。
 また、通信装置300dのhigher layer entitiesは、図10の手順に限定されず、通信装置300bとのSLSが完了し、MLME-BF-TRAINING.confirmプリミティブが通知された場合、MA-UNITDATA.requestプリミティブをMACへ発行し、通信装置300bへのデータ送信を要求(図示無し)してもよい。
 以上のように、通信装置300は、DMG BeaconフレームにOCBモードをサポートする信号を含めて送信し、OCBモードをサポートする信号を含むSSWフレームを受信した場合に、アソシエーションを行わずにデータフレームの送信を行うようにしたため、MAC制御回路103の回路規模を小さくでき、消費電力を削減でき、移動する多数の通信装置と通信を行うことができる。
(実施の形態1の変形例)
 実施の形態1では、通信装置300は、DMG BeaconフレームをOCB Modeサブフィールドの値を1に設定して送信し、OCB Responseフィールドの値が1であるSSWフレームを受信し、ビームフォーミングトレーニングを実行することで、OCBモードの通信を開始した。本変形例の通信装置500は、DMG Beaconフレームを受信した場合、SSWフレームを送信する代わりに、通信装置500が送信するDMG Beaconフレームにフィードバック情報を含める。これにより、通信装置500は、SSWフレームの送信を省略し、他の通信装置への与干渉を低減することができる。
 図11は、実施の形態1の変形例に係る通信装置の動作の一例を示すフローチャートである。
 (ステップS2001)通信装置500は、他の通信装置がアンテナの指向性(セクタ)を変えながら送信する複数のDMG Beaconフレームを受信する。通信装置500は、受信品質が良好であったDMG Beaconフレームに含まれるセクタ番号(ベストセクタ情報という)を記録する。複数の送信元から複数のDMG Beaconフレームを受信した場合、通信装置500は、送信元毎にベストセクタ情報を記録する。
 (ステップS2002)通信装置500は、ベストセクタ情報をDMG Beaconフレームに含めて送信する。
 図12Aは、実施の形態1の変形例に係るDMG Beaconフレームのフォーマットの一例を示す図である。図12Bは、実施の形態1の変形例に係るSSW Feedbackエレメントのフォーマットの一例を示す図である。図12Aに、ステップS2002において、通信装置500が送信するDMG Beaconフレームのフォーマットを示す。図12AのDMG Beaconフレームは、DMG ParametersフィールドにDMG Beacon Sector Feedbackフィールドを含む。また、Optionalフィールドに、図12Bに示すSSW Feedbackエレメントを1又は複数含む。図7AのDMG Beaconフレームに含まれるフィールド、サブフィールドと同じフィールド、サブフィールドは、説明を省略する。
 DMG Beacon Sector Feedbackサブフィールドは、SSW Feedbackエレメントの受信をサポートするか否かを示すビットを含む。
 図12Bに、SSW Feedbackエレメントのフォーマットを示す。SSW Feedbackエレメントは、Element IDフィールド、Lengthフィールド、Element ID Extension、Target MAC Addressフィールド、Sector Sweep(SSW) Feedbackフィールドを含む。
 Element IDフィールド及びElement ID Extensionフィールドは、Element IDフィールド及びElement ID Extensionフィールドの値の組み合わせにより、エレメントの種類を識別する(SSW Feedbackエレメントであることを示す)情報を含む。
 Lengthフィールドは、エレメントの長さ(データ長)を示す。
 Target MAC Addressフィールドは、Sector Sweep Feedbackフィールドの情報の通知先を示すMACアドレスを含む。例えば、Sector Sweep Feedbackフィールドが通信装置500bのベストセクタ情報を含む場合、通信装置500bのMACアドレスをTarget MAC Addressフィールドに含める。通信装置500は、Target MAC AddressフィールドとSector Sweep Feedbackフィールドとのそれぞれを複数SSW Feedbackエレメントに含めることで、複数の通信装置にベストセクタ情報を通知するようにしてもよい。
 Sector Sweep Feedbackフィールドのフォーマットは、図8AのSector Sweep Feedbackフィールドと同様であるから、説明を省略する。
 (ステップS2003)図12AのDMG Beaconフレームを受信した他の通信装置(通信装置500bとする)は、SSW FeedbackエレメントのTarget MAC Addressフィールドに通信装置500bのMACアドレスが含まれるか否かを調べ、含まれる場合、通信装置500に対してBRP(Beam Refinement Protocol)フレームを送信し、ビームフォーミングトレーニングを行ってもよい。通信装置500は、BRPフレームを受信した場合、送信アンテナ及び受信アンテナのビームフォーミングトレーニングを行ってもよい。
 通信装置500bは、送信したBRPフレームに対して通信装置500が応答しない場合、SSWフレームを送信してSLSを行ってもよい。
 (ステップS2004)ステップS2003においてBRPまたはSLSによるビームフォーミングトレーニングを完了した場合、通信装置500は、データフレームの送信、受信を行う。
 図13は、実施の形態1の変形例に係る通信装置がミリ波通信を行う手順の一例を説明するシーケンス図である。図13を用いて、通信装置500a、500b、500cが図11の手順を用いて通信を行う手順について詳細に説明する。
 通信装置500aは、複数のDMG Beaconフレームを送信アンテナのアンテナ指向性を変えながら送信する。通信装置500aは、図12AのDMG BeaconフレームにDMG Beacon Sector Feedbackサブフィールドの値を1に設定して送信してもよい。通信装置500b、500cは、DMG Beaconフレームを受信し、ベストセクタ情報を記録する(ステップS2001に相当)。
 通信装置500cは、通信装置500aのベストセクタ情報を図12BのSSW Feedbackエレメントに含めて図12AのDMG Beaconフレームを送信する(ステップS2002に相当)。通信装置500a、500bは、DMG Beaconフレームを受信し、SSW FeedbackエレメントのTarget MAC Addressフィールドに通信装置500a、500bのアドレスが含まれるか否かを調べ、ベストセクタ情報を取得する。
 通信装置500aは、受信したDMG Beaconフレームに含まれるベストセクタ情報を用いてアンテナ101の指向性を設定し、通信装置500cへBRPフレームを送信する。通信装置500cは、BRPフレームを受信し、通信装置500aとのビームフォーミングトレーニングを実施する(ステップS2003に相当)。
 なお、ステップS2003において、通信装置500aは、Probe Requestフレームを通信装置500cへ送信し、Probe Responseフレームを受信して通信装置500cの詳細情報(Capability情報)を取得してからBRPフレームを送信してもよい。通信装置500cの詳細情報に含まれる、BRPの拡張機能やMIMO機能をサポートするか否かを示す情報に基づき、BRPの拡張機能やMIMO機能を用いてBRP及びデータフレームの送受信を行うことができ、ビームフォーミングトレーニングの実行時間を短縮し、データ通信を効率よく行うことができる。
 通信装置500a、500cは、BRPを完了した場合、データフレームの送信、受信を行う(ステップS2004に相当)。
 通信装置500bは、通信装置500cと同様に、通信装置500aのベストセクタ情報を含めてDMG Beaconフレームを送信し(ステップS2002に相当)、BRPを実行し(ステップS2003に相当)、データ通信を行う(ステップS2004に相当)。
 なお、通信装置500は、SSW Feedbackエレメントを受信した場合(ステップS2002に相当)、SSWフレームを送信してSLSによるビームフォーミングトレーニングを行ってもよい(ステップS4001)。
 通信装置500aは、SSW Feedbackエレメントに通信装置500b、500cのベストセクタ情報を含め、DMG Beaconフレームを送信する(ステップS2002に相当)。
 通信装置500bは、受信したベストセクタ情報に基づき、一例として、16個のセクタ(指向性)を選択して、16個のSSWフレームを送信する(ステップS4001)。一例として、通信装置500bは、ベストセクタ情報に含まれるセクタ番号1つと、ベストセクタと指向性が近い15個のセクタを選択して、ステップS2005のSSWフレームの送信に用いてもよい。
 通信装置500aは、SSWフレームを受信した場合、SSW Feedbackフレームを通信装置500bへ送信する(ステップS4002)。また、通信装置500a、500bは、BRPを行い(ステップS2003に相当)、データ通信を行う(ステップS2004に相当)。
 なお、ステップS2002において、通信装置500aは、既に無線リンクを確立している通信装置500に対しては、ベストセクタ情報の送信を省略してもよい。これにより、通信装置500aは、DMG Beaconフレームのデータ量を削減し、送信に係る遅延を短縮し、他の通信装置500への与干渉を低減することができる。
 一例として、通信装置500aは、通信装置500b、500cとステップS2003において無線リンクを確立しているため、通信装置500b、500cのベストセクタ情報をDMG Beaconフレームに含めず送信してもよい。なお、この場合、通信装置500は、ステップS4001,S4002の手続きは省略してもよい。
 なお、通信装置500は、既定の時間周期でDMG Beaconフレームの送信を行ってもよい。つまり、通信装置500は、ステップS2001又はS2002を周期的に行ってもよい。この周期(Beacon Interval:ビーコンインターバル)は、ステップS2001又はS2002を実行する毎に、10TU以上200TU未満の間でランダムに選択されてもよい。
 以上のように、通信装置500は、DMG Beaconフレームにベストセクタ情報を含めて送信するので(ステップS2002)、SSWフレームを送受信せずに無線リンクを確立してBRPを行うので、データフレームの送受信を開始するまでの遅延を減らすことができ、SSWフレームを送信することによる他の通信装置500への与干渉を減らすことができる。
 また、通信装置500は、ベストセクタ情報に基づきSSWフレームの送信数を減らしてSLSを行うので、データフレームの送受信を開始するまでの遅延を減らすことができ、SSWフレームを送信することによる他の通信装置500への与干渉を減らすことができる。
(実施の形態2)
 図14は、実施の形態2に係る通信装置400の構成の一例を示す図である。通信装置400は、60GHzアンテナ101a、60GHz無線回路102a、60GHz MAC制御回路103a、ホストCPU104、周辺機器105、5.9GHzアンテナ401、5.9GHz無線回路402、5.9GHz MAC制御回路403、を含む。図2の通信装置100、300と同様の構成要素は、同じ附番をつけ、説明を省略する。なお、図14においては、60GHz帯の構成要素と5.9GHz帯の構成要素を区別するため、60GHzアンテナ101a、60GHz無線回路102a、60GHz MAC制御回路103aは、図2のアンテナ101、無線回路102、MAC制御回路103と同じ動作の構成要素であるが、「60GHz」と明記する。
 通信装置400は、5.9GHz帯において無指向性のアンテナを用いてブロードキャスト送信を行うことで、低容量のデータを広い範囲の多数の通信装置に対して送信が可能である(図1Aのような状況)。通信装置400は、5.9GHz帯の無線通信では、ブロードキャスト送信を行うため送信先の通信装置のディスカバリが不要であり、また、無指向性のアンテナを用いることによりビームフォーミングトレーニングが不要であるため、データ通信開始までの遅延小さい。さらに、通信装置400は、60GHz帯の通信機能を備えることにより、大容量の通信が可能である。
 5.9GHzアンテナ401は、5.9GHz帯における無線信号を送信及び受信する。5.9GHzアンテナ401は、無指向性のアンテナであってもよい。5.9GHz無線回路402は、5.9GHz帯の通信規格物理層、一例として、IEEE802.11p規格に準拠する無線信号を送信及び受信する。5.9GHz MAC制御回路403は、5.9GHz帯の通信規格MAC層、一例として、IEEE802.11p規格及びIEEE1609規格に準拠し、MAC制御を行う。
 5.9GHz無線回路402が準拠する規格の一例として、IEEE802.11pを示したが、例えば、他の例として、IEEE802.11-2016、DSRC(Dedicated Short Range Communications)規格、LTE-V2X(Long Term Evolution-V2X)、C-V2X(Cellular V2X)であってもよい。また、5.9GHz無線回路402が無線通信を行う帯域の一例として5.9GHz帯を示したが、例えば、他の例として、760MHz帯(ARIB STD-T109:電波産業会標準規格T109)、2.4GHz帯及び5GHz帯、6GHz帯無線LAN(Wi-FiやIEEE802.11)であってもよい。
 5.9GHz MAC制御回路403が準拠する規格の一例として、IEEE802.11p及びIEEE1609を示したが、例えば、他の例として、IEEE802.11-2016、WAVE(Wireless Access in Vehicular Environment)規格、LTE-V2X(Long Term Evolution-V2X)、C-V2X(Cellular V2X)であってもよい。また、5.9GHz無線回路402が5.9GHzと異なる周波数帯域において、一例として、例えば、760MHz帯(ARIB STD-T109:電波産業会標準規格T109)、2.4GHz帯及び5GHz帯、6GHz帯無線LAN(Wi-FiやIEEE802.11)に準拠し動作する場合、5.9GHz MAC制御回路403は、対応する規格に準拠したMAC制御動作を行ってもよい。
 図15は、実施の形態2に係る通信装置がミリ波通信を行う手順の一例を示すフローチャートである。図15は、通信装置400が、V2X通信システム1において通信を行う手順を示す。
 (ステップS3001a)通信装置400は、60GHz帯において通信を行うチャネルに関する情報を含む、アドバタイズ情報を5.9GHz帯無線を用いて送信する。アドバタイズ情報は、IEEE1609.3-2016規格(非特許文献2)に記載されるWSA(WAVE Service Advertisement)フレームに含めてもよい。
 図16は、実施の形態2に係るWSAフレームのフォーマットの一例を示す図である。図16に示す、60GHz帯のチャネルの情報を含むWSAフレームのフォーマットの一例を説明する。WSAフレームは、WSA Versionフィールド、WSA Header Option Indicatorフィールド、WSA Identifierフィールド、Content Countフィールド、WAVE Information Element Extensionフィールド、Service Infoセグメント、Channel Infoセグメント、WAVE Routing Advert.(Advertisement)を含む。
 WSA Versionフィールドは、WSAフレームのバージョン情報を示す。WSA Header Option Indicatorフィールドは、オプションのフィールドである、WAVE Information Element Extensionフィールド、Service Infoセグメント、Channel Infoセグメント、WAVE Routing AdvertisementフィールドがそれぞれWSAフレームに含まれるか否かを示す。
 WSA Identifierフィールドは、WSAフレームの識別情報を表す。通信装置400は、同様の値を含むWSAフレームを繰り返し送信してよいが、前回と異なるWSAフレームを送信する場合、前回と異なる値をWSA Identifierフィールドに設定する。また、通信装置400は、前回と同様のWSAフレームを繰り返して送信する場合、Content Countフィールドの値を増加させながら送信してもよい。
 WAVE Information Element Extensionフィールドは、複数の情報エレメントを含むことができ、5.9GHz通信及び60GHz通信により提供されるサービスに関連する情報を含んでもよい。
 Service Infoセグメントは、Service Info Countフィールド、PSIDフィールド、Channel Indexフィールド、Reserved(予約)ビット、Service Info Option Indicatorフィールド、Service Info WAVE Information Element Extensionフィールドを含む。
 Service Infoセグメントは、Service Info Countフィールドを除くフィールドを複数セット含んでもよい。Service Info Countフィールドは、後続のフィールド(PSIDからWAVE Information Element Extensionフィールド)が何セット含まれるかを示す。
 PSID(Provide Service Identifier)フィールドは、5.9GHz通信及び60GHz通信提供されるアプリケーションに関する値を含む。PSIDの値と内容との対応は、IEEE1609.12規格に規定される。
 Channel Indexフィールドは、Service InfoセグメントのPSIDからWAVE Information Element Extensionフィールドによって示されるサービスが、いずれの無線チャネルによって提供されるかを示す値を含む。一例として、WSAフレームのChannel Infoセグメント(詳細後述)が4つのチャネル情報のセットを含み、Channel Indexフィールドの値が2である場合、WSAフレームのChannel Infoセグメントの2番目に情報が示されるチャネルにおいて、サービスが行われることを示す。
 Service Info Option Indicatorフィールドは、後続のフィールドであるService Info WAVE Information Element Extensionフィールドを含むか否かを示す。
 Service Info WAVE Information Element Extensionフィールドは、前述のWAVE Information Element Extensionフィールドと同様に提供されるサービスに関する情報を含むが、Channel Indexフィールドにより指定されるチャネルに固有のサービスの情報を含む。
 図17は、実施の形態2に係るChannel Infoセグメントのフォーマットの一例を示す図である。Channel Infoセグメントは、Channel Info Countフィールド、Operating Classフィールド、Channel Numberフィールド、Transmit Power Levelフィールド、Adaptableフィールド、Data Rateフィールド、Channel Info Option Indicatorフィールド、Channel Info WAVE information Element Extensionフィールドを含む。
 Channel Infoセグメントは、Channel Info Countフィールドを除くOperating ClassフィールドからChannel Info WAVE information Element Extensionフィールドまでのセット(以下。チャネル情報と呼ぶ)を複数含んでもよく、Channel Info Countフィールドは、セット数を示す。
 図16のWSAフレームは、一例として、5.9GHz帯及び60GHz帯の2つのチャネル情報を含み、Channel Info Countフィールドの値は、2である。
 Operating Classフィールドは、IEEE802.11規格に定められる、周波数帯域やチャネルのセットを識別する番号を含む。一例として、米国において5.9GHz帯のチャネル幅10MHzの通信を行う場合、5.9GHz帯チャネル情報のOperating Classフィールドの値は17である。別の例として、日本において60GHz帯のチャネル幅2.16GHzの通信を行う場合、60GHz帯チャネル情報のOperating Classフィールドの値は59である。
 Channel Numberフィールドは、IEEE802.11規格に定められる、Operating Class内でのチャネル番号である。一例として、米国におけるOperating Class 17では、5.9GHz帯チャネル情報のChannel Numberフィールドの値は、171から184のいずれかの値である。別の例として、日本におけるOperating Class 59では、Channel Numberフィールドの値は、1から29のいずれかの値である。
 Transmit Power Levelフィールドは、チャネルにおける送信電力(EIRP:等価等方輻射電力)の値(単位:dBm)を含む。
 Adaptableフィールドは、Data Rateフィールドと組み合わせて用いられる。Adaptableフィールドの値が1である場合、Data Rateフィールドの値は、通信装置400が送信を行う際の最小データレートを示す。Adaptableフィールドの値が0である場合、通信装置400は、Data Rateフィールドの値に応じた固定のデータレートで送信を行う。
 なお、Data Rateフィールドが示す値は、IEEE1609.3規格では、1Mbit/s以上63.5Mbit/sである。Data Rateフィールドの値は、Operating Classフィールドの値に応じて読み替えてもよい。一例として、Operating Classフィールドの値が、日本における59など60GHz帯を示す場合は、Data Rateフィールドの値を、5.9GHz帯の場合の値の1000倍と読み替え、1Gbit/s以上63.5Gbit/sの範囲の値を示すとしてもよい。
 また、別の例として、60GHzチャネル情報においては、Data Rateの値を最大値である63.5Mbit/s以上を示す値に設定し、60GHz帯チャネルにおけるデータレートを示すサブフィールドを、後述するChannel Info optional WAVE Information Element Extensionフィールド内に含めてもよい。
 Channel Info Option Indicatorフィールドは、チャネル情報において、Channel Info WAVE Information Element Extensionフィールドを含むか否かを示す。
 Channel Info WAVE Information Element Extensionフィールドは、前述のWAVE Information Element Extensionフィールド(図16を参照)と同様に提供されるサービスに関する情報を含むが、Operating Classフィールド及びChannel Numberフィールドにより指定されるチャネルに固有のサービスの情報を含む。
 通信装置400は、60GHz帯チャネルに関する情報をWSAフレームに含めて送信する場合、Channel Info WAVE Information Element Extensionフィールドに、図17に示すDMG Informationエレメントを含めて送信する。
 DMG Informationエレメントは、WAVE Element IDフィールド、Primary Channel Numberフィールド、PHY Typeフィールド、DMG Beacon Requiredフィールド、BTI SSW Feedbackフィールド、Address Includedフィールド、Reserved(予約)ビット、MAC Addressフィールドを含む。
 WAVE Element IDフィールドは、エレメントの種類(図17では、DMG Informationエレメント)を示す識別番号を示す。
 Primary Channel Numberフィールドは、60GHz帯におけるプライマリチャネルの番号を示す。
 PHY Typeフィールドは、通信装置400が60GHz帯において使用する、無線通信規格を示す。PHY Typeフィールドの値が0の場合、IEEE802.11ad規格(DMG:Directional Multi Gigabit)を表し、PHY Typeフィールドの値が1の場合、IEEE802.11ay規格(EDMG:Enhanced Directional Multi Gigabit)を表す。他の値、2から7は、将来規格のために予約されている。
 DMG Beacon Requiredフィールドは、通信装置400が、図16のWSAフレームを受信した他の通信装置と通信を行う場合に、はじめにDMG Beaconフレームを受信する必要があるか否かを示す。詳細は、後述する。
 BIT SSW Feedbackフィールドは、通信装置400が、図11のDMG Beaconを用いてSSWフィードバックを行う方式をサポートするか否かを示す。
 Address includedフィールドは、MAC Addressフィールドが含まれるか否かを示す。
 MAC Addressフィールドは、通信装置400が60GHz帯において使用するMACアドレスを示す。Address includedフィールドの値が0(MAC Addressフィールドを含まない)場合、通信装置400は、WSAフレームのヘッダ(図示せず)に含まれる、5.9GHz帯において使用するMACアドレスを、60GHz帯において用いる。なお、通信装置400が60GHz帯において、5.9GHz帯と同一のMACアドレスを用いてもよく、異なるMACアドレスを用いてもよい。
 図15のステップS3001b以降について説明する。WSAフレーム(アドバタイズ情報)を受信した他の通信装置は、Operating Classフィールドに示すOperating Classにおける周波数帯における動作をサポートし、PHY Typeに示す通信規格をサポートする場合、他の通信装置は、Primary Channelフィールドが示すプライマリチャネルにおいて、フレームの送信を行う。
 通信装置400は、WSAフレームに含まれるDMG Beacon Requiredフィールドの値を0に設定して送信した場合(ステップS3001bのYes)、他の通信装置からSSWフレームを受信し(ステップS3002)、WSAフレームに含まれるDMG Beacon Requiredフィールドの値を1に設定して送信した場合(ステップS3001bのNo)、他の通信装置からDMG Beaconフレームを受信する(ステップS3012)。なお、ステップS3001bにおいて、60GHz帯のチャネル情報が含まれないWSAフレームを受信した場合は、PBSS/BSSへのアソシエーション手続きを行ってもよい。
 通信装置400は、ステップS3002においてISS用のSSWフレームを受信した後、RSS用のSSWフレームを送信して応答する(ステップS3003)。RSS用のSSWフレームに対して他の通信装置が応答し、SSW Feedbackフレームを受信した後(ステップS3004)、通信装置400は、SSW Ackフレームを送信し、SLSの成功を他の通信装置に通知する(ステップS3005)。
 図18は、実施の形態2に係るSSWフレームのフォーマットの一例を示す図である。図18を用いて、ステップS3002において通信装置400が送信するSSWフレームのフォーマットを説明する。図18のSSWフレームは、SSW Feedbackフィールドに、OCB Modeサブフィールドを含む。SSWフレームの他のフィールド及びサブフィールドの説明は省略する(非特許文献1を参照)。
 通信装置400は、ステップS3002において、OCBモードをサポートする場合、OCB Modeサブフィールドを1に設定してSSWフレームを送信する。他の通信装置400は、ステップS3003において、OCBモードをサポートする場合、図8AのSSWフレームのOCB Responseサブフィールドの値を1に設定して送信してもよい。
 通信装置400は、ステップS3012においてDMG Beaconフレームを受信した後、RSS用のSSWフレームを送信して応答する(ステップS3013)。RSS用のSSWフレームに対して他の通信装置が応答し、通信装置400が、他の通信装置からのSSW Feedbackフレームを受信した場合(ステップS3014)、SLSは成功である。
 通信装置400は、ステップS3012において、図7AのDMG BeaconフレームをOCB Modeサブフィールドの値を1に設定して送信してもよい。他の通信装置400は、ステップS3013において、図8AのSSWフレームをOCB Responseサブフィールドの値を1に設定にして送信してもよい。
 通信装置400は、ステップS3005又はS3014において他の通信装置とのSLSに成功した場合、他の通信装置から60GHz帯データフレームを受信する。なお、ステップS3006において、通信装置400が他の通信装置にデータフレームを送信してもよい。
 図19は、実施の形態2に係る通信装置がミリ波通信を行う手順の一例を示すシーケンス図である。図19を用いて、通信装置400dが、複数の他の通信装置400b、400cと図2の手順を用いて通信を行う方法を説明する。
 図19において、“higher layer entities”は、一例として、ホストCPU104の動作を表す。また、“higher layer entities”は、一例として、SME(Station Management Entity:端末管理部)、サプリカント、ドライバ、OS、IEEE1609規格準拠ソフトウェアといったソフトウェアであってもよい。
 なお、通信装置400は、IEEE1609規格準拠ソフトウェアを、60GHz MAC制御回路103及び5.9GHz MAC制御回路403上で動作させてもよい。また、通信装置400は、MAC制御回路413(図示なし)を備え、60GHz MAC制御回路103及び5.9GHz MAC制御回路403が行う共通の処理を行うようにし、IEEE1609規格準拠ソフトウェアを、MAC制御回路413において実行してもよい。
 図19において、“60GHz MAC”は、60GHz MAC制御回路103の動作を表す。また、“5.9GHz MAC”は、5.9GHz MAC制御回路403の動作を表す。
 図19のシーケンス図において、“higher layer entities”、“5.9GHz MAC”、 “60GHz MAC”以外の構成要素の動作(例えば、5.9GHz無線回路402、60GHz無線回路102の動作)の記載は省略する。
 通信装置400dのhigher layer entitiesは、図16,図17の、5.9GHz帯及び60GHz帯のチャネル情報を含むWSAフレームを生成し、MA-UNITDATA.requestプリミティブを発行し、WSAフレームの送信を5.9GHz MACへ要求する。
 通信装置400dの5.9GHz MACは、WSAフレームを5.9GHz帯無線通信において、ブロードキャスト送信を行う。ブロードキャスト送信により、複数の通信装置がフレームデータを受信できるので、通信装置400b、400cは、WSAフレームを受信する(ステップS3001aに相当)。
 通信装置400b、400cの5.9GHz MACは、WSAフレームを受信した後、MA-UNITDATA.indicationプリミティブを発行し、データ受信を行ったことの通知と、WSAフレームのデータを、それぞれのhigher layer entitiesに通知する。
 通信装置400b、400cのhigher layer entitiesは、受信したWSAフレームに含まれるチャネル情報に基づき、60GHz帯通信を開始する。通信装置400b、400cのhigher layer entitiesは、受信したDMG Beacon Requiredフィールドの値が0である場合、MLME-BF-TRAINING.requestプリミティブを発行し、SLSの実行をそれぞれの60GHz MACへ要求する(ステップS3002に相当)。
 通信装置400b、400cのhigher layer entitiesは、WSAフレームのPrimary Channel Numberフィールドに含まれる情報に基づき、60GHz帯の指定されたプライマリチャネルにおいてビームフォーミングを行うよう、MLME-BF-TRAINING.requestプリミティブのパラメータを設定する。また、通信装置400b、400cのhigher layer entitiesは、SSWフレームの送信先を、WSAフレームのAddress Includedフィールド及びMAC Addressフィールド(存在する場合)に基づき決定し、MLME-BF-TRAINING.requestプリミティブのパラメータとして設定する。
 通信装置400b、400cの60GHz MACは、SSWフレーム(ISS)を送信し(ステップS3003に相当)、SSWフレーム(RSS)を受信した後(ステップS3004に相当)、SSW Feedbackフレームを送信し(ステップS3005に相当)、SLSを完了する。
 通信装置400b、400cの60GHz MACは、SSWフレームの送信が相互に競合しないよう、MLME-BF-TRAINING.requestプリミティブを受信した場合、ランダムな時間待機した後にSSWフレーム(ISS)の送信を開始してもよい。また、通信装置400b、400cのhigher layer entitiesは、WSAフレームを受信してから、ランダムな時間待機した後、MLME-BF-TRAINING.requestプリミティブを発行してもよい。
 SLSが完了した後、通信装置400b、400cの60GHz MACは、MLME-BF-TRAINING.confirmプリミティブを発行し、higher layer entitiesにビームフォーミングトレーニングの完了を通知する。また、通信装置400dの60GHz MACは、MLME-BF-TRAINING.indicationプリミティブを発行し、higher layer entitiesにビームフォーミングトレーニングを通知する。
 ビームフォーミングトレーニングを完了した通信装置間では、データ通信が可能である。例えば、図19において、通信装置400bのhigher layer entitiesは、MA-UNITDATA.requestプリミティブを発行し、60GHz MACへデータ送信を要求する。通信装置400bの60GHz MACは、RTSフレームの送信、DMG CTSフレームの受信、データフレームの送信、ACKフレームの受信を行うことにより、データ送信を完了する。通信装置400bの60GHz MACは、MA-UNITDATA.STATUS.indicationプリミティブを発行し、データ送信の完了をhigher layer entitiesへ通知する。
 通信装置400dの60GHz MACは、MA-UNITDATA. indicationプリミティブを発行し、60GHz帯においてデータを受信したことをhigher layer entitiesに通知する。
 図19のシーケンスにおいて、通信装置400dは、アソシエーションを行わないので、遅延を短縮して早期に通信装置400b、400cへのデータ送信を開始することができる。また、通信装置400dは、アドバタイズ情報に60GHz帯チャネル情報、MACアドレス、プライマリチャネルの情報を含めて5.9GHzにおいてブロードキャスト送信するので、DMG Beaconフレーム(非特許文献1参照)に比べてフレーム長が短いSSWフレーム(図18)を受信してビームフォーミングを行うことができ、60GHz帯におけるデータ送信を開始するまでの遅延を短縮することができる。
 以上のように、通信装置400は、5.9GHz帯において無指向性のアンテナを用いてブロードキャスト送信を行うことで、低容量のデータを広い範囲の多数の通信装置に対して送信が可能である。通信装置400は、5.9GHz帯の無線通信では、ブロードキャスト送信を行うため送信先の通信装置のディスカバリが不要であり、また、無指向性のアンテナを用いることによりビームフォーミングトレーニングが不要であるため、データ通信開始までの遅延小さくすることができる。さらに、通信装置400は、60GHz帯の通信機能を備えることにより、大容量の通信が可能である。
 上述の実施の形態において、各構成要素に用いた「・・・部」という表記は、「・・・回路(circuitry)」、「・・・デバイス」、「・・・ユニット」、又は、「・・・モジュール」といった他の表記に置換されてもよい。
 以上、図面を参照しながら実施の形態について説明したが、本開示はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかである。そのような変更例または修正例についても、本開示の技術的範囲に属するものと了解される。また、本開示の趣旨を逸脱しない範囲において、実施の形態における各構成要素は任意に組み合わされてよい。
 本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてあり得る。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 <本開示のまとめ>
 本開示に係る通信装置は、
 他の通信装置との通信に用いる第1制御フレーム及び第1データフレームの送受信制御を行い、前記他の通信装置との通信に用いる第2制御フレーム及び第2データフレームの送受信制御を行う制御回路と、
 前記第1制御フレーム及び前記第1データフレームを、無指向性の第1アンテナを用いて、無線通信する第1無線回路と、
 前記第2制御フレーム及び前記第2データフレームを、有指向性の第2アンテナを用いて、無線通信する第2無線回路と、を含み、
 前記第1無線回路が、前記第1制御フレームのうち、前記他の通信装置から、前記第2無線回路を用いた無線通信に関する情報を含むWSAフレームを受信した場合、
 前記制御回路は、前記WSAフレームに基づいて、通信装置と前記他の通信装置と間で、アソシエーション手続きを実行しないと判断する。
 本開示に係る通信装置は、前記制御回路は、前記第2無線回路を用いた無線通信に関する情報に応じて、前記他の通信装置に対して、ISS(Initiator Sector Sweep)用のSSWフレーム又はDMG Beaconフレームを前記第2無線回路から送信して、前記第2アンテナのアンテナ指向性トレーニングの制御を行う。
 本開示に係る通信方法は、通信装置の第1無線回路の無指向性の第1アンテナが、他の通信装置との通信に用いる第1制御フレームのうち、前記他の通信装置から第2無線回路を用いた無線通信に関する情報を含むWSAフレームを受信し、前記第1アンテナを介して前記第1制御フレーム及び第1データフレームの送受信制御を行い、有指向性の第2アンテナを有する第2無線回路を介して前記他の通信装置との通信に用いる第2制御フレーム及び第2データフレームの送受信制御を行う制御回路が、前記WSAフレームに基づいて、前記通信装置と前記他の通信装置と間で、アソシエーション手続きを実行しないと判断する。
 本開示に係る通信方法は、前記制御回路は、前記第2無線回路を用いた無線通信に関する情報に応じて、前記他の通信装置に対して、ISS(Initiator Sector Sweep)用のSSWフレーム又はDMG Beaconフレームを前記第2無線回路から送信して、前記第2アンテナのアンテナ指向性トレーニングの制御を行う。
 本出願は、日本国特許庁に2020年3月27日付で提出した特許出願2020-058834に基づく優先権を主張する。特許出願2020-058834の内容は、参照により本出願に取り込まれる。
 本開示は、例えば、高速な移動体に搭載して行うミリ波通信に好適である。
 10(10a~10m) 車両
 100(100a~100m)、200、300、400、500 通信装置
 30 路側機
 20 歩行者
 101 アンテナ
 102 無線回路
 103 MAC制御回路
 104 ホストCPU
 105 周辺機器
 1001 PBSS
 401 5.9GHzアンテナ
 402 5.9GHz無線回路
 403 5.9GHz MAC制御回路

Claims (4)

  1.  他の通信装置との通信に用いる第1制御フレーム及び第1データフレームの送受信制御を行い、前記他の通信装置との通信に用いる第2制御フレーム及び第2データフレームの送受信制御を行う制御回路と、
     前記第1制御フレーム及び前記第1データフレームを、無指向性の第1アンテナを用いて、無線通信する第1無線回路と、
     前記第2制御フレーム及び前記第2データフレームを、有指向性の第2アンテナを用いて、無線通信する第2無線回路と、を含み、
     前記第1無線回路が、前記第1制御フレームのうち、前記他の通信装置から、前記第2無線回路を用いた無線通信に関する情報を含むWSAフレームを受信した場合、
     前記制御回路は、前記WSAフレームに基づいて、通信装置と前記他の通信装置と間で、アソシエーション手続きを実行しないと判断する、通信装置。
  2.  前記制御回路は、前記第2無線回路を用いた無線通信に関する情報に応じて、前記他の通信装置に対して、ISS(Initiator Sector Sweep)用のSSWフレーム又はDMG Beaconフレームを前記第2無線回路から送信して、前記第2アンテナのアンテナ指向性トレーニングの制御を行う、
     請求項1に記載の通信装置。
  3.  通信装置の第1無線回路の無指向性の第1アンテナが、他の通信装置との通信に用いる第1制御フレームのうち、前記他の通信装置から第2無線回路を用いた無線通信に関する情報を含むWSAフレームを受信し、
     前記第1アンテナを介して前記第1制御フレーム及び第1データフレームの送受信制御を行い、有指向性の第2アンテナを有する第2無線回路を介して前記他の通信装置との通信に用いる第2制御フレーム及び第2データフレームの送受信制御を行う制御回路が、前記WSAフレームに基づいて、前記通信装置と前記他の通信装置と間で、アソシエーション手続きを実行しないと判断する、通信方法。
  4.  前記制御回路は、前記第2無線回路を用いた無線通信に関する情報に応じて、前記他の通信装置に対して、ISS(Initiator Sector Sweep)用のSSWフレーム又はDMG Beaconフレームを前記第2無線回路から送信して、前記第2アンテナのアンテナ指向性トレーニングの制御を行う、
     請求項3に記載の通信方法。
PCT/JP2021/008856 2020-03-27 2021-03-08 通信装置及び通信方法 WO2021192941A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112021001897.3T DE112021001897T5 (de) 2020-03-27 2021-03-08 Kommunikationsvorrichtung und Kommunikationsverfahren
CN202180019680.XA CN115280849A (zh) 2020-03-27 2021-03-08 通信装置及通信方法
US17/951,831 US20230016300A1 (en) 2020-03-27 2022-09-23 Communication device and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020058834A JP7394305B2 (ja) 2020-03-27 2020-03-27 通信装置及び通信方法
JP2020-058834 2020-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/951,831 Continuation US20230016300A1 (en) 2020-03-27 2022-09-23 Communication device and communication method

Publications (1)

Publication Number Publication Date
WO2021192941A1 true WO2021192941A1 (ja) 2021-09-30

Family

ID=77890077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008856 WO2021192941A1 (ja) 2020-03-27 2021-03-08 通信装置及び通信方法

Country Status (5)

Country Link
US (1) US20230016300A1 (ja)
JP (1) JP7394305B2 (ja)
CN (1) CN115280849A (ja)
DE (1) DE112021001897T5 (ja)
WO (1) WO2021192941A1 (ja)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120052124A1 (en) 2009-03-04 2012-03-01 Trustees Of Tufts College Silk fibroin systems for antibiotic delivery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANSEUL HONG (YONSEI UNIV.): "DMG in OCB environment", IEEE DRAFT; 11-19-1974-00-00BD-DMG-IN-OCB-ENVIRONMENT, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 NGV;802.11bd, no. 0, 13 November 2019 (2019-11-13), Piscataway, NJ USA , pages 1 - 11, XP068164699 *
JUSTIN MCNEW (IEEE 1609): "1609-TGbd Joint Session", IEEE DRAFT; 11-19-0752-00-00BD-1609-TGBD-JOINT-SESSION, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 NGV;802.11bd, no. 0, 7 May 2019 (2019-05-07), Piscataway, NJ USA , pages 1 - 8, XP068151002 *

Also Published As

Publication number Publication date
US20230016300A1 (en) 2023-01-19
CN115280849A (zh) 2022-11-01
JP7394305B2 (ja) 2023-12-08
DE112021001897T5 (de) 2023-02-09
JP2021158598A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
US10091759B2 (en) Mobility management method in macro-assisted system and related apparatuses using the same
KR101227305B1 (ko) 무선 네트워크에서의 연관 및 재연관을 위한 방법, 장치 및 저장 매체
CN101841882A (zh) 切换装置、系统和方法
JP2008537672A (ja) ワイヤレス通信システムにおけるマルチキャリア通信の管理のための方法および装置
BRPI0906108B1 (pt) Dispositivo e método para reserva de largura de banda direcional com abertura fixa de anúncio em redes sem fio
WO2011087574A2 (en) Device, system and method of communicating using configured transmission directionality
WO2021098063A1 (en) Methods and systems for transmitting integrated access and backhaul information
KR20130066577A (ko) 무선 통신 네트워크들에서 응답기-인식 릴레이 스테이션 선택을 위한 방법 및 시스템
JP7328399B2 (ja) 通信方法および無線端末装置
JP2014180055A (ja) 無線パーソナルエリアネットワークでの動的帯域予約を可能にする技術
JP2023532708A (ja) マルチリンクデバイスのためのaid割当て方法および関連装置
WO2021192941A1 (ja) 通信装置及び通信方法
WO2021193117A1 (ja) 通信装置及び通信方法
US10608692B1 (en) Dual receivers for advertisement scans
US20240107431A1 (en) Systems, methods, and devices for channel scanning in wireless devices
RU2809236C1 (ru) Способ назначения идентификатора ассоциирования для многоканального устройства и соответствующая аппаратура
WO2023008201A1 (ja) 通信装置及び通信方法
CN115088225B (zh) 一种波束指示方法及装置
CN112994766B (zh) 一种波束传输方法及相关设备
US20230224988A1 (en) Extended Device Pairing
JP7486087B2 (ja) 無線通信装置および無線通信方法
CN117098145A (zh) 波束管理方法、装置、相关设备及存储介质
WO2015161457A1 (zh) 一种天线系统、中继站及数据传输方法
JP2000036977A (ja) 移動局および移動局における無線周波数切替方法
KR20110062652A (ko) 차량용 무선 다중접속 통신 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776052

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21776052

Country of ref document: EP

Kind code of ref document: A1