WO2015161457A1 - 一种天线系统、中继站及数据传输方法 - Google Patents

一种天线系统、中继站及数据传输方法 Download PDF

Info

Publication number
WO2015161457A1
WO2015161457A1 PCT/CN2014/075980 CN2014075980W WO2015161457A1 WO 2015161457 A1 WO2015161457 A1 WO 2015161457A1 CN 2014075980 W CN2014075980 W CN 2014075980W WO 2015161457 A1 WO2015161457 A1 WO 2015161457A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
user equipment
antennas
relay station
identifier
Prior art date
Application number
PCT/CN2014/075980
Other languages
English (en)
French (fr)
Inventor
靳辉
杨敬
段为明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/075980 priority Critical patent/WO2015161457A1/zh
Priority to CN201480029058.7A priority patent/CN105340358A/zh
Publication of WO2015161457A1 publication Critical patent/WO2015161457A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications, and in particular, to an antenna system, a relay station, and a data transmission method.
  • the relay network includes: a base station, a relay station, and a user equipment (User Equipment, UE for short), where a link between the UE and the relay station is called an access link (Access Link).
  • the link between the relay station and the base station is called a backhaul link, and the relay station can perform a signal forwarding function between the base station and the UE, thereby replacing the direct downlink data service transmission of the base station, because the relay station Closer to the UE in the distance, the signal propagation path loss is small, and the UE signal-to-noise ratio is better, so that the network capacity of the UE is improved.
  • the capacity of the relay link between the relay station and the base station may become a bottleneck.
  • a wired optical fiber or a microwave backhaul relay link is usually used to improve The capacity of the relay link, however, is costly for the trunk link mode of the wired fiber.
  • the relay link mode of the microwave backhaul needs to create a scene that is directly directed to the base station and constrain the site selection of the relay station.
  • Embodiments of the present invention provide an antenna system, a relay station, and a data transmission method, which reduce deployment cost and site selection requirements of a relay station, enhance system network capacity, and provide stable data transmission for user equipment, and at the same time, can implement a relay station and a base station.
  • the data transmitted by the user equipment is required to be cooperatively transmitted, thereby improving the data transmission efficiency.
  • the technical solution adopted by the embodiment of the present invention is
  • an embodiment of the present invention provides an antenna system, including: a first antenna set, a second antenna set, and a third antenna set, where the first antenna set includes at least the second antenna set The number of antennas included is twice, and is at least twice the number of antennas included in the third antenna set.
  • the antenna in the first antenna set is a dual channel antenna, and is used for transmitting by the omnidirectional receiving user equipment. First data and second data sent by the base station;
  • An antenna in the second antenna set is configured to send the first data to the base station
  • An antenna in the third antenna set is configured to send the second data to the user equipment.
  • the antenna in the first antenna set is specifically configured to: receive the first one sent by the user equipment in an omnidirectional manner at a first frequency point Data, and, omnidirectionally receiving the second data sent by the base station at the second frequency point.
  • the antenna in the second antenna set is a single channel antenna
  • the antenna in the third antenna set is Correspondingly, the antenna in the second antenna set is specifically configured to send the first data to the base station by using a first preset angle on the first frequency point;
  • the antenna in the antenna set is specifically configured to send the second data to the user equipment by using a second preset angle on the second frequency point.
  • the antenna in the second antenna set is a dual channel antenna, and the antenna in the third antenna set a single channel antenna;
  • the antenna in the second antenna set is further configured to receive the second data in an omnidirectional manner.
  • the antenna in the second antenna set is specifically configured to send the first data to the base station by using a first preset angle on the first frequency point, and omnidirectional on the second frequency point Receiving second data sent by the base station;
  • the antenna in the third antenna set is specifically configured to send the second data to the user equipment by using a second preset angle on the second frequency point.
  • the antenna in the second antenna set is a single channel antenna, and the antenna in the third antenna set a dual channel antenna;
  • the antenna in the third antenna set is further configured to receive the first data in an omnidirectional manner.
  • the antenna in the second antenna set is specifically configured to send the first data to the base station by using a first preset angle on the first frequency point;
  • the antenna in the third antenna set is specifically configured to send the second data to the user equipment by using a second preset angle on the second frequency point, and, at the first frequency point, The first data sent to the user equipment is received.
  • the antenna in the second antenna set is a dual channel antenna
  • the antenna in the third antenna set a dual channel antenna
  • the antenna in the second antenna set is further configured to receive the second data in an omnidirectional manner; and the antenna in the third antenna set is further configured to receive the first data in an omnidirectional manner.
  • the antenna in the second antenna set is specifically configured to send the first data to the base station by using a first preset angle on the first frequency point, and omnidirectional on the second frequency point Receiving the second data sent by the base station; the antenna in the third antenna set is specifically configured to send the second data to the user equipment by using a second preset angle on the second frequency point, and And receiving, by the first frequency point, the first data sent by the user equipment in an omnidirectional manner.
  • an embodiment of the present invention provides a data transmission method, where the method is applied to an antenna system, where the antenna system includes a first antenna set, a second antenna set, and a third antenna set, and the first antenna set
  • the number of antennas included is at least twice the number of antennas included in the second antenna set, and is at least twice the number of antennas included in the third antenna set;
  • the method includes: The antenna omnidirectionally receives the first data sent by the user equipment and the second data sent by the base station;
  • the antenna in the second antenna set sends the first data to the base station; the antenna in the third antenna set sends the second data to the user equipment.
  • the antenna in the first antenna set receives the first data sent by the user equipment and the second data sent by the base station in an omnidirectional manner;
  • the antenna in the antenna set sends the first data to the base station;
  • the antenna in the third antenna set sends the second data to the user equipment, including: the antenna in the first antenna set is at the first frequency point Omnidirectionally receiving the user First data sent by the device, and omnidirectionally receiving the second data sent by the base station at the second frequency point;
  • the antenna in the second antenna set adopting a first preset angle on the first frequency point Transmitting the first data to the base station;
  • the antenna in the third antenna set sends the second data to the user equipment by using a second preset angle on the second frequency point.
  • the antenna in the second antenna set is a dual channel antenna, and the antenna in the third antenna set
  • the method further includes: the antenna in the second antenna set omnidirectionally receiving the second data.
  • the antenna in the second antenna set receives the second data omnidirectionally, including:
  • the antenna in the second antenna set omnidirectionally receives the second data sent by the base station at the second frequency point.
  • the antenna in the second antenna set is a single channel antenna, and the antenna in the third antenna set Correspondingly, the method further includes: the antenna in the third antenna set omnidirectionally receiving the first data.
  • the antenna in the third antenna set receives the first data omnidirectionally, including: The antenna in the three antenna sets omnidirectionally receives the first data sent by the user equipment on the first frequency point.
  • the antenna in the second antenna set is a dual channel antenna, and the antenna in the third antenna set a dual channel antenna;
  • the method further includes:
  • the antennas in the second antenna set receive the second data omnidirectionally; the antennas in the third antenna set receive the first data omnidirectionally.
  • the antenna in the second antenna set receives the second data in an omnidirectional manner;
  • the antenna receives the first data omnidirectionally, including:
  • the antenna in the second antenna set omnidirectionally receives the second data sent by the base station at the second frequency point;
  • the antenna in the third antenna set receives the first data sent by the user equipment in an omnidirectional manner at the first frequency point.
  • the embodiment of the present invention provides a relay station, comprising: the antenna system according to any one of the first aspect of the first aspect of the first aspect.
  • the embodiment of the present invention provides a data transmission method, which is applied to the relay station according to the third aspect, and includes:
  • the relay station receives the first identifier sent by the base station, where the first identifier includes an identifier of data not transmitted in the data requested by the user equipment;
  • the relay station transmits data corresponding to the first identifier to the user equipment according to the first identifier.
  • the relay station determines a coverage area of the user equipment corresponding to the user identifier in the relay station In the network, the relay station measures the reference signal receiving power of the user equipment corresponding to the user identifier; if the reference signal receiving power is greater than the first preset threshold, determining the user equipment corresponding to the user identifier In the coverage of the relay station; or, the relay station measures an upward wave angle of the user equipment corresponding to the user identifier; and if the uplink wave angle is greater than a second preset threshold, determining the The user equipment corresponding to the user identifier is within the coverage of the relay station.
  • the method further Includes:
  • the relay station receives data requested by the user equipment transmitted by the base station, and stores the data.
  • the method further includes: if the relay station determines And the user equipment corresponding to the user identifier moves from the coverage of the relay station to the outside of the coverage of the relay station, and determines that there is untransmitted data in the data corresponding to the first identifier, and sends a second identifier to the base station, where The second identifier includes an identifier of the untransmitted data in the data corresponding to the first identifier, so that the base station updates the first identifier according to the second identifier.
  • an embodiment of the present invention provides a data transmission method, including: receiving, by a base station, a data transmission request sent by a user equipment, where the data transmission request includes a user identifier of the user equipment and data requested by the user equipment to be transmitted.
  • the base station sends the user identifier to the relay station; the base station receives the request information sent by the relay station; Determining, by the base station, the first identifier according to the request message, where the first identifier includes an identifier of data not transmitted in the data requested by the user equipment, and the base station sends the first identifier to the relay station, So that the relay station sends data corresponding to the first identifier to the user equipment according to the first identifier.
  • the method before the receiving, by the base station, the request information sent by the relay station, the method further includes: the base station sending the user to the relay station The device requests the transmitted data, so that the relay station stores the data, and sends data corresponding to the first identifier to the user equipment according to the first identifier.
  • the method further includes: receiving, by the base station, the second identifier sent by the relay station,
  • the second identifier includes an identifier of data not transmitted in the data corresponding to the first identifier, and the base station updates the first identifier according to the second identifier.
  • an embodiment of the present invention provides a relay station, including:
  • a first receiving unit configured to receive a user identifier of a user equipment that is sent by the base station and request to transmit data
  • a determining unit configured to determine, when the first receiving unit receives the data requested by the user equipment and the user identifier, whether the user equipment corresponding to the user identifier is within the coverage of the relay station; When the determining unit determines that the user equipment corresponding to the user identifier is within the coverage of the relay station, sending request information to the base station;
  • a second receiving unit configured to receive a first identifier sent by the base station, where the first identifier includes a label of data not transmitted in the data requested by the user equipment Knowledge
  • the second sending unit is configured to: when the second receiving unit receives the first identifier, send data corresponding to the first identifier to the user equipment according to the first identifier received by the receiving unit.
  • the determining unit is specifically configured to: measure a reference signal received power of the user equipment corresponding to the user identifier; if the reference signal is received If the power is greater than the first preset threshold, the user equipment corresponding to the user identifier is determined to be within the coverage of the relay station; or the uplink wave angle of the user equipment corresponding to the user identifier is measured; If the angle of the Podado angle is greater than the second preset threshold, the user equipment corresponding to the user identifier is determined to be within the coverage of the relay station.
  • the first receiving unit is further configured to receive, at the second receiving unit Before receiving the first identifier sent by the base station, receiving data requested by the user equipment and transmitted by the base station;
  • the relay station further includes: a storage unit, configured to store data requested by the user equipment received by the first receiving unit to transmit.
  • the determining unit is further configured to determine the user And the corresponding user equipment is moved from the coverage of the relay station to the out-of-coverage of the relay station, and the data corresponding to the first identifier is determined to be untransmitted data.
  • the relay station further includes: a third sending unit, configured to send a second identifier to the base station, where the second identifier includes an identifier of data not transmitted in the data corresponding to the first identifier, so that the base station updates the location according to the second identifier The first identifier is described.
  • an embodiment of the present invention provides a base station, including: a first receiving unit, configured to receive a data transmission request sent by a user equipment, where the data transmission request includes a user identifier of the user equipment and the user equipment request An identifier of the transmitted data; the first sending unit, configured to: when the first receiving unit receives the data transmission request sent by the user equipment, send the user identifier to the relay station; and the second receiving unit is configured to receive the relay station And a determining unit, configured to determine, according to the request information, a first identifier, where the first identifier includes an identifier of data not transmitted by the user equipment, and a second sending unit is configured to: Sending the first identifier to the relay station, so that the relay station sends data corresponding to the first identifier to the user equipment according to the first identifier.
  • the first sending unit is further configured to: before the second receiving unit receives the request information sent by the relay station, to the relay station Transmitting, by the user equipment, data to be transmitted, so that the relay station stores the data, and sending data corresponding to the first identifier to the user equipment according to the first identifier.
  • the base station further includes: a third receiving unit, configured to receive the sending by the relay station a second identifier, where the second identifier includes an identifier of data not transmitted in the data corresponding to the first identifier, and an update unit, configured to update the first identifier according to the second identifier received by the second receiving unit.
  • a relay station including: a communication unit, configured to receive a user identifier of a user equipment that is requested by a base station to transmit data;
  • a processor configured to determine, when the receiving unit receives the data requested by the user equipment and the user identifier, whether the user equipment corresponding to the user identifier is within the coverage of the relay station; the communication unit is further configured to: When the processor determines that the user equipment corresponding to the user identifier is within the coverage of the relay station, sending request information to the base station;
  • the first identifier includes an identifier of data that is not transmitted in the data that the user equipment requests to transmit; and the first identifier that is received by the receiving unit is sent to the user equipment Sending data corresponding to the first identifier.
  • the processor is specifically configured to: measure a reference signal received power of the user equipment corresponding to the user identifier; if the reference signal is received If the power is greater than the first preset threshold, the user equipment corresponding to the user identifier is determined to be within the coverage of the relay station; or the uplink wave angle of the user equipment corresponding to the user identifier is measured; If the angle of the Podado angle is greater than the second preset threshold, the user equipment corresponding to the user identifier is determined to be within the coverage of the relay station.
  • the communication unit is further configured to receive, by the communication unit, the sending by the base station Before receiving the first identifier, receiving data requested by the user equipment sent by the base station;
  • the relay station further includes: a memory, configured to store data requested by the user equipment received by the communication unit.
  • the processor is further configured to determine the user Identifying that the corresponding user equipment moves from the coverage of the relay station to the outside of the coverage of the relay station, and determines that there is untransmitted data in the data corresponding to the first identifier; correspondingly, the communication unit is further used to The base station sends the second identifier, where the second identifier includes an identifier of the untransmitted data in the data corresponding to the first identifier, so that the base station updates the first identifier according to the second identifier.
  • the embodiment of the present invention provides a base station, including: a communication unit, configured to receive a data transmission request sent by a user equipment, where the data transmission request includes a user identifier of the user equipment, and the user equipment requests to transmit An identifier of the data; the user identifier is sent to the relay station; the request information sent by the relay station is received; the processor is configured to determine the first identifier according to the request information received by the communication unit, where the first identifier includes the An identifier of the untransmitted data in the data that the user equipment requests to transmit; the communication unit is further configured to send the first identifier to the relay station, so that the relay station sends the user identifier to the user equipment according to the first identifier.
  • the communications unit is further configured to: Sending, by the communication unit, the data requested by the user equipment to the relay station, before the communication unit receives the request information sent by the relay station, so that the relay station stores the data, and sends the data to the user according to the first identifier.
  • the device sends data corresponding to the first identifier.
  • the communication unit is further configured to receive a second identifier sent by the relay station, where The second identifier includes an identifier of data that is not transmitted in the data corresponding to the first identifier, and the processor is further configured to update the first identifier according to the second identifier received by the communications unit.
  • an embodiment of the present invention provides an antenna system, a relay station, and a data transmission method.
  • the antenna system includes: a first antenna set, a second antenna set, and a third antenna set, where the first antenna The set includes an antenna that is at least twice the number of antennas included in the second antenna set, and is at least twice the number of antennas included in the third antenna set; wherein, the antenna in the first antenna set is a dual channel antenna, configured to receive the first data sent by the user equipment and the second data sent by the base station; and the antenna in the second antenna set is used to send the first data to the base station; An antenna in the set of antennas is for transmitting the second data to the user equipment.
  • the deployment cost and the site selection requirement of the relay station are reduced, and the system network capacity is enhanced, and the user equipment is provided with stable data transmission; the transmission cost of the wired optical fiber in the prior art is avoided, and the microwave back is high.
  • the relay link mode of the transmission constrains the defect of the site selection of the relay station.
  • FIG. 1 is a schematic diagram of a relay network architecture
  • FIG. 2 is a structural diagram of an antenna system 20 according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a data transmission method according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a data transmission method according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a data transmission method according to an embodiment of the present invention
  • FIG. 8 is a flowchart of a data transmission method according to an embodiment of the present invention
  • FIG. 9 is a structural diagram of a relay station 90 according to an embodiment of the present invention
  • FIG. 9B is a structural diagram of a relay station 90 according to an embodiment of the present invention
  • FIG. 10 is a structural diagram of a base station 100 according to an embodiment of the present invention
  • FIG. 1 is a structural diagram of a relay station 1 10 according to an embodiment of the present invention
  • FIG. 12 is a structural diagram of a base station 120 according to an embodiment of the present invention
  • the method may include: a first antenna set 201, a second antenna set 202, and a third antenna set 203, and a first antenna set 201.
  • the number of antennas included is at least the second antenna set
  • the number of antennas included in the combination 202 is 2 times, and at least 2 times the number of antennas included in the third antenna set 203.
  • the antenna in the first antenna set 201 is a dual channel antenna, and is used for omnidirectional receiving user equipment.
  • the number of antennas included in the first antenna set 201 is several tens of times the number of antennas included in the second antenna set 202, and is several tens of times the number of antennas included in the third antenna set 203
  • the second antenna set 202 has 2 Antenna set of 4 or 4 transmit ports
  • the third antenna set 203 is an antenna set having 2 or 4 transmit ports, which realizes an asymmetric structure of the antenna system of the antenna system, and improves the data transmission rate in the hot spot of the mobile service and The system capacity; wherein, the specific number of antennas included in the first antenna set 201, the second antenna set 202, and the third day set 203 may be preset by the system as needed, which is not performed by the embodiment of the present invention. limited.
  • the antenna in the first antenna set 201 is specifically configured to simultaneously receive the first data sent by the user equipment at the first frequency point and the second data sent by the omnidirectional receiving base station at the second frequency point;
  • the first frequency point and the second frequency point are set as needed, which is not limited by the embodiment of the present invention; for example, the antenna in the first antenna set 201 receives the first data sent by the user equipment at a frequency of 2 GHz. Receiving the second data sent by the base station at a frequency of 2.5 GHz.
  • the antenna in the second antenna set 202 is a single-channel antenna
  • the antenna in the third antenna set 203 is a single-channel antenna.
  • the antenna in the second antenna set 202 is specifically used to adopt the first pre- The transmitting angle is sent to the base station at the first frequency point, where the single channel antenna is an antenna that transmits and receives signals at one frequency point, and the first preset sending angle is performed by the system.
  • the angle is set to be 2°, 4°, 30°, 40°, and the like.
  • the antenna in the second antenna set 202 transmits the first data to the base station at a transmission angle of 30° at a frequency of 2 GHz.
  • the antenna in the third antenna set 203 is specifically configured to send the second data to the user equipment at a second frequency point by using a second preset transmission angle, where the second preset sending angle is
  • the angles to be set in the process of data transmission may be 10°, 15°, 20°, 40°, etc., which are not limited by the embodiment of the present invention; for example, the antenna in the third antenna set is at 2.5 GHz.
  • the frequency point transmits the second data to the user equipment at a transmission angle of 15°.
  • the antenna in the second antenna set 202 is a dual channel antenna
  • the antenna in the third antenna set 203 is a single channel antenna.
  • the antenna in the second antenna set 202 is also used to receive the sending by the base station. Second data.
  • the antenna in the second antenna set 202 is specifically configured to send the first data to the base station by using a first preset angle on the first frequency point, and omnidirectional at the second frequency point.
  • Receiving the second data sent by the base station for example, the antenna in the second antenna set 202 receives the second data sent by the base station at a frequency of 2.5 GHz.
  • the antenna in the second antenna set 202 is a single channel antenna
  • the antenna in the third antenna set 203 is a dual channel antenna.
  • the antenna in the third antenna set 203 is also used to receive users.
  • the first data sent by the device is specifically configured to send the first data to the base station by using a first preset angle on the first frequency point, and omnidirectional at the second frequency point.
  • Receiving the second data sent by the base station for example, the antenna in the second antenna set 202 receives the second data sent by the base station at a frequency of 2.5 GHz.
  • the antenna in the second antenna set 202 is a single channel antenna
  • the antenna in the third antenna set 203 is specifically configured to send the second data to the user equipment by using a second preset angle on the second frequency point, and Receiving the first data sent by the user equipment; for example, the antenna in the third antenna set 203 receives the first data sent by the user equipment at a frequency of 2 GHz.
  • the antenna in the second antenna set 202 is a dual channel antenna
  • the antenna in the third antenna set 203 is a dual channel antenna;
  • the antenna in the second antenna set 202 is further configured to receive the second data sent by the base station; and the antenna in the third antenna set 203 is further configured to receive the first data sent by the user equipment.
  • the antenna in the second antenna set 202 is specifically configured to send the first data to the base station by using a first preset angle on the first frequency point, and omnidirectional at the second frequency point.
  • Receiving the second data sent by the base station for example, the antenna in the second antenna set 202 receives the second data sent by the base station at a frequency of 2.5 GHz.
  • the antenna in the third antenna set 203 is specifically configured to send the second data to the user equipment by using a second preset angle on the second frequency point, and receive the user in an omnidirectional manner at the first frequency point.
  • the first data sent by the device for example, the antenna in the third antenna set 203 receives the first data sent by the user equipment at a frequency of 2 GHz.
  • an embodiment of the present invention provides an antenna system 20, including a first antenna set 201, a second antenna set 202, and a third antenna set 203.
  • the first antenna set 201 includes at least the number of antennas.
  • the two antenna sets 202 comprise twice the number of antennas, and at least twice the number of antennas included in the third antenna set 203.
  • the antennas in the first antenna set 201 are dual-channel antennas, and are used for all The first data sent to the receiving user equipment and the second data sent by the base station; the antenna in the second antenna set 202 is used to send the first data to the base station; the antenna in the third antenna set 203 And the sending the second data to the user equipment.
  • the asymmetric antenna structure is used for transmitting and receiving signals, which reduces the deployment cost and site selection requirements of the relay station, and at the same time enhances the system network capacity and provides stable data transmission for the user equipment; avoids the relay chain of the wired optical fiber in the prior art.
  • the cost of the road mode deployment is very high, and the relay link mode of the microwave backhaul constrains the defect of the site selection of the relay station.
  • Embodiment 2 The embodiment of the present invention provides a data transmission method, where the method is applied to an antenna system, where the antenna system includes a first antenna set, a second antenna set, and a third antenna set, where the first antenna set includes The number of antennas is at least the second antenna collection package Two times the number of antennas included, and at least twice the number of antennas included in the third antenna set; as shown in FIG. 3, the data transmission method may include the following steps:
  • the antenna in the first antenna set receives the first data sent by the user equipment and the second data sent by the base station.
  • the antenna in the first antenna set can receive the first data sent by the user equipment in an omnidirectional manner at the first frequency point, and the second data sent by the omnidirectional receiving base station at the second frequency point; for example, The antenna in an antenna set receives the first data sent by the user equipment at a frequency of 2 GHz, and receives the second data sent by the base station at a frequency of 2.5 GHz.
  • An antenna in the second antenna set transmits the first data to the base station.
  • the antenna in the second antenna set may send the first data to the base station by using a first preset transmission angle at a first frequency point; wherein the first preset transmission angle is that the system is performing data
  • the angle of the range of 2°, 4°, 30°, 40°, etc. may be set in the embodiment of the present invention; for example, the antenna in the second antenna set is at a frequency of 2 GHz.
  • the first data is transmitted to the base station at a transmission angle of 30°.
  • the antenna in the third antenna set sends the second data to the user equipment.
  • the antenna in the third antenna set may send the second data to the user equipment by using a second preset transmission angle at the second frequency point; wherein the second preset transmission angle is performed by the system
  • the angle of the data transmission may be 10°, 15°, 20°, 40°, etc., which is not limited by the present invention; for example, the antenna in the third antenna set is at a frequency of 2.5 GHz.
  • the second data is transmitted to the user equipment at a transmission angle of 15°.
  • the antenna in the second antenna set is a dual channel antenna
  • the antenna in the third antenna set is a single channel antenna.
  • the data transmission method further includes: sending, by the antenna in the second antenna set, the omnidirectional receiving base station The second data.
  • the antenna in the second antenna set can receive the second data sent by the base station in an omnidirectional manner at the second frequency point.
  • the antenna in the second antenna set receives the second data transmitted by the base station at a frequency of 2.5 GHz.
  • the antenna in the second antenna set is a single channel antenna, and the antenna in the third antenna set is a dual channel antenna;
  • the data transmission method further includes: the antenna in the third antenna set receives the first data sent by the user equipment in an omnidirectional manner.
  • the antenna in the third antenna set can receive the first data sent by the user equipment in an omnidirectional manner at the first frequency point.
  • the antenna in the third antenna set receives the first data transmitted by the user equipment at a frequency of 2 GHz.
  • the antenna in the second antenna set is a dual channel antenna
  • the antenna in the third antenna set is a dual channel antenna.
  • the data transmission method further includes: sending, by the antenna in the second antenna set, the omnidirectional receiving base station The second data; the antenna in the third antenna set omnidirectionally receives the first data sent by the user equipment.
  • the antenna in the second antenna set may receive the second data sent by the base station in an omnidirectional manner at the second frequency point, and the antenna in the third antenna set may receive the first information sent by the user equipment at the first frequency point.
  • Data for example, the antenna in the second antenna set receives the second data transmitted by the base station at a frequency of 2.5 GHz; the antenna in the third antenna set receives the first data sent by the user equipment at a frequency of 2 GHz.
  • an embodiment of the present invention provides a data transmission method, where the method is applied to an antenna system, where the antenna system includes a first antenna set, a second antenna set, and a third antenna set, where the first antenna set
  • the number of antennas included is at least twice the number of antennas included in the second antenna set, and is at least twice the number of antennas included in the third antenna set
  • the antenna in the first antenna set is sent to the omnidirectional receiving user equipment
  • the first data and the second data sent by the base station, the antenna in the second antenna set sends the first data to the base station, and the antenna in the third antenna set sends the antenna to the user equipment Second data.
  • FIG. 4 is a structural diagram of a relay station 40 according to an embodiment of the present invention. As shown in FIG. 4, the system includes: an antenna system 20; wherein the antenna system 20 has the same function as the antenna system described in Embodiment 1. I will not repeat them here.
  • an embodiment of the present invention provides a relay station 40, including an antenna system 20, where the antenna system includes a first antenna set, a second antenna set, and a third antenna set, where the first antenna set includes at least an antenna number Two times the number of antennas included in the second antenna set, and at least twice the number of antennas included in the third antenna set; wherein, the antenna in the first antenna set receives the first one sent by the user equipment The data and the second data sent by the base station, the antenna in the second antenna set sends the first data to the base station, and the antenna in the third antenna set sends the second data to the user equipment.
  • the asymmetric antenna structure is used for transmitting and receiving signals, which reduces the deployment cost and site selection requirements of the relay station, and at the same time enhances the system network capacity and provides stable data transmission for the user equipment; avoids the relay chain of the wired optical fiber in the prior art.
  • the cost of the road mode deployment is very high, and the relay link mode of the microwave backhaul constrains the defect of the site selection of the relay station.
  • FIG. 5 is a flowchart of a data transmission method according to an embodiment of the present invention. As shown in FIG. 5, the following steps may be included:
  • the relay station receives a user identifier of the user equipment that is sent by the base station and requests to transmit data.
  • the relay station may be the relay station according to the third embodiment, and the user identifier of the user equipment that is requested by the base station to transmit data is received by the antenna system.
  • the relay station can receive the user identifier of the user equipment that requests the transmission data sent by the base station through the air interface radio link.
  • the relay station determines that the user equipment corresponding to the user identifier is within the coverage of the relay station, and sends request information to the base station.
  • the request information is used to indicate that the base station stops data transmission to the user equipment, and requests the base station to send the first identifier to the relay station; the first identifier includes an identifier of data that is not transmitted to the user equipment in the data that the user equipment requests to transmit.
  • the relay station can determine that the user equipment corresponding to the user identifier is within the coverage of the relay station by using the following methods (1) - (2); the following two methods are respectively described:
  • the relay station measures a reference signal receiving power (RSRP) of the user equipment corresponding to the user identifier, and determines whether the user equipment corresponding to the user identifier is within the coverage of the relay station;
  • RSRP reference signal receiving power
  • the first preset threshold is preset according to the performance of the relay station, which is not limited by the embodiment of the present invention; the reference signal received power of the user equipment is greater than the first preset threshold, indicating that the user equipment is at the relay station.
  • the coverage of the reference signal of the user equipment is less than or equal to the first preset threshold, indicating that the user equipment is not within the coverage of the relay station. For example, as shown in FIG.
  • the reference signal power of the user equipment is stronger than that of the relay station 1, that is, the user equipment is constantly Approaching the relay station 1, when the reference signal received power of the user equipment is greater than the first preset threshold, the user equipment enters the coverage of the relay station 1, and as the user equipment continues to move, The user equipment will gradually move away from the relay station 1 to the relay station 2, The reference signal power of the user equipment is weaker and weaker than the relay station 1. When the reference signal received power of the user equipment is less than or equal to the first preset threshold, the user equipment leaves the coverage of the relay station 1. Time.
  • the relay station measures the size of the Direction Of Arrival (DOA) angle of the user equipment corresponding to the user identifier, that is, the size of the angle of arrival angle, and determines whether the user equipment corresponding to the user identifier is at the relay station.
  • DOA Direction Of Arrival
  • the second preset threshold is preset according to the performance of the relay station, which is not limited by the embodiment of the present invention; the angle of arrival of the user equipment is greater than the second preset threshold, indicating that the user equipment is at the relay station.
  • the coverage angle of the user equipment is less than or equal to the second preset threshold, indicating that the user equipment is not within the coverage of the relay station. For example, as shown in FIG.
  • the angle of the angle of the user equipment is larger and larger relative to the relay station 1, that is, the user equipment is Continuing to move to the relay station 1 , when the angle of arrival of the user equipment is greater than a second predetermined threshold, the user equipment enters the coverage of the relay station 1 , and as the user equipment continues to move, The user equipment will gradually move away from the relay station 1 to the relay station 2. Compared with the relay station 1, the angle of arrival angle of the user equipment will become smaller and smaller, when the angle of arrival of the user equipment is less than or equal to the first When the preset threshold is two, the user equipment leaves the coverage of the relay station 1.
  • the relay station receives the first identifier sent by the base station, where the first identifier includes an identifier of data that is not transmitted in the data that the user equipment requests to transmit.
  • the relay station may be the relay station according to the third embodiment, and the first identifier sent by the base station is received by the antenna system in an omnidirectional manner.
  • the relay station sends data corresponding to the first identifier to the user equipment according to the first identifier.
  • the relay station may be the relay station according to the third embodiment, and the data corresponding to the first identifier is sent to the user equipment in the antenna system.
  • the relay station sequentially sends the third line to the user equipment. Data, fourth data and fifth data.
  • the method further includes: the relay station receiving data requested by the user equipment sent by the base station, and storing the data, so that when the user equipment enters And the data corresponding to the first identifier is forwarded to the user equipment corresponding to the user identifier when the coverage of the relay station is reached.
  • the data includes a corresponding data identifier. For example, as shown in Table 1, there are five data that the user equipment requests to transmit, the identifier of the first data is 1, and the identifier of the second data is 2, the third The identifier of the data is 3, the identifier of the third data is 4, and the identifier of the fifth data is 5.
  • Table 1 there are five data that the user equipment requests to transmit, the identifier of the first data is 1, and the identifier of the second data is 2, the third The identifier of the data is 3, the identifier of the third data is 4, and the identifier of the fifth data is 5.
  • the method further includes: if the relay station determines that the user equipment corresponding to the user identifier moves from the coverage of the relay station to the coverage of the relay station, and determines that the data corresponding to the first identifier is not transmitted.
  • Data the second identifier is sent to the base station, where the second identifier includes an identifier of data not transmitted in the data corresponding to the first identifier, so that The base station updates the first identifier according to the second identifier.
  • the relay station sequentially sends the third data, the fourth data, and the fifth data to the user equipment according to the first identifier. When the user equipment is in the coverage of the relay station, the relay station will use the third data and the fourth data.
  • the strip data is sent to the user equipment, and the second piece of data has not been sent to the user equipment.
  • the correspondence between the data identifier and the data indicates that the relay station sends the second identifier including the identifier 5 to the base station.
  • the relay station may determine the coverage of the user equipment corresponding to the user identifier from the relay station by measuring the reference signal power of the user equipment corresponding to the user identifier or the angle of arrival of the user equipment corresponding to the user identifier. Moves out of the coverage of the relay station.
  • an embodiment of the present invention provides a data transmission method, where a relay station receives a user identifier of a user equipment that is requested by the base station to transmit data, and determines that the user equipment corresponding to the user identifier is within the coverage of the relay station, The base station sends the request information, receives the first identifier sent by the base station, and sends data corresponding to the first identifier to the user equipment according to the first identifier.
  • the data that the user equipment requires to be transmitted between the relay station and the base station can be cooperatively transmitted, and the data transmission efficiency is improved.
  • Embodiment 5 Figure 6 is a flowchart of a data transmission method according to an embodiment of the present invention. As shown in Figure 6, the following steps may be included:
  • the base station receives a data transmission request sent by the user equipment, where the data transmission request includes a user identifier of the user equipment and an identifier of data requested by the user equipment to be transmitted.
  • the identifier is used to identify data. For example, as shown in Table 1 in Embodiment 4, the identifier 1 corresponds to the first data, and the identifier 2 corresponds to the second data.
  • the base station sends the user identifier to the relay station.
  • the base station may send the foregoing to all relay stations in the coverage of the base station.
  • User identification Preferably, the base station may send the foregoing to all relay stations in the coverage of the base station.
  • the base station receives the request information sent by the relay station, where the request information is used to request an identifier of the untransmitted data in the data requested by the user equipment.
  • the base station determines, according to the request information, a first identifier, where the first identifier includes an identifier of data that is not transmitted in the data that the user equipment requests to transmit.
  • the base station may obtain an identifier corresponding to the data that is not sent to the user equipment by querying the data that the base station transmits to the user equipment.
  • the base station sends a first identifier to the relay station, so that the relay station sends data corresponding to the first identifier to the user equipment according to the first identifier. For example, suppose the correspondence between the data requested by the user and the data identifier is as shown in Table 1. When the user equipment enters the relay station, the data that is not sent to the user equipment includes the third data, the fourth data, and the fifth data. Then, when the base station receives the request information sent by the relay station, the first identifier including the identifiers 3, 4, and 5 is sent to the relay station.
  • the method further includes: sending, by the base station, the data requested by the user equipment to the relay station, so that the relay station stores the data, and according to The first identifier sends data corresponding to the first identifier to the user equipment.
  • the method further includes: receiving, by the base station, the second identifier sent by the relay station, where the second identifier includes an identifier of data not transmitted in the data corresponding to the first identifier; and the base station updates the location according to the second identifier
  • the first identifier is described.
  • the base station may replace the identifier in the first identifier with the identifier in the second identifier; for example, the first identifier includes the identifiers 3, 4, and 5, and the second identifier received by the base station includes 5 Then, the base station replaces the first identifier with the identifier that includes the identifier 5.
  • the foregoing steps are a process in which a base station and a relay station cooperate to transmit to a user equipment.
  • the user equipment enters the coverage area of the relay station from the coverage area of the relay station, data is directly transmitted between the base station and the user equipment.
  • the above steps are re-executed to realize the cooperation between the base station and the relay station, and the different relay stations cooperate to transmit all the data requested by the user equipment to the user equipment.
  • the embodiment of the present invention provides a data transmission method, where the base station receives a data transmission request sent by the user equipment, and sends the user identifier to the relay station; receives the request information sent by the relay station, and sends the first identifier to the relay station. And the relay station sends the data requested by the user equipment to the user equipment according to the first identifier, and receives the second identifier sent by the relay station, and updates the first identifier according to the second identifier.
  • the base station receives a data transmission request sent by the user equipment, and sends the user identifier to the relay station; receives the request information sent by the relay station, and sends the first identifier to the relay station.
  • the relay station sends the data requested by the user equipment to the user equipment according to the first identifier, and receives the second identifier sent by the relay station, and updates the first identifier according to the second identifier.
  • Embodiment 6 The data transmission method provided by the embodiment of the present invention is specifically described below.
  • Embodiment 6 The data transmission method provided by the embodiment of the present invention is applied to a deployment scenario based on an urban main road line shown in FIG. 7, as shown in FIG. 7, including a relay station 1, a relay station 2, a base station, and a user equipment;
  • the relay station 1 and the relay station 2 are deployed along the main road of the city, and are all within the coverage of the base station, and the user equipment passes the coverage of the relay station 1 and the relay station 2 in sequence along the dotted line in FIG. 7, the base station, the relay station, and the user equipment.
  • the data transmission is performed by means of an air interface wireless link.
  • the relay station 1 and the relay station 2 can be the relay station described in the second embodiment; wherein, for convenience of description, in FIG. 7, only the deployment is performed.
  • Relay station 1 and relay station 2 in fact, multiple relay stations can be deployed along the main trunk line as needed; meanwhile, in order to avoid mutual interference between relay stations, the coverage areas between the relay stations do not overlap each other after the relay stations are deployed;
  • the data transmission method provided by the embodiment of the present invention can also be applied to other relay stations that need to be A communication data transmission scenario, embodiments of the present invention which is not limited, based on city roads embodiment shown in FIG. 7 embodiment of the present invention only The data transmission method is described as an example in the deployment scenario of the line.
  • the data transmission method provided by the embodiment of the present invention may include the following steps:
  • the user equipment sends a data transmission request to the base station.
  • the data transmission request includes an identifier of the data that the user equipment requests to transmit and a user identifier.
  • the identifier is used to identify data requested by the user equipment.
  • the base station transmits a user identity to the relay station 1 and the relay station 2.
  • the data includes a data identifier.
  • the correspondence between the data and the data identifier that the user equipment requests to transmit is as shown in Table 1.
  • the base station sends data to the relay station, the data identifier corresponding to the data is also sent to the relay station.
  • the relay station 1 determines that the user equipment corresponding to the user identifier enters the coverage of the relay station 1.
  • the relay station 1 can determine that the user equipment enters the coverage of the relay station 1 by measuring the reference signal power of the user equipment corresponding to the user identifier or the angle of arrival angle of the user equipment corresponding to the user identifier. It should be noted that, the relay station 1 determines whether the user equipment enters the coverage of the relay station 1 by measuring the reference signal power of the user equipment corresponding to the user identifier or the angle of arrival of the user equipment corresponding to the user identifier.
  • the relay station 2 determines whether the user equipment enters the coverage of the relay station 2 by measuring the reference signal power of the user equipment corresponding to the user identifier or the angle of arrival of the user equipment corresponding to the user identifier.
  • the relay station 1 first determines the user equipment.
  • the relay station 1 sends a request message to the base station. The request message is used to instruct the base station to send an identifier of the untransmitted data in the data requested by the user equipment to the relay station 1, and notify the base station to stop data transmission with the user equipment.
  • the base station sends the first identifier to the relay station 1.
  • the first identifier is an identifier of the untransmitted data in the data that the user equipment requests to transmit. For example, among the five pieces of data requested by the user equipment, the third data, the fourth data, and the fifth data are not sent to the user equipment, The first logo contains 3, 4, 5.
  • the relay station 1 sends data corresponding to the first identifier to the user equipment according to the first identifier. For example, if the first identifier includes 3, 4, 5, the relay station 1 sequentially sends the third data, the fourth data, and the fifth data to the user equipment.
  • the relay station 1 determines the coverage of the user equipment corresponding to the user identifier leaving the relay station 1.
  • the relay station 1 sends a second identity to the base station.
  • the second identifier is an identifier of data that is not transmitted in the data corresponding to the first identifier. For example, when the user equipment is in the range of the relay station 1, the relay station 1 only uses the third data and the fourth data corresponding to the first identifier.
  • the second identifier includes the identifier 5, which is sent to the user equipment, and the fifth piece of data has not been sent to the user equipment.
  • the base station updates the first identifier.
  • the base station replaces the identifier included in the first identifier with the identifier in the second identifier; for example, the second identifier includes the identifier 5, and the base station replaces the identifier 3, 4, 5 included in the first identifier with the identifier 5 , that is, the updated first identifier contains the identifier 5.
  • the relay station 2 determines that the user equipment enters the coverage of the relay station 2.
  • the relay station 2 sends a request message to the base station.
  • the base station sends the first identifier to the relay station 2.
  • the relay station 2 transmits data to the user equipment according to the first identifier. For example, if the first identifier includes the identifier 5, the relay station 2 sends the fifth piece of data to the user equipment. At this time, the data transmission requested by the user equipment is completed. Further, before the step 803, the method further includes: the base station transmitting the data requested by the user equipment to the relay station 1 and the relay station 2, so that the relay station 1 and the relay station 2 store the data, according to the first identifier The user equipment sends data corresponding to the first identifier in the data.
  • the embodiment of the present invention provides a data transmission method, where a user equipment sends a data transmission request to a base station, and the base station sends a user identifier to the relay station 1 and the relay station 2, and the relay station 1 and the relay station 2 determine whether the user equipment corresponding to the identifier is Within the coverage of the corresponding relay station, when the relay station 1 determines that the user equipment enters the coverage of the relay station 1, the relay station 1 transmits a request message to the base station, and the base station transmits a first identifier to the relay station 1, and the relay station 1 transmits the first identifier to the user equipment according to the first identifier.
  • FIG. 9 is a structural diagram of a relay station 90 according to an embodiment of the present invention. As shown in FIG.
  • the method includes: a first receiving unit 901, configured to receive a user identifier of a user equipment that is requested by a base station to transmit data.
  • the determining unit 902 is configured to determine, when the first receiving unit 901 receives the user identifier sent by the base station, that the user equipment corresponding to the user identifier is within the coverage of the relay station 90.
  • the first sending unit 903 is configured to: when the determining unit 902 determines that the user equipment corresponding to the user identifier is within the coverage of the relay station 90, send the request information to the base station.
  • the second receiving unit 904 is configured to receive the first identifier sent by the base station, where the first identifier includes an identifier of data that is not transmitted in the data that the user equipment requests to transmit.
  • the second sending unit 905 is configured to send, according to the first identifier received by the second receiving unit 904, data corresponding to the first identifier to the user equipment.
  • the first receiving unit 901 is specifically configured to receive, by using an air interface, a user identifier that is sent by the base station.
  • the determining unit 902 is specifically configured to determine, by using the following manners (1)-(2), whether the user equipment corresponding to the user identifier is within the coverage of the relay station; The method is explained separately:
  • RSRP reference signal receiving power
  • the first preset threshold is preset according to the performance of the relay station, which is not limited by the embodiment of the present invention; the reference signal received power of the user equipment is greater than the first preset threshold, indicating that the user equipment is at the relay station.
  • the coverage of the reference signal of the user equipment is less than or equal to the first preset threshold, indicating that the user equipment is not within the coverage of the relay station. For example, as shown in FIG.
  • the reference signal power of the user equipment is stronger than that of the relay station 1, that is, the user equipment is constantly Approaching the relay station 1 , when the reference signal received power of the user equipment is greater than the first preset threshold, the user equipment enters the coverage of the relay station 1 , along with the user equipment Moving forward, the user equipment will gradually move away from the relay station 1 to the relay station 2.
  • the reference signal power of the user equipment will become weaker and weaker, when the reference signal receiving power of the user equipment is less than or Equal to the first preset threshold, when the user equipment leaves the coverage of the relay station 1.
  • the second preset threshold is preset according to the performance of the relay station, which is not limited by the embodiment of the present invention; the angle of arrival of the user equipment is greater than the second preset threshold, indicating that the user equipment is at the relay station.
  • the coverage angle of the user equipment is less than or equal to the second preset threshold, indicating that the user equipment is not within the coverage of the relay station.
  • the angle of the angle of the user equipment is larger and larger relative to the relay station 1, that is, the user equipment is Continuing to move to the relay station 1 , when the angle of arrival of the user equipment is greater than a second predetermined threshold, the user equipment enters the coverage of the relay station 1 , and as the user equipment continues to move, The user equipment will gradually move away from the relay station 1 to the relay station 2.
  • the angle of arrival angle of the user equipment will become smaller and smaller, when the angle of arrival of the user equipment is less than or equal to the first
  • the preset threshold is two
  • the user equipment leaves the coverage of the relay station 1.
  • the first receiving unit 901 is further configured to: before the second receiving unit 904 receives the first identifier sent by the base station, receive data requested by the user equipment sent by the base station; correspondingly, as shown in FIG. 9A
  • the relay station 90 further includes: a storage unit 906, configured to store data requested by the user equipment received by the first receiving unit 901.
  • the determining unit 902 is further configured to: determine that the user equipment corresponding to the user identifier moves from the coverage of the relay station to outside the coverage of the relay station, and determines that the data corresponding to the first identifier exists.
  • the relay station 90 further includes: a third sending unit 907, configured to determine, in the determining unit 902, that the user equipment corresponding to the user identifier moves from the coverage of the relay station to When the coverage of the relay station is out of range, the second identifier is sent to the base station, where the second identifier includes an identifier of data not transmitted in the data corresponding to the first identifier, so that the base station is configured according to the second identifier.
  • the relay station sequentially sends the third data, the fourth data, and the fifth data to the user equipment according to the first identifier.
  • the relay station will use the third data and the fourth data.
  • the strip data is sent to the user equipment, and the fifth piece of data has not been sent to the user equipment.
  • the relay station sends the second identifier including the identifier 5 to the base station.
  • the embodiment of the present invention provides a relay station 90, which receives a user identifier of a user equipment sent by the base station, determines that the user equipment corresponding to the user identifier is within the coverage of the relay station 90, and sends request information to the base station; The first identifier sent by the base station, and the data corresponding to the first identifier is sent to the user equipment according to the first identifier. In this way, the data that the user equipment requires to be transmitted between the relay station and the base station can be cooperatively transmitted, and the data transmission efficiency is improved.
  • FIG. 10 is a structural diagram of a base station 100 according to an embodiment of the present invention. As shown in FIG.
  • the method includes: a first receiving unit 1001, configured to receive a data transmission request sent by a user equipment.
  • the data transmission request includes an identifier of the user equipment and an identifier of data requested by the user equipment, and an identifier of the data requested by the user equipment is used to identify data.
  • the first sending unit 1002 is configured to send, when the first receiving unit 1001 receives the data transmission request sent by the user equipment, the user identifier of the user equipment to the relay station.
  • the second receiving unit 1003 is configured to receive request information sent by the relay station.
  • the request information is used to request an identifier of the untransmitted data in the data requested by the user equipment.
  • the determining unit 1004 is configured to determine, according to the request message, a first identifier, where the first identifier includes an identifier of data that is not transmitted in the data that the user equipment requests to transmit.
  • the second sending unit 1005 is configured to: when the second receiving unit 1003 receives the request information sent by the relay station, send the first identifier to the relay station, so that the relay station sends the first identifier according to the first identifier.
  • the user equipment sends data corresponding to the first identifier.
  • the first sending unit 1002 is further configured to: before the second receiving unit 1003 receives the request message sent by the relay station, send the data requested by the user equipment to the relay station, so that the The relay station stores the data, and sends data corresponding to the first identifier to the user equipment according to the first identifier.
  • the base station 100 further includes: a third receiving unit 1006, configured to receive a second identifier sent by the relay station, where the second identifier includes the data corresponding to the first identifier. The identifier of the transmitted data.
  • the updating unit 1007 is configured to update the first identifier according to the second identifier received by the receiving unit 1001.
  • the updating unit 1007 is specifically configured to replace the identifier in the first identifier with the identifier in the second identifier; for example, suppose the first identifier includes the identifiers 3, 4, and 5, and the received second The identifier contains 5, and the update unit replaces the first identifier with the identifier containing the identifier 5.
  • the embodiment of the present invention provides a base station 100, which receives a data transmission request sent by a user equipment, and sends a user identifier of the user equipment to a relay station; receives request information sent by the relay station, and sends a first message to the relay station.
  • the identifier is sent, so that the relay station sends the data that the user equipment requests to transmit to the user equipment according to the first identifier, and receives the second identifier sent by the relay station, and updates the first identifier according to the second identifier.
  • the data that the user equipment requires to be transmitted between the relay station and the base station can be cooperatively transmitted, and the data transmission efficiency is improved.
  • the relay station 110 may include: a processor 1101, a memory 1102, a transceiver 1103, and at least one communication bus 1104, for implementing these devices. Connections and mutual communication;
  • the processor 1101 can be a central processing unit (English: central processing unit, referred to as CPU).
  • the memory 1102 may be a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); or a non-volatile memory (English: non-volatile memory), for example only Read memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, abbreviation: SSD); or a combination of the above types of memories, and provides instructions and data to the processor 1001.
  • volatile memory such as a random access memory (English: random-access memory, abbreviation: RAM); or a non-volatile memory (English: non-volatile memory), for example only Read memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, abbreviation: SSD); or
  • the transceiver 1103 is configured to transmit and receive signals and perform data transmission with an external network element.
  • the transceiver 1103 is the antenna system according to the first embodiment.
  • the transceiver 1103 is configured to receive a user identifier of the user equipment that is sent by the base station and request to transmit data.
  • the processor 1101 is configured to: when the transceiver 1103 receives the user identifier of the user equipment sent by the base station, determine whether the user equipment corresponding to the user identifier is in the relay Station 1 10 coverage.
  • the transceiver 1 103 is further configured to: when the processor 1101 determines that the user equipment corresponding to the user identifier is within the coverage of the relay station 10, send the request information to the base station; and receive the first identifier sent by the base station, The first identifier includes an identifier of data not transmitted in the data requested by the user equipment. And transmitting, according to the first identifier received by the transceiver 1 103, data corresponding to the first identifier to the user equipment.
  • the transceiver 1 103 is specifically configured to receive, by using an air interface radio link, a user identifier of the user equipment sent by the base station. Further, the processor 1101 is specifically configured to determine, by using the following (1) - (2), whether the user equipment corresponding to the user identifier is within the coverage of the relay station; The methods are described separately:
  • RSRP reference signal receiving power
  • the first preset threshold is preset according to the performance of the relay station, which is not limited by the embodiment of the present invention; the reference signal received power of the user equipment is greater than the first preset threshold, indicating that the user equipment is at the relay station.
  • the coverage of the reference signal of the user equipment is less than or equal to the first preset threshold, indicating that the user equipment is not within the coverage of the relay station. For example, as shown in FIG.
  • the reference signal power of the user equipment is stronger than that of the relay station 1, that is, the user equipment is constantly Approaching the relay station 1, when the reference signal received power of the user equipment is greater than the first preset threshold, the user equipment enters the coverage of the relay station 1, and as the user equipment continues to move, The user equipment will gradually move away from the relay station 1 to the relay station 2, The reference signal power of the user equipment is weaker and weaker than the relay station 1. When the reference signal received power of the user equipment is less than or equal to the first preset threshold, the user equipment leaves the coverage of the relay station 1. Time.
  • the second preset threshold is preset according to the performance of the relay station, which is not limited by the embodiment of the present invention; the angle of arrival of the user equipment is greater than the second preset threshold, indicating that the user equipment is at the relay station.
  • the coverage angle of the user equipment is less than or equal to the second preset threshold, indicating that the user equipment is not within the coverage of the relay station.
  • the angle of the angle of the user equipment is larger and larger relative to the relay station 1, that is, the user equipment is Continuing to move to the relay station 1 , when the angle of arrival of the user equipment is greater than a second predetermined threshold, the user equipment enters the coverage of the relay station 1 , and as the user equipment continues to move, The user equipment will gradually move away from the relay station 1 to the relay station 2.
  • the angle of arrival angle of the user equipment will become smaller and smaller, when the angle of arrival of the user equipment is less than or equal to the first
  • the preset threshold is two, the user equipment leaves the coverage of the relay station 1.
  • the transceiver 1103 is further configured to: before the transceiver 1 103 receives the first identifier sent by the base station, receive data requested by the user equipment sent by the base station; correspondingly, the memory 1 102 And storing data for requesting transmission by the user equipment received by the transceiver 1 103.
  • the processor 1101 is further configured to determine, by the user equipment corresponding to the user identifier, that the user equipment moves from the coverage of the relay station to the coverage of the relay station. Enclosing, and determining that there is untransmitted data in the data corresponding to the first identifier;
  • the transceiver 1103 is further configured to: when the processor 1101 determines that the user equipment corresponding to the user identifier moves from the coverage of the relay station to outside the coverage of the relay station, to the base station Sending a second identifier, where the second identifier includes an identifier of data not transmitted in the data corresponding to the first identifier, so that the base station updates the first identifier according to the second identifier.
  • the relay station sequentially sends the third data, the fourth data, and the fifth data to the user equipment according to the first identifier.
  • the relay station will use the third data and the fourth data.
  • the strip data is sent to the user equipment, and the correspondence between the data identifier and the data (Table 1) shows that the relay station sends the second identifier including the identifier 5 to the base station.
  • the embodiment of the present invention provides a relay station 110, which receives a user identifier of a user equipment that is requested by the base station to transmit data, and determines that the user equipment corresponding to the user identifier is within the coverage of the relay station 110, and sends the user equipment to the base station. Receiving the first identifier sent by the base station, and sending data corresponding to the first identifier to the user equipment according to the first identifier. In this way, the relay station and the base station can cooperatively forward the data required to be transmitted by the user equipment, thereby improving the data transmission efficiency.
  • Example ten Example ten
  • a base station 120 is provided according to an embodiment of the present invention.
  • the base station 120 may include: a processor 1201, a memory 1202, a communication unit 1203, and at least one communication bus 1204. Connections and mutual communication;
  • the processor 1201 may be a central processing unit (CPU) for storing data requested by the user equipment.
  • CPU central processing unit
  • the memory 1202 may be a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); or a non-volatile memory (English: non-volatile memory), for example only Read memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state A hard disk (English: solid-state drive, abbreviated: S SD ); or a combination of the above types of memories, and provides instructions and data to the processor 1001.
  • volatile memory such as a random access memory (English: random-access memory, abbreviation: RAM); or a non-volatile memory (English: non-volatile memory), for example only Read memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state A hard disk (English: solid-state drive, abbre
  • the communication unit 1203 is configured to receive a data transmission request sent by the user equipment, where the data transmission request includes an identifier of the user equipment and an identifier of data requested by the user equipment to be transmitted, where the user equipment requests data to be transmitted.
  • the identifier is used to identify the data; when receiving the data transmission request sent by the user equipment, sending the data requested by the user equipment and the user identifier to the relay station; receiving the request information sent by the relay station; wherein the request information is used for An identifier that does not transmit data in the data requested by the user equipment.
  • the processor 1201 is configured to determine, according to the request information, a first identifier, where the first ratio includes an identifier of data not transmitted in the data requested by the user equipment.
  • the communication unit 1203 is further configured to send the first identifier to the relay station, so that the relay station sends data corresponding to the first identifier to the user equipment according to the first identifier. Further, the communication unit 1203 is further configured to: before the communication unit 1203 receives the request message sent by the relay station, send the data requested by the user equipment to the relay station, so that the relay station stores the data. And sending, according to the first identifier, data corresponding to the first identifier to the user equipment.
  • the communication unit 1203 is further configured to receive the second identifier sent by the relay station, where the second identifier includes an identifier of data not transmitted in the data corresponding to the first identifier; correspondingly, the processor 1201 is further configured to update the first identifier according to the second identifier received by the communication unit 1203. Further, the processor 1201 is specifically configured to replace the identifier in the first identifier with the identifier in the second identifier. For example, the first identifier includes the identifiers 3, 4, 5: The received second identifier includes 5, and the update unit replaces the first identifier with the identifier that includes the identifier 5.
  • the embodiment of the present invention provides a base station 1 20, which receives a data transmission request sent by a user equipment, and sends a user identifier of the user equipment to a relay station; receives request information sent by the relay station, and sends a request message to the relay station. And an identifier, so that the relay station sends the data requested by the user equipment to the user equipment according to the first identifier, and receives the second identifier sent by the relay station, and updates the first identifier according to the second identifier.
  • the data that the user equipment requires to be transmitted between the relay station and the base station can be cooperatively transmitted, and the data transmission efficiency is improved.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be in the form of hardware Implementation can also be implemented in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit described above is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform portions of the steps of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a disk or an optical disk, and the like, which can store program codes.
  • the storage medium may include: a read only memory, a random access memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种天线系统、中继站及数据传输方法。涉及通信领域,降低了中继站的部署成本及站址选择要求,同时增强系统网络容量,为用户设备提供稳定的大数据量传输。本发明实施例提供的天线系统包括:第一天线集合、第二天线集合和第三天线集合,所述第一天线集合包含的天线数量至少为所述第二天线集合包含的天线数量的两倍,且至少为所述第三天线集合包含的天线数量的两倍;其中,所述第一天线集合中的天线为双通道天线,用于全向接收用户设备发送的第一数据以及基站发送的第二数据;所述第二天线集合中的天线用于向所述基站发送所述第一数据;所述第三天线集合中的天线用于向所述用户设备发送所述第二数据。

Description

一种天线系统、 中继站及数据传输方法
技术领域 本发明涉及通信领域, 尤其涉及一种天线系统、 中继站及数据 传输方法。
背景技术
随着移动互联网的飞速发展, 人们对于数据传输速率提出了越 来越高的要求, 尤其是在城市交通主干线等移动业务热点区域, 比 如城市主次干道线、 快速公交 ( Bus Rapid Transit , 简称 BRT )、 轻 轨等交通工具内, 大量的用户设备在乘车时间内需要进行数据业务 传输, 由此带来的数据传输压力是巨大的。 为此, 需要提供一种设 备及数据传输技术, 增强基于城市交通主干线网络容量, 緩解数据 传输压力, 为大量用户设备提供稳定的高速数据传输, 从而满足用 户设备使用高速移动数据网络的需求。 现有技术中, 引入了中继站这种网元来解决上述问题, 图 1 为 中继网络架构示意图。 如图 1所示, 在中继网络中, 包括: 基站、 中继站、 以及用户设备 ( User Equipment , 简称 UE ) , 其中, UE与 中继站之间的链路被称之为接入链路 ( Access Link ) , 中继站与基 站之间的链路被称为中继链路 ( Backhaul Link ) , 中继站可以在基 站与 UE之间起到一个信号转发的功能, 从而替代基站的直接下行 数据业务传输, 由于中继站在距离上更靠近 UE , 信号传播路径损 耗小, UE信噪比会较好,从而使得 UE的网络容量获得很好的提升。 但是, 当中继站覆盖范围内的用户设备数量较多时, 中继站与 基站之间的中继链路容量会成为瓶颈, 现有技术中, 通常采用有线 光纤或者微波回传的中继链路方式以提升中继链路的容量, 但是, 有线光纤的中继链路方式部署成本很高; 微波回传的中继链路方式 需要尽可能创造出与基站直射的场景, 约束中继站的站址选择。 发明内容 本发明实施例提供一种天线系统、 中继站及数据传输方法, 降 低了中继站的部署成本及站址选择要求, 增强系统网络容量, 为用 户设备提供稳定的数据传输, 同时, 能够实现中继站与基站之间协 同转发用户设备要求传输的数据, 提高了数据传输效率。 本发明实施例采用的技术方案是,
第一方面, 本发明实施例提供了一种天线系统, 包括: 第一天 线集合、 第二天线集合和第三天线集合, 所述第一天线集合包含的 天线数量至少为所述第二天线集合包含的天线数量的两倍, 且至少 为所述第三天线集合包含的天线数量的两倍; 其中, 所述第一天线集合中的天线为双通道天线, 用于全向接 收用户设备发送的第一数据以及基站发送的第二数据;
所述第二天线集合中的天线用于向所述基站发送所述第一数 据;
所述第三天线集合中的天线用于向所述用户设备发送所述第 二数据。
在第一方面的第一种可能的实现方式中, 结合第一方面, 所述 第一天线集合中的天线, 具体用于: 在第一频点上全向接收所述用户设备发送的第一数据, 以及, 在第二频点上全向接收所述基站发送的第二数据。
在第一方面的第二种可能的实现方式中, 结合第一方面的第一 种可能的实现方式, 所述第二天线集合中的天线为单通道天线, 所 述第三天线集合中的天线为单通道天线; 相应的, 所述第二天线集合中的天线, 具体用于在所述第一频 点上采用第一预设角度向所述基站发送所述第一数据; 所述第三天线集合中的天线, 具体用于在所述第二频点上采用 第二预设角度向所述用户设备发送所述第二数据。 在第一方面的第三种可能的实现方式中, 结合第一方面的第一 种可能的实现方式, 所述第二天线集合中的天线为双通道天线, 所 述第三天线集合中的天线为单通道天线;
相应的, 所述第二天线集合中的天线还用于, 全向接收所述第 二数据。
在第一方面的第四种可能的实现方式中, 结合第一方面的第三 种可能的实现方式,
所述第二天线集合中的天线, 具体用于在所述第一频点上采用 第一预设角度向所述基站发送所述第一数据, 以及, 在所述第二频 点上全向接收所述基站发送的第二数据;
所述第三天线集合中的天线, 具体用于在所述第二频点上采用 第二预设角度向所述用户设备发送所述第二数据。
在第一方面的第五种可能的实现方式中, 结合第一方面的第一 种可能的实现方式, 所述第二天线集合中的天线为单通道天线, 所 述第三天线集合中的天线为双通道天线;
相应的, 所述第三天线集合中的天线还用于, 全向接收所述第 一数据。
在第一方面的第六种可能的实现方式中, 结合第一方面的第五 种可能的实现方式,
所述第二天线集合中的天线, 具体用于在所述第一频点上采用 第一预设角度向所述基站发送所述第一数据;
所述第三天线集合中的天线, 具体用于在所述第二频点上采用 第二预设角度向所述用户设备发送所述第二数据, 以及, 在所述第 一频点上全向接收所述用户设备发送的所述第一数据。
在第一方面的第七种可能的实现方式中, 结合第一方面的第一 种可能的实现方式, 所述第二天线集合中的天线为双通道天线, 所 述第三天线集合中的天线为双通道天线; 相应的,
所述第二天线集合中的天线还用于, 全向接收所述第二数据; 所述第三天线集合中的天线还用于, 全向接收所述第一数据。 在第一方面的第八种可能的实现方式中, 结合第一方面的第七 种可能的实现方式,
所述第二天线集合中的天线, 具体用于在所述第一频点上采用 第一预设角度向所述基站发送所述第一数据, 以及, 在所述第二频 点上全向接收所述基站发送的第二数据; 所述第三天线集合中的天线, 具体用于在所述第二频点上采用 第二预设角度向所述用户设备发送所述第二数据, 以及, 在第一频 点上全向接收所述用户设备发送的第一数据。
第二方面, 本发明实施例提供了一种数据传输方法, 所述方法 应用于天线系统, 所述天线系统包括第一天线集合、 第二天线集合 和第三天线集合, 所述第一天线集合包含的天线数量至少为所述第 二天线集合包含的天线数量的两倍, 且至少为所述第三天线集合包 含的天线数量的两倍; 所述方法包括: 所述第一天线集合中的天线全向接收用户设备发送的第一数 据以及基站发送的第二数据;
所述第二天线集合中的天线向所述基站发送第一数据; 所述第三天线集合中的天线向所述用户设备发送第二数据。 在第二方面的第一种可能的实现方式中, 结合第二方面, 所述 第一天线集合中的天线全向接收用户设备发送的第一数据以及基 站发送的第二数据; 所述第二天线集合中的天线向所述基站发送第 一数据; 所述第三天线集合中的天线向所述用户设备发送第二数 据, 包括: 所述第一天线集合中的天线在第一频点上全向接收所述用户 设备发送的第一数据, 以及, 在第二频点上全向接收所述基站发送 的第二数据; 所述第二天线集合中的天线在所述第一频点上采用第一预设 角度向所述基站发送所述第一数据; 所述第三天线集合中的天线在所述第二频点上采用第二预设 角度向所述用户设备发送所述第二数据。 在第二方面的第二种可能的实现方式中, 结合第二方面的第一 种可能的实现方式, 所述第二天线集合中的天线为双通道天线, 所 述第三天线集合中的天线为单通道天线; 相应的, 所述方法还包括: 所述第二天线集合中的天线全向接收所述第二数据。 在第二方面的第三种可能的实现方式中,结合第二方面的第二 种可能的实现方式,所述第二天线集合中的天线全向接收所述第二 数据, 包括:
所述第二天线集合中的天线在所述第二频点上全向接收所述 基站发送的第二数据。
在第二方面的第四种可能的实现方式中,结合第二方面的第一 种可能的实现方式, 所述第二天线集合中的天线为单通道天线, 所 述第三天线集合中的天线为双通道天线; 相应的, 所述方法还包括: 所述第三天线集合中的天线全向接收所述第一数据。 在第二方面的第五种可能的实现方式中, 结合第二方面的第四 种可能的实现方式, 所述第三天线集合中的天线全向接收所述第一 数据, 包括: 所述第三天线集合中的天线在第所述第一频点上全向接收所 述用户设备发送的第一数据。 在第二方面的第六种可能的实现方式中, 结合第二方面的第一 种可能的实现方式, 所述第二天线集合中的天线为双通道天线, 所 述第三天线集合中的天线为双通道天线;
相应的, 所述方法还包括:
所述第二天线集合中的天线全向接收第二数据; 所述第三天线集合中的天线全向接收第一数据。
在第二方面的第七种可能的实现方式中, 结合第二方面的第六 种可能的实现方式, 所述第二天线集合中的天线全向接收第二数 据; 所述第三天线集合中的天线全向接收第一数据, 包括:
所述第二天线集合中的天线在第二频点上全向接收所述基站 发送的第二数据;
所述第三天线集合中的天线在第一频点上全向接收所述用户 设备发送的第一数据。
第三方面, 本发明实施例提供了一种中继站, 包括: 如第一方 面至第一方面的第八种可能的实现方式中任一项所述的天线系统。
第四方面, 本发明实施例提供一种数据传输方法, 应用于如第 三方面所述的中继站, 包括:
中继站接收基站发送的请求传输数据的用户设备的用户标识; 所述中继站若确定所述用户标识对应的用户设备在所述中继 站的覆盖范围内, 向所述基站发送请求信息;
所述中继站接收所述基站发送的第一标识, 其中, 所述第一标 识包含所述用户设备请求传输的数据中未传输数据的标识;
所述中继站根据所述第一标识向所述用户设备发送与所述第 一标识对应的数据。
在第四方面的第一种可能的实现方式中, 结合第四方面, 所述 中继站确定所述用户标识对应的用户设备在所述中继站的覆盖范 围内, 包括: 所述中继站测量所述用户标识对应的所述用户设备的参考信 号接收功率; 若所述参考信号接收功率大于第一预设阔值, 则确定 所述用户标识对应的用户设备在所述中继站的覆盖范围内; 或者, 所述中继站测量所述用户标识对应的用户设备的上行波达角 角度; 若所述上行波达角角度大于第二预设阔值, 则确定所述用户 标识对应的用户设备在所述中继站的覆盖范围内。
在第四方面的第二种可能的实现方式中,结合第四方面或第四 方面的第一种可能的实现方式,在所述中继站接收所述基站发送的 第一标识之前, 所述方法还包括:
所述中继站接收基站发送的用户设备请求传输的数据,并存储 所述数据。 在第四方面的第三种可能的实现方式中, 结合第四方面至第四 方面的第二种可能的实现方式中的任一种实现方式, 所述方法还包 括: 所述中继站若确定所述用户标识对应的用户设备从所述中继 站的覆盖范围内移动到所述中继站的覆盖范围外, 且确定第一标识 对应的数据中存在未传输数据, 则向所述基站发送第二标识, 其中, 所述第二标识包含第一标识对应的数据中未传输数据的标识, 以使 得所述基站根据所述第二标识更新所述第一标识。 第五方面, 本发明实施例提供一种数据传输方法, 包括: 基站接收用户设备发送的数据传输请求, 所述数据传输请求包 含所述用户设备的用户标识以及所述用户设备请求传输的数据的 标识; 所述基站向中继站发送所述用户标识; 所述基站接收所述中继站发送的请求信息; 所述基站根据所述请求消息确定第一标识, 其中, 所述第一标 识包含所述用户设备请求传输的数据中未传输数据的标识; 所述基站向所述中继站发送所述第一标识, 以使得所述中继站 根据所述第一标识向所述用户设备发送与所述第一标识对应的数 据。
在第五方面的第一种可能的实现方式中, 结合第五方面, 在所 述基站接收所述中继站发送的请求信息之前, 所述方法还包括: 所述基站向所述中继站发送所述用户设备请求传输的数据, 以 使得所述中继站存储所述数据, 并根据所述第一标识向所述用户设 备发送与所述第一标识对应的数据。
在第五方面的第二种可能的实现方式中, 结合第五方面或第五 方面的第一种可能的实现方式, 所述方法还包括: 所述基站接收所述中继站发送的第二标识, 其中, 所述第二标 识包含第一标识对应的数据中未传输数据的标识; 所述基站根据所述第二标识更新所述第一标识。
第六方面, 本发明实施例提供一种中继站, 包括:
第一接收单元, 用于接收基站发送的请求传输数据的用户设备 的用户标识;
确定单元, 用于在所述第一接收单元接收到用户设备请求传输 的数据以及用户标识时, 确定所述用户标识对应的用户设备是否在 所述中继站的覆盖范围内; 第一发送单元, 用于在所述确定单元确定所述用户标识对应的 用户设备在所述中继站的覆盖范围内时, 向所述基站发送请求信 息;
第二接收单元, 用于接收所述基站发送的第一标识, 其中, 所 述第一标识包含所述用户设备请求传输的数据中未传输数据的标 识;
第二发送单元, 用于在所述第二接收单元接收到第一标识时, 根据所述接收单元接收的所述第一标识向所述用户设备发送与所 述第一标识对应的数据。
在第六方面的第一种可能的实现方式中, 结合第六方面, 所述 确定单元具体用于: 测量所述用户标识对应的所述用户设备的参考信号接收功率; 若所述参考信号接收功率大于第一预设阔值, 则确定所述用户标识 对应的用户设备在所述中继站的覆盖范围内; 或者, 测量所述用户标识对应的用户设备的上行波达角角度; 若所述 上行波达角角度大于第二预设阔值, 则确定所述用户标识对应的用 户设备在所述中继站的覆盖范围内。
在第六方面的第二种可能的实现方式中, 结合第六方面或第六 方面的第一种可能的实现方式, 所述第一接收单元, 还用于在所述 第二接收单元接收所述基站发送的第一标识之前, 接收基站发送的 用户设备请求传输的数据;
相应的, 所述中继站还包括: 存储单元, 用于存储所述第一接收单元接收的用户设备请求传 输的数据。
在第六方面的第三种可能的实现方式中, 结合第六方面至第六 方面的第二种可能的实现方式中的任一种实现方式, 所述确定单 元, 还用于确定所述用户标识对应的用户设备从所述中继站的覆盖 范围内移动到所述中继站的覆盖范围外, 且确定第一标识对应的数 据中存在未传输数据; 相应的, 所述中继站还包括: 第三发送单元, 用于向所述基站发送第二标识, 其中, 所述第 二标识包含第一标识对应的数据中未传输数据的标识, 以使得所述 基站根据所述第二标识更新所述第一标识。 第七方面, 本发明实施例提供一种基站, 包括: 第一接收单元, 用于接收用户设备发送的数据传输请求, 所述 数据传输请求包含所述用户设备的用户标识以及所述用户设备请 求传输的数据的标识; 第一发送单元, 用于在所述第一接收单元接收到用户设备发送 的数据传输请求时, 向中继站发送所述用户标识; 第二接收单元, 用于接收所述中继站发送的请求信息; 确定单元, 用于根据所述请求信息确定第一标识, 其中, 所述 第一标识包含所述用户设备请求传输的数据中未传输数据的标识; 第二发送单元, 用于向所述中继站发送所述第一标识, 以使得 所述中继站根据所述第一标识向所述用户设备发送与所述第一标 识对应的数据。 在第七方面的第一种可能的实现方式中, 结合第七方面, 所述 第一发送单元还用于: 在所述第二接收单元接收所述中继站发送的请求信息之前, 向 所述中继站发送所述用户设备请求传输的数据, 以使得所述中继站 存储所述数据, 并根据所述第一标识向所述用户设备发送与所述第 一标识对应的数据。 在第七方面的第二种可能的实现方式中,结合第七方面或第七 方面的第一种可能的实现方式, 所述基站还包括: 第三接收单元, 用于接收所述中继站发送的第二标识, 其中, 所述第二标识包含第一标识对应的数据中未传输数据的标识; 更新单元,用于根据所述第二接收单元接收的第二标识更新所 述第一标识。 第八方面, 本发明实施例提供一种中继站, 包括: 通信单元, 用于接收基站发送的请求传输数据的用户设备的用 户标识;
处理器, 用于在所述接收单元接收到用户设备请求传输的数据 以及用户标识时, 确定所述用户标识对应的用户设备是否在所述中 继站的覆盖范围内; 所述通信单元, 还用于在所述处理器确定所述用户标识对应的 用户设备在所述中继站的覆盖范围内时, 向所述基站发送请求信 息;
接收所述基站发送的第一标识, 其中, 所述第一标识包含所述 用户设备请求传输的数据中未传输数据的标识; 根据所述接收单元接收的所述第一标识向所述用户设备发送 与所述第一标识对应的数据。
在第八方面的第一种可能的实现方式中, 结合第八方面, 所述 处理器具体用于: 测量所述用户标识对应的所述用户设备的参考信号接收功率; 若所述参考信号接收功率大于第一预设阔值, 则确定所述用户标识 对应的用户设备在所述中继站的覆盖范围内; 或者, 测量所述用户标识对应的用户设备的上行波达角角度; 若所述 上行波达角角度大于第二预设阔值, 则确定所述用户标识对应的用 户设备在所述中继站的覆盖范围内。
在第八方面的第二种可能的实现方式中, 结合第八方面或第八 方面的第一种可能的实现方式, 所述通信单元, 还用于在所述通信 单元接收所述基站发送的第一标识之前, 接收基站发送的用户设备 请求传输的数据; 相应的, 所述中继站还包括: 存储器, 用于存储所述通信单元接收的用户设备请求传输的数 据。
在第八方面的第三种可能的实现方式中, 结合第八方面至第八 方面的第二种可能的实现方式中的任一种实现方式, 所述处理器, 还用于确定所述用户标识对应的用户设备从所述中继站的覆盖范 围内移动到所述中继站的覆盖范围外, 且确定第一标识对应的数据 中存在未传输数据; 相应的, 所述通信单元还用于, 向所述基站发送第二标识, 其中, 所述第二标识包含第一标识 对应的数据中未传输数据的标识, 以使得所述基站根据所述第二标 识更新所述第一标识。 第九方面, 本发明实施例提供一种基站, 包括: 通信单元, 用于接收用户设备发送的数据传输请求, 所述数据 传输请求包含所述用户设备的用户标识以及所述用户设备请求传 输的数据的标识; 向中继站发送所述用户标识; 接收所述中继站发送的请求信息; 处理器, 用于根据所述通信单元接收的请求信息确定第一标 识, 其中, 所述第一标识包含所述用户设备请求传输的数据中未传 输数据的标识; 所述通信单元, 还用于向所述中继站发送所述第一标识, 以使 得所述中继站根据所述第一标识向所述用户设备发送与所述第一 标识对应的数据。 在第九方面的第一种可能的实现方式中, 结合第九方面, 所述 通信单元还用于: 在所述通信单元接收所述中继站发送的请求信息之前, 向所述 中继站发送所述用户设备请求传输的数据, 以使得所述中继站存储 所述数据, 并根据所述第一标识向所述用户设备发送与所述第一标 识对应的数据。 在第九方面的第二种可能的实现方式中, 结合第九方面或第九 方面的第一种可能的实现方式, 所述通信单元, 还用于接收所述中继站发送的第二标识, 其中, 所述第二标识包含第一标识对应的数据中未传输数据的标识; 所述处理器, 还用于根据所述通信单元接收的第二标识更新所 述第一标识。 由上可知, 本发明实施例提供一种天线系统、 中继站及数据传 输方法, 本发明实施例提供的天线系统包括: 第一天线集合、 第二 天线集合和第三天线集合, 所述第一天线集合包含的天线数量至少 为所述第二天线集合包含的天线数量的两倍, 且至少为所述第三天 线集合包含的天线数量的两倍; 其中, 所述第一天线集合中的天线 为双通道天线, 用于全向接收用户设备发送的第一数据以及基站发 送的第二数据; 所述第二天线集合中的天线用于向所述基站发送所 述第一数据; 所述第三天线集合中的天线用于向所述用户设备发送 所述第二数据。 如此, 降低了中继站的部署成本及站址选择要求, 同时增强系统网络容量, 为用户设备提供稳定的数据传输; 避免了 现有技术中有线光纤的中继链路方式部署成本很高, 微波回传的中 继链路方式约束了中继站的站址选择的缺陷。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其它的附图。 图 1 为中继网络架构示意图; 图 2为本发明实施例提供的天线系统 20的结构图; 图 3为本发明实施例提供的一种数据传输方法的流程图; 图 4为本发明实施例提供的一种中继站 40的结构图; 图 5为本发明实施例提供的一种数据传输方法的流程图; 图 6为本发明实施例提供的一种数据传输方法的流程图; 图 7为一种基于城市主干道线的部署场景的示意图; 图 8为本发明实施例提供的一种数据传输方法的流程图; 图 9为本发明实施例提供的一种中继站 90的结构图; 图 9A为本发明实施例提供的一种中继站 90的结构图; 图 9B为本发明实施例提供的一种中继站 90的结构图; 图 10为本发明实施例提供的一种基站 100的结构图; 图 10A为本发明实施例提供的一种基站 100的结构图; 图 1 1 为本发明实施例提供的一种中继站 1 10的结构图; 图 12为本发明实施例提供的一种基站 120的结构图。
具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清晰、 完整地描述。 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有做出创造性劳动前提下所获得的所有其 它实施例, 都属于本发明保护的范围。 实施例一
图 2为本发明实施例提供的一种天线系统 20的结构图, 如图 2 所示, 可以包括: 第一天线集合 201、 第二天线集合 202和第三天 线集合 203 , 第一天线集合 201 包含的天线数量至少为第二天线集 合 202 包含的天线数量的 2倍, 且至少为第三天线集合 203 包含的 天线数量的 2倍; 其中, 所述第一天线集合 201 中的天线为双通道天线, 用于全 向接收用户设备发送的第一数据以及基站发送的第二数据; 第二天 线集合 202 中的天线用于向基站发送所述第一数据; 第三天线集合 203 中的天线用于向用户设备发送所述第二数据; 所述双通道天线 为在两个不同频点收发信号的天线。 优选的,第一天线集合 201包含的天线数量为第二天线集合 202 包含的天线数量几十倍, 且为第三天线集合 203 包含的天线数量的 几十倍, 第二天线集合 202为具有 2个或者 4个发射端口的天线集 合, 第三天线集合 203为具有 2个或者 4个发射端口的天线集合, 实现天线系统收发天线非对称的结构, 在移动业务的热点区域, 提 高数据传输速率及系统容量; 其中, 需要说明的是, 第一天线集合 201、 第二天线集合 202 和第三天集合 203 包含的具体天线数量可 以由系统根据需要进行预先设定, 本发明实施例对此不进行限定。 进一步的, 第一天线集合 201 中的天线, 具体用于同时在第一 频点上全向接收用户设备发送的第一数据, 以及在第二频点上全向 接收基站发送的第二数据; 其中, 第一频点和第二频点根据需要进 行设置, 本发明实施例对此不进行限定; 例如, 第一天线集合 201 中的天线在 2GHz 的频点上接收用户设备发送的第一数据, 在 2.5 GHz的频点上接收基站发送的第二数据。
进一步的, 第二天线集合 202 中的天线为单通道天线, 第三天 线集合 203 中的天线为单通道天线; 相应的, 所述第二天线集合 202 中的天线, 具体用于采用第一 预设发射角度在第一频点上向所述基站发送所述第一数据; 其中, 所述单通道天线为在一个频点上收发信号的天线, 所述第一预设发 送角度为系统在进行数据发射的过程中根据需要设置的角度, 可以 为 2° , 4° , 30° , 40°等角度, 本发明实施例对此不进行限定。 例如, 第二天线集合 202 中的天线在 2GHz的频点上以 30°的发射角度向基 站发送第一数据。 第三天线集合 203 中的天线, 具体用于采用第二预设发射角度 在第二频点上向所述用户设备发送所述第二数据; 其中, 所述第二 预设发送角度为系统在进行数据发射的过程中根据需要设置的角 度, 可以为 10° , 15° , 20° , 40°等角度, 本发明实施例对此不进行限 定; 例如, 第三天线集合中的天线在 2.5 GHz 的频点以 15°的发射角 度向用户设备发送第二数据。 进一步的, 第二天线集合 202 中的天线为双通道天线, 第三天 线集合 203 中的天线为单通道天线; 相应的, 所述第二天线集合 202 中的天线, 还用于接收基站发 送的第二数据。 优选的, 第二天线集合 202 中的天线, 具体用于在所述第一频 点上采用第一预设角度向所述基站发送所述第一数据, 以及, 在第 二频点上全向接收基站发送的第二数据; 例如, 第二天线集合 202 中的天线在 2.5GHz的频点上接收基站发送的第二数据。 进一步的, 所述第二天线集合 202 中的天线为单通道天线, 第 三天线集合 203 中的天线为双通道天线; 相应的, 所述第三天线集合 203 中的天线, 还用于接收用户设 备发送的第一数据。 优选的, 第三天线集合 203 中的天线, 具体用于在所述第二频 点上采用第二预设角度向所述用户设备发送所述第二数据, 以及, 在第一频点上全向接收所述用户设备发送的所述第一数据; 例如, 第三天线集合 203 中的天线在 2GHz的频点上接收用户设备发送的 第一数据。 进一步的, 第二天线集合 202 中的天线为双通道天线, 第三天 线集合中 203 中的天线为双通道天线; 相应的, 第二天线集合 202 中的天线, 还用于接收基站发送的 第二数据; 第三天线集合 203 中的天线, 还用于接收用户设备发送的第一 数据。 优选的, 第二天线集合 202 中的天线, 具体用于在所述第一频 点上采用第一预设角度向所述基站发送所述第一数据, 以及, 在第 二频点上全向接收基站发送的第二数据; 例如, 第二天线集合 202 中的天线在 2.5GHz的频点上接收基站发送的第二数据。 第三天线集合 203 中的天线, 具体用于在所述第二频点上采用 第二预设角度向所述用户设备发送所述第二数据, 以及, 在第一频 点上全向接收用户设备发送的第一数据; 例如, 第三天线集合 203 中的天线在 2GHz的频点上接收用户设备发送的第一数据。 由上可知, 本发明实施例提供一种天线系统 20 , 包括第一天线 集合 201、 第二天线集合 202、 第三天线集合 203 , 所述第一天线集 合 201 包含的天线数量至少为所述第二天线集合 202 包含的天线数 量的两倍,且至少为所述第三天线集合 203 包含的天线数量的两倍; 其中, 所述第一天线集合 201 中的天线为双通道天线, 用于全向接 收用户设备发送的第一数据以及基站发送的第二数据; 所述第二天 线集合 202 中的天线用于向所述基站发送所述第一数据; 所述第三 天线集合 203 中的天线用于向所述用户设备发送所述第二数据。 如 此, 采用非对称的天线结构收发信号, 降低了中继站的部署成本及 站址选择要求, 同时增强系统网络容量, 为用户设备提供稳定的数 据传输; 避免了现有技术中有线光纤的中继链路方式部署成本很 高, 微波回传的中继链路方式约束了中继站的站址选择的缺陷。 实施例二 本发明实施例提供一种数据传输方法, 所述方法应用于天线系 统, 所述天线系统包括第一天线集合、 第二天线集合和第三天线集 合, 所述第一天线集合包含的天线数量至少为所述第二天线集合包 含的天线数量的两倍, 且至少为所述第三天线集合包含的天线数量 的两倍; 如图 3所示, 所述数据传输方法可以包括以下步骤:
30 1 : 第一天线集合中的天线全向接收用户设备发送的第一数 据以及基站发送的第二数据。 优选的, 第一天线集合中的天线可以同时在第一频点上全向接 收用户设备发送的第一数据, 以及, 在第二频点上全向接收基站发 送的第二数据; 例如, 第一天线集合中的天线在 2GHz 的频点上接 收用户设备发送的第一数据, 在 2.5 GHz 的频点上接收基站发送的 第二数据。
302 : 第二天线集合中的天线向所述基站发送第一数据。
优选的, 第二天线集合中的天线可以在第一频点上采用第一预 设发射角度向所述基站发送所述第一数据; 其中, 所述第一预设发 射角度为系统在进行数据发射的过程中根据需要设置的角度, 可以 为 2° , 4° , 30° , 40°等角度, 本发明实施例对此不进行限定; 例如, 第二天线集合中的天线在 2GHz的频点上以 30°的发射角度向基站发 送第一数据。
303 : 第三天线集合中的天线向所述用户设备发送第二数据。 优选的, 第三天线集合中的天线可以在第二频点上采用第二预 设发射角度向所述用户设备发送所述第二数据; 其中, 所述第二预 设发射角度为系统在进行数据发射的过程中根据需要设置的角度, 可以为 10° , 15° , 20° , 40°等角度, 本发明对此不进行限定; 例如, 第三天线集合中的天线在 2.5 GHz 的频点以 15°的发射角度向用户设 备发送第二数据。 进一步的, 第二天线集合中的天线为双通道天线, 第三天线集 合中的天线为单通道天线; 相应的, 所述数据传输方法还包括: 第二天线集合中的天线全向接收基站发送的第二数据。 优选的, 第二天线集合中的天线可以在第二频点上全向接收基 站发送的第二数据。 例如, 第二天线集合中的天线在 2.5GHz 的频 点上接收基站发送的第二数据。 进一步的, 第二天线集合中的天线为单通道天线, 第三天线集 合中的天线为双通道天线;
相应的, 所述数据传输方法还包括: 第三天线集合中的天线全向接收用户设备发送的第一数据。 优选的, 第三天线集合中的天线可以在第一频点上全向接收用 户设备发送的第一数据。 例如, 第三天线集合中的天线在 2GHz 的 频点上接收用户设备发送的第一数据。 进一步的, 第二天线集合中的天线为双通道天线, 第三天线集 合中的天线为双通道天线; 相应的, 所述数据传输方法还包括: 第二天线集合中的天线全向接收基站发送的第二数据; 第三天线集合中的天线全向接收用户设备发送的第一数据。 优选的, 第二天线集合中的天线可以在第二频点上全向接收基 站发送的第二数据, 第三天线集合中的天线可以在第一频点上全向 接收用户设备发送的第一数据; 例如, 第二天线集合中的天线在 2.5 GHz的频点上接收基站发送的第二数据;第三天线集合中的天线 在 2GHz的频点上接收用户设备发送的第一数据。 由上可知, 本发明实施例提供一种数据传输的方法, 所述方法 应用于天线系统, 所述天线系统包括第一天线集合、 第二天线集合、 第三天线集合, 所述第一天线集合包含的天线数量至少为所述第二 天线集合包含的天线数量的两倍, 且至少为所述第三天线集合包含 的天线数量的两倍; 第一天线集合中的天线全向接收用户设备发送 的第一数据以及基站发送的第二数据, 第二天线集合中的天线向所 述基站发送第一数据, 第三天线集合中的天线向所述用户设备发送 第二数据。 如此, 采用非对称的天线结构收发信号, 降低了中继站 的部署成本及站址选择要求, 同时增强系统网络容量, 为用户设备 提供稳定的数据传输; 避免了现有技术中有线光纤的中继链路方式 部署成本很高, 微波回传的中继链路方式约束了中继站的站址选择 的缺陷。 实施例三 图 4 为本发明实施例提供的一种中继站 40 的结构图, 如图 4 所示, 包括: 天线系统 20 ; 其中, 天线系统 20与实施例一所述的天线系统具有相同功能, 在此不再赘述。 由上可知, 本发明实施例提供一种中继站 40 , 包括天线系统 20 , 所述天线系统包含第一天线集合、 第二天线集合和第三天线集 合, 所述第一天线集合包含的天线数量至少为所述第二天线集合包 含的天线数量的两倍, 且至少为所述第三天线集合包含的天线数量 的两倍; 其中, 第一天线集合中的天线全向接收用户设备发送的第 一数据以及基站发送的第二数据, 第二天线集合中的天线向所述基 站发送第一数据, 第三天线集合中的天线向所述用户设备发送第二 数据。 如此, 采用非对称的天线结构收发信号, 降低了中继站的部 署成本及站址选择要求, 同时增强系统网络容量, 为用户设备提供 稳定的数据传输; 避免了现有技术中有线光纤的中继链路方式部署 成本很高, 微波回传的中继链路方式约束了中继站的站址选择的缺 陷。
实施例四 图 5为本发明实施例提供的一种数据传输方法的流程图, 如图 5所示, 可以包括以下步骤:
501 : 中继站接收基站发送的请求传输数据的用户设备的用户 标识。 其中, 中继站可以为实施例三所述的中继站, 通过所述天线系 统接收基站发送的请求传输数据的用户设备的用户标识。 优选的, 中继站可以通过空口无线链路接收基站发送的请求传 输数据的用户设备的用户标识。
502 : 中继站确定所述用户标识对应的用户设备在所述中继站 的覆盖范围内, 向所述基站发送请求信息。 其中, 所述请求信息用于指示基站停止向用户设备进行数据传 输, 以及请求基站向中继站发送第一标识; 所述第一标识包含用户 设备请求传输的数据中未向用户设备传输的数据的标识。 优选的, 中继站可以通过下述 ( 1 ) - ( 2 ) 两种方式确定所述用 户标识对应的用户设备在所述中继站的覆盖范围内; 下面对这两种 方法分别进行说明:
( 1 ) 中继站测量所述用户标识对应的用户设备的参考信号接 收功率 ( Reference Signal Receiving Power , RSRP ) , 判断所述用户 标识对应的用户设备是否在所述中继站的覆盖范围内;
若测量得到所述参考信号接收功率大于第一预设阔值, 则确定 所述用户标识对应的用户设备在所述中继站的覆盖范围内。 其中, 所述第一预设阔值为系统根据中继站的性能进行预先设 置的, 本发明实施例对此不进行限定; 用户设备的参考信号接收功 率大于第一预设阔值表示用户设备在中继站的覆盖范围内; 用户设 备的参考信号接收功率小于或等于第一预设阔值表示用户设备不 在中继站的覆盖范围内。 例如, 如图 6所示, 当用户设备沿着城市 主干线向中继站 1移动的过程中, 相对于中继站 1 而言, 用户设备 的参考信号功率会越来越强, 即所述用户设备在不断向所述中继站 1 靠近, 当所述用户设备的参考信号接收功率大于第一预设阔值时, 所述用户设备进入到中继站 1 的覆盖范围内, 随着所述用户设备的 继续移动,所述用户设备会渐渐远离所述中继站 1 向中继站 2移动, 相对于中继站 1 而言, 用户设备的参考信号功率会越来越弱, 当所 述用户设备的参考信号接收功率小于或等于第一预设阔值, 所述用 户设备离开中继站 1 的覆盖范围内时。
( 2 ) 中继站测量所述用户标识对应的用户设备的来波方向 ( Direction Of Arrival , DOA ) 角度的大小, 即波达角角度的大小, 判断所述用户标识对应的用户设备是否在所述中继站的覆盖范围 内;
若测量得到所述波达角角度大于第二预设阔值, 确定所述用户 标识对应的用户设备在所述中继站的覆盖范围内。 其中, 所述第二预设阔值为系统根据中继站的性能进行预先设 置的, 本发明实施例对此不进行限定; 用户设备的波达角角度大于 第二预设阔值表示用户设备在中继站的覆盖范围内; 用户设备的波 达角角度小于或等于第二预设阔值表示用户设备不在中继站的覆 盖范围内。 例如, 如图 6所示, 当用户设备沿着城市主干线向中继 站 1移动的过程中, 相对于中继站 1 而言, 用户设备的波达角角度 会越来越大, 即所述用户设备在不断向所述中继站 1 靠近, 当所述 用户设备的波达角角度大于第二预设阔值时, 所述用户设备进入到 中继站 1 的覆盖范围内, 随着所述用户设备的继续移动, 所述用户 设备会渐渐远离所述中继站 1 向中继站 2移动, 相对于中继站 1 而 言, 用户设备的波达角角度会越来越小, 当所述用户设备的波达角 角度小于或等于第二预设阔值时, 所述用户设备离开中继站 1 的覆 盖范围内。
503 : 中继站接收所述基站发送的第一标识, 其中, 所述第一 标识包含所述用户设备请求传输的数据中未传输数据的标识。 优选的, 中继站可以为实施例三所述的中继站, 通过所述天线 系统全向接收所述基站发送的第一标识。
504 : 中继站根据所述第一标识向所述用户设备发送与所述第 一标识对应的数据。 优选的, 中继站可以为实施例三所述的中继站, 通过所述天线 系统中向所述用户设备发送与所述第一标识对应的数据。 例如, 假 设中继站接收到的第一标识包含 3、 4和 5 , 且与第一标识对应的数 据为第三数据、 第四条数据和第五条数据, 则中继站依次向用户设 备发送第三条数据、 第四条数据和第五条数据。 进一步的, 在所述中继站接收所述基站发送的第一标识之前, 所述方法还包括: 中继站接收基站发送的用户设备请求传输的数据, 并存储所述 数据, 以使得当所述用户设备进入到所述中继站的覆盖范围时, 向 所述用户标识对应的用户设备转发与所述第一标识对应数据。 其中, 所述数据包含相应的数据标识, 例如, 如表 1 所示, 用 户设备请求传输的数据共有 5 条, 第一条数据的标识为 1 , 第二条 数据的标识为 2 , 第三条数据的标识为 3 , 第三条数据的标识为 4 , 第五条数据的标识为 5。 表 1
Figure imgf000025_0001
进一步的, 所述方法还包括: 中继站若确定所述用户标识对应的用户设备从所述中继站的 覆盖范围内移动到所述中继站的覆盖范围外, 且确定第一标识对应 的数据中存在未传输数据, 则向所述基站发送第二标识, 其中, 所 述第二标识包含第一标识对应的数据中未传输数据的标识, 以使得 所述基站根据所述第二标识更新所述第一标识。 例如, 假设中继站 根据第一标识依次向用户设备发送第三条数据、 第四条数据和第五 条数据, 在用户设备处于所述中继站的覆盖范围内时, 中继站将第 三条数据和第四条数据发送给用户设备, 而第二条数据还没有向用 户设备发送, 则由数据标识和数据的对应关系 (表 1 ) 可知, 中继 站向基站发送包含标识 5的第二标识。 优选的, 中继站可以通过测量所述用户标识对应的用户设备的 参考信号功率或者所述用户标识对应的用户设备的波达角角度, 确 定所述用户标识对应的用户设备从所述中继站的覆盖范围内移动 到所述中继站的覆盖范围外。 由上可知, 本发明实施例提供一种数据传输的方法, 中继站接 收基站发送的请求传输数据的用户设备的用户标识, 确定所述用户 标识对应的用户设备在所述中继站的覆盖范围内, 向所述基站发送 请求信息; 接收所述基站发送的第一标识, 并根据所述第一标识向 所述用户设备发送与所述第一标识对应的数据。 如此, 能够实现中 继站与基站之间协同转发用户设备要求传输的数据, 提高了数据传 输效率。 实施例五 图 6为本发明实施例提供的一种数据传输方法的流程图, 如图 6所示, 可以包括以下步骤:
601 : 基站接收用户设备发送的数据传输请求, 其中, 所述数 据传输请求包含所述用户设备的用户标识以及所述用户设备请求 传输的数据的标识。 其中, 所述标识用于标识数据, 例如, 如实施例四中的表 1 所 示, 标识 1对应第一条数据, 标识 2对应第二条数据。
602 : 基站向中继站发送所述用户标识; 优选的, 基站可以向基站覆盖范围内的所有中继站发送所述用 户标识。
603 : 基站接收所述中继站发送的请求信息; 其中, 所述请求 信息用于请求用户设备请求传输的数据中未传输数据的标识。
604、 基站根据所述请求信息确定第一标识, 其中, 所述第一 标识包含所述用户设备请求传输的数据中未传输数据的标识。 优选的, 基站可以通过查询基站向所述用户设备传输的数据的 情况, 获取未向所述用户设备发送的数据对应的标识。
605 : 基站向所述中继站发送第一标识, 以使得所述中继站根 据所述第一标识向所述用户设备发送与所述第一标识对应的数据。 例如, 假设用户请求传输的数据与数据标识的对应关系如表 1 所示, 在用户设备进入到中继站时, 未向用户设备发送的数据包含 第三条数据、 第四条数据和第五条数据, 则在基站接收到中继站发 送的请求信息时, 将包含标识 3、 4、 5的第一标识发送给中继站。 进一步的, 在所述基站接收所述中继站发送的请求消息之前, 所述方法还包括: 基站向所述中继站发送所述用户设备请求传输的数据, 以使得 所述中继站存储所述数据, 并根据所述第一标识向所述用户设备发 送与所述第一标识对应的数据。
进一步的, 所述方法还包括: 基站接收所述中继站发送的第二标识, 其中, 所述第二标识包 含第一标识对应的数据中未传输数据的标识; 基站根据所述第二标识更新所述第一标识。 优选的, 基站可以将所述第一标识中的标识替换为第二标识中 的标识; 例如, 4艮设第一标识中包含标识 3、 4、 5 , 基站接收到的 第二标识中包含 5 , 则基站将所述第一标识替换为包含标识 5 的标 识。 其中, 需要说明的是, 上述步骤为基站与中继站之间合作向用 户设备进行传输的过程, 当用户设备从中继站覆盖区域内进入中继 站覆盖区域外时, 基站与用户设备之间直接进行数据传输, 直至用 户设备进入到一个中继站时, 重新执行上述步骤, 实现基站与中继 站之间, 不同中继站之间相互合作将用户设备请求传输的数据全部 传送给用户设备。 由上可知, 本发明实施例提供一种数据传输方法, 基站接收用 户设备发送的数据传输请求, 向中继站发送所述用户标识; 接收所 述中继站发送的请求信息, 向所述中继站发送第一标识, 以使得中 继站根据所述第一标识向用户设备发送用户设备要求传输的数据, 并接收所述中继站发送的第二标识, 根据所述第二标识更新所述第 一标识。 如此, 能够实现中继站与基站之间协同转发用户设备要求 传输的数据, 提高了数据传输效率。
下面对本发明实施例提供的数据传输方法进行具体说明。 实施例六 本发明实施例提供的数据传输方法应用于图 7所示的一种基于 城市主干道线的部署场景下, 如图 7 所示, 包括中继站 1 , 中继站 2 , 基站以及用户设备; 其中, 中继站 1 和中继站 2 被部署在城市 主干道的沿线, 且均在基站的覆盖范围内, 用户设备沿着图 7 中的 虚线依次经过中继站 1和中继站 2的覆盖范围, 基站、 中继站和用 户设备之间通过空口无线链路的方式进行数据传输, 优选的, 中继 站 1和中继站 2可以为实施例二所述的中继站; 其中, 需要说明的 是, 为了方便说明, 在图 7 中, 只部署了中继站 1 和中继站 2 , 事 实上可以根据需要在主干道线的沿线部署多个中继站; 同时, 为了 避免中继站之间相互干扰, 中继站在被部署之后, 中继站之间的覆 盖区域不相互重叠; 此外, 本发明实施例提供的数据传输方法还可 以应用于其他需要中继站进行数据传输的通信场景下, 本发明实施 例对此不进行限定, 本发明实施例仅以图 7所示的基于城市主干道 线的部署场景下为例对数据传输方法进行说明。
假设用户设备请求传输的数据有五条, 且每条数据和数据标识 的对应关系如表 1 所示, 第一条数据的标识为 1 , 第二条数据的标 识为 2 , 第三条数据的标识为 3 , 第四条数据的标识为 4 , 第五条数 据的标识为 5 ; 如图 8 所示, 本发明实施例提供的数据传输方法可 以包括以下步骤:
801 : 用户设备向基站发送数据传输请求。 其中, 所述数据传输请求中包含用户设备请求传输的数据的标 识以及用户标识; 所述标识用于标识所述用户设备请求的数据。
802 : 基站向中继站 1和中继站 2发送用户标识。 其中, 所述数据包含数据标识; 例如, 用户设备要求传输的数 据和数据标识的对应关系如表 1 所示, 基站向中继站发送数据的同 时将数据相对应的数据标识也发送给中继站。
803 : 中继站 1 确定与所述用户标识对应的用户设备进入到中 继站 1 的覆盖范围内。 优选的, 中继站 1可以通过测量所述用户标识对应的用户设备 的参考信号功率或者所述用户标识对应的用户设备的波达角角度 确定所述用户设备进入到中继站 1 的覆盖范围内。 其中, 需要说明的是, 中继站 1通过测量所述用户标识对应的 用户设备的参考信号功率或者所述用户标识对应的用户设备的波 达角角度确定用户设备是否进入到中继站 1 的覆盖范围内的同时, 中继站 2也会通过测量所述用户标识对应的用户设备的参考信号功 率或者所述用户标识对应的用户设备的波达角角度确定用户设备 是否进入到中继站 2的覆盖范围内, 只是在图 7所示的场景下, 用 户设备沿着虚线所示的道路沿线向前移动时, 所述用户设备会先进 入到中继站 1 的覆盖范围内, 因此, 中继站 1会最先确定用户设备 804 : 中继站 1 向基站发送请求消息。 其中, 所述请求消息用于指示基站向中继站 1发送用户设备请 求传输的数据中未传输数据的标识, 以及通知基站停止与用户设备 之间的数据传输。
805 : 基站向中继站 1发送第一标识。
其中, 第一标识为用户设备请求传输的数据中未传输数据的标 识, 例如, 用户设备请求的五条数据中, 第三条数据、 第四条数据 和第五条数据未向用户设备发送, 则第一标识包含 3、 4、 5。
806 : 中继站 1 根据第一标识向用户设备发送与所述第一标识 对应的数据。 例如, 第一标识包含 3、 4、 5 , 则中继站 1 依次向用户设备发 送第三条数据、 第四条数据和第五数据。
807 : 中继站 1 确定与所述用户标识对应的用户设备离开中继 站 1 的覆盖范围。
808 : 中继站 1 向基站发送第二标识。
其中, 第二标识为第一标识对应的数据中未传输的数据的标 识, 例如, 用户设备在中继站 1 的范围内时, 中继站 1 只将第一标 识对应的第三条数据和第四条数据发送给用户设备, 而第五条数据 还没有向用户设备发送, 则第二标识包含标识 5。
809 : 基站更新第一标识。
优选的, 基站将第一标识包含的标识替换为第二标识中的标 识; 例如, 第二标识包含标识 5 , 则基站会将第一标识中包含的标 识 3、 4、 5替换为包含标识 5 , 即更新后的第一标识中包含标识 5。
810 : 中继站 2确定用户设备进入到中继站 2的覆盖范围内。
81 1 : 中继站 2向基站发送请求消息。
812 : 基站向中继站 2发送第一标识。 813 : 中继站 2根据第一标识向用户设备传输数据。 例如, 第一标识包含标识 5 , 则中继站 2 向用户设备发送第五 条数据, 此时, 用户设备请求传输的数据传输完毕。 进一步, 在步骤 803之前, 所述方法还包括: 基站向所述中继站 1 以及中继站 2发送所述用户设备请求传输 的数据, 以使得中继站 1 以及中继站 2存储所述数据, 根据第一标 识向所述用户设备发送所述数据中与第一标识对应的数据。 由上可知, 本发明实施例提供一种数据传输方法, 用户设备向 基站发送数据传输请求,基站向中继站 1和中继站 2发送用户标识 , 中继站 1和中继站 2确定与所述标识对应的用户设备是否进入相应 中继站的覆盖范围内, 当中继站 1确定用户设备进入到中继站 1 的 覆盖范围内时, 中继站 1 向基站发送请求消息, 基站向中继站 1发 送第一标识, 中继站 1根据第一标识向用户设备传输数据, 当中继 站确定用户设备离开中继站 1 的覆盖范围时, 中继站 1 向基站发送 第二标识, 基站更新第一标识, 当中继站 2确定用户设备进入到中 继站 2的覆盖范围内时, 中继站 2向基站发送请求消息, 基站向中 继站 2发送第一标识中继站 2根据第一标识向用户设备传输数据。 如此, 能够实现不同中继站之间, 中继站与基站之间协同转发用户 设备要求传输的数据, 提高了数据传输效率。 实施例七 图 9 为本发明实施例提供的一种中继站 90 的结构图, 如图 9 所示, 包括: 第一接收单元 901 , 用于接收基站发送的请求传输数据的用户 设备的用户标识。 确定单元 902 , 用于在第一接收单元 901 接收到基站发送的用 户标识时, 确定所述用户标识对应的用户设备在中继站 90 的覆盖 范围内。 第一发送单元 903 , 用于在确定单元 902确定所述用户标识对 应的用户设备在中继站 90 的覆盖范围内时, 向所述基站发送请求 信息。
第二接收单元 904 , 用于接收所述基站发送的第一标识, 其中, 所述第一标识包含所述用户设备请求传输的数据中未传输数据的 标识。 第二发送单元 905 , 用于根据第二接收单元 904接收到的所述 第一标识向所述用户设备发送与所述第一标识对应的数据。 进一步的, 所述第一接收单元 901 , 具体用于通过空口无线链 路接收基站发送的用户标识。 进一步的, 所述确定单元 902 , 具体用于通过下述 ( 1 ) - ( 2 ) 两种方式确定所述用户标识对应的用户设备是否在所述中继站的 覆盖范围内; 下面对这两种方法分别进行说明:
( 1 ) 测量所述用户标识对应的用户设备的参考信号接收功率 ( Reference Signal Receiving Power , RSRP ) , 判断所述用户标识对 应的用户设备是否在所述中继站的覆盖范围内;
若测量得到所述参考信号接收功率大于第一预设阔值, 则确定 所述用户标识对应的用户设备在所述中继站的覆盖范围内。 其中, 所述第一预设阔值为系统根据中继站的性能进行预先设 置的, 本发明实施例对此不进行限定; 用户设备的参考信号接收功 率大于第一预设阔值表示用户设备在中继站的覆盖范围内; 用户设 备的参考信号接收功率小于或等于第一预设阔值表示用户设备不 在中继站的覆盖范围内。 例如, 如图 6所示, 当用户设备沿着城市 主干线向中继站 1移动的过程中, 相对于中继站 1 而言, 用户设备 的参考信号功率会越来越强, 即所述用户设备在不断向所述中继站 1 靠近, 当所述用户设备的参考信号接收功率大于第一预设阔值时, 所述用户设备进入到中继站 1 的覆盖范围内, 随着所述用户设备的 继续移动,所述用户设备会渐渐远离所述中继站 1 向中继站 2移动, 相对于中继站 1 而言, 用户设备的参考信号功率会越来越弱, 当所 述用户设备的参考信号接收功率小于或等于第一预设阔值, 所述用 户设备离开中继站 1 的覆盖范围内时。
( 2 )测量所述用户标识对应的用户设备的来波方向( Direction Of Arrival , DOA ) 角度的大小, 即波达角角度的大小, 判断所述用 户标识对应的用户设备是否在所述中继站的覆盖范围内; 若测量得到所述波达角角度大于第二预设阔值, 确定所述用户 标识对应的用户设备在所述中继站的覆盖范围内。 其中, 所述第二预设阔值为系统根据中继站的性能进行预先设 置的, 本发明实施例对此不进行限定; 用户设备的波达角角度大于 第二预设阔值表示用户设备在中继站的覆盖范围内; 用户设备的波 达角角度小于或等于第二预设阔值表示用户设备不在中继站的覆 盖范围内。 例如, 如图 6所示, 当用户设备沿着城市主干线向中继 站 1移动的过程中, 相对于中继站 1 而言, 用户设备的波达角角度 会越来越大, 即所述用户设备在不断向所述中继站 1 靠近, 当所述 用户设备的波达角角度大于第二预设阔值时, 所述用户设备进入到 中继站 1 的覆盖范围内, 随着所述用户设备的继续移动, 所述用户 设备会渐渐远离所述中继站 1 向中继站 2移动, 相对于中继站 1 而 言, 用户设备的波达角角度会越来越小, 当所述用户设备的波达角 角度小于或等于第二预设阔值时, 所述用户设备离开中继站 1 的覆 盖范围内。 进一步的, 所述第一接收单元 901 , 还用于在所述第二接收单 元 904接收所述基站发送的第一标识之前, 接收基站发送的用户设 备请求传输的数据; 相应的, 如图 9A所示, 所述中继站 90还包括: 存储单元 906 , 用于存储所述第一接收单元 901 接收的用户设 备请求传输的数据。 进一步的, 所述确定单元 902 , 还用于确定所述用户标识对应 的用户设备从所述中继站的覆盖范围内移动到所述中继站的覆盖 范围外, 且确定第一标识对应的数据中存在未传输数据; 相应的, 如图 9B所示, 所述中继站 90还包括: 第三发送单元 907 , 用于在确定单元 902确定所述用户标识对 应的用户设备从所述中继站的覆盖范围内移动到所述中继站的覆 盖范围外时, 向所述基站发送第二标识, 其中, 所述第二标识包含 第一标识对应的数据中未传输数据的标识, 以使得所述基站根据所 述第二标识更新所述第一标识。 例如, 假设中继站根据第一标识依 次向用户设备发送第三条数据、 第四条数据和第五条数据, 在用户 设备处于所述中继站的覆盖范围内时, 中继站将第三条数据和第四 条数据发送给用户设备, 而第五条数据还没有向用户设备发送, 则 由数据标识和数据的对应关系 (表 1 ) 可知, 中继站向基站发送包 含标识 5的第二标识。 由上可知, 本发明实施例提供中继站 90 , 接收基站发送的用户 设备的用户标识, 确定所述用户标识对应的用户设备在所述中继站 90的覆盖范围内, 向所述基站发送请求信息; 接收所述基站发送的 第一标识, 并根据所述第一标识向所述用户设备发送所述第一标识 对应的数据。 如此, 能够实现中继站与基站之间协同转发用户设备 要求传输的数据, 提高了数据传输效率。 实施例八 图 10为本发明实施例提供的一种基站 100的结构图, 如图 10 所示, 包括: 第一接收单元 1001 , 用于接收用户设备发送的数据传输请求。 其中, 所述数据传输请求包含所述用户设备的标识以及所述用 户设备请求传输的数据的标识; 所述用户设备请求传输的数据的标 识用于标识数据。 第一发送单元 1002 , 用于在第一接收单元 1001 接收到用户设 备发送的数据传输请求时, 向中继站发送所述用户设备的用户标 识。
第二接收单元 1003 , 用于接收所述中继站发送的请求信息。 其中, 所述请求信息用于请求用户设备要求传输的数据中未传 输数据的标识。 确定单元 1004 , 用于根据所述请求消息确定第一标识, 其中, 所述第一标识包含所述用户设备请求传输的数据中未传输数据的 标识。 第二发送单元 1005 , 用于在第二接收单元 1003接收到所述中 继站发送的请求信息时, 向所述中继站发送所述第一标识, 以使得 所述中继站根据所述第一标识向所述用户设备发送与所述第一标 识对应的数据。 进一步的, 所述第一发送单元 1002还用于: 在所述第二接收单元 1003 接收所述中继站发送的请求消息之 前, 向所述中继站发送所述用户设备请求传输的数据, 以使得所述 中继站存储所述数据, 并根据所述第一标识向所述用户设备发送与 所述第一标识对应的数据。 进一步的, 如图 10A所示, 所述基站 100还包括: 第三接收单元 1006 , 用于接收所述中继站发送的第二标识, 其 中, 所述第二标识包含第一标识对应的数据中未传输数据的标识。 更新单元 1007 , 用于根据接收单元 1001 接收到的所述第二标 识更新所述第一标识。 进一步的, 所述更新单元 1007 , 具体用于将所述第一标识中的 标识替换为第二标识中的标识; 例如, 假设第一标识中包含标识 3、 4、 5 , 接收到的第二标识中包含 5 , 则更新单元将所述第一标识替 换为包含标识 5的标识。 由上可知, 本发明实施例提供一种基站 100, 接收用户设备发 送的数据传输请求, 向中继站发送所述用户设备的用户标识; 接收 所述中继站发送的请求信息, 向所述中继站发送第一标识, 以使得 中继站根据所述第一标识向用户设备发送用户设备要求传输的数 据, 并接收所述中继站发送的第二标识, 根据所述第二标识更新所 述第一标识。 如此, 能够实现中继站与基站之间协同转发用户设备 要求传输的数据, 提高了数据传输效率。
实施例九
参见图 11, 为本发明实施例提供的一种中继站 110, 如图 11 所示, 该中继站 110可以包括: 处理器 1101、 存储器 1102、 收发器 1103, 至少一个通信总线 1104, 用于实现这些装置之间的连接和相 互通信;
处理器 1101可以是一个中央处理器 (英文: central processing unit, 简称为 CPU )。
存储器 1102可以是易失性存储器 (英文: volatile memory), 例如随机存取存储器(英文: random-access memory, 缩写: RAM ); 或者非易失性存储器 (英文: non-volatile memory ), 例如只读存储 器 (英文: read-only memory, 缩写: ROM ), 快闪存储器 (英文: flash memory ), 硬盘 (英文: hard disk drive, 缩写: HDD ) 或固态 硬盘 (英文: solid-state drive, 缩写: SSD ); 或者上述种类的存储 器的组合, 并向处理器 1001提供指令和数据。
收发器 1103, 用于收发信号, 与外部网元之间进行数据传输; 优选的, 所述收发器 1103可以为实施例一所述的天线系统。
其中, 收发器 1103, 用于接收基站发送的请求传输数据的用户 设备的用户标识。
处理器 1101, 用于在收发器 1103 接收到基站发送的用户设备 的用户标识时, 确定所述用户标识对应的用户设备是否在所述中继 站 1 10的覆盖范围内。 所述收发器 1 103 , 还用于在处理器 1 101 确定所述用户标识对 应的用户设备在中继站 1 10的覆盖范围内时,向基站发送请求信息; 接收所述基站发送的第一标识, 其中, 所述第一标识包含所述 用户设备请求传输的数据中未传输数据的标识。 根据收发器 1 103接收到的所述第一标识,向所述用户设备发送 与所述第一标识对应的数据。 进一步的, 所述收发器 1 103 , 具体用于通过空口无线链路接收 基站发送的用户设备的用户标识。 进一步的, 所述处理器 1 101 , 具体用于通过下述 ( 1 ) - ( 2 ) 两种方式确定所述用户标识对应的用户设备是否在所述中继站的 覆盖范围内; 下面对这两种方法分别进行说明:
( 1 ) 测量所述用户标识对应的用户设备的参考信号接收功率 ( Reference Signal Receiving Power , RSRP ) , 判断所述用户标识对 应的用户设备是否在所述中继站的覆盖范围内;
若测量得到所述参考信号接收功率大于第一预设阔值, 则确定 所述用户标识对应的用户设备在所述中继站的覆盖范围内。 其中, 所述第一预设阔值为系统根据中继站的性能进行预先设 置的, 本发明实施例对此不进行限定; 用户设备的参考信号接收功 率大于第一预设阔值表示用户设备在中继站的覆盖范围内; 用户设 备的参考信号接收功率小于或等于第一预设阔值表示用户设备不 在中继站的覆盖范围内。 例如, 如图 6所示, 当用户设备沿着城市 主干线向中继站 1移动的过程中, 相对于中继站 1 而言, 用户设备 的参考信号功率会越来越强, 即所述用户设备在不断向所述中继站 1 靠近, 当所述用户设备的参考信号接收功率大于第一预设阔值时, 所述用户设备进入到中继站 1 的覆盖范围内, 随着所述用户设备的 继续移动,所述用户设备会渐渐远离所述中继站 1 向中继站 2移动, 相对于中继站 1 而言, 用户设备的参考信号功率会越来越弱, 当所 述用户设备的参考信号接收功率小于或等于第一预设阔值, 所述用 户设备离开中继站 1 的覆盖范围内时。
( 2 )测量所述用户标识对应的用户设备的来波方向( Direction Of Arrival , DOA ) 角度的大小, 即波达角角度的大小, 判断所述用 户标识对应的用户设备是否在所述中继站的覆盖范围内; 若测量得到所述波达角角度大于第二预设阔值, 确定所述用户 标识对应的用户设备在所述中继站的覆盖范围内。 其中, 所述第二预设阔值为系统根据中继站的性能进行预先设 置的, 本发明实施例对此不进行限定; 用户设备的波达角角度大于 第二预设阔值表示用户设备在中继站的覆盖范围内; 用户设备的波 达角角度小于或等于第二预设阔值表示用户设备不在中继站的覆 盖范围内。 例如, 如图 6所示, 当用户设备沿着城市主干线向中继 站 1移动的过程中, 相对于中继站 1 而言, 用户设备的波达角角度 会越来越大, 即所述用户设备在不断向所述中继站 1 靠近, 当所述 用户设备的波达角角度大于第二预设阔值时, 所述用户设备进入到 中继站 1 的覆盖范围内, 随着所述用户设备的继续移动, 所述用户 设备会渐渐远离所述中继站 1 向中继站 2移动, 相对于中继站 1 而 言, 用户设备的波达角角度会越来越小, 当所述用户设备的波达角 角度小于或等于第二预设阔值时, 所述用户设备离开中继站 1 的覆 盖范围内。
进一步的, 所述收发器 1 103还用于, 在所述收发器 1 103接收 所述基站发送的第一标识之前, 接收基站发送的用户设备请求传输 的数据; 相应的, 所述存储器 1 102 , 用于存储所述收发器 1 103 接收的 用户设备请求传输的数据。 进一步的, 所述处理器 1 101 , 还用于确定所述用户标识对应的 用户设备从所述中继站的覆盖范围内移动到所述中继站的覆盖范 围外, 且确定第一标识对应的数据中存在未传输数据;
相应的, 所述收发器 1103, 还用于在所述处理器 1101 确定所 述用户标识对应的用户设备从所述中继站的覆盖范围内移动到所 述中继站的覆盖范围外时, 向所述基站发送第二标识, 其中, 所述 第二标识包含第一标识对应的数据中未传输数据的标识, 以使得所 述基站根据所述第二标识更新所述第一标识。 例如, 假设中继站根 据第一标识依次向用户设备发送第三条数据、 第四条数据和第五条 数据, 在用户设备处于所述中继站的覆盖范围内时, 中继站将第三 条数据和第四条数据发送给用户设备, 则由数据标识和数据的对应 关系 (表 1 ) 可知, 中继站向基站发送包含标识 5的第二标识。 由上可知, 本发明实施例提供中继站 110, 接收基站发送的请 求传输数据的用户设备的用户标识, 确定所述用户标识对应的用户 设备在所述中继站 110的覆盖范围内, 向所述基站发送请求信息; 接收所述基站发送的第一标识, 并根据所述第一标识向所述用户设 备发送所述第一标识对应的数据。 如此, 能够实现中继站与基站之 间协同转发用户设备要求传输的数据, 提高了数据传输效率。 实施例十
参见图 12, 为本发明实施例提供的一种基站 120, 如图 12 所 示, 该基站 120 可以包括: 处理器 1201、 存储器 1202、 通信单元 1203, 至少一个通信总线 1204, 用于实现这些装置之间的连接和相 互通信;
处理器 1201可能是一个中央处理器 (英文: central processing unit, 简称为 CPU), 用于存储用户设备要求传输的数据。
存储器 1202可以是易失性存储器 (英文: volatile memory), 例如随机存取存储器(英文: random-access memory, 缩写: RAM ); 或者非易失性存储器 (英文: non-volatile memory ), 例如只读存储 器 (英文: read-only memory, 缩写: ROM ), 快闪存储器 (英文: flash memory ), 硬盘 (英文: hard disk drive, 缩写: HDD ) 或固态 硬盘 (英文: solid-state drive , 缩写: S SD ); 或者上述种类的存储 器的组合, 并向处理器 1001提供指令和数据。 通信单元 1203 ,用于接收用户设备发送的数据传输请求,其中 , 所述数据传输请求包含所述用户设备的标识以及所述用户设备请 求传输的数据的标识; 所述用户设备请求传输的数据的标识用于标 识数据; 在接收到用户设备发送的数据传输请求时, 向中继站发送所述 用户设备请求传输的数据以及用户标识; 接收所述中继站发送的请求信息; 其中, 所述请求信息用于请 求用户设备要求传输的数据中未传输数据的标识。 处理器 1201 , 用于根据所述请求信息确定第一标识, 其中, 所 述第一比奥斯包含所述用户设备请求传输的数据中未传输数据的 标识。 所述通信单元 1203 , 还用于向所述中继站发送所述第一标识, 以使得所述中继站根据所述第一标识向所述用户设备发送与所述 第一标识对应的数据。 进一步的, 所述通信单元 1203 , 还用在所述通信单元 1203接 收所述中继站发送的请求消息之前, 向所述中继站发送所述用户设 备请求传输的数据, 以使得所述中继站存储所述数据, 并根据所述 第一标识向所述用户设备发送与所述第一标识对应的数据。 进一步的, 所述通信单元 1203 , 还用于接收所述中继站发送的 第二标识, 其中, 所述第二标识包含第一标识对应的数据中未传输 数据的标识; 相应的, 所述处理器 1201 , 还用于根据通信单元 1203接收到 的所述第二标识更新所述第一标识。 进一步的, 所述处理器 1201 , 具体用于将所述第一标识中的标 识替换为第二标识中的标识; 例如, 4艮设第一标识中包含标识 3、 4、 5 , 接收到的第二标识中包含 5 , 则更新单元将所述第一标识替换为 包含标识 5的标识。 由上可知, 本发明实施例提供一种基站 1 20 , 接收用户设备发 送的数据传输请求, 向中继站发送所述用户设备的用户标识; 接收 所述中继站发送的请求信息, 向所述中继站发送第一标识, 以使得 中继站根据所述第一标识向用户设备发送用户设备要求传输的数 据, 并接收所述中继站发送的第二标识, 根据所述第二标识更新所 述第一标识。 如此, 能够实现中继站与基站之间协同转发用户设备 要求传输的数据, 提高了数据传输效率。 所属领域的技术人员可以清楚地了解到, 为描述的方便和简 洁, 上述描述的单元和系统的具体工作过程, 可以参考前述方法实 施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 设备和方法, 可以通过其它的方式实现。 例如, 以上所描述的设备 实施例仅仅是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑 功能划分, 实际实现时可以有另外的划分方式, 例如多个单元或组 件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或 不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦合或通 信连接可以是通过一些接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。 所述作为分离部件说明的单元可以是或者也可以不是物理上 分开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即 可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据 实际的需要选择其中的部分或者全部单元来实现本实施例方案的 目的。 另外, 在本发明各个实施例中的各功能单元可以集成在一个处 理单元中, 也可以是各个单元单独物理包括, 也可以两个或两个以 上单元集成在一个单元中。 上述集成的单元既可以采用硬件的形式 实现, 也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元, 可以存储在一 个计算机可读取存储介质中。 上述软件功能单元存储在一个存储介 质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等) 执行本发明各个实施例所述方法的部分 步骤。 而前述的存储介质包括: U 盘、 移动硬盘、 只读存储器 ( Read-Only Memory ,简称 ROM )、随机存取存储器( Random Access Memory , 简称 RAM )、 磁碟或者光盘等各种可以存储程序代码的介
本领域普通技术人员可以理解上述实施例的各种方法中的全 部或部分步骤是可以通过程序来指令相关的硬件 (例如处理器) 来 完成, 该程序可以存储于一计算机可读存储介质中, 存储介质可以 包括: 只读存储器、 随机存储器、 磁盘或光盘等。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其依然可以对前述各实施例所记 载的技术方案进行修改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发明各实 施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种天线系统, 其特征在于, 包括: 第一天线集合、 第二天线集 合和第三天线集合, 所述第一天线集合包含的天线数量至少为所述第二 天线集合包含的天线数量的两倍, 且至少为所述第三天线集合包含的天 线数量的两倍; 其中, 所述第一天线集合中的天线为双通道天线, 用于全向接收用 户设备发送的第一数据以及基站发送的第二数据;
所述第二天线集合中的天线用于向所述基站发送所述第一数据; 所述第三天线集合中的天线用于向所述用户设备发送所述第二数 据。
2、 根据权利要求 1所述的天线系统, 其特征在于, 所述第一天线集 合中的天线, 具体用于: 在第一频点上全向接收所述用户设备发送的第一数据, 以及, 在第 二频点上全向接收所述基站发送的第二数据。
3、 根据权利要求 2所述的天线系统, 其特征在于, 所述第二天线集 合中的天线为单通道天线, 所述第三天线集合中的天线为单通道天线; 相应的, 所述第二天线集合中的天线, 具体用于在所述第一频点上 采用第一预设角度向所述基站发送所述第一数据;
所述第三天线集合中的天线, 具体用于在所述第二频点上采用第二 预设角度向所述用户设备发送所述第二数据。
4、 根据权利要求 2所述的天线系统, 其特征在于, 所述第二天线集 合中的天线为双通道天线, 所述第三天线集合中的天线为单通道天线; 相应的, 所述第二天线集合中的天线还用于, 全向接收所述第二数 据。
5、 根据权利要求 4所述的天线系统, 其特征在于,
所述第二天线集合中的天线, 具体用于在所述第一频点上采用第一 预设角度向所述基站发送所述第一数据, 以及, 在所述第二频点上全向 接收所述基站发送的第二数据; 所述第三天线集合中的天线, 具体用于在所述第二频点上采用第二 预设角度向所述用户设备发送所述第二数据。
6、 根据权利要求 2所述的天线系统, 其特征在于,
所述第二天线集合中的天线为单通道天线; 所述第三天线集合中的天线为双通道天线; 相应的, 所述第三天线集合中的天线还用于, 全向接收所述第一数 据。
7、 根据权利要求 6所述的天线系统, 其特征在于,
所述第二天线集合中的天线, 具体用于在所述第一频点上采用第一 预设角度向所述基站发送所述第一数据;
所述第三天线集合中的天线, 具体用于在所述第二频点上采用第二 预设角度向所述用户设备发送所述第二数据, 以及, 在所述第一频点上 全向接收所述用户设备发送的所述第一数据。
8、 根据权利要求 2所述的天线系统, 其特征在于,
所述第二天线集合中的天线为双通道天线; 所述第三天线集合中的天线为双通道天线; 相应的 ,
所述第二天线集合中的天线还用于, 全向接收所述第二数据; 所述第三天线集合中的天线还用于, 全向接收所述第一数据。
9、 根据权利要求 8所述的天线系统, 其特征在于,
所述第二天线集合中的天线, 具体用于在所述第一频点上采用第一 预设角度向所述基站发送所述第一数据, 以及, 在所述第二频点上全向 接收所述基站发送的第二数据;
所述第三天线集合中的天线, 具体用于在所述第二频点上采用第二 预设角度向所述用户设备发送所述第二数据, 以及, 在第一频点上全向 接收所述用户设备发送的第一数据。
10、 一种数据传输方法, 其特征在于, 所述方法应用于天线系统, 所述天线系统包括第一天线集合、 第二天线集合和第三天线集合, 所述 第一天线集合包含的天线数量至少为所述第二天线集合包含的天线数量 的两倍, 且至少为所述第三天线集合包含的天线数量的两倍; 所述方法 包括:
所述第一天线集合中的天线全向接收用户设备发送的第一数据以及 基站发送的第二数据;
所述第二天线集合中的天线向所述基站发送第一数据; 所述第三天线集合中的天线向所述用户设备发送第二数据。
1 1、 根据权利要求 10所述的数据传输方法, 其特征在于, 所述第一 天线集合中的天线全向接收用户设备发送的第一数据以及基站发送的第 二数据; 所述第二天线集合中的天线向所述基站发送第一数据; 所述第 三天线集合中的天线向所述用户设备发送第二数据, 包括: 所述第一天线集合中的天线在第一频点上全向接收所述用户设备发 送的第一数据, 以及, 在第二频点上全向接收所述基站发送的第二数据; 所述第二天线集合中的天线在所述第一频点上采用第一预设角度向 所述基站发送所述第一数据;
所述第三天线集合中的天线在所述第二频点上采用第二预设角度向 所述用户设备发送所述第二数据。
12、 根据权利要求 1 1所述的数据传输方法, 其特征在于, 所述第二 天线集合中的天线为双通道天线, 所述第三天线集合中的天线为单通道 天线;
相应的, 所述方法还包括:
所述第二天线集合中的天线全向接收所述第二数据。
13、 根据权利要求 12所述的数据传输方法, 其特征在于, 所述第二 天线集合中的天线全向接收所述第二数据, 包括:
所述第二天线集合中的天线在所述第二频点上全向接收所述基站发 送的第二数据。
14、 根据权利要求 1 1所述的数据传输方法, 其特征在于, 所述第二 天线集合中的天线为单通道天线, 所述第三天线集合中的天线为双通道 天线;
相应的, 所述方法还包括:
所述第三天线集合中的天线全向接收所述第一数据。
15、 根据权利要求 14所述的数据传输方法, 其特征在于, 所述第三 天线集合中的天线全向接收所述第一数据, 包括:
所述第三天线集合中的天线在第所述第一频点上全向接收所述用户 设备发送的第一数据。
16、 根据权利要求 1 1所述的数据传输方法, 其特征在于, 所述第二 天线集合中的天线为双通道天线, 所述第三天线集合中的天线为双通道 天线;
相应的, 所述方法还包括:
所述第二天线集合中的天线全向接收第二数据; 所述第三天线集合中的天线全向接收第一数据。
17、 根据权利要求 16所述的数据传输方法, 其特征在于, 所述第二 天线集合中的天线全向接收第二数据; 所述第三天线集合中的天线全向 接收第一数据, 包括:
所述第二天线集合中的天线在第二频点上全向接收所述基站发送的 第二数据;
所述第三天线集合中的天线在第一频点上全向接收所述用户设备发 送的第一数据。
18、 一种中继站, 其特征在于, 包括如权利要求 1-9任一项所述的 天线系统。
19、 一种数据传输方法, 应用于如权利要求 18所述的中继站, 其特 征在于, 包括:
中继站接收基站发送的请求传输数据的用户设备的用户标识; 所述中继站确定所述用户标识对应的用户设备在所述中继站的覆盖 范围内, 向所述基站发送请求信息; 所述中继站接收所述基站发送的第一标识, 其中, 所述第一标识包 含所述用户设备请求传输的数据中未传输数据的标识; 所述中继站根据所述第一标识向所述用户设备发送与所述第一标识 对应的数据。
20、 根据权利要求 19所述的数据传输方法, 其特征在于, 所述中继 站确定所述用户标识对应的用户设备在所述中继站的覆盖范围内, 包括: 所述中继站测量所述用户标识对应的所述用户设备的参考信号接收 功率; 若所述参考信号接收功率大于第一预设阔值, 则确定所述用户标 识对应的用户设备在所述中继站的覆盖范围内; 或者, 所述中继站测量所述用户标识对应的用户设备的上行波达角角度; 若所述上行波达角角度大于第二预设阔值, 则确定所述用户标识对应的 用户设备在所述中继站的覆盖范围内。
21、 根据权利要求 19或 20所述的数据传输方法, 其特征在于, 在 所述中继站接收所述基站发送的第一标识之前, 所述方法还包括: 所述中继站接收基站发送的用户设备请求传输的数据, 并存储所述 数据。
22、 根据权利要求 19-21任一项所述的数据传输方法, 其特征在于, 所述方法还包括: 所述中继站若确定所述用户标识对应的用户设备从所述中继站的覆 盖范围内移动到所述中继站的覆盖范围外, 且确定第一标识对应的数据 中存在未传输数据, 则向所述基站发送第二标识, 其中, 所述第二标识 包含第一标识对应的数据中未传输数据的标识, 以使得所述基站根据所 述第二标识更新所述第一标识。
23、 一种数据传输方法, 其特征在于, 包括: 基站接收用户设备发送的数据传输请求, 其中, 所述数据传输请求 包含所述用户设备的用户标识以及所述用户设备请求传输的数据的标 识; 所述基站向中继站发送所述用户标识; 所述基站接收所述中继站发送的请求信息; 所述基站根据所述请求信息确定第一标识, 其中, 所述第一标识包 含所述用户设备请求传输的数据中未传输数据的标识; 所述基站向所述中继站发送所述第一标识, 以使得所述中继站根据 所述第一标识向所述用户设备发送与所述第一标识对应的数据。
24、 根据权利要求 23所述的数据传输方法, 其特征在于, 在所述基 站接收所述中继站发送的请求信息之前, 所述方法还包括: 所述基站向所述中继站发送所述用户设备请求传输的数据, 以使得 所述中继站存储所述数据, 并根据所述第一标识向所述用户设备发送与 所述第一标识对应的数据。
25、 根据权利要求 23或 24所述的数据传输方法, 其特征在于, 所 述方法还包括: 所述基站接收所述中继站发送的第二标识, 其中, 所述第二标识包 含第一标识对应的数据中未传输数据的标识; 所述基站根据所述第二标识更新所述第一标识。
26、 一种中继站, 其特征在于, 包括:
第一接收单元, 用于接收基站发送的请求传输数据的用户设备的用 户标识;
确定单元, 用于在所述第一接收单元接收到请求传输数据的用户设 备的用户标识时, 确定所述用户标识对应的用户设备在所述中继站的覆 盖范围内; 第一发送单元, 用于在所述确定单元确定所述用户标识对应的用户 设备在所述中继站的覆盖范围内时, 向所述基站发送请求信息;
第二接收单元, 用于接收所述基站发送的第一标识, 其中, 所述第 一标识包含所述用户设备请求传输的数据中未传输数据的标识; 第二发送单元, 用于在所述第二接收单元接收到第一标识时, 根据 所述第一标识向所述用户设备发送与所述第一标识对应的数据。
27、 根据权利要求 26所述的中继站, 其特征在于, 所述确定单元具 体用于: 测量所述用户标识对应的所述用户设备的参考信号接收功率; 若所 述参考信号接收功率大于第一预设阔值, 则确定所述用户标识对应的用 户设备在所述中继站的覆盖范围内; 或者, 测量所述用户标识对应的用户设备的上行波达角角度; 若所述上行 波达角角度大于第二预设阔值, 则确定所述用户标识对应的用户设备在 所述中继站的覆盖范围内。
28、 根据权利要求 26或 27所述的中继站, 其特征在于, 所述第一 接收单元, 还用于在所述第二接收单元接收所述基站发送的第一标识之 前, 接收基站发送的用户设备请求传输的数据;
相应的, 所述中继站还包括: 存储单元, 用于存储所述第一接收单元接收的用户设备请求传输的 数据。
29、 根据权利要求 26-28 任一项所述的中继站, 其特征在于, 所述 确定单元, 还用于确定所述用户标识对应的用户设备从所述中继站的覆 盖范围内移动到所述中继站的覆盖范围外, 且确定第一标识对应的数据 中存在未传输数据; 相应的, 所述中继站还包括: 第三发送单元, 用于向所述基站发送第二标识, 其中, 所述第二标 识包含第一标识对应的数据中未传输数据的标识, 以使得所述基站根据 所述第二标识更新所述第一标识。
30、 一种基站, 其特征在于, 包括:
第一接收单元, 用于接收用户设备发送的数据传输请求, 其中, 所 述数据传输请求包含所述用户设备的用户标识以及所述用户设备请求传 输的数据的标识; 第一发送单元, 用于在所述第一接收单元接收到用户设备发送的数 据传输请求时, 向中继站发送所述用户标识;
第二接收单元, 用于接收所述中继站发送的请求信息; 确定单元, 用于根据所述请求信息确定第一标识, 其中, 所述第一 标识包含所述用户设备请求传输的数据中未传输数据的标识;
第二发送单元, 用于向所述中继站发送所述第一标识, 以使得所述 中继站根据所述第一标识向所述用户设备发送与所述第一标识对应的数 据。
3 1、 根据权利要求 30所述的基站, 其特征在于, 所述第一发送单元 还用于:
在所述第二接收单元接收所述中继站发送的请求信息之前, 向所述 中继站发送所述用户设备请求传输的数据, 以使得所述中继站存储所述 数据, 并根据所述第一标识向所述用户设备发送与所述第一标识对应的 数据。
32、 根据权利要求 30或 3 1所述的基站, 其特征在于, 所述基站还 包括:
第三接收单元, 用于接收所述中继站发送的第二标识, 其中, 所述 第二标识包含第一标识对应的数据中未传输数据的标识; 更新单元, 用于根据所述第二接收单元接收的第二标识更新所述第 一标识。
PCT/CN2014/075980 2014-04-22 2014-04-22 一种天线系统、中继站及数据传输方法 WO2015161457A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/075980 WO2015161457A1 (zh) 2014-04-22 2014-04-22 一种天线系统、中继站及数据传输方法
CN201480029058.7A CN105340358A (zh) 2014-04-22 2014-04-22 一种天线系统、中继站及数据传输方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075980 WO2015161457A1 (zh) 2014-04-22 2014-04-22 一种天线系统、中继站及数据传输方法

Publications (1)

Publication Number Publication Date
WO2015161457A1 true WO2015161457A1 (zh) 2015-10-29

Family

ID=54331597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075980 WO2015161457A1 (zh) 2014-04-22 2014-04-22 一种天线系统、中继站及数据传输方法

Country Status (2)

Country Link
CN (1) CN105340358A (zh)
WO (1) WO2015161457A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388696A (zh) * 2007-09-11 2009-03-18 中兴通讯股份有限公司 中继网络切换过程中的多天线模式选择方法
CN101420702A (zh) * 2008-10-30 2009-04-29 中兴通讯股份有限公司 中继系统部署方法和中继系统
CN101741432A (zh) * 2008-11-19 2010-06-16 夏普株式会社 L1多天线中继站及其功率控制方法
CN103096297A (zh) * 2011-10-28 2013-05-08 北京市配天智慧云技术有限公司 一种数据传输方法、系统及相关设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7366464B2 (en) * 2004-06-04 2008-04-29 Interdigital Technology Corporation Access point operating with a smart antenna in a WLAN and associated methods
KR100898050B1 (ko) * 2006-01-03 2009-05-19 삼성전자주식회사 다중 홉 릴레이 방식의 셀룰러 네트워크에서 투명 중계하기위한 장치 및 방법
JP5493131B2 (ja) * 2010-09-08 2014-05-14 国立大学法人九州大学 パケット通信システム、放射制御装置、アンテナ制御方法及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388696A (zh) * 2007-09-11 2009-03-18 中兴通讯股份有限公司 中继网络切换过程中的多天线模式选择方法
CN101420702A (zh) * 2008-10-30 2009-04-29 中兴通讯股份有限公司 中继系统部署方法和中继系统
CN101741432A (zh) * 2008-11-19 2010-06-16 夏普株式会社 L1多天线中继站及其功率控制方法
CN103096297A (zh) * 2011-10-28 2013-05-08 北京市配天智慧云技术有限公司 一种数据传输方法、系统及相关设备

Also Published As

Publication number Publication date
CN105340358A (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
JP6962350B2 (ja) 無線通信システム、無線局、無線端末、及び制御方法
JP7380780B2 (ja) ソースranノード、無線端末、ターゲットranノード、及びこれらの方法
KR102345654B1 (ko) 이중 접속 수립 방법 및 디바이스
CN104796954B (zh) 用于网络环境中的无缝移动性的系统和方法
US20220400427A1 (en) Methods and systems for transmitting integrated access and backhaul information
US11418962B2 (en) Method and Device for Obtaining UE Security Capabilities
US10356610B2 (en) Methods, systems and devices for small cell communications
KR20190132815A (ko) 5g 무선통신 네트워크 시스템에서 최고 신뢰성있는 서비스를 위한 이중 전송 방법 및 장치
US9693267B2 (en) Method and apparatus for mobility management
KR102007474B1 (ko) 단말장치 및 단말장치의 데이터 전송경로 스위칭 방법
US20210127317A1 (en) Path selecting method, terminal device, and network device
US20200374962A1 (en) Communication method, first terminal device, and second terminal device
CN110557846A (zh) 一种数据传输方法、终端设备及网络设备
WO2018223824A1 (zh) 一种业务数据传输方法及装置
CN112351460B (zh) 数据传输方法及相关设备
WO2021227049A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
WO2020259430A1 (zh) 用于传输业务报文的方法和装置
KR20200019043A (ko) 이동통신 시스템에서 핸드오버 방법 및 장치
KR101374155B1 (ko) 60 g㎐ 대역의 지향성 안테나 네트워크를 위한 결정적인 이웃 탐색 방법
JP7013423B2 (ja) ハンドオーバーでのアップリンクベアラーバインディング
WO2017193387A1 (zh) 异制式小区间切换的方法及装置
WO2021114043A1 (zh) 设备到设备的通信方法和通信装置
WO2015161457A1 (zh) 一种天线系统、中继站及数据传输方法
JP7452627B2 (ja) 通信方法、第1ネットワーク装置及び第2ネットワーク装置
JP2020503739A (ja) データ処理方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480029058.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890025

Country of ref document: EP

Kind code of ref document: A1