WO2021192459A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2021192459A1
WO2021192459A1 PCT/JP2020/047637 JP2020047637W WO2021192459A1 WO 2021192459 A1 WO2021192459 A1 WO 2021192459A1 JP 2020047637 W JP2020047637 W JP 2020047637W WO 2021192459 A1 WO2021192459 A1 WO 2021192459A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
pixel
unit
light
invisible light
Prior art date
Application number
PCT/JP2020/047637
Other languages
English (en)
French (fr)
Inventor
寿伸 杉山
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2021192459A1 publication Critical patent/WO2021192459A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • This technology relates to an imaging device. More specifically, the present invention relates to an imaging device that removes flicker.
  • This technology was created in view of such a situation, and aims to improve robustness in an imaging device that performs image recognition.
  • the present technology has been made to solve the above-mentioned problems, and the first aspect thereof is to expose pixels in order over a plurality of exposure periods having the same length to sequentially expose a plurality of pixel signals.
  • This is an imaging device including a control unit for generating a flicker component and a flicker component extraction unit for extracting a flicker component that blinks at a cycle corresponding to the length from the plurality of pixel signals. This has the effect of improving the robustness of image recognition.
  • the floating diffusion layer may be shared between the pixel and the adjacent pixel adjacent to the pixel. This has the effect of reducing the circuit scale.
  • control unit may expose the adjacent pixels over an exposure period different from the plurality of exposure periods. This has the effect that exposure is performed in parallel on a plurality of pixels.
  • the pixels are arranged in each of the two adjacent lines, and the control unit performs one of the two lines over a specific exposure period among the plurality of exposure periods. It may be exposed and the other of the two lines may be exposed over an exposure period different from the specific exposure period among the plurality of exposure periods. This has the effect that exposures are performed in parallel on multiple lines.
  • the plurality of exposure periods include two pixel signals whose phases of the corresponding exposure periods are different by 180 degrees, and the flicker component extraction unit is based on the difference between the two pixel signals.
  • the flicker component may be extracted. This has the effect of removing the background light component.
  • control unit may sequentially expose the pixels over each of the four exposure periods having the same length to generate four pixel signals. This has the effect of improving the detection accuracy of the flicker component.
  • the remaining three phases may differ from any of the phases of the above four exposure periods by 90 degrees, 180 degrees, and 270 degrees, respectively. This has the effect of improving the detection accuracy of the flicker component.
  • control unit may further expose the pixels over an exposure period having a length different from that of the four exposure periods to generate a new pixel signal. This has the effect of generating a normal image.
  • an image synthesizing unit that generates a composite image by synthesizing a normal image in which the new image signals are arranged and the flicker component may be further provided. This has the effect of generating an image from which flicker has been removed.
  • a blinking subject recognition unit that performs image recognition on a blinking subject in which the flicker component is arranged may be further provided. This has the effect of detecting a blinking subject.
  • an image recognition unit that performs image recognition on the composite image may be further provided. This has the effect of detecting a predetermined subject.
  • control unit stops the flicker component extraction unit and the blinking subject recognition unit, and when a predetermined subject is detected by the image recognition, the flicker component extraction unit and the flicker component extraction unit and the blinking subject recognition unit are stopped.
  • the blinking subject recognition unit may be operated. This has the effect of reducing power consumption.
  • control unit stops the flicker component extraction unit and the blinking subject recognition unit, and when a predetermined subject is detected by the image recognition, the image composition unit and the image synthesis unit and the above.
  • the flicker component extraction unit and the blinking subject recognition unit may be operated while the image recognition unit is stopped. This has the effect of reducing power consumption.
  • the second aspect of the present technology is from the first and second light sources that irradiate invisible light, the first image obtained by photoelectrically converting the invisible light from the first light source, and the second light source.
  • This is an imaging device including a signal processing unit that calculates a difference from the second image obtained by photoelectrically converting the invisible light of the above. This has the effect of improving the image quality of the image.
  • a first invisible light pixel that photoelectrically converts the invisible light from the first light source and a second invisible light pixel that photoelectrically converts the invisible light from the second light source may be further provided. This has the effect of generating two infrared light images.
  • visible light pixels for photoelectric conversion of visible light may be further arranged in the pixel array unit. This has the effect of generating a color image.
  • a first invisible light blocking filter that blocks the invisible light from the first light source and a second invisible light blocking filter that blocks the invisible light from the second light source.
  • the first invisible light pixel receives the invisible light through the second invisible light blocking filter
  • the second invisible light pixel receives the invisible light through the second invisible light blocking filter
  • the second invisible light pixel is the first invisible light blocking filter.
  • the invisible light is received via the above, and the respective wavelengths of the invisible light from the first light source and the invisible light from the second light source may be different. This has the effect of improving the contrast of the image.
  • the first and second polarizing filters that transmit invisible light having different polarization directions and the first invisible light that transmits the polarization component of the invisible light from the first light source are transmitted.
  • a first wire grid filter leading to an optical pixel and a second wire grid filter that transmits a polarization component of the invisible light from the second light source and guides the invisible light pixel to the second invisible light pixel are further provided.
  • the invisible light from the first light source may be emitted through the first polarizing filter, and the invisible light from the second light source may be emitted through the second polarizing filter. This has the effect of improving the contrast of the image.
  • the solid-state image sensor that generates the first and second images is further provided, the first and second light sources are turned on at different timings, and the solid-state image sensor is The invisible light is photoelectrically converted to generate the first image during the period when the first light source is lit, and the invisible light is photoelectrically converted during the period when the second light source is lit to generate the first image.
  • An image may be generated. This has the effect of eliminating the need for an infrared blocking filter.
  • This is an example of an external view of an image pickup apparatus according to a second embodiment of the present technology.
  • It is a graph which shows an example of the characteristic of the dual bandpass filter in the 2nd Embodiment of this technique.
  • It is a top view which shows one structural example of the pixel array part in the 2nd Embodiment of this technique.
  • This is an example of a cross-sectional view of a solid-state image sensor according to a second embodiment of the present technology.
  • It is a graph which shows an example of the characteristic of the infrared light blocking filter in the 2nd Embodiment of this technique.
  • FIG. 1 is a block diagram showing a configuration example of the image pickup apparatus 100 according to the first embodiment of the present technology.
  • the image pickup device 100 is a device for capturing image data, and includes an image pickup lens 110, a solid-state image sensor 200, and a signal processing unit 300.
  • As the image pickup device 100 for example, in addition to a digital camera such as a digital still camera, a smartphone having an image pickup function, a personal computer, an in-vehicle camera, or the like is assumed.
  • the image pickup lens 110 collects the incident light and guides it to the solid-state image sensor 200.
  • the solid-state image sensor 200 captures image data.
  • the solid-state image sensor 200 receives a control signal from the signal processing unit 300 via the signal line 208, and images image data according to the control signal. Further, the solid-state image sensor 200 outputs the captured image data to the signal processing unit 300 via the signal line 209.
  • the signal processing unit 300 performs signal processing such as flicker removal and image recognition on the image data.
  • a DSP Digital Signal Processing
  • the signal processing unit 300 outputs the processed data as output data to the outside.
  • a mode signal MODE instructing the state of the image pickup apparatus 100 is input to the signal processing unit 300.
  • the signal processing unit 300 changes the content of the signal processing to be executed and the control method of the solid-state image sensor 200 according to the mode signal MODE.
  • the image pickup apparatus 100 may be further provided with a recording unit for recording image data and a communication unit for communicating with the outside.
  • FIG. 2 is a block diagram showing a configuration example of the solid-state image sensor 200 according to the first embodiment of the present technology.
  • the solid-state image sensor 200 includes a V decoder 211, a pixel array unit 212, a timing control circuit 213, a column signal processing circuit 214, and an H decoder 215.
  • a plurality of pixels 220 are arranged in a two-dimensional grid pattern in the pixel array unit 212.
  • the set of pixels 220 arranged in a predetermined horizontal direction is referred to as a "row” or “line”, and the set of pixels 220 arranged in a direction perpendicular to the row is referred to as a "column”.
  • the V decoder 211 decodes the signal from the timing control circuit 213 and drives the lines (that is, the lines) in order.
  • Pixel 220 generates an analog pixel signal by photoelectric conversion.
  • the pixel 220 supplies the generated pixel signal to the column signal processing circuit 214.
  • the column signal processing circuit 214 performs signal processing such as AD (Analog to Digital) conversion processing and CDS (Correlated Double Sampling) processing on the pixel signal for each column.
  • the column signal processing circuit 214 sequentially supplies each of the line data in the processed image data to the signal processing unit 300 under the control of the H decoder 215.
  • the line data includes the digital pixel signals of each of the pixels in the line.
  • the H decoder 215 decodes the signal from the timing control circuit 213 and drives the column signal processing circuit 214.
  • the timing control circuit 213 controls the operation timings of the V decoder 211, the column signal processing circuit 214, and the H decoder 215 according to the control signal from the signal processing unit 300.
  • control signal from the signal processing unit 300 includes a vertical synchronization signal indicating the imaging timing and a signal indicating the start and end timing of the exposure.
  • the signal processing unit 300 can control the timing of the exposure start and the exposure end of the pixel 220 by the control signal.
  • FIG. 3 is a circuit diagram showing a configuration example of the pixel 220 according to the first embodiment of the present technology.
  • the pixel 220 includes a photoelectric conversion element 221, a transfer transistor 222, a floating diffusion layer 223, a reset transistor 224, an amplification transistor 225, and a selection transistor 226.
  • the reset signal RST_n, the transfer signal TRT_n, and the selection signal SEL_n from the V decoder 211 are supplied to the n (n is an integer) th line.
  • the photoelectric conversion element 221 generates an electric charge by photoelectric conversion.
  • the transfer transistor 222 transfers an electric charge from the photoelectric conversion element 221 to the floating diffusion layer 223 according to the transfer signal TRT_n.
  • the floating diffusion layer 223 accumulates electric charges and generates a voltage according to the amount of electric charges.
  • the reset transistor 224 initializes the charge amount of the floating diffusion layer 223 according to the reset signal RST_n.
  • the amplification transistor 225 amplifies the voltage of the floating diffusion layer 223.
  • the selection transistor 226 supplies a signal of the amplified voltage as a pixel signal to the column signal processing circuit 214 according to the selection signal SEL_n.
  • the circuit configuration of the pixel 220 is not limited to that illustrated in the figure.
  • an OFG transistor that discharges electric charge from the photoelectric conversion element 221 can be added.
  • FIG. 4 is a block diagram showing a configuration example of the signal processing unit 300 according to the first embodiment of the present technology.
  • the signal processing unit 300 includes a line buffer 310, a flicker component extraction unit 311, a camera control unit 312, an image composition unit 313, an image processing unit 314, an image recognition unit 315, and a blinking subject recognition unit 316.
  • the camera control unit 312 controls each of the solid-state image sensor 200 and the circuits in the signal processing unit 300.
  • the camera control unit 312 causes the solid-state image sensor 200 to image image data using a control signal.
  • five exposure periods are set within the period of the vertical synchronization signal.
  • Four of the five exposure periods are the same length and the remaining one is arbitrary.
  • the camera control unit 312 exposes each of the pixels 220 in order over the five exposure periods, and generates five pixel signals for each pixel.
  • the pixel signal corresponding to the first exposure period is I 1 and the pixel signal corresponding to the second exposure period is I 2 . Also, among those four exposure periods, a pixel signal corresponding to the third exposure period and I 3, the pixel signals corresponding to the fourth exposure period and I 4. The fifth pixel signal corresponding to the exposure period and I 5.
  • Pixel signals I 1 , I 2 , I 3 and I 4 are used to extract the signal component of a blinking flashing light source as a flicker component.
  • the remaining pixel signal I 5 is used to generate an image to be output.
  • the line buffer 310 holds a predetermined number of line data from the solid-state image sensor 200. Assuming that the number of pixels in the line is M (M is an integer), each line data includes M ⁇ 5 pixel signals.
  • the flicker component extraction unit 311 extracts a signal component from a blinking light source as a flicker component from a pixel signal for each pixel.
  • the pixel signal includes a flicker component and a signal component other than the flicker component.
  • the length of each of the four exposure periods described above is set to a value corresponding to the blinking cycle of the flicker component to be extracted (for example, a half cycle of the blinking cycle).
  • the flicker component extraction unit 311 reads the pixel signals I 1 , I 2 , I 3 , and I 4 from the line buffer 310 for each pixel, and extracts the flicker component I 0 by an operation on them. The calculation method will be described later.
  • the flicker component extraction unit 311 supplies the extracted flicker component I 0 to the image synthesis unit 313 and the blinking subject recognition unit 316.
  • the image synthesizing unit 313 uses an image in which the pixel signals I 5 are arranged as a normal image, and synthesizes a flicker component I 0 with the image. For example, the pixel signal I 5 and the flicker component I 0 are combined for each pixel at the same composition ratio.
  • the image synthesizing unit 313 determines whether or not to synthesize the pixel signal I 5 and the flicker component I 0 at a synthesizing ratio according to the respective signal strengths, and whether or not to perform the flicker component I 0 based on the signal strength. You can also. This compositing process removes flicker in the image.
  • the image composition unit 313 supplies a composite image in which the combined signals are arranged to the image processing unit 314.
  • the image synthesizing unit 313 generates a composite image from the pixel signal I 5 and the flicker component I 0, but the composition is not limited to this.
  • the image synthesizing unit 313 further reads the pixel signals I 1 , I 2 , I 3 , and I 4 from the line buffer 310, and sets an image in which their statistics (additional value and average value) are arranged as a normal image.
  • the normal image and the flicker component I 0 can also be combined. In this case, the generation of the pixel signal I 5 becomes unnecessary.
  • the image synthesizing unit 313 uses an image in which the statistics of the pixel signals I 1 , I 2 , I 3 and I 4 and the composite value of the pixel signal I 5 are arranged as a normal image, and the normal image and the flicker component I It is also possible to synthesize with 0.
  • the image processing unit 314 performs various image processing such as white balance correction processing and demosaic processing on the composite image.
  • the image processing unit 314 supplies the processed composite image to the image recognition unit 315.
  • the image recognition unit 315 performs image recognition processing on the composite image.
  • the image recognition unit 315 recognizes a predetermined subject such as a traffic light or a tail lamp by image recognition, and analyzes the state of the subject (color of the traffic light, etc.). Then, the image recognition unit 315 supplies the recognition result R1 to the blinking subject recognition unit 316 and the camera control unit 312. Further, the image recognition unit 315 outputs the output image to the outside.
  • the blinking subject recognition unit 316 performs image recognition processing on the subject of the blinking light source in which the flicker component I 0 is arranged.
  • the blinking subject recognition unit 316 recognizes a predetermined subject such as a traffic light or a tail lamp by image recognition, and supplies the recognition result R2 to the image recognition unit 315. Further, the blinking subject recognition unit 316 outputs the recognition result to the outside as needed.
  • the camera control unit 312 generates an enable signal according to the mode signal MODE, and operates each of the flicker component extraction unit 311, the image composition unit 313, the image processing unit 314, the image recognition unit 315, and the blinking subject recognition unit 316.
  • an enable signal For example, four enable signals EN_A, EN_B, EN_C and EN_D are generated.
  • the enable signal EN_A is supplied to the image synthesis unit 313 and the image processing unit 314, and the enable signal EN_B is supplied to the image recognition unit 315.
  • the enable signal EN_C is supplied to the flicker component extraction unit 311, and the enable signal EN_D is supplied to the blinking subject recognition unit 316.
  • FIG. 5 is a diagram for explaining mode control in the first embodiment of the present technology. It is assumed that one of modes 1 to 5 is set by the mode signal MODE, for example.
  • the enable signals EN_A and EN_C are set to the on state, and the enable signals EN_B and EN_D are set to the off state.
  • the operations of the flicker component extraction unit 311, the image composition unit 313, and the image processing unit 314 are enabled, and the composite image from which the flicker has been removed is generated.
  • the image recognition unit 315 and the blinking subject recognition unit 316 are disabled. At this time, the image recognition unit 315 does not perform image recognition, and outputs the composite image from the image processing unit 314 as an output image through.
  • the signal processing unit 300 outputs only the output image from which the flicker has been removed.
  • the enable signals EN_A and EN_B are set to the off state, and the enable signals EN_C and EN_D are set to the on state.
  • the image composition unit 313, the image processing unit 314, and the image recognition unit 315 are disabled, and the flicker component extraction unit 311 and the blinking subject recognition unit 316 are enabled.
  • the blinking subject recognition unit 316 outputs the recognition result of the blinking blinking subject.
  • the signal processing unit 300 outputs only the recognition result of the blinking subject.
  • the image recognition unit 315 and the blinking subject recognition unit 316 mutually utilize the recognition results of each other.
  • the image recognition unit 315 uses the recognition result R2 of the blinking subject to recognize only the periphery of the blinking subject in the composite image to improve the processing speed.
  • the image recognition unit 315 and the blinking subject recognition unit 316 can improve the processing speed and reliability by recognizing the subject by using both the recognition results R1 and R2.
  • the blinking subject recognition unit 316 recognizes the presence of the traffic light, while the image recognition unit 315 recognizes the color of the traffic light. It can be used for recognizing the position.
  • the signal processing unit 300 outputs the output image from which the flicker is removed and the recognition result of the blinking subject.
  • the enable signals EN_A and EN_B are first set to the on state, and the enable signals EN_C and EN_D are set to the off state.
  • the image composition unit 313, the image processing unit 314, and the image recognition unit 315 are enabled, and the flicker component extraction unit 311 and the blinking subject recognition unit 316 are disabled.
  • the image synthesizing unit 313 supplies the normal image to the image processing unit 314 without synthesizing.
  • the image recognition unit 315 performs image recognition processing on the normal image from which the flicker has not been removed.
  • the camera control unit 312 sets the enable signals EN_C and EN_D to the ON state. ..
  • the flicker component extraction unit 311 and the blinking subject recognition unit 316 are enabled.
  • the signal processing unit 300 outputs the output image from which the flicker is removed and the recognition result of the blinking subject.
  • the enable signals EN_A and EN_B are first set to the on state, and the enable signals EN_C and EN_D are set to the off state as in the mode 4.
  • the camera control unit 312 sets the enable signals EN_A and EN_B to the off state and turns the enable signals EN_C and EN_D on. Set to.
  • the image composition unit 313, the image processing unit 314, and the image recognition unit 315 are disabled, and the flicker component extraction unit 311 and the blinking subject recognition unit 316 are enabled.
  • the camera control unit 312 controls the solid-state image sensor 200 by the control signal to image a part of the region including the detected subject as an ROI (Region of Interest).
  • the blinking subject recognition unit 316 performs image recognition processing on the ROI and outputs the recognition result.
  • controls of modes 1 to 5 illustrated in the figure are examples, and the camera control unit 312 can also perform controls other than these.
  • FIG. 6 is a timing chart showing an example of the imaging operation according to the first embodiment of the present technology.
  • the frequency at which the blinking light source blinks is set to, for example, 100 hertz (Hz).
  • the blinking cycle is 10 milliseconds (ms).
  • the clock signal CLK illustrated in the figure corresponds to a clock signal that drives a blinking light source.
  • the camera control unit 312 supplies the vertical synchronization signal VSYNC to the solid-state image sensor 200.
  • the frequency of this vertical synchronization signal VSYNC is set to, for example, 30 hertz (Hz).
  • the period of the vertical synchronization signal VSYNC is 1/30 second (s). 1/30 second (s) is about 33 milliseconds (ms).
  • the solid-state image sensor 200 exposes the lines in order over the period of the exposure periods EXP1 to EXP5.
  • the length of each exposure period of the exposure periods EXP1 to EXP4 is set to 5 milliseconds, which is a half cycle of the blinking cycle.
  • the phase difference between the start timing of the exposure period EXP1 and the start timing of the exposure period EXP2 is set to 180 degrees with 100 hertz (Hz) as one cycle.
  • the phase difference between the start timing of the exposure period EXP1 and the start timing of the exposure period EXP3 is set to 90 degrees.
  • the phase difference between the start timing of the exposure period EXP1 and the start timing of the exposure period EXP4 is set to 270 degrees.
  • the period from the timing T1 to the timing T11 5 milliseconds later is set as the exposure period EXP1 of the first line.
  • the period from the timing T11 to the timing T12 5 milliseconds later is set as the exposure period EXP2 of the first line.
  • the next exposure period EXP3 is started at the timing T13 2.5 milliseconds after the timing T12.
  • the period from the timing T13 to the timing T14 5 milliseconds later is set as the exposure period EXP3 of the first line.
  • the period from the timing T14 to the timing T15 5 milliseconds later is set as the exposure period EXP4 of the first line.
  • the exposure period EXP5 is started for the first line at the timing T16, for example, 2.5 milliseconds after the timing T15.
  • the exposure period EXP5 of the first line ends. Since the exposure periods EXP1 to EXP4 are all 5 milliseconds, the remaining 13 milliseconds of the 33 milliseconds can be allocated to the exposure period EXP5.
  • the exposure periods EXP1 to EXP5 of the n (n is an integer of 1 to N) lines are defined as EXP1 n to EXP5 n .
  • the exposure of the n + 1th line is started after the exposure of the nth line.
  • the timing T21 to T23 is set as the exposure period EXP1 n of n-th line
  • from the timing T23 to T25 is set as the exposure period EXP2 n of n-th line.
  • Timings T26 to T28 are set as the nth line exposure period EXP3 n
  • timings T28 to T30 are set as the nth line exposure period EXP4 n .
  • from the timing T31 to T32 is set as the exposure period Exp5 n of n-th line.
  • a control method in which exposure is sequentially performed in line units is generally called a rolling shutter method.
  • the exposure period EXP5 is not limited to 13 milliseconds, and can be set to any time by adjusting the start and end timings, and can be set to less than 13 milliseconds. For example, in the figure, the exposure period EXP5 is set to 8 milliseconds.
  • the solid-state image sensor 200 is exposed by the rolling shutter method, it is also possible to use the global shutter method in which exposure is started and ended at the same time on all lines.
  • FIG. 7 is a timing chart showing an example of exposure control according to the first embodiment of the present technology.
  • the phase difference between the rising edge of the clock signal CLK of the blinking light source and the start timing T21 of the exposure period EXP1n on the nth line is set to ⁇ milliseconds.
  • the n-th line pixel receives the light from the blinking light source over the period from the timing T27 to the timing T28 after ⁇ millisecond of the timing T26.
  • the n-th line pixel receives the light from the blinking light source for a period from the timing T28 to the timing T29 after ⁇ millisecond.
  • the shaded area indicates the period during which the light from the blinking light source is received.
  • the nth line pixel may receive light from a blinking light source of 100 Hz (Hz), light from a blinking light source having a frequency other than 100 Hz (Hz), or light from a natural light source that does not blink. ..
  • Exposure period EXP m (m is an integer of 1 to 4) in the pixel signal I m corresponding to the corresponding signal component to the flashing light source 100 hertz (Hz) and L m, corresponding to the other of the background light
  • Bg be the signal component. It is assumed that the signal component Bg is uniform within each exposure period.
  • phase difference ⁇ arctan ⁇ (I 3- I 4 ) / (I 1- I 2 ) ⁇
  • arctan () represents the inverse function of the tangent function.
  • Equation 3 the signal component Bg of the background light is canceled by the differential calculation, and only the flicker component of the assumed blinking light source of 100 Hz (Hz) is extracted. For pixels that do not receive light from the blinking light source, the calculation result of Equation 3 is "0".
  • the robustness and processing speed of image recognition may decrease due to the influence of background light other than the blinking light source to be recognized.
  • the influence of the background light can be suppressed by canceling the signal component Bg of the background light, and the robustness of image recognition and the processing speed can be improved.
  • the exposure period of the image is fixed to the blinking cycle and cannot be shorter than that, there is a possibility that moving object blurring may occur when imaging a subject moving at high speed.
  • the exposure period EXP5 of the normal image does not need to be fixed to the blinking cycle (10 milliseconds or the like), and can be shorter than the blinking cycle. Thereby, the moving body bra can be suppressed.
  • the blinking cycle of the extraction target is set to 100 hertz (Hz)
  • a flicker component having a blinking cycle other than 100 hertz (Hz) can also be extracted.
  • the blinking cycle of the flicker component to be extracted is P hertz (Hz)
  • the length of each of the exposure periods EXP1 to EXP4 may be set to 1 / (2P) seconds.
  • the exposure period of four phases is used for extracting the signal component of the blinking light source, a plurality of phases other than the four phases (two phases, five or more phases, etc.) can also be used.
  • FIG. 8 is a timing chart showing an example of the reading operation according to the first embodiment of the present technology.
  • the column signal processing circuit 214 in the solid-state image sensor 200 sequentially reads out the corresponding pixel signals at the end of each of the five exposure periods in synchronization with the horizontal synchronization signal.
  • the column signal processing circuit 214 first reads out the pixel signal of the exposure period EXP5 on the Ath row. Subsequently, the column signal processing circuit 214 includes a pixel signal of the exposure period EXP1 on the Bth row, a pixel signal of the exposure period EXP2 on the Cth row, a pixel signal of the exposure period EXP3 on the Dth row, and the Eth row. The pixel signals of the exposure period EXP4 are read out in order. Subsequently, the column signal processing circuit 214 reads out the pixel signal of the exposure period EXP5 on the A + 1th line in the period after T42.
  • the column signal processing circuit 214 includes a pixel signal of the exposure period EXP1 on the B + 1 line, a pixel signal of the exposure period EXP2 on the C + 1 line, a pixel signal of the exposure period EXP3 on the D + 1 line, and the E + 1 line.
  • the pixel signals of the exposure period EXP4 are read out in order.
  • FIG. 9 is a timing chart showing an example of transistor control at the time of reading according to the first embodiment of the present technology. It is assumed that the column signal processing circuit 214 reads the nth line at the timings T51 to T53, and reads the n + 1th line at the timings T53 to T55.
  • the V decoder 211 supplies a high-level selection signal SEL_n to the nth line over the timings T51 to T53. Further, the V decoder 211 supplies a high-level reset signal RST_n to the nth line from the timing T51 over a predetermined pulse period. Then, within the period of timings T51 to T52, the P phase, which is the signal level at the time of initialization of the floating diffusion layer 223, is read out. Subsequently, the V decoder 211 supplies the high-level transfer signal TRT_n to the nth line from the timing T52 for a predetermined pulse period. Then, within the period of timings T52 to T53, the D phase, which is the signal level at the time of transferring the signal charge, is read out.
  • the V decoder 211 supplies a high-level selection signal SEL_n + 1 to the n + 1th line over the timings T53 to T55. Further, the V decoder 211 supplies a high-level reset signal RST_n + 1 to the n + 1th line from the timing T53 over a predetermined pulse period. Subsequently, the V decoder 211 supplies the high-level transfer signal TRT_n + 1 to the n + 1th line from the timing T54 over a predetermined pulse period.
  • the n + 2nd and subsequent lines are read out in order.
  • FIG. 10 is a flowchart showing an example of the operation of mode 1 in the first embodiment of the present technology. This operation is started, for example, when mode 1 is set.
  • the signal processing unit 300 sets the enable signals EN_A and EN_C to the on state, and sets the enable signals EN_B and EN_D to the off state (step S901). Further, the solid-state image sensor 200 reads out a 5-phase pixel signal (step S902). Then, the signal processing unit 300 generates and outputs an image from which flicker has been removed (step S903). After step S903, the imaging device 100 ends the mode 1 operation.
  • FIG. 11 is a flowchart showing an example of the operation of mode 2 in the first embodiment of the present technology. This operation is started, for example, when mode 2 is set.
  • the signal processing unit 300 sets the enable signals EN_C and EN_D to the on state, and sets the enable signals EN_A and EN_B to the off state (step S911). Further, the solid-state image sensor 200 reads out the four-phase pixel signals of the exposure periods EXP1 to EXP4 (step S912). Then, the signal processing unit 300 recognizes the image of the blinking subject and outputs the recognition result (step S913). After step S913, the image pickup apparatus 100 ends the mode 2 operation.
  • FIG. 12 is a flowchart showing an example of the operation of the mode 3 in the first embodiment of the present technology. This operation is started, for example, when mode 3 is set.
  • the signal processing unit 300 sets the enable signals EN_A, EN_B, EN_C, and EN_D to the ON state (step S921). Further, the solid-state image sensor 200 reads out a 5-phase pixel signal (step S922). Then, the signal processing unit 300 generates and outputs an image from which flicker has been removed (step S923), recognizes the image of the blinking subject, and outputs the recognition result (step S924). After step S924, the imaging device 100 ends the mode 3 operation.
  • FIG. 13 is a flowchart showing an example of the operation of the mode 4 in the first embodiment of the present technology. This operation is started, for example, when mode 4 is set.
  • the signal processing unit 300 sets the enable signals EN_A and EN_B to the on state, and sets the enable signals EN_C and EN_D to the off state (step S931). Further, the solid-state image sensor 200 reads out only the one-phase pixel signal of the exposure period EXP5 (step S932). Then, the signal processing unit 300 performs image recognition on the normal image and determines whether or not a predetermined subject (traffic light or the like) has been detected (step S933).
  • a predetermined subject traffic light or the like
  • the signal processing unit 300 sets the enable signals EN_A, EN_B, EN_C and EN_D to the ON state (step S934). Further, the solid-state image sensor 200 reads out a 5-phase pixel signal (step S935). The signal processing unit 300 determines whether or not a predetermined blinking subject has been detected (step S936).
  • step S933: No When the predetermined subject is not detected (step S933: No) or the blinking subject is not detected (step S936: No), the image pickup apparatus 100 repeats step S931 and subsequent steps.
  • step S936 When a blinking subject is detected (step S936: Yes), the signal processing unit 300 generates and outputs an image from which flicker has been removed (step S937), recognizes the image of the blinking subject, and outputs the recognition result. (Step S938). After step S938, the imaging device 100 ends the mode 4 operation.
  • FIG. 14 is a flowchart showing an example of the operation of the mode 5 in the first embodiment of the present technology. This operation is started, for example, when mode 5 is set.
  • the signal processing unit 300 sets the enable signals EN_A and EN_B to the on state, and sets the enable signals EN_C and EN_D to the off state (step S941). Further, the solid-state image sensor 200 reads out only the one-phase pixel signal of the exposure period EXP5 (step S942). Then, the signal processing unit 300 performs image recognition on the normal image and determines whether or not a predetermined subject (traffic light or the like) has been detected (step S943).
  • a predetermined subject traffic light or the like
  • the signal processing unit 300 sets the enable signals EN_A and EN_B to the off state and sets the enable signals EN_C and EN_D to the on state (step S944). ). Further, the solid-state image sensor 200 reads out a four-phase pixel signal for the ROI (step S945). The signal processing unit 300 determines whether or not a predetermined blinking subject has been detected (step S946).
  • step S943: No When the predetermined subject is not detected (step S943: No) or the blinking subject is not detected (step S946: No), the image pickup apparatus 100 repeats step S941 and subsequent steps.
  • step S946 When a blinking subject is detected (step S946: Yes), the signal processing unit 300 recognizes the image of the blinking subject and outputs the recognition result (step S947). After step S947, the imaging device 100 ends the mode 5 operation.
  • the camera control unit 312 exposes the pixels in order over each of the four exposure periods, and the flicker blinks at a cycle corresponding to the length of the exposure periods.
  • the component is extracted by the flicker component extraction unit 311. Therefore, the image recognition unit 315 can perform image recognition based only on the flicker component. Thereby, the robustness can be improved as compared with the case where the image recognition is performed based on the pixel signal including the disturbance other than the flicker component.
  • the floating diffusion layer 223 is arranged for each pixel, but as the number of pixels increases, the circuit scale of the pixel array unit 212 increases.
  • the first modification of this first embodiment is different from the first embodiment in that the floating diffusion layer 223 is shared by a plurality of pixels.
  • FIG. 15 is a block diagram showing a configuration example of the FD shared block 230 in the first modification of the first embodiment of the present technology.
  • a plurality of FD shared blocks 230 are arranged in the pixel array unit 212.
  • the FD shared block 230 includes a photoelectric conversion element 221, a transfer transistor 222, a floating diffusion layer 223, a reset transistor 224, an amplification transistor 225, and a selection transistor 226. Further, a photoelectric conversion element 227 and a transfer transistor 228 are further arranged in the FD shared block 230. The sensitivity of the photoelectric conversion element 227 is the same as that of the photoelectric conversion element 221.
  • connection configuration of the photoelectric conversion element 221 and the transfer transistor 222, the floating diffusion layer 223, the reset transistor 224, the amplification transistor 225, and the selection transistor 226 is the same as that of the first embodiment.
  • the transfer transistor 222 transfers an electric charge from the photoelectric conversion element 221 to the floating diffusion layer 223 according to the transfer signal TRTa_n. Further, the transfer transistor 228 transfers the electric charge from the photoelectric conversion element 227 to the floating diffusion layer 223 according to the transfer signal TRTb_n.
  • the floating diffusion layer 223 is shared by two pixels.
  • the photoelectric conversion element 221, the transfer transistor 222, the floating diffusion layer 223, the reset transistor 224, the amplification transistor 225, and the selection transistor 226 function as one of the two pixels.
  • the photoelectric conversion element 227, the transfer transistor 228, the floating diffusion layer 223, the reset transistor 224, the amplification transistor 225 and the selection transistor 226 function as the other of the two pixels.
  • One of the two pixels in the FD shared block 230 is an example of the adjacent pixels described in the claims.
  • the number of elements per pixel can be reduced and the circuit scale of the pixel array unit 212 can be reduced as compared with the first embodiment in which the two pixels do not share. Further, different exposure periods can be set for each pixel by the two transfer transistors 222 and 228.
  • the number of pixels sharing the floating diffusion layer 223 is 2, it is also possible to share the floating diffusion layer 223 with 3 or more pixels.
  • FIG. 16 is a timing chart showing an example of the imaging operation in the first modification of the first embodiment of the present technology.
  • each of the lines L1 to LN represents the line of the FD shared block 230, unlike the first embodiment.
  • two pixels sharing the floating diffusion layer 223 are arranged in the FD sharing block 230.
  • the exposure periods EXP1, EXP2 and EXP5 are set on one of the two pixels, and the exposure periods EXP3, EXP4 and EXP6 are set on the other.
  • the exposure period EXP6 is shorter than the exposure period EXP5 and is usually used for image generation. Further, the exposure period EXP3 is started within the exposure period EXP1, and the exposure period EXP4 is started within the exposure period EXP2.
  • the exposure period EXP1 n is set from the timing T61 to the timing T63 10 milliseconds (ms) later. From T62 after 5 milliseconds (ms) of the timing T61, until the timing T64 after the 10 milliseconds (ms) is set in the exposure period EXP3 n. From the timing T63, until the timing T65 after 10 milliseconds (ms) is set in the exposure period EXP2 n. From the timing T64, until the timing T66 after the 10 milliseconds (ms) is set in the exposure period exp4 n.
  • the exposure period EXP5 n is set from the timing T66 to the timing T68 about 20.5 milliseconds (ms) later.
  • the exposure period EXP6 n is set from the timing T67 2.5 milliseconds (ms) after the timing T66 to the timing T68 about 18 milliseconds (ms) later.
  • the two pixels sharing the floating diffusion layer 223 perform the exposures of the exposure periods EXP1 to EXP4 in parallel, thereby comparing with the first embodiment in which the exposures are performed by one pixel. Therefore, the exposure period EXP5 of the normal image can be lengthened.
  • a signal obtained by adding the pixel signal I 5 of the exposure period EXP 5 and the pixel signal I 6 of the exposure period EXP 6 is read out.
  • the column signal processing circuit 214 can also read out only one of the pixel signal I 5 and the pixel signal I 6 at the timing T68.
  • the column signal processing circuit 214 can read both the pixel signal I 5 and the pixel signal I 6 at different timings.
  • the dynamic range can be expanded by the signal processing unit 300 synthesizing them in HDR (High-Dynamic-Range). Further, the method of reading the pixel signals I 5 and I 6 can be changed according to the scene.
  • the sensitivities of the photoelectric conversion elements 221 and 227 are the same, their sensitivities may be different.
  • the pixel signals I 1 to I 4 for extracting the flicker component are corrected according to the sensitivity difference, and then the equation 2 is executed.
  • FIG. 17 is a timing chart showing an example of transistor control at the time of reading in the first modification of the first embodiment of the present technology.
  • the column signal processing circuit 214 reads the nth line at the timings T71 to T73 and the timings T75 to T77, and reads the n + 1th line at the timings T73 to T75 and the timing T77 and thereafter in parallel.
  • the V decoder 211 supplies a high-level selection signal SEL_n to the nth line over the timings T71 to T73. Further, the V decoder 211 supplies a high-level reset signal RST_n to the nth line from the timing T71 over a predetermined pulse period. Subsequently, the V decoder 211 supplies a high-level transfer signal TRTa_n to the nth line from the timing T72 over a predetermined pulse period.
  • the V decoder 211 supplies a high-level selection signal SEL_n + 1 to the n + 1th line from the timing T73 for a certain period of time. Further, the V decoder 211 supplies a high-level reset signal RST_n + 1 to the n + 1th line from the timing T73 over a predetermined pulse period. Subsequently, the V decoder 211 supplies the high-level transfer signal TRTa_n + 1 to the n + 1th line from the timing T74 over a predetermined pulse period.
  • the V decoder 211 supplies the high-level selection signal SEL_n to the nth line over the timings T75 to T77. Further, the V decoder 211 supplies a high-level reset signal RST_n to the nth line from the timing T75 over a predetermined pulse period. Subsequently, the V decoder 211 supplies a high-level transfer signal TRTb_n to the nth line from the timing T76 over a predetermined pulse period.
  • the V decoder 211 supplies a high-level selection signal SEL_n + 1 to the n + 1th line from the timing T77 for a certain period of time. Further, the V decoder 211 supplies a high-level reset signal RST_n + 1 to the n + 1th line from the timing T77 over a predetermined pulse period. Subsequently, the V decoder 211 supplies the high-level transfer signal TRTb_n + 1 to the n + 1th line from the timing T78 over a predetermined pulse period.
  • the pixels are compared with the first embodiment in which the floating diffusion layer 223 is not shared.
  • the number of hit elements can be reduced.
  • the two pixels sharing the floating diffusion layer 223 perform the exposures of the exposure periods EXP1 to EXP4 in parallel, so that the exposure of the normal image is compared with the first embodiment in which the exposure is performed by one pixel.
  • the exposure period EXP5 can be lengthened.
  • the exposure is performed in the exposure periods EXP1 to EXP4 for each row, but in this configuration, the exposure cannot be performed in parallel for those exposure periods.
  • the image pickup apparatus 100 of the second modification of the first embodiment is different from the first embodiment in that the even-numbered rows and the odd-numbered rows are exposed in parallel.
  • FIG. 18 is a timing chart showing an example of the imaging operation in the second modification of the first embodiment of the present technology.
  • the exposure periods EXP1, EXP2, and EXP5 are set for odd-numbered rows (Ln, etc.), and the exposure periods EXP3, EXP4, and EXP6 are set for even-numbered rows (Ln + 1, etc.).
  • the exposure period EXP1 n is set from the timing T61 to the timing T63 10 milliseconds (ms) later. From T62 after 5 milliseconds (ms) of the timing T61, until the timing T64 after the 10 milliseconds (ms) is set in the exposure period EXP2 n. Further, in the n + 1th line, the exposure period EXP3 n + 1 is set from the timing T63 to the timing T65 after 10 milliseconds (ms). The exposure period EXP4 n + 1 is set from the timing T64 to the timing T66 10 milliseconds (ms) later.
  • the exposure period EXP5 n is set from the timing T66 to the timing T68 about 20.5 milliseconds (ms) later.
  • the exposure period EXP6 n + 1 is set from the timing T67 2.5 milliseconds (ms) after the timing T66 to the timing T68 about 18 milliseconds (ms) later.
  • the two adjacent lines perform the exposures of the exposure periods EXP1 to EXP4 in parallel, so that the exposure is performed in one line, as compared with the first embodiment, which is a normal image.
  • the exposure period EXP5 can be lengthened.
  • the respective lengths of the exposure periods EXP1 to EXP4 are set to half the blinking cycle, but the present invention is not limited to this configuration.
  • the exposure periods EXP1 to EXP4 can be made shorter than the half cycle of the blinking cycle. In this case, the error in the calculation for extracting the flicker component becomes large, but the saturation signal level can be increased.
  • the extraction of the flicker component and the imaging of the normal image are performed using the same pixels, but the configuration is not limited to this.
  • the pixels on the pixel array unit 212 can be divided into normal pixels, which are pixels for normal images, and extraction pixels, which are pixels for extracting flicker components.
  • two extraction pixels sharing the floating diffusion layer 223 are arranged for each normal pixel in order to extract the flicker component.
  • odd-numbered lines and even-numbered lines in which the extracted pixels are arranged are provided for each line of the normal pixels.
  • the signal processing unit 300 extracts the flicker component for each pixel or every two pixels, but the configuration is limited to this configuration. Not done.
  • the signal processing unit 300 can also extract the flicker component based on the pixel signal of the pixel of interest and the pixel signal of a nearby pixel in the vicinity of the pixel of interest. ..
  • the signal processing unit 300 has extracted the flicker component from one image data (that is, a frame). Not limited.
  • the signal processing unit 300 can also extract a flicker component from a plurality of consecutive frames in order to improve reliability.
  • the blinking frequency of the detection target can be switched for each frame. More specifically, when recognizing a traffic light, an odd-numbered frame of 100 hertz (Hz) is targeted for recognition, and an odd-numbered frame of 120 hertz (Hz) is targeted for recognition. Then, when at least one of the recognition results of each frame is recognized as a traffic light, the signal processing unit 300 outputs the recognition result as the final result.
  • Hz hertz
  • Hz hertz
  • the signal processing unit 300 sets the blinking frequency of the traffic infrastructure (traffic light, road indicator, etc.) as a subject unique to each. It can also be assigned to each (for example, by color of traffic light). As a result, the signal processing unit 300 can also recognize the subject and the state of the blinking light source.
  • the traffic infrastructure traffic light, road indicator, etc.
  • the two adjacent lines perform the exposures of the exposure periods EXP1 to EXP4 in parallel, so that the exposures are performed in one line.
  • the exposure period EXP5 of the normal image can be lengthened as compared with the case where the exposure period is performed.
  • Second Embodiment> In the above-described first embodiment, shooting at night is not assumed, but the image pickup apparatus can also irradiate infrared light and generate an infrared image from the reflected light.
  • the image pickup apparatus of the second embodiment is different from the first embodiment in that it irradiates two infrared lights having different wavelengths and generates an infrared image from the reflected light.
  • FIG. 19 is a block diagram showing a configuration example of the image pickup apparatus 101 according to the second embodiment of the present technology.
  • the image pickup apparatus 101 of the second embodiment is different from the first embodiment in that the infrared light sources 121 and 122, the drivers 131 and 132, and the dual bandpass filter 140 are further provided.
  • the infrared light sources 121 and 122 irradiate infrared light having different wavelengths from each other.
  • these infrared light sources 121 and 122 for example, LEDs (light emission diodes) are used.
  • the infrared light source 121 irradiates, for example, 940 nanometers (nm) of infrared light
  • the infrared light source 121 irradiates, for example, 850 nanometers (nm) of infrared light.
  • the drivers 131 and 132 drive the infrared light sources 121 and 122 according to the control signal from the signal processing unit 300.
  • the control signal from the signal processing unit 300 includes, for example, an intensity of infrared light and a signal instructing on / off.
  • the dual bandpass filter 140 is arranged between the image pickup lens 110 and the solid-state image sensor 200.
  • the dual bandpass filter 140 transmits a visible light band and an infrared light band.
  • the band of infrared light includes wavelengths of infrared light from each of the infrared light sources 121 and 122.
  • the solid-state image sensor 200 generates a signal processing unit that generates an image obtained by photoelectrically converting infrared light from the infrared light source 121 and an image obtained by photoelectrically converting infrared light from the infrared light source 122. Supply to 300.
  • the signal processing unit 300 performs a differential calculation of two images from the solid-state image sensor 200 and synthesizes them.
  • the image pickup device 101 irradiates infrared light, it can also irradiate invisible light (ultraviolet light or the like) other than infrared light.
  • the infrared light sources 121 and 122 are examples of the first and second light sources described in the claims.
  • FIG. 20 is an example of an external view of the image pickup apparatus 101 according to the second embodiment of the present technology.
  • the infrared light source 121 and the infrared light source 122 are arranged on a predetermined plane of the image pickup apparatus 101 at regular intervals.
  • the image pickup lens 110 is arranged in the middle of the line segment connecting the light sources.
  • a solid-state image sensor 200 (not shown) is arranged on the back surface of the image pickup lens 110.
  • the infrared light sources 121 and 122 are arranged at positions symmetrical with respect to the solid-state image sensor 200.
  • substantially point-symmetrical means that the position is completely point-symmetrical, or that the deviation from the point-symmetrical position is within a predetermined allowable range.
  • FIG. 21 is a graph showing an example of the characteristics of the dual bandpass filter 140 according to the second embodiment of the present technology.
  • the vertical axis indicates the transmittance of the dual bandpass filter 140
  • the horizontal axis indicates the wavelength.
  • the dual bandpass filter 140 transmits a visible light band of 400 to 700 nanometers (nm) and an infrared light band of 800 to 100 nanometers (nm).
  • FIG. 22 is a plan view showing a configuration example of the pixel array unit 212 according to the second embodiment of the present technology. Visible light pixels 241 to 243 and infrared light pixels 244 and 245 are arranged in the pixel array unit 212 of the second embodiment.
  • the visible light pixel 241 is a pixel that receives R (Red) visible light.
  • the visible light pixel 242 is a pixel that receives G (Green) visible light.
  • the visible light pixel 243 is a pixel that receives B (Blue) visible light.
  • the infrared light pixel 244 is a pixel that receives 850 nanometers (nm) of infrared light through a filter that selectively blocks 940 nanometers (nm) of infrared light.
  • the infrared light pixel 245 is a pixel that receives 940 nanometers (nm) of infrared light through a filter that selectively blocks 850 nanometers (nm) of infrared light.
  • the infrared light pixels 244 and 245 are examples of the first and second invisible light pixels described in the claims.
  • the visible light pixels 241 to 243 are arranged in a Bayer array in which only one G pixel is separated for every four pixels in 2 rows ⁇ 2 columns.
  • Infrared light pixels 244 and 245 are arranged in the vacant pixels.
  • FIG. 23 is an example of a cross-sectional view of the solid-state image sensor 200 according to the second embodiment of the present technology.
  • the figure shows a cross-sectional view when the solid-state image sensor 200 is cut by a predetermined plane parallel to the optical axis.
  • microrelenses 411 to 415 are arranged below the filter.
  • a color filter 423 that transmits blue is formed in the lower part of the microlens 411.
  • a color filter 422 that transmits green is formed in the lower part of the microlens 412.
  • a color filter 421 that transmits red is formed below the microlenses 413 to 415.
  • an infrared light blocking filter 424 that selectively blocks infrared light of 850 nanometers (nm) is provided. It is formed.
  • a color filter 425 that transmits blue is formed in the lower part of the color filter 421 corresponding to the microlenses 414 and 415.
  • the lower part of the infrared light blocking filter 424 and the lower part of the color filter 425 corresponding to the microlens 414 are the infrared light blocking filter 426 that selectively blocks infrared light of 940 nanometers (nm). Is formed.
  • An infrared light blocking filter 427 that selectively blocks infrared light of 850 nanometers (nm) is formed in the lower part of the color filter 425 corresponding to the microlens 415.
  • a visible light pixel 243 that receives blue light is formed at the lower part of the infrared light blocking filter 426 corresponding to the microlens 411.
  • a visible light pixel 242 that receives green light is formed in the lower part of the infrared light blocking filter 426 corresponding to the microlens 412.
  • a visible light pixel 241 that receives red light is formed in the lower part of the infrared light blocking filter 426 corresponding to the microlens 413.
  • an infrared light pixel 244 that receives infrared light of 850 nanometers (nm) is formed in the lower part of the infrared light blocking filter 426 corresponding to the microlens 414.
  • Infrared light pixels 245 that receive infrared light of 940 nanometers (nm) are formed below the infrared light blocking filter 427.
  • the blue visible light that has passed through the color filter 423 is input to the visible light pixel 243 after the infrared light is removed by the infrared light blocking filters 424 and 426.
  • the green visible light transmitted through the color filter 422 is input to the visible light pixel 242 after the infrared light is removed by the infrared light blocking filters 424 and 426.
  • the red visible light transmitted through the color filter 421 is input to the visible light pixel 241 after the infrared light is removed by the infrared light blocking filters 424 and 426.
  • the infrared light transmitted through the color filters 421 and 425 the infrared light of 940 nanometers (nm) is removed by the infrared light blocking filter 426, and the remaining infrared light of 850 nanometers (nm) is removed. It is input to the infrared light pixel 244.
  • the infrared light blocking filter 427 removes the infrared light of 850 nanometers (nm), and the remaining infrared light of 940 nanometers (nm) is infrared. It is input to the optical pixel 245.
  • FIG. 24 is a graph showing an example of the characteristics of the infrared light blocking filter according to the second embodiment of the present technology.
  • a is a graph showing an example of the characteristics of the infrared light blocking filter 424.
  • b is a graph showing an example of the characteristics of the infrared light blocking filter 426.
  • the vertical axis of a and b shows the transmittance of each filter, and the horizontal axis shows the wavelength.
  • infrared light of 850 nanometers (nm) is selectively blocked by the infrared light blocking filter 424.
  • infrared light of 940 nanometers (nm) is selectively blocked by the infrared light blocking filter 426.
  • the infrared light blocking filters 424 and 426 are examples of the first and second invisible light blocking filters described in the claims.
  • FIG. 25 is a block diagram showing a configuration example of the signal processing unit 300 according to the second embodiment of the present technology.
  • the signal processing unit 300 of the second embodiment includes a camera control unit 321, an interpolation processing unit 322, an interpolation processing unit 323, a color signal processing unit 324, a difference processing unit 325, a synthesis unit 326, and a luminance synthesis unit 327. ..
  • the camera control unit 321 controls the solid-state image sensor 200 and the drivers 131 and 132.
  • the interpolation processing unit 322 receives the pixel signals of R, G, and B from the visible light pixels 241 to 243 of the solid-state image sensor 200 as color signals.
  • the interpolation processing unit 322 interpolates the color signals at the coordinates of the infrared light pixels 244 and 245 using the color signals in the vicinity thereof.
  • the interpolation processing unit 322 supplies the color signal after interpolation to the color signal processing unit 324.
  • the color signal processing unit 324 performs various signal processing such as white balance correction processing on the color signal after the interpolation processing.
  • the color signal processing unit 324 supplies a color image in which the color signals after signal processing are arranged to the synthesis unit 326.
  • the interpolation processing unit 323 receives the pixel signals from the infrared light pixels 244 and 245 of the solid-state image sensor 200 as infrared light signals.
  • the interpolation processing unit 323 interpolates, for example, an infrared light signal having coordinates other than the infrared light pixel 244 based on the infrared light signal of the infrared light pixel 244. Further, the interpolation processing unit 323 interpolates, for example, an infrared light signal having coordinates other than the infrared light pixel 245 based on the infrared light signal of the infrared light pixel 245.
  • the interpolation processing unit 323 can interpolate the infrared light signals of the coordinates of all the pixels other than those coordinates for each of the infrared light pixels 244 and 245. Further, the interpolation processing unit 323 interpolates only the infrared light signal at the coordinates of the infrared light pixel 245 for the infrared light pixel 244, and the infrared light at the coordinates of the infrared light pixel 244 for the infrared light pixel 245. It is also possible to interpolate only the optical signal. By these interpolation processes, two infrared light images in which infrared light signals are arranged are generated. The interpolation processing unit 323 supplies these two infrared light images to the difference processing unit 325 and the luminance synthesis unit 327.
  • the difference processing unit 325 calculates the difference between the infrared light signals for each pixel of the two infrared light images after the interpolation processing.
  • the difference processing unit 325 supplies a difference image in which the absolute values of the differences are arranged to the luminance synthesis unit 327.
  • the luminance synthesizing unit 327 synthesizes the two infrared light images after the interpolation processing and the difference image.
  • the brightness synthesis unit 327 supplies the combined infrared light image to the synthesis unit 326 and outputs it to the outside.
  • the compositing unit 326 synthesizes the color image from the color signal processing unit 324 and the infrared light image from the luminance compositing unit 327. For example, the compositing unit 326 YC-separates the R, G, and B color signals in the color image into a luminance signal and a Cb and Cr color signal for each pixel. Then, the compositing unit 326 replaces the separated luminance signal with the infrared light signal of the infrared light image. The compositing unit 326 outputs an image in which the replaced luminance signal and the color signal are arranged as a color image to the outside. Alternatively, the synthesizer 326 converts the signals into R, G, and B signals again and then outputs the signals.
  • FIG. 26 is a diagram showing an example of the infrared light image 500 in the comparative example. For example, assume that a cylindrical subject is imaged. When the reflectance of each infrared light between the background of the subject and the subject is about the same, the contrast of the subject becomes unclear as illustrated in the figure.
  • FIG. 27 is a diagram showing an example of images before and after composition in the second embodiment of the present technology.
  • a shows an example of an infrared light image 501 of 850 nanometers (nm).
  • b shows an example of an image 502 of infrared light of 940 nanometers (nm).
  • c shows the difference image 503, and d in the figure shows the output image 504 from the luminance synthesizing unit 327.
  • the difference processing unit 325 When 850 nanometers (nm) infrared light is emitted from the left side and 940 nanometers (nm) infrared light is emitted from the right side, symmetrical images as illustrated in a and b in the figure. 501 and 502 are generated. As illustrated in c in the figure, the difference processing unit 325 generates the difference image 503 of these images 501 and 502. Then, as illustrated in d in the figure, the luminance synthesizing unit 327 combines the luminances of the images 501 and 502 with the difference image 503 to generate the output image 504. In this output image 504, the shadow of the subject is clearly shown, and the contrast is clearer than in the comparative example. In other words, the contrast is improved.
  • FIG. 28 is a diagram showing another infrared light image 510 in the comparative example. For example, it is assumed that minute irregularities on the wall are imaged. When the reflectance of each infrared light between the unevenness and the background wall is about the same, the unevenness becomes unclear as illustrated in the figure.
  • FIG. 29 is a diagram showing another example of images before and after composition in the second embodiment of the present technology.
  • a shows an example of an image 511 of infrared light of 850 nanometers (nm).
  • b shows an example of an image 512 of infrared light of 940 nanometers (nm).
  • c shows the difference image 513, and d in the figure shows the output image 504 from the luminance synthesizing unit 327.
  • symmetrical images 511 and 512 are generated.
  • the difference processing unit 325 generates a difference image 513, and as illustrated in d in the figure, the luminance synthesis unit 327 generates an output image 514.
  • the shadows of the unevenness are clearly shown, and the contrast is clearer than in the comparative example.
  • FIG. 30 is a diagram showing an example of a mounting position of the image pickup device 100 on the side surface of the vehicle body according to the second embodiment of the present technology.
  • FIG. A in the figure is a diagram showing a position when the image pickup apparatus 100 is attached near the door mirror.
  • b is a diagram showing the positions when the infrared light sources 121 and 122 and the solid-state image sensor 200 are separately attached.
  • the solid-state image sensor 200 is arranged between the front and rear doors, the infrared light source 121 is located at the end of the front door, and the infrared light source 122 is located at the rear door. Placed at the end of the door. In this way, by attaching the infrared light sources 121 and 122 and the solid-state image sensor 200 independently of the signal processing unit 300, the distance between the infrared light sources 121 and 122 can be increased. As a result, the shadow can be made clearer and the image quality can be improved.
  • FIG. 31 is a diagram showing another example of the mounting position of the image pickup device 100 on the side surface of the vehicle body in the second embodiment of the present technology.
  • a is a diagram showing positions when the infrared light sources 121 and 122 and the solid-state image sensor 200 are attached to the upper part of the door.
  • FIG. B in the figure is a diagram showing positions when the infrared light sources 121 and 122 and the solid-state image sensor 200 are vertically mounted between the front and rear doors.
  • FIG. 32 is a diagram showing an example of the mounting position of the image pickup device 100 on the front portion of the vehicle body according to the second embodiment of the present technology.
  • FIG. A in the figure is a diagram showing an example of mounting positions when the infrared light sources 121 and 122 and the solid-state image sensor 200 are arranged on the upper part of the vehicle outer surface of the windshield.
  • b is a diagram showing an example of mounting positions when the infrared light sources 121 and 122 and the solid-state image sensor 200 are arranged in the vicinity of the headlight.
  • FIG. 33 is a diagram showing an example of the mounting position of the image pickup device 100 on the rear portion of the vehicle body according to the second embodiment of the present technology.
  • a is a diagram showing an example of mounting positions when the infrared light sources 121 and 122 and the solid-state image sensor 200 are arranged on the upper part of the rear glass.
  • b is a diagram showing an example of mounting positions when the infrared light sources 121 and 122 and the solid-state image sensor 200 are arranged in the vicinity of the rear light.
  • FIG. 34 is a diagram showing an example of the mounting position of the image pickup device 100 inside the vehicle body according to the second embodiment of the present technology.
  • FIG. A in the figure is a diagram showing an example of mounting positions when the infrared light sources 121 and 122 and the solid-state image sensor 200 are arranged on the upper part of the vehicle inner surface of the windshield.
  • b is a diagram showing an example of mounting positions when the infrared light sources 121 and 122 and the solid-state image sensor 200 are arranged on the dashboard.
  • FIG. 35 is a diagram showing another example of the mounting position of the image pickup device 100 inside the vehicle body according to the second embodiment of the present technology.
  • a is a diagram showing an example of mounting positions when the infrared light sources 121 and 122 and the solid-state image sensor 200 are arranged on the ceiling in the vehicle.
  • FIG. B in the figure is a diagram showing an example of the mounting position when the imaging device 100 is arranged on the ceiling at the front of the driver's seat.
  • wavelengths of the infrared light sources 121 and 122 are set to 850 nanometers (nm) and preferably 940 nanometers (nm), wavelengths other than these can be set.
  • the solid-state image sensor 200 generates infrared light images IMG1, IMG2 and IMG3, and generates and synthesizes the difference image of IMG1 and IMG2, the difference image of IMG2 and IMG3, and the difference image of IMG1 and IMG3. ..
  • solid-state image sensors 200 may receive the infrared light from the infrared light source 121 and the other may receive the infrared light from the infrared light source 122.
  • the signal processing unit 300 includes an infrared light image corresponding to the infrared light source 121 and an infrared light image corresponding to the infrared light source 122. Since the difference between the two is obtained, the contrast can be improved as compared with only one of them.
  • the solid-state image sensor 200 receives both visible light and infrared light, but in this configuration, the infrared light pixel 244 is located between the visible light pixels 241 to 243. And 245 need to be arranged, and there is a possibility that the number of pixels of the infrared light pixel is insufficient.
  • the solid-state image sensor 200 of the first modification of the second embodiment is different from the second embodiment in that it receives only infrared light.
  • FIG. 36 is a plan view showing a configuration example of the pixel array unit 212 in the first modification of the second embodiment of the present technology.
  • the pixel array portion 212 of the first modification of the second embodiment is different from the second embodiment in that only infrared light pixels 244 and 245 are arranged. As illustrated in the figure, it is not necessary to arrange the visible light pixels 241 to 243, so that the number of pixels of the infrared light pixels can be increased accordingly.
  • FIG. 37 is a block diagram showing a configuration example of the signal processing unit 300 in the first modification of the second embodiment of the present technology.
  • the signal processing unit 300 of the first modification of the second embodiment includes a camera control unit 321, an interpolation processing unit 323, a difference processing unit 325, and a luminance synthesis unit 327.
  • the interpolation processing unit 323 of the first modification of the second embodiment interpolates only the infrared light signal at the coordinates of the infrared light pixel 245 with respect to the infrared light pixel 244, and with respect to the infrared light pixel 245. , Interpolates only the infrared light signal at the coordinates of the infrared light pixel 244.
  • the functions of the camera control unit 321 and the difference processing unit 325 and the luminance synthesis unit 327 are the same as those in the second embodiment.
  • a bandpass filter that transmits only infrared light can be provided instead of the dual bandpass filter 140.
  • the solid-state image sensor 200 receives only infrared light, visible light pixels are not required, and infrared light is correspondingly increased.
  • the number of pixels can be increased.
  • the image pickup device 101 irradiates and receives two infrared lights having different wavelengths, but in this configuration, the solid-state image pickup device 200 contains infrared light. It is necessary to form a light blocking filter.
  • the imaging device 101 of the second modification of the second embodiment is different from the first modification of the second embodiment in that it irradiates two infrared lights having different polarization directions.
  • FIG. 38 is a block diagram showing a configuration example of the image pickup apparatus 101 in the second modification of the second embodiment of the present technology.
  • the imaging device 101 of the second modification of the second embodiment is different from the first modification of the second embodiment in that the polarizing filters 151 and 152 are further provided.
  • the polarizing filters 151 and 152 transmit infrared light having different polarization directions.
  • the polarization direction corresponding to the polarizing filter 151 is 90 degrees different from the polarization direction corresponding to the polarizing filter 152.
  • the polarizing filters 151 and 152 are examples of the first and second polarizing filters described in the claims.
  • the infrared light light source 121 irradiates infrared light through the polarizing filter 151, and the infrared light light source 122 irradiates infrared light through the polarizing filter 152.
  • the wavelengths of the infrared light of the infrared light sources 121 and 122 of the second modification of the second embodiment are the same. Therefore, it is not necessary to form the infrared light blocking filter 424 or 426.
  • FIG. 39 is a plan view showing an arrangement example of the wire grid filter in the second modification of the second embodiment of the present technology.
  • An on-chip wire grid filter 431 is arranged above the infrared light pixel 244 (not shown) of the pixel array unit 212. Further, an on-chip wire grid filter 432 is arranged above the infrared light pixel 2445 (not shown).
  • the wire grid filter 431 transmits the reflected light of the infrared light irradiated through the polarizing filter 151, and the wire grid filter 432 transmits the reflected light of the infrared light irradiated through the polarizing filter 152.
  • the wire grid filters 431 and 432 are examples of the first and second wire grid filters described in the claims.
  • the signal processing unit 300 of the second modification of the second embodiment obtains the difference between two infrared light images having different polarization directions and synthesizes them. As a result, the contrast can be improved as compared with the case where only one infrared light image is used.
  • the image pickup apparatus 100 irradiates and receives two infrared lights having different polarization directions, the two infrared lights having different wavelengths are received. It is not necessary to receive light, and it is not necessary to arrange an infrared light blocking filter.
  • the image pickup device 101 irradiates and receives two infrared lights having different wavelengths, but in this configuration, the solid-state image pickup device 200 contains infrared light. It is necessary to form a light blocking filter.
  • the imaging device 101 of the third modification of the second embodiment is different from the first modification of the second embodiment in that the infrared light sources 121 and 122 are turned on at different timings.
  • FIG. 40 is a plan view showing a configuration example of the pixel array unit 212 in the third modification of the second embodiment of the present technology.
  • the pixel array unit 212 in the third modification of the second embodiment is different from the first modification of the second embodiment in that the infrared light pixels 251 and 252 are arranged.
  • FIG. 41 is a timing chart showing an example of the imaging operation in the third modification of the second embodiment of the present technology.
  • the infrared light sources 121 and 122 irradiate infrared light of the same wavelength at different timings. Since the wavelengths of infrared light are the same, it is not necessary to form infrared light blocking filters 424 and 426.
  • the vertical synchronization signal VSYNC is supplied to the timings T71, T73, T75 and the like. For example, in the period of timing T71 to T73, only the infrared light source 121 within the period of timing T72 to T73 is turned on. Then, in the period of the next timings T73 to T75, only the infrared light source 122 is turned on within the period of the timings T74 to T75.
  • the infrared light sources 121 and 122 are alternately turned on in synchronization with the vertical synchronization signal VSYNC.
  • the solid-state image sensor 200 exposes the infrared light pixel 251 while the infrared light source 121 is lit, and exposes the infrared light pixel 252 while the infrared light source 122 is lit.
  • the infrared light pixel 251 of the first line is exposed in the exposure period EXPa at the timings T71 to T73.
  • the second and subsequent lines are exposed in order, and the infrared light pixel 251 of the last line is exposed during the exposure period EXPa of the timings T72 to T74.
  • the infrared light pixel 252 of the first line is exposed in the exposure period EXPb at the timings T73 to T75.
  • the second and subsequent lines are exposed in order, and the infrared light pixel 252 of the last line is exposed in the exposure period EXPb at the timings T74 to T76.
  • the processing content of the signal processing unit 300 is the same as that of the first modification of the second embodiment.
  • the image pickup apparatus 100 uses the rolling shutter method in the second embodiment and the first, second, and third modifications thereof, a global shutter method can also be used.
  • the pixels are divided into infrared light pixels 251 and infrared light pixels 252, and are exposed in parallel during the exposure periods EXPa and EXPb, but the configuration is not limited to this. It is also possible to arrange only the infrared light pixels 251 and expose them in order with the exposure periods EXPa and EXPb. However, in this case, since the exposure period EXPb cannot be started within the exposure period EXPa, the frame rate is lowered.
  • the infrared light sources 121 and 122 irradiate infrared light of the same wavelength at different timings, so that two reds having different wavelengths are emitted. It is not necessary to receive external light, and it is not necessary to arrange an infrared light blocking filter.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
  • FIG. 42 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating a braking force of a vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a head lamp, a back lamp, a brake lamp, a winker, or a fog lamp.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver can control the vehicle. It is possible to perform coordinated control for the purpose of automatic driving, etc., which runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs coordinated control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits the output signal of at least one of the audio and the image to the output device capable of visually or audibly notifying the passenger or the outside of the vehicle of the information.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
  • FIG. 43 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, 12105.
  • the imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100, for example.
  • the image pickup unit 12101 provided on the front nose and the image pickup section 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100.
  • the imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 43 shows an example of the photographing range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100). By obtaining can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
  • automatic braking control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is used via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104.
  • pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the above is an example of a vehicle control system to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to, for example, the imaging unit 12031 among the configurations described above.
  • the imaging device 100 of FIG. 1 can be applied to the imaging unit 12031.
  • the processing procedure described in the above-described embodiment may be regarded as a method having these series of procedures, or as a program for causing a computer to execute these series of procedures or as a recording medium for storing the program. You may catch it.
  • this recording medium for example, a CD (Compact Disc), MD (MiniDisc), DVD (Digital Versatile Disc), memory card, Blu-ray Disc (Blu-ray (registered trademark) Disc) and the like can be used.
  • the present technology can have the following configurations.
  • a control unit that sequentially exposes pixels over a plurality of exposure periods having the same length to generate a plurality of pixel signals.
  • An imaging device including a flicker component extraction unit that extracts a flicker component that blinks at a cycle corresponding to the length from the plurality of pixel signals.
  • the control unit exposes the adjacent pixels over an exposure period different from the plurality of exposure periods.
  • the pixels are arranged on each of two adjacent lines.
  • the control unit exposes one of the two lines over a specific exposure period among the plurality of exposure periods, and over an exposure period different from the specific exposure period among the plurality of exposure periods.
  • the imaging apparatus according to (1) above which exposes the other of one line.
  • the plurality of exposure periods include two pixel signals whose phases of the corresponding exposure periods are different by 180 degrees.
  • the control unit according to any one of (1) to (5) above, wherein the control unit sequentially exposes the pixels over four exposure periods having the same length to generate four pixel signals. Imaging device.
  • the imaging apparatus according to (6) above wherein the remaining three phases differ from any of the phases of the four exposure periods by 90 degrees, 180 degrees, and 270 degrees, respectively.
  • the control unit further exposes the pixels over an exposure period having a length different from that of the four exposure periods to generate a new pixel signal. ..
  • the image pickup apparatus further comprising an image recognition unit that recognizes an image of the composite image.
  • the control unit stops the flicker component extraction unit and the blinking subject recognition unit, and when a predetermined subject is detected by the image recognition, the flicker component extraction unit and the blinking subject recognition unit are stopped.
  • the imaging device which is operated.
  • the control unit stops the flicker component extraction unit and the blinking subject recognition unit, and when a predetermined subject is detected by the image recognition, stops the image synthesis unit and the image recognition unit.
  • the image pickup apparatus according to (11), which operates the flicker component extraction unit and the blinking subject recognition unit.
  • the first and second light sources that irradiate invisible light It includes a signal processing unit that calculates the difference between the first image obtained by photoelectrically converting the invisible light from the first light source and the second image obtained by photoelectrically converting the invisible light from the second light source.
  • Imaging device (15) A pixel array in which a first invisible light pixel that photoelectrically converts the invisible light from the first light source and a second invisible light pixel that photoelectrically converts the invisible light from the second light source are arranged.
  • a first invisible light blocking filter that blocks the invisible light from the first light source and a second invisible light blocking filter that blocks the invisible light from the second light source are further provided.
  • the first invisible light pixel receives the invisible light through the second invisible light blocking filter, and the second invisible light pixel receives the invisible light through the first invisible light blocking filter.
  • First and second polarizing filters that transmit invisible light with different polarization directions, The first wire grid filter that transmits the polarization component of the invisible light from the first light source and guides it to the first invisible light pixel and the polarization component of the invisible light from the second light source are transmitted.
  • a solid-state image sensor that generates the first and second images is further provided.
  • the first and second light sources are turned on at different timings.
  • the solid-state image sensor photoelectrically converts the invisible light during the period when the first light source is lit to generate the first image, and photoelectrically converts the invisible light during the period when the second light source is lit.
  • the image pickup device according to (14) above, which converts and generates the image of 2.

Abstract

画像認識を行う撮像装置において、ロバスト性を向上させる。 撮像装置は、制御部およびフリッカ成分抽出部を具備する。制御部およびフリッカ成分抽出部を具備する撮像装置において、制御部は、長さが同一の複数の露光期間のそれぞれに亘って画素を順に露光させて複数の画素信号を生成させる。また、制御部およびフリッカ成分抽出部を具備する撮像装置において、フリッカ成分抽出部は、長さに応じた周期で点滅するフリッカ成分を複数の画素信号から抽出する。

Description

撮像装置
 本技術は、撮像装置に関する。詳しくは、フリッカを除去する撮像装置に関する。
 従来より、自動運転や安全運転の支援などを行う車載システムにおいて、固体撮像素子がよく用いられている。車載の固体撮像素子では、信号機などの点滅光源の点滅周期と撮像周期との間のずれにより、画像内で点滅光源がちらつく現象が生じ、この現象はフリッカと呼ばれる。このフリッカを抑制するために、例えば、短時間の露光で画素に蓄積される電荷を複数回に分けて読み出す固体撮像素子が提案されている(例えば、非特許文献1参照。)。
Chris Silsby, et al., A 1.2MP 1/3" CMOS Image Sensor with Light Flicker Mitigation, Proc. International Image Sensor Workshop, pp.405-408 (2015).
 上述の従来技術では、短時間の露光で画素に蓄積される電荷を複数回に分けて読み出すことにより光源の点灯タイミングと露光期間が重なる領域が必ず得られるようにしてフリッカを除去している。しかしながら、上述の従来技術では、点滅光源を画像認識する際にロバスト性が低下することがある。例えば、一般的な撮像環境下では、認識対象(信号機など)以外の様々な光源(テールランプやネオンサインなど)が存在し、それらの外乱の影響により、画像認識のロバスト性が低下するおそれがある。ここで、ロバスト性は、外乱の影響により処理結果がどの程度左右されるかを示し、外乱の影響を受けにくい装置ほど、ロバスト性が高いと評価される。
 本技術はこのような状況に鑑みて生み出されたものであり、画像認識を行う撮像装置において、ロバスト性を向上させることを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、長さが同一の複数の露光期間のそれぞれに亘って画素を順に露光させて複数の画素信号を生成させる制御部と、上記長さに応じた周期で点滅するフリッカ成分を上記複数の画素信号から抽出するフリッカ成分抽出部とを具備する撮像装置である。これにより、画像認識のロバスト性が向上するという作用をもたらす。
 また、この第1の側面において、上記画素と上記画素に隣接する隣接画素とは、浮遊拡散層を共有してもよい。これにより、回路規模が削減されるという作用をもたらす。
 また、この第1の側面において、上記制御部は、上記複数の露光期間と異なる露光期間に亘って上記隣接画素を露光させてもよい。これにより、複数の画素で露光が並列に実行されるという作用をもたらす。
 また、この第1の側面において、上記画素は、隣接する2つのラインのそれぞれに配置され、上記制御部は、上記複数の露光期間のうち特定の露光期間に亘って上記2つのラインの一方を露光させ、上記複数の露光期間のうち上記特定の露光期間と異なる露光期間に亘って上記2つのラインの他方を露光させてもよい。これにより、複数のラインで露光が並列に実行されるという作用をもたらす。
 また、この第1の側面において、上記複数の露光期間は、対応する露光期間の位相が180度異なる2つの画素信号を含み、上記フリッカ成分抽出部は、上記2つの画素信号の差分に基づいて上記フリッカ成分を抽出してもよい。これにより、背景光の成分が除去されるという作用をもたらす。
 また、この第1の側面において、上記制御部は、長さが同一の4つの露光期間のそれぞれに亘って上記画素を順に露光させて4つの画素信号を生成させてもよい。これにより、フリッカ成分の検出精度が向上するという作用をもたらす。
 また、この第1の側面において、上記4つの露光期間のいずれかの位相に対して残りの3つの位相は、それぞれ90度、180度、および、270度異なっていてもよい。これにより、フリッカ成分の検出精度が向上するという作用をもたらす。
 また、この第1の側面において、上記制御部は、上記4つの露光期間と長さが異なる露光期間に亘って上記画素をさらに露光させて新たな画素信号を生成させてもよい。これにより、通常画像が生成されるという作用をもたらす。
 また、この第1の側面において、上記新たな画像信号を配列した通常画像と上記フリッカ成分とを合成して合成画像を生成する画像合成部をさらに具備してもよい。これにより、フリッカが除去された画像が生成されるという作用をもたらす。
 また、この第1の側面において、上記フリッカ成分を配列した点滅被写体に対して画像認識を行う点滅被写体認識部をさらに具備してもよい。これにより、点滅する被写体が検出されるという作用をもたらす。
 また、この第1の側面において、上記合成画像に対して画像認識を行う画像認識部をさらに具備してもよい。これにより、所定の被写体が検出されるという作用をもたらす。
 また、この第1の側面において、上記制御部は、上記フリッカ成分抽出部および上記点滅被写体認識部を停止させ、上記画像認識により所定の被写体が検出された場合には、上記フリッカ成分抽出部および上記点滅被写体認識部を動作させてもよい。これにより、消費電力が削減されるという作用をもたらす。
 また、この第1の側面において、上記制御部は、上記フリッカ成分抽出部および上記点滅被写体認識部を停止させ、上記画像認識により所定の被写体が検出された場合には、上記画像合成部および上記画像認識部を停止させつつ上記フリッカ成分抽出部および上記点滅被写体認識部を動作させてもよい。これにより、消費電力が削減されるという作用をもたらす。
 また、本技術の第2の側面は、不可視光を照射する第1および第2の光源と、上記第1の光源からの上記不可視光を光電変換した第1の画像と上記第2の光源からの上記不可視光を光電変換した第2の画像との差分を演算する信号処理部とを具備する撮像装置である。これにより、画像の画質が向上するという作用をもたらす。
 また、この第2の側面において、上記第1の光源からの上記不可視光を光電変換する第1の不可視光画素と上記第2の光源からの上記不可視光を光電変換する第2の不可視光画素とを配列した画素アレイ部をさらに具備してもよい。これにより、2枚の赤外光画像が生成されるという作用をもたらす。
 また、この第2の側面において、上記画素アレイ部には、可視光を光電変換する可視光画素がさらに配列されてもよい。これにより、カラー画像が生成されるという作用をもたらす。
 また、この第2の側面において、上記第1の光源からの上記不可視光を遮断する第1の不可視光遮断フィルタと上記第2の光源からの上記不可視光を遮断する第2の不可視光遮断フィルタとをさらに具備し、上記第1の不可視光画素は、上記第2の不可視光遮断フィルタを介して上記不可視光を受光し、上記第2の不可視光画素は、上記第1の不可視光遮断フィルタを介して上記不可視光を受光し、上記第1の光源からの上記不可視光と上記第2の光源からの上記不可視光とのそれぞれの波長は異なってもよい。これにより、画像のコントラストが向上するという作用をもたらす。
 また、この第2の側面において、偏光方向の異なる不可視光を透過する第1および第2の偏光フィルタと、上記第1の光源からの上記不可視光の偏光成分を透過して上記第1の不可視光画素に導く第1のワイヤーグリッドフィルタと上記第2の光源からの上記不可視光の偏光成分を透過して上記第2の不可視光画素に導く第2のワイヤーグリッドフィルタとをさらに具備し、上記第1の光源からの上記不可視光は、上記第1の偏光フィルタを介して照射され、上記第2の光源からの上記不可視光は、上記第2の偏光フィルタを介して照射されてもよい。これにより、画像のコントラストが向上するという作用をもたらす。
 また、この第2の側面において、上記第1および第2の画像を生成する固体撮像素子をさらに具備し、上記第1および第2の光源は、異なるタイミングで点灯し、上記固体撮像素子は、上記第1の光源が点灯する期間内に上記不可視光を光電変換して上記第1の画像を生成し、上記第2の光源が点灯する期間内に上記不可視光を光電変換して上記2の画像を生成してもよい。これにより、赤外線遮断フィルタが不要になるという作用をもたらす。
本技術の第1の実施の形態における撮像装置の一構成例を示すブロック図である。 本技術の第1の実施の形態における固体撮像素子の一構成例を示すブロック図である。 本技術の第1の実施の形態における画素の一構成例を示す回路図である。 本技術の第1の実施の形態における信号処理部の一構成例を示すブロック図である。 本技術の第1の実施の形態におけるモード制御を説明するための図である。 本技術の第1の実施の形態における撮像動作の一例を示すタイミングチャートである。 本技術の第1の実施の形態における露光制御の一例を示すタイミングチャートである。 本技術の第1の実施の形態における読出し動作の一例を示すタイミングチャートである。 本技術の第1の実施の形態における読出しの際のトランジスタの制御の一例を示すタイミングチャートである。 本技術の第1の実施の形態におけるモード1の動作の一例を示すフローチャートである。 本技術の第1の実施の形態におけるモード2の動作の一例を示すフローチャートである。 本技術の第1の実施の形態におけるモード3の動作の一例を示すフローチャートである。 本技術の第1の実施の形態におけるモード4の動作の一例を示すフローチャートである。 本技術の第1の実施の形態におけるモード5の動作の一例を示すフローチャートである。 本技術の第1の実施の形態の第1の変形例におけるFD(Floating Diffusion)共有ブロックの一構成例を示すブロック図である。 本技術の第1の実施の形態の第1の変形例における撮像動作の一例を示すタイミングチャートである。 本技術の第1の実施の形態の第1の変形例における読出しの際のトランジスタの制御の一例を示すタイミングチャートである。 本技術の第1の実施の形態の第2の変形例における撮像動作の一例を示すタイミングチャートである。 本技術の第2の実施の形態における撮像装置の一構成例を示すブロック図である。 本技術の第2の実施の形態における撮像装置の外観図の一例である。 本技術の第2の実施の形態におけるデュアルバンドパスフィルタの特性の一例を示すグラフである。 本技術の第2の実施の形態における画素アレイ部の一構成例を示す平面図である。 本技術の第2の実施の形態における固体撮像素子の断面図の一例である。 本技術の第2の実施の形態における赤外光遮断フィルタの特性の一例を示すグラフである。 本技術の第2の実施の形態における信号処理部の一構成例を示すブロック図である。 比較例における赤外光画像の一例を示す図である。 本技術の第2の実施の形態における合成前後の画像の一例を示す図である。 比較例における赤外光画像の別の例を示す図である。 本技術の第2の実施の形態における合成前後の画像の別の例を示す図である。 本技術の第2の実施の形態における車体側面への撮像装置の取り付け位置の一例を示す図である。 本技術の第2の実施の形態における車体側面への撮像装置の取り付け位置の別の例を示す図である。 本技術の第2の実施の形態における車体前部への撮像装置の取り付け位置の一例を示す図である。 本技術の第2の実施の形態における車体後部への撮像装置の取り付け位置の一例を示す図である。 本技術の第2の実施の形態における車体内部への撮像装置の取り付け位置の一例を示す図である。 本技術の第2の実施の形態における車体内部への撮像装置の取り付け位置の別の例を示す図である。 本技術の第2の実施の形態の第1の変形例における画素アレイ部の一構成例を示す平面図である。 本技術の第2の実施の形態の第1の変形例における信号処理部の一構成例を示すブロック図である。 本技術の第2の実施の形態の第2の変形例における撮像装置の一構成例を示すブロック図である。 本技術の第2の実施の形態の第2の変形例におけるワイヤーグリッドフィルタの配置例を示す平面図である。 本技術の第2の実施の形態の第3の変形例における画素アレイ部の一構成例を示す平面図である。 本技術の第2の実施の形態の第3の変形例における撮像動作の一例を示すタイミングチャートである。 車両制御システムの概略的な構成例を示すブロック図である。 撮像部の設置位置の一例を示す説明図である。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(4相の画素信号からフリッカ成分を抽出する例)
 2.第2の実施の形態(波長の異なる2つの赤外光画像の差分を求める例)
 3.第3の実施の形態(移動体への応用例)
 <1.第1の実施の形態>
 [撮像装置の構成例]
 図1は、本技術の第1の実施の形態における撮像装置100の一構成例を示すブロック図である。この撮像装置100は、画像データを撮像するための装置であり、撮像レンズ110、固体撮像素子200および信号処理部300を備える。撮像装置100としては、例えば、デジタルスチルカメラなどのデジタルカメラの他、撮像機能を持つスマートフォンやパーソナルコンピュータ、車載カメラ等が想定される。
 撮像レンズ110は、入射光を集光して固体撮像素子200に導くものである。固体撮像素子200は、画像データを撮像するものである。この固体撮像素子200は、信号線208を介して信号処理部300からの制御信号を受け取り、その制御信号に従って画像データを撮像する。また、固体撮像素子200は、撮像した画像データを信号線209を介して信号処理部300へ出力する。
 信号処理部300は、画像データに対して、フリッカの除去や画像認識などの信号処理を行うものである。例えば、DSP(Digital Signal Processing)回路が信号処理部300として用いられる。この信号処理部300は、処理後のデータを出力データとして外部に出力する。
 また、信号処理部300には、撮像装置100の状態を指示するモード信号MODEが入力される。信号処理部300は、モード信号MODEに従って、実行する信号処理の内容や、固体撮像素子200の制御方法を変更する。
 なお、撮像装置100内に、画像データを記録する記録部や、外部との間で通信を行う通信部をさらに設けることもできる。
 [固体撮像素子の構成例]
 図2は、本技術の第1の実施の形態における固体撮像素子200の一構成例を示すブロック図である。この固体撮像素子200は、Vデコーダ211、画素アレイ部212、タイミング制御回路213、カラム信号処理回路214、および、Hデコーダ215を備える。画素アレイ部212には、二次元格子状に複数の画素220が配列される。
 以下、所定の水平方向に配列された画素220の集合を「行」または「ライン」と称し、行に垂直な方向に配列された画素220の集合を「列」と称する。
 Vデコーダ211は、タイミング制御回路213からの信号をデコードして、行(すなわち、ライン)を順に駆動するものである。
 画素220は、光電変換により、アナログの画素信号を生成するものである。この画素220は、生成した画素信号をカラム信号処理回路214へ供給する。
 カラム信号処理回路214は、列ごとに、画素信号に対してAD(Analog to Digital)変換処理や、CDS(Correlated Double Sampling)処理などの信号処理を行うものである。このカラム信号処理回路214は、Hデコーダ215の制御に従って、処理後の画像データ内のラインデータのそれぞれを信号処理部300へ順に供給する。ラインデータは、ライン内の画素のそれぞれのデジタルの画素信号を含む。
 Hデコーダ215は、タイミング制御回路213からの信号をデコードして、カラム信号処理回路214を駆動するものである。
 タイミング制御回路213は、信号処理部300からの制御信号に従って、Vデコーダ211、カラム信号処理回路214、および、Hデコーダ215の動作タイミングを制御するものである。
 ここで、信号処理部300からの制御信号には、撮像タイミングを示す垂直同期信号と、露光の開始や終了のタイミングを示す信号とが含まれる。信号処理部300は、制御信号により、画素220の露光開始や露光終了のタイミングを制御することができる。
 [画素の構成例]
 図3は、本技術の第1の実施の形態における画素220の一構成例を示す回路図である。この画素220は、光電変換素子221、転送トランジスタ222、浮遊拡散層223、リセットトランジスタ224、増幅トランジスタ225および選択トランジスタ226を備える。n(nは、整数)番目のラインには、Vデコーダ211からのリセット信号RST_n、転送信号TRT_n、および、選択信号SEL_nが供給される。
 光電変換素子221は、光電変換により電荷を生成するものである。転送トランジスタ222は、転送信号TRT_nに従って、光電変換素子221から浮遊拡散層223へ電荷を転送するものである。浮遊拡散層223は、電荷を蓄積し、電荷量に応じた電圧を生成するものである。
 リセットトランジスタ224は、リセット信号RST_nに従って、浮遊拡散層223の電荷量を初期化するものである。増幅トランジスタ225は、浮遊拡散層223の電圧を増幅するものである。選択トランジスタ226は、選択信号SEL_nに従って、増幅された電圧の信号を画素信号としてカラム信号処理回路214へ供給するものである。
 なお、画素220の回路構成は、同図に例示したものに限定されない。例えば、光電変換素子221から電荷を排出するOFGトランジスタを追加することもできる。
 [信号処理部の構成例]
 図4は、本技術の第1の実施の形態における信号処理部300の一構成例を示すブロック図である。この信号処理部300は、ラインバッファ310、フリッカ成分抽出部311、カメラ制御部312、画像合成部313、画像処理部314、画像認識部315、および、点滅被写体認識部316を備える。
 カメラ制御部312は、固体撮像素子200と、信号処理部300内の回路のそれぞれとを制御するものである。このカメラ制御部312は、制御信号により固体撮像素子200に画像データを撮像させる。このとき、垂直同期信号の周期内において5つの露光期間が設定される。5つの露光期間のうち4つは長さが同一であり、残りの1つの長さは任意である。カメラ制御部312は、5つの露光期間に亘って順に画素220のそれぞれを露光させ、画素ごとに5つの画素信号を生成させる。
 長さが同一の4つの露光期間のうち、1番目の露光期間に対応する画素信号をIとし、2番目の露光期間に対応する画素信号をIとする。また、それらの4つの露光期間のうち、3番目の露光期間に対応する画素信号をIとし、4番目の露光期間に対応する画素信号をIとする。5番目の露光期間に対応する画素信号をIとする。
 画素信号I、I、I、およびIは、点滅する点滅光源の信号成分をフリッカ成分として抽出するために用いられる。残りの画素信号Iは、出力する画像を生成するために用いられる。
 ラインバッファ310は、固体撮像素子200からの所定数のラインデータを保持するものである。ライン内の画素数をM(Mは、整数)とすると、ラインデータのそれぞれには、M×5個の画素信号が含まれる。
 フリッカ成分抽出部311は、画素ごとに、点滅光源からの信号成分をフリッカ成分として、画素信号から抽出するものである。ここで、画素信号は、フリッカ成分と、フリッカ成分以外の信号成分とを含む。前述の4つの露光期間のそれぞれの長さは、抽出対象のフリッカ成分の点滅周期に応じた値(例えば、点滅周期の半周期)に設定される。フリッカ成分抽出部311は、画素ごとに画素信号I、I、I、およびIをラインバッファ310から読み出し、それらに対する演算により、フリッカ成分Iを抽出する。演算方法については後述する。フリッカ成分抽出部311は、抽出したフリッカ成分Iを画像合成部313および点滅被写体認識部316へ供給する。
 画像合成部313は、画素信号Iを配列した画像を通常画像として、その画像にフリッカ成分Iを合成するものである。例えば、画素信号Iとフリッカ成分Iとは、同一の合成比率で画素ごとに合成される。なお、画像合成部313は、画素信号Iとフリッカ成分Iとを、それぞれの信号強度に応じた合成比率で合成することや、信号強度に基づいて合成を行うか否かを判断することもできる。この合成処理により、画像内のフリッカが除去される。画像合成部313は、合成後の信号を配列した合成画像を画像処理部314に供給する。
 なお、画像合成部313は、画素信号Iおよびフリッカ成分Iから合成画像を生成しているが、この構成に限定されない。例えば、画像合成部313は、画素信号I、I、I、およびIをさらにラインバッファ310から読み出し、それらの統計量(加算値や平均値)を配列した画像を通常画像として、その通常画像とフリッカ成分Iとを合成することもできる。この場合には、画素信号Iの生成は、不要となる。また、画像合成部313は、画素信号I、I、I、およびIの統計量と画素信号Iとの合成値を配列した画像を通常画像として、その通常画像とフリッカ成分Iとを合成することもできる。
 画像処理部314は、合成画像に対して、ホワイトバランス補正処理やデモザイク処理などの様々な画像処理を行うものである。この画像処理部314は、処理後の合成画像を画像認識部315へ供給する。
 画像認識部315は、合成画像に対して画像認識処理を行うものである。この画像認識部315は、画像認識により信号機やテールランプなどの所定の被写体を認識し、その被写体の状態(信号機の色など)を解析する。そして、画像認識部315は、認識結果R1を点滅被写体認識部316およびカメラ制御部312に供給する。また、画像認識部315は、出力画像を外部に出力する。
 点滅被写体認識部316は、フリッカ成分Iを配列した点滅光源の被写体について、画像認識処理を行うものである。この点滅被写体認識部316は、画像認識により信号機やテールランプなどの所定の被写体を認識し、認識結果R2を画像認識部315に供給する。また、点滅被写体認識部316は、認識結果を必要に応じて外部に出力する。
 また、カメラ制御部312は、モード信号MODEに従ってイネーブル信号を生成し、フリッカ成分抽出部311、画像合成部313、画像処理部314、画像認識部315、および、点滅被写体認識部316のそれぞれの動作を制御する。例えば、イネーブル信号EN_A、EN_B、EN_CおよびEN_Dの4つが生成される。イネーブル信号EN_Aは、画像合成部313および画像処理部314に供給され、イネーブル信号EN_Bは、画像認識部315に供給される。イネーブル信号EN_Cは、フリッカ成分抽出部311に供給され、イネーブル信号EN_Dは、点滅被写体認識部316に供給される。
 なお、信号処理部300の処理の一部または全てを固体撮像素子200内で実行することもできる。
 図5は、本技術の第1の実施の形態におけるモード制御を説明するための図である。モード信号MODEにより、例えば、モード1乃至5のいずれかが設定されるものとする。
 モード1において、イネーブル信号EN_AおよびEN_Cがオン状態に設定され、イネーブル信号EN_BおよびEN_Dがオフ状態に設定される。これにより、フリッカ成分抽出部311、画像合成部313および画像処理部314の動作がイネーブルとなり、フリッカの除去された合成画像が生成される。一方、画像認識部315および点滅被写体認識部316はディセーブルとなる。このとき、画像認識部315は、画像認識を行わず、画像処理部314からの合成画像を出力画像としてスルー出力する。このように、モード1において、信号処理部300は、フリッカの除去された出力画像のみを出力する。
 また、モード2において、イネーブル信号EN_AおよびEN_Bがオフ状態に設定され、イネーブル信号EN_CおよびEN_Dがオン状態に設定される。これにより、画像合成部313、画像処理部314および画像認識部315がディセーブルとなり、フリッカ成分抽出部311および点滅被写体認識部316がイネーブルとなる。このとき、点滅被写体認識部316は、点滅する点滅被写体の認識結果を出力する。このように、モード2において、信号処理部300は、点滅被写体の認識結果のみを出力する。
 また、モード3において、イネーブル信号EN_A、EN_B、EN_CおよびEN_Dが全てイネーブルに設定される。このとき、画像認識部315および点滅被写体認識部316は、互いの認識結果を相互に利用する。例えば、画像認識部315は、点滅被写体の認識結果R2を用いて、合成画像において点滅被写体の周辺のみを認識して処理速度を向上させる。また、画像認識部315および点滅被写体認識部316は、認識結果R1およびR2の両方を用いて、被写体の認識を行うことより、処理速度や信頼性を向上させることもできる。例えば、信号機の状態(赤、青、黄のいずれで点灯しているかなど)を認識する際に、点滅被写体認識部316が信号機の存在を認識する一方で、画像認識部315が信号機の色や位置を認識するなどの利用方法が考えられる。このように、モード3において、信号処理部300は、フリッカを除去した出力画像と点滅被写体の認識結果とを出力する。
 また、モード4においては、最初にイネーブル信号EN_AおよびEN_Bがオン状態に設定され、イネーブル信号EN_CおよびEN_Dがオフ状態に設定される。これにより、画像合成部313、画像処理部314および画像認識部315がイネーブルとなり、フリッカ成分抽出部311および点滅被写体認識部316がディセーブルとなる。このとき、合成対象のフリッカ成分が入力されないため、画像合成部313は合成せずに通常画像を画像処理部314に供給する。そして、画像認識部315は、フリッカが除去されていない通常画像に対して画像認識処理を行う。
 そして、モード4において画像認識部315の認識認識により、点滅光源と推定される所定の被写体(信号機など)が検出された場合、カメラ制御部312は、イネーブル信号EN_CおよびEN_Dをオン状態に設定する。これにより、フリッカ成分抽出部311および点滅被写体認識部316がイネーブルとなる。このとき、モード3と同様に、信号処理部300は、フリッカを除去した出力画像と点滅被写体の認識結果とを出力する。
 また、モード5においては、モード4と同様に最初にイネーブル信号EN_AおよびEN_Bがオン状態に設定され、イネーブル信号EN_CおよびEN_Dがオフ状態に設定される。
 そして、モード5において点滅光源と推定される所定の被写体(信号機など)が検出された場合、カメラ制御部312は、イネーブル信号EN_AおよびEN_Bをオフ状態に設定し、イネーブル信号EN_CおよびEN_Dをオン状態に設定する。これにより、画像合成部313、画像処理部314および画像認識部315がディセーブルとなり、フリッカ成分抽出部311および点滅被写体認識部316がイネーブルとなる。さらに、カメラ制御部312は、制御信号により固体撮像素子200を制御して、検出された被写体を含む一部の領域をROI(Region of Interest)として撮像させる。点滅被写体認識部316は、ROIに対して画像認識処理を行い、認識結果を出力する。
 このように、モード4および5では、点滅被写体が未検出の際に、通常画像の撮像のみが行われるため、消費電力を低減することができる。また、モード5では、フリッカ成分抽出部311および点滅被写体認識部316がROIのみを処理することにより、処理速度を向上させることができる。
 なお、同図に例示したモード1乃至5の制御は、一例であり、カメラ制御部312は、これら以外の制御を行うこともできる。
 [撮像装置の動作例]
 図6は、本技術の第1の実施の形態における撮像動作の一例を示すタイミングチャートである。
 ここで、点滅光源が点滅する際の周波数を、例えば100ヘルツ(Hz)とする。この場合、点滅周期は、10ミリ秒(ms)となる。同図に例示するクロック信号CLKは、点滅光源を駆動するクロック信号に該当する。
 また、カメラ制御部312は、垂直同期信号VSYNCを固体撮像素子200に供給する。この垂直同期信号VSYNCの周波数を、例えば30ヘルツ(Hz)とする。この場合、垂直同期信号VSYNCの周期は、1/30秒(s)となる。1/30秒(s)は約33ミリ秒(ms)である。
 また、固体撮像素子200は、露光期間EXP1乃至EXP5の期間に亘って、ラインを順に露光する。露光期間EXP1乃至EXP4のそれぞれの露光期間の長さは、点滅周期の半周期である5ミリ秒に設定される。また、100ヘルツ(Hz)を1周期として、露光期間EXP1の開始タイミングと露光期間EXP2の開始タイミングとの位相差は180度に設定される。また、露光期間EXP1の開始タイミングと露光期間EXP3の開始タイミングとの位相差は90度に設定される。露光期間EXP1の開始タイミングと露光期間EXP4の開始タイミングとの位相差は270度に設定される。
 例えば、タイミングT1から、5ミリ秒後のタイミングT11までが1ライン目の露光期間EXP1として設定される。タイミングT11から、5ミリ秒後のタイミングT12までが1ライン目の露光期間EXP2として設定される。タイミングT12から2.5ミリ秒後のタイミングT13に次の露光期間EXP3が開始される。そして、タイミングT13から、5ミリ秒後のタイミングT14までが1ライン目の露光期間EXP3として設定される。タイミングT14から、5ミリ秒後のタイミングT15までが1ライン目の露光期間EXP4として設定される。
 また、タイミングT15から例えば2.5ミリ秒後のタイミングT16に1ライン目について露光期間EXP5が開始される。タイミングT1から1/30秒(言い換えれば、約33ミリ秒)後のタイミングT2において、1ライン目の露光期間EXP5が終了する。露光期間EXP1乃至EXP4が全て5ミリ秒であるため、33ミリ秒のうち、残りの13ミリ秒を露光期間EXP5に割り当てることができる。以下、n(nは、1乃至Nの整数)ライン目の露光期間EXP1乃至EXP5をEXP1乃至EXP5とする。
 そして、2ライン目以降において、nライン目の露光の次に、n+1ライン目の露光が開始される。例えば、タイミングT21からT23までがnライン目の露光期間EXP1として設定され、タイミングT23からT25までがnライン目の露光期間EXP2として設定される。タイミングT26からT28までがnライン目の露光期間EXP3として設定され、タイミングT28からT30までがnライン目の露光期間EXP4として設定される。また、タイミングT31からT32までがnライン目の露光期間EXP5として設定される。同図に例示したように、ライン単位で順に露光を行う制御方法は、一般にローリングシャッター方式と呼ばれる。
 なお、露光期間EXP5は、13ミリ秒に限定されず、開始や終了のタイミングを調整することによって任意の時間に設定することが可能であり、13ミリ秒未満にすることもできる。例えば、同図では、露光期間EXP5を8ミリ秒としている。
 なお、固体撮像素子200は、ローリングシャッター方式で露光を行っているが、全てのラインで同時に露光を開始し、終了するグローバルシャッター方式を用いることもできる。
 図7は、本技術の第1の実施の形態における露光制御の一例を示すタイミングチャートである。ここで、点滅光源のクロック信号CLKの立上りと、nライン目の露光期間EXP1の開始のタイミングT21との位相差をΦミリ秒とする。
 この場合、nライン目の画素は、露光期間EXP1において、タイミングT21から、10-Φミリ秒後のタイミングT22までの期間に亘って、点滅光源からの光を受光する。また、nライン目の画素は、露光期間EXP2において、タイミングT23の10-Φミリ秒後のタイミングT24からタイミングT25までの期間に亘って、点滅光源からの光を受光する。
 そして、nライン目の画素は、露光期間EXP3においては、タイミングT26のΦミリ秒後のタイミングT27からタイミングT28までの期間に亘って、点滅光源からの光を受光する。nライン目の画素は、露光期間EXP4においては、タイミングT28から、Φミリ秒後のタイミングT29までの期間に亘って、点滅光源からの光を受光する。同図において、斜線の部分は、点滅光源からの光を受光する期間を示す。
 nライン目の画素は、100ヘルツ(Hz)の点滅光源からの光の他、100ヘルツ(Hz)以外の周波数の点滅光源からの光や、点滅しない自然光源からの光も受光することがある。露光期間EXP(mは、1乃至4の整数)に対応する画素信号Iのうち、100ヘルツ(Hz)の点滅光源に対応する信号成分をLとし、それ以外の背景光に対応する信号成分をBgとする。信号成分Bgは、それぞれの露光期間内において一様であるものとする。このとき、画素信号Iは、次の式により表される。
  I=L+Bg                   ・・・式1
 同図に例示したように、4つの露光期間のそれぞれにおいて、点滅光源からの光の受光量は、その光と露光期間との位相差Φにより決定される。この位相差Φは、次の式により表される。
  Φ=arctan{(I-I)/(I-I)}
上式において、arctan()は、正接関数の逆関数を表す。
 また、100ヘルツ(Hz)の点滅光源からの光に対応するフリッカ成分Iは、次の式により抽出される。
  I={(I-I+(I-I1/2    ・・・式2
 式2に式1を代入することにより、次の式が得られる。
  I={(L-L+(L-L1/2    ・・・式3
 式3より、差分演算によって背景光の信号成分Bgがキャンセルされ、想定する100ヘルツ(Hz)の点滅光源のフリッカ成分のみが抽出される。なお、その点滅光源からの光を受光しない画素では、式3の計算結果が「0」となる。
 ここで、比較例として、点滅周期と同じ露光期間により撮像して画像認識を行う装置を想定する。この比較例では、認識対象の点滅光源以外の背景光の影響により、画像認識のロバスト性や処理速度が低下するおそれがある。これに対して、式3を用いる撮像装置100では、背景光の信号成分Bgのキャンセルにより、背景光の影響を抑制して、画像認識のロバスト性や処理速度を向上させることができる。
 さらに比較例では、画像の露光期間が点滅周期に固定され、それより短くすることができないため、高速で動く被写体を撮像する際に動体ブラが生じるおそれがある。これに対して、撮像装置100では、通常画像の露光期間EXP5は、点滅周期(10ミリ秒など)に固定する必要がなく、その点滅周期よりも短くすることができる。これにより、動体ブラを抑制することができる。
 なお、抽出対象の点滅周期を100ヘルツ(Hz)としているが、100ヘルツ(Hz)以外の点滅周期のフリッカ成分を抽出対象とすることもできる。抽出対象のフリッカ成分の点滅周期をPヘルツ(Hz)とする場合、露光期間EXP1乃至EXP4のそれぞれの長さを、1/(2P)秒にすればよい。
 また、点滅光源の信号成分の抽出のために、4相の露光期間を用いているが、4相以外の複数の相(2相や5相以上など)を用いることもできる。
 図8は、本技術の第1の実施の形態における読出し動作の一例を示すタイミングチャートである。固体撮像素子200内のカラム信号処理回路214は、水平同期信号に同期して、5つの露光期間のそれぞれの終了時に、対応する画素信号を順に読み出す。
 例えば、タイミングT41からT42までの期間内に、カラム信号処理回路214は、最初にA行目の露光期間EXP5の画素信号を読み出す。続いて、カラム信号処理回路214は、B行目の露光期間EXP1の画素信号と、C行目の露光期間EXP2の画素信号と、D行目の露光期間EXP3の画素信号と、E行目の露光期間EXP4の画素信号とを順に読み出す。引き続き、カラム信号処理回路214は、T42以降の期間に、A+1行目の露光期間EXP5の画素信号を読み出す。続いて、カラム信号処理回路214は、B+1行目の露光期間EXP1の画素信号と、C+1行目の露光期間EXP2の画素信号と、D+1行目の露光期間EXP3の画素信号と、E+1行目の露光期間EXP4の画素信号とを順に読み出す。
 図9は、本技術の第1の実施の形態における読出しの際のトランジスタの制御の一例を示すタイミングチャートである。タイミングT51乃至T53においてカラム信号処理回路214はnライン目を読み出し、タイミングT53乃至T55において、n+1ライン目を読み出すものとする。
 Vデコーダ211は、タイミングT51乃至T53に亘ってハイレベルの選択信号SEL_nをnライン目へ供給する。また、Vデコーダ211は、タイミングT51から所定のパルス期間に亘って、ハイレベルのリセット信号RST_nをnライン目へ供給する。そして、タイミングT51乃至T52の期間内に、浮遊拡散層223の初期化時の信号レベルであるP相が読み出される。続いてVデコーダ211は、タイミングT52から所定のパルス期間に亘って、ハイレベルの転送信号TRT_nをnライン目へ供給する。そして、タイミングT52乃至T53の期間内に、信号電荷の転送時の信号レベルであるD相が読み出される。
 また、Vデコーダ211は、タイミングT53乃至T55に亘ってハイレベルの選択信号SEL_n+1をn+1ライン目へ供給する。また、Vデコーダ211は、タイミングT53から所定のパルス期間に亘って、ハイレベルのリセット信号RST_n+1をn+1ライン目へ供給する。続いてVデコーダ211は、タイミングT54から所定のパルス期間に亘って、ハイレベルの転送信号TRT_n+1をn+1ライン目へ供給する。以下、同様の制御により、n+2ライン目以降が順に読み出される。
 図10は、本技術の第1の実施の形態におけるモード1の動作の一例を示すフローチャートである。この動作は、例えば、モード1が設定された際に開始される。信号処理部300は、イネーブル信号EN_AおよびEN_Cがをオン状態に設定し、イネーブル信号EN_BおよびEN_Dをオフ状態に設定する(ステップS901)。また、固体撮像素子200は、5相の画素信号を読み出す(ステップS902)。そして、信号処理部300は、フリッカを除去した画像を生成して出力する(ステップS903)。ステップS903の後に撮像装置100は、モード1の動作を終了する。
 図11は、本技術の第1の実施の形態におけるモード2の動作の一例を示すフローチャートである。この動作は、例えば、モード2が設定された際に開始される。信号処理部300は、イネーブル信号EN_CおよびEN_Dをオン状態に設定し、イネーブル信号EN_AおよびEN_Bをオフ状態に設定する(ステップS911)。また、固体撮像素子200は、露光期間EXP1乃至EXP4の4相の画素信号を読み出す(ステップS912)。そして、信号処理部300は、点滅被写体の画像認識を行って、その認識結果を出力する(ステップS913)。ステップS913の後に撮像装置100は、モード2の動作を終了する。
 図12は、本技術の第1の実施の形態におけるモード3の動作の一例を示すフローチャートである。この動作は、例えば、モード3が設定された際に開始される。信号処理部300は、イネーブル信号EN_A、EN_B、EN_CおよびEN_Dをオン状態に設定する(ステップS921)。また、固体撮像素子200は、5相の画素信号を読み出す(ステップS922)。そして、信号処理部300は、フリッカを除去した画像を生成して出力するとともに(ステップS923)、点滅被写体の画像認識を行って、その認識結果を出力する(ステップS924)。ステップS924の後に撮像装置100は、モード3の動作を終了する。
 図13は、本技術の第1の実施の形態におけるモード4の動作の一例を示すフローチャートである。この動作は、例えば、モード4が設定された際に開始される。信号処理部300は、イネーブル信号EN_AおよびEN_Bをオン状態に設定し、イネーブル信号EN_CおよびEN_Dをオフ状態に設定する(ステップS931)。また、固体撮像素子200は、露光期間EXP5の1相の画素信号のみを読み出す(ステップS932)。そして、信号処理部300は、通常画像に対する画像認識を行い、所定の被写体(信号機など)を検出したか否かを判断する(ステップS933)。
 所定の被写体(信号機など)を検出した場合(ステップS933:Yes)、信号処理部300は、イネーブル信号EN_A、EN_B、EN_CおよびEN_Dをオン状態に設定する(ステップS934)。また、固体撮像素子200は、5相の画素信号を読み出す(ステップS935)。信号処理部300は、所定の点滅被写体を検出したか否かを判断する(ステップS936)。
 所定の被写体を検出していない場合(ステップS933:No)、または、点滅被写体を検出していない場合(ステップS936:No)、撮像装置100は、ステップS931以降を繰り返す。
 点滅被写体を検出した場合(ステップS936:Yes)、信号処理部300は、フリッカを除去した画像を生成して出力するとともに(ステップS937)、点滅被写体の画像認識を行って、その認識結果を出力する(ステップS938)。ステップS938の後に撮像装置100は、モード4の動作を終了する。
 図14は、本技術の第1の実施の形態におけるモード5の動作の一例を示すフローチャートである。この動作は、例えば、モード5が設定された際に開始される。信号処理部300は、イネーブル信号EN_AおよびEN_Bをオン状態に設定し、イネーブル信号EN_CおよびEN_Dをオフ状態に設定する(ステップS941)。また、固体撮像素子200は、露光期間EXP5の1相の画素信号のみを読み出す(ステップS942)。そして、信号処理部300は、通常画像に対する画像認識を行い、所定の被写体(信号機など)を検出したか否かを判断する(ステップS943)。
 所定の被写体(信号機など)を検出した場合(ステップS943:Yes)、信号処理部300は、イネーブル信号EN_AおよびEN_Bをオフ状態に設定し、イネーブル信号EN_CおよびEN_Dをオン状態に設定する(ステップS944)。また、固体撮像素子200は、ROIについて4相の画素信号を読み出す(ステップS945)。信号処理部300は、所定の点滅被写体を検出したか否かを判断する(ステップS946)。
 所定の被写体を検出していない場合(ステップS943:No)、または、点滅被写体を検出していない場合(ステップS946:No)、撮像装置100は、ステップS941以降を繰り返す。
 点滅被写体を検出した場合(ステップS946:Yes)、信号処理部300は、点滅被写体の画像認識を行って、その認識結果を出力する(ステップS947)。ステップS947の後に撮像装置100は、モード5の動作を終了する。
 このように、本技術の第1の実施の形態では、カメラ制御部312が4つの露光期間のそれぞれに亘って画素を順に露光させ、それらの露光期間の長さに応じた周期で点滅するフリッカ成分をフリッカ成分抽出部311が抽出する。このため、画像認識部315は、そのフリッカ成分のみに基づいて画像認識を行うことができる。これにより、フリッカ成分以外の外乱を含む画素信号に基づいて画像認識を行う場合と比較して、ロバスト性を向上させることができる。
 [第1の変形例]
 上述の第1の実施の形態では、画素ごとに浮遊拡散層223を配置していたが、画素数が多くなるほど、画素アレイ部212の回路規模が増大してしまう。この第1の実施の形態の第1の変形例は、浮遊拡散層223を複数の画素で共有する点において第1の実施の形態と異なる。
 図15は、本技術の第1の実施の形態の第1の変形例におけるFD共有ブロック230の一構成例を示すブロック図である。この第1の実施の形態の第1の変形例では、画素アレイ部212において、複数のFD共有ブロック230が配列される。
 FD共有ブロック230には、光電変換素子221、転送トランジスタ222、浮遊拡散層223、リセットトランジスタ224、増幅トランジスタ225および選択トランジスタ226を備える。また、FD共有ブロック230には、光電変換素子227および転送トランジスタ228がさらに配置される。光電変換素子227の感度は、光電変換素子221と同じとする。
 光電変換素子221、転送トランジスタ222、浮遊拡散層223、リセットトランジスタ224、増幅トランジスタ225および選択トランジスタ226の接続構成は、第1の実施の形態と同様である。
 転送トランジスタ222は、転送信号TRTa_nに従って、光電変換素子221から浮遊拡散層223へ電荷を転送する。また、転送トランジスタ228は、転送信号TRTb_nに従って、光電変換素子227から浮遊拡散層223へ電荷を転送する。
 同図に例示したように、浮遊拡散層223は、2画素により共有される。光電変換素子221、転送トランジスタ222、浮遊拡散層223、リセットトランジスタ224、増幅トランジスタ225および選択トランジスタ226は、2画素のうち一方として機能する。また、光電変換素子227、転送トランジスタ228、浮遊拡散層223、リセットトランジスタ224、増幅トランジスタ225および選択トランジスタ226は、2画素のうち他方として機能する。なお、FD共有ブロック230内の2画素の一方は、特許請求の範囲に記載の隣接画素の一例である。
 2画素が浮遊拡散層223を共有するため、共有しない第1の実施の形態と比較して、画素当たりの素子数を少なくし、画素アレイ部212の回路規模を削減することができる。また、転送トランジスタ222および228の2つにより、画素ごとに異なる露光期間を設定することができる。
 なお、浮遊拡散層223を共有する画素数を2画素としているが、3画素以上の画素で浮遊拡散層223を共有することもできる。
 図16は、本技術の第1の実施の形態の第1の変形例における撮像動作の一例を示すタイミングチャートである。
 同図において、ラインL1乃至LNのそれぞれは、第1の実施の形態と異なり、FD共有ブロック230のラインを表す。前述したようにFD共有ブロック230内には浮遊拡散層223を共有する2画素が配置されている。それらの2画素の一方に露光期間EXP1、EXP2およびEXP5が設定され、他方に露光期間EXP3、EXP4およびEXP6が設定される。露光期間EXP6は、露光期間EXP5よりも短く、通常画像の生成に用いられる。また、露光期間EXP3は、露光期間EXP1内に開始され、露光期間EXP4は、露光期間EXP2内に開始される。
 例えば、nライン目において、タイミングT61から、10ミリ秒(ms)後のタイミングT63までが露光期間EXP1に設定される。タイミングT61の5ミリ秒(ms)後のT62から、その10ミリ秒(ms)後のタイミングT64までが露光期間EXP3に設定される。タイミングT63から、10ミリ秒(ms)後のタイミングT65までが露光期間EXP2に設定される。タイミングT64から、その10ミリ秒(ms)後のタイミングT66までが露光期間EXP4に設定される。
 また、タイミングT66から約20.5ミリ秒(ms)後のタイミングT68までが露光期間EXP5に設定される。タイミングT66の2.5ミリ秒(ms)後のタイミングT67から約18ミリ秒(ms)後のタイミングT68までが露光期間EXP6に設定される。
 同図に例示するように、浮遊拡散層223を共有する2画素が、露光期間EXP1乃至EXP4の露光を平行して行うことにより、それらの露光を1画素で行う第1の実施の形態と比較して、通常画像の露光期間EXP5を長くすることができる。
 また、タイミングT68で、露光期間EXP5の画素信号Iと、露光期間EXP6の画素信号Iとを加算した信号が読み出される。なお、カラム信号処理回路214は、タイミングT68で、画素信号Iと画素信号Iとの一方のみを読み出すこともできる。あるいは、カラム信号処理回路214は、画素信号Iと、画素信号Iとの両方を異なるタイミングで読み出すこともできる。画素信号IおよびIの両方を読み出す場合、それらを信号処理部300がHDR(High-Dynamic-Range)合成することにより、ダイナミックレンジを拡大することができる。また、シーンに応じて、画素信号IおよびIの読出し方法を変更することもできる。
 また、光電変換素子221および227の感度を同一としているが、これらの感度は異なっていてもよい。光電変換素子221および227の感度が異なる場合には、フリッカ成分の抽出のための画素信号I乃至Iについては、感度差に応じて、それらを補正してから式2が実行される。
 図17は、本技術の第1の実施の形態の第1の変形例における読出しの際のトランジスタの制御の一例を示すタイミングチャートである。カラム信号処理回路214はタイミングT71乃至T73とタイミングT75乃至T77とにおいてnライン目を読み出し、並行して、タイミングT73乃至T75とタイミングT77以降とにおいて、n+1ライン目を読み出すものとする。
 Vデコーダ211は、タイミングT71乃至T73に亘ってハイレベルの選択信号SEL_nをnライン目へ供給する。また、Vデコーダ211は、タイミングT71から所定のパルス期間に亘って、ハイレベルのリセット信号RST_nをnライン目へ供給する。続いてVデコーダ211は、タイミングT72から所定のパルス期間に亘って、ハイレベルの転送信号TRTa_nをnライン目へ供給する。
 また、Vデコーダ211は、タイミングT73から一定期間に亘ってハイレベルの選択信号SEL_n+1をn+1ライン目へ供給する。また、Vデコーダ211は、タイミングT73から所定のパルス期間に亘って、ハイレベルのリセット信号RST_n+1をn+1ライン目へ供給する。続いてVデコーダ211は、タイミングT74から所定のパルス期間に亘って、ハイレベルの転送信号TRTa_n+1をn+1ライン目へ供給する。
 続いて、Vデコーダ211は、タイミングT75乃至T77に亘ってハイレベルの選択信号SEL_nをnライン目へ供給する。また、Vデコーダ211は、タイミングT75から所定のパルス期間に亘って、ハイレベルのリセット信号RST_nをnライン目へ供給する。続いてVデコーダ211は、タイミングT76から所定のパルス期間に亘って、ハイレベルの転送信号TRTb_nをnライン目へ供給する。
 また、Vデコーダ211は、タイミングT77から一定期間に亘ってハイレベルの選択信号SEL_n+1をn+1ライン目へ供給する。また、Vデコーダ211は、タイミングT77から所定のパルス期間に亘って、ハイレベルのリセット信号RST_n+1をn+1ライン目へ供給する。続いてVデコーダ211は、タイミングT78から所定のパルス期間に亘って、ハイレベルの転送信号TRTb_n+1をn+1ライン目へ供給する。
 このように、本技術の第1の実施の形態の第1の変形例によれば、複数の画素が浮遊拡散層223を共有するため、共有しない第1の実施の形態と比較して、画素当たりの素子数を削減することができる。また、浮遊拡散層223を共有する2画素が、露光期間EXP1乃至EXP4の露光を平行して行うことにより、それらの露光を1画素で行う第1の実施の形態と比較して、通常画像の露光期間EXP5を長くすることができる。
 [第2の変形例]
 上述の第1の実施の形態では、行ごとに、露光期間EXP1乃至EXP4で露光を行っていたが、この構成では、それらの露光期間について、並行して露光を行うことができない。この第1の実施の形態の第2の変形例の撮像装置100は、偶数行と奇数行とで並行して露光を行う点において第1の実施の形態と異なる。
 図18は、本技術の第1の実施の形態の第2の変形例における撮像動作の一例を示すタイミングチャートである。奇数行(Lnなど)について、露光期間EXP1、EXP2およびEXP5が設定され、偶数行(Ln+1など)について、露光期間EXP3、EXP4およびEXP6が設定される。
 例えば、nライン目において、タイミングT61から、10ミリ秒(ms)後のタイミングT63までが露光期間EXP1に設定される。タイミングT61の5ミリ秒(ms)後のT62から、その10ミリ秒(ms)後のタイミングT64までが露光期間EXP2に設定される。また、n+1ライン目において、タイミングT63から、10ミリ秒(ms)後のタイミングT65までが露光期間EXP3n+1に設定される。タイミングT64から、その10ミリ秒(ms)後のタイミングT66までが露光期間EXP4n+1に設定される。
 また、nライン目において、タイミングT66から約20.5ミリ秒(ms)後のタイミングT68までが露光期間EXP5に設定される。n+1ライン目において、タイミングT66の2.5ミリ秒(ms)後のタイミングT67から約18ミリ秒(ms)後のタイミングT68までが露光期間EXP6n+1に設定される。
 同図に例示するように、隣接する2ラインが、露光期間EXP1乃至EXP4の露光を平行して行うことにより、それらの露光を1ラインで行う第1の実施の形態と比較して、通常画像の露光期間EXP5を長くすることができる。
 なお、第1の実施の形態と、その第1および第2の変形例とにおいて、露光期間EXP1乃至EXP4のそれぞれの長さを点滅周期の半周期としているが、この構成に限定されない。露光期間EXP1乃至EXP4を点滅周期の半周期より短くすることもできる。この場合は、フリッカ成分を抽出する演算の誤差が大きくなるが、飽和信号レベルを上昇させることができる。
 また、第1の実施の形態と、その第1および第2の変形例とにおいて、フリッカ成分の抽出と通常画像の撮像とを同じ画素を用いて行っているが、この構成に限定されない。例えば、第1の実施の形態において、画素アレイ部212上の画素を、通常画像のための画素である通常画素と、フリッカ成分を抽出するための画素である抽出画素とに分けることもできる。ただし、第1の変形例では、通常画素ごとに、フリッカ成分を抽出するために、浮遊拡散層223を共有する2つの抽出画素が配置される。同様に第2の実施の形態にいても、通常画素のラインごとに、抽出画素を配列した奇数ラインおよび偶数ラインが設けられる。
 また、第1の実施の形態と、その第1および第2の変形例とにおいて、画素ごと、あるいは、2画素ごとに、信号処理部300がフリッカ成分を抽出していたが、この構成に限定されない。信号処理部300は、ある画素に着目して、フリッカ成分を抽出する場合、その着目画素の画素信号と、着目画素の近傍の近傍画素の画素信号とに基づいてフリッカ成分を抽出することもできる。
 また、第1の実施の形態と、その第1および第2の変形例とにおいて信号処理部300は、1枚の画像データ(すなわち、フレーム)からフリッカ成分を抽出していたが、この構成に限定されない。信号処理部300は、信頼性を向上させるために、連続する複数枚のフレームからフリッカ成分を抽出することもできる。例えば、フレームごとに、検出対象の点滅周波数を切り替えることができる。より具体的には、信号機を認識する場合、奇数フレームで100ヘルツ(Hz)のものを認識対象とし、奇数フレームで120ヘルツ(Hz)のものを認識対象とする。そして、信号処理部300は、それぞれのフレームの認識結果の少なくとも一方で信号機と認識した際に、その認識結果を最終的な結果として出力する。
 また、第1の実施の形態と、その第1および第2の変形例とにおいて信号処理部300は、被写体となる交通インフラ(信号機や道路表示器など)の点滅周波数を、それぞれに固有のもの(信号機の色ごとなど)に割り振ることもできる。これにより、信号処理部300は、点滅光源の被写体認識や状態認識を行うこともできる。
 このように、本技術の第1の実施の形態の第2の変形例によれば、隣接する2ラインが、露光期間EXP1乃至EXP4の露光を平行して行うため、それらの露光を1ラインで行う場合と比較して、通常画像の露光期間EXP5を長くすることができる。
 <2.第2の実施の形態>
 上述の第1の実施の形態では、夜間での撮影を想定していなかったが、撮像装置は、赤外光を照射し、その反射光から赤外線画像を生成することもできる。この第2の実施の形態の撮像装置は、波長の異なる2つの赤外光を照射して、それらの反射光から赤外線画像を生成する点において第1の実施の形態と異なる。
 図19は、本技術の第2の実施の形態における撮像装置101の一構成例を示すブロック図である。この第2の実施の形態の撮像装置101では、赤外光光源121および122と、ドライバ131および132と、デュアルバンドパスフィルタ140とをさらに備える点において第1の実施の形態と異なる。
 赤外光光源121および122は、互いに異なる波長の赤外光を照射するものである。これらの赤外光光源121および122として、例えば、LED(light emitting diode)が用いられる。また、赤外光光源121は、例えば、940ナノメートル(nm)の赤外光を照射し、赤外光光源121は、例えば、850ナノメートル(nm)の赤外光を照射する。
 ドライバ131および132は、信号処理部300からの制御信号に従って、赤外光光源121および122を駆動するものである。信号処理部300からの制御信号は、例えば、赤外光の強度や、オンオフを指示する信号を含む。
 デュアルバンドパスフィルタ140は、撮像レンズ110と固体撮像素子200との間に配置される。このデュアルバンドパスフィルタ140は、可視光の帯域と、赤外光の帯域とを透過する。赤外光の帯域内には、赤外光光源121および122のそれぞれからの赤外光の波長が含まれる。
 また、固体撮像素子200は、赤外光光源121からの赤外光を光電変換した画像と、赤外光光源122からの赤外光を光電変換した画像とのそれぞれを生成して信号処理部300に供給する。
 信号処理部300は、固体撮像素子200からの2つの画像の差分演算を行い、それらを合成する。
 なお、撮像装置101は、赤外光を照射しているが、赤外光以外の不可視光(紫外光など)を照射することもできる。赤外光光源121および122は、特許請求の範囲に記載の第1および第2の光源の一例である。
 図20は、本技術の第2の実施の形態における撮像装置101の外観図の一例である。同図に例示するように、撮像装置101の所定の平面上に、一定の間隔を空けて赤外光光源121と赤外光光源122とが配置される。そして、それらの光源を結ぶ線分の中間に、撮像レンズ110が配置される。この撮像レンズ110の背面に、固体撮像素子200(不図示)が配置される。言い換えれば、赤外光光源121および122は、固体撮像素子200を挟んで略点対称な位置に配置される。ここで、「略点対称」とは、完全に点対称な位置に配置されていること、あるいは、点対称な位置からのズレが所定の許容範囲内であることを意味する。
 図21は、本技術の第2の実施の形態におけるデュアルバンドパスフィルタ140の特性の一例を示すグラフである。同図における縦軸は、デュアルバンドパスフィルタ140の透過率を示し、横軸は波長を示す。同図に例示するように、デュアルバンドパスフィルタ140は、400乃至700ナノメートル(nm)の可視光の帯域と、800乃至100ナノメートル(nm)の赤外光の帯域とを透過する。
 図22は、本技術の第2の実施の形態における画素アレイ部212の一構成例を示す平面図である。この第2の実施の形態の画素アレイ部212には、可視光画素241乃至243と、赤外光画素244および245とが配列される。
 可視光画素241は、R(Red)の可視光を受光する画素である。可視光画素242は、G(Green)の可視光を受光する画素である。可視光画素243は、B(Blue)の可視光を受光する画素である。また、赤外光画素244は、940ナノメートル(nm)の赤外光を選択的に遮断するフィルタを介して、850ナノメートル(nm)の赤外光を受光する画素である。赤外光画素245は、850ナノメートル(nm)の赤外光を選択的に遮断するフィルタを介して、940ナノメートル(nm)の赤外光を受光する画素である。
 なお、赤外光画素244および245は、特許請求の範囲に記載の第1および第2の不可視光画素の一例である。
 例えば、可視光画素241乃至243は、2行×2列の4画素ごとにGの画素を1画素だけ空けたベイヤー配列により配列される。空いた画素には、赤外光画素244や245が配列される。
 図23は、本技術の第2の実施の形態における固体撮像素子200の断面図の一例である。同図は、光軸に平行な所定の平面により固体撮像素子200を切断した際の断面図を示す。デュアルバンドパスフィルタ140を上側として、そのフィルタの下部には、マイクロレレンズ411乃至415が配置される。
 マイクロレンズ411の下部には、青色を透過するカラーフィルタ423が形成される。マイクロレンズ412の下部には、緑色を透過するカラーフィルタ422が形成される。マイクロレンズ413乃至415の下部には、赤色を透過するカラーフィルタ421が形成される。
 カラーフィルタ423および422の下部と、カラーフィルタ421のうちマイクロレンズ413に対応する箇所の下部とには、850ナノメートル(nm)の赤外光を選択的に遮断する赤外光遮断フィルタ424が形成される。カラーフィルタ421のうちマイクロレンズ414および415に対応する箇所の下部には、青色を透過するカラーフィルタ425が形成される。
 赤外光遮断フィルタ424の下部と、カラーフィルタ425のうちマイクロレンズ414に対応する箇所の下部とには、940ナノメートル(nm)の赤外光を選択的に遮断する赤外光遮断フィルタ426が形成される。カラーフィルタ425のうちマイクロレンズ415に対応する箇所の下部には、850ナノメートル(nm)の赤外光を選択的に遮断する赤外光遮断フィルタ427が形成される。
 そして、赤外光遮断フィルタ426のうちマイクロレンズ411に対応する箇所の下部には、青色を受光する可視光画素243が形成される。赤外光遮断フィルタ426のうちマイクロレンズ412に対応する箇所の下部には、緑色を受光する可視光画素242が形成される。赤外光遮断フィルタ426のうちマイクロレンズ413に対応する箇所の下部には、赤色を受光する可視光画素241が形成される。
 また、赤外光遮断フィルタ426のうちマイクロレンズ414に対応する箇所の下部には、850ナノメートル(nm)の赤外光を受光する赤外光画素244が形成される。赤外光遮断フィルタ427の下部には、940ナノメートル(nm)の赤外光を受光する赤外光画素245が形成される。
 同図に例示するように、カラーフィルタ423を透過した青色の可視光は、赤外光遮断フィルタ424および426により赤外光が除去されて可視光画素243に入力される。カラーフィルタ422を透過した緑色の可視光は、赤外光遮断フィルタ424および426により赤外光が除去されて可視光画素242に入力される。カラーフィルタ421を透過した赤色の可視光は、赤外光遮断フィルタ424および426により赤外光が除去されて可視光画素241に入力される。
 また、カラーフィルタ421および425を透過した赤外光は、赤外光遮断フィルタ426により、940ナノメートル(nm)の赤外光が除去され、残りの850ナノメートル(nm)の赤外光が赤外光画素244に入力される。カラーフィルタ421および425を透過した赤外光は、赤外光遮断フィルタ427により、850ナノメートル(nm)の赤外光が除去され、残りの940ナノメートル(nm)の赤外光が赤外光画素245に入力される。
 図24は、本技術の第2の実施の形態における赤外光遮断フィルタの特性の一例を示すグラフである。同図におけるaは、赤外光遮断フィルタ424の特性の一例を示すグラフである。同図におけるbは、赤外光遮断フィルタ426の特性の一例を示すグラフである。同図におけるaおよびbの縦軸は、それぞれのフィルタの透過率を示し、横軸は波長を示す。
 同図におけるaに例示するように赤外光遮断フィルタ424によって850ナノメートル(nm)の赤外光が選択的に遮断される。また、同図におけるbに例示するように、赤外光遮断フィルタ426によって940ナノメートル(nm)の赤外光が選択的に遮断される。なお、赤外光遮断フィルタ424および426は、特許請求の範囲に記載の第1および第2の不可視光遮断フィルタの一例である。
 図25は、本技術の第2の実施の形態における信号処理部300の一構成例を示すブロック図である。この第2の実施の形態の信号処理部300は、カメラ制御部321、補間処理部322、補間処理部323、色信号処理部324、差分処理部325、合成部326および輝度合成部327を備える。
 カメラ制御部321は、固体撮像素子200とドライバ131および132とを制御するものである。
 補間処理部322は、固体撮像素子200の可視光画素241乃至243からのR、GおよびBの画素信号を色信号として受け取る。この補間処理部322は、赤外光画素244および245の座標の色信号を、その近傍の色信号を用いて補間する。補間処理部322は、補間後の色信号を色信号処理部324に供給する。
 色信号処理部324は、補間処理後の色信号に対して、ホワイトバランス補正処理などの様々な信号処理を行うものである。この色信号処理部324は、信号処理後の色信号を配列したカラー画像を合成部326に供給する。
 補間処理部323は、固体撮像素子200の赤外光画素244および245からの画素信号を赤外光信号として受け取る。この補間処理部323は、赤外光画素244の赤外光信号に基づいて、例えば、赤外光画素244以外の座標の赤外光信号を補間する。また、補間処理部323は、赤外光画素245の赤外光信号に基づいて、例えば、赤外光画素245以外の座標の赤外光信号を補間する。
 ここで、補間処理部323は、赤外光画素244および245のそれぞれについて、それらの座標以外の全画素の座標の赤外光信号を補間することができる。また、補間処理部323は、赤外光画素244について、赤外光画素245の座標の赤外光信号のみを補間するとともに、赤外光画素245について、赤外光画素244の座標の赤外光信号のみを補間することもできる。これらの補間処理により、赤外光信号を配列した2枚の赤外光画像が生成される。補間処理部323は、これらの2枚の赤外光画像を差分処理部325および輝度合成部327に供給する。
 差分処理部325は、補間処理後の2枚の赤外光画像について、画素ごとに、赤外光信号の差分を演算するものである。この差分処理部325は、差分の絶対値を配列した差分画像を輝度合成部327に供給する。
 輝度合成部327は、補間処理後の2枚の赤外光画像と、差分画像とを合成するものである。この輝度合成部327は、合成後の赤外光画像を合成部326に供給しつつ、外部に出力する。
 合成部326は、色信号処理部324からのカラー画像と輝度合成部327からの赤外光画像とを合成するものである。この合成部326は、例えば、カラー画像におけるR、GおよびBの色信号を、画素ごとに、輝度信号とCbおよびCrの色信号とにYC分離する。そして、合成部326は、赤外光画像の赤外光信号により、分離後の輝度信号を置き換える。合成部326は、置き換え後の輝度信号と色信号とを配列した画像をカラー画像として外部に出力する。あるいは、合成部326は、R、GおよびBの信号に再度変換してから出力する。
 ここで、赤外光光源121および122の一方のみを固体撮像素子200の近傍に配置し、その光源からの赤外光に対する反射光から赤外光画像を生成する装置を比較例として想定する。
 図26は、比較例における赤外光画像500の一例を示す図である。例えば、円筒の被写体が撮像されたものとする。この被写体の背景と、被写体とのそれぞれの赤外光の反射率が同程度である場合、同図に例示するように被写体のコントラストが不明瞭となってしまう。
 図27は、本技術の第2の実施の形態における合成前後の画像の一例を示す図である。同図におけるaは、850ナノメートル(nm)の赤外光の画像501の一例を示す。同図におけるbは、940ナノメートル(nm)の赤外光の画像502の一例を示す。同図におけるcは、差分画像503を示し、同図におけるdは、輝度合成部327からの出力画像504を示す。
 850ナノメートル(nm)の赤外光が左側から照射され、940ナノメートル(nm)の赤外光が右側から照射された場合、同図におけるaおよびbに例示するように、左右対称な画像501および502が生成される。同図におけるcに例示するように差分処理部325は、これらの画像501および502の差分画像503を生成する。そして、同図におけるdに例示するように輝度合成部327は、画像501およ502の輝度と、差分画像503とを合成して出力画像504を生成する。この出力画像504では、被写体の陰影がはっきりと表れており、比較例よりもコントラストが明瞭となる。言い換えれば、コントラストが向上する。
 図28は、比較例における別の赤外光画像510を示す図である。例えば、壁の微小な凹凸が撮像されたものとする。凹凸と、背景の壁とのそれぞれの赤外光の反射率が同程度である場合、同図に例示するように凹凸が不明瞭となってしまう。
 図29は、本技術の第2の実施の形態における合成前後の画像の別の例を示す図である。同図におけるaは、850ナノメートル(nm)の赤外光の画像511の一例を示す。同図におけるbは、940ナノメートル(nm)の赤外光の画像512の一例を示す。同図におけるcは、差分画像513を示し、同図におけるdは、輝度合成部327からの出力画像504を示す。
 同図におけるaおよびbに例示するように、左右対称な画像511および512が生成される。同図におけるcに例示するように差分処理部325は、差分画像513を生成し、同図におけるdに例示するように輝度合成部327は、出力画像514を生成する。この出力画像514では、凹凸の陰影がはっきりと表れており、比較例よりもコントラストが明瞭となる。
 次に撮像装置100を自動車の搭載する際の取り付け個所の例について説明する。
 図30は、本技術の第2の実施の形態における車体側面への撮像装置100の取り付け位置の一例を示す図である。同図におけるaは、撮像装置100をドアミラー付近に取り付ける場合の位置を示す図である。同図におけるbは、赤外光光源121および122と固体撮像素子200とを別々に取り付ける場合の位置を示す図である。
 同図におけるbに例示するように、例えば、固体撮像素子200は前後のドアの中間に配置され、赤外光光源121は前側のドアの端部に、赤外光光源122は後ろ側のドアの端部に配置される。このように、赤外光光源121および122と固体撮像素子200とを信号処理部300と独立して取り付けることにより、赤外光光源121および122の間隔を大きくとることができる。これにより、陰影をさらに明瞭にし、画質を向上させることができる。
 図31は、本技術の第2の実施の形態における車体側面への撮像装置100の取り付け位置の別の例を示す図である。同図におけるaは、赤外光光源121および122と固体撮像素子200とをドアの上部に取り付ける際の位置を示す図である。同図におけるbは、赤外光光源121および122と固体撮像素子200とを前後のドアの中間に縦方向に取り付ける際の位置を示す図である。
 図32は、本技術の第2の実施の形態における車体前部への撮像装置100の取り付け位置の一例を示す図である。同図におけるaは、赤外光光源121および122と固体撮像素子200とをフロントガラスの車外側の面の上部に配置した場合の取り付け位置の一例を示す図である。同図におけるbは、赤外光光源121および122と固体撮像素子200とをヘッドライトの近傍に配置した場合の取り付け位置の一例を示す図である。
 図33は、本技術の第2の実施の形態における車体後部への撮像装置100の取り付け位置の一例を示す図である。同図におけるaは、赤外光光源121および122と固体撮像素子200とをリアガラスの上部に配置した場合の取り付け位置の一例を示す図である。同図におけるbは、赤外光光源121および122と固体撮像素子200とをリアライトの近傍に配置した場合の取り付け位置の一例を示す図である。
 図34は、本技術の第2の実施の形態における車体内部への撮像装置100の取り付け位置の一例を示す図である。同図におけるaは、赤外光光源121および122と固体撮像素子200とをフロントガラスの車内側の面の上部に配置した場合の取り付け位置の一例を示す図である。同図におけるbは、赤外光光源121および122と固体撮像素子200とをダッシュボード上に配置した場合の取り付け位置の一例を示す図である。
 図35は、本技術の第2の実施の形態における車体内部への撮像装置100の取り付け位置の別の例を示す図である。同図におけるaは、赤外光光源121および122と固体撮像素子200とを車内の天井に配置した場合の取り付け位置の一例を示す図である。同図におけるbは、撮像装置100を運転席の前部の天井に配置した場合の取り付け位置の一例を示す図である。
 なお、赤外光光源121および122のそれぞれの波長を850ナノメートル(nm)およい940ナノメートル(nm)としているが、これら以外の波長を設定することもできる。
 また、2つの赤外光光源を配置しているが、照射する赤外光の波長の異なる3つ以上の赤外光光源を配置することもできる。3つの赤外光光源を配置する場合には、固体撮像素子200に3種類の赤外光画素が配置され、それらの画素は互いに異なる波長の赤外光を受光する。そして、固体撮像素子200は、赤外光画像IMG1、IMG2およびIMG3を生成し、IMG1およびIMG2の差分画像と、IMG2およびIMG3の差分画像と、IMG1およびIMG3の差分画像とを生成して合成する。
 また、複数の固体撮像素子200を配置することもできる。2つの固体撮像素子200を配置する場合、それらの一方が赤外光光源121からの赤外光を受光し、他方が赤外光光源122からの赤外光を受光すればよい。
 このように、本技術の第2の実施の形態によれば、信号処理部300は、赤外光光源121に対応する赤外光画像と、赤外光光源122に対応する赤外光画像との差分を求めるため、それらの一方のみと比較してコントラストを向上させるすることができる。
 [第1の変形例]
 上述の第2の実施の形態では、固体撮像素子200は、可視光と赤外光との両方を受光していたが、この構成では、可視光画素241乃至243の間に赤外光画素244および245を配置する必要があり、赤外光画素の画素数が不足するおそれがある。この第2の実施の形態の第1の変形例の固体撮像素子200は、赤外光のみを受光する点において第2の実施の形態と異なる。
 図36は、本技術の第2の実施の形態の第1の変形例における画素アレイ部212の一構成例を示す平面図である。この第2の実施の形態の第1の変形例の画素アレイ部212は、赤外光画素244および245のみが配列される点において第2の実施の形態と異なる。同図に例示するように、可視光画素241乃至243を配置する必要がなくなるため、その分、赤外光画素の画素数を多くすることができる。
 図37は、本技術の第2の実施の形態の第1の変形例における信号処理部300の一構成例を示すブロック図である。この第2の実施の形態の第1の変形例の信号処理部300は、カメラ制御部321、補間処理部323、差分処理部325および輝度合成部327を備える。
 第2の実施の形態の第1の変形例の補間処理部323は、赤外光画素244について、赤外光画素245の座標の赤外光信号のみを補間するとともに、赤外光画素245について、赤外光画素244の座標の赤外光信号のみを補間する。カメラ制御部321、差分処理部325および輝度合成部327の機能は、第2の実施の形態と同様である。
 なお、可視光の受光が不要となるため、デュアルバンドパスフィルタ140の代わりに、赤外光のみを透過するバンドパスフィルタを設けることもできる。
 このように、本技術の第2の実施の形態の第1の変形例によれば、固体撮像素子200が赤外光のみを受光するため、可視光画素が不要となり、その分だけ赤外光画素の画素数を多くすることができる。
 [第2の変形例]
 上述の第2の実施の形態の第1の変形例では、撮像装置101が波長の異なる2つの赤外光を照射して受光していたが、この構成では、固体撮像素子200内に赤外光遮断フィルタを形成する必要がある。この第2の実施の形態の第2の変形例の撮像装置101は、偏光方向の異なる2つの赤外光を照射する点において第2の実施の形態の第1の変形例と異なる。
 図38は、本技術の第2の実施の形態の第2の変形例における撮像装置101の一構成例を示すブロック図である。この第2の実施の形態の第2の変形例の撮像装置101は、偏光フィルタ151および152をさらに備える点において第2の実施の形態の第1の変形例と異なる。
 偏光フィルタ151および152は、偏光方向が互いに異なる赤外光を透過するものである。例えば、偏光フィルタ151に対応する偏光方向は、偏光フィルタ152に対応する偏光方向と90度異なる。なお、偏光フィルタ151および152は、特許請求の範囲に記載の第1および第2の偏光フィルタの一例である。
 赤外光光源121は、偏光フィルタ151を介して赤外光を照射し、赤外光光源122は、偏光フィルタ152を介して赤外光を照射する。なお、第2の実施の形態の第2の変形例の赤外光光源121および122のそれぞれの赤外光の波長は、同一である。このため、赤外光遮断フィルタ424や426を形成する必要がなくなる。
 図39は、本技術の第2の実施の形態の第2の変形例におけるワイヤーグリッドフィルタの配置例を示す平面図である。画素アレイ部212の赤外光画素244(不図示)の上部にオンチップのワイヤーグリッドフィルタ431が配置される。また、赤外光画素2445(不図示)の上部にオンチップのワイヤーグリッドフィルタ432が配置される。
 ワイヤーグリッドフィルタ431は、偏光フィルタ151を介して照射された赤外光の反射光を透過し、ワイヤーグリッドフィルタ432は、偏光フィルタ152を介して照射された赤外光の反射光を透過する。なお、ワイヤーグリッドフィルタ431および432は、特許請求の範囲に記載の第1および第2のワイヤーグリッドフィルタの一例である。
 また、第2の実施の形態の第2の変形例の信号処理部300は、偏光方向の異なる2枚の赤外光画像の差分を求めて、それらを合成する。これにより、1枚の赤外光画像のみを用いる場合と比較して、コントラストを向上させることができる。
 このように、本技術の第2の実施の形態の第2の変形例では、撮像装置100が偏光方向の異なる2つの赤外光を照射して受光するため、波長の異なる2つの赤外光を受光する必要がなくなり、赤外光遮断フィルタの配置が不要となる。
 [第3の変形例]
 上述の第2の実施の形態の第1の変形例では、撮像装置101が波長の異なる2つの赤外光を照射して受光していたが、この構成では、固体撮像素子200内に赤外光遮断フィルタを形成する必要がある。この第2の実施の形態の第3の変形例の撮像装置101は、赤外光光源121および122が異なるタイミングで点灯する点において第2の実施の形態の第1の変形例と異なる。
 図40は、本技術の第2の実施の形態の第3の変形例における画素アレイ部212の一構成例を示す平面図である。この第2の実施の形態の第3の変形例における画素アレイ部212は、赤外光画素251および252が配列される点において第2の実施の形態の第1の変形例と異なる。
 図41は、本技術の第2の実施の形態の第3の変形例における撮像動作の一例を示すタイミングチャートである。赤外光光源121および122は、同じ波長の赤外光を異なるタイミングで照射する。赤外光の波長が同一であるため、赤外光遮断フィルタ424や426を形成する必要がなくなる。
 垂直同期信号VSYNCは、タイミングT71、T73、T75などに供給される。例えば、タイミングT71乃至T73の期間のうちタイミングT72からT73の期間内の赤外光光源121のみが点灯する。そして、次のタイミングT73乃至T75の期間のうちタイミングT74からT75の期間内に赤外光光源122のみが点灯する。以下、同様に、赤外光光源121および122は、垂直同期信号VSYNCに同期して交互に点灯する。
 固体撮像素子200は、赤外光光源121の点灯中に赤外光画素251を露光し、赤外光光源122の点灯中に赤外光画素252を露光する。例えば、タイミングT71乃至T73の露光期間EXPaにおいて最初のラインの赤外光画素251が露光される。2ライン目以降は、順に露光され、タイミングT72乃至T74の露光期間EXPaにおいて最後のラインの赤外光画素251が露光される。
 また、例えば、タイミングT73乃至T75の露光期間EXPbにおいて最初のラインの赤外光画素252が露光される。2ライン目以降は、順に露光され、タイミングT74乃至T76の露光期間EXPbにおいて最後のラインの赤外光画素252が露光される。
 信号処理部300の処理内容は、第2の実施の形態の第1の変形例と同様である。
 なお、第2の実施の形態と、その第1、第2および第3の変形例とでは、撮像装置100は、ローリングシャッター方式を用いているが、グローバルシャッター方式を用いることもできる。
 また、画素を赤外光画素251と赤外光画素252とに分けて、露光期間EXPaおよびEXPbで並列に露光しているが、この構成に限定されない。赤外光画素251のみを配列し、露光期間EXPaおよびEXPbで順に露光させることもできる。ただし、この場合には、露光期間EXPa内に、露光期間EXPbを開始することができないため、フレームレートが低下してしまう。
 このように、本技術の第2の実施の形態の第3の変形例では、赤外光光源121および122は、同じ波長の赤外光を異なるタイミングで照射するため、波長の異なる2つの赤外光を受光する必要がなくなり、赤外光遮断フィルタの配置が不要となる。
 <3.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図42は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図42に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図42の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図43は、撮像部12031の設置位置の例を示す図である。
 図43では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図43には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、例えば、図1の撮像装置100は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、フリッカを除去してより見やすい撮影画像を得ることができるため、ドライバの疲労を軽減することが可能になる。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は以下のような構成もとることができる。
(1)長さが同一の複数の露光期間のそれぞれに亘って画素を順に露光させて複数の画素信号を生成させる制御部と、
 前記長さに応じた周期で点滅するフリッカ成分を前記複数の画素信号から抽出するフリッカ成分抽出部と
を具備する撮像装置。
(2)前記画素と前記画素に隣接する隣接画素とは、浮遊拡散層を共有する
前記(1)記載の撮像装置。
(3)前記制御部は、前記複数の露光期間と異なる露光期間に亘って前記隣接画素を露光させる
前記(2)記載の撮像装置。
(4)前記画素は、隣接する2つのラインのそれぞれに配置され、
 前記制御部は、前記複数の露光期間のうち特定の露光期間に亘って前記2つのラインの一方を露光させ、前記複数の露光期間のうち前記特定の露光期間と異なる露光期間に亘って前記2つのラインの他方を露光させる
前記(1)記載の撮像装置。
(5)前記複数の露光期間は、対応する露光期間の位相が180度異なる2つの画素信号を含み、
 前記フリッカ成分抽出部は、前記2つの画素信号の差分に基づいて前記フリッカ成分を抽出する
前記(1)から(4)のいずれかに記載の撮像装置。
(6)前記制御部は、長さが同一の4つの露光期間のそれぞれに亘って前記画素を順に露光させて4つの画素信号を生成させる
前記(1)から(5)のいずれかに記載の撮像装置。
(7)前記4つの露光期間のいずれかの位相に対して残りの3つの位相は、それぞれ90度、180度、および、270度異なる
前記(6)記載の撮像装置。
(8)前記制御部は、前記4つの露光期間と長さが異なる露光期間に亘って前記画素をさらに露光させて新たな画素信号を生成させる
前記(6)または(7)に記載の撮像装置。
(9)前記新たな画像信号を配列した通常画像と前記フリッカ成分とを合成して合成画像を生成する画像合成部をさらに具備する
前記(8)記載の撮像装置。
(10)前記フリッカ成分を配列した点滅被写体に対して画像認識を行う点滅被写体認識部をさらに具備する
前記(9)記載の撮像装置。
(11)前記合成画像に対して画像認識を行う画像認識部をさらに具備する
前記(10)記載の撮像装置。
(12)前記制御部は、前記フリッカ成分抽出部および前記点滅被写体認識部を停止させ、前記画像認識により所定の被写体が検出された場合には、前記フリッカ成分抽出部および前記点滅被写体認識部を動作させる
前記(11)記載の撮像装置。
(13)前記制御部は、前記フリッカ成分抽出部および前記点滅被写体認識部を停止させ、前記画像認識により所定の被写体が検出された場合には、前記画像合成部および前記画像認識部を停止させつつ前記フリッカ成分抽出部および前記点滅被写体認識部を動作させる
前記(11)記載の撮像装置。
(14)不可視光を照射する第1および第2の光源と、
 前記第1の光源からの前記不可視光を光電変換した第1の画像と前記第2の光源からの前記不可視光を光電変換した第2の画像との差分を演算する信号処理部と
を具備する撮像装置。
(15)前記第1の光源からの前記不可視光を光電変換する第1の不可視光画素と前記第2の光源からの前記不可視光を光電変換する第2の不可視光画素とを配列した画素アレイ部をさらに具備する
前記(14)記載の撮像装置。
(16)前記画素アレイ部には、可視光を光電変換する可視光画素がさらに配列される
前記(15)記載の撮像装置。
(17)前記第1の光源からの前記不可視光を遮断する第1の不可視光遮断フィルタと前記第2の光源からの前記不可視光を遮断する第2の不可視光遮断フィルタとをさらに具備し、
 前記第1の不可視光画素は、前記第2の不可視光遮断フィルタを介して前記不可視光を受光し、前記第2の不可視光画素は、前記第1の不可視光遮断フィルタを介して前記不可視光を受光し、
 前記第1の光源からの前記不可視光と前記第2の光源からの前記不可視光とのそれぞれの波長は異なる
前記(15)または(16)に記載の撮像装置。
(18)偏光方向の異なる不可視光を透過する第1および第2の偏光フィルタと、
 前記第1の光源からの前記不可視光の偏光成分を透過して前記第1の不可視光画素に導く第1のワイヤーグリッドフィルタと前記第2の光源からの前記不可視光の偏光成分を透過して前記第2の不可視光画素に導く第2のワイヤーグリッドフィルタとをさらに具備し、
 前記第1の光源からの前記不可視光は、前記第1の偏光フィルタを介して照射され、前記第2の光源からの前記不可視光は、前記第2の偏光フィルタを介して照射される
前記(14)記載の撮像装置。
(19)前記第1および第2の画像を生成する固体撮像素子をさらに具備し、
 前記第1および第2の光源は、異なるタイミングで点灯し、
 前記固体撮像素子は、前記第1の光源が点灯する期間内に前記不可視光を光電変換して前記第1の画像を生成し、前記第2の光源が点灯する期間内に前記不可視光を光電変換して前記2の画像を生成する
前記(14)記載の撮像装置。
 100、101 撮像装置
 110 撮像レンズ
 121、122 赤外光光源
 131、132 ドライバ
 140 デュアルバンドパスフィルタ
 151、152 偏光フィルタ
 200 固体撮像素子
 211 Vデコーダ
 212 画素アレイ部
 213 タイミング制御回路
 214 カラム信号処理回路
 215 Hデコーダ
 220 画素
 221、227 光電変換素子
 222、228 転送トランジスタ
 223 浮遊拡散層
 224 リセットトランジスタ
 225 増幅トランジスタ
 226 選択トランジスタ
 230 FD共有ブロック
 241~243 可視光画素
 244、245、251、252 赤外光画素
 300 信号処理部
 310 ラインバッファ
 311 フリッカ成分抽出部
 312、321 カメラ制御部
 313 画像合成部
 314 画像処理部
 315 画像認識部
 316 点滅被写体認識部
 322、323 補間処理部
 324 色信号処理部
 325 差分処理部
 326 合成部
 327 輝度合成部
 411~415 マイクロレンズ
 421~423、425 カラーフィルタ
 424、426、427 赤外光遮断フィルタ
 431、432 ワイヤーグリッドフィルタ
 12031 撮像部

Claims (19)

  1.  長さが同一の複数の露光期間のそれぞれに亘って画素を順に露光させて複数の画素信号を生成させる制御部と、
     前記長さに応じた周期で点滅するフリッカ成分を前記複数の画素信号から抽出するフリッカ成分抽出部と
    を具備する撮像装置。
  2.  前記画素と前記画素に隣接する隣接画素とは、浮遊拡散層を共有する
    請求項1記載の撮像装置。
  3.  前記制御部は、前記複数の露光期間と異なる露光期間に亘って前記隣接画素を露光させる
    請求項2記載の撮像装置。
  4.  前記画素は、隣接する2つのラインのそれぞれに配置され、
     前記制御部は、前記複数の露光期間のうち特定の露光期間に亘って前記2つのラインの一方を露光させ、前記複数の露光期間のうち前記特定の露光期間と異なる露光期間に亘って前記2つのラインの他方を露光させる
    請求項1記載の撮像装置。
  5.  前記複数の露光期間は、対応する露光期間の位相が180度異なる2つの画素信号を含み、
     前記フリッカ成分抽出部は、前記2つの画素信号の差分に基づいて前記フリッカ成分を抽出する
    請求項1記載の撮像装置。
  6.  前記制御部は、長さが同一の4つの露光期間のそれぞれに亘って前記画素を順に露光させて4つの画素信号を生成させる
    請求項1記載の撮像装置。
  7.  前記4つの露光期間のいずれかの位相に対して残りの3つの位相は、それぞれ90度、180度、および、270度異なる
    請求項6記載の撮像装置。
  8.  前記制御部は、前記4つの露光期間と長さが異なる露光期間に亘って前記画素をさらに露光させて新たな画素信号を生成させる
    請求項6記載の撮像装置。
  9.  前記新たな画像信号を配列した通常画像と前記フリッカ成分とを合成して合成画像を生成する画像合成部をさらに具備する
    請求項8記載の撮像装置。
  10.  前記フリッカ成分を配列した点滅被写体に対して画像認識を行う点滅被写体認識部をさらに具備する
    請求項9記載の撮像装置。
  11.  前記合成画像に対して画像認識を行う画像認識部をさらに具備する
    請求項10記載の撮像装置。
  12.  前記制御部は、前記フリッカ成分抽出部および前記点滅被写体認識部を停止させ、前記画像認識により所定の被写体が検出された場合には、前記フリッカ成分抽出部および前記点滅被写体認識部を動作させる
    請求項11記載の撮像装置。
  13.  前記制御部は、前記フリッカ成分抽出部および前記点滅被写体認識部を停止させ、前記画像認識により所定の被写体が検出された場合には、前記画像合成部および前記画像認識部を停止させつつ前記フリッカ成分抽出部および前記点滅被写体認識部を動作させる
    請求項11記載の撮像装置。
  14.  不可視光を照射する第1および第2の光源と、
     前記第1の光源からの前記不可視光を光電変換した第1の画像と前記第2の光源からの前記不可視光を光電変換した第2の画像との差分を演算する信号処理部と
    を具備する撮像装置。
  15.  前記第1の光源からの前記不可視光を光電変換する第1の不可視光画素と前記第2の光源からの前記不可視光を光電変換する第2の不可視光画素とを配列した画素アレイ部をさらに具備する
    請求項14記載の撮像装置。
  16.  前記画素アレイ部には、可視光を光電変換する可視光画素がさらに配列される
    請求項15記載の撮像装置。
  17.  前記第1の光源からの前記不可視光を遮断する第1の不可視光遮断フィルタと前記第2の光源からの前記不可視光を遮断する第2の不可視光遮断フィルタとをさらに具備し、
     前記第1の不可視光画素は、前記第2の不可視光遮断フィルタを介して前記不可視光を受光し、前記第2の不可視光画素は、前記第1の不可視光遮断フィルタを介して前記不可視光を受光し、
     前記第1の光源からの前記不可視光と前記第2の光源からの前記不可視光とのそれぞれの波長は異なる
    請求項15記載の撮像装置。
  18.  偏光方向の異なる不可視光を透過する第1および第2の偏光フィルタと、
     前記第1の光源からの前記不可視光の偏光成分を透過して前記第1の不可視光画素に導く第1のワイヤーグリッドフィルタと前記第2の光源からの前記不可視光の偏光成分を透過して前記第2の不可視光画素に導く第2のワイヤーグリッドフィルタとをさらに具備し、
     前記第1の光源からの前記不可視光は、前記第1の偏光フィルタを介して照射され、前記第2の光源からの前記不可視光は、前記第2の偏光フィルタを介して照射される
    請求項14記載の撮像装置。
  19.  前記第1および第2の画像を生成する固体撮像素子をさらに具備し、
     前記第1および第2の光源は、異なるタイミングで点灯し、
     前記固体撮像素子は、前記第1の光源が点灯する期間内に前記不可視光を光電変換して前記第1の画像を生成し、前記第2の光源が点灯する期間内に前記不可視光を光電変換して前記2の画像を生成する
    請求項13記載の撮像装置。
PCT/JP2020/047637 2020-03-23 2020-12-21 撮像装置 WO2021192459A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-050458 2020-03-23
JP2020050458A JP2021150877A (ja) 2020-03-23 2020-03-23 撮像装置

Publications (1)

Publication Number Publication Date
WO2021192459A1 true WO2021192459A1 (ja) 2021-09-30

Family

ID=77849558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047637 WO2021192459A1 (ja) 2020-03-23 2020-12-21 撮像装置

Country Status (2)

Country Link
JP (1) JP2021150877A (ja)
WO (1) WO2021192459A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006148690A (ja) * 2004-11-22 2006-06-08 Toyota Central Res & Dev Lab Inc 撮像装置
JP2008011226A (ja) * 2006-06-29 2008-01-17 Kyocera Corp 撮像装置のフリッカ検出方法と装置
JP2008145386A (ja) * 2006-12-13 2008-06-26 Fujifilm Corp 距離画像取得装置及び方法
JP2008252357A (ja) * 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd 暗視撮像装置及びヘッドライトモジュール
JP2011243862A (ja) * 2010-05-20 2011-12-01 Sony Corp 撮像デバイス及び撮像装置
JP2013031053A (ja) * 2011-07-29 2013-02-07 Ricoh Co Ltd 撮像装置及びこれを備えた物体検出装置、並びに、光学フィルタ及びその製造方法
JP2015180864A (ja) * 2014-03-04 2015-10-15 パナソニックIpマネジメント株式会社 偏光画像処理装置
JP2016127454A (ja) * 2015-01-05 2016-07-11 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
WO2016167021A1 (ja) * 2015-04-13 2016-10-20 ソニー株式会社 固体撮像素子、電子機器および固体撮像素子の制御方法
WO2019003675A1 (ja) * 2017-06-30 2019-01-03 ソニー株式会社 撮像装置とフリッカー補正方法およびプログラム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006148690A (ja) * 2004-11-22 2006-06-08 Toyota Central Res & Dev Lab Inc 撮像装置
JP2008011226A (ja) * 2006-06-29 2008-01-17 Kyocera Corp 撮像装置のフリッカ検出方法と装置
JP2008145386A (ja) * 2006-12-13 2008-06-26 Fujifilm Corp 距離画像取得装置及び方法
JP2008252357A (ja) * 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd 暗視撮像装置及びヘッドライトモジュール
JP2011243862A (ja) * 2010-05-20 2011-12-01 Sony Corp 撮像デバイス及び撮像装置
JP2013031053A (ja) * 2011-07-29 2013-02-07 Ricoh Co Ltd 撮像装置及びこれを備えた物体検出装置、並びに、光学フィルタ及びその製造方法
JP2015180864A (ja) * 2014-03-04 2015-10-15 パナソニックIpマネジメント株式会社 偏光画像処理装置
JP2016127454A (ja) * 2015-01-05 2016-07-11 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
WO2016167021A1 (ja) * 2015-04-13 2016-10-20 ソニー株式会社 固体撮像素子、電子機器および固体撮像素子の制御方法
WO2019003675A1 (ja) * 2017-06-30 2019-01-03 ソニー株式会社 撮像装置とフリッカー補正方法およびプログラム

Also Published As

Publication number Publication date
JP2021150877A (ja) 2021-09-27

Similar Documents

Publication Publication Date Title
WO2020230660A1 (ja) 画像認識装置、固体撮像装置、および画像認識方法
WO2020105314A1 (ja) 固体撮像素子、および、撮像装置
WO2020230636A1 (ja) 画像認識装置および画像認識方法
WO2018012051A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
JP7044107B2 (ja) 光センサ、及び、電子機器
EP3865911B1 (en) Sensor fusion system, synchronization control device, and synchronization control method
JP7074136B2 (ja) 撮像装置とフリッカー補正方法およびプログラム
WO2020241336A1 (ja) 画像認識装置および画像認識方法
WO2021054198A1 (ja) 撮像デバイス、撮像システム及び撮像方法
WO2021060118A1 (ja) 撮像装置
WO2018207666A1 (ja) 撮像素子及びその駆動方法、並びに、電子機器
WO2017169233A1 (ja) 撮像処理装置、撮像処理方法、コンピュータプログラム及び電子機器
WO2017169274A1 (ja) 撮像制御装置、撮像制御方法、コンピュータプログラム及び電子機器
JP7144926B2 (ja) 撮像制御装置、撮像装置、および、撮像制御装置の制御方法
WO2021192459A1 (ja) 撮像装置
WO2022270034A1 (ja) 撮像装置、電子機器、および光検出方法
WO2020230635A1 (ja) 撮像装置および撮像方法
JPWO2020149094A1 (ja) 撮像装置、撮像システムおよび故障検出方法
WO2021002071A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2022004441A1 (ja) 測距装置および測距方法
US11201997B2 (en) Solid-state imaging device, driving method, and electronic apparatus
WO2024004519A1 (ja) 情報処理装置及び情報処理方法
JP2022060730A (ja) 半導体装置、光学構造物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927580

Country of ref document: EP

Kind code of ref document: A1