WO2021190473A1 - 一种测量方法、终端设备和网络侧设备 - Google Patents

一种测量方法、终端设备和网络侧设备 Download PDF

Info

Publication number
WO2021190473A1
WO2021190473A1 PCT/CN2021/082282 CN2021082282W WO2021190473A1 WO 2021190473 A1 WO2021190473 A1 WO 2021190473A1 CN 2021082282 W CN2021082282 W CN 2021082282W WO 2021190473 A1 WO2021190473 A1 WO 2021190473A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency point
service frequency
sftd
specific transmission
transmission node
Prior art date
Application number
PCT/CN2021/082282
Other languages
English (en)
French (fr)
Inventor
吴昱民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21776009.9A priority Critical patent/EP4132071A4/en
Publication of WO2021190473A1 publication Critical patent/WO2021190473A1/zh
Priority to US17/948,201 priority patent/US20230019838A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to the field of communication technology, in particular to a measurement method, terminal equipment and network side equipment.
  • the network side equipment can be configured with User Equipment (UE) (also called terminal or terminal equipment) to perform system frame number and frame timing deviation (System Frame Number and Frame Timing Difference, SFTD) ) Measurement, for example, measuring the SFN difference (ie SFN offset) and the frame boundary difference (ie Frame boundary offset) between different cells.
  • UE User Equipment
  • SFTD System Frame Number and Frame Timing Difference
  • the SFTD measurement is usually performed for a case where the transmission signal of a serving cell or a bandwidth part (Band Width Part, BWP) of the UE often originates from a transmission point (Transmission Point, TRP).
  • TRP Transmission Point
  • the embodiment of the present invention provides a measurement method, terminal equipment and network side equipment to provide a method for performing SFTD measurement based on the granularity of the transmission node when the transmission signal of a serving cell or BWP of the UE originates from multiple transmission nodes. In this way, the accuracy of SFTD measurement can be improved.
  • the present invention is implemented as follows:
  • an embodiment of the present invention provides a measurement method applied to a terminal device, and the method includes:
  • the first service frequency point of the terminal device is configured with at least two transmission nodes, perform the system frame number and frame timing deviation SFTD measurement according to the first measurement parameter to obtain the SFTD measurement result;
  • the first measurement parameter is used to indicate at least one of the following: measuring the SFTD value between the specific transmission node of the first service frequency point and the first network node; measuring the different specific values of the first service frequency point Timing difference between transmission nodes;
  • the first network node includes a second service frequency point or a specific transmission node of the second service frequency point, and the second service frequency point includes an adjacent service frequency point of the first service frequency point and a third service frequency point.
  • the third service frequency point is a service frequency point other than the first service frequency point among at least two service frequency points of the terminal device; the SFTD value and the timing difference Both include at least one of the system frame number difference and the frame boundary difference.
  • an embodiment of the present invention also provides a measurement method, which is applied to a network side device, and the method includes:
  • the first measurement parameter is used to indicate at least one of the following: measuring the SFTD value between the specific transmission node of the first service frequency point and the first network node; measuring the different specific values of the first service frequency point Timing difference between transmission nodes;
  • the first network node includes a second service frequency point or a specific transmission node of the second service frequency point, and the second service frequency point includes an adjacent service frequency point of the first service frequency point and a third service frequency point.
  • the third service frequency point is a service frequency point other than the first service frequency point among at least two service frequency points of the terminal device; the SFTD value and the timing difference Both include at least one of the system frame number difference and the frame boundary difference.
  • the embodiment of the present invention also provides a terminal device.
  • the terminal equipment includes:
  • a measurement module configured to perform SFTD measurement of the system frame number and frame timing deviation according to the first measurement parameter when the first service frequency point of the terminal device is configured with at least two transmission nodes, to obtain the SFTD measurement result;
  • the first measurement parameter is used to indicate at least one of the following: measuring the SFTD value between the specific transmission node of the first service frequency point and the first network node; measuring the different specific values of the first service frequency point Timing difference between transmission nodes;
  • the first network node includes a second service frequency point or a specific transmission node of the second service frequency point, and the second service frequency point includes an adjacent service frequency point of the first service frequency point and a third service frequency point.
  • the third service frequency point is a service frequency point other than the first service frequency point among at least two service frequency points of the terminal device; the SFTD value and the timing difference Both include at least one of the system frame number difference and the frame boundary difference.
  • the embodiment of the present invention also provides a network side device.
  • the network side equipment includes:
  • a sending module configured to send the first measurement parameter to the terminal device when at least two transmission nodes are configured for the first service frequency point of the terminal device;
  • the first measurement parameter is used to indicate at least one of the following: measuring the SFTD value between the specific transmission node of the first service frequency point and the first network node; measuring the different specific values of the first service frequency point Timing difference between transmission nodes;
  • the first network node includes a second service frequency point or a specific transmission node of the second service frequency point, and the second service frequency point includes an adjacent service frequency point of the first service frequency point and a third service frequency point.
  • the third service frequency point is a service frequency point other than the first service frequency point among at least two service frequency points of the terminal device; the SFTD value and the timing difference Both include at least one of the system frame number difference and the frame boundary difference.
  • embodiments of the present invention also provide a terminal device, including a processor, a memory, and a computer program stored on the memory and running on the processor, the computer program being executed by the processor When realizing the steps of the measurement method provided in the first aspect above.
  • an embodiment of the present invention also provides a network side device, including a processor, a memory, and a computer program stored on the memory and running on the processor, and the computer program is executed by the processor. When executed, the steps of the measurement method provided in the second aspect are realized.
  • an embodiment of the present invention also provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the measurement method provided in the first aspect is implemented. Steps, or steps to implement the measurement method provided in the second aspect above.
  • the SFTD measurement is performed according to the first measurement parameter to obtain the SFTD measurement result; wherein, the first measurement parameter Used to indicate at least one of the following: measuring the SFTD value between the specific transmission node of the first service frequency point and the first network node; measuring the timing difference between different specific transmission nodes of the first service frequency point . Since the transmission signal of a serving cell or BWP of the terminal equipment comes from multiple transmission nodes, the SFTD measurement is performed based on the granularity of the transmission node to obtain the timing deviation of the transmission node, which can improve different transmission nodes in the same serving cell or BWP. The accuracy of the measurement of the timing deviation can further enable the network side to have a more accurate understanding of the timing deviation of different transmission nodes in the same cell or BWP.
  • FIG. 1 is a schematic diagram of a carrier aggregation architecture provided by an embodiment of the present invention
  • FIG. 2 is a structural diagram of a network system applicable to the embodiment of the present invention.
  • FIG. 3 is a flowchart of a measurement method provided by an embodiment of the present invention.
  • FIG. 4 is a flowchart of another measurement method provided by an embodiment of the present invention.
  • Figure 5 is a structural diagram of a terminal device provided by an embodiment of the present invention.
  • Figure 6 is a structural diagram of a network side device provided by an embodiment of the present invention.
  • FIG. 7 is a structural diagram of another terminal device provided by an embodiment of the present invention.
  • FIG. 8 is a structural diagram of another network side device provided by an embodiment of the present invention.
  • CA Carrier Aggregation
  • UE User Equipment
  • UE User Equipment
  • ARFCN Absolute Radio Frequency Channel Number, Absolute Radio Frequency Channel Number
  • SCell Secondary Cell
  • Each carrier is a serving cell (Serving Cell) and is configured with a corresponding serving cell identifier, for example, servingCellId, and corresponds to a Hybrid Automatic Repeat Request (HARQ) entity, which includes multiple HARQ processes (I.e. HARQ process).
  • HARQ Hybrid Automatic Repeat Request
  • the configuration of a serving cell includes a common cell configuration (ie common cell configuration) applicable to all UEs in the cell and a specific cell configuration (ie dedicated cell configuration) applicable to a specific UE.
  • a maximum of four BWPs can be configured on the network side, and the four BWPs correspond to different working frequency ranges.
  • the network side may indicate the activated BWP through Downlink Control Information (DCI) signaling.
  • DCI Downlink Control Information
  • the UE can only have one active BWP at the same time.
  • the UE can establish a connection in two cell groups (ie, a master cell group (Master Cell Group, MCG) and a secondary cell group (Secondary Cell Group, SCG)) at the same time.
  • MCG master Cell Group
  • SCG secondary Cell Group
  • MCG includes PCell and SCell
  • SCG includes primary and secondary cell (Primary Secondary Cell, PSCell) and SCell.
  • PSCell Primary Secondary Cell
  • SCell Primary and secondary cell
  • the aforementioned PCell and PSCell may also be referred to as a special cell (Special Cell, SpCell).
  • the network side needs to know the SFN difference between the PCell and PSCell (i.e. SFN offset) and the frame boundary difference (i.e. Frame boundary offset), so as to perform corresponding DC configuration under different deviations, for example, When the deviation is small, it is configured as a synchronous DC, and when the deviation is large, it is configured as an asynchronous DC. Therefore, the network side will configure the UE to perform SFTD measurement, for example, to measure the SFN difference and the frame boundary difference between different cells.
  • SFN offset SFN offset
  • frame boundary difference i.e. Frame boundary offset
  • the SFTD configuration on the network side may include at least one of the following: instructing the UE to measure the SFTD value between the PCell and the PSCell; and instructing the UE to measure the SFTD value between the PCell and neighboring cells.
  • FIG. 2 is a structural diagram of a network system applicable to an embodiment of the present invention.
  • User-side devices such as Tablet Personal Computer, Laptop Computer, Personal Digital Assistant (PDA), Mobile Internet Device (MID) or Wearable Device (Wearable Device), etc.
  • PDA Personal Digital Assistant
  • MID Mobile Internet Device
  • Wearable Device Wearable Device
  • the network side device 12 may be a base station, such as a macro station, LTE eNB, 1G NR NB, gNB, etc.; the network side device 12 may also be a small station, such as low power node (LPN) pico, femto, etc.
  • LPN low power node
  • the network side device 12 may be an access point (Access Point, AP); the base station may also be a network node composed of a central unit (Central Unit, CU) and multiple TRPs managed and controlled by it. It should be noted that the specific type of the network side device 12 is not limited in the embodiment of the present invention.
  • FIG. 3 is a flowchart of a measurement method provided by an embodiment of the present invention. As shown in FIG. 3, it includes the following steps:
  • Step 301 In the case where the first service frequency point of the terminal device is configured with at least two transmission nodes, perform the system frame number and frame timing deviation SFTD measurement according to the first measurement parameter to obtain the SFTD measurement result;
  • the first measurement parameter is used to indicate at least one of the following: measuring the SFTD value between the specific transmission node of the first service frequency point and the first network node; measuring the different specific values of the first service frequency point Timing difference between transmission nodes;
  • the first network node includes a second service frequency point or a specific transmission node of the second service frequency point, and the second service frequency point includes an adjacent service frequency point of the first service frequency point and a third service frequency point.
  • the third service frequency point is a service frequency point other than the first service frequency point among at least two service frequency points of the terminal device; the SFTD value and the timing difference Both include at least one of the system frame number difference and the frame boundary difference.
  • the above-mentioned service frequency point may include the cell or the BWP of the cell.
  • the foregoing first serving frequency point may include the first serving cell of the terminal device or the BWP of the first serving cell, where the first serving cell may be any serving cell of the terminal device.
  • the adjacent serving frequency points of the first serving frequency point may include the adjacent cells of the first serving cell and the first serving cell. At least one of the BWPs of the neighboring cells of the serving cell; in the case where the first serving frequency point is the first BWP of the first serving cell, the neighboring serving frequency points of the first serving frequency point may include the first serving cell At least one of a BWP other than the first BWP, a neighboring cell of the first serving cell, and a BWP of a neighboring cell of the first serving cell.
  • the above-mentioned first BWP may be any BWP of the first serving cell.
  • the above-mentioned third service frequency point may include a service frequency point other than the first service frequency point among the service frequency points of the terminal device, for example, if the service cell of the terminal device includes the first serving cell and the second serving cell, and The first serving frequency point is the first serving cell, the third serving frequency point may include at least one of the BWP of the second serving cell and the second serving cell; if the serving cell of the terminal device includes the first serving cell and the second serving cell Serving cell, and the first serving frequency is the first BWP of the first serving cell, the third serving frequency may include the BWP, the second serving cell, and the second serving cell except the first BWP in the first serving cell At least one of the BWP.
  • the above-mentioned first BWP may be any BWP of the first serving cell.
  • the above-mentioned second service frequency point may only include the adjacent service frequency points of the first service frequency point; the terminal equipment is configured with multiple service frequency points.
  • the foregoing second service frequency point may include at least one of an adjacent service frequency point of the first service frequency point and a third service frequency point.
  • the above-mentioned specific transmission node of the first service frequency point may include part or all of the transmission nodes of the first service frequency point.
  • the above-mentioned specific transmission node of the second service frequency point may include part or all of the transmission nodes of the second service frequency point.
  • the specific transmission node of the first service frequency point may be predefined by a protocol or configured by the network side device; the specific transmission node of the second service frequency point may also be predefined by the protocol or configured by the network side device.
  • the aforementioned SFTD value may include at least one of a system frame number difference value and a frame boundary difference value.
  • the aforementioned timing difference may also include at least one of the system frame number difference and the frame boundary difference. It should be noted that the above-mentioned timing difference may also be referred to as an SFTD value in some cases.
  • the terminal device may perform SFTD measurement based on the first measurement parameter.
  • the above-mentioned at least two transmission nodes can be distinguished by different transmission node physical identifiers, for example, by physical cell identifier (Physical Cell Identifier, PCI).
  • the above-mentioned first measurement parameter may be predefined by a protocol or configured by the network side.
  • the above-mentioned first measurement parameter may be used to indicate the SFTD value and the first service frequency between the specific transmission node and the first network node that measure the first service frequency point. At least one of the timing differences between different specific transmission nodes of a point.
  • the terminal device may measure the specific transmission node and the first network node of the first service frequency point
  • the SFTD value between the specific transmission node of the first service frequency point and the first network node is obtained, and the SFTD value can be reported to the network side device, which can make the network side have a different timing deviation for the transmission node A more accurate understanding can lead to a more accurate configuration.
  • the SFTD values between the at least two specific transmission nodes and the first network node can be directly measured respectively; or Measure the SFTD value between a part of the at least two specific transmission nodes and the first network node, and measure the SFTD value between another part of the at least two specific transmission nodes and the part of the specific transmission nodes. Timing difference.
  • the terminal device may measure the timing difference between different specific transmission nodes at the first service frequency point , And can report the timing difference to the network side device, so that the network side device can calculate the SFTD value of the transmission node based on the timing difference, or send the timing difference to other terminal devices for other terminal devices to transmit the node Calculation of the SFTD value.
  • the terminal device can measure the SFTD value between the specific transmission node of the first service frequency point and the first network node and the timing difference between different specific transmission nodes of the first service frequency point to obtain the specific transmission of the first service frequency point.
  • the SFTD value between the node and the first network node and the timing difference between different specific transmission nodes of the first service frequency point, and the SFTD value and the timing difference may be reported to the network side device.
  • the above-mentioned first measurement parameter indication may also be used to indicate at least one of the following: measuring the third service frequency point The SFTD value between a specific transmission node and the first service frequency point; measure the SFTD value between the specific transmission node of the third service frequency point and the adjacent service frequency point of the third service frequency point; The timing difference between different specific transmission nodes of the third service frequency point.
  • the SFTD measurement is performed based on the granularity of the transmission node to obtain the timing deviation of the transmission node, which can improve the accuracy of the timing deviation measurement of different transmission nodes in the same serving cell or BWP, thereby enabling the network side to respond to the same cell or BWP.
  • the timing deviation of different transmission nodes there is a more accurate understanding of the timing deviation of different transmission nodes within.
  • the foregoing step 201 that is, the measurement of the system frame number and frame timing deviation SFTD according to the first measurement parameter, may include:
  • the number of specific transmission nodes at the first service frequency point is at least two, and the first measurement parameter at least indicates that the specific transmission node that measures the first service frequency point and the first network node In the case of the SFTD value, measure the first SFTD value between the first specific transmission node and the first network node, and measure the first timing difference between the first specific transmission node and the second specific transmission node ;
  • the first specific transmission node and the second specific transmission node are both specific transmission nodes of the first service frequency point.
  • the above-mentioned first specific transmission node may include one or more specific transmission nodes of the first service frequency point, and the above-mentioned second specific transmission node may include specific transmission nodes other than the first service frequency point in addition to the first specific transmission node.
  • the first specific transmission node may be configured by the network side device; or the first specific transmission node may be predefined by a protocol, for example, the first specific transmission node may be predefined by the protocol as the master of the first service frequency point. The transmission node or the first transmission node to perform information transmission in the first service frequency point.
  • the specific transmission node PCI can be measured.
  • SFTD value between -1 and PSCell and measure the timing difference between a specific transmission node PCI-1 and a specific transmission node PCI-2, which is based on the SFTD value between a specific transmission node PCI-1 and PSCell and a specific transmission
  • the timing difference between the node PCI-1 and the specific transmission node PCI-2 can be calculated to obtain the SFTD value between the specific transmission node PCI-2 and PSCell.
  • the number of specific transmission nodes at the first service frequency point is at least two, and the first measurement parameter at least indicates the specific transmission node and the first network node that measure the first service frequency point
  • the first SFTD value between the first specific transmission node and the first network node the first SFTD value between the first specific transmission node and the first network node and the first timing difference between the first specific transmission node and the second specific transmission node are measured, so Based on the first SFTD value between the first specific transmission node and the first network node and the first timing difference between the first specific transmission node and the second specific transmission node, the second specific transmission node and the first network node can be obtained SFTD value between, can improve the efficiency and flexibility of SFTD value measurement.
  • the method may further include:
  • the above-mentioned first SFTD value is also the SFTD value between the first specific transmission node and the first network node
  • the above-mentioned first timing difference is also the difference between the first specific transmission node and the second specific transmission node.
  • the timing difference, the above-mentioned second SFTD value is also the SFTD value between the second specific transmission node and the first network node.
  • the terminal device may calculate the second SFTD value based on the first SFTD value and the first timing difference.
  • the system frame number difference of the second SFTD value can be calculated according to the system frame number difference of the first SFTD value and the system frame number difference of the first timing difference, for example, the system frame number difference of the first SFTD value
  • the value calculates the frame boundary difference of the second SFTD value, for example, the difference between the frame boundary difference of the first SFTD value and the frame boundary difference of the first timing difference is used as the frame boundary difference of the second SFTD value.
  • the first SFTD value and the second SFTD value may be reported to the network side device, so that the network side device can learn each specific transmission node and the first service frequency point of the first service frequency.
  • the SFTD value between a network node is convenient for the network side device to perform more accurate configuration; or the first SFTD value, the second SFTD value, and the first timing difference can be reported to the network side device, so that not only It is convenient for the network side equipment to learn the SFTD value between each specific transmission node of the first service frequency point and the first network node, and it is also convenient for the network side equipment to calculate each specific transmission node of the first service frequency point and others based on the first timing difference.
  • the SFTD value between the network nodes, or the network side device sends the first timing difference to other terminal devices, so that the other terminal devices can calculate the SFTD value of the transmission node.
  • the method may further include:
  • the terminal device after the terminal device measures the first SFTD value and the first timing difference, it can directly report the first SFTD value and the first timing difference to the network-side device, so that the network-side device can Calculate the SFTD value between the second specific transmission node and the first network node based on the first SFTD value and the first timing difference, so as to ensure that the network side device can learn each specific transmission of the first service frequency point
  • the SFTD value between the node and the first network node saves the computing resources of the terminal device.
  • the specific transmission node of the fourth service frequency point is configured by a network side device or predefined by a protocol, and the fourth service frequency point includes at least one of the first service frequency point and the second service frequency point One item.
  • the specific transmission node of the first service frequency point may be configured by the network side device or predefined by a protocol, and the specific transmission node of the above second service frequency point may also be configured by the network side device or predefined by the protocol.
  • the network side device may configure the transmission node PCI-1 of the first service frequency point as a specific transmission node, or the protocol predefines the transmission node in the active state in the first service frequency point as the specific transmission node.
  • the specific transmission node of the fourth service frequency point includes the following items:
  • the first type of transmission node among all transmission nodes of the fourth service frequency point where the first type of transmission node includes at least one of a main transmission node, an initial transmission node, and a default transmission node.
  • the specific transmission node of the first service frequency point may include the following items:
  • a first type of transmission node among all transmission nodes of the first service frequency point where the first type of transmission node includes at least one of a main transmission node, an initial transmission node, and a default transmission node.
  • the specific transmission node of the second service frequency point may include the following items:
  • a first type of transmission node among all transmission nodes of the second service frequency point where the first type of transmission node includes at least one of a main transmission node, an initial transmission node, and a default transmission node.
  • main transmission node and default transmission node may be configured by a network side device or predefined by a protocol.
  • the foregoing initial transmission node may refer to the first transmission node to be activated or the first transmission node to perform information transmission among multiple transmission nodes serving the frequency point.
  • the first service frequency point of the terminal device is configured with at least two transmission nodes
  • different transmission nodes of the at least two transmission nodes have different transmission node physical identifiers
  • the physical identification of the transmission node includes at least one of the following:
  • the resource location identifier of the control channel is the resource location identifier of the control channel.
  • the aforementioned physical service frequency point identifier may include, but is not limited to, a physical cell identifier, for example, PCI-1.
  • the aforementioned reference signal identifier may include, but is not limited to, at least one of a synchronous signal block (Synchronous Signal Block, SSB) identifier, a channel state information reference signal (Channel State Information-Reference Signal, CSI-RS) identifier, etc., for example, SSB- 1. CSI-RS-1, etc.
  • SSB synchronous Signal Block
  • CSI-RS Channel State Information-Reference Signal
  • the aforementioned reference signal identifier may be a reference signal identifier of a control channel, for example, an SSB identifier of a control channel or a CSI-RS identifier of a control channel.
  • the port number identifier corresponding to the above reference signal for example, port-1.
  • the port number identifier corresponding to the aforementioned reference signal may be the port number identifier corresponding to the reference signal of the control channel.
  • the resource location identifier of the aforementioned control channel may include, but is not limited to, at least one of the control resource group (Control Resource Set, CORESET) identifier of the Physical Downlink Control Channel (PDCCH) and the search space (ie Search Space) identifier .
  • control resource group Control Resource Set, CORESET
  • PDCH Physical Downlink Control Channel
  • search space ie Search Space
  • the method may further include:
  • the first information includes at least one of the following:
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Received Signal Strength Indication
  • the third specific transmission node includes at least one of a specific transmission node of the first service frequency point and a specific transmission node of the second service frequency point.
  • the foregoing SFTD measurement result corresponds to the SFTD measurement performed by the terminal device.
  • the terminal device measures the SFTD value between the specific transmission node of the first service frequency point and the first network node
  • the foregoing SFTD The measurement result includes the SFTD value between the specific transmission node at the first service frequency point and the first network node.
  • the terminal device measures the timing difference between different specific transmission nodes at the first service frequency point, the above SFTD measurement result Including the timing difference between different specific transmission nodes of the first service frequency; if the terminal device measures the SFTD value between the specific transmission node of the first service frequency and the first network node and the difference between the first service frequency
  • the timing difference between specific transmission nodes, the above-mentioned SFTD measurement result includes the SFTD value between the specific transmission node at the first service frequency point and the first network node and the timing between different specific transmission nodes at the first service frequency point Difference.
  • the physical identification of the transmission node of the third specific transmission node may include at least one of the physical service frequency identification of the specific transmission node, the reference signal identification, the port number identification corresponding to the reference signal, and the resource location identification of the control channel.
  • the service frequency identifier may be a cell identifier.
  • the service frequency point corresponding to the specific transmission node is BWP, and the above-mentioned service frequency point identifier may be the BWP identifier.
  • the type identifier of the service frequency point corresponding to the third specific transmission node for example, if the service frequency point corresponding to the third specific transmission node is a cell, the type identifier may be used to indicate the type of cell, for example, PCell or PSCell;
  • the service frequency corresponding to the third specific transmission node is BWP, and the type identifier may be used to indicate the type of BWP, for example, the BWP of the PCell or the BWP of the PSCell.
  • the terminal device not only reports the SFTD measurement result to the network-side device so that the network-side device can learn the timing deviation of a specific transmission node, but also reports the above-mentioned first information to the network-side device for configuration reference by the network-side device.
  • one of the first serving frequency point and the third serving frequency point is a primary cell, and the other is a primary and secondary cell.
  • one of the first service frequency point and the second service frequency point may be the primary cell, and the other may be the primary and secondary cell.
  • the first measurement parameter may be used to indicate at least one of the following:
  • the first measurement parameter may be used to indicate at least one of the following:
  • the first measurement parameter is further used to indicate at least one of the following:
  • the first measurement parameter may also be used to indicate at least one of the following:
  • the first measurement parameter may also be used to indicate at least one of the following:
  • the embodiment of the present invention provides a measurement method, which is applied to a network side device.
  • FIG. 4 is a flowchart of another measurement method provided by an embodiment of the present invention. As shown in FIG. 4, it includes the following steps:
  • Step 401 In a case where at least two transmission nodes are configured for the first service frequency point of the terminal device, send the first measurement parameter to the terminal device;
  • the first measurement parameter is used to indicate at least one of the following: measuring the SFTD value between the specific transmission node of the first service frequency point and the first network node; measuring the different specific values of the first service frequency point Timing difference between transmission nodes;
  • the first network node includes a second service frequency point or a specific transmission node of the second service frequency point, and the second service frequency point includes an adjacent service frequency point of the first service frequency point and a third service frequency point.
  • the third service frequency point is a service frequency point other than the first service frequency point among at least two service frequency points of the terminal device; the SFTD value and the timing difference Both include at least one of the system frame number difference and the frame boundary difference.
  • the above-mentioned service frequency point may include the cell or the BWP of the cell.
  • the above-mentioned first service frequency point may include the first serving cell of the terminal device or the BWP of the first serving cell, where the first serving cell may be any serving cell of the terminal device.
  • the adjacent serving frequency points of the first serving frequency point may include the adjacent cells of the first serving cell and the first serving cell. At least one of the BWPs of the neighboring cells of the serving cell; in the case where the first serving frequency point is the first BWP of the first serving cell, the neighboring serving frequency points of the first serving frequency point may include the first serving cell At least one of a BWP other than the first BWP, a neighboring cell of the first serving cell, and a BWP of a neighboring cell of the first serving cell.
  • the above-mentioned first BWP may be any BWP of the first serving cell.
  • the above-mentioned third service frequency point may include a service frequency point other than the first service frequency point among the service frequency points of the terminal device, for example, if the service cell of the terminal device includes the first serving cell and the second serving cell, and The first serving frequency point is the first serving cell, the third serving frequency point may include at least one of the BWP of the second serving cell and the second serving cell; if the serving cell of the terminal device includes the first serving cell and the second serving cell Serving cell, and the first serving frequency is the first BWP of the first serving cell, the third serving frequency may include the BWP, the second serving cell, and the second serving cell except the first BWP in the first serving cell At least one of the BWP.
  • the above-mentioned first BWP may be any BWP of the first serving cell.
  • the above-mentioned second service frequency point may only include the adjacent service frequency points of the first service frequency point; the terminal equipment is configured with multiple service frequency points.
  • the foregoing second service frequency point may include at least one of an adjacent service frequency point of the first service frequency point and a third service frequency point.
  • the above-mentioned specific transmission node of the first service frequency point may include part or all of the transmission nodes of the first service frequency point.
  • the above-mentioned specific transmission node of the second service frequency point may include part or all of the transmission nodes of the second service frequency point.
  • the specific transmission node of the first service frequency point may be predefined by a protocol or configured by the network side device; the specific transmission node of the second service frequency point may also be predefined by the protocol or configured by the network side device.
  • the aforementioned SFTD value may include at least one of a system frame number difference value and a frame boundary difference value.
  • the aforementioned timing difference may also include at least one of the system frame number difference and the frame boundary difference. It should be noted that the above-mentioned timing difference may also be referred to as an SFTD value in some cases.
  • the network side device when the network side device configures at least two transmission nodes for the first service frequency point of the terminal device, the network side device can configure the first measurement parameter for the terminal device, so that the terminal device can perform the measurement based on the first measurement parameter.
  • the above-mentioned first measurement parameter may be used to indicate the measurement of the SFTD value between the specific transmission node and the first network node of the first service frequency and the timing difference between the different specific transmission nodes of the first service frequency. At least one item.
  • the network side device configures at least two transmission nodes for the first service frequency point of the terminal device
  • the above at least two transmission nodes can be distinguished by different transmission node physical identifiers, for example, through PCI. distinguish.
  • the first measurement parameter is sent to the terminal device, so that the terminal device can perform SFTD measurement based on the first measurement parameter and report the SFTD measurement
  • the network side device since the terminal device can perform SFTD measurement based on the granularity of the transmission node, the network side can have a more accurate understanding of the timing deviation of different transmission nodes.
  • the method may further include:
  • the number of specific transmission nodes at the first service frequency point is at least two, and the first measurement parameter at least indicates that the specific transmission node that measures the first service frequency point and the first network node In the case of the SFTD value, receiving the first SFTD value and the first timing difference from the terminal device;
  • the first SFTD value is the SFTD value between the first specific transmission node and the first network node
  • the first timing difference is the value between the first specific transmission node and the second specific transmission node
  • the first specific transmission node and the second specific transmission node are both specific transmission nodes of the first service frequency point.
  • the above-mentioned first specific transmission node may include one or more specific transmission nodes of the first service frequency point, and the above-mentioned second specific transmission node may include specific transmission nodes other than the first service frequency point in addition to the first specific transmission node.
  • the first specific transmission node may be configured by the network side device; or the first specific transmission node may be predefined by a protocol, for example, the first specific transmission node may be predefined by the protocol as the master of the first service frequency point. The transmission node or the first transmission node to perform information transmission in the first service frequency point.
  • the network side device may calculate the second specific transmission node and the first network based on the first SFTD value and the first timing difference.
  • the system frame number difference of the second SFTD value can be calculated according to the system frame number difference of the first SFTD value and the system frame number difference of the first timing difference, for example, the system frame number difference of the first SFTD value
  • the value calculates the frame boundary difference of the second SFTD value, for example, the difference between the frame boundary difference of the first SFTD value and the frame boundary difference of the first timing difference is used as the frame boundary difference of the second SFTD value.
  • the network-side device calculates the SFTD value between the second specific transmission node and the first network node based on the first SFTD value and the first timing difference, so as to ensure that the network-side device can learn the first While serving the SFTD value between each specific transmission node of the frequency point and the first network node, the computing resources of the terminal device are saved.
  • the method may further include:
  • the number of specific transmission nodes at the first service frequency point is at least two, and the first measurement parameter at least indicates that the specific transmission node that measures the first service frequency point and the first network node In the case of the SFTD value, receiving the first SFTD value and the first SFTD value from the terminal device;
  • the number of specific transmission nodes at the first service frequency point is at least two, and the first measurement parameter at least indicates that the specific transmission node that measures the first service frequency point and the first network node In the case of an SFTD value, receiving a first SFTD value, a second SFTD value, and a first timing difference value from the terminal device;
  • the first SFTD value is the SFTD value between the first specific transmission node and the first network node
  • the second SFTD value is the SFTD value between the second specific transmission node and the first network node Value
  • the first timing difference is the timing difference between the first specific transmission node and the second specific transmission node
  • the first specific transmission node and the second specific transmission node are both the first specific transmission node A specific transmission node of a service frequency.
  • the network side device can receive the first SFTD value and the second SFTD value from the terminal device, so that the network side device can learn the SFTD value between each specific transmission node of the first service frequency point and the first network node , Which is convenient for more accurate configuration of network side equipment.
  • the network-side device can receive the first SFTD value, the second SFTD value, and the first timing difference from the terminal device, which not only facilitates the network-side device to learn the specific transmission node and the first timing difference of the first service frequency.
  • the SFTD value between a network node is also convenient for the network-side device to calculate the SFTD value between each specific transmission node of the first service frequency point and other network nodes based on the first timing difference, or the network-side device calculates the first timing difference
  • the value is sent to other terminal devices for other terminal devices to calculate the SFTD value of the transmission node.
  • the specific transmission node of the fourth service frequency point is configured by the network side device, and the fourth service frequency point includes at least one of the first service frequency point and the second service frequency point.
  • the first service frequency point of the terminal device is configured with at least two transmission nodes
  • different transmission nodes of the at least two transmission nodes have different transmission node physical identifiers
  • the physical identification of the transmission node includes at least one of the following:
  • the resource location identifier of the control channel is the resource location identifier of the control channel.
  • the aforementioned physical service frequency point identifier may include, but is not limited to, a physical cell identifier, for example, PCI-1.
  • the aforementioned reference signal identifier may include, but is not limited to, at least one of an SSB identifier, a CSI-RS identifier, etc., for example, SSB-1, CSI-RS-1, and so on.
  • the aforementioned reference signal identifier may be a reference signal identifier of a control channel, for example, an SSB identifier of a control channel or a CSI-RS identifier of a control channel.
  • the port number identifier corresponding to the above reference signal for example, port-1.
  • the port number identifier corresponding to the aforementioned reference signal may be the port number identifier corresponding to the reference signal of the control channel.
  • the resource location identifier of the aforementioned control channel may include but is not limited to at least one of the CORESET identifier and the search space identifier of the PDCCH.
  • the method may further include:
  • the first information includes at least one of the following:
  • the third specific transmission node includes at least one of a specific transmission node of the first service frequency point and a specific transmission node of the second service frequency point.
  • the foregoing SFTD measurement result corresponds to the SFTD measurement performed by the terminal device.
  • the terminal device measures the SFTD value between the specific transmission node of the first service frequency point and the first network node
  • the foregoing SFTD The measurement result includes the SFTD value between the specific transmission node at the first service frequency point and the first network node.
  • the terminal device measures the timing difference between different specific transmission nodes at the first service frequency point, the above SFTD measurement result Including the timing difference between different specific transmission nodes of the first service frequency; if the terminal device measures the SFTD value between the specific transmission node of the first service frequency and the first network node and the difference between the first service frequency
  • the timing difference between specific transmission nodes, the above-mentioned SFTD measurement result includes the SFTD value between the specific transmission node at the first service frequency point and the first network node and the timing between different specific transmission nodes at the first service frequency point Difference.
  • the physical identification of the transmission node of the third specific transmission node may include at least one of the physical service frequency identification of the specific transmission node, the reference signal identification, the port number identification corresponding to the reference signal, and the resource location identification of the control channel.
  • the service frequency identifier may be a cell identifier.
  • the service frequency point corresponding to the specific transmission node is BWP, and the above-mentioned service frequency point identifier may be the BWP identifier.
  • the type identifier of the service frequency point corresponding to the third specific transmission node for example, if the service frequency point corresponding to the third specific transmission node is a cell, the type identifier may be used to indicate the type of cell, for example, PCell or PSCell; if The service frequency corresponding to the third specific transmission node is BWP, and the type identifier may be used to indicate the type of BWP, for example, the BWP of the PCell or the BWP of the PSCell.
  • the network side device not only receives the SFTD measurement result from the terminal device to learn the timing deviation of a specific transmission node, but also receives the above-mentioned first information from the terminal device, so that configuration can be made with reference to the first information, thereby improving the network side device The accuracy of UE configuration.
  • one of the first serving frequency point and the third serving frequency point is a primary cell, and the other is a primary and secondary cell.
  • one of the first service frequency point and the second service frequency point may be the primary cell, and the other may be the primary and secondary cell.
  • the first measurement parameter may be used to indicate at least one of the following:
  • the first measurement parameter may be used to indicate at least one of the following:
  • the first measurement parameter is further used to indicate at least one of the following:
  • the first measurement parameter may also be used to indicate at least one of the following:
  • the first measurement parameter may also be used to indicate at least one of the following:
  • FIG. 5 is a structural diagram of a terminal device according to an embodiment of the present invention. As shown in FIG. 5, the terminal device 500 includes:
  • the measurement module 501 is configured to perform SFTD measurement of the system frame number and frame timing deviation according to the first measurement parameter when the first service frequency point of the terminal device is configured with at least two transmission nodes, to obtain the SFTD measurement result;
  • the first measurement parameter is used to indicate at least one of the following: measuring the SFTD value between the specific transmission node of the first service frequency point and the first network node; measuring the different specific values of the first service frequency point Timing difference between transmission nodes;
  • the first network node includes a second service frequency point or a specific transmission node of the second service frequency point, and the second service frequency point includes an adjacent service frequency point of the first service frequency point and a third service frequency point.
  • the third service frequency point is a service frequency point other than the first service frequency point among at least two service frequency points of the terminal device; the SFTD value and the timing difference Both include at least one of the system frame number difference and the frame boundary difference.
  • the measurement module is specifically used for:
  • the number of specific transmission nodes at the first service frequency point is at least two, and the first measurement parameter at least indicates that the specific transmission node that measures the first service frequency point and the first network node In the case of the SFTD value, measure the first SFTD value between the first specific transmission node and the first network node, and measure the first timing difference between the first specific transmission node and the second specific transmission node ;
  • the first specific transmission node and the second specific transmission node are both specific transmission nodes of the first service frequency point.
  • the terminal device further includes:
  • a first calculation module configured to calculate a second SFTD value between the second specific transmission node and the first network node according to the first SFTD value and the first timing difference;
  • the first reporting module is configured to report the first SFTD value and the second SFTD value to the network side device, or report the first SFTD value, the second SFTD value and the first SFTD value to the network side device. Timing difference.
  • the terminal device further includes:
  • the second reporting module is configured to report the first SFTD value and the first timing difference to the network side device.
  • the specific transmission node of the fourth service frequency point is configured by a network side device or predefined by a protocol, and the fourth service frequency point includes at least one of the first service frequency point and the second service frequency point One item.
  • the specific transmission node of the fourth service frequency point includes the following items:
  • the first type of transmission node among all transmission nodes of the fourth service frequency point where the first type of transmission node includes at least one of a main transmission node, an initial transmission node, and a default transmission node.
  • the first service frequency point of the terminal device is configured with at least two transmission nodes
  • different transmission nodes of the at least two transmission nodes have different transmission node physical identifiers
  • the physical identification of the transmission node includes at least one of the following:
  • the resource location identifier of the control channel is the resource location identifier of the control channel.
  • the terminal device further includes:
  • the third reporting module is configured to report the SFTD measurement result and the first information to the network side device;
  • the first information includes at least one of the following:
  • the third specific transmission node includes at least one of a specific transmission node of the first service frequency point and a specific transmission node of the second service frequency point.
  • the first measurement parameter is configured by a network side device or predefined by a protocol.
  • one of the first serving frequency point and the third serving frequency point is a primary cell, and the other is a primary and secondary cell.
  • the first measurement parameter is further used to indicate at least one of the following:
  • the terminal device 500 provided in the embodiment of the present invention can implement each process implemented by the terminal device in the foregoing method embodiment. To avoid repetition, details are not described herein again.
  • the terminal device 500 and the measurement module 501 of the embodiment of the present invention are configured to perform system frame number and frame timing deviation according to the first measurement parameter when at least two transmission nodes are configured at the first service frequency point of the terminal device SFTD measurement to obtain the SFTD measurement result; wherein, the first measurement parameter is used to indicate at least one of the following: measure the SFTD value between the specific transmission node of the first service frequency point and the first network node; measure the The timing difference between different specific transmission nodes at the first service frequency point.
  • the SFTD measurement is performed based on the granularity of the transmission node to obtain the timing deviation of the transmission node, which can improve different transmission nodes in the same serving cell or BWP.
  • the accuracy of the measurement of the timing deviation can further enable the network side to have a more accurate understanding of the timing deviation of different transmission nodes in the same cell or BWP.
  • FIG. 6 is a structural diagram of a network side device according to an embodiment of the present invention.
  • the network side device 600 includes:
  • the sending module 601 is configured to send the first measurement parameter to the terminal device when at least two transmission nodes are configured for the first service frequency point of the terminal device;
  • the first measurement parameter is used to indicate at least one of the following: measuring the SFTD value between the specific transmission node of the first service frequency point and the first network node; measuring the different specific values of the first service frequency point Timing difference between transmission nodes;
  • the first network node includes a second service frequency point or a specific transmission node of the second service frequency point, and the second service frequency point includes an adjacent service frequency point of the first service frequency point and a third service frequency point.
  • the third service frequency point is a service frequency point other than the first service frequency point among at least two service frequency points of the terminal device; the SFTD value and the timing difference Both include at least one of the system frame number difference and the frame boundary difference.
  • the network side device further includes:
  • the first receiving module is configured to have at least two specific transmission nodes at the first service frequency point, and the first measurement parameter indicates at least the specific transmission node that measures the first service frequency point and the In the case of the SFTD value between the first network nodes, receiving the first SFTD value and the first timing difference from the terminal device;
  • a second calculation module configured to calculate a second SFTD value between a second specific transmission node and the first network node according to the first SFTD value and the first timing difference;
  • the first SFTD value is the SFTD value between the first specific transmission node and the first network node
  • the first timing difference is the value between the first specific transmission node and the second specific transmission node
  • the first specific transmission node and the second specific transmission node are both specific transmission nodes of the first service frequency point.
  • the network side device further includes a second receiving module, specifically configured to:
  • the number of specific transmission nodes at the first service frequency point is at least two, and the first measurement parameter at least indicates that the specific transmission node that measures the first service frequency point and the first network node In the case of the SFTD value, receiving the first SFTD value and the first SFTD value from the terminal device;
  • the number of specific transmission nodes at the first service frequency point is at least two, and the first measurement parameter at least indicates that the specific transmission node that measures the first service frequency point and the first network node In the case of an SFTD value, receiving a first SFTD value, a second SFTD value, and a first timing difference value from the terminal device;
  • the first SFTD value is the SFTD value between the first specific transmission node and the first network node
  • the second SFTD value is the SFTD value between the second specific transmission node and the first network node Value
  • the first timing difference is the timing difference between the first specific transmission node and the second specific transmission node
  • the first specific transmission node and the second specific transmission node are both the first specific transmission node A specific transmission node of a service frequency.
  • the specific transmission node of the fourth service frequency point is configured by the network side device, and the fourth service frequency point includes at least one of the first service frequency point and the second service frequency point.
  • the first service frequency point of the terminal device is configured with at least two transmission nodes
  • different transmission nodes of the at least two transmission nodes have different transmission node physical identifiers
  • the physical identification of the transmission node includes at least one of the following:
  • the resource location identifier of the control channel is the resource location identifier of the control channel.
  • the network side device further includes:
  • the third receiving module is configured to receive the SFTD measurement result and the first information from the terminal device;
  • the first information includes at least one of the following:
  • the third specific transmission node includes at least one of a specific transmission node of the first service frequency point and a specific transmission node of the second service frequency point.
  • one of the first serving frequency point and the third serving frequency point is a primary cell, and the other is a primary and secondary cell.
  • the first measurement parameter is further used to indicate at least one of the following:
  • the network-side device 600 provided in the embodiment of the present invention can implement each process implemented by the network-side device in the foregoing method embodiment, and to avoid repetition, details are not described herein again.
  • the sending module 601 is configured to send the first measurement parameter to the terminal device when at least two transmission nodes are configured for the first service frequency point of the terminal device; wherein, The first measurement parameter is used to indicate at least one of the following: measuring the SFTD value between a specific transmission node of the first service frequency point and a first network node; measuring a different specific transmission node of the first service frequency point The timing difference between. Therefore, the terminal device can perform SFTD measurement based on the first measurement parameter and report the SFTD measurement result to the network side device. Since the terminal device can perform SFTD measurement based on the granularity of the transmission node, the network side can perform SFTD measurement on the same serving cell or different transmission nodes in the BWP. The timing deviation has a more accurate understanding.
  • Fig. 7 is a structural diagram of another terminal device provided by an embodiment of the present invention.
  • the terminal device 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, processing 710, power supply 711 and other components.
  • a radio frequency unit 701 for example, a radio frequency unit 701
  • the terminal device 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, processing 710, power supply 711 and other components.
  • the terminal device may include more or fewer components than shown in the figure, or a combination of certain components, or different components. Layout.
  • terminal devices include, but are not limited to, mobile phones, tablet computers, notebook computers, palm
  • the processor 710 is configured to measure the system frame number and frame timing deviation SFTD according to the first measurement parameter when at least two transmission nodes are configured at the first service frequency point of the terminal device to obtain the SFTD Measurement result
  • the first measurement parameter is used to indicate at least one of the following: measuring the SFTD value between the specific transmission node of the first service frequency point and the first network node; measuring the different specific values of the first service frequency point Timing difference between transmission nodes;
  • the first network node includes a second service frequency point or a specific transmission node of the second service frequency point, and the second service frequency point includes an adjacent service frequency point of the first service frequency point and a third service frequency point.
  • the third service frequency point is a service frequency point other than the first service frequency point among at least two service frequency points of the terminal device; the SFTD value and the timing difference Both include at least one of the system frame number difference and the frame boundary difference.
  • the above-mentioned radio frequency unit 701 and the processor 710 can implement each process implemented by the terminal device in the above-mentioned method embodiment. To avoid repetition, details are not described herein again.
  • the radio frequency unit 701 can be used to receive and send signals during information transmission or communication. Specifically, the downlink data from the base station is received and processed by the processor 710; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 701 can also communicate with the network and other devices through a wireless communication system.
  • the terminal device provides users with wireless broadband Internet access through the network module 702, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 703 can convert the audio data received by the radio frequency unit 701 or the network module 702 or stored in the memory 709 into an audio signal and output it as sound. Moreover, the audio output unit 703 may also provide audio output related to a specific function performed by the terminal device 700 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 703 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 704 is used to receive audio or video signals.
  • the input unit 704 may include a graphics processing unit (GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is used for the image of a still picture or video obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 706.
  • the image frame processed by the graphics processor 7041 may be stored in the memory 709 (or other storage medium) or sent via the radio frequency unit 701 or the network module 702.
  • the microphone 7042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 701 for output in the case of a telephone call mode.
  • the terminal device 700 further includes at least one sensor 705, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 7061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 7061 and the display panel 7061 when the terminal device 700 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the posture of the terminal device (such as horizontal and vertical screen switching, related games) , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 705 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 706 is used to display information input by the user or information provided to the user.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 707 can be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal device.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072.
  • the touch panel 7071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 7071 or near the touch panel 7071. operate).
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 710, the command sent by the processor 710 is received and executed.
  • the touch panel 7071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 707 may also include other input devices 7072.
  • other input devices 7072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 7071 can be overlaid on the display panel 7061.
  • the touch panel 7071 detects a touch operation on or near it, it is transmitted to the processor 710 to determine the type of the touch event, and then the processor 710 determines the type of touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 7061.
  • the touch panel 7071 and the display panel 7061 are used as two independent components to implement the input and output functions of the terminal device, in some embodiments, the touch panel 7071 and the display panel 7061 can be integrated
  • the implementation of the input and output functions of the terminal device is not specifically limited here.
  • the interface unit 708 is an interface for connecting an external device and the terminal device 700.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 708 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal device 700 or can be used to connect to the terminal device 700 and an external device. Transfer data between devices.
  • the memory 709 can be used to store software programs and various data.
  • the memory 709 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 710 is the control center of the terminal device. It uses various interfaces and lines to connect the various parts of the entire terminal device, runs or executes software programs and/or modules stored in the memory 709, and calls data stored in the memory 709. , Perform various functions of the terminal equipment and process data, so as to monitor the terminal equipment as a whole.
  • the processor 710 may include one or more processing units; preferably, the processor 710 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs.
  • the processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 710.
  • the terminal device 700 may also include a power source 711 (such as a battery) for supplying power to various components.
  • a power source 711 such as a battery
  • the power source 711 may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal device 700 includes some functional modules not shown, which will not be repeated here.
  • the embodiment of the present invention also provides a terminal device, including a processor 710, a memory 709, a computer program stored on the memory 709 and running on the processor 710, when the computer program is executed by the processor 710
  • a terminal device including a processor 710, a memory 709, a computer program stored on the memory 709 and running on the processor 710, when the computer program is executed by the processor 710
  • FIG. 8 is a structural diagram of another network side device according to an embodiment of the present invention.
  • the network side device 800 includes: a processor 801, a memory 802, a bus interface 803, and a transceiver 804, where the processor 801, the memory 802, and the transceiver 804 are all connected to the bus interface 803.
  • the network side device 800 further includes: a computer program that is stored in the memory 802 and can be run on the processor 801.
  • the transceiver 804 is used to:
  • the first measurement parameter is used to indicate at least one of the following: measuring the SFTD value between the specific transmission node of the first service frequency point and the first network node; measuring the different specific values of the first service frequency point Timing difference between transmission nodes;
  • the first network node includes a second service frequency point or a specific transmission node of the second service frequency point, and the second service frequency point includes an adjacent service frequency point of the first service frequency point and a third service frequency point.
  • the third service frequency point is a service frequency point other than the first service frequency point among at least two service frequency points of the terminal device; the SFTD value and the timing difference Both include at least one of the system frame number difference and the frame boundary difference.
  • the above-mentioned processor 801 and transceiver 804 can implement each process implemented by the network-side device in the above-mentioned method embodiment. To avoid repetition, details are not described herein again.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the above-mentioned measurement method embodiment is realized, and the same technical effect can be achieved. To avoid repetition, I won’t repeat it here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in this application.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种测量方法、终端设备和网络侧设备,该方法包括:在终端设备的第一服务频点配置有至少两个传输节点的情况下,按照第一测量参数进行系统帧号和帧定时偏差SFTD测量,得到SFTD测量结果;其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值。

Description

一种测量方法、终端设备和网络侧设备
相关申请的交叉引用
本申请主张在2020年3月24日在中国提交的中国专利申请号No.202010215189.1的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,尤其涉及一种测量方法、终端设备和网络侧设备。
背景技术
在现有的移动通信系统中,网络侧设备可以配置用户设备(User Equipment,UE)(也可以称为终端或者终端设备)进行系统帧号和帧定时偏差(System Frame Number and Frame Timing Difference,SFTD)测量,例如,测量不同小区之间的SFN差值(即SFN offset)和帧边界差值(即Frame boundary offset)。
然而,在现有技术中,SFTD测量往往是针对UE的一个服务小区或带宽部分(BandWidth Part,BWP)的传输信号往往来源于一个传输节点(Transmission Point,TRP)这一情况进行的。在UE的一个服务小区或BWP的传输信号来源于多个传输节点的情况下如何进行SFTD测量,并没有相关的解决方案。
发明内容
本发明实施例提供一种测量方法、终端设备和网络侧设备,以提供一种在UE的一个服务小区或BWP的传输信号来源于多个传输节点的情况下,基于传输节点的粒度进行SFTD测量的方式,进而可以提高SFTD测量的准确性。
为了解决上述技术问题,本发明是这样实现的:
第一方面,本发明实施例提供了一种测量方法,应用于终端设备,该方 法包括:
在所述终端设备的第一服务频点配置有至少两个传输节点的情况下,按照第一测量参数进行系统帧号和帧定时偏差SFTD测量,得到SFTD测量结果;
其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值;
所述第一网络节点包括第二服务频点或者第二服务频点的特定传输节点,所述第二服务频点包括所述第一服务频点的邻服务频点和第三服务频点中的至少一项,所述第三服务频点为所述终端设备的至少两个服务频点中除所述第一服务频点之外的服务频点;所述SFTD值和所述定时差值均包括系统帧号差值和帧边界差值中的至少一项。
第二方面,本发明实施例还提供了一种测量方法,应用于网络侧设备,该方法包括:
在为终端设备的第一服务频点配置了至少两个传输节点的情况下,向所述终端设备发送第一测量参数;
其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值;
所述第一网络节点包括第二服务频点或者第二服务频点的特定传输节点,所述第二服务频点包括所述第一服务频点的邻服务频点和第三服务频点中的至少一项,所述第三服务频点为所述终端设备的至少两个服务频点中除所述第一服务频点之外的服务频点;所述SFTD值和所述定时差值均包括系统帧号差值和帧边界差值中的至少一项。
第三方面,本发明实施例还提供一种终端设备。该终端设备包括:
测量模块,用于在所述终端设备的第一服务频点配置有至少两个传输节点的情况下,按照第一测量参数进行系统帧号和帧定时偏差SFTD测量,得到SFTD测量结果;
其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频 点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值;
所述第一网络节点包括第二服务频点或者第二服务频点的特定传输节点,所述第二服务频点包括所述第一服务频点的邻服务频点和第三服务频点中的至少一项,所述第三服务频点为所述终端设备的至少两个服务频点中除所述第一服务频点之外的服务频点;所述SFTD值和所述定时差值均包括系统帧号差值和帧边界差值中的至少一项。
第四方面,本发明实施例还提供一种网络侧设备。该网络侧设备包括:
发送模块,用于在为终端设备的第一服务频点配置了至少两个传输节点的情况下,向所述终端设备发送第一测量参数;
其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值;
所述第一网络节点包括第二服务频点或者第二服务频点的特定传输节点,所述第二服务频点包括所述第一服务频点的邻服务频点和第三服务频点中的至少一项,所述第三服务频点为所述终端设备的至少两个服务频点中除所述第一服务频点之外的服务频点;所述SFTD值和所述定时差值均包括系统帧号差值和帧边界差值中的至少一项。
第五方面,本发明实施例还提供一种终端设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第一方面提供的测量方法的步骤。
第六方面,本发明实施例还提供一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第二方面提供的测量方法的步骤。
第七方面,本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面提供的测量方法的步骤,或者实现上述第二方面提供的测量方法的步骤。
本发明实施例中,在所述终端设备的第一服务频点配置有至少两个传输 节点的情况下,按照第一测量参数进行SFTD测量,得到SFTD测量结果;其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值。由于在终端设备的一个服务小区或BWP的传输信号来源于多个传输节点的情况下,基于传输节点的粒度进行SFTD测量以得到传输节点的定时偏差,可以提高同一服务小区或者BWP内不同传输节点的定时偏差测量的准确性,进而可以使得网络侧对于同一小区或者BWP内的不同传输节点的定时偏差有更准确的理解。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的载波聚合架构的示意图;
图2是本发明实施例可应用的一种网络系统的结构图;
图3是本发明实施例提供的一种测量方法的流程图;
图4是本发明实施例提供的另一种测量方法的流程图;
图5是本发明实施例提供的一种终端设备的结构图;
图6是本发明实施例提供的一种网络侧设备的结构图;
图7是本发明实施例提供的另一种终端设备的结构图;
图8是本发明实施例提供的另一种网络侧设备的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类 似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。
为了便于理解,以下对本发明实施例涉及的一些内容进行说明:
载波聚合(Carrier Aggregation,CA):
用户设备(User Equipment,UE),也可以称为终端或者终端设备,可以同时配置在多个不同频率(即不同的ARFCN(Absolute Radio Frequency Channel Number,绝对无线频率信道编号))的载波(Component Carrier,CC)下工作,其中CA包括一个主小区(Primary Cell,PCell)以及一个或多个辅小区(Secondary Cell,SCell)。每个载波为一个服务小区(即Serving Cell),并配置了对应服务小区标识,例如,servingCellId,并对应一个混合自动重复请求(Hybrid Automatic Repeat Request,HARQ)实体,该HARQ实体包括多个HARQ进程(即HARQ process),例如,如图1所示,CC1和CC2两个载波分别对应一个HARQ实体。一个服务小区的配置包括对于该小区所有UE都适用的通用小区配置(即common cell configuration)和对特定UE适用的特定小区配置(即dedicated cell configuration)。
带宽部分(Bandwidth Part,BWP):
对于一个服务小区,网络侧可以配置最多四个BWP,该四个BWP对应不同的工作频率范围。网络侧可以通过下行控制信息(Downlink Control Information,DCI)信令指示激活的BWP。对于一个服务小区,UE同一时刻只能有一个激活的BWP。
双连接(Dual Connectivity,DC):
UE可以在两个小区组(即主小区组(Master Cell Group,MCG)和辅小区组(Secondary Cell Group,SCG))同时建立连接。其中,MCG包括PCell和SCell,SCG包括主辅小区(Primary Secondary Cell,PSCell)和SCell。上述PCell和PSCell又都可以称为特殊小区(Special Cell,SpCell)。
系统帧号和帧定时偏差(System Frame Number and Frame Timing Difference,SFTD)测量:
在DC的配置下,网络侧需要知道PCell和PSCell之间的SFN差值(即SFN offset)和帧边界差值(即Frame boundary offset),从而在不同偏差情况下进行对应的DC配置,例如,在偏差较小的时候配置为同步DC,在偏差较大的时候配置为异步DC。因此,网络侧会配置UE进行SFTD测量,例如,测量不同小区之间的SFN差值和帧边界差值。
其中,网络侧的SFTD配置可以包括以下至少一项:指示UE测量PCell和PSCell之间的SFTD值;指示UE测量PCell和邻小区之间的SFTD值。
本发明实施例提供一种测量方法。参见图2,图2是本发明实施例可应用的一种网络系统的结构图,如图2所示,包括终端设备11和网络侧设备12,其中,终端设备11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等用户侧设备,需要说明的是,在本发明实施例中并不限定终端设备11的具体类型。网络侧设备12可以是基站,例如:宏站、LTE eNB、1G NR NB、gNB等;网络侧设备12也可以是小站,如低功率节点(Low Power Node,LPN)pico、femto等小站,或者网络侧设备12可以是接入点(Access Point,AP);基站也可以是中央单元(Central Unit,CU)与其管理是和控制的多个TRP共同组成的网络节点。需要说明的是,在本发明实施例中并不限定网络侧设备12的具体类型。
本发明实施例提供一种测量方法,应用于终端设备。参见图3,图3是本发明实施例提供的一种测量方法的流程图,如图3所示,包括以下步骤:
步骤301、在终端设备的第一服务频点配置有至少两个传输节点的情况下,按照第一测量参数进行系统帧号和帧定时偏差SFTD测量,得到SFTD 测量结果;
其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值;
所述第一网络节点包括第二服务频点或者第二服务频点的特定传输节点,所述第二服务频点包括所述第一服务频点的邻服务频点和第三服务频点中的至少一项,所述第三服务频点为所述终端设备的至少两个服务频点中除所述第一服务频点之外的服务频点;所述SFTD值和所述定时差值均包括系统帧号差值和帧边界差值中的至少一项。
本实施例中,上述服务频点可以包括小区或者小区的BWP。上述第一服务频点可以包括终端设备的第一服务小区或者第一服务小区的BWP,其中,第一服务小区可以为终端设备的任一服务小区。
对于上述第一服务频点的邻服务频点,在第一服务频点为第一服务小区的情况下,第一服务频点的邻服务频点可以包括第一服务小区的邻小区和第一服务小区的邻小区的BWP中的至少一项;在上述第一服务频点为第一服务小区的第一BWP的情况下,上述第一服务频点的邻服务频点可以包括第一服务小区中除第一BWP之外的BWP、第一服务小区的邻小区和第一服务小区的邻小区的BWP中的至少一项。其中,上述第一BWP可以是第一服务小区的任一BWP。
上述第三服务频点可以包括终端设备的服务频点中除所述第一服务频点之外的服务频点,例如,若终端设备的服务小区包括第一服务小区和第二服务小区,且第一服务频点为第一服务小区,则第三服务频点可以包括第二服务小区和第二服务小区的BWP中的至少一项;若终端设备的服务小区包括第一服务小区和第二服务小区,且第一服务频点为第一服务小区的第一BWP,则第三服务频点可以包括第一服务小区中除第一BWP之外的BWP、第二服务小区和第二服务小区的BWP中的至少一项。其中,上述第一BWP可以是第一服务小区的任一BWP。
需要说明的是,在终端设备仅配置有一个服务频点的情况下,上述第二服务频点可以仅包括第一服务频点的邻服务频点;在终端设备配置有多个服 务频点的情况下,上述第二服务频点可以包括第一服务频点的邻服务频点和第三服务频点中的至少一项。
上述第一服务频点的特定传输节点可以包括第一服务频点的部分或者全部传输节点。上述第二服务频点的特定传输节点可以包括第二服务频点的部分或者全部传输节点。可选地,上述第一服务频点的特定传输节点可以由协议预定义或者由网络侧设备配置;上述第二服务频点的特定传输节点也可以由协议预定义或者由网络侧设备配置。
上述SFTD值可以包括系统帧号差值和帧边界差值中的至少一项。上述定时差值也可以包括系统帧号差值和帧边界差值中的至少一项。需要说明的是,上述定时差值在一些情况下也可以称为SFTD值。
具体地,在终端设备的第一服务频点配置有至少两个传输节点的情况下,终端设备可以基于第一测量参数进行SFTD测量。其中,上述至少两个传输节点可以通过不同的传输节点物理标识进行区分,例如,通过物理小区标识(Physical Cell Identifier,PCI)进行区分。上述第一测量参数可以由协议预定义或者由网络侧配置,上述第一测量参数可以用于指示测量第一服务频点的特定传输节点和第一网络节点之间的SFTD值和第一服务频点的不同特定传输节点之间的定时差值中的至少一项。
例如,在第一测量参数指示测量第一服务频点的特定传输节点和第一网络节点之间的SFTD值的情况下,终端设备可以测量第一服务频点的特定传输节点和第一网络节点之间的SFTD值,得到第一服务频点的特定传输节点和第一网络节点之间的SFTD值,并可以向网络侧设备上报该SFTD值,这样可以使得网络侧对于传输节点的定时偏差有更准确的理解,进而可以更为准确的进行配置。
需要说明的是,在上述第一服务频点的特定传输节点的数量为至少两个的情况下,可以直接分别测量上述至少两个特定传输节点与第一网络节点之间的SFTD值;也可以测量上述至少两个特定传输节点中的一部分特定传输节点与第一网络节点之间的SFTD值,并测量上述至少两个特定传输节点中的另一部分特定传输节点与上述一部分特定传输节点之间的定时差值。
又例如,在第一测量参数指示测量第一服务频点的不同特定传输节点之 间的定时差值的情况下,终端设备可以测量第一服务频点的不同特定传输节点之间的定时差值,并可以向网络侧设备上报该定时差值,这样网络侧设备可以基于该定时差值计算传输节点的SFTD值,或者将该定时差值发送给其他终端设备,以供其他终端设备进行传输节点的SFTD值的计算。
又例如,在第一测量参数指示测量第一服务频点的特定传输节点和第一网络节点之间的SFTD值以及第一服务频点的不同特定传输节点之间的定时差值的情况下,终端设备可以测量第一服务频点的特定传输节点和第一网络节点之间的SFTD值以及第一服务频点的不同特定传输节点之间的定时差值,得到第一服务频点的特定传输节点和第一网络节点之间的SFTD值以及第一服务频点的不同特定传输节点之间的定时差值,并可以向网络侧设备上报该SFTD值和定时差值。
可选地,在终端设备的第三服务频点也配置有至少两个传输节点的情况下,上述第一测量参数指示还可以用于指示如下至少一项:测量所述第三服务频点的特定传输节点和所述第一服务频点之间的SFTD值;测量所述第三服务频点的特定传输节点和所述第三服务频点的邻服务频点之间的SFTD值;测量所述第三服务频点的不同特定传输节点之间的定时差值。
实际情况中,在终端设备的一个服务小区或者BWP配置有至少两个传输节点的情况下,由于至少两个传输节点的下行信号到达终端设备侧的时间往往无法保证完全同步,从而导致同一个服务小区或者BWP内的多个下行信号的帧边界无法完全同步,若基于小区或者BWP的粒度进行SFTD测量并上报SFTD值,会导致网络侧对于不同传输节点的定时偏差的理解的准确性较差。而本发明实施例基于传输节点的粒度进行SFTD测量以得到传输节点的定时偏差,可以提高同一服务小区或者BWP内不同传输节点的定时偏差测量的准确性,进而可以使得网络侧对于同一小区或者BWP内的不同传输节点的定时偏差有更准确的理解。
可选地,上述步骤201,也即所述按照第一测量参数进行系统帧号和帧定时偏差SFTD测量,可以包括:
在所述第一服务频点的特定传输节点的数量为至少两个,且所述第一测量参数至少指示测量所述第一服务频点的特定传输节点和所述第一网络节点 之间的SFTD值的情况下,测量第一特定传输节点和所述第一网络节点之间的第一SFTD值,并测量所述第一特定传输节点和第二特定传输节点之间的第一定时差值;
其中,所述第一特定传输节点和所述第二特定传输节点均为所述第一服务频点的特定传输节点。
本实施例中,上述第一特定传输节点可以包括第一服务频点的一个或多个特定传输节点,上述第二特定传输节点可以包括除第一服务频点的特定传输节点中除第一特定传输节点之外的特定传输节点。可选地,可以由网络侧设备配置上述第一特定传输节点;也可以由协议预定义上述第一特定传输节点,例如,由协议预定义上述第一特定传输节点为第一服务频点的主传输节点或者第一服务频点中第一个进行信息传输的传输节点。
例如,若终端设备的PCell配置有特定传输节点PCI-1和特定传输节点PCI-2,且第一测量参数指示测量PCell的特定传输节点和PSCell之间的SFTD值,则可以测量特定传输节点PCI-1和PSCell之间的SFTD值,并测量特定传输节点PCI-1和特定传输节点PCI-2之间的定时差值,这样基于特定传输节点PCI-1和PSCell之间的SFTD值以及特定传输节点PCI-1和特定传输节点PCI-2之间的定时差值可以计算得到特定传输节点PCI-2和PSCell之间的SFTD值。
本实施例在所述第一服务频点的特定传输节点的数量为至少两个,且所述第一测量参数至少指示测量所述第一服务频点的特定传输节点和所述第一网络节点之间的SFTD值的情况下,通过测量第一特定传输节点和第一网络节点之间的第一SFTD值以及第一特定传输节点和第二特定传输节点之间的第一定时差值,这样基于第一特定传输节点和第一网络节点之间的第一SFTD值以及第一特定传输节点和第二特定传输节点之间的第一定时差值可以得到第二特定传输节点与第一网络节点之间的SFTD值,可以提高SFTD值测量的效率和灵活性。
可选地,所述方法还可以包括:
根据所述第一SFTD值和所述第一定时差值,计算所述第二特定传输节点和所述第一网络节点之间的第二SFTD值;
向网络侧设备上报所述第一SFTD值和所述第二SFTD值,或者向网络侧设备上报所述第一SFTD值、所述第二SFTD值和所述第一定时差值。
本实施例中,上述第一SFTD值也即第一特定传输节点和第一网络节点之间的SFTD值,上述第一定时差值也即第一特定传输节点和第二特定传输节点之间的定时差值,上述第二SFTD值也即第二特定传输节点和第一网络节点之间的SFTD值。
终端设备在测量得到第一SFTD值和第一定时差值之后,可以基于第一SFTD值和第一定时差值计算第二SFTD值。例如,可以根据第一SFTD值的系统帧号差值和第一定时差值的系统帧号差值计算第二SFTD值的系统帧号差值,如将第一SFTD值的系统帧号差值和第一定时差值的系统帧号差值之间的差值作为第二SFTD值的系统帧号差值;可以根据第一SFTD值的帧边界差值和第一定时差值的帧边界差值计算第二SFTD值的帧边界差值,如将第一SFTD值的帧边界差值和第一定时差值的帧边界差值之间的差值作为第二SFTD值的帧边界差值。
进一步地,在计算得到第二SFTD值之后,可以向网络侧设备上报所述第一SFTD值和所述第二SFTD值,这样网络侧设备可以获知第一服务频点的各个特定传输节点与第一网络节点之间的SFTD值,便于网络侧设备进行更为准确的配置;或者可以向网络侧设备所述第一SFTD值、所述第二SFTD值和所述第一定时差值,这样不仅方便网络侧设备获知第一服务频点的各个特定传输节点与第一网络节点之间的SFTD值,还便于网络侧设备基于第一定时差值计算第一服务频点的各个特定传输节点与其他网络节点之间的SFTD值,或者网络侧设备将第一定时差值发送给其他终端设备,以供其他终端设备进行传输节点的SFTD值的计算。
可选地,所述方法还可以包括:
向网络侧设备上报所述第一SFTD值和所述第一定时差值。
本实施例中,终端设备在测量得到第一SFTD值和第一定时差值之后,可以直接向网络侧设备上报所述第一SFTD值和所述第一定时差值,这样可以由网络侧设备基于所述第一SFTD值和所述第一定时差值计算第二特定传输节点和第一网络节点之间的SFTD值,进而可以在保证网络侧设备可以获 知第一服务频点的各个特定传输节点与第一网络节点之间的SFTD值的同时,节省终端设备的计算资源。
可选地,第四服务频点的特定传输节点由网络侧设备配置或者由协议预定义,所述第四服务频点包括所述第一服务频点和所述第二服务频点中的至少一项。
本实施例中,第一服务频点的特定传输节点可以由网络侧设备配置或者由协议预定义,上述第二服务频点的特定传输节点也可以由网络侧设备配置或者由协议预定义。
例如,网络侧设备可以配置第一服务频点的传输节点PCI-1为特定传输节点,或者协议预定义第一服务频点中处于激活状态的传输节点为特定传输节点。
可选地,在所述第四服务频点的特定传输节点由协议预定义的情况下,所述第四服务频点的特定传输节点包括如下一项:
所述第四服务频点的所有传输节点;
所述第四服务频点的所有传输节点中处于激活状态的传输节点;
所述第四服务频点的所有传输节点中的第一类型的传输节点,所述第一类型的传输节点包括主传输节点、初始传输节点和默认传输节点中的至少一项。
本实施例中,在上述第一服务频点的特定传输节点由协议预定义的情况下,上述第一服务频点的特定传输节点可以包括如下一项:
所述第一服务频点的所有传输节点;
所述第一服务频点的所有传输节点中处于激活状态的传输节点;
所述第一服务频点的所有传输节点中的第一类型的传输节点,所述第一类型的传输节点包括主传输节点、初始传输节点和默认传输节点中的至少一项。
在上述第二服务频点的特定传输节点由协议预定义的情况下,上述第二服务频点的特定传输节点可以包括如下一项:
所述第二服务频点的所有传输节点;
所述第二服务频点的所有传输节点中处于激活状态的传输节点;
所述第二服务频点的所有传输节点中的第一类型的传输节点,所述第一类型的传输节点包括主传输节点、初始传输节点和默认传输节点中的至少一项。
需要说明的是,上述主传输节点和默认传输节点可以由网络侧设备配置或者由协议预定义。上述初始传输节点可以是指服务频点的多个传输节点中第一个被激活或者第一个进行信息传输的传输节点。
可选地,在所述终端设备的第一服务频点配置有至少两个传输节点的情况下,所述至少两个传输节点中不同的传输节点的传输节点物理标识不同;
其中,所述传输节点物理标识包括如下至少一项:
物理服务频点标识;
参考信号标识;
参考信号对应的端口号标识;
控制信道的资源位置标识。
本实施例中,上述物理服务频点标识可以包括但不限于物理小区标识,例如,PCI-1。
上述参考信号标识可以包括但不限于同步信号块(Synchronous Signal Block,SSB)标识、信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)标识等中的至少一项,例如,SSB-1、CSI-RS-1等。可选地,上述参考信号标识可以是控制信道的参考信号标识,例如,控制信道的SSB标识或者控制信道的CSI-RS标识。
上述参考信号对应的端口号标识,例如,port-1。可选地,上述参考信号对应的端口号标识可以是控制信道的参考信号对应的端口号标识。
上述控制信道的资源位置标识可以包括但不限于物理下行控制信道(Physical Downlink Control Channel,PDCCH)的控制资源组(Control Resource Set,CORESET)标识和搜索空间(即Search Space)标识中的至少一项。
可选地,所述方法还可以包括:
向网络侧设备上报所述SFTD测量结果和第一信息;
其中,所述第一信息包括如下至少一项:
第三特定传输节点的传输节点物理标识;
第三特定传输节点对应的服务频点的服务频点标识;
第三特定传输节点对应的服务频点的类型标识;
第三特定传输节点的参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Received Quality,RSRQ)和接收信号强度指示(Received Signal Strength Indication,RSSI)中至少一项的测量结果;
其中,所述第三特定传输节点包括所述第一服务频点的特定传输节点和所述第二服务频点的特定传输节点中的至少一项。
本实施例中,上述SFTD测量结果与终端设备所执行的SFTD测量相对应,例如,若终端设备测量了第一服务频点的特定传输节点和第一网络节点之间的SFTD值,则上述SFTD测量结果包括第一服务频点的特定传输节点和第一网络节点之间的SFTD值,若终端设备测量了第一服务频点的不同特定传输节点之间的定时差值,则上述SFTD测量结果包括第一服务频点的不同特定传输节点之间的定时差值;若终端设备测量了第一服务频点的特定传输节点和第一网络节点之间的SFTD值以及第一服务频点的不同特定传输节点之间的定时差值,则上述SFTD测量结果包括第一服务频点的特定传输节点和第一网络节点之间的SFTD值和第一服务频点的不同特定传输节点之间的定时差值。
上述第三特定传输节点的传输节点物理标识可以包括特定传输节点的物理服务频点标识、参考信号标识、参考信号对应的端口号标识和控制信道的资源位置标识中的至少一项。
对于第三上述特定传输节点对应的服务频点的服务频点标识,例如,若上述第三特定传输节点对应的服务频点为小区,则上述服务频点标识可以为小区标识,若上述第三特定传输节点对应的服务频点为BWP,则上述服务频点标识可以为BWP标识。
对于第三特定传输节点对应的服务频点的类型标识,例如,若上述第三特定传输节点对应的服务频点为小区,则上述类型标识可用于指示小区的类型,例如,PCell或PSCell;若上述第三特定传输节点对应的服务频点为BWP, 则上述类型标识可用于指示BWP的类型,例如,PCell的BWP或PSCell的BWP。
本实施例中,终端设备不仅向网络侧设备上报SFTD测量结果以便于网络侧设备获知特定传输节点的定时偏差,还向网络侧设备上报上述第一信息以供网络侧设备进行配置参考。
可选地,所述第一服务频点和第三服务频点中一个为主小区,另一个为主辅小区。
本实施例中,在网络侧设备为终端设备配置了DC架构的情况下,所述第一服务频点和第二服务频点中一个可以为主小区,另一个可以为主辅小区。
例如,在第一服务频点为主小区,第三服务频点为主辅小区的情况下,所述第一测量参数可以用于指示如下至少一项:
测量主小区的特定传输节点和主辅小区之间的SFTD值;
测量主小区的特定传输节点和主辅小区的特定传输节点之间的SFTD值;
测量主小区的特定传输节点和其邻小区之间的SFTD值;
测量主小区的特定传输节点和其邻小区的特定传输节点之间的SFTD值;
测量主小区的不同特定传输节点之间的定时差值。
又例如,在第一服务频点为主辅小区,第三服务频点为主小区的情况下,所述第一测量参数可以用于指示如下至少一项:
测量主辅小区的特定传输节点和主小区之间的SFTD值;
测量主辅小区的特定传输节点和主小区的特定传输节点之间的SFTD值;
测量主辅小区的特定传输节点和其邻小区之间的SFTD值;
测量主辅小区的特定传输节点和其邻小区的特定传输节点之间的SFTD值;
测量主辅小区的不同特定传输节点之间的定时差值。
可选地,在所述第一服务频点和第三服务频点中一个为主小区,另一个为主辅小区的情况下,所述第一测量参数还用于指示如下至少一项:
测量所述第三服务频点的特定传输节点和所述第一服务频点之间的SFTD值;
测量所述第三服务频点的特定传输节点和所述第三服务频点的邻服务频 点之间的SFTD值;
测量所述第三服务频点的不同特定传输节点之间的定时差值。
例如,在第一服务频点为主辅小区,第三服务频点为主小区的情况下,所述第一测量参数还可以用于指示如下至少一项:
测量主辅小区的特定传输节点和主小区之间的SFTD值;
测量主辅小区的特定传输节点和其邻小区之间的SFTD值;
测量主辅小区的特定传输节点和其邻小区的特定传输节点之间的SFTD值;
测量主辅小区的不同特定传输节点之间的定时差值。
又例如,在第一服务频点为主辅小区,第三服务频点为主小区的情况下,所述第一测量参数还可以用于指示如下至少一项:
测量主小区的特定传输节点和主辅小区之间的SFTD值;
测量主小区的特定传输节点和其邻小区之间的SFTD值;
测量主小区的特定传输节点和其邻小区的特定传输节点之间的SFTD值;
测量主小区的不同特定传输节点之间的定时差值。
本发明实施例提供一种测量方法,应用于网络侧设备。参见图4,图4是本发明实施例提供的另一种测量方法的流程图,如图4所示,包括以下步骤:
步骤401、在为终端设备的第一服务频点配置了至少两个传输节点的情况下,向所述终端设备发送第一测量参数;
其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值;
所述第一网络节点包括第二服务频点或者第二服务频点的特定传输节点,所述第二服务频点包括所述第一服务频点的邻服务频点和第三服务频点中的至少一项,所述第三服务频点为所述终端设备的至少两个服务频点中除所述第一服务频点之外的服务频点;所述SFTD值和所述定时差值均包括系统帧号差值和帧边界差值中的至少一项。
本实施例中,上述服务频点可以包括小区或者小区的BWP。上述第一服 务频点可以包括终端设备的第一服务小区或者第一服务小区的BWP,其中,第一服务小区可以为终端设备的任一服务小区。
对于上述第一服务频点的邻服务频点,在第一服务频点为第一服务小区的情况下,第一服务频点的邻服务频点可以包括第一服务小区的邻小区和第一服务小区的邻小区的BWP中的至少一项;在上述第一服务频点为第一服务小区的第一BWP的情况下,上述第一服务频点的邻服务频点可以包括第一服务小区中除第一BWP之外的BWP、第一服务小区的邻小区和第一服务小区的邻小区的BWP中的至少一项。其中,上述第一BWP可以是第一服务小区的任一BWP。
上述第三服务频点可以包括终端设备的服务频点中除所述第一服务频点之外的服务频点,例如,若终端设备的服务小区包括第一服务小区和第二服务小区,且第一服务频点为第一服务小区,则第三服务频点可以包括第二服务小区和第二服务小区的BWP中的至少一项;若终端设备的服务小区包括第一服务小区和第二服务小区,且第一服务频点为第一服务小区的第一BWP,则第三服务频点可以包括第一服务小区中除第一BWP之外的BWP、第二服务小区和第二服务小区的BWP中的至少一项。其中,上述第一BWP可以是第一服务小区的任一BWP。
需要说明的是,在终端设备仅配置有一个服务频点的情况下,上述第二服务频点可以仅包括第一服务频点的邻服务频点;在终端设备配置有多个服务频点的情况下,上述第二服务频点可以包括第一服务频点的邻服务频点和第三服务频点中的至少一项。
上述第一服务频点的特定传输节点可以包括第一服务频点的部分或者全部传输节点。上述第二服务频点的特定传输节点可以包括第二服务频点的部分或者全部传输节点。可选地,上述第一服务频点的特定传输节点可以由协议预定义或者由网络侧设备配置;上述第二服务频点的特定传输节点也可以由协议预定义或者由网络侧设备配置。
上述SFTD值可以包括系统帧号差值和帧边界差值中的至少一项。上述定时差值也可以包括系统帧号差值和帧边界差值中的至少一项。需要说明的是,上述定时差值在一些情况下也可以称为SFTD值。
具体地,在网络侧设备为终端设备的第一服务频点配置了至少两个传输节点的情况下,网络侧设备可以为终端设备配置第一测量参数,这样终端设备可以基于第一测量参数进行SFTD测量。其中,上述第一测量参数可以用于指示测量第一服务频点的特定传输节点和第一网络节点之间的SFTD值和第一服务频点的不同特定传输节点之间的定时差值中的至少一项。
需要说明的是,在网络侧设备为终端设备的第一服务频点配置至少两个传输节点的情况下,上述至少两个传输节点可以通过不同的传输节点物理标识进行区分,例如,通过PCI进行区分。
本发明实施例在为终端设备的第一服务频点配置了至少两个传输节点的情况下,向终端设备发送第一测量参数,从而终端设备可以基于第一测量参数进行SFTD测量并上报SFTD测量结果给网络侧设备,由于终端设备可以基于传输节点的粒度进行SFTD测量,进而可以使得网络侧对于不同传输节点的定时偏差有更准确的理解。
可选地,所述方法还可以包括:
在所述第一服务频点的特定传输节点的数量为至少两个,且所述第一测量参数至少指示测量所述第一服务频点的特定传输节点和所述第一网络节点之间的SFTD值的情况下,从所述终端设备接收第一SFTD值和第一定时差值;
根据所述第一SFTD值和所述第一定时差值,计算第二特定传输节点和所述第一网络节点之间的第二SFTD值;
其中,所述第一SFTD值为第一特定传输节点和所述第一网络节点之间的SFTD值,所述第一定时差值为所述第一特定传输节点和第二特定传输节点之间的定时差值,所述第一特定传输节点和所述第二特定传输节点均为所述第一服务频点的特定传输节点。
本实施例中,上述第一特定传输节点可以包括第一服务频点的一个或多个特定传输节点,上述第二特定传输节点可以包括除第一服务频点的特定传输节点中除第一特定传输节点之外的特定传输节点。可选地,可以由网络侧设备配置上述第一特定传输节点;也可以由协议预定义上述第一特定传输节点,例如,由协议预定义上述第一特定传输节点为第一服务频点的主传输节 点或者第一服务频点中第一个进行信息传输的传输节点。
具体地,网络侧设备在接收到第一SFTD值和第一定时差值的情况下,可以基于第一SFTD值和所述第一定时差值,计算第二特定传输节点和所述第一网络节点之间的第二SFTD值。例如,可以根据第一SFTD值的系统帧号差值和第一定时差值的系统帧号差值计算第二SFTD值的系统帧号差值,如将第一SFTD值的系统帧号差值和第一定时差值的系统帧号差值之间的差值作为第二SFTD值的系统帧号差值;可以根据第一SFTD值的帧边界差值和第一定时差值的帧边界差值计算第二SFTD值的帧边界差值,如将第一SFTD值的帧边界差值和第一定时差值的帧边界差值之间的差值作为第二SFTD值的帧边界差值。
本实施例由网络侧设备基于所述第一SFTD值和所述第一定时差值计算第二特定传输节点和第一网络节点之间的SFTD值,进而可以在保证网络侧设备可以获知第一服务频点的各个特定传输节点与第一网络节点之间的SFTD值的同时,节省终端设备的计算资源。
可选地,所述方法还可以包括:
在所述第一服务频点的特定传输节点的数量为至少两个,且所述第一测量参数至少指示测量所述第一服务频点的特定传输节点和所述第一网络节点之间的SFTD值的情况下,从所述终端设备接收第一SFTD值和第一SFTD值;
或者
在所述第一服务频点的特定传输节点的数量为至少两个,且所述第一测量参数至少指示测量所述第一服务频点的特定传输节点和所述第一网络节点之间的SFTD值的情况下,从所述终端设备接收第一SFTD值、第二SFTD值和第一定时差值;
其中,所述第一SFTD值为第一特定传输节点和所述第一网络节点之间的SFTD值,所述第二SFTD值为第二特定传输节点和所述第一网络节点之间的SFTD值,所述第一定时差值为所述第一特定传输节点和第二特定传输节点之间的定时差值,所述第一特定传输节点和所述第二特定传输节点均为所述第一服务频点的特定传输节点。
在一实施方式中,网络侧设备可以从终端设备接收第一SFTD值和第二SFTD值,这样网络侧设备可以获知第一服务频点的各个特定传输节点与第一网络节点之间的SFTD值,便于网络侧设备进行更为准确的配置。
在另一实施方式中,网络侧设备可以从终端设备接收第一SFTD值、第二SFTD值和第一定时差值,这样不仅方便网络侧设备获知第一服务频点的各个特定传输节点与第一网络节点之间的SFTD值,还便于网络侧设备基于第一定时差值计算第一服务频点的各个特定传输节点与其他网络节点之间的SFTD值,或者网络侧设备将第一定时差值发送给其他终端设备,以供其他终端设备进行传输节点的SFTD值的计算。
可选地,第四服务频点的特定传输节点由所述网络侧设备配置,所述第四服务频点包括所述第一服务频点和所述第二服务频点中的至少一项。
可选地,在所述终端设备的第一服务频点配置有至少两个传输节点的情况下,所述至少两个传输节点中不同的传输节点的传输节点物理标识不同;
其中,所述传输节点物理标识包括如下至少一项:
物理服务频点标识;
参考信号标识;
参考信号对应的端口号标识;
控制信道的资源位置标识。
本实施例中,上述物理服务频点标识可以包括但不限于物理小区标识,例如,PCI-1。
上述参考信号标识可以包括但不限于SSB标识、CSI-RS标识等中的至少一项,例如,SSB-1、CSI-RS-1等。可选地,上述参考信号标识可以是控制信道的参考信号标识,例如,控制信道的SSB标识或者控制信道的CSI-RS标识。
上述参考信号对应的端口号标识,例如,port-1。可选地,上述参考信号对应的端口号标识可以是控制信道的参考信号对应的端口号标识。
上述控制信道的资源位置标识可以包括但不限于PDCCH的CORESET标识和搜索空间标识中的至少一项。
可选地,所述方法还可以包括:
从终端设备接收SFTD测量结果和第一信息;
其中,所述第一信息包括如下至少一项:
第三特定传输节点的传输节点物理标识;
第三特定传输节点对应的服务频点的服务频点标识;
第三特定传输节点对应的服务频点的类型标识;
第三特定传输节点的RSRP、RSRQ和RSSI中至少一项的测量结果;
其中,所述第三特定传输节点包括所述第一服务频点的特定传输节点和所述第二服务频点的特定传输节点中的至少一项。
本实施例中,上述SFTD测量结果与终端设备所执行的SFTD测量相对应,例如,若终端设备测量了第一服务频点的特定传输节点和第一网络节点之间的SFTD值,则上述SFTD测量结果包括第一服务频点的特定传输节点和第一网络节点之间的SFTD值,若终端设备测量了第一服务频点的不同特定传输节点之间的定时差值,则上述SFTD测量结果包括第一服务频点的不同特定传输节点之间的定时差值;若终端设备测量了第一服务频点的特定传输节点和第一网络节点之间的SFTD值以及第一服务频点的不同特定传输节点之间的定时差值,则上述SFTD测量结果包括第一服务频点的特定传输节点和第一网络节点之间的SFTD值和第一服务频点的不同特定传输节点之间的定时差值。
上述第三特定传输节点的传输节点物理标识可以包括特定传输节点的物理服务频点标识、参考信号标识、参考信号对应的端口号标识和控制信道的资源位置标识中的至少一项。
对于第三上述特定传输节点对应的服务频点的服务频点标识,例如,若上述第三特定传输节点对应的服务频点为小区,则上述服务频点标识可以为小区标识,若上述第三特定传输节点对应的服务频点为BWP,则上述服务频点标识可以为BWP标识。
对于第三特定传输节点对应的服务频点的类型标识,例如,若上述第三特定传输节点对应的服务频点为小区,则上述类型标识可用于指示小区的类型,例如,PCell或PSCell;若上述第三特定传输节点对应的服务频点为BWP,则上述类型标识可用于指示BWP的类型,例如,PCell的BWP或PSCell的 BWP。
本实施例中,网络侧设备不仅从终端设备接收SFTD测量结果以获知特定传输节点的定时偏差,还从终端设备接收上述第一信息,从而可以参考第一信息进行配置,进而可以提高网络侧设备进行UE配置的准确性。
可选地,所述第一服务频点和第三服务频点中一个为主小区,另一个为主辅小区。
本实施例中,在网络侧设备为终端设备配置了DC架构的情况下,所述第一服务频点和第二服务频点中一个可以为主小区,另一个可以为主辅小区。
例如,在第一服务频点为主小区,第三服务频点为主辅小区的情况下,所述第一测量参数可以用于指示如下至少一项:
测量主小区的特定传输节点和主辅小区之间的SFTD值;
测量主小区的特定传输节点和主辅小区的特定传输节点之间的SFTD值;
测量主小区的特定传输节点和其邻小区之间的SFTD值;
测量主小区的特定传输节点和其邻小区的特定传输节点之间的SFTD值;
测量主小区的不同特定传输节点之间的定时差值。
又例如,在第一服务频点为主辅小区,第三服务频点为主小区的情况下,所述第一测量参数可以用于指示如下至少一项:
测量主辅小区的特定传输节点和主小区之间的SFTD值;
测量主辅小区的特定传输节点和主小区的特定传输节点之间的SFTD值;
测量主辅小区的特定传输节点和其邻小区之间的SFTD值;
测量主辅小区的特定传输节点和其邻小区的特定传输节点之间的SFTD值;
测量主辅小区的不同特定传输节点之间的定时差值。
可选地,在所述第一服务频点和第三服务频点中一个为主小区,另一个为主辅小区的情况下,所述第一测量参数还用于指示如下至少一项:
测量所述第三服务频点的特定传输节点和所述第一服务频点之间的SFTD值;
测量所述第三服务频点的特定传输节点和所述第三服务频点的邻服务频点之间的SFTD值;
测量所述第三服务频点的不同特定传输节点之间的定时差值。
例如,在第一服务频点为主辅小区,第三服务频点为主小区的情况下,所述第一测量参数还可以用于指示如下至少一项:
测量主辅小区的特定传输节点和主小区之间的SFTD值;
测量主辅小区的特定传输节点和其邻小区之间的SFTD值;
测量主辅小区的特定传输节点和其邻小区的特定传输节点之间的SFTD值;
测量主辅小区的不同特定传输节点之间的定时差值。
又例如,在第一服务频点为主辅小区,第三服务频点为主小区的情况下,所述第一测量参数还可以用于指示如下至少一项:
测量主小区的特定传输节点和主辅小区之间的SFTD值;
测量主小区的特定传输节点和其邻小区之间的SFTD值;
测量主小区的特定传输节点和其邻小区的特定传输节点之间的SFTD值;
测量主小区的不同特定传输节点之间的定时差值。
参见图5,图5是本发明实施例提供的一种终端设备的结构图。如图5所示,终端设备500包括:
测量模块501,用于在所述终端设备的第一服务频点配置有至少两个传输节点的情况下,按照第一测量参数进行系统帧号和帧定时偏差SFTD测量,得到SFTD测量结果;
其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值;
所述第一网络节点包括第二服务频点或者第二服务频点的特定传输节点,所述第二服务频点包括所述第一服务频点的邻服务频点和第三服务频点中的至少一项,所述第三服务频点为所述终端设备的至少两个服务频点中除所述第一服务频点之外的服务频点;所述SFTD值和所述定时差值均包括系统帧号差值和帧边界差值中的至少一项。
可选地,所述测量模块具体用于:
在所述第一服务频点的特定传输节点的数量为至少两个,且所述第一测 量参数至少指示测量所述第一服务频点的特定传输节点和所述第一网络节点之间的SFTD值的情况下,测量第一特定传输节点和所述第一网络节点之间的第一SFTD值,并测量所述第一特定传输节点和第二特定传输节点之间的第一定时差值;
其中,所述第一特定传输节点和所述第二特定传输节点均为所述第一服务频点的特定传输节点。
可选地,所述终端设备还包括:
第一计算模块,用于根据所述第一SFTD值和所述第一定时差值,计算所述第二特定传输节点和所述第一网络节点之间的第二SFTD值;
第一上报模块,用于向网络侧设备上报所述第一SFTD值和所述第二SFTD值,或者向网络侧设备上报所述第一SFTD值、所述第二SFTD值和所述第一定时差值。
可选地,所述终端设备还包括:
第二上报模块,用于向网络侧设备上报所述第一SFTD值和所述第一定时差值。
可选地,第四服务频点的特定传输节点由网络侧设备配置或者由协议预定义,所述第四服务频点包括所述第一服务频点和所述第二服务频点中的至少一项。
可选地,在所述第四服务频点的特定传输节点由协议预定义的情况下,所述第四服务频点的特定传输节点包括如下一项:
所述第四服务频点的所有传输节点;
所述第四服务频点的所有传输节点中处于激活状态的传输节点;
所述第四服务频点的所有传输节点中的第一类型的传输节点,所述第一类型的传输节点包括主传输节点、初始传输节点和默认传输节点中的至少一项。
可选地,在所述终端设备的第一服务频点配置有至少两个传输节点的情况下,所述至少两个传输节点中不同的传输节点的传输节点物理标识不同;
其中,所述传输节点物理标识包括如下至少一项:
物理服务频点标识;
参考信号标识;
参考信号对应的端口号标识;
控制信道的资源位置标识。
可选地,所述终端设备还包括:
第三上报模块,用于向网络侧设备上报所述SFTD测量结果和第一信息;
其中,所述第一信息包括如下至少一项:
第三特定传输节点的传输节点物理标识;
第三特定传输节点对应的服务频点的服务频点标识;
第三特定传输节点对应的服务频点的类型标识;
第三特定传输节点的参考信号接收功率RSRP、参考信号接收质量RSRQ和接收信号强度指示RSSI中至少一项的测量结果;
所述第三特定传输节点包括所述第一服务频点的特定传输节点和所述第二服务频点的特定传输节点中的至少一项。
可选地,所述第一测量参数由网络侧设备配置或者由协议预定义。
可选地,所述第一服务频点和第三服务频点中一个为主小区,另一个为主辅小区。
可选地,在所述第一服务频点和第三服务频点中一个为主小区,另一个为主辅小区的情况下,所述第一测量参数还用于指示如下至少一项:
测量所述第三服务频点的特定传输节点和所述第一服务频点之间的SFTD值;
测量所述第三服务频点的特定传输节点和所述第三服务频点的邻服务频点之间的SFTD值;
测量所述第三服务频点的不同特定传输节点之间的定时差值。
本发明实施例提供的终端设备500能够实现上述方法实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
本发明实施例的终端设备500,测量模块501,用于在所述终端设备的第一服务频点配置有至少两个传输节点的情况下,按照第一测量参数进行系统帧号和帧定时偏差SFTD测量,得到SFTD测量结果;其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一 网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值。由于在终端设备的一个服务小区或BWP的传输信号来源于多个传输节点的情况下,基于传输节点的粒度进行SFTD测量以得到传输节点的定时偏差,可以提高同一服务小区或者BWP内不同传输节点的定时偏差测量的准确性,进而可以使得网络侧对于同一小区或者BWP内的不同传输节点的定时偏差有更准确的理解。
参见图6,图6是本发明实施例提供的一种网络侧设备的结构图。如图6所示,网络侧设备600包括:
发送模块601,用于在为终端设备的第一服务频点配置了至少两个传输节点的情况下,向所述终端设备发送第一测量参数;
其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值;
所述第一网络节点包括第二服务频点或者第二服务频点的特定传输节点,所述第二服务频点包括所述第一服务频点的邻服务频点和第三服务频点中的至少一项,所述第三服务频点为所述终端设备的至少两个服务频点中除所述第一服务频点之外的服务频点;所述SFTD值和所述定时差值均包括系统帧号差值和帧边界差值中的至少一项。
可选地,所述网络侧设备还包括:
第一接收模块,用于在所述第一服务频点的特定传输节点的数量为至少两个,且所述第一测量参数至少指示测量所述第一服务频点的特定传输节点和所述第一网络节点之间的SFTD值的情况下,从所述终端设备接收第一SFTD值和第一定时差值;
第二计算模块,用于根据所述第一SFTD值和所述第一定时差值,计算第二特定传输节点和所述第一网络节点之间的第二SFTD值;
其中,所述第一SFTD值为第一特定传输节点和所述第一网络节点之间的SFTD值,所述第一定时差值为所述第一特定传输节点和第二特定传输节点之间的定时差值,所述第一特定传输节点和所述第二特定传输节点均为所述第一服务频点的特定传输节点。
可选地,所述网络侧设备还包括第二接收模块,具体用于:
在所述第一服务频点的特定传输节点的数量为至少两个,且所述第一测量参数至少指示测量所述第一服务频点的特定传输节点和所述第一网络节点之间的SFTD值的情况下,从所述终端设备接收第一SFTD值和第一SFTD值;
或者
在所述第一服务频点的特定传输节点的数量为至少两个,且所述第一测量参数至少指示测量所述第一服务频点的特定传输节点和所述第一网络节点之间的SFTD值的情况下,从所述终端设备接收第一SFTD值、第二SFTD值和第一定时差值;
其中,所述第一SFTD值为第一特定传输节点和所述第一网络节点之间的SFTD值,所述第二SFTD值为第二特定传输节点和所述第一网络节点之间的SFTD值,所述第一定时差值为所述第一特定传输节点和第二特定传输节点之间的定时差值,所述第一特定传输节点和所述第二特定传输节点均为所述第一服务频点的特定传输节点。
可选地,第四服务频点的特定传输节点由所述网络侧设备配置,所述第四服务频点包括所述第一服务频点和所述第二服务频点中的至少一项。
可选地,在所述终端设备的第一服务频点配置有至少两个传输节点的情况下,所述至少两个传输节点中不同的传输节点的传输节点物理标识不同;
其中,所述传输节点物理标识包括如下至少一项:
物理服务频点标识;
参考信号标识;
参考信号对应的端口号标识;
控制信道的资源位置标识。
可选地,所述网络侧设备还包括:
第三接收模块,用于从终端设备接收SFTD测量结果和第一信息;
其中,所述第一信息包括如下至少一项:
第三特定传输节点的传输节点物理标识;
第三特定传输节点对应的服务频点的服务频点标识;
第三特定传输节点对应的服务频点的类型标识;
第三特定传输节点的参考信号接收功率RSRP、参考信号接收质量RSRQ和接收信号强度指示RSSI中至少一项的测量结果;
所述第三特定传输节点包括所述第一服务频点的特定传输节点和所述第二服务频点的特定传输节点中的至少一项。
可选地,所述第一服务频点和第三服务频点中一个为主小区,另一个为主辅小区。
可选地,在所述第一服务频点和第三服务频点中一个为主小区,另一个为主辅小区的情况下,所述第一测量参数还用于指示如下至少一项:
测量所述第三服务频点的特定传输节点和所述第一服务频点之间的SFTD值;
测量所述第三服务频点的特定传输节点和所述第三服务频点的邻服务频点之间的SFTD值;
测量所述第三服务频点的不同特定传输节点之间的定时差值。
本发明实施例提供的网络侧设备600能够实现上述方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
本发明实施例的网络侧设备600,发送模块601,用于在为终端设备的第一服务频点配置了至少两个传输节点的情况下,向所述终端设备发送第一测量参数;其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值。从而终端设备可以基于第一测量参数进行SFTD测量并上报SFTD测量结果给网络侧设备,由于终端设备可以基于传输节点的粒度进行SFTD测量,进而可以使得网络侧对于同一服务小区或者BWP内不同传输节点的定时偏差有更准确的理解。
图7是本发明实施例提供的另一种终端设备的结构图。参见图7,该终端设备700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、处理器710、以及电源711等部件。本领域技术人员可以理解,图7中示出的终端设备结构并不构成对终端设备的限定,终端设备可以包括 比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端设备包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,所述处理器710,用于在所述终端设备的第一服务频点配置有至少两个传输节点的情况下,按照第一测量参数进行系统帧号和帧定时偏差SFTD测量,得到SFTD测量结果;
其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值;
所述第一网络节点包括第二服务频点或者第二服务频点的特定传输节点,所述第二服务频点包括所述第一服务频点的邻服务频点和第三服务频点中的至少一项,所述第三服务频点为所述终端设备的至少两个服务频点中除所述第一服务频点之外的服务频点;所述SFTD值和所述定时差值均包括系统帧号差值和帧边界差值中的至少一项。
应理解的是,本发明实施例中,上述射频单元701和处理器710能够实现上述方法实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
应理解的是,本发明实施例中,射频单元701可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器710处理;另外,将上行的数据发送给基站。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元701还可以通过无线通信系统与网络和其他设备通信。
终端设备通过网络模块702为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元703可以将射频单元701或网络模块702接收的或者在存储器709中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元703还可以提供与终端设备700执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元703包括扬声器、蜂鸣器以及受话器等。
输入单元704用于接收音频或视频信号。输入单元704可以包括图形处 理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元706上。经图形处理器7041处理后的图像帧可以存储在存储器709(或其它存储介质)中或者经由射频单元701或网络模块702进行发送。麦克风7042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元701发送到移动通信基站的格式输出。
终端设备700还包括至少一种传感器705,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板7061的亮度,接近传感器可在终端设备700移动到耳边时,关闭显示面板7061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器705还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元706用于显示由用户输入的信息或提供给用户的信息。显示单元706可包括显示面板7061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板7061。
用户输入单元707可用于接收输入的数字或字符信息,以及产生与终端设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板7071上或在触控面板7071附近的操作)。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器; 触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器710,接收处理器710发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板7071。除了触控面板7071,用户输入单元707还可以包括其他输入设备7072。具体地,其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板7071可覆盖在显示面板7061上,当触控面板7071检测到在其上或附近的触摸操作后,传送给处理器710以确定触摸事件的类型,随后处理器710根据触摸事件的类型在显示面板7061上提供相应的视觉输出。虽然在图7中,触控面板7071与显示面板7061是作为两个独立的部件来实现终端设备的输入和输出功能,但是在某些实施例中,可以将触控面板7071与显示面板7061集成而实现终端设备的输入和输出功能,具体此处不做限定。
接口单元708为外部装置与终端设备700连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元708可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端设备700内的一个或多个元件或者可以用于在终端设备700和外部装置之间传输数据。
存储器709可用于存储软件程序以及各种数据。存储器709可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器710是终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部分,通过运行或执行存储在存储器709内的软件程序和/或模块,以及调用存储在存储器709内的数据,执行终端设备的各种功能和处理数据, 从而对终端设备进行整体监控。处理器710可包括一个或多个处理单元;优选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
终端设备700还可以包括给各个部件供电的电源711(比如电池),优选的,电源711可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端设备700包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种终端设备,包括处理器710,存储器709,存储在存储器709上并可在所述处理器710上运行的计算机程序,该计算机程序被处理器710执行时实现上述测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图8,图8是本发明实施例提供的另一种网络侧设备的结构图。如图8所示,网络侧设备800包括:处理器801、存储器802、总线接口803和收发机804,其中,处理器801、存储器802和收发机804均连接至总线接口803。
其中,在本发明实施例中,网络侧设备800还包括:存储在存储器802上并可在处理器801上运行的计算机程序。
在本发明实施例中,所述收发机804用于:
在为终端设备的第一服务频点配置了至少两个传输节点的情况下,向所述终端设备发送第一测量参数;
其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值;
所述第一网络节点包括第二服务频点或者第二服务频点的特定传输节点,所述第二服务频点包括所述第一服务频点的邻服务频点和第三服务频点中的至少一项,所述第三服务频点为所述终端设备的至少两个服务频点中除所述第一服务频点之外的服务频点;所述SFTD值和所述定时差值均包括系统帧号差值和帧边界差值中的至少一项。
应理解的是,本发明实施例中,上述处理器801和收发机804能够实现上述方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
可以理解的是,本公开描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上 述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (27)

  1. 一种测量方法,应用于终端设备,包括:
    在所述终端设备的第一服务频点配置有至少两个传输节点的情况下,按照第一测量参数进行系统帧号和帧定时偏差SFTD测量,得到SFTD测量结果;
    其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值;
    所述第一网络节点包括第二服务频点或者第二服务频点的特定传输节点,所述第二服务频点包括所述第一服务频点的邻服务频点和第三服务频点中的至少一项,所述第三服务频点为所述终端设备的至少两个服务频点中除所述第一服务频点之外的服务频点;所述SFTD值和所述定时差值均包括系统帧号差值和帧边界差值中的至少一项。
  2. 根据权利要求1所述的方法,其中,所述按照第一测量参数进行系统帧号和帧定时偏差SFTD测量,包括:
    在所述第一服务频点的特定传输节点的数量为至少两个,且所述第一测量参数至少指示测量所述第一服务频点的特定传输节点和所述第一网络节点之间的SFTD值的情况下,测量第一特定传输节点和所述第一网络节点之间的第一SFTD值,并测量所述第一特定传输节点和第二特定传输节点之间的第一定时差值;
    其中,所述第一特定传输节点和所述第二特定传输节点均为所述第一服务频点的特定传输节点。
  3. 根据权利要求2所述的方法,还包括:
    根据所述第一SFTD值和所述第一定时差值,计算所述第二特定传输节点和所述第一网络节点之间的第二SFTD值;
    向网络侧设备上报所述第一SFTD值和所述第二SFTD值,或者向网络侧设备上报所述第一SFTD值、所述第二SFTD值和所述第一定时差值。
  4. 根据权利要求2所述的方法,还包括:
    向网络侧设备上报所述第一SFTD值和所述第一定时差值。
  5. 根据权利要求1所述的方法,其中,第四服务频点的特定传输节点由网络侧设备配置或者由协议预定义,所述第四服务频点包括所述第一服务频点和所述第二服务频点中的至少一项。
  6. 根据权利要求5所述的方法,其中,在所述第四服务频点的特定传输节点由协议预定义的情况下,所述第四服务频点的特定传输节点包括如下一项:
    所述第四服务频点的所有传输节点;
    所述第四服务频点的所有传输节点中处于激活状态的传输节点;
    所述第四服务频点的所有传输节点中的第一类型的传输节点,所述第一类型的传输节点包括主传输节点、初始传输节点和默认传输节点中的至少一项。
  7. 根据权利要求1所述的方法,其中,在所述终端设备的第一服务频点配置有至少两个传输节点的情况下,所述至少两个传输节点中不同的传输节点的传输节点物理标识不同;
    其中,所述传输节点物理标识包括如下至少一项:
    物理服务频点标识;
    参考信号标识;
    参考信号对应的端口号标识;
    控制信道的资源位置标识。
  8. 根据权利要求1所述的方法,还包括:
    向网络侧设备上报所述SFTD测量结果和第一信息;
    其中,所述第一信息包括如下至少一项:
    第三特定传输节点的传输节点物理标识;
    第三特定传输节点对应的服务频点的服务频点标识;
    第三特定传输节点对应的服务频点的类型标识;
    第三特定传输节点的参考信号接收功率RSRP、参考信号接收质量RSRQ和接收信号强度指示RSSI中至少一项的测量结果;
    所述第三特定传输节点包括所述第一服务频点的特定传输节点和所述第 二服务频点的特定传输节点中的至少一项。
  9. 根据权利要求1所述的方法,其中,所述第一测量参数由网络侧设备配置或者由协议预定义。
  10. 根据权利要求1所述的方法,其中,所述第一服务频点和第三服务频点中一个为主小区,另一个为主辅小区。
  11. 根据权利要求10所述的方法,其中,在所述第一服务频点和第三服务频点中一个为主小区,另一个为主辅小区的情况下,所述第一测量参数还用于指示如下至少一项:
    测量所述第三服务频点的特定传输节点和所述第一服务频点之间的SFTD值;
    测量所述第三服务频点的特定传输节点和所述第三服务频点的邻服务频点之间的SFTD值;
    测量所述第三服务频点的不同特定传输节点之间的定时差值。
  12. 一种定时偏差测量方法,应用于网络侧设备,包括:
    在为终端设备的第一服务频点配置了至少两个传输节点的情况下,向所述终端设备发送第一测量参数;
    其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值;
    所述第一网络节点包括第二服务频点或者第二服务频点的特定传输节点,所述第二服务频点包括所述第一服务频点的邻服务频点和第三服务频点中的至少一项,所述第三服务频点为所述终端设备的至少两个服务频点中除所述第一服务频点之外的服务频点;所述SFTD值和所述定时差值均包括系统帧号差值和帧边界差值中的至少一项。
  13. 根据权利要求12所述的方法,还包括:
    在所述第一服务频点的特定传输节点的数量为至少两个,且所述第一测量参数至少指示测量所述第一服务频点的特定传输节点和所述第一网络节点之间的SFTD值的情况下,从所述终端设备接收第一SFTD值和第一定时差值;
    根据所述第一SFTD值和所述第一定时差值,计算第二特定传输节点和所述第一网络节点之间的第二SFTD值;
    其中,所述第一SFTD值为第一特定传输节点和所述第一网络节点之间的SFTD值,所述第一定时差值为所述第一特定传输节点和第二特定传输节点之间的定时差值,所述第一特定传输节点和所述第二特定传输节点均为所述第一服务频点的特定传输节点。
  14. 根据权利要求12所述的方法,还包括:
    在所述第一服务频点的特定传输节点的数量为至少两个,且所述第一测量参数至少指示测量所述第一服务频点的特定传输节点和所述第一网络节点之间的SFTD值的情况下,从所述终端设备接收第一SFTD值和第一SFTD值;
    或者
    在所述第一服务频点的特定传输节点的数量为至少两个,且所述第一测量参数至少指示测量所述第一服务频点的特定传输节点和所述第一网络节点之间的SFTD值的情况下,从所述终端设备接收第一SFTD值、第二SFTD值和第一定时差值;
    其中,所述第一SFTD值为第一特定传输节点和所述第一网络节点之间的SFTD值,所述第二SFTD值为第二特定传输节点和所述第一网络节点之间的SFTD值,所述第一定时差值为所述第一特定传输节点和第二特定传输节点之间的定时差值,所述第一特定传输节点和所述第二特定传输节点均为所述第一服务频点的特定传输节点。
  15. 根据权利要求12所述的方法,其中,第四服务频点的特定传输节点由所述网络侧设备配置,所述第四服务频点包括所述第一服务频点和所述第二服务频点中的至少一项。
  16. 根据权利要求12所述的方法,其中,在所述终端设备的第一服务频点配置有至少两个传输节点的情况下,所述至少两个传输节点中不同的传输节点的传输节点物理标识不同;
    其中,所述传输节点物理标识包括如下至少一项:
    物理服务频点标识;
    参考信号标识;
    参考信号对应的端口号标识;
    控制信道的资源位置标识。
  17. 根据权利要求12所述的方法,还包括:
    从终端设备接收SFTD测量结果和第一信息;
    其中,所述第一信息包括如下至少一项:
    第三特定传输节点的传输节点物理标识;
    第三特定传输节点对应的服务频点的服务频点标识;
    第三特定传输节点对应的服务频点的类型标识;
    第三特定传输节点的参考信号接收功率RSRP、参考信号接收质量RSRQ和接收信号强度指示RSSI中至少一项的测量结果;
    所述第三特定传输节点包括所述第一服务频点的特定传输节点和所述第二服务频点的特定传输节点中的至少一项。
  18. 根据权利要求12所述的方法,其中,所述第一服务频点和第三服务频点中一个为主小区,另一个为主辅小区。
  19. 根据权利要求18所述的方法,其中,在所述第一服务频点和第三服务频点中一个为主小区,另一个为主辅小区的情况下,所述第一测量参数还用于指示如下至少一项:
    测量所述第三服务频点的特定传输节点和所述第一服务频点之间的SFTD值;
    测量所述第三服务频点的特定传输节点和所述第三服务频点的邻服务频点之间的SFTD值;
    测量所述第三服务频点的不同特定传输节点之间的定时差值。
  20. 一种终端设备,包括:
    测量模块,用于在所述终端设备的第一服务频点配置有至少两个传输节点的情况下,按照第一测量参数进行系统帧号和帧定时偏差SFTD测量,得到SFTD测量结果;
    其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点 的不同特定传输节点之间的定时差值;
    所述第一网络节点包括第二服务频点或者第二服务频点的特定传输节点,所述第二服务频点包括所述第一服务频点的邻服务频点和第三服务频点中的至少一项,所述第三服务频点为所述终端设备的至少两个服务频点中除所述第一服务频点之外的服务频点;所述SFTD值和所述定时差值均包括系统帧号差值和帧边界差值中的至少一项。
  21. 根据权利要求20所述的终端设备,其中,所述测量模块具体用于:
    在所述第一服务频点的特定传输节点的数量为至少两个,且所述第一测量参数至少指示测量所述第一服务频点的特定传输节点和所述第一网络节点之间的SFTD值的情况下,测量第一特定传输节点和所述第一网络节点之间的第一SFTD值,并测量所述第一特定传输节点和第二特定传输节点之间的第一定时差值;
    其中,所述第一特定传输节点和所述第二特定传输节点均为所述第一服务频点的特定传输节点。
  22. 根据权利要求21所述的终端设备,还包括:
    第一计算模块,用于根据所述第一SFTD值和所述第一定时差值,计算所述第二特定传输节点和所述第一网络节点之间的第二SFTD值;
    第一上报模块,用于向网络侧设备上报所述第一SFTD值和所述第二SFTD值,或者向网络侧设备上报所述第一SFTD值、所述第二SFTD值和所述第一定时差值。
  23. 一种网络侧设备,包括:
    发送模块,用于在为终端设备的第一服务频点配置了至少两个传输节点的情况下,向所述终端设备发送第一测量参数;
    其中,所述第一测量参数用于指示如下至少一项:测量所述第一服务频点的特定传输节点和第一网络节点之间的SFTD值;测量所述第一服务频点的不同特定传输节点之间的定时差值;
    所述第一网络节点包括第二服务频点或者第二服务频点的特定传输节点,所述第二服务频点包括所述第一服务频点的邻服务频点和第三服务频点中的至少一项,所述第三服务频点为所述终端设备的至少两个服务频点中除所述 第一服务频点之外的服务频点;所述SFTD值和所述定时差值均包括系统帧号差值和帧边界差值中的至少一项。
  24. 根据权利要求23所述的网络侧设备,其中,所述网络侧设备还包括:
    第一接收模块,用于在所述第一服务频点的特定传输节点的数量为至少两个,且所述第一测量参数至少指示测量所述第一服务频点的特定传输节点和所述第一网络节点之间的SFTD值的情况下,从所述终端设备接收第一SFTD值和第一定时差值;
    第二计算模块,用于根据所述第一SFTD值和所述第一定时差值,计算第二特定传输节点和所述第一网络节点之间的第二SFTD值;
    其中,所述第一SFTD值为第一特定传输节点和所述第一网络节点之间的SFTD值,所述第一定时差值为所述第一特定传输节点和第二特定传输节点之间的定时差值,所述第一特定传输节点和所述第二特定传输节点均为所述第一服务频点的特定传输节点。
  25. 一种终端设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至11中任一项所述的测量方法的步骤。
  26. 一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求12至19中任一项所述的测量方法的步骤。
  27. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至11中任一项所述的测量方法的步骤,或者实现如权利要求12至19中任一项所述的测量方法的步骤。
PCT/CN2021/082282 2020-03-24 2021-03-23 一种测量方法、终端设备和网络侧设备 WO2021190473A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21776009.9A EP4132071A4 (en) 2020-03-24 2021-03-23 MEASUREMENT METHOD, TERMINAL DEVICE AND NETWORK SIDE DEVICE
US17/948,201 US20230019838A1 (en) 2020-03-24 2022-09-19 Measurement method, terminal device, and network side device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010215189.1 2020-03-24
CN202010215189.1A CN113453267B (zh) 2020-03-24 2020-03-24 一种测量方法、终端设备和网络侧设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/948,201 Continuation US20230019838A1 (en) 2020-03-24 2022-09-19 Measurement method, terminal device, and network side device

Publications (1)

Publication Number Publication Date
WO2021190473A1 true WO2021190473A1 (zh) 2021-09-30

Family

ID=77806704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082282 WO2021190473A1 (zh) 2020-03-24 2021-03-23 一种测量方法、终端设备和网络侧设备

Country Status (4)

Country Link
US (1) US20230019838A1 (zh)
EP (1) EP4132071A4 (zh)
CN (1) CN113453267B (zh)
WO (1) WO2021190473A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391390A (zh) * 2017-08-08 2019-02-26 华为技术有限公司 获取定时偏差的方法及相关设备
WO2019167844A1 (ja) * 2018-03-01 2019-09-06 株式会社Nttドコモ ユーザ装置
CN110419235A (zh) * 2018-01-10 2019-11-05 联发科技股份有限公司 扩展系统帧编号及帧时序差值测量的使用的装置及其方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105659663B (zh) * 2014-09-28 2019-05-10 华为技术有限公司 双连接中服务小区的配置方法、用户设备和基站
CN108990080A (zh) * 2017-06-05 2018-12-11 华为技术有限公司 一种通信方法及装置
CN109474963B (zh) * 2017-09-08 2021-06-25 展讯通信(上海)有限公司 获取及上报邻区同步信息的方法、基站、用户设备及介质
US20190313272A1 (en) * 2018-06-25 2019-10-10 Intel Corporation Techniques in system frame number (sfn) and frame timing difference measurements in new radio (nr)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391390A (zh) * 2017-08-08 2019-02-26 华为技术有限公司 获取定时偏差的方法及相关设备
CN110419235A (zh) * 2018-01-10 2019-11-05 联发科技股份有限公司 扩展系统帧编号及帧时序差值测量的使用的装置及其方法
WO2019167844A1 (ja) * 2018-03-01 2019-09-06 株式会社Nttドコモ ユーザ装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer measurements (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.215, vol. RAN WG1, no. V15.4.0, 11 January 2019 (2019-01-11), pages 1 - 15, XP051591683 *
ERICSSON: "SFTD measurement for non-serving cell when PSCell is configured", 3GPP DRAFT; R2-1803326 - SFTD MEASUREMENT FOR NON-SERVING CELL WHEN PSCELL IS CONFIGURED, vol. RAN WG2, 21 February 2018 (2018-02-21), Athens, Greece, pages 1 - 4, XP051400798 *

Also Published As

Publication number Publication date
EP4132071A1 (en) 2023-02-08
EP4132071A4 (en) 2023-09-20
CN113453267A (zh) 2021-09-28
CN113453267B (zh) 2023-03-24
US20230019838A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
US11665571B2 (en) Reference signal measurement method and user terminal
WO2020164594A1 (zh) 测量处理方法、参数配置方法、终端和网络设备
WO2019076169A1 (zh) 同步信号块的处理方法、同步信号块的指示方法及装置
US20220377586A1 (en) Beam failure recovery method, terminal, and network device
WO2021109955A1 (zh) 邻小区csi报告发送方法、接收方法及相关设备
WO2020199959A1 (zh) 测量配置方法及相关装置
WO2021078235A1 (zh) 测量处理方法、指示信息发送方法、终端和网络设备
WO2021088970A1 (zh) 探测参考信号发射设置方法、信息配置方法、定位方法和相关设备
WO2021068872A1 (zh) 搜索空间分配方法、搜索空间配置方法及相关设备
WO2019223684A1 (zh) 测量上报方法、测量配置方法、终端和网络侧设备
WO2020015681A1 (zh) 一种测量指示方法、装置及系统
WO2021109954A1 (zh) 波束失败恢复方法、终端及网络侧设备
WO2020253744A1 (zh) 信息上报、获取方法、终端及网络侧设备
WO2019242678A1 (zh) 测量方法及终端
US20230012892A1 (en) Radio link monitoring method, terminal, and network side device
WO2021190473A1 (zh) 一种测量方法、终端设备和网络侧设备
WO2021147956A1 (zh) 一种测量上报、配置方法、终端及网络侧设备
WO2020164513A1 (zh) 一种信息处理方法、设备及系统
WO2021190444A1 (zh) 测量方法、终端设备和网络侧设备
WO2021190474A1 (zh) 测量方法、终端及网络侧设备
WO2021160027A1 (zh) 参考信号的确定方法和通信设备
WO2021088968A1 (zh) 切换方法、配置方法、终端及网络设备
WO2021190477A1 (zh) 接收方法、发送方法、终端及网络侧设备
WO2019184761A1 (zh) 测量结果的指示方法、终端和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021776009

Country of ref document: EP

Effective date: 20221024