WO2021068872A1 - 搜索空间分配方法、搜索空间配置方法及相关设备 - Google Patents

搜索空间分配方法、搜索空间配置方法及相关设备 Download PDF

Info

Publication number
WO2021068872A1
WO2021068872A1 PCT/CN2020/119894 CN2020119894W WO2021068872A1 WO 2021068872 A1 WO2021068872 A1 WO 2021068872A1 CN 2020119894 W CN2020119894 W CN 2020119894W WO 2021068872 A1 WO2021068872 A1 WO 2021068872A1
Authority
WO
WIPO (PCT)
Prior art keywords
trp
terminal device
uss
search space
coreset
Prior art date
Application number
PCT/CN2020/119894
Other languages
English (en)
French (fr)
Inventor
纪子超
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020227015357A priority Critical patent/KR20220085042A/ko
Priority to BR112022006879A priority patent/BR112022006879A2/pt
Priority to EP20875459.8A priority patent/EP4044726A4/en
Publication of WO2021068872A1 publication Critical patent/WO2021068872A1/zh
Priority to US17/658,596 priority patent/US20220240229A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a search space allocation method, search space configuration method and related equipment.
  • the fifth-generation (5th-Generation, 5G) New Radio (NR) system of the fifteenth version (Release 15, Rel-15) supports flexible physical downlink control channel (PDCCH) resource allocation, Instead of reusing the same PDCCH for the entire cell, each user equipment (User Equipment, UE) (also known as terminal equipment) can be independently configured with a control resource set (Control Resource Set, CORESET) to monitor the PDCCH. .
  • CORESET can contain independent time domain, frequency domain and space domain resource configuration information.
  • the 5G NR system supports the configuration of multiple search space sets for the UE, and flexibly configures the number of blind detections for each search space (Search Space, SS), and the CORESET and search space sets can be flexibly associated.
  • Each CORESET can be associated with multiple search space sets, and the CORESET resources of different UEs can partially or completely overlap.
  • the NR system specifies the maximum number of PDCCH candidates (ie, the total number of blind detections) of the UE in a time slot, and the number of non-overlapping CCEs allocated by the PDCCH candidates that the UE monitors in a time slot The upper limit (that is, the maximum number of channel estimates).
  • the 5G NR system can also support the transmission of multiple transmission and reception points (Multiple Transmission and Reception Point, M-TRP) (also referred to as transceiver points).
  • M-TRP Multiple Transmission and Reception Point
  • the UE will need to support more CORESET configurations.
  • the increase in the number of CORESETs will easily lead to the total number of blind detections of the UE in a time slot (ie the number of PDCCH candidates). The sum) exceeds the maximum number of PDCCH candidates supported, or the number of channel estimates exceeds the maximum number of channel estimates.
  • the embodiments of the present disclosure provide a search space allocation method, search space configuration method, and related equipment to reduce the occurrence of the situation that the total number of blind detections of the UE exceeds the maximum supported PDCCH candidate number or the channel estimation number exceeds the maximum channel estimation number.
  • embodiments of the present disclosure provide a search space allocation method, which is applied to a terminal device, and the method includes:
  • the terminal device is configured with the transceiver node TRP, if the number of first monitoring objects in the search space set configured for the terminal device exceeds the upper limit of the first monitoring objects supported by the terminal device, then Discarding part of the search space configured for the terminal device;
  • the first monitoring object includes a physical downlink control channel PDCCH candidate or a non-overlapping control channel element CCE.
  • the embodiments of the present disclosure also provide a search space configuration method, which is applied to a network side device, and the method includes:
  • the terminal device is configured with a transceiver node TRP; the number of first listening objects in the search space set does not exceed the upper limit of the first listening objects supported by the terminal device, or the search space is centrally associated with The number of first monitoring objects in the search space of the second transmission object does not exceed the upper limit of the first monitoring objects that the terminal device supports monitoring, or the search space is concentratedly associated with the first monitoring of the search space of the secondary cell Scell The number of objects does not exceed the upper limit of the first monitoring object supported by the terminal device;
  • the first monitoring object includes a physical downlink control channel PDCCH candidate or a non-overlapping control channel element CCE
  • the second transmission object includes a second TRP or a second control resource set CORESET
  • the second TRP is for the terminal A TRP other than a specific TRP in the TRP configured by the device
  • the second CORESET is a CORESET other than the specific CORESET in the target CORESET
  • the target CORESET is a CORESET configured for the terminal device to monitor the search space.
  • the embodiments of the present disclosure also provide a terminal device.
  • the terminal equipment includes:
  • the discarding module is used to, when the terminal device is configured with the transceiver node TRP, if the number of first listening objects in the search space set configured for the terminal device exceeds the number of first listening objects supported by the terminal device to monitor Upper limit value, discard part of the search space configured for the terminal device;
  • the first monitoring object includes a physical downlink control channel PDCCH candidate or a non-overlapping control channel element CCE.
  • the embodiments of the present disclosure also provide a network side device.
  • the network side equipment includes:
  • the configuration module is used to configure the search space set for the terminal device
  • the terminal device is configured with a transceiver node TRP; the number of first listening objects in the search space set does not exceed the upper limit of the first listening objects supported by the terminal device, or the search space is centrally associated with The number of first monitoring objects in the search space of the second transmission object does not exceed the upper limit of the first monitoring objects that the terminal device supports monitoring, or the search space is concentratedly associated with the first monitoring of the search space of the secondary cell Scell The number of objects does not exceed the upper limit of the first monitoring object supported by the terminal device;
  • the first monitoring object includes a physical downlink control channel PDCCH candidate or a non-overlapping control channel element CCE
  • the second transmission object includes a second TRP or a second control resource set CORESET
  • the second TRP is for the terminal A TRP other than a specific TRP in the TRP configured by the device
  • the second CORESET is a CORESET other than the specific CORESET in the target CORESET
  • the target CORESET is a CORESET configured for the terminal device to monitor the search space.
  • the embodiments of the present disclosure also provide a terminal device, including a processor, a memory, and a computer program stored on the memory and running on the processor, the computer program being executed by the processor When realizing the steps of the search space allocation method provided in the first aspect above.
  • the embodiments of the present disclosure also provide a network-side device, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor, and the computer program is executed by the processor. During execution, the steps of the search space configuration method provided in the second aspect are implemented.
  • the embodiments of the present disclosure also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the search space allocation provided in the first aspect is realized The steps of the method, or the steps of implementing the search space configuration method provided in the second aspect described above.
  • the terminal device when the terminal device is configured with TRP, if the number of PDCCH candidates in the search space set configured for the terminal device exceeds the upper limit of the PDCCH candidates supported by the terminal device to monitor, Or the number of non-overlapping CCEs in the search space set configured for the terminal device exceeds the upper limit of the non-overlapping CCEs supported by the terminal device to monitor, then part of the search space configured for the terminal device is discarded, which can reduce UE
  • the total number of blind detections exceeds the maximum supported PDCCH candidate number or the number of channel estimates exceeds the maximum channel estimate, and the flexibility of allocating PDCCH blind detection resources can be improved.
  • Figure 1a is a schematic diagram of multi-antenna panel transmission in the same TRP provided by an embodiment of the present disclosure
  • Figure 1b is a schematic diagram of an ideal backhaul line provided by an embodiment of the present disclosure
  • Figure 1c is a schematic diagram of a non-ideal backhaul line provided by an embodiment of the present disclosure
  • Figure 2 is a structural diagram of a network system applicable to the embodiments of the present disclosure
  • Fig. 3 is a flowchart of a search space allocation method provided by an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a search space allocation method provided by another embodiment of the present disclosure.
  • Figure 5 is a structural diagram of a terminal device provided by an embodiment of the present disclosure.
  • Figure 6 is a structural diagram of a network-side device provided by an embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of a terminal device provided by another embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of a network side device provided by another embodiment of the present disclosure.
  • M-TRP Multiple sending and receiving points
  • the third generation partnership project (3rd Generation Partnership Project, 3GPP) version 16 proposed the scenario of multiple transmission and reception points/multi-antenna panels (ie, multi-TRP/multi-Panel), and multi-TRP transmission
  • 3rd Generation Partnership Project, 3GPP 3rd Generation Partnership Project
  • the transmission reliability and throughput performance can be increased.
  • the UE can receive the same data or different data from multiple TRPs.
  • Figures 1a to 1c which specifically include the following multiple TRP transmission scenarios:
  • the multi-TRP transmission scheme may include:
  • TRPs send multiple Physical Downlink Control Channels (PDCCH), multiple Physical Downlink Shared Channels (PDSCH), and each TRP sends one PDCCH and one PDSCH;
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • Multiple PDSCHs transmit different TBs.
  • UE PDCCH processing capability It can refer to the maximum number of PDCCH candidates (that is, the maximum number of PDCCH candidates) that the UE (also referred to as terminal equipment) supports monitoring in a unit time (for example, a time slot (ie Slot)), or The maximum number of non-overlapping control channel elements (CCEs) allocated to the monitored PDCCH candidates.
  • PDCCH candidates that is, the maximum number of PDCCH candidates
  • terminal equipment also referred to as terminal equipment
  • CCEs non-overlapping control channel elements
  • TRP upper limit (i.e. TRP Limit): It can indicate the maximum processing capacity of the UE to monitor PDCCH candidates associated with a TRP in a cell, for example, the maximum number of PDCCH candidates associated with a TRP in a cell supported by the UE to monitor or non-overlapping The maximum number of CCEs.
  • Cell Limit It can indicate the maximum processing capacity of PDCCH candidates in a cell monitored by the UE. For example, the maximum number of PDCCH candidates in a cell that the UE supports monitoring or the maximum number of non-overlapping CCEs, one of which The cell can be configured with one or more TRPs.
  • CA Carrier Aggregation
  • CA Limit It can indicate the maximum processing capacity of the UE to monitor PDCCH candidates of multiple cells when carrier aggregation is configured. For example, the UE supports monitoring when CA is configured Maximum number of PDCCH candidates or maximum number of non-overlapping CCEs.
  • Overbooking configure the UE to monitor the number of PDCCH candidates or the number of non-overlapping CCEs that exceed the UE’s maximum PDCCH candidate processing capability, for example, configure the UE to monitor the number of PDCCH candidates exceeding the UE’s maximum number of PDCCH candidates to support monitoring, or configure The number of non-overlapping CCEs monitored by the UE exceeds the maximum number of non-overlapping CCEs that the UE supports.
  • Overbooking processing can refer to discarding (also called abandoning allocation, abandoning mapping, stopping allocation, or stopping mapping, etc.) part of the search space configured for the UE in the presence of Overbooking.
  • FIG. 2 is a structural diagram of a network system applicable to the embodiments of the present disclosure. As shown in Figure 2, it includes a terminal device 11 and a network side device 12.
  • the terminal device 11 may be a mobile phone or a tablet computer ( User-side devices such as Tablet Personal Computer, Laptop Computer, Personal Digital Assistant (PDA), Mobile Internet Device (MID), or Wearable Device (Wearable Device), etc. It is noted that the specific type of the terminal device 11 is not limited in the embodiment of the present disclosure.
  • the network side equipment 12 may be a base station, such as a macro station, a long term evolution (Long Term Evolution, LTE) evolved node base station (eNB), a 5G NR base station (node base station, NB), and a next-generation base station (next generation node base station, gNB), etc.; the network side device 12 may also be a small station, such as low power node (LPN), pico, femto, etc., or the network side device 12 may be an access point (Access Point, AP);
  • the base station may also be a network node composed of a central unit (Central Unit, CU) and multiple TRPs under its management and control. It should be noted that the specific type of the network side device 12 is not limited in the embodiment of the present disclosure.
  • the aforementioned terminal device 11 may be used to execute the search space allocation method provided by the embodiment of the present disclosure
  • the foregoing network side device 12 may be used to execute the search space configuration method provided by the embodiment of the present disclosure.
  • FIG. 3 is a flowchart of a search space allocation method provided by an embodiment of the present disclosure. As shown in FIG. 3, it includes the following steps:
  • Step 301 When the terminal device is configured with TRP, if the number of first listening objects in the search space set configured for the terminal device exceeds the upper limit of the first listening objects supported by the terminal device, discarding Part of the search space configured for the terminal device;
  • the first monitoring object may include PDCCH candidates (ie, PDCCH Candidate) or non-overlapping CCEs.
  • configuring the TRP for the terminal device may include configuring at least two TRPs for the terminal device.
  • the terminal device configured with a TRP may include that the cell of the terminal device is configured with a TRP.
  • the terminal device is configured with at least two TRPs.
  • the upper limit value of the first monitoring object that the terminal device supports monitoring may be used to reflect the PDCCH processing capability of the terminal device.
  • the upper limit value of the first monitoring object that the terminal device supports monitoring may include the upper limit value of the first monitoring object of different granularities that the terminal device supports monitoring, for example, one of TRP, cell, CA, and cell group. One or more particle sizes.
  • the comparison between the number of first listening objects in the search space set configured for the terminal device and the upper limit of the first listening object supported by the terminal device may refer to the search space set configured for the terminal device Compare the number of first monitoring objects with the number of first monitoring objects at the same granularity in the upper limit of the first monitoring objects supported by the terminal device. For example, compare the upper limits of the first monitoring objects of each TRP configured respectively.
  • the limit value is compared with the upper limit value of the first monitoring object of a TRP supported by the terminal device; the upper limit value of the first monitoring object of each cell and the first monitoring object of a cell supported by the terminal device are respectively compared Compare the upper limit value of the first monitoring object of the configured CA with the upper limit value of the first monitoring object of the CA supported by the terminal device.
  • the search space configured for the terminal device may be determined when the number of first monitoring objects at any configured granularity exceeds the upper limit of the first monitoring objects at the granularity supported by the terminal device to monitor The number of first monitoring objects in the set exceeds the upper limit of the first monitoring objects supported by the terminal device.
  • the foregoing discarding of the part of the search space configured for the terminal device may also be referred to as giving up the allocation or giving up the mapping or stopping the mapping or stopping the allocation of the part of the search space configured for the terminal device.
  • allocating (also referred to as mapping) search space can be understood as allocating PDCCH candidates for monitoring the search space.
  • the foregoing discarding part of the search space configured for the terminal device may include discarding the search space associated with a specific TRP in the TRP configured for the terminal device, or discarding any TRP in the TRP configured for the terminal device. Associated search space.
  • the search space allocation method provided by the embodiment of the present disclosure is configured by the terminal device configured with TRP, if the number of PDCCH candidates in the search space set configured for the terminal device exceeds the number of PDCCH candidates supported by the terminal device to monitor Or the number of non-overlapping CCEs in the search space set configured for the terminal device exceeds the upper limit of the non-overlapping CCEs supported by the terminal device to monitor, that is, configure the number of PDCCH candidates monitored by the UE or non-overlapping CCEs.
  • the overlapped CCE exceeds the maximum PDCCH candidate processing capability of the UE, part of the search space configured for the terminal device is discarded, which can reduce the number of blind detections of the UE exceeding the maximum number of PDCCH candidates supported or the number of channel estimates exceeding the maximum number of channel estimates. This happens, and the flexibility of allocating PDCCH blind detection resources can be improved.
  • the upper limit value of the first monitoring object that the terminal device supports monitoring may include at least one of the following:
  • TRP upper limit value is the maximum number of first monitoring objects associated with a TRP in a cell that the terminal device supports monitoring
  • a cell upper limit value where the cell upper limit value is the maximum number of first monitoring objects in a cell that the terminal device supports to monitor;
  • CA upper limit value where the CA upper limit value is the maximum number of first monitoring objects that the terminal device supports to monitor when the CA is configured
  • the group upper limit value, the group upper limit value is the maximum number of first monitoring objects in a group that the terminal device supports monitoring, and the grouping is obtained by grouping cells that monitor the PDCCH based on the TRP.
  • the TRP upper limit (that is, TRP Limit) may indicate the maximum processing capability of a terminal device to monitor PDCCH candidates associated with a TRP in a cell.
  • the TRP upper limit may include the maximum number of PDCCH candidates associated with a TRP in a cell that the terminal device supports monitoring, or the maximum number of non-overlapping CCEs associated with a TRP in a cell that the terminal device supports monitoring.
  • the terminal device takes the PDCCH candidate as the monitoring target, if the TRP upper limit value is 10, it means that the terminal device supports monitoring at most 10 PDCCH candidates associated with a TRP in a cell; if it is assigned to a TRP in a cell If the number of PDCCH candidate monitoring exceeds 10, it means that the PDCCH processing capability of the terminal device is exceeded.
  • the cell upper limit value may indicate the maximum processing capability of a terminal device to monitor PDCCH candidates of a cell.
  • the cell upper limit may include the maximum number of PDCCH candidates in a cell that the terminal device supports monitoring, or the maximum number of non-overlapping CCEs in a cell that the terminal device supports monitoring. For example, taking the PDCCH candidate as the monitoring target as an example, if the cell upper limit value is 20, it means that the terminal device supports monitoring at most 20 PDCCH candidates in a cell; if the number of PDCCH candidates allocated to a cell exceeds 20, then Indicates that the PDCCH processing capacity of the terminal device has been exceeded.
  • the CA upper limit (that is, CA Limit) may indicate the maximum processing capability of the terminal device to monitor PDCCH candidates of multiple cells when CA is configured.
  • the CA upper limit may include the maximum number of PDCCH candidates or the maximum number of non-overlapping CCEs that the UE supports to monitor when the terminal device is configured with CA. It should be noted that when the terminal device is configured with CA, PDCCH candidate monitoring may be allocated to only some of the multiple cells; PDCCH candidate monitoring may also be allocated to each of the above multiple cells.
  • the terminal device For example, taking the monitoring object as a PDCCH candidate as an example, if the CA upper limit value is 20, it means that the terminal device supports monitoring of 20 PDCCH candidates at most when CA is configured; if the UE is configured with CA for two cells, that is, Primary cell (Primary Cell, PCell) and secondary cell (Secondary Cell, SCell), and if the sum of the number of PDCCH candidate monitoring allocated to the PCell and the number of PDCCH candidate monitoring of the SCell exceeds 20, it means that the PDCCH processing capability of the terminal device is exceeded.
  • Primary Cell Primary Cell
  • SCell Secondary Cell
  • the group upper limit value may indicate the maximum processing capability of a group of PDCCH candidates monitored by the terminal device.
  • the upper limit of the group may include the maximum number of PDCCH candidates of a group that the terminal device supports monitoring, or the maximum number of non-overlapping CCEs of a group that the terminal device supports monitoring. For example, taking the PDCCH candidate as the monitoring target, if the upper limit value of the group is 15, it means that the terminal device supports monitoring of 15 PDCCH candidates in a group at most; if the number of PDCCH candidates allocated to a group exceeds 15, then Indicates that the PDCCH processing capacity of the terminal device has been exceeded.
  • the above-mentioned grouping may indicate TRP-based grouping of cells that monitor the PDCCH.
  • the group corresponding to TRP-1 may include Pcell and Scell
  • the group corresponding to TRP-2 may include Pcell.
  • the above group upper limit value may be a value configured by the network side, and the value does not exceed the maximum PDCCH processing capability reported by the UE.
  • the discarding part of the search space configured for the terminal device may include:
  • UE-special Search Space USS
  • the first transmission object includes a first TRP or a first CORESET
  • the first TRP includes at least one TRP among TRPs configured for the terminal device
  • the first CORESET includes a TRP configured for the terminal device. At least one of the CORESETs used to monitor the search space.
  • the above-mentioned first TRP may be any TRP in the TRP configured for the terminal device, or may be a specific TRP in the TRP configured for the terminal device.
  • the above-mentioned first CORESET may be any CORESET in the CORESET configured for the terminal device to monitor the search space, or it may be a specific CORESET in the CORESET configured for the terminal device to monitor the search space.
  • the terminal device if the number of first monitoring objects in the search space set configured for the terminal device exceeds the first monitoring objects supported by the terminal device.
  • the upper limit value of the first TRP or first CORESET is discarded, and part or all of the USS associated with the first CORESET is discarded.
  • the first TRP is a specific TRP in a TRP configured for the terminal device, or the first CORESET is a specific CORESET in the target CORESET.
  • the Overbooking process may only be allowed to be performed on a specific TRP (hereinafter referred to as P-TRP), for example, only in the search for P-TRP associations.
  • P-TRP specific TRP
  • the specific TRP includes at least one of the following:
  • TRP indicated or configured by the network side device indicated or configured by the network side device.
  • the foregoing specific DCI format may include a fallback DCI (ie, fallback DCI) format, for example, DCI format 0_0 or DCI format 1_0.
  • a fallback DCI ie, fallback DCI
  • the TRP associated with a specific identifier may include a TRP associated with a specific ID, for example, a TRP associated with the smallest or largest TCI (Transmission Configuration Indication) state ID, or a TRP with an ID of 0.
  • TRP associated with a specific index namely Index
  • Index for example, the TRP with the smallest Index or the largest Index, or with an Index of 0.
  • the TRP indicated by the network side device may be the TRP indicated by the network side device through signaling such as DCI.
  • the TRP configured by the network-side device may be a TRP configured by the network-side device through signaling such as radio resource control (Radio Resource Control, RRC).
  • RRC Radio Resource Control
  • the specific CORESET may include at least one of the following:
  • the foregoing specific DCI format may include a fallback DCI (ie, fallback DCI) format, for example, DCI format 0_0 or DCI format 1_0.
  • a fallback DCI ie, fallback DCI
  • the aforementioned CORESET associated with a specific identifier may include a CORESET associated with a specific ID, for example, the CORESET associated with the smallest or largest TCI state ID, or the CORESET with an ID of 0.
  • the above CORESET associated with a specific index namely Index
  • the CORESET with the smallest Index or the largest Index or with an Index of 0.
  • the CORESET indicated by the network-side device may be the CORESET indicated by the network-side device through signaling such as DCI or RRC.
  • the CORESET configured by the network-side device may be the CORESET configured by the network-side device through RRC and other signaling.
  • the foregoing specific TRP may include at least one of the following: a TRP associated with a CSS; a TRP associated with a specific DCI format; a TRP associated with a specific identifier or a specific index; and a TRP indicated or configured by the network side device. This makes it possible to determine a specific CORESET based on a specific TRP.
  • the method may further include:
  • the discarding part or all of the dedicated search space USS associated with the first transmission object includes:
  • the first USS is discarded, where if there is a second USS , The second USS is discarded;
  • the first USS is any USS associated with the first transmission object
  • the second USS is the USS in the USS associated with the first transmission object whose allocation order is after the allocation order of the first USS .
  • all CSSs configured for the terminal device may be allocated first, and then the USS associated with the first TRP or the first CORESET may be allocated in sequence according to the first allocation order.
  • the above-mentioned first allocation sequence may be the USS SS ID sequence; it may also be the allocation sequence determined according to a preset rule.
  • the number of first monitoring objects that the terminal device needs to monitor exceeds the upper limit of the first monitoring objects supported by the terminal device, for example, exceeds the foregoing
  • At least one of the TRP upper limit value, the cell upper limit value and the CA upper limit value can be allocated or stop allocating the USS and the USS whose allocation sequence is after the USS.
  • the number of PDCCH candidates associated with the first TRP that the terminal device needs to monitor exceeds the TRP upper limit, or the terminal device needs to monitor the association after allocating a certain USS associated with the first TRP
  • the number of PDCCH candidates associated with the cell of the first TRP exceeds the upper limit of the cell, or when the terminal device is configured with CA, the number of PDCCH candidates that the terminal device needs to monitor after allocating a certain USS associated with the first TRP exceeds the CA
  • the limit value is set, the allocation of the USS is abandoned or the allocation of the USS is stopped and the USS whose allocation sequence is after the USS.
  • TRP upper limit 10
  • TRP-1 is a specific TRP. After the USS3 of TRP-1 is allocated, the number of PDCCH candidates associated with TRP-1 that the terminal device needs to monitor is 11. If the TRP upper limit is exceeded, the allocation of USS3 will be abandoned.
  • the method may further include:
  • the second transmission object includes a second TRP or a second CORESET
  • the second TRP is a TRP other than the first TRP among the TRPs configured for the terminal device
  • the second CORESET is the TRP configured for the terminal device.
  • the configured first number does not exceed the upper limit of the first monitoring object supported by the terminal device, and the first number is the second transmission object The number of first listening objects of the associated USS.
  • the number of first interception objects of the USS associated with the second transmission object can be configured through the network side to not exceed the upper limit of the first interception object supported by the terminal device, for example, does not exceed the upper limit of TRP, Either the cell upper limit value and the CA upper limit value. This not only prevents the total number of blind detections of the UE from exceeding the maximum number of supported PDCCH candidates or the number of channel estimates exceeding the maximum number of channel estimates, but also reduces the complexity of UE search space allocation and reduces UE power consumption.
  • the above step of allocating all the USS associated with the second transmission object may be performed before the step of sequentially allocating the USS associated with the first transmission object according to the first allocation order, or it may be performed sequentially according to the first allocation order.
  • the step of allocating the USS associated with the first transmission object is executed afterwards, or it may be executed in parallel with the step of sequentially allocating the USS associated with the first transmission object according to the first allocation order, which is not limited in this embodiment.
  • the number of first monitoring objects associated with a cell that need to be monitored after the first USS is allocated may be the number of first monitoring objects of the USS associated with the allocated first transmission object and the first of all allocated CSSs. The sum of the number of monitoring objects.
  • the flexibility of the UE in allocating the USS can be improved.
  • the number of first monitoring objects in the search space allocated in a cell of the terminal device does not exceed a cell upper limit
  • the cell upper limit value is the maximum number of first monitoring objects in a cell that the terminal device supports monitoring.
  • the number of first listening objects in the search space allocated in a cell does not exceed the cell upper limit, that is, the number of first listening objects allocated in the search space of a cell does not exceed the upper limit of the cell. The number does not exceed the upper limit of the cell.
  • the number of first monitoring objects in the search space allocated by the terminal device when carrier aggregation CA is configured does not exceed the CA upper limit
  • the CA upper limit value is the maximum number of first monitoring objects that the terminal device supports to monitor when the CA is configured.
  • the number of first monitoring objects in the search space allocated in the multiple cells does not exceed the upper limit of the CA.
  • the UE is configured with two cell CAs, namely PCell and SCell, the number of allocated first listening objects associated with the PCell search space and the allocated number of first listening objects associated with the PCell search space The sum does not exceed the upper limit of CA.
  • this embodiment can combine the search space configuration on the network side and the Overbooking process on the UE side to ensure that after the search space allocation is completed, the number of first listening objects in the allocated search space in a cell does not exceed the cell upper limit.
  • the value and the number of first monitoring objects in the search space allocated by the terminal device when the carrier aggregation CA is configured do not exceed the CA upper limit.
  • the method may further include:
  • the third transmission object includes a third TRP or a third CORESET
  • the third TRP is one of the TRPs configured for the terminal device except for the first TRP
  • the third CORESET is a CORESET other than the first CORESET in the target CORESET
  • the target CORESET is a CORESET configured for the terminal device to monitor the search space
  • the configured second number is not Exceeding the upper limit of the first monitoring objects supported by the terminal device for monitoring, and the second number is the number of the first monitoring objects of the USS associated with the third transmission object
  • the discarding part or all of the dedicated search space USS associated with the first transmission object includes:
  • the third USS is discarded, where, if there is a fourth USS , The fourth USS is discarded, the third USS is any USS associated with the first transmission object, and the fourth USS is the USS associated with the first transmission object.
  • the allocation order is in the third The USS after the allocation order of the USS.
  • the above-mentioned second allocation sequence may be the USS SS ID sequence; it may also be the allocation sequence determined according to a preset rule.
  • the number of first monitoring objects of the USS associated with the third transmission object can be configured through the network side to not exceed the upper limit of the first monitoring object supported by the terminal device, for example, not to exceed the above-mentioned TRP upper limit and cell upper limit. Either one of the value and the CA upper limit value.
  • the number of first interception objects of the USS associated with the configured third transmission object does not exceed the TRP upper limit.
  • the number of first monitoring objects that the terminal device needs to monitor exceeds the upper limit of the first monitoring objects supported by the terminal device, for example, exceeds the foregoing
  • At least one of the TRP upper limit value, the cell upper limit value, and the CA upper limit value can be allocated or stop allocating the USS and the USS whose allocation sequence is after the USS.
  • the number of first monitoring objects associated with a cell that need to be monitored after the first USS is allocated may be the number of first monitoring objects of the USS associated with the allocated first transmission object, and the allocated first transmission object The sum of the number of first listening objects of all associated USSs and the number of first listening objects of all assigned CSSs.
  • the USS associated with the first transmission object can be overbooked, it is easier to allocate all the CSS and all the USS associated with the third transmission object, and then allocate the USS associated with the first transmission object. It ensures that the total number of blind detections of the UE does not exceed the maximum number of supported PDCCH candidates or the number of channel estimates does not exceed the maximum number of channel estimates, which reduces the complexity of the UE's allocation of search space.
  • the method before the discarding part or all of the specific search space USS associated with the first transmission object, the method further includes:
  • the discarding part or all of the dedicated search space USS associated with the first transmission object may include:
  • the fifth USS is discarded, and if there is a sixth USS, then Discard the sixth USS;
  • the fifth USS is any USS associated with the TRP configured for the terminal device
  • the sixth USS is the allocation order of the USS associated with the TRP configured for the terminal device in the allocation order of the fifth USS USS after the sequence.
  • the above-mentioned third allocation sequence may be the USS SS ID sequence, or may be the allocation sequence determined according to a preset rule.
  • all CSSs can be allocated first, and then USSs can be mapped in sequence according to the third allocation order, and after a certain USS is allocated, if the number of first listening objects to be monitored exceeds the number of first listening objects supported by the terminal device. For example, if at least one of the above-mentioned TRP upper limit, cell upper limit and CA upper limit is exceeded, the allocation of the USS and the USS whose allocation sequence is after the USS will be abandoned.
  • first TRP is also the TRP associated with the discarded USS
  • first CORESET is also the CORESET associated with the discarded USS.
  • the embodiments of the present disclosure can perform Overbooking processing on any TRP-associated USS, which not only reduces the number of UE blind checks exceeding the maximum number of supported PDCCH candidates or the number of channel estimates exceeds the maximum number of channel estimates, but also improves the search space.
  • the method may further include:
  • the discarding part or all of the dedicated search space USS associated with the first transmission object includes:
  • the seventh USS is discarded and the allocation continues A ninth USS, where if there is an eighth USS, the eighth USS is discarded;
  • the fourth transmission object includes a fourth TRP or a fourth CORESET
  • the fourth TRP is any TRP in the TRP configured for the terminal device
  • the fourth CORESET is any CORESET in the target CORESET
  • the target CORESET is the CORESET configured for the terminal device to monitor the search space
  • the seventh USS is any USS associated with the fourth transmission object
  • the eighth USS is the fourth transmission
  • the allocation order of the object-associated USS is after the allocation order of the seventh USS
  • the ninth USS is the USS associated with the fifth transmission object
  • the fifth transmission object is different from the fourth transmission object.
  • the foregoing fourth allocation sequence may be the USS SS ID sequence, or may be the allocation sequence determined according to a preset rule.
  • the above-mentioned fifth transmission object is different from the fourth transmission object.
  • the fourth transmission object is TRP-1
  • the fifth transmission object can be TRP-2, or the fourth transmission object is CORESET-1, then the fifth transmission object Can be CORESET-2.
  • the number of monitored PDCCH candidates or the number of non-overlapping CCEs monitored by an SS associated with a TRP or CORESET exceeds the maximum PDCCH processing capability of the UE, for example, it exceeds the above-mentioned TRP upper limit, cell upper limit, and CA upper limit At least one item in the TRP or CORESET, stop allocating all subsequent SSs associated with the TRP or CORESET, and continue to map the SS associated with other TRPs or CORESETs until all TRP-associated SSs are mapped, or the number of monitored PDCCH candidates or non- If the number of overlapping CCEs exceeds at least one of the TRP upper limit, the cell upper limit, and the CA upper limit, the allocation is stopped.
  • a cell is configured with TRP-1 and TRP-2.
  • TRP-1 After a certain USS of TRP-1 is allocated, the number of PDCCH candidates associated with TRP-1 that the UE needs to monitor exceeds the TRP upper limit, but the currently allocated needs If the number of monitored PDCCH candidates associated with the cell does not exceed the cell upper limit, you can stop allocating the USS and the USS associated with TRP-1 in the order of allocation after the USS, and you can continue to allocate the USS of TRP-2 , Until the number of PDCCH candidates associated with TRP-2 that the UE needs to monitor exceeds the TRP upper limit or the number of PDCCH candidates associated with the cell that the UE needs to monitor exceeds the cell upper limit.
  • first TRP is also the TRP associated with the discarded USS
  • first CORESET is also the CORESET associated with the discarded USS.
  • the embodiments of the present disclosure can perform Overbooking processing on any TRP-associated USS, which not only reduces the number of UE blind checks exceeding the maximum number of supported PDCCH candidates or the number of channel estimates exceeds the maximum number of channel estimates, but also improves the search space. Flexibility of allocation.
  • the PDCCH processing capability of the terminal device can be fully utilized and the data receiving performance can be improved.
  • the first TRP is a primary cell Pcell or a primary secondary cell (Primary Secondary cell, PScell) TRP
  • the first CORESET is the Pcell Or the CORESET of the PScell.
  • the terminal device when the terminal device is configured with CA, only the TRP or CORESET of the Pcell or PScell may be overbooked.
  • the search space of Scells can be directly allocated, that is, all SSs associated with all Scells can be directly allocated.
  • the number of first monitoring objects in the configured search space of the Scell does not exceed the upper limit of the first monitoring objects supported by the terminal device.
  • the method before the discarding part of the search space configured for the terminal device, the method further includes:
  • the cells that monitor the PDCCH are grouped according to their associated TRPs to obtain at least two groups;
  • the discarding part of the search space configured for the terminal device includes:
  • the first search space is discarded, where if there is a first search space Second search space, discard the second search space;
  • the first search space is any search space of the first cell
  • the second search space is a search space in the search space of the first cell whose allocation sequence is after the first search space.
  • the above-mentioned fifth allocation order may be the SS ID order of the search space; it may also be an allocation order determined according to a preset rule.
  • the cells that monitor the PDCCH can be grouped based on the TRP, or the cells that monitor the PDCCH and their search space can be grouped based on the TRP.
  • the group corresponding to TRP-1 may include Pcell and Scell
  • the group corresponding to TRP-2 may include Pcell.
  • the PCell is associated with TRP-1 and TRP-2
  • the Scell is associated with TRP-1
  • the PCell associated with TRP-1 is associated with CSS
  • USS1 and USS3 the SCell associated with TRP-1 is associated with USS2 and USS4.
  • the group corresponding to TRP-1 can include PCell and Scell, and the PCell search space of this group can include CSS, USS1, USS3, the search space of the SCell of the group may include USS2 and USS4; the group corresponding to TRP-2 may include PCell and Scell, the search space of the PCell of the group may include USS1, and the search space of the SCell of the group may include USS2.
  • the SS of each cell can be allocated in each group.
  • the Overbooking process can be performed for the search space of the Pcell or PScell in each group.
  • the SS can be allocated in the order of the SS ID of the USS.
  • the number of the first monitoring objects that need to be monitored after a certain SS exceeds the upper limit of the first monitoring objects supported by the terminal device, such as the TRP upper limit, the cell upper limit, the CA upper limit, and the group If there is at least one of the upper limit values, all subsequent SSs will be stopped.
  • the method may further include:
  • the configured number of first monitoring objects in the search space of the Scell does not exceed the upper limit of the first monitoring objects supported by the terminal device.
  • the entire search space of each grouped Scell can be directly allocated, and the number of first listening objects in the Scell search space can be configured by the network side to not exceed the number of first listening objects supported by the terminal device to monitor.
  • the upper limit value which can reduce the complexity of UE allocating search space.
  • FIG. 4 is a flowchart of a search space configuration method provided by an embodiment of the present disclosure. As shown in FIG. 4, it includes the following steps:
  • Step 401 Configure a search space set for the terminal device
  • the terminal device is configured with a transceiver node TRP; the number of first listening objects in the search space set does not exceed the upper limit of the first listening objects supported by the terminal device, or the search space is centrally associated with The number of first monitoring objects in the search space of the second transmission object does not exceed the upper limit of the first monitoring objects that the terminal device supports monitoring, or the search space is concentratedly associated with the first monitoring of the search space of the secondary cell Scell The number of objects does not exceed the upper limit of the first monitoring object supported by the terminal device;
  • the first monitoring object includes a physical downlink control channel PDCCH candidate or a non-overlapping control channel element CCE
  • the second transmission object includes a second TRP or a second control resource set CORESET
  • the second TRP is for the terminal A TRP other than a specific TRP in the TRP configured by the device
  • the second CORESET is a CORESET other than the specific CORESET in the target CORESET
  • the target CORESET is a CORESET configured for the terminal device to monitor the search space.
  • the number of first monitoring objects in the search space set configured by the network side device for the terminal device does not exceed the number of first monitoring objects supported by the terminal device.
  • the upper limit of the object which can effectively avoid the situation that the total number of blind detections of the UE exceeds the maximum supported PDCCH candidates or the number of channel estimates exceeds the maximum number of channel estimates, and reduces the complexity of the search space allocated by the UE.
  • the network side may configure that the number of first interception objects associated with the search space of the TRP other than the specific TRP does not exceed the terminal device.
  • the upper limit of the first monitoring object that supports monitoring, or the network side can configure the number of first monitoring objects associated with the search space of CORESET other than the specific CORESET to not exceed the number of the first monitoring object supported by the terminal device.
  • the upper limit value can not only reduce the situation that the total number of blind detections of the UE exceeds the maximum number of PDCCH candidates supported or the number of channel estimates exceeds the maximum number of channel estimates, but also can improve the flexibility of search space configuration.
  • the network side may configure the number of first monitoring objects associated with the search space of the Scell not to exceed the first monitoring supported by the terminal device.
  • the upper limit of the object can not only reduce the situation that the total number of blind detections of the UE exceeds the maximum number of PDCCH candidates supported or the number of channel estimates exceeds the maximum number of channel estimates, but it can also improve the flexibility of search space configuration.
  • the upper limit value of the first monitoring object that the terminal device supports monitoring includes at least one of the following:
  • TRP upper limit value is the maximum number of first monitoring objects associated with a TRP in a cell that the terminal device supports monitoring
  • a cell upper limit value where the cell upper limit value is the maximum number of first monitoring objects in a cell that the terminal device supports to monitor;
  • CA upper limit value is the maximum number of first monitoring objects that the terminal device supports to monitor when the CA is configured
  • the upper limit of the group is the maximum number of the first monitoring objects of a group that the terminal device supports to monitor, and the grouping is obtained by grouping cells that monitor the PDCCH based on the TRP.
  • the TRP upper limit (that is, TRP Limit) may indicate the maximum processing capability of a terminal device to monitor PDCCH candidates associated with a TRP in a cell.
  • the TRP upper limit may include the maximum number of PDCCH candidates associated with a TRP in a cell that the terminal device supports monitoring, or the maximum number of non-overlapping CCEs associated with a TRP in a cell that the terminal device supports monitoring.
  • the terminal device takes the PDCCH candidate as the monitoring target, if the TRP upper limit value is 10, it means that the terminal device supports monitoring at most 10 PDCCH candidates associated with a TRP in a cell; if it is assigned to a TRP in a cell If the number of PDCCH candidate monitoring exceeds 10, it means that the PDCCH processing capability of the terminal device is exceeded.
  • the cell upper limit value may indicate the maximum processing capability of a terminal device to monitor PDCCH candidates of a cell.
  • the cell upper limit may include the maximum number of PDCCH candidates in a cell that the terminal device supports monitoring, or the maximum number of non-overlapping CCEs in a cell that the terminal device supports monitoring. For example, taking the PDCCH candidate as the monitoring target as an example, if the cell upper limit value is 20, it means that the terminal device supports monitoring at most 20 PDCCH candidates in a cell; if the number of PDCCH candidates allocated to a cell exceeds 20, then Indicates that the PDCCH processing capacity of the terminal device has been exceeded.
  • the CA upper limit (that is, CA Limit) may indicate the maximum processing capability of the terminal device to monitor PDCCH candidates of multiple cells when CA is configured.
  • the CA upper limit may include the maximum number of PDCCH candidates or the maximum number of non-overlapping CCEs that the UE supports to monitor when the terminal device is configured with CA. It should be noted that when the terminal device is configured with CA, PDCCH candidate monitoring may be allocated to only some of the multiple cells; PDCCH candidate monitoring may also be allocated to each of the above multiple cells.
  • the terminal device For example, taking the monitoring object as a PDCCH candidate as an example, if the CA upper limit value is 20, it means that the terminal device supports monitoring of 20 PDCCH candidates at most when CA is configured; if the UE is configured with CA for two cells, that is, Primary cell (Primary Cell, PCell) and secondary cell (Secondary Cell, SCell), and if the sum of the number of PDCCH candidate monitoring allocated to the PCell and the number of PDCCH candidate monitoring of the SCell exceeds 20, it means that the PDCCH processing capability of the terminal device is exceeded.
  • Primary Cell Primary Cell
  • SCell Secondary Cell
  • the group upper limit may indicate the maximum processing capability of a group of PDCCH candidates monitored by the terminal device.
  • the upper limit of the group may include the maximum number of PDCCH candidates of a group that the terminal device supports monitoring, or the maximum number of non-overlapping CCEs of a group that the terminal device supports monitoring. For example, taking the PDCCH candidate as the monitoring target, if the upper limit value of the group is 15, it means that the terminal device supports monitoring of 15 PDCCH candidates in a group at most; if the number of PDCCH candidates allocated to a group exceeds 15, then Indicates that the PDCCH processing capacity of the terminal device has been exceeded.
  • the above-mentioned grouping may indicate TRP-based grouping of cells that monitor the PDCCH.
  • the group corresponding to TRP-1 may include Pcell and Scell
  • the group corresponding to TRP-2 may include Pcell.
  • the above group upper limit value may be a value configured by the network side, and the value does not exceed the maximum PDCCH processing capability reported by the UE.
  • the specific TRP includes at least one of the following:
  • TRP indicated or configured by the network side device indicated or configured by the network side device.
  • the foregoing specific DCI format may include a fallback DCI (ie, fallback DCI) format, for example, DCI format 0_0 or DCI format 1_0.
  • a fallback DCI ie, fallback DCI
  • the TRP associated with a specific identifier may include a TRP associated with a specific ID, for example, a TRP associated with the smallest or largest TCI state ID, or a TRP with an ID of 0.
  • a specific index for example, the TRP with the smallest Index or the largest Index, or with an Index of 0.
  • the TRP indicated by the network side device may be the TRP indicated by the network side device through signaling such as DCI.
  • the TRP configured by the network-side device may be a TRP configured by the network-side device through RRC and other signaling.
  • the specific CORESET includes at least one of the following:
  • the foregoing specific DCI format may include a fallback DCI (ie, fallback DCI) format, for example, DCI format 0_0 or DCI format 1_0.
  • a fallback DCI ie, fallback DCI
  • the aforementioned CORESET associated with a specific identifier may include a CORESET associated with a specific ID, for example, the CORESET associated with the smallest or largest TCI state ID, or the CORESET with an ID of 0.
  • the above CORESET associated with a specific index namely Index
  • the CORESET with the smallest Index or the largest Index or with an Index of 0.
  • the CORESETP indicated by the network-side device may be the CORESET indicated by the network-side device through signaling such as DCI.
  • the CORESET configured by the network-side device may be the CORESET configured by the network-side device through RRC and other signaling.
  • the foregoing specific TRP may include at least one of the following: a TRP associated with a CSS; a TRP associated with a specific DCI format; a TRP associated with a specific identifier or a specific index; and a TRP indicated or configured by the network side device. This makes it possible to determine a specific CORESET based on a specific TRP.
  • the specific TRP is the TRP of the Pcell or the PScell
  • the specific CORESET is the CORESET of the Pcell or the PScell.
  • the terminal device when the terminal device is configured with CA, only the TRP or CORESET of the Pcell or PScell may be overbooked.
  • the search space of Scells can be directly allocated, that is, all SSs associated with all Scells can be directly allocated.
  • the number of first monitoring objects in the configured search space of the Scell does not exceed the upper limit of the first monitoring objects supported by the terminal device.
  • the UE is configured with a Cell and two TRPs.
  • the search space allocation method may include the following steps:
  • Step a11 The UE determines that TRP-1 is a P-TRP and maps the CSS.
  • Step a12 The UE maps the USS of the P-TRP. After the USS3 is mapped, the total number of PDCCH candidates monitored by the P-TRP (that is, TRP-1) exceeds the TRP Limit (4+4+3>10), and the UE discards the USS3.
  • Step a13 The UE maps the USS of other TRPs, namely USS2 and USS4.
  • the above-mentioned other TRPs may refer to TRPs other than P-TRP, that is, TRP-2.
  • the mapped SSs in this example are CSS, USS1, USS2, and USS4, and the total number of PDCCH candidate monitoring for TRP-1 is 8, the total number of PDCCH candidate monitoring for TRP-2 is 6, and the total number of PDCCH candidate monitoring for Cell is 14. , All do not exceed the UE’s PDCCH candidate processing capability.
  • step a12 can be executed first, and then step a13; or step a13 can be executed first, and then step a12; or steps a12 and a13 can be executed first.
  • Step a13 is executed in parallel.
  • this example uses the number of PDCCH candidate monitoring as an example to illustrate the PDCCH processing capability of the UE, but the same applies to the number of non-overlapping CCEs.
  • the search space allocation method may include the following steps:
  • Step a21 The UE determines that TRP-1 is a P-TRP and maps the CSS.
  • Step a22 The UE maps the USS of other TRPs, namely USS2 and USS4.
  • the above-mentioned other TRPs may refer to TRPs other than P-TRP, that is, TRP-2.
  • the mapped SSs in this example are CSS, USS1, USS2, and USS4, and the total number of PDCCH candidate monitoring for TRP-1 is 8, the total number of PDCCH candidate monitoring for TRP-2 is 6, and the total number of PDCCH candidate monitoring for Cell is 14. , All do not exceed the PDCCH processing capability of the UE.
  • the UE is configured with a Cell and two TRPs.
  • the search space allocation method may include the following steps:
  • Step a31 The UE maps the CSS, and maps the USS in the order of the SS ID.
  • the mapped SSs in this example are CSS, USS1, and USS2, and the total number of PDCCH candidate monitoring for TRP-1 is 8, the total number of PDCCH candidate monitoring for TRP-2 is 2, and the total number of PDCCH candidate monitoring for Cell is 10. Does not exceed the PDCCH processing capability of the UE.
  • the UE is configured with a Cell and two TRPs.
  • the search space allocation method may include the following steps:
  • Step a41 the UE maps the CSS, and maps the USS in the order of the SS ID.
  • the mapped SSs in this example are CSS, USS1, USS2, and USS4, and the total number of PDCCH candidate monitoring for TRP-1 is 8, the total number of PDCCH candidate monitoring for TRP-2 is 7, and the total number of PDCCH candidate monitoring for Cell is 15. , All do not exceed the PDCCH processing capability of the UE.
  • the search space allocation method may include the following steps:
  • Step a51 The UE maps the CSS on the PCell, maps the USS in the order of the SS ID, and performs Overbooking processing.
  • the above-mentioned Overbooking processing may refer to discarding part of the search space configured for the UE when the number of PDCCH candidates monitored by the UE or the number of non-overlapping CCEs exceeds the PDCCH processing capability of the UE, where the part of the search space configured for the UE is discarded.
  • the specific method please refer to the aforementioned related description, which will not be repeated here.
  • the mapped SSs are CSS, USS 1, USS 2, and USS4, and the total number of PDCCH candidate monitoring for TRP-1 is 8, the total number of PDCCH candidate monitoring for TRP-2 is 7, and the total number of PDCCH candidate monitoring for Cell is 15. None of them exceed the PDCCH processing capability of the UE.
  • Step a61 The UE maps all USSs on the SCell, which does not exceed the UE's PDCCH candidate processing capability.
  • the embodiments of the present disclosure provide a method for mapping search space and monitoring PDCCH candidates for a system configured with M-TRP, so that PDCCH blind detection resources can be flexibly allocated in the M-TRP transmission scenario, and system scheduling is improved. Flexibility, and reduce the UE's implementation complexity and power consumption.
  • FIG. 5 is a structural diagram of a terminal device provided by an embodiment of the present disclosure. As shown in FIG. 5, the terminal device 500 includes:
  • the discarding module 501 is configured to, when the terminal device is configured with a transceiver node TRP, if the number of first listening objects in the search space set configured for the terminal device exceeds the first listening objects supported by the terminal device The upper limit of, then discard part of the search space configured for the terminal device;
  • the first monitoring object includes a physical downlink control channel PDCCH candidate or a non-overlapping control channel element CCE.
  • the upper limit value of the first monitoring object that the terminal device supports monitoring includes at least one of the following:
  • TRP upper limit value is the maximum number of first monitoring objects associated with a TRP in a cell that the terminal device supports monitoring
  • a cell upper limit value where the cell upper limit value is the maximum number of first monitoring objects in a cell that the terminal device supports to monitor;
  • CA upper limit value is the maximum number of first monitoring objects that the terminal device supports to monitor when the CA is configured
  • the upper limit of the group is the maximum number of the first monitoring objects of a group that the terminal device supports to monitor, and the grouping is obtained by grouping cells that monitor the PDCCH based on the TRP.
  • the discarding module includes:
  • the first discarding unit is configured to discard part or all of the dedicated search space USS associated with the first transmission object
  • the first transmission object includes a first TRP or a first control resource set CORESET
  • the first TRP includes at least one TRP among the TRPs configured for the terminal device
  • the first CORESET includes the terminal At least one CORESET in the CORESET configured by the device to monitor the search space.
  • the first TRP is a specific TRP in a TRP configured for the terminal device, or the first CORESET is a specific CORESET in the target CORESET.
  • the specific TRP includes at least one of the following:
  • TRP indicated or configured by the network side device indicated or configured by the network side device.
  • the specific CORESET includes at least one of the following:
  • the terminal device further includes:
  • the first allocation unit is configured to allocate the public search space CSS configured for the terminal device before the discarding part or all of the dedicated search space USS associated with the first transmission object;
  • the first discarding unit is specifically configured to:
  • the first USS is discarded, where if there is a second USS , The second USS is discarded;
  • the first USS is any USS associated with the first transmission object
  • the second USS is the USS in the USS associated with the first transmission object whose allocation order is after the allocation order of the first USS .
  • the terminal device further includes:
  • the sixth allocation module is used to allocate all the USS associated with the second transmission object
  • the second transmission object includes a second TRP or a second CORESET
  • the second TRP is a TRP other than the first TRP among the TRPs configured for the terminal device
  • the second CORESET is the TRP configured for the terminal device.
  • the configured first number does not exceed the upper limit of the first monitoring object supported by the terminal device, and the first number is the second transmission object The number of first listening objects of the associated USS.
  • the number of first monitoring objects in the search space allocated in a cell of the terminal device does not exceed a cell upper limit
  • the cell upper limit value is the maximum number of first monitoring objects in a cell that the terminal device supports monitoring.
  • the number of first monitoring objects in the search space allocated by the terminal device when carrier aggregation CA is configured does not exceed the CA upper limit
  • the CA upper limit value is the maximum number of first monitoring objects that the terminal device supports to monitor when the CA is configured.
  • the terminal device further includes:
  • the second allocation module is configured to allocate the public search space CSS configured for the terminal device before the discarding part or all of the dedicated search space USS associated with the first transmission object;
  • the third allocation module is used to allocate all USS associated with the third transmission object; wherein, the third transmission object includes a third TRP or a third CORESET, and the third TRP is a TRP configured for the terminal device A TRP other than the first TRP, the third CORESET is a CORESET other than the first CORESET in the target CORESET, and the target CORESET is a CORESET configured for the terminal device to monitor the search space ,
  • the configured second number does not exceed the upper limit of the first monitoring objects supported by the terminal device for monitoring, and the second number is the number of the first monitoring objects of the USS associated with the third transmission object;
  • the first discarding unit is specifically configured to:
  • the third USS is discarded, where, if there is a fourth USS , The fourth USS is discarded, the third USS is any USS associated with the first transmission object, and the fourth USS is the USS associated with the first transmission object.
  • the allocation order is in the third The USS after the allocation order of the USS.
  • the terminal device further includes:
  • a fourth allocation module configured to allocate a common search space CSS configured for the terminal device before the discarding part or all of the specific search space USS associated with the first transmission object;
  • the first discarding unit is specifically configured to:
  • the fifth USS is discarded, and if there is a sixth USS, then Discard the sixth USS;
  • the fifth USS is any USS associated with the TRP configured for the terminal device
  • the sixth USS is the allocation order of the USS associated with the TRP configured for the terminal device in the allocation order of the fifth USS USS after the sequence.
  • the terminal device further includes:
  • a fifth allocation module configured to allocate the public search space CSS configured for the terminal device before the discarding part or all of the specific search space USS associated with the first transmission object;
  • the first discarding unit is specifically configured to:
  • the seventh USS is discarded and the allocation continues A ninth USS, where if there is an eighth USS, the eighth USS is discarded;
  • the fourth transmission object includes a fourth TRP or a fourth CORESET
  • the fourth TRP is any TRP in the TRP configured for the terminal device
  • the fourth CORESET is any CORESET in the target CORESET
  • the target CORESET is the CORESET configured for the terminal device to monitor the search space
  • the seventh USS is any USS associated with the fourth transmission object
  • the eighth USS is the fourth transmission
  • the allocation order of the object-associated USS is after the allocation order of the seventh USS
  • the ninth USS is the USS associated with the fifth transmission object
  • the fifth transmission object is different from the fourth transmission object.
  • the first TRP is the TRP of the primary cell Pcell or the primary and secondary cell PScell
  • the first CORESET is the CORESET of the Pcell or the PScell .
  • the terminal device further includes:
  • the grouping module is used to group the cells that monitor the PDCCH according to their associated TRP before discarding the part of the search space configured for the terminal device, and if the terminal device is configured with carrier aggregation CA, to obtain at least two Groups;
  • the discarding module includes:
  • the allocating unit is configured to sequentially allocate the search space of the first cell of each of the at least two groups according to the fifth allocation order; wherein, the first cell includes the primary cell Pcell or the primary cell in each of the groups. Secondary cell PScell;
  • the second discarding unit is configured to discard the first search if the number of the first monitoring objects to be monitored after the first search space is allocated exceeds the upper limit of the first monitoring objects supported by the terminal device. Space, where, if there is a second search space, discard the second search space;
  • the first search space is any search space of the first cell
  • the second search space is a search space in the search space of the first cell whose allocation sequence is after the first search space.
  • the terminal device further includes:
  • a seventh allocation module configured to allocate all the search spaces of the secondary cell Scell in each of the at least two groups
  • the configured number of first monitoring objects in the search space of the Scell does not exceed the upper limit of the first monitoring objects supported by the terminal device.
  • the terminal device 500 provided in the embodiment of the present disclosure can implement each process implemented by the terminal device in the foregoing method embodiment, and to avoid repetition, details are not described herein again.
  • the terminal device 500 and the discarding module 501 are configured to, when the terminal device is configured with the transceiver node TRP, if the number of first monitoring objects in the search space set configured for the terminal device exceeds the The upper limit of the first monitoring object supported by the terminal device for monitoring is discarded, and part of the search space configured for the terminal device is discarded, which can reduce the total number of blind checks of the UE exceeding the maximum number of PDCCH candidates supported or the number of channel estimates exceeding the maximum channel estimation This can increase the flexibility of allocating PDCCH candidate blind detection resources.
  • FIG. 6 is a structural diagram of a network side device provided by an embodiment of the present disclosure.
  • the network side device 600 includes:
  • the configuration module 601 is used to configure a search space set for the terminal device
  • the terminal device is configured with a transceiver node TRP; the number of first listening objects in the search space set does not exceed the upper limit of the first listening objects supported by the terminal device, or the search space is centrally associated with The number of first monitoring objects in the search space of the second transmission object does not exceed the upper limit of the first monitoring objects that the terminal device supports monitoring, or the search space is concentratedly associated with the first monitoring of the search space of the secondary cell Scell The number of objects does not exceed the upper limit of the first monitoring object supported by the terminal device;
  • the first monitoring object includes a physical downlink control channel PDCCH candidate or a non-overlapping control channel element CCE
  • the second transmission object includes a second TRP or a second control resource set CORESET
  • the second TRP is for the terminal A TRP other than a specific TRP in the TRP configured by the device
  • the second CORESET is a CORESET other than the specific CORESET in the target CORESET
  • the target CORESET is a CORESET configured for the terminal device to monitor the search space.
  • the upper limit value of the first monitoring object that the terminal device supports monitoring includes at least one of the following:
  • TRP upper limit value is the maximum number of first monitoring objects associated with a TRP in a cell that the terminal device supports monitoring
  • a cell upper limit value where the cell upper limit value is the maximum number of first monitoring objects in a cell that the terminal device supports to monitor;
  • CA upper limit value is the maximum number of first monitoring objects that the terminal device supports to monitor when the CA is configured
  • the upper limit of the group is the maximum number of the first monitoring objects of a group that the terminal device supports to monitor, and the grouping is obtained by grouping cells that monitor the PDCCH based on the TRP.
  • the specific TRP includes at least one of the following:
  • TRP indicated or configured by the network side device indicated or configured by the network side device.
  • the specific CORESET includes at least one of the following:
  • the specific TRP is the TRP of the primary cell Pcell or the primary and secondary cell PScell
  • the specific CORESET is the CORESET of the Pcell or the PScell.
  • the network-side device 600 provided in the embodiment of the present disclosure can implement each process implemented by the network-side device in the foregoing method embodiment, and to avoid repetition, details are not described herein again.
  • the network side device 600 of the embodiment of the present disclosure is used to configure a search space set for a terminal device; wherein the terminal device is configured with a transceiver node TRP; the number of first listening objects in the search space set does not exceed The upper limit of the first monitoring object supported by the terminal device for monitoring, or the number of the first monitoring objects in the search space of the second transmission object concentrated in the search space does not exceed the first monitoring object supported by the terminal device for monitoring.
  • the upper limit of the object, or the number of first monitoring objects in the search space that is concentrated in the search space of the secondary cell Scell does not exceed the upper limit of the first monitoring object supported by the terminal device, which can reduce the total number of UEs. It occurs that the number of blind detection exceeds the maximum number of PDCCH candidates supported or the number of channel estimates exceeds the maximum number of channel estimates.
  • FIG. 7 is a structural diagram of another terminal device provided by an embodiment of the present disclosure.
  • the terminal device 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, processing 710, and power supply 711 and other components.
  • a radio frequency unit 701 for example, a radio frequency unit 701
  • the terminal device 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, processing 710, and power supply 711 and other components.
  • the structure of the terminal device shown in FIG. 7 does not constitute a limitation on the terminal device, and the terminal device may include more or fewer components than those shown in the figure, or a combination of certain components, or different components.
  • the processor 710 is configured to, when the terminal device is configured with a transceiver node TRP, if the number of first monitoring objects in the search space set configured for the terminal device exceeds the number of monitoring objects supported by the terminal device The upper limit of the first monitoring object is discarded, and part of the search space configured for the terminal device is discarded; wherein, the first monitoring object includes a physical downlink control channel PDCCH candidate or a non-overlapping control channel element CCE.
  • the upper limit value of the first monitoring object that the terminal device supports monitoring includes at least one of the following:
  • TRP upper limit value is the maximum number of first monitoring objects associated with a TRP in a cell that the terminal device supports monitoring
  • a cell upper limit value where the cell upper limit value is the maximum number of first monitoring objects in a cell that the terminal device supports to monitor;
  • CA upper limit value is the maximum number of first monitoring objects that the terminal device supports to monitor when the CA is configured
  • the upper limit of the group is the maximum number of the first monitoring objects of a group that the terminal device supports to monitor, and the grouping is obtained by grouping cells that monitor the PDCCH based on the TRP.
  • processor 710 is further configured to:
  • the first transmission object includes a first TRP or a first control resource set CORESET
  • the first TRP includes at least one TRP in the TRP configured for the terminal device
  • the first CORESET includes the terminal At least one CORESET in the CORESET configured by the device to monitor the search space.
  • the first TRP is a specific TRP in a TRP configured for the terminal device, or the first CORESET is a specific CORESET in the target CORESET.
  • the specific TRP includes at least one of the following:
  • TRP indicated or configured by the network side device indicated or configured by the network side device.
  • the specific CORESET includes at least one of the following:
  • the processor 710 is further configured to: before discarding part or all of the dedicated search space USS associated with the first transmission object, allocate a public search space CSS configured for the terminal device;
  • the first USS is discarded, where if there is a second USS , The second USS is discarded;
  • the first USS is any USS associated with the first transmission object
  • the second USS is the USS in the USS associated with the first transmission object whose allocation order is after the allocation order of the first USS .
  • processor 710 is further configured to:
  • the second transmission object includes a second TRP or a second CORESET
  • the second TRP is a TRP other than the first TRP among the TRPs configured for the terminal device
  • the second CORESET is the TRP configured for the terminal device.
  • the configured first number does not exceed the upper limit of the first monitoring object supported by the terminal device, and the first number is the second transmission object The number of first listening objects of the associated USS.
  • the number of first monitoring objects in the search space allocated in a cell of the terminal device does not exceed a cell upper limit
  • the cell upper limit value is the maximum number of first monitoring objects in a cell that the terminal device supports monitoring.
  • the number of first monitoring objects in the search space allocated by the terminal device when carrier aggregation CA is configured does not exceed the CA upper limit
  • the CA upper limit value is the maximum number of first monitoring objects that the terminal device supports to monitor when the CA is configured.
  • processor 710 is further configured to:
  • the third transmission object includes a third TRP or a third CORESET
  • the third TRP is one of the TRPs configured for the terminal device except for the first TRP
  • the third CORESET is a CORESET other than the first CORESET in the target CORESET
  • the target CORESET is a CORESET configured for the terminal device to monitor the search space
  • the configured second number is not Exceeding the upper limit of the first monitoring objects supported by the terminal device for monitoring, and the second number is the number of the first monitoring objects of the USS associated with the third transmission object
  • the third USS is discarded, where, if there is a fourth USS , The fourth USS is discarded, the third USS is any USS associated with the first transmission object, and the fourth USS is the USS associated with the first transmission object.
  • the allocation order is in the third The USS after the allocation order of the USS.
  • processor 710 is further configured to:
  • the fifth USS is discarded, and if there is a sixth USS, then Discard the sixth USS;
  • the fifth USS is any USS associated with the TRP configured for the terminal device
  • the sixth USS is the allocation order of the USS associated with the TRP configured for the terminal device in the allocation order of the fifth USS USS after the sequence.
  • processor 710 is further configured to:
  • the seventh USS is discarded and the allocation continues A ninth USS, where if there is an eighth USS, the eighth USS is discarded;
  • the fourth transmission object includes a fourth TRP or a fourth CORESET
  • the fourth TRP is any TRP in the TRP configured for the terminal device
  • the fourth CORESET is any CORESET in the target CORESET
  • the target CORESET is the CORESET configured for the terminal device to monitor the search space
  • the seventh USS is any USS associated with the fourth transmission object
  • the eighth USS is the fourth transmission
  • the allocation order of the object-associated USS is after the allocation order of the seventh USS
  • the ninth USS is the USS associated with the fifth transmission object
  • the fifth transmission object is different from the fourth transmission object.
  • the first TRP is the TRP of the primary cell Pcell or the primary and secondary cell PScell
  • the first CORESET is the CORESET of the Pcell or the PScell .
  • processor 710 is further configured to:
  • the terminal device Before the discarding the part of the search space configured for the terminal device, if the terminal device is configured with carrier aggregation CA, group the cells that monitor the PDCCH according to their associated TRPs to obtain at least two groups;
  • the first search space is discarded, where if there is a first search space Second search space, discard the second search space;
  • the first search space is any search space of the first cell
  • the second search space is a search space in the search space of the first cell whose allocation sequence is after the first search space.
  • processor 710 is further configured to:
  • the configured number of first monitoring objects in the search space of the Scell does not exceed the upper limit of the first monitoring objects supported by the terminal device.
  • the radio frequency unit 701 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 710; Uplink data is sent to the base station.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 701 can also communicate with the network and other devices through a wireless communication system.
  • the terminal device provides users with wireless broadband Internet access through the network module 702, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 703 may convert the audio data received by the radio frequency unit 701 or the network module 702 or stored in the memory 709 into an audio signal and output it as sound. Moreover, the audio output unit 703 may also provide audio output related to a specific function performed by the terminal device 700 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 703 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 704 is used to receive audio or video signals.
  • the input unit 704 may include a graphics processing unit (GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is used to capture images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the data is processed.
  • the processed image frame may be displayed on the display unit 706.
  • the image frame processed by the graphics processor 7041 may be stored in the memory 709 (or other storage medium) or sent via the radio frequency unit 701 or the network module 702.
  • the microphone 7042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 701 for output in the case of a telephone call mode.
  • the terminal device 700 further includes at least one sensor 705, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 7061 according to the brightness of the ambient light.
  • the proximity sensor can turn off the display panel 7061 and the display panel 7061 when the terminal device 700 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the posture of the terminal device (such as horizontal and vertical screen switching, related games) , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 705 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 706 is used to display information input by the user or information provided to the user.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 707 can be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal device.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072.
  • the touch panel 7071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 7071 or near the touch panel 7071. operating).
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 710, the command sent by the processor 710 is received and executed.
  • the touch panel 7071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 707 may also include other input devices 7072.
  • other input devices 7072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 7071 can be overlaid on the display panel 7061.
  • the touch panel 7071 detects a touch operation on or near it, it is transmitted to the processor 710 to determine the type of the touch event, and then the processor 710 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 7061.
  • the touch panel 7071 and the display panel 7061 are used as two independent components to implement the input and output functions of the terminal device, in some embodiments, the touch panel 7071 and the display panel 7061 can be integrated
  • the implementation of the input and output functions of the terminal device is not specifically limited here.
  • the interface unit 708 is an interface for connecting an external device and the terminal device 700.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (Input/Output, I/O) port, video I/O port, headphone port, etc.
  • the interface unit 708 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal device 700 or can be used to connect to the terminal device 700 and an external device. Transfer data between devices.
  • the memory 709 can be used to store software programs and various data.
  • the memory 709 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 710 is the control center of the terminal device. It uses various interfaces and lines to connect the various parts of the entire terminal device, runs or executes software programs and/or modules stored in the memory 709, and calls data stored in the memory 709. , Perform various functions of the terminal equipment and process data, so as to monitor the terminal equipment as a whole.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 710.
  • the terminal device 700 may also include a power source 711 (such as a battery) for supplying power to various components.
  • a power source 711 such as a battery
  • the power source 711 may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal device 700 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a terminal device, including a processor 710, a memory 709, a computer program stored on the memory 709 and running on the processor 710, and the computer program is executed by the processor 710
  • a terminal device including a processor 710, a memory 709, a computer program stored on the memory 709 and running on the processor 710, and the computer program is executed by the processor 710
  • FIG. 8 is a structural diagram of a network side device provided by another embodiment of the present disclosure.
  • the network side device 800 includes: a processor 801, a memory 802, a bus interface 803, and a transceiver 804, where the processor 801, the memory 802, and the transceiver 804 are all connected to the bus interface 803.
  • the network side device 800 further includes: a computer program stored in the memory 802 and capable of running on the processor 801.
  • the transceiver 804 is used to:
  • the terminal device is configured with a transceiver node TRP; the number of first listening objects in the search space set does not exceed the upper limit of the first listening objects supported by the terminal device, or the search space is centrally associated with The number of first monitoring objects in the search space of the second transmission object does not exceed the upper limit of the first monitoring objects that the terminal device supports monitoring, or the search space is concentratedly associated with the first monitoring of the search space of the secondary cell Scell The number of objects does not exceed the upper limit of the first monitoring object supported by the terminal device;
  • the first monitoring object includes a physical downlink control channel PDCCH candidate or a non-overlapping control channel element CCE
  • the second transmission object includes a second TRP or a second control resource set CORESET
  • the second TRP is for the terminal A TRP other than a specific TRP in the TRP configured by the device
  • the second CORESET is a CORESET other than the specific CORESET in the target CORESET
  • the target CORESET is a CORESET configured for the terminal device to monitor the search space.
  • the upper limit value of the first monitoring object that the terminal device supports monitoring includes at least one of the following:
  • TRP upper limit value is the maximum number of first monitoring objects associated with a TRP in a cell that the terminal device supports monitoring
  • a cell upper limit value where the cell upper limit value is the maximum number of first monitoring objects in a cell that the terminal device supports to monitor;
  • CA upper limit value is the maximum number of first monitoring objects that the terminal device supports to monitor when the CA is configured
  • the upper limit of the group is the maximum number of the first monitoring objects of a group that the terminal device supports to monitor, and the grouping is obtained by grouping cells that monitor the PDCCH based on the TRP.
  • the specific TRP includes at least one of the following:
  • TRP indicated or configured by the network side device indicated or configured by the network side device.
  • the specific CORESET includes at least one of the following:
  • the specific TRP is the TRP of the primary cell Pcell or the primary and secondary cell PScell
  • the specific CORESET is the CORESET of the Pcell or the PScell.
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored.
  • a computer program When the computer program is executed by a processor, each process of the above-mentioned search space allocation method embodiment is realized or the above-mentioned search space configuration is realized.
  • Each process of the method embodiment can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk). ) Includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.
  • modules, units, and sub-units can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSP Device, DSPD) ), programmable logic devices (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, used to execute the present disclosure Described functions in other electronic units or combinations thereof.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processor
  • DSP Device Digital Signal Processing Device
  • DSPD Digital Signal Processing Device
  • PLD programmable logic devices
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Alarm Systems (AREA)

Abstract

本公开提供一种搜索空间分配方法、搜索空间配置方法及相关设备,该方法包括:在所述终端设备配置了TRP的情况下,若为所述终端设备配置的搜索空间集的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃为所述终端设备配置的部分搜索空间;其中,所述第一监听对象包括PDCCH候选或者非重叠的CCE。

Description

搜索空间分配方法、搜索空间配置方法及相关设备 技术领域
本公开涉及通信技术领域,尤其涉及一种搜索空间分配方法、搜索空间配置方法及相关设备。
背景技术
第十五版本(Release 15,Rel-15)的第五代(5th-Generation,5G)新空口(New Radio,NR)系统支持灵活的物理下行控制信道(Physical Downlink Control Channel,PDCCH)资源分配,不再是整个小区复用一个相同的PDCCH,而是可以为每个用户设备(User Equipment,UE)(也可称为终端设备)独立配置控制资源集(Control Resource Set,CORESET)用于监听PDCCH。CORESET可以包含独立的时域、频域以及空域资源的配置信息。同时,5G NR系统支持为UE配置多个搜索空间集,并为每个搜索空间(Search Space,SS)灵活配置盲检数目,CORESET与搜索空间集之间可以灵活关联。每个CORESET可以关联多个搜索空间集,且不同UE的CORESET的资源可以部分或全部重叠。为了降低UE的实现复杂度,NR系统规定了UE在一个时隙内的最大PDCCH候选数(即盲检总次数),以及UE在一个时隙内监听的PDCCH候选所分配的非重叠的CCE数的上限(即最大信道估计数量)。
此外,5G NR系统也可支持多发送接收点(Multiple Transmission and Reception Point,M-TRP)(也可称为收发点)的传输。为了支持通过多个TRP以及多个不同波束(即Beam)传输PDCCH,UE将需支持配置更多的CORESET,而CORESET数量增多容易导致一个时隙内UE的总的盲检次数(即PDCCH候选数总和)超过支持的最大PDCCH候选数,或信道估计数超过最大信道估计数。
然而在相关技术中,对于如何减少配置了TRP的系统发生UE总的盲检次数超过支持的最大PDCCH候选数或信道估计数超过最大信道估计数的情况,没有相关的解决方案。
发明内容
本公开实施例提供一种搜索空间分配方法、搜索空间配置方法及相关设备,以减少UE总的盲检次数超过支持的最大PDCCH候选数或信道估计数超过最大信道估计数的情况发生。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种搜索空间分配方法,应用于终端设备,该方法包括:
在所述终端设备配置了收发节点TRP的情况下,若为所述终端设备配置的搜索空间集的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃为所述终端设备配置的部分搜索空间;
其中,所述第一监听对象包括物理下行控制信道PDCCH候选或者非重叠的控制信道单元CCE。
第二方面,本公开实施例还提供了一种搜索空间配置方法,应用于网络侧设备,该方法包括:
为终端设备配置搜索空间集;
其中,所述终端设备配置了收发节点TRP;所述搜索空间集的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者所述搜索空间集中关联于第二传输对象的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者所述搜索空间集中关联于辅小区Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值;
所述第一监听对象包括物理下行控制信道PDCCH候选或者非重叠的控制信道单元CCE,所述第二传输对象包括第二TRP或者第二控制资源集CORESET,所述第二TRP是为所述终端设备配置的TRP中除特定TRP之外的TRP,所述第二CORESET为目标CORESET中除特定CORESET之外的CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET。
第三方面,本公开实施例还提供一种终端设备。该终端设备包括:
丢弃模块,用于在所述终端设备配置了收发节点TRP的情况下,若为所 述终端设备配置的搜索空间集的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃为所述终端设备配置的部分搜索空间;
其中,所述第一监听对象包括物理下行控制信道PDCCH候选或者非重叠的控制信道单元CCE。
第四方面,本公开实施例还提供一种网络侧设备。该网络侧设备包括:
配置模块,用于为终端设备配置搜索空间集;
其中,所述终端设备配置了收发节点TRP;所述搜索空间集的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者所述搜索空间集中关联于第二传输对象的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者所述搜索空间集中关联于辅小区Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值;
所述第一监听对象包括物理下行控制信道PDCCH候选或者非重叠的控制信道单元CCE,所述第二传输对象包括第二TRP或者第二控制资源集CORESET,所述第二TRP是为所述终端设备配置的TRP中除特定TRP之外的TRP,所述第二CORESET为目标CORESET中除特定CORESET之外的CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET。
第五方面,本公开实施例还提供一种终端设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第一方面提供的搜索空间分配方法的步骤。
第六方面,本公开实施例还提供一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第二方面提供的搜索空间配置方法的步骤。
第七方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面提供的搜索空间分配方法的步骤,或者实现上述第二方面提供的搜索空间配置方法的步骤。
本公开实施例中,通过在所述终端设备配置了TRP的情况下,若为所述 终端设备配置的搜索空间集的PDCCH候选的数量超过所述终端设备支持监听的PDCCH候选的上限值,或者为所述终端设备配置的搜索空间集的非重叠CCE的数量超过所述终端设备支持监听的非重叠的CCE的上限值,则丢弃为所述终端设备配置的部分搜索空间,可以减少UE总的盲检次数超过支持的最大PDCCH候选数或信道估计数超过最大信道估计数的情况发生,并可以提高分配PDCCH盲检测资源的灵活性。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1a是本公开实施例提供的同一TRP内的多天线面板传输的示意图;
图1b是本公开实施例提供的理想回程线路的示意图;
图1c是本公开实施例提供的非理想回程线路的示意图;
图2是本公开实施例可应用的一种网络系统的结构图;
图3是本公开实施例提供的搜索空间分配方法的流程图;
图4是本公开又一实施例提供的搜索空间分配方法的流程图;
图5是本公开实施例提供的终端设备的结构图;
图6是本公开实施例提供的网络侧设备的结构图;
图7是本公开又一实施例提供的终端设备的结构图;
图8是本公开又一实施例提供的网络侧设备的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别 类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。
为了便于理解,以下对本公开实施例涉及的一些内容进行说明:
多收发点(即M-TRP):
第三代合作计划(3rd Generation Partnership Project,3GPP)第16版本(Release 16,Rel-16)提出了多发送接收点/多天线面板(即multi-TRP/multi-Panel)的场景,多TRP传输可以增加传输的可靠性及吞吐量性能,例如UE可以接收来自于多个TRP的相同数据或不同数据。参见图1a至1c,具体可以包括如下几种多TRP传输场景:
1)同一TRP内的多天线面板传输;
2)多TRP间的多TRP/Panel传输,理想回程线路(即Ideal Backhaul);
3)多TRP间的多TRP/panel传输,非理想回程线路(即Non-ideal Backhaul)。其中,多TRP的传输方案可以包括:
多TRP发送多个物理下行控制信道(Physical Downlink Control Channel,PDCCH),多个物理下行共享信道(Physical Downlink Shared Channel,PDSCH),每个TRP发送一个PDCCH和一个PDSCH;
多个PDSCH传输相同的传输块(Transport Block,TB);
多个PDSCH传输不同的TB。
UE PDCCH处理能力:可以指UE(也可称为终端设备)在单位时间(例如,一个时隙(即Slot))内支持监听的最大PDCCH候选数量(也即PDCCH候选的最大数量),或支持监听的PDCCH候选所分配的非重叠的控制信道单 元(Control Channel Element,CCE)的最大数量。
TRP上限值(即TRP Limit):可以表示UE监听一个小区内关联于一个TRP的PDCCH候选的最大处理能力,例如,UE支持监听的一个小区内关联于一个TRP的最大PDCCH候选数量或非重叠的CCE的最大数量。
小区上限值(即Cell Limit):可以表示UE监听的一个小区的PDCCH候选的最大处理能力,例如,UE支持监听的一个小区内的最大PDCCH候选数量或非重叠的CCE的最大数量,其中一个小区可以配置一个或多个TRP。
载波聚合(Carrier Aggregation,CA)上限值(即CA Limit):可以表示UE配置了载波聚合时监听多个小区的PDCCH候选的最大处理能力,例如,UE在配置了CA的情况下支持监听的最大PDCCH候选数量或非重叠的CCE的最大数量。
超额配置(即Overbooking):配置UE监听的PDCCH候选数量或非重叠的CCE数量超过UE的最大PDCCH候选处理能力,例如,配置UE监听的PDCCH候选数量超过UE支持监听的最大PDCCH候选数量,或者配置UE监听的非重叠的CCE数量超过UE支持监听非重叠的CCE的最大数量。
Overbooking处理:可以是指在存在Overbooking的情况下丢弃(也可以称为放弃分配、放弃映射、停止分配或停止映射等)为UE配置的部分搜索空间。
参见图2,图2是本公开实施例可应用的一种网络系统的结构图,如图2所示,包括终端设备11和网络侧设备12,其中,终端设备11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等用户侧设备,需要说明的是,在本公开实施例中并不限定终端设备11的具体类型。网络侧设备12可以是基站,例如:宏站、长期演进(Long Term Evolution,LTE)演进型基站(evolved node base station,eNB)、5G NR基站(node base station,NB)、下一代基站(next generation node base station,gNB)等;网络侧设备12也可以是小站,如低功率节点(Low Power Node,LPN)、pico、femto等小站,或者网络侧设备12可以是接入点(Access Point,AP);基站也可以是中央单 元(Central Unit,CU)与其管理是和控制的多个TRP共同组成的网络节点。需要说明的是,在本公开实施例中并不限定网络侧设备12的具体类型。
其中,上述终端设备11可以用于执行本公开实施例提供的搜索空间分配方法,上述网络侧设备12可以用于执行本公开实施例提供的搜索空间配置方法。
本公开实施例提供一种搜索空间分配方法,应用于终端设备。参见图3,图3是本公开实施例提供的搜索空间分配方法的流程图,如图3所示,包括以下步骤:
步骤301、在终端设备配置了TRP的情况下,若为所述终端设备配置的搜索空间集的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃为所述终端设备配置的部分搜索空间;
其中,所述第一监听对象可以包括PDCCH候选(即PDCCH Candidate)或者非重叠的CCE。
本实施例中,上述终端设备配置了TRP可以包括为终端设备配置了至少两个TRP。其中,终端设备配置了TRP可以包括终端设备的小区配置了TRP,例如,终端设备的某个小区配置了至少两个TRP,也可以理解为终端设备配置了至少两个TRP。
上述终端设备支持监听的第一监听对象的上限值可以用于反映该终端设备的PDCCH处理能力。其中,上述终端设备支持监听的第一监听对象的上限值可以包括该终端设备支持监听的不同粒度的第一监听对象的上限值,例如,TRP、小区、CA和小区组等中的一种或多种粒度。
需要说明的是,将为终端设备配置的搜索空间集的第一监听对象的数量和终端设备支持监听的第一监听对象的上限值进行比较,可以是指将为终端设备配置的搜索空间集的第一监听对象的数量和终端设备支持监听的第一监听对象的上限值中相同粒度下的第一监听对象的数量进行比较,例如,分别将配置的各个TRP的第一监听对象的上限值和终端设备支持监听的一个TRP的第一监听对象的上限值进行比较;分别将配置的各个小区的第一监听对象的上限值和终端设备支持监听的一个小区的第一监听对象的上限值进行比较;将配置的CA的第一监听对象的上限值和终端设备支持监听的CA的第一监 听对象的上限值进行比较。
可选的,可以在配置的任一粒度下的第一监听对象的数量超过终端设备支持监听的该粒度下的第一监听对象的上限值的情况下确定为所述终端设备配置的搜索空间集的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值。
上述丢弃为所述终端设备配置的部分搜索空间,也可以称为放弃分配或是放弃映射或是停止映射或是停止分配为所述终端设备配置的部分搜索空间。其中,分配(也可以称为映射)搜索空间可以理解为分配用于监听搜索空间的PDCCH候选。可选的,上述丢弃为所述终端设备配置的部分搜索空间,可以包括丢弃为所述终端设备配置的TRP中特定TRP关联的搜索空间,也可以是丢弃为终端设备配置的TRP中的任意TRP关联的搜索空间。
本公开实施例提供的搜索空间分配方法,通过在所述终端设备配置了TRP的情况下,若为所述终端设备配置的搜索空间集的PDCCH候选的数量超过所述终端设备支持监听的PDCCH候选的上限值,或者为所述终端设备配置的搜索空间集的非重叠CCE的数量超过所述终端设备支持监听的非重叠的CCE的上限值,也即配置UE监听的PDCCH候选数或非重叠的CCE超过UE的最大PDCCH候选处理能力,则丢弃为所述终端设备配置的部分搜索空间,可以减少UE总的盲检次数超过支持的最大PDCCH候选数或信道估计数超过最大信道估计数的情况发生,并可以提高分配PDCCH盲检测资源的灵活性。
可选的,所述终端设备支持监听的第一监听对象的上限值,可以包括如下至少一项:
TRP上限值,所述TRP上限值为所述终端设备支持监听的一个小区内关联于一个TRP的第一监听对象的最大数量;
小区上限值,所述小区上限值为所述终端设备支持监听的一个小区内的第一监听对象的最大数量;
CA上限值,所述CA上限值为所述终端设备在配置了CA的情况下支持监听的第一监听对象的最大数量;
组上限值,所述组上限值为所述终端设备支持监听的一个分组的第一监 听对象的最大数量,所述分组为监听PDCCH的小区基于TRP进行分组得到的。
本实施例中,TRP上限值(即TRP Limit)可以表示终端设备监听一个小区内关联于一个TRP的PDCCH候选的最大处理能力。该TRP上限值可以包括终端设备支持监听的一个小区内关联于一个TRP的PDCCH候选的最大数量,或者终端设备支持监听的一个小区内关联于一个TRP的非重叠的CCE的最大数量。例如,以监听对象为PDCCH候选为例,若TRP上限值为10,则表示终端设备最多支持监听一个小区内关联于一个TRP的10个PDCCH候选;若分配给一个小区内的某个TRP的PDCCH候选监听数超过10,则表示超过了终端设备的PDCCH处理能力。
小区上限值(即Cell Limit)可以表示终端设备监听一个小区的PDCCH候选的最大处理能力。该小区上限值可以包括终端设备支持监听的一个小区内的PDCCH候选的最大数量,或者终端设备支持监听的一个小区内的非重叠的CCE的最大数量。例如,以监听对象为PDCCH候选为例,若小区上限值为20,则表示终端设备最多支持监听一个小区内的20个PDCCH候选;若分配给某个小区的PDCCH候选监听数超过20,则表示超过了终端设备的PDCCH处理能力。
CA上限值(即CA Limit)可以表示终端设备在配置了CA的情况下监听多个小区的PDCCH候选的最大处理能力。该CA上限值可以包括终端设备在配置了CA的情况下UE支持监听的PDCCH候选的最大数量或非重叠的CCE的最大数量。需要说明的是,在终端设备配置了CA的情况下,可以仅为多个小区中的部分小区分配PDCCH候选监听;也可以为上述多个小区中的每个小区均分配PDCCH候选监听。例如,以监听对象为PDCCH候选为例,若CA上限值为20,则表示终端设备在配置了CA的情况下最多支持监听20个PDCCH候选;若UE配置了两个小区的CA,也即主小区(Primary Cell,PCell)和辅小区(Secondary Cell,SCell),且分配给PCell的PDCCH候选监听数和SCell的PDCCH候选监听数之和超过20,则表示超过了终端设备的PDCCH处理能力。
组上限值(即Group Limit)可以表示终端设备监听的一个分组的PDCCH 候选的最大处理能力。该组上限值可以包括终端设备支持监听的一个分组的PDCCH候选的最大数量,或者终端设备支持监听的一个分组的非重叠的CCE的最大数量。例如,以监听对象为PDCCH候选为例,若组上限值为15,则表示终端设备最多支持监听一个小组内的15个PDCCH候选;若分配给某个小组的PDCCH候选监听数超过15,则表示超过了终端设备的PDCCH处理能力。
其中,上述分组可以表示监听PDCCH的小区基于TRP的分组。例如,若Pcell关联于TRP-1和TRP-2,Scell关联于TRP-1,则对应于TRP-1的分组可以包括Pcell和Scell,对应于TRP-2的分组可以包括Pcell。
可选的,上述组上限值可以是网络侧配置的值,该值不超过UE上报的最大PDCCH处理能力。
可选的,所述丢弃为所述终端设备配置的部分搜索空间,可以包括:
丢弃第一传输对象关联的部分或全部专用搜索空间(UE-special Search Space,USS);
其中,所述第一传输对象包括第一TRP或者第一CORESET,所述第一TRP包括为所述终端设备配置的TRP中的至少一个TRP,所述第一CORESET包括为所述终端设备配置的用于监听搜索空间的CORESET中的至少一个CORESET。
本实施例中,上述第一TRP可以是为终端设备配置的TRP中任意的TRP,也可以是为终端设备配置的TRP中的特定TRP。同样的,上述第一CORESET可以是为终端设备配置的用于监听搜索空间的CORESET中任意的CORESET,也可以是为终端设备配置的用于监听搜索空间的CORESET中的特定CORESET。
例如,可以在终端设备的某个小区配置了至少两个TRP的情况下,若为所述终端设备配置的搜索空间集的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃第一TRP或者第一CORESET关联的部分或全部USS。
可选的,所述第一TRP是为所述终端设备配置的TRP中的特定TRP,或者所述第一CORESET为所述目标CORESET中的特定CORESET。
本实施例中,在终端设备的小区配置了至少两个TRP的情况下,可以仅允许在特定TRP(以下称为P-TRP)上执行Overbooking处理,例如,仅在分配P-TRP关联的搜索空间的过程中判断是否存在Overbooking的情况,并在存在Overbooking的情况下放弃分配该P-TRP关联的部分或全部的USS,以保证分配的搜索空间的第一监听对象的数量不超过终端设备监听PDCCH候选的最大处理能力。
本实施例中通过放弃特定TRP或是特定CORESET关联的部分或是全部USS,可以降低UE进行搜索空间分配的复杂度。
可选的,所述特定TRP包括可以如下至少一项:
关联了公共搜索空间(Common Search Space,CSS)的TRP;
关联了特定下行控制信息(Downlink control information,DCI)格式的TRP;
关联了特定标识或者特定索引的TRP;
网络侧设备指示或者配置的TRP。
本实施例中,上述特定DCI格式可以包括回退DCI(即fallback DCI)格式,例如,DCI format 0_0或DCI format 1_0等。
上述关联了特定标识的TRP,可以包括关联了特定ID的TRP,例如,关联了最小或最大的TCI(Transmission Configuration Indication,传输配置指示)state ID的TRP,或ID为0的TRP。上述关联了特定索引(即Index)的TRP,例如,Index最小或Index最大或Index为0的TRP。
上述网络侧设备指示的TRP可以是网络侧设备通过DCI等信令指示的TRP。上述网络侧设备配置的TRP可以是网络侧设备通过无线资源控制(Radio Resource Control,RRC)等信令配置的TRP。
可选的,所述特定CORESET可以包括如下至少一项:
关联了公共搜索空间CSS的CORESET;
关联了特定DCI格式的CORESET;
关联了特定标识或者特定索引的CORESET;
网络侧设备指示或者配置的CORESET;
关联了特定TRP的CORESET。
本实施例中,上述特定DCI格式可以包括回退DCI(即fallback DCI)格式,例如,DCI format 0_0或DCI format 1_0等。
上述关联了特定标识的CORESET,可以包括关联了特定ID的CORESET,例如,关联了最小或最大的TCI state ID的CORESET,或ID为0的CORESET。上述关联了特定索引(即Index)的CORESET,例如,Index最小或Index最大或Index为0的CORESET。
上述网络侧设备指示的CORESET可以是网络侧设备通过DCI或RRC等信令指示的CORESET。上述网络侧设备配置的CORESET可以是网络侧设备通过RRC等信令配置的CORESET。
可选的,上述特定TRP可以包括如下至少一项:关联了CSS的TRP;关联了特定DCI格式的TRP;关联了特定标识或者特定索引的TRP;网络侧设备指示或者配置的TRP。这样可以基于特定TRP确定特定CORESET。
可选的,所述丢弃第一传输对象关联的部分或全部专用搜索空间USS之前,所述方法还可以包括:
分配为所述终端设备配置的公共搜索空间CSS;
所述丢弃第一传输对象关联的部分或全部专用搜索空间USS,包括:
按照第一分配顺序依次分配所述第一传输对象关联的USS;
若在分配第一USS之后需监听的所述第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第一USS,其中,若存在第二USS,则丢弃所述第二USS;
其中,所述第一USS为所述第一传输对象关联的任一USS,所述第二USS为所述第一传输对象关联的USS中分配顺序位于所述第一USS的分配顺序之后的USS。
本实施例中,可以先分配为终端设备配置的全部的CSS,再按照第一分配顺序依次分配第一TRP或者第一CORESET关联的USS。上述第一分配顺序可以是USS的SS ID顺序;也可以是按照预设规则确定的分配顺序。
具体的,若在分配第一TRP或者第一CORESET关联的某个USS之后终端设备需监听的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,例如超过上述TRP上限值、小区上限值和CA上限值中的至 少一项,则可以放弃分配或者停止分配该USS以及分配顺序位于该USS之后的USS。
例如,在分配第一TRP关联的某个USS之后终端设备需监听的第一TRP关联的PDCCH候选数量超过TRP上限值,或在分配第一TRP关联的某个USS之后终端设备需监听的关联于第一TRP的小区关联的PDCCH候选数量超过小区上限值,或在终端设备配置了CA的情况下,在分配第一TRP关联的某个USS之后终端设备需监听的PDCCH候选数量超过CA上限值,则放弃分配或停止分配该USS以及分配顺序位于该USS之后的USS。
又例如,TRP上限值=10,TRP-1关联了CSS(PDCCH候选监听数=4)、USS1(PDCCH候选监听数=4)和USS3(PDCCH候选监听数=3),TRP-2关联了USS2(PDCCH候选监听数=4)和USS4(PDCCH候选监听数=2),TRP-1为特定TRP,在分配了TRP-1的USS3之后终端设备需监听的TRP-1关联的PDCCH候选数量为11,超过了TRP上限值,则放弃分配USS3。
可选的,所述方法还可以包括:
分配第二传输对象关联的全部的USS;
其中,所述第二传输对象包括第二TRP或者第二CORESET,所述第二TRP是为所述终端设备配置的TRP中除所述第一TRP之外的TRP,所述第二CORESET为所述目标CORESET中除所述第一CORESET之外的CORESET,配置的第一数量不超过所述终端设备支持监听的第一监听对象的上限值,所述第一数量为所述第二传输对象关联的USS的第一监听对象的数量。
本实施例中,可以通过网络侧配置第二传输对象关联的USS的第一监听对象的数量不超过终端设备支持监听的第一监听对象的上限值,例如,不超过上述TRP上限值、小区上限值和CA上限值中的任一项。这样不仅可以避免UE总的盲检次数超过支持的最大PDCCH候选数或信道估计数超过最大信道估计数的情况发生,还可以降低UE进行搜索空间分配的复杂度,降低UE功耗。
需要说明的是,上述分配第二传输对象关联的全部的USS的步骤可以在按照第一分配顺序依次分配所述第一传输对象关联的USS的步骤之前执行, 也可以在按照第一分配顺序依次分配所述第一传输对象关联的USS的步骤之后执行,也可以与按照第一分配顺序依次分配所述第一传输对象关联的USS的步骤并行执行,本实施例对此不做限定。这样,上述在分配第一USS之后需监听的关联于一个小区的第一监听对象的数量可以是分配的第一传输对象关联的USS的第一监听对象的数量和分配的全部的CSS的第一监听对象的数量之和。
本公开实施例由于可以按照任意顺序分配第一传输对象关联的USS和第二传输对象关联的USS,可以提高UE分配USS的灵活性。
可选的,所述终端设备的一个小区内分配的搜索空间的第一监听对象的数量不超过小区上限值;
其中,所述小区上限值为所述终端设备支持监听的一个小区内的第一监听对象的最大数量。
本实施例中,在完成搜索空间分配之后,一个小区内分配的搜索空间的第一监听对象的数量不超过小区上限值,也即分配的关联于一个小区的搜索空间的第一监听对象的数量不超过小区上限值。
可选的,所述终端设备在配置了载波聚合CA的情况下分配的搜索空间的第一监听对象的数量不超过CA上限值;
其中,所述CA上限值为所述终端设备在配置了CA的情况下支持监听的第一监听对象的最大数量。
本实施例中,若终端设备配置了CA,则在完成搜索空间分配之后,多个小区内分配的搜索空间的第一监听对象的数量不超过CA上限值。例如,若UE配置了两个小区的CA,也即PCell和SCell,则分配的关联于PCell的搜索空间的第一监听对象的数量和分配的关联于PCell的搜索空间的第一监听对象的数量之和不超过CA上限值。
需要说明的是,本实施例可以结合网络侧的搜索空间配置和UE侧的Overbooking处理共同保证在完成搜索空间分配之后,一个小区内分配的搜索空间的第一监听对象的数量不超过小区上限值以及所述终端设备在配置了载波聚合CA的情况下分配的搜索空间的第一监听对象的数量不超过CA上限值。
可选的,所述丢弃第一传输对象关联的部分或全部专用搜索空间USS之前,所述方法还可以包括:
分配为所述终端设备配置的公共搜索空间CSS;
分配第三传输对象关联的全部的USS;其中,所述第三传输对象包括第三TRP或者第三CORESET,所述第三TRP是为所述终端设备配置的TRP中除所述第一TRP之外的TRP,所述第三CORESET是目标CORESET中除所述第一CORESET之外的CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET,配置的第二数量不超过所述终端设备支持监听的第一监听对象的上限值,所述第二数量为所述第三传输对象关联的USS的第一监听对象的数量;
所述丢弃第一传输对象关联的部分或全部专用搜索空间USS,包括:
按照第二分配顺序依次分配所述第一传输对象关联的USS;
若在分配第三USS之后需监听的所述第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第三USS,其中,若存在第四USS,则丢弃所述第四USS,所述第三USS为所述第一传输对象关联的任一USS,所述第四USS为所述第一传输对象关联的USS中分配顺序位于所述第三USS的分配顺序之后的USS。
本实施例中,上述第二分配顺序可以是USS的SS ID顺序;也可以是按照预设规则确定的分配顺序。此外,可以通过网络侧配置第三传输对象关联的USS的第一监听对象的数量不超过终端设备支持监听的第一监听对象的上限值,例如,不超过上述TRP上限值、小区上限值和CA上限值中的任一项。可选的,配置的第三传输对象关联的USS的第一监听对象的数量不超过TRP上限值。
具体的,若在分配第一TRP或者第一CORESET关联的某个USS之后终端设备需监听的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,例如超过上述TRP上限值、小区上限值和CA上限值中的至少一项,则可以放弃分配或者停止分配该USS以及分配顺序位于该USS之后的USS。
需要说明的是,在分配第一USS之后需监听的关联于一个小区的第一监 听对象的数量可以是分配的第一传输对象关联的USS的第一监听对象的数量、分配的第一传输对象关联的全部USS的第一监听对象的数量和分配的全部的CSS的第一监听对象的数量之和。
本实施例中,由于可以对第一传输对象关联的USS进行Overbooking处理,因此通过先分配全部的CSS和第三传输对象关联的全部的USS,再分配第一传输对象关联的USS,可以较为容易的保证UE总的盲检次数不超过支持的最大PDCCH候选数或信道估计数不超过最大信道估计数,降低了UE分配搜索空间的复杂度。
可选的,所述丢弃第一传输对象关联的部分或全部特定搜索空间USS之前,所述方法还包括:
分配为所述终端设备配置的CSS;
所述丢弃第一传输对象关联的部分或全部专用搜索空间USS,可以包括:
按照第三分配顺序依次分配为所述终端设备配置的TRP关联的USS;
若在分配第五USS之后需监听的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第五USS,其中,若存在第六USS,则丢弃所述第六USS;
其中,所述第五USS是为所述终端设备配置的TRP关联的任一USS,所述第六USS是为所述终端设备配置的TRP关联的USS中分配顺序位于所述第五USS的分配顺序之后的USS。
本实施例中,上述第三分配顺序可以是USS的SS ID顺序,也可以是按照预设规则确定的分配顺序。
具体的,可以先分配全部的CSS,再按照第三分配顺序依次映射USS,并可以在分配某个USS之后若需监听的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,例如超过上述TRP上限值、小区上限值和CA上限值中的至少一项,则放弃分配USS以及分配顺序位于该USS之后的USS。
需要说明的是,上述第一TRP也即被丢弃的USS关联的TRP,上述第一CORESET也即被丢弃的USS关联的CORESET。
本公开实施例可以对任意的TRP关联的USS进行Overbooking处理,不 仅可以减少UE总的盲检次数超过支持的最大PDCCH候选数或信道估计数超过最大信道估计数的情况发生,还可以提高搜索空间分配的灵活性和复杂度,并降低网络侧配置搜索空间的复杂度。
可选的,所述丢弃第一传输对象关联的部分或全部特定搜索空间USS之前,所述方法还可以包括:
分配为所述终端设备配置的CSS;
所述丢弃第一传输对象关联的部分或全部专用搜索空间USS,包括:
按照第四分配顺序依次分配为所述终端设备配置的TRP关联的USS;
若在分配第四传输对象关联的第七USS之后需监听的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第七USS,并继续分配第九USS,其中,若存在第八USS,则丢弃所述第八USS;
其中,所述第四传输对象包括第四TRP或者第四CORESET,所述第四TRP是为所述终端设备配置的TRP中的任一TRP,所述第四CORESET为目标CORESET中的任一CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET,所述第七USS为所述第四传输对象关联的任一USS,所述第八USS为所述第四传输对象关联的USS中分配顺序位于所述第七USS的分配顺序之后的USS,所述第九USS为第五传输对象关联的USS,所述第五传输对象与所述第四传输对象不同。
本实施例中,上述第四分配顺序可以是USS的SS ID顺序,也可以是按照预设规则确定的分配顺序。
上述第五传输对象与第四传输对象不同,例如,第四传输对象为TRP-1,则第五传输对象可以为TRP-2,或者,第四传输对象为CORESET-1,则第五传输对象可以为CORESET-2。
例如,若关联某个TRP或CORESET的SS的监听的PDCCH候选个数或非重叠的CCE数超过了UE的最大PDCCH处理能力,例如超过上述TRP上限值、小区上限值和CA上限值中的至少一项,则停止分配关联该TRP或CORESET的所有后续的SS,并继续映射关联其他TRP或CORESET的SS,直到所有TRP关联的SS都映射完,或监听的PDCCH候选个数或非重叠的CCE数超过了TRP上限值、小区上限值和CA上限值中的至少一项,则停止 分配。
又例如,一个小区配置了TRP-1和TRP-2,在分配TRP-1的某个USS之后UE需监听的关联于TRP-1的PDCCH候选数量超过TRP上限值,但是当前已分配的需监听的关联于该小区的PDCCH候选数量未超过小区上限值,则可以停止分配该USS以及关联于TRP-1的USS中分配顺序位于该USS之后的USS,并可以继续分配TRP-2的USS,直至UE需监听的关联于TRP-2的PDCCH候选数量超过TRP上限值或者UE需监听的关联于该小区的PDCCH候选数量超过小区上限值。
需要说明的是,上述第一TRP也即被丢弃的USS关联的TRP,上述第一CORESET也即被丢弃的USS关联的CORESET。
本公开实施例可以对任意的TRP关联的USS进行Overbooking处理,不仅可以减少UE总的盲检次数超过支持的最大PDCCH候选数或信道估计数超过最大信道估计数的情况发生,还可以提高搜索空间分配的灵活性。此外,通过继续分配发生了Overbooking的TRP或CORESET之外的TRP或CORESET关联的USS,可以充分利用终端设备的PDCCH处理能力,提高数据接收性能。
可选的,在所述终端设备配置了载波聚合CA的情况下,所述第一TRP为主小区Pcell或者主辅小区(Primary Secondary cell,PScell)的TRP,所述第一CORESET为所述Pcell或者所述PScell的CORESET。
本实施例中,在终端设备配置了CA的情况下,可以仅对Pcell或者PScell的TRP或者CORESET进行Overbooking处理。对于Scell的搜索空间,可以直接进行分配,也即可以直接分配所有Scell关联的全部SS。可选的,配置的Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值。
需要说明的是,对Pcell或者PScell的TRP或CORESET进行Overbooking处理的相关内容可以参见前述描述,本实施例在此不做赘述。
可选的,所述丢弃为所述终端设备配置的部分搜索空间之前,所述方法还包括:
在所述终端设备配置了载波聚合CA的情况下,将监听PDCCH的小区 按照其关联的TRP进行分组,得到至少两个分组;
所述丢弃为所述终端设备配置的部分搜索空间,包括:
按照第五分配顺序依次分配所述至少两个分组中每个分组的第一小区的搜索空间;其中,所述第一小区包括所述每个分组中的主小区Pcell或者主辅小区PScell;
若在分配第一搜索空间之后需监听的所述第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第一搜索空间,其中,若存在第二搜索空间,则丢弃所述第二搜索空间;
其中,所述第一搜索空间为所述第一小区的任一搜索空间,所述第二搜索空间为所述第一小区的搜索空间中分配顺序位于所述第一搜索空间之后的搜索空间。
本实施例中,上述第五分配顺序可以是搜索空间的SS ID顺序;也可以是按照预设规则确定的分配顺序。
可选的,在终端设备配置了CA的情况下,可以基于TRP对监听PDCCH的小区进行分组,或者基于TRP对监听PDCCH的小区及其搜索空间进行分组。
例如,若Pcell关联于TRP-1和TRP-2,Scell关联于TRP-1,则对应于TRP-1的分组可以包括Pcell和Scell,对应于TRP-2的分组可以包括Pcell。
又例如,若Pcell关联于TRP-1和TRP-2,Scell关联于TRP-1,关联于TRP-1的PCell上关联了CSS、USS1和USS3,关联于TRP-1的SCell关联了USS2和USS4,关联于TRP-2的PCell关联了USS1,关联于TRP-2的SCell关联了USS2,则对应于TRP-1的分组可以包括Pcell和Scell,该分组的PCell的搜索空间可以包括CSS、USS1、USS3,该分组的SCell的搜索空间可以包括USS2和USS4;对应于TRP-2的分组可以包括Pcell和Scell,该分组的PCell的搜索空间可以包括USS1,该分组的SCell的搜索空间可以包括USS2。
本实施例可以在每个分组内分配每个小区的SS,其中,对于每个分组内的Pcell或PScell的搜索空间,可以进行Overbooking处理,例如,按照USS的SS ID顺序分配SS,如果分配了某个SS之后需监听的所述第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,例如超过TRP 上限值、小区上限值、CA上限值和组上限值中的至少一项,则停止分配所有后续的SS。
可选的,所述方法还可以包括:
分配所述至少两个分组中每个分组的辅小区Scell的全部的搜索空间;
其中,配置的所述Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值。
本实施例中,可以直接分配每个分组的Scell的全部的搜索空间,并可以由网络侧配置Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,这样可以降低UE分配搜索空间的复杂度。
本公开实施例提供一种搜索空间配置方法,应用于网络侧设备。参见图4,图4是本公开实施例提供的搜索空间配置方法的流程图,如图4所示,包括以下步骤:
步骤401、为终端设备配置搜索空间集;
其中,所述终端设备配置了收发节点TRP;所述搜索空间集的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者所述搜索空间集中关联于第二传输对象的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者所述搜索空间集中关联于辅小区Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值;
所述第一监听对象包括物理下行控制信道PDCCH候选或者非重叠的控制信道单元CCE,所述第二传输对象包括第二TRP或者第二控制资源集CORESET,所述第二TRP是为所述终端设备配置的TRP中除特定TRP之外的TRP,所述第二CORESET为目标CORESET中除特定CORESET之外的CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET。
在一实施方式中,可以在终端设备配置了至少两个TRP的情况下,网络侧设备配置给终端设备的搜索空间集的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,这样可以有效避免UE总的盲检次 数超过支持的最大PDCCH候选数或信道估计数超过最大信道估计数的情况发生,并降低UE分配搜索空间的复杂度。
在另一实施方式中,可以在终端设备配置了至少两个TRP的情况下,网络侧可以配置关联于除特定TRP之外的TRP的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者网络侧可以配置关联于除特定CORESET之外的CORESET的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,这样不仅可以减少UE总的盲检次数超过支持的最大PDCCH候选数或信道估计数超过最大信道估计数的情况发生,还可以提高搜索空间配置的灵活性。
在另一实施方式中,可以在终端设备配置了至少两个TRP的情况下,网络侧可以配置关联于Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,这样不仅可以减少UE总的盲检次数超过支持的最大PDCCH候选数或信道估计数超过最大信道估计数的情况发生,还可以提高搜索空间配置的灵活性。
可选的,所述终端设备支持监听的第一监听对象的上限值,包括如下至少一项:
TRP上限值,所述TRP上限值为所述终端设备支持监听的一个小区内关联于一个TRP的第一监听对象的最大数量;
小区上限值,所述小区上限值为所述终端设备支持监听的一个小区内的第一监听对象的最大数量;
载波聚合CA上限值,所述CA上限值为所述终端设备在配置了CA的情况下支持监听的第一监听对象的最大数量;
组上限值,所述组上限值为所述终端设备支持监听的一个分组的第一监听对象的最大数量,所述分组为监听PDCCH的小区基于TRP进行分组得到的。
本实施例中,TRP上限值(即TRP Limit)可以表示终端设备监听一个小区内关联于一个TRP的PDCCH候选的最大处理能力。该TRP上限值可以包括终端设备支持监听的一个小区内关联于一个TRP的PDCCH候选的最大数量,或者终端设备支持监听的一个小区内关联于一个TRP的非重叠的CCE 的最大数量。例如,以监听对象为PDCCH候选为例,若TRP上限值为10,则表示终端设备最多支持监听一个小区内关联于一个TRP的10个PDCCH候选;若分配给一个小区内的某个TRP的PDCCH候选监听数超过10,则表示超过了终端设备的PDCCH处理能力。
小区上限值(即Cell Limit)可以表示终端设备监听一个小区的PDCCH候选的最大处理能力。该小区上限值可以包括终端设备支持监听的一个小区内的PDCCH候选的最大数量,或者终端设备支持监听的一个小区内的非重叠的CCE的最大数量。例如,以监听对象为PDCCH候选为例,若小区上限值为20,则表示终端设备最多支持监听一个小区内的20个PDCCH候选;若分配给某个小区的PDCCH候选监听数超过20,则表示超过了终端设备的PDCCH处理能力。
CA上限值(即CA Limit)可以表示终端设备在配置了CA的情况下监听多个小区的PDCCH候选的最大处理能力。该CA上限值可以包括终端设备在配置了CA的情况下UE支持监听的PDCCH候选的最大数量或非重叠的CCE的最大数量。需要说明的是,在终端设备配置了CA的情况下,可以仅为多个小区中的部分小区分配PDCCH候选监听;也可以为上述多个小区中的每个小区均分配PDCCH候选监听。例如,以监听对象为PDCCH候选为例,若CA上限值为20,则表示终端设备在配置了CA的情况下最多支持监听20个PDCCH候选;若UE配置了两个小区的CA,也即主小区(Primary Cell,PCell)和辅小区(Secondary Cell,SCell),且分配给PCell的PDCCH候选监听数和SCell的PDCCH候选监听数之和超过20,则表示超过了终端设备的PDCCH处理能力。
组上限值(即Group Limit)可以表示终端设备监听的一个分组的PDCCH候选的最大处理能力。该组上限值可以包括终端设备支持监听的一个分组的PDCCH候选的最大数量,或者终端设备支持监听的一个分组的非重叠的CCE的最大数量。例如,以监听对象为PDCCH候选为例,若组上限值为15,则表示终端设备最多支持监听一个小组内的15个PDCCH候选;若分配给某个小组的PDCCH候选监听数超过15,则表示超过了终端设备的PDCCH处理能力。
其中,上述分组可以表示监听PDCCH的小区基于TRP的分组。例如,若Pcell关联于TRP-1和TRP-2,Scell关联于TRP-1,则对应于TRP-1的分组可以包括Pcell和Scell,对应于TRP-2的分组可以包括Pcell。
可选的,上述组上限值可以是网络侧配置的值,该值不超过UE上报的最大PDCCH处理能力。
可选的,所述特定TRP包括如下至少一项:
关联了公共搜索空间CSS的TRP;
关联了特定下行控制信息DCI格式的TRP;
关联了特定标识或者特定索引的TRP;
网络侧设备指示或者配置的TRP。
本实施例中,上述特定DCI格式可以包括回退DCI(即fallback DCI)格式,例如,DCI format 0_0或DCI format 1_0等。
上述关联了特定标识的TRP,可以包括关联了特定ID的TRP,例如,关联了最小或最大的TCI state ID的TRP,或ID为0的TRP。上述关联了特定索引(即Index)的TRP,例如,Index最小或Index最大或Index为0的TRP。
上述网络侧设备指示的TRP可以是网络侧设备通过DCI等信令指示的TRP。上述网络侧设备配置的TRP可以是网络侧设备通过RRC等信令配置的TRP。
可选的,所述特定CORESET包括如下至少一项:
关联了公共搜索空间CSS的CORESET;
关联了特定下行控制信息DCI格式的CORESET;
关联了特定标识或者特定索引的CORESET;
网络侧设备指示或者配置的CORESET;
关联了特定TRP的CORESET。
本实施例中,上述特定DCI格式可以包括回退DCI(即fallback DCI)格式,例如,DCI format 0_0或DCI format 1_0等。
上述关联了特定标识的CORESET,可以包括关联了特定ID的CORESET,例如,关联了最小或最大的TCI state ID的CORESET,或ID为0的CORESET。 上述关联了特定索引(即Index)的CORESET,例如,Index最小或Index最大或Index为0的CORESET。
上述网络侧设备指示的CORESETP可以是网络侧设备通过DCI等信令指示的CORESET。上述网络侧设备配置的CORESET可以是网络侧设备通过RRC等信令配置的CORESET。
可选的,上述特定TRP可以包括如下至少一项:关联了CSS的TRP;关联了特定DCI格式的TRP;关联了特定标识或者特定索引的TRP;网络侧设备指示或者配置的TRP。这样可以基于特定TRP确定特定CORESET。
可选的,在所述终端设备配置了CA的情况下,所述特定TRP为Pcell或者PScell的TRP,所述特定CORESET为所述Pcell或者所述PScell的CORESET。
本实施例中,在终端设备配置了CA的情况下,可以仅对Pcell或者PScell的TRP或者CORESET进行Overbooking处理。对于Scell的搜索空间,可以直接进行分配,也即可以直接分配所有Scell关联的全部SS。可选的,配置的Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值。
需要说明的是,对Pcell或者PScell的TRP或CORESET进行Overbooking处理的相关内容可以参见前述描述,本实施例在此不做赘述。
以下结合示例对本公开实施例进行说明:
示例一:
UE的PDCCH处理能力为:TRP Limit=10,Cell Limit=20。
UE配置了一个Cell和两个TRP,TRP-1关联了CSS(PDCCH候选监听数=4)、USS1(PDCCH候选监听数=4)和USS3(PDCCH候选监听数=3),TRP-2关联了USS2(PDCCH候选监听数=4)和USS4(PDCCH候选监听数=2)。
基于上述内容,本公开实施例提供的搜索空间分配方法可以包括如下步骤:
步骤a11、UE确定TRP-1为P-TRP,并映射CSS。
步骤a12、UE映射P-TRP的USS,由于映射USS3后P-TRP(也即TRP-1) 的PDCCH候选监听总数超过了TRP Limit(4+4+3>10),UE丢弃USS3。
步骤a13、UE映射其他TRP的USS,即USS2、USS4。
该步骤中,上述其他TRP可以是指除P-TRP之外的TRP,也即TRP-2。
由上可知,本示例中映射的SS为CSS、USS1、USS2和USS4,且TRP-1的PDCCH候选监听总数为8,TRP-2的PDCCH候选监听总数为6,Cell的PDCCH候选监听总数为14,均不超过UE的PDCCH候选处理能力。
需要说明的是,本示例对上述步骤a12和步骤a13的执行顺序不做限定,也即可以先执行步骤a12,再执行步骤a13;也可以先执行步骤a13再执行步骤a12;也可以步骤a12和步骤a13并行执行。
此外,本示例是以PDCCH候选监听数为例说明UE的PDCCH处理能力,但同样适用于非重叠的CCE数的个数。
示例二:
UE的PDCCH处理能力为:TRP Limit=10,Cell Limit=15。
UE配置了一个Cell和两个TRP,TRP-1关联了CSS(PDCCH候选监听数=4)、USS1(PDCCH候选监听数=4)和USS3(PDCCH候选监听数=2),TRP-2关联了USS2(PDCCH候选监听数=4)和USS4(PDCCH候选监听数=2)。
基于上述内容,本公开实施例提供的搜索空间分配方法可以包括如下步骤:
步骤a21、UE确定TRP-1为P-TRP,并映射CSS。
步骤a22、UE映射其他TRP的USS,即USS2和USS4。
该步骤中,上述其他TRP可以是指除P-TRP之外的TRP,也即TRP-2。
步骤a23、UE映射P-TRP的USS,虽然映射USS3之后P-TRP的PDCCH候选监听总数不超过TRP Limit(4+4+2<=10),但该UE的Cell的PDCCH候选监听总数超过了Cell Limit(4+4+2+4+2>15),因此UE丢弃USS3。
由上可知,本示例中映射的SS为CSS、USS1、USS2和USS4,且TRP-1的PDCCH候选监听总数为8,TRP-2的PDCCH候选监听总数为6,Cell的PDCCH候选监听总数为14,均不超过UE的PDCCH处理能力。
示例三:
UE的PDCCH候选处理能力为:TRP Limit=10,Cell Limit=15。
UE配置了一个Cell和两个TRP,TRP-1关联了CSS(PDCCH候选监听数=4)、USS1(PDCCH候选监听数=4)和USS3(PDCCH候选监听数=3),TRP-2关联了USS2(PDCCH候选监听数=2)和USS4(PDCCH候选监听数=5)。
基于上述内容,本公开实施例提供的搜索空间分配方法可以包括如下步骤:
步骤a31、UE映射CSS,并按照SS ID顺序映射USS。
步骤a32、当映射USS3时,总的PDCCH候选监听数(即4+4+2+3=13)超过了TRP Limit(即10),因此UE丢弃USS3和USS4。
由上可知,本示例中映射的SS为CSS、USS1和USS2,且TRP-1的PDCCH候选监听总数为8,TRP-2的PDCCH候选监听总数为2,Cell的PDCCH候选监听总数为10,均不超过UE的PDCCH处理能力。
示例四:
UE的PDCCH候选处理能力为:TRP Limit=10,Cell Limit=15。
UE配置了一个Cell和两个TRP,TRP-1关联了CSS(PDCCH候选监听数=4)、USS1(PDCCH候选监听数=4)和USS3(PDCCH候选监听数=3),TRP-2关联了USS2(PDCCH候选监听数=2)和USS 4(PDCCH候选监听数=5)。
基于上述内容,本公开实施例提供的搜索空间分配方法可以包括如下步骤:
步骤a41、UE映射CSS,并按照SS ID顺序映射USS。
步骤a42、在映射USS3后总的PDCCH候选监听数(即4+4+3=11)超过了TRP Limit(即10),因此UE丢弃USS3,继续映射USS4。
由上可知,本示例中映射的SS为CSS、USS1、USS2和USS4,且TRP-1的PDCCH候选监听总数为8,TRP-2的PDCCH候选监听总数为7,Cell的PDCCH候选监听总数为15,均不超过UE的PDCCH处理能力。
示例五:
UE的PDCCH候选处理能力为:TRP Limit=10,Cell Limit=15,CA Limit =20。
UE配置了两个Cell的CA以及两个TRP,其中,PCell上TRP-1关联了CSS(PDCCH候选监听数=4)、USS1(PDCCH候选监听数=4)和USS3(PDCCH候选监听数=3),TRP-2关联了USS2(PDCCH候选监听数=2)和USS4(PDCCH候选监听数=5),SCell上TRP-1关联了USS1(PDCCH候选监听数=2),TRP-2关联了USS2(PDCCH候选监听数=2)。
基于上述内容,本公开实施例提供的搜索空间分配方法可以包括如下步骤:
步骤a51、UE在PCell上映射CSS,按照SS ID顺序映射USS并执行Overbooking处理。
其中,上述Overbooking处理可以是指在配置UE监听的PDCCH候选数或非重叠的CCE超过UE的PDCCH处理能力的情况下丢弃为UE配置的部分搜索空间,其中,丢弃为UE配置的部分搜索空间的具体方式可以参见前述相关描述,在此不做赘述。
该步骤中,映射的SS为CSS、USS 1、USS 2和USS4,且TRP-1的PDCCH候选监听总数为8,TRP-2的PDCCH候选监听总数为7,Cell的PDCCH候选监听总数为15,均不超过UE的PDCCH处理能力。
步骤a61、UE在SCell上映射所有的USS,不超过UE的PDCCH候选处理能力。
由上可知,本示例中映射的SS为:PCell关联的CSS、USS1、USS2和USS4;SCell关联的USS1和USS2,且所有的Cell的PDCCH候选监听总数为15+4=19<20,不超过UE的PDCCH处理能力。
综上所述,本公开实施例为配置了M-TRP的系统提供了一种映射搜索空间以及监听PDCCH候选的方式,从而可以在M-TRP传输场景下灵活分配PDCCH盲检测资源,提高系统调度灵活性,并降低UE的实现复杂度与功耗。
参见图5,图5是本公开实施例提供的终端设备的结构图。如图5所示,终端设备500包括:
丢弃模块501,用于在所述终端设备配置了收发节点TRP的情况下,若为所述终端设备配置的搜索空间集的第一监听对象的数量超过所述终端设备 支持监听的第一监听对象的上限值,则丢弃为所述终端设备配置的部分搜索空间;
其中,所述第一监听对象包括物理下行控制信道PDCCH候选或者非重叠的控制信道单元CCE。
可选的,所述终端设备支持监听的第一监听对象的上限值,包括如下至少一项:
TRP上限值,所述TRP上限值为所述终端设备支持监听的一个小区内关联于一个TRP的第一监听对象的最大数量;
小区上限值,所述小区上限值为所述终端设备支持监听的一个小区内的第一监听对象的最大数量;
载波聚合CA上限值,所述CA上限值为所述终端设备在配置了CA的情况下支持监听的第一监听对象的最大数量;
组上限值,所述组上限值为所述终端设备支持监听的一个分组的第一监听对象的最大数量,所述分组为监听PDCCH的小区基于TRP进行分组得到的。
可选的,所述丢弃模块,包括:
第一丢弃单元,用于丢弃第一传输对象关联的部分或全部专用搜索空间USS;
其中,所述第一传输对象包括第一TRP或者第一控制资源集CORESET,所述第一TRP包括为所述终端设备配置的TRP中的至少一个TRP,所述第一CORESET包括为所述终端设备配置的用于监听搜索空间的CORESET中的至少一个CORESET。
可选的,所述第一TRP是为所述终端设备配置的TRP中的特定TRP,或者所述第一CORESET为所述目标CORESET中的特定CORESET。
可选的,所述特定TRP包括如下至少一项:
关联了公共搜索空间CSS的TRP;
关联了特定下行控制信息DCI格式的TRP;
关联了特定标识或者特定索引的TRP;
网络侧设备指示或者配置的TRP。
可选的,所述特定CORESET包括如下至少一项:
关联了公共搜索空间CSS的CORESET;
关联了特定下行控制信息DCI格式的CORESET;
关联了特定标识或者特定索引的CORESET;
网络侧设备指示或者配置的CORESET;
关联了特定TRP的CORESET。
可选的,所述终端设备还包括:
第一分配单元,用于所述丢弃第一传输对象关联的部分或全部专用搜索空间USS之前,分配为所述终端设备配置的公共搜索空间CSS;
所述第一丢弃单元具体用于:
按照第一分配顺序依次分配所述第一传输对象关联的USS;
若在分配第一USS之后需监听的所述第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第一USS,其中,若存在第二USS,则丢弃所述第二USS;
其中,所述第一USS为所述第一传输对象关联的任一USS,所述第二USS为所述第一传输对象关联的USS中分配顺序位于所述第一USS的分配顺序之后的USS。
可选的,所述终端设备还包括:
第六分配模块,用于分配第二传输对象关联的全部的USS;
其中,所述第二传输对象包括第二TRP或者第二CORESET,所述第二TRP是为所述终端设备配置的TRP中除所述第一TRP之外的TRP,所述第二CORESET为所述目标CORESET中除所述第一CORESET之外的CORESET,配置的第一数量不超过所述终端设备支持监听的第一监听对象的上限值,所述第一数量为所述第二传输对象关联的USS的第一监听对象的数量。
可选的,所述终端设备的一个小区内分配的搜索空间的第一监听对象的数量不超过小区上限值;
其中,所述小区上限值为所述终端设备支持监听的一个小区内的第一监听对象的最大数量。
可选的,所述终端设备在配置了载波聚合CA的情况下分配的搜索空间的第一监听对象的数量不超过CA上限值;
其中,所述CA上限值为所述终端设备在配置了CA的情况下支持监听的第一监听对象的最大数量。
可选的,所述终端设备还包括:
第二分配模块,用于所述丢弃第一传输对象关联的部分或全部专用搜索空间USS之前,分配为所述终端设备配置的公共搜索空间CSS;
第三分配模块,用于分配第三传输对象关联的全部的USS;其中,所述第三传输对象包括第三TRP或者第三CORESET,所述第三TRP是为所述终端设备配置的TRP中除所述第一TRP之外的TRP,所述第三CORESET是目标CORESET中除所述第一CORESET之外的CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET,配置的第二数量不超过所述终端设备支持监听的第一监听对象的上限值,所述第二数量为所述第三传输对象关联的USS的第一监听对象的数量;
所述第一丢弃单元具体用于:
按照第二分配顺序依次分配所述第一传输对象关联的USS;
若在分配第三USS之后需监听的所述第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第三USS,其中,若存在第四USS,则丢弃所述第四USS,所述第三USS为所述第一传输对象关联的任一USS,所述第四USS为所述第一传输对象关联的USS中分配顺序位于所述第三USS的分配顺序之后的USS。
可选的,所述终端设备还包括:
第四分配模块,用于所述丢弃第一传输对象关联的部分或全部特定搜索空间USS之前,分配为所述终端设备配置的公共搜索空间CSS;
所述第一丢弃单元具体用于:
按照第三分配顺序依次分配为所述终端设备配置的TRP关联的USS;
若在分配第五USS之后需监听的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第五USS,其中,若存在第六USS,则丢弃所述第六USS;
其中,所述第五USS是为所述终端设备配置的TRP关联的任一USS,所述第六USS是为所述终端设备配置的TRP关联的USS中分配顺序位于所述第五USS的分配顺序之后的USS。
可选的,所述终端设备还包括:
第五分配模块,用于所述丢弃第一传输对象关联的部分或全部特定搜索空间USS之前,分配为所述终端设备配置的公共搜索空间CSS;
所述第一丢弃单元具体用于:
按照第四分配顺序依次分配为所述终端设备配置的TRP关联的USS;
若在分配第四传输对象关联的第七USS之后需监听的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第七USS,并继续分配第九USS,其中,若存在第八USS,则丢弃所述第八USS;
其中,所述第四传输对象包括第四TRP或者第四CORESET,所述第四TRP是为所述终端设备配置的TRP中的任一TRP,所述第四CORESET为目标CORESET中的任一CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET,所述第七USS为所述第四传输对象关联的任一USS,所述第八USS为所述第四传输对象关联的USS中分配顺序位于所述第七USS的分配顺序之后的USS,所述第九USS为第五传输对象关联的USS,所述第五传输对象与所述第四传输对象不同。
可选的,在所述终端设备配置了载波聚合CA的情况下,所述第一TRP为主小区Pcell或者主辅小区PScell的TRP,所述第一CORESET为所述Pcell或者所述PScell的CORESET。
可选的,所述终端设备还包括:
分组模块,用于所述丢弃为所述终端设备配置的部分搜索空间之前,在所述终端设备配置了载波聚合CA的情况下,将监听PDCCH的小区按照其关联的TRP进行分组,得到至少两个分组;
所述丢弃模块,包括:
分配单元,用于按照第五分配顺序依次分配所述至少两个分组中每个分组的第一小区的搜索空间;其中,所述第一小区包括所述每个分组中的主小区Pcell或者主辅小区PScell;
第二丢弃单元,用于若在分配第一搜索空间之后需监听的所述第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第一搜索空间,其中,若存在第二搜索空间,则丢弃所述第二搜索空间;
其中,所述第一搜索空间为所述第一小区的任一搜索空间,所述第二搜索空间为所述第一小区的搜索空间中分配顺序位于所述第一搜索空间之后的搜索空间。
可选的,所述终端设备还包括:
第七分配模块,用于分配所述至少两个分组中每个分组的辅小区Scell的全部的搜索空间;
其中,配置的所述Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值。
本公开实施例提供的终端设备500能够实现上述方法实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的终端设备500,丢弃模块501,用于在所述终端设备配置了收发节点TRP的情况下,若为所述终端设备配置的搜索空间集的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃为所述终端设备配置的部分搜索空间,可以减少UE总的盲检次数超过支持的最大PDCCH候选数或信道估计数超过最大信道估计数的情况发生,并可以提高分配PDCCH候选盲检测资源的灵活性。
参见图6,图6是本公开实施例提供的网络侧设备的结构图。如图6所示,网络侧设备600包括:
配置模块601,用于为终端设备配置搜索空间集;
其中,所述终端设备配置了收发节点TRP;所述搜索空间集的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者所述搜索空间集中关联于第二传输对象的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者所述搜索空间集中关联于辅小区Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值;
所述第一监听对象包括物理下行控制信道PDCCH候选或者非重叠的控 制信道单元CCE,所述第二传输对象包括第二TRP或者第二控制资源集CORESET,所述第二TRP是为所述终端设备配置的TRP中除特定TRP之外的TRP,所述第二CORESET为目标CORESET中除特定CORESET之外的CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET。
可选的,所述终端设备支持监听的第一监听对象的上限值,包括如下至少一项:
TRP上限值,所述TRP上限值为所述终端设备支持监听的一个小区内关联于一个TRP的第一监听对象的最大数量;
小区上限值,所述小区上限值为所述终端设备支持监听的一个小区内的第一监听对象的最大数量;
载波聚合CA上限值,所述CA上限值为所述终端设备在配置了CA的情况下支持监听的第一监听对象的最大数量;
组上限值,所述组上限值为所述终端设备支持监听的一个分组的第一监听对象的最大数量,所述分组为监听PDCCH的小区基于TRP进行分组得到的。
可选的,所述特定TRP包括如下至少一项:
关联了公共搜索空间CSS的TRP;
关联了特定下行控制信息DCI格式的TRP;
关联了特定标识或者特定索引的TRP;
网络侧设备指示或者配置的TRP。
可选的,所述特定CORESET包括如下至少一项:
关联了公共搜索空间CSS的CORESET;
关联了特定下行控制信息DCI格式的CORESET;
关联了特定标识或者特定索引的CORESET;
网络侧设备指示或者配置的CORESET;
关联了特定TRP的CORESET。
可选的,在所述终端设备配置了载波聚合CA的情况下,所述特定TRP为主小区Pcell或者主辅小区PScell的TRP,所述特定CORESET为所述Pcell 或者所述PScell的CORESET。
本公开实施例提供的网络侧设备600能够实现上述方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的网络侧设备600,配置模块601,用于为终端设备配置搜索空间集;其中,所述终端设备配置了收发节点TRP;所述搜索空间集的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者所述搜索空间集中关联于第二传输对象的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者所述搜索空间集中关联于辅小区Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,可以减少UE总的盲检次数超过支持的最大PDCCH候选数或信道估计数超过最大信道估计数的情况发生。
图7是本公开实施例提供的又一种终端设备的结构图。参见图7,该终端设备700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、处理器710、以及电源711等部件。本领域技术人员可以理解,图7中示出的终端设备结构并不构成对终端设备的限定,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端设备包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,所述处理器710,用于在所述终端设备配置了收发节点TRP的情况下,若为所述终端设备配置的搜索空间集的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃为所述终端设备配置的部分搜索空间;其中,所述第一监听对象包括物理下行控制信道PDCCH候选或者非重叠的控制信道单元CCE。
可选的,所述终端设备支持监听的第一监听对象的上限值,包括如下至少一项:
TRP上限值,所述TRP上限值为所述终端设备支持监听的一个小区内关联于一个TRP的第一监听对象的最大数量;
小区上限值,所述小区上限值为所述终端设备支持监听的一个小区内的 第一监听对象的最大数量;
载波聚合CA上限值,所述CA上限值为所述终端设备在配置了CA的情况下支持监听的第一监听对象的最大数量;
组上限值,所述组上限值为所述终端设备支持监听的一个分组的第一监听对象的最大数量,所述分组为监听PDCCH的小区基于TRP进行分组得到的。
可选的,所述处理器710还用于:
丢弃第一传输对象关联的部分或全部专用搜索空间USS;
其中,所述第一传输对象包括第一TRP或者第一控制资源集CORESET,所述第一TRP包括为所述终端设备配置的TRP中的至少一个TRP,所述第一CORESET包括为所述终端设备配置的用于监听搜索空间的CORESET中的至少一个CORESET。
可选的,所述第一TRP是为所述终端设备配置的TRP中的特定TRP,或者所述第一CORESET为所述目标CORESET中的特定CORESET。
可选的,所述特定TRP包括如下至少一项:
关联了公共搜索空间CSS的TRP;
关联了特定下行控制信息DCI格式的TRP;
关联了特定标识或者特定索引的TRP;
网络侧设备指示或者配置的TRP。
可选的,所述特定CORESET包括如下至少一项:
关联了公共搜索空间CSS的CORESET;
关联了特定下行控制信息DCI格式的CORESET;
关联了特定标识或者特定索引的CORESET;
网络侧设备指示或者配置的CORESET;
关联了特定TRP的CORESET。
可选的,所述处理器710还用于:所述丢弃第一传输对象关联的部分或全部专用搜索空间USS之前,分配为所述终端设备配置的公共搜索空间CSS;
按照第一分配顺序依次分配所述第一传输对象关联的USS;
若在分配第一USS之后需监听的所述第一监听对象的数量超过所述终端 设备支持监听的第一监听对象的上限值,则丢弃所述第一USS,其中,若存在第二USS,则丢弃所述第二USS;
其中,所述第一USS为所述第一传输对象关联的任一USS,所述第二USS为所述第一传输对象关联的USS中分配顺序位于所述第一USS的分配顺序之后的USS。
可选的,所述处理器710还用于:
分配第二传输对象关联的全部的USS;
其中,所述第二传输对象包括第二TRP或者第二CORESET,所述第二TRP是为所述终端设备配置的TRP中除所述第一TRP之外的TRP,所述第二CORESET为所述目标CORESET中除所述第一CORESET之外的CORESET,配置的第一数量不超过所述终端设备支持监听的第一监听对象的上限值,所述第一数量为所述第二传输对象关联的USS的第一监听对象的数量。
可选的,所述终端设备的一个小区内分配的搜索空间的第一监听对象的数量不超过小区上限值;
其中,所述小区上限值为所述终端设备支持监听的一个小区内的第一监听对象的最大数量。
可选的,所述终端设备在配置了载波聚合CA的情况下分配的搜索空间的第一监听对象的数量不超过CA上限值;
其中,所述CA上限值为所述终端设备在配置了CA的情况下支持监听的第一监听对象的最大数量。
可选的,所述处理器710还用于:
所述丢弃第一传输对象关联的部分或全部专用搜索空间USS之前,分配为所述终端设备配置的公共搜索空间CSS;
分配第三传输对象关联的全部的USS;其中,所述第三传输对象包括第三TRP或者第三CORESET,所述第三TRP是为所述终端设备配置的TRP中除所述第一TRP之外的TRP,所述第三CORESET是目标CORESET中除所述第一CORESET之外的CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET,配置的第二数量不超过所述终端设 备支持监听的第一监听对象的上限值,所述第二数量为所述第三传输对象关联的USS的第一监听对象的数量;
按照第二分配顺序依次分配所述第一传输对象关联的USS;
若在分配第三USS之后需监听的所述第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第三USS,其中,若存在第四USS,则丢弃所述第四USS,所述第三USS为所述第一传输对象关联的任一USS,所述第四USS为所述第一传输对象关联的USS中分配顺序位于所述第三USS的分配顺序之后的USS。
可选的,所述处理器710还用于:
所述丢弃第一传输对象关联的部分或全部特定搜索空间USS之前,分配为所述终端设备配置的公共搜索空间CSS;
按照第三分配顺序依次分配为所述终端设备配置的TRP关联的USS;
若在分配第五USS之后需监听的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第五USS,其中,若存在第六USS,则丢弃所述第六USS;
其中,所述第五USS是为所述终端设备配置的TRP关联的任一USS,所述第六USS是为所述终端设备配置的TRP关联的USS中分配顺序位于所述第五USS的分配顺序之后的USS。
可选的,所述处理器710还用于:
所述丢弃第一传输对象关联的部分或全部特定搜索空间USS之前,分配为所述终端设备配置的公共搜索空间CSS;
按照第四分配顺序依次分配为所述终端设备配置的TRP关联的USS;
若在分配第四传输对象关联的第七USS之后需监听的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第七USS,并继续分配第九USS,其中,若存在第八USS,则丢弃所述第八USS;
其中,所述第四传输对象包括第四TRP或者第四CORESET,所述第四TRP是为所述终端设备配置的TRP中的任一TRP,所述第四CORESET为目标CORESET中的任一CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET,所述第七USS为所述第四传输对象关 联的任一USS,所述第八USS为所述第四传输对象关联的USS中分配顺序位于所述第七USS的分配顺序之后的USS,所述第九USS为第五传输对象关联的USS,所述第五传输对象与所述第四传输对象不同。
可选的,在所述终端设备配置了载波聚合CA的情况下,所述第一TRP为主小区Pcell或者主辅小区PScell的TRP,所述第一CORESET为所述Pcell或者所述PScell的CORESET。
可选的,可选的,所述处理器710还用于:
所述丢弃为所述终端设备配置的部分搜索空间之前,在所述终端设备配置了载波聚合CA的情况下,将监听PDCCH的小区按照其关联的TRP进行分组,得到至少两个分组;
按照第五分配顺序依次分配所述至少两个分组中每个分组的第一小区的搜索空间;其中,所述第一小区包括所述每个分组中的主小区Pcell或者主辅小区PScell;
若在分配第一搜索空间之后需监听的所述第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第一搜索空间,其中,若存在第二搜索空间,则丢弃所述第二搜索空间;
其中,所述第一搜索空间为所述第一小区的任一搜索空间,所述第二搜索空间为所述第一小区的搜索空间中分配顺序位于所述第一搜索空间之后的搜索空间。
可选的,可选的,所述处理器710还用于:
分配所述至少两个分组中每个分组的辅小区Scell的全部的搜索空间;
其中,配置的所述Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值。
应理解的是,本公开实施例中,射频单元701可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器710处理;另外,将上行的数据发送给基站。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元701还可以通过无线通信系统与网络和其他设备通信。
终端设备通过网络模块702为用户提供了无线的宽带互联网访问,如帮 助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元703可以将射频单元701或网络模块702接收的或者在存储器709中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元703还可以提供与终端设备700执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元703包括扬声器、蜂鸣器以及受话器等。
输入单元704用于接收音频或视频信号。输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元706上。经图形处理器7041处理后的图像帧可以存储在存储器709(或其它存储介质)中或者经由射频单元701或网络模块702进行发送。麦克风7042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元701发送到移动通信基站的格式输出。
终端设备700还包括至少一种传感器705,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板7061的亮度,接近传感器可在终端设备700移动到耳边时,关闭显示面板7061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器705还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元706用于显示由用户输入的信息或提供给用户的信息。显示单元706可包括显示面板7061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板7061。
用户输入单元707可用于接收输入的数字或字符信息,以及产生与终端设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板7071上或在触控面板7071附近的操作)。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器710,接收处理器710发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板7071。除了触控面板7071,用户输入单元707还可以包括其他输入设备7072。具体地,其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板7071可覆盖在显示面板7061上,当触控面板7071检测到在其上或附近的触摸操作后,传送给处理器710以确定触摸事件的类型,随后处理器710根据触摸事件的类型在显示面板7061上提供相应的视觉输出。虽然在图7中,触控面板7071与显示面板7061是作为两个独立的部件来实现终端设备的输入和输出功能,但是在某些实施例中,可以将触控面板7071与显示面板7061集成而实现终端设备的输入和输出功能,具体此处不做限定。
接口单元708为外部装置与终端设备700连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(Input/Output,I/O)端口、视频I/O端口、耳机端口等等。接口单元708可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端设备700内的一个或多个元件或者可以用于在终端设备700和外部装置之间传输数据。
存储器709可用于存储软件程序以及各种数据。存储器709可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功 能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器710是终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部分,通过运行或执行存储在存储器709内的软件程序和/或模块,以及调用存储在存储器709内的数据,执行终端设备的各种功能和处理数据,从而对终端设备进行整体监控。处理器710可包括一个或多个处理单元;可选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
终端设备700还可以包括给各个部件供电的电源711(比如电池),可选的,电源711可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端设备700包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端设备,包括处理器710,存储器709,存储在存储器709上并可在所述处理器710上运行的计算机程序,该计算机程序被处理器710执行时实现上述搜索空间分配方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图8,图8是本公开又一实施例提供的网络侧设备的结构图。如图8所示,网络侧设备800包括:处理器801、存储器802、总线接口803和收发机804,其中,处理器801、存储器802和收发机804均连接至总线接口803。
其中,在本公开实施例中,网络侧设备800还包括:存储在存储器802上并可在处理器801上运行的计算机程序。
在本公开实施例中,所述收发机804用于:
为终端设备配置搜索空间集;
其中,所述终端设备配置了收发节点TRP;所述搜索空间集的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者所 述搜索空间集中关联于第二传输对象的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者所述搜索空间集中关联于辅小区Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值;
所述第一监听对象包括物理下行控制信道PDCCH候选或者非重叠的控制信道单元CCE,所述第二传输对象包括第二TRP或者第二控制资源集CORESET,所述第二TRP是为所述终端设备配置的TRP中除特定TRP之外的TRP,所述第二CORESET为目标CORESET中除特定CORESET之外的CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET。
可选的,所述终端设备支持监听的第一监听对象的上限值,包括如下至少一项:
TRP上限值,所述TRP上限值为所述终端设备支持监听的一个小区内关联于一个TRP的第一监听对象的最大数量;
小区上限值,所述小区上限值为所述终端设备支持监听的一个小区内的第一监听对象的最大数量;
载波聚合CA上限值,所述CA上限值为所述终端设备在配置了CA的情况下支持监听的第一监听对象的最大数量;
组上限值,所述组上限值为所述终端设备支持监听的一个分组的第一监听对象的最大数量,所述分组为监听PDCCH的小区基于TRP进行分组得到的。
可选的,所述特定TRP包括如下至少一项:
关联了公共搜索空间CSS的TRP;
关联了特定下行控制信息DCI格式的TRP;
关联了特定标识或者特定索引的TRP;
网络侧设备指示或者配置的TRP。
可选的,所述特定CORESET包括如下至少一项:
关联了公共搜索空间CSS的CORESET;
关联了特定下行控制信息DCI格式的CORESET;
关联了特定标识或者特定索引的CORESET;
网络侧设备指示或者配置的CORESET;
关联了特定TRP的CORESET。
可选的,在所述终端设备配置了载波聚合CA的情况下,所述特定TRP为主小区Pcell或者主辅小区PScell的TRP,所述特定CORESET为所述Pcell或者所述PScell的CORESET。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述搜索空间分配方法实施例的各个过程或者实现上述搜索空间配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (41)

  1. 一种搜索空间分配方法,应用于终端设备,其特征在于,包括:
    在所述终端设备配置了收发节点TRP的情况下,若为所述终端设备配置的搜索空间集的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃为所述终端设备配置的部分搜索空间;
    其中,所述第一监听对象包括物理下行控制信道PDCCH候选或者非重叠的控制信道单元CCE。
  2. 根据权利要求1所述的方法,其中,所述终端设备支持监听的第一监听对象的上限值,包括如下至少一项:
    TRP上限值,所述TRP上限值为所述终端设备支持监听的一个小区内关联于一个TRP的第一监听对象的最大数量;
    小区上限值,所述小区上限值为所述终端设备支持监听的一个小区内的第一监听对象的最大数量;
    载波聚合CA上限值,所述CA上限值为所述终端设备在配置了CA的情况下支持监听的第一监听对象的最大数量;
    组上限值,所述组上限值为所述终端设备支持监听的一个分组的第一监听对象的最大数量,所述分组为监听PDCCH的小区基于TRP进行分组得到的。
  3. 根据权利要求1所述的方法,其中,所述丢弃为所述终端设备配置的部分搜索空间,包括:
    丢弃第一传输对象关联的部分或全部专用搜索空间USS;
    其中,所述第一传输对象包括第一TRP或者第一控制资源集CORESET,所述第一TRP包括为所述终端设备配置的TRP中的至少一个TRP,所述第一CORESET包括为所述终端设备配置的用于监听搜索空间的CORESET中的至少一个CORESET。
  4. 根据权利要求3所述的方法,其中,所述第一TRP是为所述终端设备配置的TRP中的特定TRP,或者所述第一CORESET为所述目标CORESET中的特定CORESET。
  5. 根据权利要求4所述的方法,其中,所述特定TRP包括如下至少一项:
    关联了公共搜索空间CSS的TRP;
    关联了特定下行控制信息DCI格式的TRP;
    关联了特定标识或者特定索引的TRP;
    网络侧设备指示或者配置的TRP。
  6. 根据权利要求4所述的方法,其中,所述特定CORESET包括如下至少一项:
    关联了公共搜索空间CSS的CORESET;
    关联了特定下行控制信息DCI格式的CORESET;
    关联了特定标识或者特定索引的CORESET;
    网络侧设备指示或者配置的CORESET;
    关联了特定TRP的CORESET。
  7. 根据权利要求4所述的方法,其中,所述丢弃第一传输对象关联的部分或全部专用搜索空间USS之前,所述方法还包括:
    分配为所述终端设备配置的公共搜索空间CSS;
    所述丢弃第一传输对象关联的部分或全部专用搜索空间USS,包括:
    按照第一分配顺序依次分配所述第一传输对象关联的USS;
    若在分配第一USS之后需监听的所述第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第一USS,其中,若存在第二USS,则丢弃所述第二USS;
    其中,所述第一USS为所述第一传输对象关联的任一USS,所述第二USS为所述第一传输对象关联的USS中分配顺序位于所述第一USS的分配顺序之后的USS。
  8. 根据权利要求4至7中的任一项所述的方法,还包括:
    分配第二传输对象关联的全部的USS;
    其中,所述第二传输对象包括第二TRP或者第二CORESET,所述第二TRP是为所述终端设备配置的TRP中除所述第一TRP之外的TRP,所述第二CORESET为所述目标CORESET中除所述第一CORESET之外的 CORESET,配置的第一数量不超过所述终端设备支持监听的第一监听对象的上限值,所述第一数量为所述第二传输对象关联的USS的第一监听对象的数量。
  9. 根据权利要求8所述的方法,其中,所述终端设备的一个小区内分配的搜索空间的第一监听对象的数量不超过小区上限值;
    其中,所述小区上限值为所述终端设备支持监听的一个小区内的第一监听对象的最大数量。
  10. 根据权利要求7所述的方法,其中,所述终端设备在配置了载波聚合CA的情况下分配的搜索空间的第一监听对象的数量不超过CA上限值;
    其中,所述CA上限值为所述终端设备在配置了CA的情况下支持监听的第一监听对象的最大数量。
  11. 根据权利要求4所述的方法,其中,所述丢弃第一传输对象关联的部分或全部专用搜索空间USS之前,所述方法还包括:
    分配为所述终端设备配置的公共搜索空间CSS;
    分配第三传输对象关联的全部的USS;其中,所述第三传输对象包括第三TRP或者第三CORESET,所述第三TRP是为所述终端设备配置的TRP中除所述第一TRP之外的TRP,所述第三CORESET是目标CORESET中除所述第一CORESET之外的CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET,配置的第二数量不超过所述终端设备支持监听的第一监听对象的上限值,所述第二数量为所述第三传输对象关联的USS的第一监听对象的数量;
    所述丢弃第一传输对象关联的部分或全部专用搜索空间USS,包括:
    按照第二分配顺序依次分配所述第一传输对象关联的USS;
    若在分配第三USS之后需监听的所述第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第三USS,其中,若存在第四USS,则丢弃所述第四USS,所述第三USS为所述第一传输对象关联的任一USS,所述第四USS为所述第一传输对象关联的USS中分配顺序位于所述第三USS的分配顺序之后的USS。
  12. 根据权利要求3所述的方法,其中,所述丢弃第一传输对象关联的 部分或全部特定搜索空间USS之前,所述方法还包括:
    分配为所述终端设备配置的公共搜索空间CSS;
    所述丢弃第一传输对象关联的部分或全部专用搜索空间USS,包括:
    按照第三分配顺序依次分配为所述终端设备配置的TRP关联的USS;
    若在分配第五USS之后需监听的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第五USS,其中,若存在第六USS,则丢弃所述第六USS;
    其中,所述第五USS是为所述终端设备配置的TRP关联的任一USS,所述第六USS是为所述终端设备配置的TRP关联的USS中分配顺序位于所述第五USS的分配顺序之后的USS。
  13. 根据权利要求3所述的方法,其中,所述丢弃第一传输对象关联的部分或全部特定搜索空间USS之前,所述方法还包括:
    分配为所述终端设备配置的公共搜索空间CSS;
    所述丢弃第一传输对象关联的部分或全部专用搜索空间USS,包括:
    按照第四分配顺序依次分配为所述终端设备配置的TRP关联的USS;
    若在分配第四传输对象关联的第七USS之后需监听的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第七USS,并继续分配第九USS,其中,若存在第八USS,则丢弃所述第八USS;
    其中,所述第四传输对象包括第四TRP或者第四CORESET,所述第四TRP是为所述终端设备配置的TRP中的任一TRP,所述第四CORESET为目标CORESET中的任一CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET,所述第七USS为所述第四传输对象关联的任一USS,所述第八USS为所述第四传输对象关联的USS中分配顺序位于所述第七USS的分配顺序之后的USS,所述第九USS为第五传输对象关联的USS,所述第五传输对象与所述第四传输对象不同。
  14. 根据权利要求3所述的方法,其中,在所述终端设备配置了载波聚合CA的情况下,所述第一TRP为主小区Pcell或者主辅小区PScell的TRP,所述第一CORESET为所述Pcell或者所述PScell的CORESET。
  15. 根据权利要求1所述的方法,其中,所述丢弃为所述终端设备配置 的部分搜索空间之前,所述方法还包括:
    在所述终端设备配置了载波聚合CA的情况下,将监听PDCCH的小区按照其关联的TRP进行分组,得到至少两个分组;
    所述丢弃为所述终端设备配置的部分搜索空间,包括:
    按照第五分配顺序依次分配所述至少两个分组中每个分组的第一小区的搜索空间;其中,所述第一小区包括所述每个分组中的主小区Pcell或者主辅小区PScell;
    若在分配第一搜索空间之后需监听的所述第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第一搜索空间,其中,若存在第二搜索空间,则丢弃所述第二搜索空间;
    其中,所述第一搜索空间为所述第一小区的任一搜索空间,所述第二搜索空间为所述第一小区的搜索空间中分配顺序位于所述第一搜索空间之后的搜索空间。
  16. 根据权利要求15所述的方法,还包括:
    分配所述至少两个分组中每个分组的辅小区Scell的全部的搜索空间;
    其中,配置的所述Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值。
  17. 一种搜索空间配置方法,应用于网络侧设备,其特征在于,包括:
    为终端设备配置搜索空间集;
    其中,所述终端设备配置了收发节点TRP;所述搜索空间集的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者所述搜索空间集中关联于第二传输对象的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者所述搜索空间集中关联于辅小区Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值;
    所述第一监听对象包括物理下行控制信道PDCCH候选或者非重叠的控制信道单元CCE,所述第二传输对象包括第二TRP或者第二控制资源集CORESET,所述第二TRP是为所述终端设备配置的TRP中除特定TRP之外的TRP,所述第二CORESET为目标CORESET中除特定CORESET之外的 CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET。
  18. 根据权利要求17所述的方法,其中,所述终端设备支持监听的第一监听对象的上限值,包括如下至少一项:
    TRP上限值,所述TRP上限值为所述终端设备支持监听的一个小区内关联于一个TRP的第一监听对象的最大数量;
    小区上限值,所述小区上限值为所述终端设备支持监听的一个小区内的第一监听对象的最大数量;
    载波聚合CA上限值,所述CA上限值为所述终端设备在配置了CA的情况下支持监听的第一监听对象的最大数量;
    组上限值,所述组上限值为所述终端设备支持监听的一个分组的第一监听对象的最大数量,所述分组为监听PDCCH的小区基于TRP进行分组得到的。
  19. 根据权利要求17所述的方法,其中,所述特定TRP包括如下至少一项:
    关联了公共搜索空间CSS的TRP;
    关联了特定下行控制信息DCI格式的TRP;
    关联了特定标识或者特定索引的TRP;
    网络侧设备指示或者配置的TRP。
  20. 根据权利要求17所述的方法,其中,所述特定CORESET包括如下至少一项:
    关联了公共搜索空间CSS的CORESET;
    关联了特定下行控制信息DCI格式的CORESET;
    关联了特定标识或者特定索引的CORESET;
    网络侧设备指示或者配置的CORESET;
    关联了特定TRP的CORESET。
  21. 根据权利要求17所述的方法,其中,在所述终端设备配置了载波聚合CA的情况下,所述特定TRP为主小区Pcell或者主辅小区PScell的TRP,所述特定CORESET为所述Pcell或者所述PScell的CORESET。
  22. 一种终端设备,其特征在于,包括:
    丢弃模块,用于在所述终端设备配置了收发节点TRP的情况下,若为所述终端设备配置的搜索空间集的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃为所述终端设备配置的部分搜索空间;
    其中,所述第一监听对象包括物理下行控制信道PDCCH候选或者非重叠的控制信道单元CCE。
  23. 根据权利要求22所述的终端设备,其中,所述终端设备支持监听的第一监听对象的上限值,包括如下至少一项:
    TRP上限值,所述TRP上限值为所述终端设备支持监听的一个小区内关联于一个TRP的第一监听对象的最大数量;
    小区上限值,所述小区上限值为所述终端设备支持监听的一个小区内的第一监听对象的最大数量;
    载波聚合CA上限值,所述CA上限值为所述终端设备在配置了CA的情况下支持监听的第一监听对象的最大数量;
    组上限值,所述组上限值为所述终端设备支持监听的一个分组的第一监听对象的最大数量,所述分组为监听PDCCH的小区基于TRP进行分组得到的。
  24. 根据权利要求22所述的终端设备,其中,所述丢弃模块包括:
    第一丢弃单元,用于丢弃第一传输对象关联的部分或全部专用搜索空间USS;
    其中,所述第一传输对象包括第一TRP或者第一控制资源集CORESET,所述第一TRP包括为所述终端设备配置的TRP中的至少一个TRP,所述第一CORESET包括为所述终端设备配置的用于监听搜索空间的CORESET中的至少一个CORESET。
  25. 根据权利要求24所述的终端设备,其中,所述第一TRP是为所述终端设备配置的TRP中的特定TRP,或者所述第一CORESET为所述目标CORESET中的特定CORESET。
  26. 根据权利要求25所述的终端设备,其中,所述特定TRP包括如下至少一项:
    关联了公共搜索空间CSS的TRP;
    关联了特定下行控制信息DCI格式的TRP;
    关联了特定标识或者特定索引的TRP;
    网络侧设备指示或者配置的TRP。
  27. 根据权利要求25所述的终端设备,其中,所述特定CORESET包括如下至少一项:
    关联了公共搜索空间CSS的CORESET;
    关联了特定下行控制信息DCI格式的CORESET;
    关联了特定标识或者特定索引的CORESET;
    网络侧设备指示或者配置的CORESET;
    关联了特定TRP的CORESET。
  28. 根据权利要求25所述的终端设备,还包括:
    第一分配模块,用于所述丢弃第一传输对象关联的部分或全部专用搜索空间USS之前,分配为所述终端设备配置的公共搜索空间CSS;
    所述第一丢弃单元具体用于:
    按照第一分配顺序依次分配所述第一传输对象关联的USS;
    若在分配第一USS之后需监听的所述第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第一USS,其中,若存在第二USS,则丢弃所述第二USS;
    其中,所述第一USS为所述第一传输对象关联的任一USS,所述第二USS为所述第一传输对象关联的USS中分配顺序位于所述第一USS的分配顺序之后的USS。
  29. 根据权利要求25所述的终端设备,还包括:
    第二分配模块,用于所述丢弃第一传输对象关联的部分或全部专用搜索空间USS之前,分配为所述终端设备配置的公共搜索空间CSS;
    第三分配模块,用于分配第三传输对象关联的全部的USS;其中,所述第三传输对象包括第三TRP或者第三CORESET,所述第三TRP是为所述终端设备配置的TRP中除所述第一TRP之外的TRP,所述第三CORESET是目标CORESET中除所述第一CORESET之外的CORESET,所述目标CORESET 是为所述终端设备配置的用于监听搜索空间的CORESET,配置的第二数量不超过所述终端设备支持监听的第一监听对象的上限值,所述第二数量为所述第三传输对象关联的USS的第一监听对象的数量;
    所述第一丢弃单元具体用于:
    按照第二分配顺序依次分配所述第一传输对象关联的USS;
    若在分配第三USS之后需监听的所述第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第三USS,其中,若存在第四USS,则丢弃所述第四USS,所述第三USS为所述第一传输对象关联的任一USS,所述第四USS为所述第一传输对象关联的USS中分配顺序位于所述第三USS的分配顺序之后的USS。
  30. 根据权利要求24所述的终端设备,还包括:
    第四分配模块,用于所述丢弃第一传输对象关联的部分或全部特定搜索空间USS之前,分配为所述终端设备配置的公共搜索空间CSS;
    所述第一丢弃单元具体用于:
    按照第三分配顺序依次分配为所述终端设备配置的TRP关联的USS;
    若在分配第五USS之后需监听的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第五USS,其中,若存在第六USS,则丢弃所述第六USS;
    其中,所述第五USS是为所述终端设备配置的TRP关联的任一USS,所述第六USS是为所述终端设备配置的TRP关联的USS中分配顺序位于所述第五USS的分配顺序之后的USS。
  31. 根据权利要求24所述的终端设备,还包括:
    第五分配模块,用于所述丢弃第一传输对象关联的部分或全部特定搜索空间USS之前,分配为所述终端设备配置的公共搜索空间CSS;
    所述第一丢弃单元具体用于:
    按照第四分配顺序依次分配为所述终端设备配置的TRP关联的USS;
    若在分配第四传输对象关联的第七USS之后需监听的第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第七USS,并继续分配第九USS,其中,若存在第八USS,则丢弃所述第八USS;
    其中,所述第四传输对象包括第四TRP或者第四CORESET,所述第四TRP是为所述终端设备配置的TRP中的任一TRP,所述第四CORESET为目标CORESET中的任一CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET,所述第七USS为所述第四传输对象关联的任一USS,所述第八USS为所述第四传输对象关联的USS中分配顺序位于所述第七USS的分配顺序之后的USS,所述第九USS为第五传输对象关联的USS,所述第五传输对象与所述第四传输对象不同。
  32. 根据权利要求24所述的终端设备,其中,在所述终端设备配置了载波聚合CA的情况下,所述第一TRP为主小区Pcell或者主辅小区PScell的TRP,所述第一CORESET为所述Pcell或者所述PScell的CORESET。
  33. 根据权利要求22所述的终端设备,还包括:
    分组模块,用于所述丢弃为所述终端设备配置的部分搜索空间之前,在所述终端设备配置了载波聚合CA的情况下,将监听PDCCH的小区按照其关联的TRP进行分组,得到至少两个分组;
    所述丢弃模块,包括:
    分配单元,用于按照第五分配顺序依次分配所述至少两个分组中每个分组的第一小区的搜索空间;其中,所述第一小区包括所述每个分组中的主小区Pcell或者主辅小区PScell;
    第二丢弃单元,用于若在分配第一搜索空间之后需监听的所述第一监听对象的数量超过所述终端设备支持监听的第一监听对象的上限值,则丢弃所述第一搜索空间,其中,若存在第二搜索空间,则丢弃所述第二搜索空间;
    其中,所述第一搜索空间为所述第一小区的任一搜索空间,所述第二搜索空间为所述第一小区的搜索空间中分配顺序位于所述第一搜索空间之后的搜索空间。
  34. 一种网络侧设备,其特征在于,包括:
    配置模块,用于为终端设备配置搜索空间集;
    其中,所述终端设备配置了收发节点TRP;所述搜索空间集的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值,或者所述搜索空间集中关联于第二传输对象的搜索空间的第一监听对象的数量不超 过所述终端设备支持监听的第一监听对象的上限值,或者所述搜索空间集中关联于辅小区Scell的搜索空间的第一监听对象的数量不超过所述终端设备支持监听的第一监听对象的上限值;
    所述第一监听对象包括物理下行控制信道PDCCH候选或者非重叠的控制信道单元CCE,所述第二传输对象包括第二TRP或者第二控制资源集CORESET,所述第二TRP是为所述终端设备配置的TRP中除特定TRP之外的TRP,所述第二CORESET为目标CORESET中除特定CORESET之外的CORESET,所述目标CORESET是为所述终端设备配置的用于监听搜索空间的CORESET。
  35. 根据权利要求34所述的网络侧设备,其中,所述终端设备支持监听的第一监听对象的上限值,包括如下至少一项:
    TRP上限值,所述TRP上限值为所述终端设备支持监听的一个小区内关联于一个TRP的第一监听对象的最大数量;
    小区上限值,所述小区上限值为所述终端设备支持监听的一个小区内的第一监听对象的最大数量;
    载波聚合CA上限值,所述CA上限值为所述终端设备在配置了CA的情况下支持监听的第一监听对象的最大数量;
    组上限值,所述组上限值为所述终端设备支持监听的一个分组的第一监听对象的最大数量,所述分组为监听PDCCH的小区基于TRP进行分组得到的。
  36. 根据权利要求34所述的网络侧设备,其中,所述特定TRP包括如下至少一项:
    关联了公共搜索空间CSS的TRP;
    关联了特定下行控制信息DCI格式的TRP;
    关联了特定标识或者特定索引的TRP;
    网络侧设备指示或者配置的TRP。
  37. 根据权利要求34所述的网络侧设备,其中,所述特定CORESET包括如下至少一项:
    关联了公共搜索空间CSS的CORESET;
    关联了特定下行控制信息DCI格式的CORESET;
    关联了特定标识或者特定索引的CORESET;
    网络侧设备指示或者配置的CORESET;
    关联了特定TRP的CORESET。
  38. 根据权利要求34所述的网络侧设备,其中,在所述终端设备配置了载波聚合CA的情况下,所述特定TRP为主小区Pcell或者主辅小区PScell的TRP,所述特定CORESET为所述Pcell或者所述PScell的CORESET。
  39. 一种终端设备,其特征在于,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至16中任一项所述的搜索空间分配方法的步骤。
  40. 一种网络侧设备,其特征在于,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求17至21中任一项所述的搜索空间配置方法的步骤。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至16中任一项所述的搜索空间分配方法的步骤,或者实现如权利要求17至21中任一项所述的搜索空间配置方法的步骤。
PCT/CN2020/119894 2019-10-10 2020-10-09 搜索空间分配方法、搜索空间配置方法及相关设备 WO2021068872A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227015357A KR20220085042A (ko) 2019-10-10 2020-10-09 검색 공간 할당 방법, 검색 공간 설정 방법 및 관련 기기
BR112022006879A BR112022006879A2 (pt) 2019-10-10 2020-10-09 Método de alocação de espaço de busca, método de configuração de espaço de busca e dispositivo relacionado
EP20875459.8A EP4044726A4 (en) 2019-10-10 2020-10-09 SEARCH SPACE DISTRIBUTION METHOD, SEARCH SPACE CONFIGURATION METHOD AND APPARATUS THEREOF
US17/658,596 US20220240229A1 (en) 2019-10-10 2022-04-08 Search space allocation method, search space configuration method, and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910959991.9 2019-10-10
CN201910959991.9A CN112654084B (zh) 2019-10-10 2019-10-10 一种搜索空间分配方法、搜索空间配置方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/658,596 Continuation US20220240229A1 (en) 2019-10-10 2022-04-08 Search space allocation method, search space configuration method, and related device

Publications (1)

Publication Number Publication Date
WO2021068872A1 true WO2021068872A1 (zh) 2021-04-15

Family

ID=75342777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119894 WO2021068872A1 (zh) 2019-10-10 2020-10-09 搜索空间分配方法、搜索空间配置方法及相关设备

Country Status (6)

Country Link
US (1) US20220240229A1 (zh)
EP (1) EP4044726A4 (zh)
KR (1) KR20220085042A (zh)
CN (1) CN112654084B (zh)
BR (1) BR112022006879A2 (zh)
WO (1) WO2021068872A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102514448B1 (ko) * 2021-01-18 2023-03-29 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN115225216A (zh) * 2021-04-14 2022-10-21 维沃移动通信有限公司 候选pdcch的分配方法、终端及网络侧设备
CN116455514A (zh) * 2022-01-10 2023-07-18 大唐移动通信设备有限公司 Pdcch检测方法、装置、终端及存储介质
WO2023133692A1 (zh) * 2022-01-11 2023-07-20 深圳传音控股股份有限公司 处理方法、通信设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021489A1 (ja) * 2017-07-28 2019-01-31 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2019056164A1 (en) * 2017-09-19 2019-03-28 Nec Corporation METHODS AND APPARATUS FOR TRANSMITTING CONTROL INFORMATION
CN109802789A (zh) * 2017-11-17 2019-05-24 中国移动通信有限公司研究院 传输公共控制信息的时频域资源的配置方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10721722B2 (en) * 2016-09-30 2020-07-21 Qualcomm Incorporated Aspects of new radio PDCCH design
WO2019112209A1 (ko) * 2017-12-08 2019-06-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
US10660020B2 (en) * 2017-12-20 2020-05-19 Qualcomm Incorporated Search space set combining and dropping
WO2019143164A1 (ko) * 2018-01-21 2019-07-25 엘지전자 주식회사 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
CN110167036B (zh) * 2018-02-14 2022-05-24 华硕电脑股份有限公司 无线通信考虑波束故障恢复的监听控制资源的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021489A1 (ja) * 2017-07-28 2019-01-31 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2019056164A1 (en) * 2017-09-19 2019-03-28 Nec Corporation METHODS AND APPARATUS FOR TRANSMITTING CONTROL INFORMATION
CN109802789A (zh) * 2017-11-17 2019-05-24 中国移动通信有限公司研究院 传输公共控制信息的时频域资源的配置方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC.: "On DL and UL Beam Management", 3GPP DRAFT; R1-1716468 ON DL AND UL BEAM MANAGEMENT_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 17 September 2017 (2017-09-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051339921 *
See also references of EP4044726A4 *

Also Published As

Publication number Publication date
CN112654084A (zh) 2021-04-13
EP4044726A1 (en) 2022-08-17
CN112654084B (zh) 2023-05-02
US20220240229A1 (en) 2022-07-28
KR20220085042A (ko) 2022-06-21
EP4044726A4 (en) 2022-11-23
BR112022006879A2 (pt) 2022-07-05

Similar Documents

Publication Publication Date Title
US11855734B2 (en) Beam failure processing method and related device
WO2021068872A1 (zh) 搜索空间分配方法、搜索空间配置方法及相关设备
US20220377586A1 (en) Beam failure recovery method, terminal, and network device
WO2021197336A1 (zh) 资源调度方法、装置及ue
US11729680B2 (en) Cell management method, trigger condition configuration method, terminal device, and network-side device
WO2019091266A1 (zh) 载波配置方法、用户终端和网络侧设备
US11632820B2 (en) Secondary cell state indication method and communication device
US11910235B2 (en) Data processing method, information configuration method, terminal, and network device
US20220248400A1 (en) Method and device for detecting slot format indication, and method and device for configuring slot format indication
US20210250789A1 (en) Processing method and terminal
US20230037061A1 (en) Resource determining method and device
WO2020228537A1 (zh) 资源确定方法、资源指示方法、终端及网络侧设备
WO2020143525A1 (zh) 物理下行控制信道候选的位置确定方法、终端及网络设备
US20210243764A1 (en) Resource Allocation Method, Terminal Device, and Network-Side Device
WO2021129478A1 (zh) 小区拥塞的处理方法、终端及网络侧设备
WO2021013006A1 (zh) 参数处理方法、设备及计算机可读存储介质
WO2020192673A1 (zh) 资源配置方法、资源确定方法、网络侧设备和终端
US20220346073A1 (en) Pdcch configuration method and terminal
US20220053485A1 (en) Configuration information obtaining and sending method, terminal, and network side device
WO2021147777A1 (zh) 一种通信处理方法及相关设备
WO2021209032A1 (zh) 信息传输方法及设备
US20210218505A1 (en) Data transmission method, terminal, and network device
WO2021190477A1 (zh) 接收方法、发送方法、终端及网络侧设备
WO2021208953A1 (zh) 冲突资源判断方法、终端和网络设备
WO2021190473A1 (zh) 一种测量方法、终端设备和网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022006879

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227015357

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020875459

Country of ref document: EP

Effective date: 20220510

ENP Entry into the national phase

Ref document number: 112022006879

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220408