WO2020143525A1 - 物理下行控制信道候选的位置确定方法、终端及网络设备 - Google Patents

物理下行控制信道候选的位置确定方法、终端及网络设备 Download PDF

Info

Publication number
WO2020143525A1
WO2020143525A1 PCT/CN2020/070072 CN2020070072W WO2020143525A1 WO 2020143525 A1 WO2020143525 A1 WO 2020143525A1 CN 2020070072 W CN2020070072 W CN 2020070072W WO 2020143525 A1 WO2020143525 A1 WO 2020143525A1
Authority
WO
WIPO (PCT)
Prior art keywords
coreset
terminal
offset value
search space
starting offset
Prior art date
Application number
PCT/CN2020/070072
Other languages
English (en)
French (fr)
Inventor
纪子超
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020143525A1 publication Critical patent/WO2020143525A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a method for determining a position of a physical downlink control channel candidate, a terminal, and a network device.
  • a user equipment User Equipment, UE
  • BWP single bandwidth part
  • CORESET Control Resource Set
  • TRP Transmission and Reception Point
  • Beam Beam
  • the increase in the number of CORESETs will increase the probability that the search spaces of different UEs will collide with each other in different CORESETs, resulting in an increased probability of UE PDCCH blocking.
  • PDCCH candidates of different UEs can be determined by a pseudo-random function, thereby reducing the probability of mutual blocking.
  • Rel-15's NR system only supports independent pseudo-random numbers between a maximum of 3 CORESETs in a BWP. When the number of CORESET is greater than 3, the problem of multiple CORESETs using the same pseudo-random number cannot be avoided.
  • Embodiments of the present disclosure provide a method, terminal, and network device for determining the location of a physical downlink control channel candidate, to solve that the Rel-15 NR system in the related art only supports independent pseudo-random numbers between a maximum of 3 CORESETs in one BWP, When the number of CORESET in a BWP is greater than 3, it will cause multiple CORESETs to use the same pseudo-random number, which will cause the probability that the search spaces of different terminals will collide with each other in different CORESETs, resulting in an increased probability of PDCCH blocking for the terminal , The reliability of communication cannot be guaranteed.
  • an embodiment of the present disclosure provides a method for determining a physical downlink control channel candidate, which is applied to a terminal and includes:
  • the terminal capability information includes: whether the terminal supports the capability of exceeding a preset number of control resource sets CORESET and/or whether it supports the capability of TRP reception by at least two sending and receiving points;
  • the position of the PDCCH candidate in the search space of each CORESET is determined.
  • an embodiment of the present disclosure provides a method for determining a position of a physical downlink control channel candidate, which is applied to a network device and includes:
  • Receiving terminal capability information sent by the terminal includes: whether the terminal supports the capability of exceeding a preset number of control resource sets CORESET and/or whether it supports the capability of at least two sending and receiving points to receive TRP;
  • the position of the PDCCH candidate of the terminal in the search space of each CORESET is determined.
  • an embodiment of the present disclosure provides a terminal, including:
  • a sending module used to send terminal capability information to the network device, the terminal capability information including: whether the terminal supports the ability to exceed a preset number of control resource sets CORESET and/or whether it supports the ability to receive at least two transmission and reception points TRP ;
  • the first obtaining module is used to obtain the starting offset value of the candidate position of the physical downlink control channel PDCCH in the search space of each CORESET;
  • the first determining module is configured to determine the position of the PDCCH candidate in the search space of each CORESET according to the starting offset value.
  • an embodiment of the present disclosure provides a terminal, including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the computer program is executed by the processor to implement the above-mentioned physical Steps of the method for determining the position of the downlink control channel candidate.
  • an embodiment of the present disclosure provides a network device, including:
  • the receiving module is configured to receive terminal capability information sent by the terminal, where the terminal capability information includes: whether the terminal supports the capability of controlling the resource set CORESET exceeding a preset number and/or whether it supports the capability of at least two sending and receiving points to receive TRP ;
  • a second determining module configured to determine the starting offset value of the candidate position of the physical downlink control channel PDCCH of the terminal in each CORESET search space;
  • the third determining module is configured to determine the position of the PDCCH candidate of the terminal in the search space of each CORESET according to the starting offset value.
  • an embodiment of the present disclosure provides a network device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the computer program is executed by the processor to implement the above The steps of the method for determining the location of the physical downlink control channel candidate.
  • an embodiment of the present disclosure provides a computer-readable storage medium that stores a computer program on the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned physical downlink control channel candidate position determination is achieved Method steps.
  • the position of the PDCCH candidate in the search space of each CORESET is determined by the capability of exceeding a preset number of control resource sets CORESET and/or supporting the capability of TRP reception of at least two transmission and reception points.
  • FIG. 1 is a schematic flowchart of a method for determining a physical downlink control channel candidate position according to an embodiment of the present disclosure
  • FIG. 2 shows a schematic block diagram of a terminal of an embodiment of the present disclosure
  • FIG. 3 shows a structural block diagram of a terminal according to an embodiment of the present disclosure
  • FIG. 4 is a second schematic flowchart of a method for determining a physical downlink control channel candidate position according to an embodiment of the present disclosure
  • FIG. 5 shows a schematic block diagram of a network device according to an embodiment of the present disclosure
  • FIG. 6 shows a structural block diagram of a network device according to an embodiment of the present disclosure.
  • 5G New Radio (NR) system supports flexible physical downlink control channel (Physical Downlink Control Channel, PDCCH) resource allocation, instead of multiplexing the same PDCCH for the entire cell Instead, a Control Resource Set (CORESET) can be independently configured for each user equipment (User Equipment, UE) to monitor the PDCCH.
  • CORESET contains configuration information of independent time domain, frequency domain and space domain resources.
  • the 5G NR system supports configuring multiple search space sets for the UE and flexibly configuring the number of blind checks for each search space.
  • CORESET can be flexibly associated with the search space set.
  • Each CORESET can be associated with multiple search space sets, and the resources of CORESET of different UEs can partially or completely overlap.
  • the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) Rel-16 proposes a multi-transmit/receive point/multi-antenna panel (multi-TRP/multi-panel) scenario, a multi-transmit and receive point (Transmission and Reception Point, TRP) transmission can increase the reliability and throughput performance of the transmission.
  • TRP Transmission and Reception Point
  • the UE can receive the same data or different data from multiple TRPs.
  • the transmission scheme of multiple TRP may be:
  • multiple TRPs send multiple PDCCHs, multiple physical downlink shared channels (Physical Downlink Shared Channel, PDSCH), and each TRP sends one PDCCH and one PDSCH;
  • PDSCH Physical Downlink Shared Channel
  • Multiple PDSCHs transmit the same transmission block (Transmission Block, TB);
  • Multiple PDSCHs transmit different TBs.
  • the NR system of Rel-15 in the related art of the present disclosure supports only independent pseudo-random numbers between a maximum of 3 CORESETs in one BWP.
  • the number of CORESETs in a BWP is greater than 3, multiple CORESETs will use the same pseudo-random number. This will increase the probability that the search spaces of different terminals will collide with each other in different CORESETs, resulting in an increase in the PDCCH blocking probability of the terminal, which cannot ensure the reliability of communication.
  • a method for determining the location of the physical downlink control channel candidate is provided , Terminal and network equipment.
  • an embodiment of the present disclosure provides a method for determining a position of a physical downlink control channel candidate, which is applied to a terminal and includes:
  • Step 101 Send terminal capability information to a network device
  • the terminal capability information includes: whether the terminal supports the capability of exceeding a preset number of control resource sets (CORESET) and/or whether it supports the capability of at least two transmission and reception points (TRP);
  • the preset number may be the maximum number of configured CORESETs supported by each bandwidth part (BWP); or, the preset number is equal to the number of BWPs supported by the terminal and the maximum number of configured CORESETs supported by each BWP
  • the product of the number of, specifically, the maximum number of CORESETs supported by each BWP is equal to 3.
  • whether the terminal supports the capability of TRP reception by at least two sending and receiving points refers to whether the terminal supports the capability of receiving more than one TRP.
  • the terminal's ability to receive from a TRP can be embodied in any of the following ways including but not limited to:
  • Method 1 The terminal receives data associated with one or a set of target transmission configuration indicators (Transmission Configuration Indicator, TCI);
  • TCI Transmission Configuration Indicator
  • target TCI refers to a certain TCI or a specific type of TCI.
  • whether the terminal supports the ability to receive more than one TRP refers to whether the terminal supports receiving data associated with more than one or more than one set of target TCI.
  • Method 2 The terminal receives data associated with one or a group of standard standard co-location (Quasi Co-location, QCL);
  • the target QCL refers to a certain QCL or a specific type of QCL.
  • whether the terminal supports the ability to receive more than one TRP refers to whether the terminal supports receiving data associated with more than one or more than one set of target QCL.
  • Method 3 The terminal receives data associated with one or a group of beam information
  • whether the terminal supports more than one TRP reception capability refers to: whether the terminal supports receiving data associated with more than one or more than one set of beam information.
  • Method 4 The terminal receives data associated with one or a group of panels
  • whether the terminal supports more than one TRP reception capability refers to: whether the terminal supports receiving data associated with more than one or more than one group of panels.
  • the terminal receives data associated with TCI not exceeding a predefined number
  • whether the terminal supports the ability to receive more than one TRP refers to whether the terminal supports receiving data associated with more than a predefined number of TCI.
  • Manner 6 The terminal receives a control channel using one or a preset number of target scrambling code identifiers (IDs), or the terminal receives a data channel using one or a preset number of target scrambling code IDs;
  • IDs target scrambling code identifiers
  • whether the terminal supports more than one TRP reception capability refers to: whether the terminal supports receiving control channels that use more than one or more than a preset number of target scrambling code IDs; or, whether the terminal supports receiving more than one TRP Or more than a preset number of data channels of the target scrambling code ID.
  • Method 7 The terminal receives a control channel of a demodulation reference signal (DMRS) using one or a preset number of target scrambling IDs, or the terminal receives a DMRS using one or a preset number of target scrambling IDs Data channel
  • DMRS demodulation reference signal
  • whether the terminal supports more than one TRP reception capability refers to: whether the terminal supports the reception of DMRS control channels that use more than one or more than the preset number of target scrambling code IDs; or, whether the terminal supports reception and use Data channels of DMRS that exceed one or more than a preset number of target scrambling code IDs.
  • Step 102 Obtain the starting offset value of the candidate position of the physical downlink control channel PDCCH in the search space of each CORESET;
  • the configuration information may be fed back by the network device according to the terminal capability information, or may be fed back by the network device based on the system requirements and not based on the terminal capability information.
  • Step 103 Determine the position of the PDCCH candidate in the search space of each CORESET according to the starting offset value.
  • step 102 when the terminal does not receive the configuration information sent by the network device, the specific implementation of step 102 is:
  • the preset rule includes at least one of the following ways:
  • the starting offset value is directly set to zero.
  • C12. Determine the starting offset value of the PDCCH candidate position in the terminal-specific search space (User-specific Search Space, USS) of each CORESET using preset pseudo-random number seeds;
  • n RNTI is the radio network temporary identifier of the terminal (Radio Network Tempory Identity, RNTI).
  • step 102 when the terminal receives the configuration information sent by the network device, the specific implementation manner of step 102 is:
  • the starting offset value of the PDCCH candidate position in the search space of each CORESET is determined according to the configuration information.
  • the configuration information may explicitly configure the starting offset value of the PDCCH candidate position, or implicitly configure the starting offset value of the PDCCH candidate position.
  • the following are from the perspectives of explicit configuration and implicit configuration.
  • the implementation of step 102 is specifically described as follows.
  • step 102 may be implemented in at least one of the following ways:
  • RRC radio resource control
  • the configuration information carries the RRC parameter configuration value.
  • the terminal receives the configuration information carrying the RRC parameter configuration value, it directly determines the starting offset value of the PDCCH candidate position in the CORESET CSS RRC parameter configuration value.
  • D12. Acquire a first pseudo-random number seed configured for USS in the configuration information, and determine a starting offset value of the PDCCH candidate position in the USS of CORESET according to the first pseudo-random number seed;
  • the network device carries the pre-defined first pseudo-random number seed in the configuration information. It should be noted that the first pseudo-random number seed for different CORESET is through RRC signaling Different identification information indicated is distinguished.
  • the starting offset value of the PDCCH candidate position in the USS of CORESET can be obtained in the form of the above formula 1, which will not be repeated here.
  • the configuration information includes: CORESET identification information
  • the starting offset value of the PDCCH candidate position is determined according to a preset rule
  • the first preset value is the maximum number of CORESETs supported by each BWP; or, the first preset value is equal to the number of BWPs supported by the terminal and the maximum number of CORESETs supported by each BWP. The product of the number, wherein each BWP supports a maximum of 3 configured CORESETs equal to 3.
  • the preset rule includes at least one of the following ways:
  • the starting offset value of the PDCCH candidate position of CORESET is determined according to the type of the search space.
  • a specific implementation manner of determining the starting offset value of the PDCCH candidate position of CORESET is:
  • the target value is determined as the starting offset value of the PDCCH candidate position of CORESET
  • the target value may be a first preset constant value, and the first preset constant value is notified by a protocol agreement or a network device.
  • CCE Control Channel Elements
  • a specific implementation manner of determining the starting offset value of the PDCCH candidate position of CORESET is one of the following manners:
  • the starting offset value of the PDCCH candidate position in the USS of CORESET can be obtained in the form of the above formula 1, which will not be repeated here.
  • D32 Determine the starting offset value of the PDCCH candidate position of CORESET according to the first target offset and the preset pseudo-random number seed;
  • the preset pseudo-random number seed may be the same as the corresponding pseudo-random number seed in the related art when the identification information of CORESET is less than the preset number, or may be different.
  • USS and CSS of the same terminal can be configured with the same first target offset, which can simplify implementation complexity.
  • the specific way to obtain the starting offset value of the COPDCCH PDCCH candidate position is:
  • RNTI Radio Network Tempory
  • D33 Determine the third pseudo-random number seed for obtaining the starting offset value of the PDCCH candidate position of CORESET according to the maximum number of supported CORESETs and the CORESET identification information in each BWP, and according to the third pseudo-random number
  • the seed determines the starting offset value of the PDCCH candidate position of CORESET
  • the maximum number of configured CORESETs supported in each BWP is greater than 3.
  • the starting offset value of the PDCCH candidate position in the USS of CORESET can be obtained in the form of the above formula 1, which will not be repeated here.
  • the configuration information includes: Transmission Configuration Indication (TCI)
  • the TCI flag information is less than the second preset value, determine the starting offset value of the PDCCH candidate position according to the preset rule;
  • the second preset value is a preset constant stipulated in the protocol.
  • the preset rule includes at least one of the following ways:
  • the starting offset value of the CORESET PDCCH candidate position is determined according to the type of search space.
  • the implementation method for determining the starting offset value of the PDCCH candidate position of CORESET according to the type of search space is the same as the above if the identification information of CORESET is greater than or equal to the first preset value, according to The type of the search space is implemented in the same way to determine the starting offset value of the PDCCH candidate position of CORESET, which will not be repeated here.
  • the configuration information includes: TRP indication parameters
  • a specific implementation manner of determining the starting offset value of the PDCCH candidate position in the search space of each CORESET according to the configuration information includes at least one of the following ways:
  • the third preset constant value is determined by the identification information of the TRP indication parameter.
  • the third preset constant value identification information mod T1 of the TRP indication parameter, where M1 is the maximum number of TRPs supported by the terminal.
  • D42 Determine the starting offset value of the PDCCH candidate position in the terminal specific search space USS of CORESET according to the fourth pseudo-random number seed;
  • the fourth pseudo-random number seed is determined by the identification information of the TRP indication parameter.
  • the starting offset value of the PDCCH candidate position in the USS of CORESET can be obtained in the form of the above formula 1, which will not be repeated here.
  • D43 Determine the starting offset value of the PDCCH candidate position in the USS of CORESET according to the preset pseudo-random number seed and the second target offset;
  • the second target offset is determined by the identification information of the TRP indication parameter.
  • the preset pseudo-random number seed may be the same as the corresponding pseudo-random number seed in the related art when the identification information of CORESET is less than the preset number, or may be different.
  • the specific way to obtain the starting offset value of the COPDCCH PDCCH candidate position is:
  • RNTI Radio Network Tempo
  • the position of the PDCCH candidate in each CORESET search space is determined according to the starting offset value, specifically
  • the implementation method is:
  • M L Is the maximum value in the number of monitored PDCCH candidates with aggregation level L in the serving cell corresponding to all configured n CIs in the search space set s in the control resource set p, that is, for each configured n CI ,
  • M L here Is the maximum value among all M L ;
  • the number of PDCCH candidates in the search space set s for which the terminal is configured to monitor corresponds to the serving cell of n CI and whose aggregation level is L; i takes the value from 0 to L-1.
  • the terminal sends the terminal capability information to the network device, if the network device and the terminal have the same capability, the configuration information can be fed back to the terminal; if the capabilities of the network device and the terminal do not match, the network device does not give the terminal
  • the configuration information is fed back, and the terminal determines the starting offset value according to the manner in the related art according to the situation where the configuration information is not received, and thus can ensure forward compatibility.
  • the embodiments of the present disclosure can maintain forward compatibility, that is, when one of the network side or the terminal is an old device that only supports Rel-15 (for example, multiple CORESET or multi-TRP transmission), or when the terminals in the cell are mixed with different release devices, the system can still work normally.
  • an embodiment of the present disclosure provides a terminal 200, including:
  • the sending module 201 is used to send terminal capability information to the network device, where the terminal capability information includes: whether the terminal supports the capacity of the control resource set CORESET exceeding a preset number and/or whether it supports at least two TRP receiving and receiving points ability;
  • the first obtaining module 202 is configured to obtain the starting offset value of the PDCCH candidate position of the physical downlink control channel in the search space of each CORESET;
  • the first determining module 203 is configured to determine the position of the PDCCH candidate in the search space of each CORESET according to the starting offset value.
  • the preset number is the maximum number of configured CORESETs supported by each bandwidth part BWP; or
  • the preset number is equal to the product of the number of BWPs supported by the terminal and the maximum number of configured CORESETs supported by each BWP;
  • the maximum number of configured CORESETs supported by each BWP is equal to 3.
  • the first obtaining module 202 is used to:
  • the starting offset value of the PDCCH candidate position is determined according to a preset rule
  • the preset rule includes at least one of the following ways:
  • the starting offset value of the PDCCH candidate position in the terminal specific search space USS of each CORESET is determined.
  • the first obtaining module 202 is used to:
  • the starting offset value of the PDCCH candidate position in the search space of each CORESET is determined according to the configuration information.
  • the first obtaining module 202 is configured to implement at least one of the following ways:
  • different first pseudo-random number seeds are distinguished by different identification information indicated by RRC signaling.
  • the first obtaining module 202 is configured to:
  • the starting offset value of the PDCCH candidate position is determined according to a preset rule
  • the preset rule includes at least one of the following ways:
  • the starting offset value of the PDCCH candidate position in the terminal specific search space USS of each CORESET is determined.
  • the first obtaining module 202 is configured to:
  • the starting offset value of the PDCCH candidate position of CORESET is determined according to the type of the search space.
  • the first preset value is the maximum number of configured CORESETs supported by each BWP; or
  • the first preset value is equal to the product of the number of bandwidth parts BWP supported by the terminal and the maximum number of configured CORESETs supported by each BWP;
  • the maximum number of configured CORESETs supported by each BWP is equal to 3.
  • the first obtaining module 202 is configured to:
  • TCI flag information is less than the second preset value, determine the starting offset value of the PDCCH candidate position according to the preset rule;
  • the preset rule includes at least one of the following ways:
  • the starting offset value of the PDCCH candidate position in the terminal specific search space USS of each CORESET is determined.
  • the first obtaining module 202 is configured to:
  • the starting offset value of the PDCCH candidate position of CORESET is determined according to the type of the search space.
  • the first acquisition module 202 determines, according to the type of the search space, an implementation manner of determining the starting offset value of the PDCCH candidate position of CORESET as:
  • the target value is determined as the starting offset value of the PDCCH candidate position of CORESET
  • the target value is a first preset constant value
  • the target value is determined according to at least one of the number of control channel elements CCE, the number of TRPs, the carrier indication field value, the aggregation level, and the transmission configuration indication TCI identification information in CORESET.
  • the first acquisition module 202 determines, according to the type of the search space, an implementation manner of determining the starting offset value of the PDCCH candidate position of CORESET, including one of the following ways item:
  • the second pseudo-random number seed is different from the corresponding pseudo-random number seed when the identification information of CORESET is less than the preset number;
  • the first target offset is based on the number of control channel units CCE in CORESET, TRP At least one of the number, carrier indication field value, aggregation level, and transmission configuration indication TCI identification information is determined, or the first target offset is a second preset constant value; in each BWP The maximum number of supported CORESETs is greater than 3.
  • the first obtaining module 202 is configured to implement at least one of the following ways:
  • the third preset constant value is determined by the identification information of the TRP indication parameter
  • the starting offset value of the PDCCH candidate position in the USS of CORESET is determined according to the preset pseudo-random number seed and the second target offset, which is determined by the identification information of the TRP indication parameter.
  • the terminal embodiment is a terminal corresponding to the above method for determining the location of a physical downlink control channel candidate applied to the terminal. All implementations of the foregoing embodiment are applicable to the terminal embodiment, and can also achieve The same technical effect.
  • FIG. 3 is a schematic diagram of a hardware structure of a terminal for implementing an embodiment of the present disclosure.
  • the terminal 30 includes but is not limited to: a radio frequency unit 310, a network module 320, an audio output unit 330, an input unit 340, a sensor 350, a display unit 360, a user input unit 370, an interface unit 380, a memory 390, a processor 311, and a power supply 312 and other components.
  • a radio frequency unit 310 a radio frequency unit 310
  • a network module 320 an audio output unit 330
  • an input unit 340 e.g., a sensor 350
  • a display unit 360 e.g., a display unit 360
  • a user input unit 370 e.g., a user input unit 370
  • an interface unit 380 e.g., a memory 390
  • a processor 311 e.g., a processor 311, and a power supply 312 and other components.
  • the terminal structure shown in FIG. 3 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than those illustrated, or
  • the radio frequency unit 310 is used to send terminal capability information to the network device, where the terminal capability information includes: whether the terminal supports the capability of controlling the resource set CORESET exceeding a preset number and/or whether it supports TRP reception by at least two sending and receiving points Ability;
  • the processor 311 is configured to obtain the starting offset value of the candidate position of the physical downlink control channel PDCCH in the search space of each CORESET;
  • the position of the PDCCH candidate in the search space of each CORESET is determined.
  • the terminal of the embodiment of the present disclosure performs the PDCCH candidate in the search space of each CORESET under the condition that the capacity of the control resource set CORESET exceeding a preset number and/or the ability to support TRP reception of at least two sending and receiving points is supported
  • the determination of the position reduces the probability that the search spaces of different terminals collide with each other in different CORESETs, reduces the blocking probability of the PDCCH of the terminal, and thus ensures the reliability of communication.
  • the radio frequency unit 310 may be used to receive and send signals during sending and receiving information or during a call. Specifically, after receiving the downlink data from the network device, it is processed by the processor 311; Send the upstream data to the network device.
  • the radio frequency unit 310 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 310 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 320, such as helping users to send and receive e-mail, browse web pages, and access streaming media.
  • the audio output unit 330 may convert audio data received by the radio frequency unit 310 or the network module 320 or stored in the memory 390 into audio signals and output as sound. Moreover, the audio output unit 330 may also provide audio output related to a specific function performed by the terminal 30 (eg, call signal reception sound, message reception sound, etc.).
  • the audio output unit 330 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 340 is used to receive audio or video signals.
  • the input unit 340 may include a graphics processor (Graphics, Processing, Unit, GPU) 341 and a microphone 342.
  • the graphics processor 341 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode
  • the data is processed.
  • the processed image frame may be displayed on the display unit 360.
  • the image frame processed by the graphics processor 341 may be stored in the memory 390 (or other storage medium) or sent via the radio frequency unit 310 or the network module 320.
  • the microphone 342 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication network device via the radio frequency unit 310 in the case of a phone call mode and output.
  • the terminal 30 also includes at least one sensor 350, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 361 according to the brightness of the ambient light, and the proximity sensor can close the display panel 361 and/or when the terminal 30 moves to the ear Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when at rest, and can be used to recognize the posture of the terminal (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 350 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 360 is used to display information input by the user or information provided to the user.
  • the display unit 360 may include a display panel 361, and the display panel 361 may be configured in the form of a liquid crystal display (Liquid Crystal) (LCD), an organic light emitting diode (Organic Light-Emitting Diode, OLED), or the like.
  • LCD Liquid Crystal
  • OLED Organic Light-Emitting Diode
  • the user input unit 370 may be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 370 includes a touch panel 371 and other input devices 372.
  • the touch panel 371 also known as a touch screen, can collect user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc. on or near the touch panel 371 operating).
  • the touch panel 371 may include a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device and converts it into contact coordinates, and then sends To the processor 311, the command sent by the processor 311 is received and executed.
  • the touch panel 371 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 370 may also include other input devices 372.
  • other input devices 372 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, and details are not described herein.
  • the touch panel 371 may be overlaid on the display panel 361.
  • the touch panel 371 detects a touch operation on or near it, it is transmitted to the processor 311 to determine the type of touch event, and then the processor 311 according to the touch The type of event provides a corresponding visual output on the display panel 361.
  • the touch panel 371 and the display panel 361 are implemented as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 371 and the display panel 361 may be integrated to The input and output functions of the terminal are implemented, which is not limited here.
  • the interface unit 380 is an interface for connecting an external device to the terminal 30.
  • the external device may include a wired or wireless headset port, an external power supply (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (input/output, I/O) port, video I/O port, headphone port, etc.
  • the interface unit 380 may be used to receive input from external devices (eg, data information, power, etc.) and transmit the received input to one or more elements within the terminal 30 or may be used between the terminal 30 and external devices Transfer data between.
  • the memory 390 may be used to store software programs and various data.
  • the memory 390 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, application programs required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store Data created by the use of mobile phones (such as audio data, phone books, etc.), etc.
  • the memory 390 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 311 is the control center of the terminal, and uses various interfaces and lines to connect the various parts of the entire terminal, executes or executes the software programs and/or modules stored in the memory 390, and calls the data stored in the memory 390 to execute Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 311 may include one or more processing units; optionally, the processor 311 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc.
  • the modulation processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 311.
  • the terminal 30 may further include a power supply 312 (such as a battery) that supplies power to various components.
  • a power supply 312 such as a battery
  • the power supply 312 may be logically connected to the processor 311 through a power management system, thereby managing charge, discharge, and power consumption management through the power management system And other functions.
  • the terminal 30 includes some unillustrated functional modules, which will not be repeated here.
  • an embodiment of the present disclosure further provides a terminal, including a processor 311, a memory 390, and a computer program stored on the memory 390 and executable on the processor 311, when the computer program is executed by the processor 311
  • a terminal including a processor 311, a memory 390, and a computer program stored on the memory 390 and executable on the processor 311, when the computer program is executed by the processor 311
  • Embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium.
  • the computer program When the computer program is executed by a processor, an embodiment of a method for determining a position of a physical downlink control channel candidate applied to a terminal side is implemented In order to avoid repetition, we will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • an embodiment of the present disclosure provides a method for determining a position of a physical downlink control channel candidate, which is applied to a network device and includes:
  • Step 401 Receive terminal capability information sent by a terminal
  • the terminal capability information includes: whether the terminal supports the capability of exceeding a preset number of control resource sets CORESET and/or whether it supports the capability of at least two sending and receiving points to receive TRP;
  • the preset number is the maximum number of configured CORESETs supported by each BWP of the terminal.
  • the preset number is equal to the product of the number of bandwidth parts BWP supported by the terminal and the maximum number of configured CORESETs supported by each BWP of the terminal, where each BWP supports at most the configured CORESET The number is equal to 3.
  • Step 402 Determine the starting offset value of the candidate position of the physical downlink control channel PDCCH of the terminal in each CORESET search space;
  • Step 403 Determine the position of the PDCCH candidate of the terminal in each CORESET search space according to the starting offset value.
  • the terminal can send PDCCH resources according to the position of the PDCCH candidate.
  • the network device may also feed back configuration information to the terminal.
  • the terminal determines the starting offset value of the PDCCH candidate position in each CORESET search space according to the configuration information of the network device, and then obtains The location of PDCCH candidates in the CORESET search space, and receive the PDCCH at the corresponding location.
  • the determining the starting offset value of the PDCCH candidate position of the physical downlink control channel in the search space of each CORESET of the terminal includes:
  • the preset rule includes at least one of the following ways:
  • the starting offset value of the PDCCH candidate position of the terminal in the terminal-specific search space USS of each CORESET is determined.
  • the determining the starting offset value of the PDCCH candidate position of the physical downlink control channel in the search space of each CORESET of the terminal includes at least one of the following ways:
  • different first pseudo-random number seeds are distinguished by different identification information.
  • the determining the starting offset value of the PDCCH candidate position of the physical downlink control channel in the search space of each CORESET of the terminal includes:
  • the preset parameters include: at least one of CORESET identification information, transmission configuration indication TCI and TRP indication parameters.
  • the determining the starting offset value of the PDCCH candidate position of the terminal in each CORESET search space includes:
  • the starting offset value of the PDCCH candidate position is determined according to a preset rule
  • the preset rule includes at least one of the following ways:
  • the starting offset value of the PDCCH candidate position in the terminal specific search space USS of each CORESET is determined.
  • the determining the starting offset value of the PDCCH candidate position of the terminal in each CORESET search space includes:
  • the starting offset value of the PDCCH candidate position of CORESET is determined according to the type of the search space.
  • the first preset value is the maximum number of configured CORESETs supported by each BWP.
  • the first preset value is equal to the product of the number of bandwidth parts BWP supported by the terminal and the maximum number of configured CORESETs supported by each BWP;
  • the maximum number of configured CORESETs supported by each BWP is equal to 3.
  • the determining the starting offset value of the PDCCH candidate position of the terminal in each CORESET search space includes:
  • TCI flag information is less than the second preset value, determine the starting offset value of the PDCCH candidate position according to the preset rule;
  • the preset rule includes at least one of the following ways:
  • the starting offset value of the PDCCH candidate position of the terminal in the terminal specific search space USS of each CORESET is determined.
  • the determining the starting offset value of the PDCCH candidate position of the terminal in each CORESET search space includes:
  • the starting offset value of the terminal at the PDCCH candidate position of CORESET is determined according to the type of search space.
  • the determining the starting offset value of the terminal at the PDCCH candidate position of CORESET according to the type of the search space includes:
  • the target value is determined as the starting offset value of the PDCCH candidate position of CORESET
  • the target value is a first preset constant value
  • the target value is determined according to at least one of the number of control channel elements CCE, the number of TRPs, the carrier indication field value, the aggregation level, and the transmission configuration indication TCI identification information in CORESET.
  • the determining the starting offset value of the terminal at the PDCCH candidate position of CORESET according to the type of the search space includes one of the following ways:
  • a third pseudo-random number seed for acquiring the starting offset value of the terminal at the PDCCH candidate position of CORESET, and according to the third pseudo The random number seed determines the starting offset value of the terminal at the PDCCH candidate position of CORESET;
  • the second pseudo-random number seed is different from the corresponding pseudo-random number seed when the identification information of CORESET is less than the preset number;
  • the first target offset is based on the number of control channel units CCE in CORESET, TRP At least one of the number, carrier indication field value, aggregation level, and transmission configuration indication TCI identification information is determined, or the first target offset is a second preset constant value; in each BWP The maximum number of supported CORESETs is greater than 3.
  • the determining of the starting offset value of the PDCCH candidate position of the terminal in the search space of each CORESET includes at least one of the following ways :
  • the third preset constant value is determined by the identification information of the TRP indication parameter
  • the fourth pseudo-random number seed is determined by the identification information of the TRP indication parameter
  • the starting offset value of the PDCCH candidate position in the USS of CORESET is determined according to the preset pseudo-random number seed and the second target offset, which is determined by the identification information of the TRP indication parameter.
  • the method of determining the starting offset value of the PDCCH candidate position of the terminal in each CORESET search space is different from the terminal side determining the PDCCH candidate in each CORESET search space
  • the manner of the starting offset value of the position is the same, which will not be repeated in the embodiments of the present disclosure.
  • the network device and the terminal have the same understanding of the starting offset value of the PDCCH candidate position and the position of the PDCCH candidate.
  • the PDCCH candidates in the search space of each CORESET are performed by the terminal when the capacity of the terminal exceeds a preset number of control resource sets CORESET and/or the ability to support TRP reception of at least two transmission and reception points
  • the determination of the position reduces the probability that the search spaces of different terminals collide with each other in different CORESETs, and reduces the probability of PDCCH blocking of the terminals, thereby ensuring communication reliability.
  • an embodiment of the present disclosure provides a network device 500, including:
  • the receiving module 501 is configured to receive terminal capability information sent by the terminal, where the terminal capability information includes: whether the terminal supports the capability of controlling the resource set CORESET exceeding a preset number and/or whether it supports at least two sending and receiving points to receive TRP ability;
  • the second determination module 502 is used to determine the starting offset value of the candidate position of the physical downlink control channel PDCCH of the terminal in each CORESET search space;
  • the third determining module 503 is configured to determine the position of the PDCCH candidate of the terminal in the search space of each CORESET according to the starting offset value.
  • the preset number is the maximum number of configured CORESETs supported by each BWP of the terminal.
  • the preset number is equal to the product of the number of bandwidth parts BWP supported by the terminal and the maximum number of configured CORESETs supported by each BWP of the terminal;
  • the maximum number of configured CORESETs supported by each BWP is equal to 3.
  • the second determining module 502 is used to:
  • the preset rule includes at least one of the following ways:
  • the starting offset value of the PDCCH candidate position of the terminal in the terminal specific search space USS of each CORESET is determined.
  • the second determining module 502 implements at least one of the following ways:
  • different first pseudo-random number seeds are distinguished by different identification information.
  • the second determining module 502 is used to:
  • the preset parameters include: at least one of CORESET identification information, transmission configuration indication TCI and TRP indication parameters.
  • the second determination module 502 is configured to:
  • the starting offset value of the PDCCH candidate position is determined according to a preset rule
  • the preset rule includes at least one of the following ways:
  • the starting offset value of the PDCCH candidate position in the terminal specific search space USS of each CORESET is determined.
  • the second determination module 502 is configured to:
  • the starting offset value of the PDCCH candidate position of CORESET is determined according to the type of the search space.
  • the first preset value is the maximum number of configured CORESETs supported by each BWP; or
  • the first preset value is equal to the product of the number of bandwidth parts BWP supported by the terminal and the maximum number of configured CORESETs supported by each BWP;
  • the maximum number of configured CORESETs supported by each BWP is equal to 3.
  • the second determination module 502 is configured to:
  • TCI flag information is less than the second preset value, determine the starting offset value of the PDCCH candidate position according to the preset rule;
  • the preset rule includes at least one of the following ways:
  • the starting offset value of the PDCCH candidate position of the terminal in the terminal specific search space USS of each CORESET is determined.
  • the second determination module 502 is configured to:
  • the starting offset value of the terminal at the PDCCH candidate position of CORESET is determined according to the type of search space.
  • the second determining module 502 determines, according to the type of the search space, an implementation manner in which the starting offset value of the terminal at the PDCCH candidate position of CORESET is:
  • the target value is determined as the starting offset value of the PDCCH candidate position of CORESET
  • the target value is a first preset constant value
  • the target value is determined according to at least one of the number of control channel elements CCE, the number of TRPs, the carrier indication field value, the aggregation level, and the transmission configuration indication TCI identification information in CORESET.
  • the second determining module 502 determines, according to the type of the search space, an implementation manner in which the starting offset value of the terminal at the PDCCH candidate position of CORESET includes the following One of the ways:
  • a third pseudo-random number seed for acquiring the starting offset value of the terminal at the PDCCH candidate position of CORESET, and according to the third pseudo The random number seed determines the starting offset value of the terminal at the PDCCH candidate position of CORESET;
  • the second pseudo-random number seed is different from the corresponding pseudo-random number seed when the identification information of CORESET is less than the preset number;
  • the first target offset is based on the number of control channel units CCE in CORESET, TRP At least one of the number, carrier indication field value, aggregation level, and transmission configuration indication TCI identification information is determined, or the first target offset is a second preset constant value; in each BWP The maximum number of supported CORESETs is greater than 3.
  • the second determination module 502 implements at least one of the following ways:
  • the third preset constant value is determined by the identification information of the TRP indication parameter
  • the fourth pseudo-random number seed is determined by the identification information of the TRP indication parameter
  • the starting offset value of the PDCCH candidate position in the USS of CORESET is determined according to the preset pseudo-random number seed and the second target offset, which is determined by the identification information of the TRP indication parameter.
  • the embodiment of the network device is a network device corresponding to the method for determining the location of the physical downlink control channel candidate applied to the network device. All implementations of the above embodiment are applicable to the embodiment of the network device. It can also achieve the same technical effect.
  • An embodiment of the present disclosure also provides a network device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • a network device including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the computer program is executed by the processor, the foregoing application to the network is realized.
  • Each process in the embodiment of the method for determining the location of the physical downlink control channel candidate of the device can achieve the same technical effect, and to avoid repetition, details are not described here.
  • FIG. 6 is a structural diagram of a network device according to an embodiment of the present disclosure, which can implement the details of the method for determining the location of the physical downlink control channel candidate described above, and achieve the same effect.
  • the network device 600 includes: a processor 601, a transceiver 602, a memory 603, and a bus interface, where:
  • the processor 601 is used to read the program in the memory 603 and perform the following processes:
  • the terminal capability information includes: whether the terminal supports the capability of exceeding a preset number of control resource sets CORESET and/or whether it supports the capability of at least two sending and receiving points to receive TRP;
  • the position of the PDCCH candidate of the terminal in the search space of each CORESET is determined.
  • the bus architecture may include any number of interconnected buses and bridges, specifically, one or more processors represented by the processor 601 and various circuits of the memory represented by the memory 603 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 602 may be a plurality of elements, including a transmitter and a receiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the preset number is the maximum number of configured CORESETs supported by each BWP of the terminal.
  • the preset number is equal to the product of the number of bandwidth parts BWP supported by the terminal and the maximum number of configured CORESETs supported by each BWP of the terminal;
  • the maximum number of configured CORESETs supported by each BWP is equal to 3.
  • the processor 601 is configured to read the program in the memory 603 and perform the following process:
  • the preset rule includes at least one of the following ways:
  • the starting offset value of the PDCCH candidate position of the terminal in the terminal specific search space USS of each CORESET is determined.
  • the processor 601 is configured to read the program in the memory 603 and perform at least one of the following processes:
  • different first pseudo-random number seeds are distinguished by different identification information.
  • the processor 601 is configured to read the program in the memory 603 and perform the following process:
  • the preset parameters include: at least one of CORESET identification information, transmission configuration indication TCI and TRP indication parameters.
  • the processor 601 is used to read the program in the memory 603 and perform the following process:
  • the starting offset value of the PDCCH candidate position is determined according to a preset rule
  • the preset rule includes at least one of the following ways:
  • the starting offset value of the PDCCH candidate position in the terminal specific search space USS of each CORESET is determined.
  • the processor 601 is used to read the program in the memory 603 and perform the following process:
  • the starting offset value of the PDCCH candidate position of CORESET is determined according to the type of the search space.
  • the first preset value is the maximum number of configured CORESETs supported by each BWP; or
  • the first preset value is equal to the product of the number of bandwidth parts BWP supported by the terminal and the maximum number of configured CORESETs supported by each BWP;
  • the maximum number of configured CORESETs supported by each BWP is equal to 3.
  • the processor 601 is used to read the program in the memory 603 and perform the following process:
  • TCI flag information is less than the second preset value, determine the starting offset value of the PDCCH candidate position according to the preset rule;
  • the preset rule includes at least one of the following ways:
  • the starting offset value of the PDCCH candidate position of the terminal in the terminal specific search space USS of each CORESET is determined.
  • the processor 601 is used to read the program in the memory 603 and perform the following process:
  • the starting offset value of the terminal at the PDCCH candidate position of CORESET is determined according to the type of search space.
  • the processor 601 is used to read the program in the memory 603 and perform the following process:
  • the target value is determined as the starting offset value of the PDCCH candidate position of CORESET
  • the target value is a first preset constant value
  • the target value is determined according to at least one of the number of control channel elements CCE, the number of TRPs, the carrier indication field value, the aggregation level, and the transmission configuration indication TCI identification information in CORESET.
  • the processor 601 is used to read the program in the memory 603 and perform one of the following processes:
  • a third pseudo-random number seed for acquiring the starting offset value of the terminal at the PDCCH candidate position of CORESET, and according to the third pseudo The random number seed determines the starting offset value of the terminal at the PDCCH candidate position of CORESET;
  • the second pseudo-random number seed is different from the corresponding pseudo-random number seed when the identification information of CORESET is less than the preset number;
  • the first target offset is based on the number of control channel units CCE in CORESET, TRP At least one of the number, carrier indication field value, aggregation level, and transmission configuration indication TCI identification information is determined, or the first target offset is a second preset constant value; in each BWP The maximum number of supported CORESETs is greater than 3.
  • the processor 601 is configured to read the program in the memory 603 and perform at least one of the following processes:
  • the third preset constant value is determined by the identification information of the TRP indication parameter
  • the fourth pseudo-random number seed is determined by the identification information of the TRP indication parameter
  • the starting offset value of the PDCCH candidate position in the USS of CORESET is determined according to the preset pseudo-random number seed and the second target offset, which is determined by the identification information of the TRP indication parameter.
  • the network device can be Global Mobile System (Global System of Mobile Communication, GSM for short) or Code Division Multiple Access (CDMA) base station (Base Transceiver Station, BTS for short), or broadband code Base station (NodeB, NB for short) in Wideband Code Division Multiple Access (WCDMA for short), it can also be an evolutionary base station (Evolutional Node B for LTE or eNodeB) in LTE, or a relay station or access point, Or a base station in a future 5G network, etc., which is not limited here.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • NodeB, NB broadband code Base station
  • WCDMA Wideband Code Division Multiple Access
  • Embodiments of the present disclosure also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium.
  • the computer program When the computer program is executed by a processor, a method for determining a position of a physical downlink control channel candidate applied to a network device is implemented Examples of the various processes, and can achieve the same technical effect, in order to avoid repetition, no more details here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some elements can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure essentially or part of the contribution to the related technology or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present disclosure.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory or a random access memory.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (Application Specific Integrated Circuits, ASIC), digital signal processor (Digital Signal Processor, DSP), digital signal processing device (DSP Device, DSPD), programmable Logic Device (Programmable Logic Device, PLD), Field Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processor, controller, microcontroller, microprocessor, others for performing the functions described in this disclosure Electronic unit or its combination.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processor
  • DSP Device digital signal processing device
  • DPD digital signal processing device
  • PLD programmable Logic Device
  • Field Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure may be implemented through modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory may be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种物理下行控制信道候选的位置确定方法、终端及网络设备。该物理下行控制信道候选的位置确定方法,应用于终端,包括:发送终端能力信息给网络设备,所述终端能力信息包括:终端是否支持超过预设个数的CORESET的能力和/或是否支持至少两个TRP接收的能力;获取每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值;根据所述起始偏移值,确定每个CORESET的搜索空间中的PDCCH候选的位置。

Description

物理下行控制信道候选的位置确定方法、终端及网络设备
相关申请的交叉引用
本申请主张在2019年1月8日在中国提交的中国专利申请号No.201910017033.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别涉及一种物理下行控制信道候选的位置确定方法、终端及网络设备。
背景技术
Rel-15的新空口(New Radio,NR)系统中,一个用户设备(User Equipment,UE)单个带宽部分(bandwidth part,BWP)最多支持配置3个控制资源集(Control resource set,CORESET)。为了支持通过多个发送接收点(Transmission and Reception Point,TRP)以及多个不同波束(beam)传输PDCCH,UE将会需要支持配置更多的CORESET。
然而,CORESET数量增多将会导致不同UE的搜索空间在不同的CORESET中互相冲突的概率加大,导致UE的PDCCH阻塞(blocking)概率加大。不同UE的PDCCH候选可以通过伪随机函数确定,从而降低互相阻塞的概率。但Rel-15的NR系统仅支持一个BWP内最大3个CORESET间的独立伪随机数,当CORESET数量大于3时,无法避免多个CORESET使用相同伪随机数的问题。
发明内容
本公开实施例提供一种物理下行控制信道候选的位置确定方法、终端及网络设备,以解决相关技术中的Rel-15的NR系统仅支持一个BWP内最大3个CORESET间的独立伪随机数,当一个BWP内CORESET数量大于3时,会造成多个CORESET使用相同伪随机数,这样会造成不同的终端的搜索空间在不同的CORESET中互相冲突的概率增大,导致终端的PDCCH阻塞概 率加大,无法保证通信可靠性的问题。
为了解决上述技术问题,本公开采用如下方式实现:
第一方面,本公开实施例提供一种物理下行控制信道候选的位置确定方法,应用于终端,包括:
发送终端能力信息给网络设备,所述终端能力信息包括:终端是否支持超过预设个数的控制资源集CORESET的能力和/或是否支持至少两个发送接收点TRP接收的能力;
获取每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值;
根据所述起始偏移值,确定每个CORESET的搜索空间中的PDCCH候选的位置。
第二方面,本公开实施例提供一种物理下行控制信道候选的位置确定方法,应用于网络设备,包括:
接收终端发送的终端能力信息,所述终端能力信息包括:终端是否支持超过预设个数的控制资源集CORESET的能力和/或是否支持至少两个发送接收点接收TRP的能力;
确定所述终端在每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值;
根据所述起始偏移值,确定所述终端在每个CORESET的搜索空间中的PDCCH候选的位置。
第三方面,本公开实施例提供一种终端,包括:
发送模块,用于发送终端能力信息给网络设备,所述终端能力信息包括:终端是否支持超过预设个数的控制资源集CORESET的能力和/或是否支持至少两个发送接收点TRP接收的能力;
第一获取模块,用于获取每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值;
第一确定模块,用于根据所述起始偏移值,确定每个CORESET的搜索空间中的PDCCH候选的位置。
第四方面,本公开实施例提供一种终端,包括:存储器、处理器及存储 在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述的物理下行控制信道候选的位置确定方法的步骤。
第五方面,本公开实施例提供一种网络设备,包括:
接收模块,用于接收终端发送的终端能力信息,所述终端能力信息包括:终端是否支持超过预设个数的控制资源集CORESET的能力和/或是否支持至少两个发送接收点接收TRP的能力;
第二确定模块,用于确定所述终端在每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值;
第三确定模块,用于根据所述起始偏移值,确定所述终端在每个CORESET的搜索空间中的PDCCH候选的位置。
第六方面,本公开实施例提供一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述的物理下行控制信道候选的位置确定方法的步骤。
第七方面,本公开实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述的物理下行控制信道候选的位置确定方法的步骤。
本公开的有益效果是:
上述方案,通过在超过预设个数的控制资源集CORESET的能力和/或支持至少两个发送接收点TRP接收的能力的情况下,进行每个CORESET的搜索空间中的PDCCH候选的位置的确定,降低不同的终端的搜索空间在不同的CORESET中互相冲突的概率,降低终端的PDCCH阻塞概率,进而保证通信可靠性。
附图说明
图1表示本公开实施例的物理下行控制信道候选的位置确定方法的流程示意图之一;
图2表示本公开实施例的终端的模块示意图;
图3表示本公开实施例的终端的结构框图;
图4表示本公开实施例的物理下行控制信道候选的位置确定方法的流程 示意图之二;
图5表示本公开实施例的网络设备的模块示意图;
图6表示本公开实施例的网络设备的结构框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本公开进行详细描述。
在进行本公开实施例的说明时,首先对下面描述中所用到的一些概念进行解释说明。
Rel-15的第五代(5Generation,5G)新空口(New Radio,NR)系统支持灵活的物理下行控制信道(Physical Downlink Control Channel,PDCCH)资源分配,不再是整个小区复用一个相同的PDCCH,而是可以为每个用户设备(User Equipment,UE)独立配置控制资源集(Control resource set,CORESET)用于监听PDCCH。CORESET包含独立的时域、频域以及空域资源的配置信息。同时,5G NR系统支持为UE配置多个搜索空间集,并为每个搜索空间灵活配置盲检数目,CORESET与搜索空间集之间可以灵活关联。每个CORESET可以关联多个搜索空间集,且不同UE的CORESET的资源可以部分或全部重叠。
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)Rel-16中提出了多发送接收点/多天线面板(multi-TRP/multi-panel)的场景,多发送接收点(Transmission and Reception Point,TRP)传输可以增加传输的可靠性及吞吐量性能,例如,UE可以接收来自于多个TRP的相同数据或不同数据。初步讨论了几种多TRP传输场景:
1)、同一TRP内的多天线面板传输;
2)、多TRP间的多TRP/panel传输,理想回程线路(backhaul);
3)、多TRP间的多TRP/panel传输,非理想回程线路。
多TRP的传输方案可能是:
A1、多TRP发送多个PDCCH,多个物理下行共享信道(Physical Downlink Shared Channel,PDSCH),每个TRP发送一个PDCCH一个PDSCH;
A2、多个PDSCH传输相同的传输块(Transmission Block,TB);
A3、多个PDSCH传输不同的TB。
本公开针对相关技术中的Rel-15的NR系统仅支持一个BWP内最大3个CORESET间的独立伪随机数,当一个BWP内CORESET数量大于3时,会造成多个CORESET使用相同伪随机数,这样会造成不同的终端的搜索空间在不同的CORESET中互相冲突的概率增大,导致终端的PDCCH阻塞概率加大,无法保证通信可靠性的问题,提供一种物理下行控制信道候选的位置确定方法、终端及网络设备。
如图1所示,本公开实施例提供一种物理下行控制信道候选的位置确定方法,应用于终端,包括:
步骤101,发送终端能力信息给网络设备;
需要说明的是,所述终端能力信息包括:终端是否支持超过预设个数的控制资源集(CORESET)的能力和/或是否支持至少两个发送接收点(TRP)接收的能力;
具体地,该预设个数可以为每个带宽部分(BWP)最多支持配置的CORESET的个数;或者,该预设个数等于终端支持的BWP的个数与每个BWP最多支持配置的CORESET的个数的乘积,具体地,每个BWP最多支持配置的CORESET的个数等于3。
还需要说明的是,终端是否支持至少两个发送接收点TRP接收的能力指的是终端是否支持超过一个TRP接收的能力。
具体地,终端从一个TRP接收的能力可以用包括但不限于以下方式中的任意一种体现:
方式一、终端接收关联于一个或一组目标传输配置指示(Transmission Configuration Indicator,TCI)的数据;
需要说明的是,该目标TCI指的是某一个TCI或特定类型的TCI。
在此种情况下,终端是否支持超过一个TRP接收的能力指的是:终端是否支持接收关联于超过一个或超过一组目标TCI的数据。
方式二、终端接收关联于一个或一组目标准共址(Quasi co-location,QCL)的数据;
需要说明的是,该目标QCL指的是某一个QCL或特定类型的QCL。
在此种情况下,终端是否支持超过一个TRP接收的能力指的是:终端是否支持接收关联于超过一个或超过一组目标QCL的数据。
方式三、终端接收关联于一个或一组波束信息的数据;
在此种情况下,终端是否支持超过一个TRP接收的能力指的是:终端是否支持接收关联于超过一个或超过一组波束信息的数据。
方式四、终端接收关联于一个或一组面板的数据;
在此种情况下,终端是否支持超过一个TRP接收的能力指的是:终端是否支持接收关联于超过一个或超过一组面板的数据。
方式五、终端接收关联于不超过预定义数量的TCI的数据;
在此种情况下,终端是否支持超过一个TRP接收的能力指的是:终端是否支持接收关联于超过预定义数量的TCI的数据。
方式六、终端接收使用一个或预设个数的目标扰码标识符(identifier,ID)的控制信道,或者,终端接收使用一个或预设个数的目标扰码ID的数据信道;
在此种情况下,终端是否支持超过一个TRP接收的能力指的是:终端是否支持接收使用超过一个或超过预设个数的目标扰码ID的控制信道;或者,终端是否支持接收使用超过一个或超过预设个数的目标扰码ID的数据信道。
方式七、终端接收使用一个或预设个数的目标扰码ID的解调参考信号(demodulation reference signal,DMRS)的控制信道,或者终端接收使用一个或预设个数的目标扰码ID的DMRS的数据信道;
在此种情况下,终端是否支持超过一个TRP接收的能力指的是:终端是否支持接收使用超过一个或超过预设个数的目标扰码ID的DMRS的控制信道;或者,终端是否支持接收使用超过一个或超过预设个数的目标扰码ID的DMRS的数据信道。
步骤102,获取每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值;
需要说明的是,该配置信息可以是网络设备根据终端能力信息进行反馈,也可以为网络设备根据系统需求,不依据终端能力信息进行反馈。
步骤103,根据所述起始偏移值,确定每个CORESET的搜索空间中的 PDCCH候选的位置。
进一步,需要说明的是,在终端未接收到所述网络设备发送的配置信息时,步骤102的具体实现方式为:
按照预设规则,确定PDCCH候选位置的起始偏移值;
其中,所述预设规则包括以下方式中的至少一项:
C11、确定每个CORESET的公共搜索空间(Common Search Space,CSS)中的PDCCH候选位置的起始偏移值为零;
需要说明的是,此种情况下,对于CSS,直接将起始偏移值设置为零。
C12、利用预设伪随机数种子,确定每个CORESET的终端特定搜索空间(User-specific Search Space,USS)中的PDCCH候选位置的起始偏移值;
在此种情况下,对于USS,利用公式一:
Figure PCTCN2020070072-appb-000001
获取起始偏移值,其中,
Figure PCTCN2020070072-appb-000002
是指对于子载波间隔配置为μ时,无线帧中的时隙编号,
Figure PCTCN2020070072-appb-000003
Figure PCTCN2020070072-appb-000004
之前的一个时隙的编号,例如,
Figure PCTCN2020070072-appb-000005
是无线帧的第2个时隙,
Figure PCTCN2020070072-appb-000006
则是第1个时隙;
Figure PCTCN2020070072-appb-000007
为第p个CORESET在第
Figure PCTCN2020070072-appb-000008
个时隙的搜索空间的PDCCH候选位置的起始偏移值;
Figure PCTCN2020070072-appb-000009
为第p个CORESET在第
Figure PCTCN2020070072-appb-000010
个时隙的搜索空间的PDCCH候选位置的起始偏移值;A p为第p个CORESET的伪随机数种子;Y p,-1=n RNTI≠0,当p mod 3=0时,A p=39827,当p mod 3=1时,A p=39829,当p mod 3=2时,A p=39839,且D=65537;n RNTI为该终端的无线网络临时标识符(Radio Network Tempory Identity,RNTI)。
进一步,需要说明的是,在终端接收到所述网络设备发送的配置信息时,步骤102的具体实现方式为:
根据所述配置信息确定每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值。
需要说明的是,配置信息可以显式配置PDCCH候选位置的起始偏移值,也可以隐式配置PDCCH候选位置的起始偏移值,下面分别从显式配置和隐式配置的角度,对步骤102的实现方式进行具体说明如下。
一、显式配置
在此种方式下,步骤102可以采用如下方式中的至少一项实现:
D11、获取所述配置信息中针对CSS配置的无线资源控制(Radio Resource  Control,RRC)参数配置值,将RRC参数配置值确定为CORESET的CSS中的PDCCH候选位置的起始偏移值;
需要说明的是,此种方式是在配置信息中携带RRC参数配置值,终端接收到携带RRC参数配置值的配置信息时,直接确定该CORESET的CSS中的PDCCH候选位置的起始偏移值为RRC参数配置值。
D12、获取所述配置信息中针对USS配置的第一伪随机数种子,根据所述第一伪随机数种子,确定CORESET的USS中的PDCCH候选位置的起始偏移值;
需要说明的是,在此种情况下,网络设备在配置信息中携带的是预先定义的第一伪随机数种子,需要说明的是,针对不同CORESET的第一伪随机数种子是通过RRC信令指示的不同的标识信息进行区分的。
例如,预先定义的第一伪随机数种子为:A 0=39827,A 1=39829,A 2=39839,A 3=39841,A 4=39847,A 5=39857,A 6=39863;其中,下标分别对应伪随机数种子的标号,则网络设备在进行第一伪随机数种子发送时,在配置信息中携带该下标,以节省信令开销。
还需要说明的是,在此种情况下,CORESET的USS中的PDCCH候选位置的起始偏移值可以采用上述的公式一的形式获取,在此不再赘述。
二、隐式配置
1、所述配置信息中包括:CORESET的标识信息
1.1、可选地,在此种情况下,若CORESET的标识信息小于第一预设值,则按照预设规则,确定PDCCH候选位置的起始偏移值;
需要说明的是,该第一预设值为每个BWP最多支持配置的CORESET的个数;或者,该第一预设值等于终端支持的BWP的个数与每个BWP最多支持配置的CORESET的个数的乘积,其中,所述每个BWP最多支持配置的CORESET的个数等于3。
具体地,所述预设规则包括以下方式中的至少一项:
D21、确定每个CORESET的CSS中的PDCCH候选位置的起始偏移值为零;
需要说明的是,此种方式与C11的实现方式相同,在此不再赘述。
D22、利用预设伪随机数种子,确定每个CORESET的USS中的PDCCH 候选位置的起始偏移值;
需要说明的是,此种方式与C12的实现方式相同,在此不再赘述。
1.2、可选地,在此种情况下,若CORESET的标识信息大于或等于第一预设值,则根据搜索空间的类型,确定CORESET的PDCCH候选位置的起始偏移值。
具体地,当搜索空间的类型为CSS时,确定CORESET的PDCCH候选位置的起始偏移值的具体实现方式为:
将目标值确定为CORESET的PDCCH候选位置的起始偏移值;
需要说明的是,该目标值可以为第一预设常量值,该第一预设常量值由协议约定或网络设备通知。
该目标值也可以根据CORESET中的控制信道单元(Control Channel Element,CCE)的个数、TRP的个数、载波指示字段值、聚合等级和传输配置指示(TCI)的标识信息中的至少一项确定;例如,目标值=CORESET中的CCE的个数*t/(T*聚合等级),T为TRP个数或TCI分组的个数,t为目标TRP或TCI分组的编号,特别地,当T为2时,目标值=floor{CORESET中的CCE的个数/(T*聚合等级)};或者,目标值=聚合等级*t。
具体地,当搜索空间的类型为USS时,确定CORESET的PDCCH候选位置的起始偏移值的具体实现方式为以下方式中的一项:
D31、根据第二伪随机数种子,确定CORESET的PDCCH候选位置的起始偏移值;
需要说明的是,该第二伪随机数种子不同于CORESET的标识信息小于所述预设个数时对应的伪随机数种子。
例如,重新定义新的伪随机数种子,选用与CORESET的标识信息小于第一预设值时不同的伪随机数种子,例如,当p mod 3=0时,A p=39841,当p mod 3=1时,A p=39847,当p mod 3=2时,A p=39857。
还需要说明的是,在此种情况下,CORESET的USS中的PDCCH候选位置的起始偏移值可以采用上述的公式一的形式获取,在此不再赘述。
D32、根据第一目标偏移量和预设伪随机数种子,确定CORESET的PDCCH候选位置的起始偏移值;
需要说明的是,该第一目标偏移量为第二预设常量值;或者该第一目标偏移量可以根据CORESET中的CCE的个数、TRP的个数、载波指示字段值、聚合等级和TCI的标识信息中的至少一项确定,例如,第一目标偏移量=CORESET中的CCE的个数*t/(T*聚合等级),T为TRP个数或TCI分组的个数,t为目标TRP或TCI分组的编号,特别地,当T为2时,第一目标偏移量=floor{CORESET中的CCE的个数/(T*聚合等级)};或者,目标值=聚合等级*t。还需要说明的是,该预设伪随机数种子可以与相关技术中的与CORESET的标识信息小于预设个数时对应的伪随机数种子相同,也可以不同。
还需要说明的是,同一个终端的USS和CSS可以配置相同的第一目标偏移量,这样可以简化实现复杂度。
具体地,此种情况下,获取CORESET的PDCCH候选位置的起始偏移值的具体方式为:
利用公式二:
Figure PCTCN2020070072-appb-000011
获取起始偏移值,其中,
Figure PCTCN2020070072-appb-000012
是指对于子载波间隔配置为μ时,无线帧中的时隙编号,
Figure PCTCN2020070072-appb-000013
Figure PCTCN2020070072-appb-000014
之前的一个时隙的编号,例如,
Figure PCTCN2020070072-appb-000015
是无线帧的第2个时隙,
Figure PCTCN2020070072-appb-000016
则是第1个时隙;
Figure PCTCN2020070072-appb-000017
为第p个CORESET在第
Figure PCTCN2020070072-appb-000018
个时隙的搜索空间的PDCCH候选位置的起始偏移值;
Figure PCTCN2020070072-appb-000019
为第p个CORESET在第
Figure PCTCN2020070072-appb-000020
个时隙的搜索空间的PDCCH候选位置的起始偏移值;A p为第p个CORESET的伪随机数种子;例如,Y p,-1=n RNTI≠0,当p mod 3=0时,A p=39827,当p mod 3=1时,A p=39829,当p mod 3=2时,A p=39839,且D=65537;n RNTI为该终端的无线网络临时标识符(Radio Network Tempory Identity,RNTI);O为第一目标偏移量。
D33、根据每个BWP中最多支持配置的CORESET的个数以及CORESET的标识信息,确定获取CORESET的PDCCH候选位置的起始偏移值的第三伪随机数种子,根据所述第三伪随机数种子确定CORESET的PDCCH候选位置的起始偏移值;
需要说明的是,在此种情况下,所述每个BWP中最多支持配置的CORESET的个数大于3。
例如,每个BWP中最多支持配置的CORESET的个数等于6,当p mod 6=0时,A p=39827,当p mod 6=1时,A p=39829,当p mod 6=2时,A p=39839,当p mod 6=3时,A p=39841,当p mod 6=4时,A p=39847,当p mod 6=5时,A p=39857。
还需要说明的是,在此种情况下,CORESET的USS中的PDCCH候选位置的起始偏移值可以采用上述的公式一的形式获取,在此不再赘述。
2、所述配置信息中包括:传输配置指示(TCI)
2.1、可选地,在此种情况下,若TCI的标志信息小于第二预设值,按照预设规则,确定PDCCH候选位置的起始偏移值;
需要说明的是,该第二预设值为协议约定的预设常量。
具体地,所述预设规则包括以下方式中的至少一项:
D31、确定每个CORESET的CSS中的PDCCH候选位置的起始偏移值为零;
需要说明的是,此种方式与C11的实现方式相同,在此不再赘述。
D32、利用预设伪随机数种子,确定每个CORESET的USS中的PDCCH候选位置的起始偏移值;
需要说明的是,此种方式与C12的实现方式相同,在此不再赘述。
2.2、可选地,在此种情况下,若TCI的标志信息大于或等于第二预设值,则根据搜索空间的类型,确定CORESET的PDCCH候选位置的起始偏移值。
需要说明的是,在此种情况下,根据搜索空间的类型,确定CORESET的PDCCH候选位置的起始偏移值的实现方式,与上述若CORESET的标识信息大于或等于第一预设值,根据搜索空间的类型,确定CORESET的PDCCH候选位置的起始偏移值的实现方式相同,在此不再赘述。
3、所述配置信息中包括:TRP指示参数
具体地,在此种情况下,根据所述配置信息确定每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值的具体实现方式包括以下方式中的至少一项:
D41、将第三预设常量值确定为CORESET的CSS中的PDCCH候选位置的起始偏移值;
需要说明的是,该第三预设常量值由TRP指示参数的标识信息确定。
例如,第三预设常量值=TRP指示参数的标识信息mod M1,其中,M1为终端支持的TRP的最大个数。
D42、根据第四伪随机数种子,确定CORESET的终端特定搜索空间USS 中的PDCCH候选位置的起始偏移值;
需要说明的是,所述第四伪随机数种子由TRP指示参数的标识信息确定。
例如,在TRP指示参数的标识信息为零时,p mod 3=0时,A p=39827,当p mod 3=1时,A p=39829,当p mod 3=2时,A p=39839;在TRP指示参数的标识信息为一时,p mod 3=0时,A p=39841,当p mod 3=1时,A p=39847,当p mod 3=2时,A p=39857。
需要说明的是,在此种情况下,CORESET的USS中的PDCCH候选位置的起始偏移值可以采用上述的公式一的形式获取,在此不再赘述。
D43、根据预设伪随机数种子和第二目标偏移量,确定CORESET的USS中的PDCCH候选位置的起始偏移值;
需要说明的是,该所述第二目标偏移量由TRP指示参数的标识信息确定。该预设伪随机数种子可以与相关技术中的与CORESET的标识信息小于预设个数时对应的伪随机数种子相同,也可以不同。
具体地,此种情况下,获取CORESET的PDCCH候选位置的起始偏移值的具体方式为:
利用公式三:
Figure PCTCN2020070072-appb-000021
获取起始偏移值,其中,
Figure PCTCN2020070072-appb-000022
是指对于子载波间隔配置为μ时,无线帧中的时隙编号,
Figure PCTCN2020070072-appb-000023
Figure PCTCN2020070072-appb-000024
之前的一个时隙的编号,例如,
Figure PCTCN2020070072-appb-000025
是无线帧的第2个时隙,
Figure PCTCN2020070072-appb-000026
则是第1个时隙;
Figure PCTCN2020070072-appb-000027
为第p个CORESET在第
Figure PCTCN2020070072-appb-000028
个时隙的搜索空间的PDCCH候选位置的起始偏移值;
Figure PCTCN2020070072-appb-000029
为第p个CORESET在第
Figure PCTCN2020070072-appb-000030
个时隙的搜索空间的PDCCH候选位置的起始偏移值;A p为第p个CORESET的伪随机数种子;例如,Y p,-1=n RNTI≠0,当p mod 3=0时,A p=39827,当p mod 3=1时,A p=39829,当p mod 3=2时,A p=39839,且D=65537;n RNTI为该终端的无线网络临时标识符(Radio Network Tempory Identity,RNTI);O1为第二目标偏移量。
需要说明的是,在得到每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值后,根据该起始偏移值,确定每个CORESET的搜索空间中的PDCCH候选的位置,具体地实现方式为:
根据公式四:
Figure PCTCN2020070072-appb-000031
获取每个CORESET的搜索空间中的PDCCH候选的位置;
其中,N CCE,p为控制资源集P中的控制信道单元的个数;n CI为载波指示字段值;L为聚合等级;
Figure PCTCN2020070072-appb-000032
为PDCCH候选位置的起始偏移值;
Figure PCTCN2020070072-appb-000033
为是控制资源集p中的搜索空间集s中,对应于所有配置的n CI的服务小区中聚合等级为L的PDCCH候选的监听个数中的最大值,即对于每个配置的n CI,有一个M L,这里的
Figure PCTCN2020070072-appb-000034
是所有M L中的最大值;
Figure PCTCN2020070072-appb-000035
为终端被配置监听的搜索空间集s中对应于n CI的服务小区且聚合等级为L的PDCCH候选的个数;i取值为0至L-1的数。
需要说明的是,当终端发送终端能力信息给网络设备后,若网络设备与终端具有相同的能力,则可以给终端反馈配置信息;若网络设备与终端的能力不匹配,则网络设备不给终端反馈配置信息,终端按照未接收到配置信息的情况按照相关技术中的方式进行起始偏移值的确定,进而可以保证前向兼容。
需要说明的是,通过为不同的CORESET中的PDCCH候选分配不同的随机位置来降低不同终端间的阻塞概率,一方面,可以提高终端支持的单个BWP的CORESET数以及总共的CORESET数目,从而可以支持多TRP传输场景等应用场景;另一方面,本公开实施例可以保持前向兼容,即当网络侧或终端两者中有一个为仅支持Rel-15的旧设备时(例如,不支持多个CORESET或多TRP传输),或小区中的终端为不同release设备混合时,系统仍然能够正常工作。
如图2所示,本公开实施例提供一种终端200,包括:
发送模块201,用于发送终端能力信息给网络设备,所述终端能力信息包括:终端是否支持超过预设个数的控制资源集CORESET的能力和/或是否支持至少两个发送接收点TRP接收的能力;
第一获取模块202,用于获取每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值;
第一确定模块203,用于根据所述起始偏移值,确定每个CORESET的搜索空间中的PDCCH候选的位置。
具体地,所述预设个数为每个带宽部分BWP最多支持配置的CORESET的个数;或者
所述预设个数等于终端支持的BWP的个数与每个BWP最多支持配置的CORESET的个数的乘积;
其中,所述每个BWP最多支持配置的CORESET的个数等于3。
可选地,所述第一获取模块202,用于:
若未接收到所述网络设备发送的配置信息,则按照预设规则,确定PDCCH候选位置的起始偏移值;
其中,所述预设规则包括以下方式中的至少一项:
确定每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
利用预设伪随机数种子,确定每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
可选地,所述第一获取模块202,用于:
若接收到所述网络设备发送的配置信息,则根据所述配置信息确定每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值。
进一步地,所述第一获取模块202,用于实现以下方式中的至少一项:
获取所述配置信息中针对公共搜索空间CSS配置的无线资源控制RRC参数配置值,将RRC参数配置值确定为CORESET的CSS中的PDCCH候选位置的起始偏移值;
获取所述配置信息中针对终端特定搜索空间USS配置的第一伪随机数种子,根据所述第一伪随机数种子,确定CORESET的USS中的PDCCH候选位置的起始偏移值。
具体地,不同的第一伪随机数种子通过RRC信令指示的不同的标识信息进行区分。
进一步地,当所述配置信息中包括:CORESET的标识信息时,所述第一获取模块202,用于:
若CORESET的标识信息小于第一预设值,则按照预设规则,确定PDCCH候选位置的起始偏移值;
其中,所述预设规则包括以下方式中的至少一项:
确定每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始 偏移值为零;
利用预设伪随机数种子,确定每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
进一步地,当所述配置信息中包括:CORESET的标识信息时,所述第一获取模块202,用于:
若CORESET的标识信息大于或等于第一预设值,则根据搜索空间的类型,确定CORESET的PDCCH候选位置的起始偏移值。
具体地,所述第一预设值为每个BWP最多支持配置的CORESET的个数;或者
所述第一预设值等于终端支持的带宽部分BWP的个数与每个BWP最多支持配置的CORESET的个数的乘积;
其中,所述每个BWP最多支持配置的CORESET的个数等于3。
进一步地,当所述配置信息中包括:传输配置指示TCI时,所述第一获取模块202,用于:
若TCI的标志信息小于第二预设值,按照预设规则,确定PDCCH候选位置的起始偏移值;
其中,所述预设规则包括以下方式中的至少一项:
确定每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
利用预设伪随机数种子,确定每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
进一步地,当所述配置信息中包括:传输配置指示TCI时,所述第一获取模块202,用于:
若TCI的标志信息大于或等于第二预设值,则根据搜索空间的类型,确定CORESET的PDCCH候选位置的起始偏移值。
具体地,当搜索空间的类型为公共搜索空间CSS时,所述第一获取模块202根据搜索空间的类型,确定CORESET的PDCCH候选位置的起始偏移值的实现方式为:
将目标值确定为CORESET的PDCCH候选位置的起始偏移值;
其中,所述目标值为第一预设常量值;或者
所述目标值根据CORESET中的控制信道单元CCE的个数、TRP的个数、载波指示字段值、聚合等级和传输配置指示TCI的标识信息中的至少一项确定。
具体地,当搜索空间的类型为终端特定搜索空间USS时,所述第一获取模块202根据搜索空间的类型,确定CORESET的PDCCH候选位置的起始偏移值的实现方式包括以下方式中的一项:
根据第二伪随机数种子,确定CORESET的PDCCH候选位置的起始偏移值;
根据第一目标偏移量和预设伪随机数种子,确定CORESET的PDCCH候选位置的起始偏移值;
根据每个BWP中最多支持配置的CORESET的个数以及CORESET的标识信息,确定获取CORESET的PDCCH候选位置的起始偏移值的第三伪随机数种子,根据所述第三伪随机数种子确定CORESET的PDCCH候选位置的起始偏移值;
其中,第二伪随机数种子不同于CORESET的标识信息小于所述预设个数时对应的伪随机数种子;所述第一目标偏移量根据CORESET中的控制信道单元CCE的个数、TRP的个数、载波指示字段值、聚合等级和传输配置指示TCI的标识信息中的至少一项确定,或者,所述第一目标偏移量为第二预设常量值;所述每个BWP中最多支持配置的CORESET的个数大于3。
进一步地,当所述配置信息中包括:TRP指示参数时,所述第一获取模块202,用于实现以下方式中的至少一项:
将第三预设常量值确定为CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值,所述第三预设常量值由TRP指示参数的标识信息确定;
根据第四伪随机数种子,确定CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值,所述第四伪随机数种子由TRP指示参数的标识信息确定;
根据预设伪随机数种子和第二目标偏移量,确定CORESET的USS中的 PDCCH候选位置的起始偏移值,所述第二目标偏移量由TRP指示参数的标识信息确定。
需要说明的是,该终端实施例是与上述应用于终端的物理下行控制信道候选的位置确定方法相对应的终端,上述实施例的所有实现方式均适用于该终端实施例中,也能达到与其相同的技术效果。
图3为实现本公开实施例的一种终端的硬件结构示意图。
该终端30包括但不限于:射频单元310、网络模块320、音频输出单元330、输入单元340、传感器350、显示单元360、用户输入单元370、接口单元380、存储器390、处理器311、以及电源312等部件。本领域技术人员可以理解,图3中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元310用于发送终端能力信息给网络设备,所述终端能力信息包括:终端是否支持超过预设个数的控制资源集CORESET的能力和/或是否支持至少两个发送接收点TRP接收的能力;
处理器311用于获取每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值;
根据所述起始偏移值,确定每个CORESET的搜索空间中的PDCCH候选的位置。
本公开实施例的终端通过在超过预设个数的控制资源集CORESET的能力和/或支持至少两个发送接收点TRP接收的能力的情况下,进行每个CORESET的搜索空间中的PDCCH候选的位置的确定,降低不同的终端的搜索空间在不同的CORESET中互相冲突的概率,降低终端的PDCCH阻塞概率,进而保证通信可靠性。
应理解的是,本公开实施例中,射频单元310可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自网络设备的下行数据接收后,给处理器311处理;另外,将上行的数据发送给网络设备。通常,射频单元310包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、 双工器等。此外,射频单元310还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块320为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元330可以将射频单元310或网络模块320接收的或者在存储器390中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元330还可以提供与终端30执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元330包括扬声器、蜂鸣器以及受话器等。
输入单元340用于接收音频或视频信号。输入单元340可以包括图形处理器(Graphics Processing Unit,GPU)341和麦克风342,图形处理器341对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元360上。经图形处理器341处理后的图像帧可以存储在存储器390(或其它存储介质)中或者经由射频单元310或网络模块320进行发送。麦克风342可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元310发送到移动通信网络设备的格式输出。
终端30还包括至少一种传感器350,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板361的亮度,接近传感器可在终端30移动到耳边时,关闭显示面板361和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器350还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元360用于显示由用户输入的信息或提供给用户的信息。显示单元360可包括显示面板361,可以采用液晶显示器(Liquid Crystal Display, LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板361。
用户输入单元370可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元370包括触控面板371以及其他输入设备372。触控面板371,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板371上或在触控面板371附近的操作)。触控面板371可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器311,接收处理器311发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板371。除了触控面板371,用户输入单元370还可以包括其他输入设备372。具体地,其他输入设备372可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板371可覆盖在显示面板361上,当触控面板371检测到在其上或附近的触摸操作后,传送给处理器311以确定触摸事件的类型,随后处理器311根据触摸事件的类型在显示面板361上提供相应的视觉输出。虽然在图3中,触控面板371与显示面板361是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板371与显示面板361集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元380为外部装置与终端30连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(input/output,I/O)端口、视频I/O端口、耳机端口等等。接口单元380可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端30内的一个或多个元件或者可以用于在终端30和外部装置之间传输数据。
存储器390可用于存储软件程序以及各种数据。存储器390可主要包括 存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器390可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器311是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器390内的软件程序和/或模块,以及调用存储在存储器390内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器311可包括一个或多个处理单元;可选的,处理器311可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器311中。
终端30还可以包括给各个部件供电的电源312(比如电池),可选的,电源312可以通过电源管理系统与处理器311逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端30包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器311,存储器390,存储在存储器390上并可在所述处理器311上运行的计算机程序,该计算机程序被处理器311执行时实现应用于终端侧的物理下行控制信道候选的位置确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现应用于终端侧的物理下行控制信道候选的位置确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
如图4所示,本公开实施例提供一种物理下行控制信道候选的位置确定方法,应用于网络设备,包括:
步骤401,接收终端发送的终端能力信息;
需要说明的是,所述终端能力信息包括:终端是否支持超过预设个数的控制资源集CORESET的能力和/或是否支持至少两个发送接收点接收TRP的能力;
具体地,所述预设个数为所述终端的每个BWP最多支持配置的CORESET的个数;或者
所述预设个数等于所述终端支持的带宽部分BWP的个数与所述终端的每个BWP最多支持配置的CORESET的个数的乘积,其中,所述每个BWP最多支持配置的CORESET的个数等于3。
步骤402,确定所述终端在每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值;
步骤403,根据所述起始偏移值,确定所述终端在每个CORESET的搜索空间中的PDCCH候选的位置。
需要说明的是,当网络设备确定所述终端在每个CORESET的搜索空间中的PDCCH候选的位置后,便可以按照该PDCCH候选的位置,进行PDCCH资源的发送。
还需要说明的是,网络设备可能还会向终端反馈配置信息,终端按照网络设备的配置信息进行每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值的确定,进而得到终端在每个CORESET的搜索空间中的PDCCH候选的位置,并在相应的位置进行PDCCH的接收。
可选地,所述确定所述终端在每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值,包括:
则按照预设规则,确定PDCCH候选位置的起始偏移值;
其中,所述预设规则包括以下方式中的至少一项:
确定所述终端在每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
利用预设伪随机数种子,确定所述终端在每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
可选地,所述确定所述终端在每个CORESET的搜索空间中的物理下行 控制信道PDCCH候选位置的起始偏移值,包括以下方式中的至少一项:
获取针对公共搜索空间CSS配置的无线资源控制RRC参数配置值,将RRC参数配置值确定为所述终端在CORESET的CSS中的PDCCH候选位置的起始偏移值;
获取针对终端特定搜索空间USS配置的第一伪随机数种子,根据所述第一伪随机数种子,确定所述终端在CORESET的USS中的PDCCH候选位置的起始偏移值。
具体地,不同的第一伪随机数种子通过不同的标识信息进行区分。
可选地,所述确定所述终端在每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值,包括:
根据预设参数,确定所述终端在每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值;
其中,所述预设参数包括:CORESET的标识信息、传输配置指示TCI和TRP指示参数中的至少一项。
进一步地,当所述预设参数中包括:CORESET的标识信息时,所述确定所述终端在每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括:
若CORESET的标识信息小于第一预设值,则按照预设规则,确定PDCCH候选位置的起始偏移值;
其中,所述预设规则包括以下方式中的至少一项:
确定每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
利用预设伪随机数种子,确定每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
进一步地,当所述预设参数中包括:CORESET的标识信息时,所述确定所述终端在每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括:
若CORESET的标识信息大于或等于第一预设值,则根据搜索空间的类型,确定CORESET的PDCCH候选位置的起始偏移值。
需要说明的是,所述第一预设值为每个BWP最多支持配置的CORESET的个数;或者
所述第一预设值等于终端支持的带宽部分BWP的个数与每个BWP最多支持配置的CORESET的个数的乘积;
其中,所述每个BWP最多支持配置的CORESET的个数等于3。
进一步地,当所述预设参数中包括:传输配置指示TCI时,所述确定所述终端在每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括:
若TCI的标志信息小于第二预设值,按照预设规则,确定PDCCH候选位置的起始偏移值;
其中,所述预设规则包括以下方式中的至少一项:
确定所述终端在每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
利用预设伪随机数种子,确定所述终端在每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
进一步地,当所述预设参数中包括:传输配置指示TCI时,所述确定所述终端在每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括:
若TCI的标志信息大于或等于第二预设值,则根据搜索空间的类型,确定所述终端在CORESET的PDCCH候选位置的起始偏移值。
具体地,当搜索空间的类型为公共搜索空间CSS时,所述根据搜索空间的类型,确定所述终端在CORESET的PDCCH候选位置的起始偏移值,包括:
将目标值确定为CORESET的PDCCH候选位置的起始偏移值;
其中,所述目标值为第一预设常量值;或者
所述目标值根据CORESET中的控制信道单元CCE的个数、TRP的个数、载波指示字段值、聚合等级和传输配置指示TCI的标识信息中的至少一项确定。
具体地,当搜索空间的类型为终端特定搜索空间USS时,所述根据搜索 空间的类型,确定所述终端在CORESET的PDCCH候选位置的起始偏移值,包括以下方式中的一项:
根据第二伪随机数种子,确定所述终端在CORESET的PDCCH候选位置的起始偏移值;
根据第一目标偏移量和预设伪随机数种子,确定CORESET的PDCCH候选位置的起始偏移值;
根据每个BWP中最多支持配置的CORESET的个数以及CORESET的标识信息,确定获取所述终端在CORESET的PDCCH候选位置的起始偏移值的第三伪随机数种子,根据所述第三伪随机数种子确定所述终端在CORESET的PDCCH候选位置的起始偏移值;
其中,第二伪随机数种子不同于CORESET的标识信息小于所述预设个数时对应的伪随机数种子;所述第一目标偏移量根据CORESET中的控制信道单元CCE的个数、TRP的个数、载波指示字段值、聚合等级和传输配置指示TCI的标识信息中的至少一项确定,或者,所述第一目标偏移量为第二预设常量值;所述每个BWP中最多支持配置的CORESET的个数大于3。
进一步地,当所述预设参数中包括:TRP指示参数时,所述确定所述终端在每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括以下方式中的至少一项:
将第三预设常量值确定为所述终端在CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值,所述第三预设常量值由TRP指示参数的标识信息确定;
根据第四伪随机数种子,确定所述终端在CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值,所述第四伪随机数种子由TRP指示参数的标识信息确定;
根据预设伪随机数种子和第二目标偏移量,确定CORESET的USS中的PDCCH候选位置的起始偏移值,所述第二目标偏移量由TRP指示参数的标识信息确定。
需要说明的是,该实施例中,确定所述终端在每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值的方式,与终端侧确定在每个 CORESET的搜索空间中的PDCCH候选位置的起始偏移值的方式相同,在本公开实施例中不再赘述。
还需要说明的是,为了保证PDCCH传输的可靠性,网络设备和终端对PDCCH候选位置的起始偏移值以及PDCCH候选的位置的理解是一致的。
本公开实施例,通过在终端超过预设个数的控制资源集CORESET的能力和/或支持至少两个发送接收点TRP接收的能力的情况下,进行每个CORESET的搜索空间中的PDCCH候选的位置的确定,降低不同的终端的搜索空间在不同的CORESET中互相冲突的概率,降低终端的PDCCH阻塞概率,进而保证通信可靠性。
如图5所示,本公开实施例提供一种网络设备500,包括:
接收模块501,用于接收终端发送的终端能力信息,所述终端能力信息包括:终端是否支持超过预设个数的控制资源集CORESET的能力和/或是否支持至少两个发送接收点接收TRP的能力;
第二确定模块502,用于确定所述终端在每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值;
第三确定模块503,用于根据所述起始偏移值,确定所述终端在每个CORESET的搜索空间中的PDCCH候选的位置。
具体地,所述预设个数为所述终端的每个BWP最多支持配置的CORESET的个数;或者
所述预设个数等于所述终端支持的带宽部分BWP的个数与所述终端的每个BWP最多支持配置的CORESET的个数的乘积;
其中,所述每个BWP最多支持配置的CORESET的个数等于3。
可选地,所述第二确定模块502,用于:
则按照预设规则,确定PDCCH候选位置的起始偏移值;
其中,所述预设规则包括以下方式中的至少一项:
确定所述终端在每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
利用预设伪随机数种子,确定所述终端在每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
可选地,所述第二确定模块502,实现以下方式中的至少一项:
获取针对公共搜索空间CSS配置的无线资源控制RRC参数配置值,将RRC参数配置值确定为所述终端在CORESET的CSS中的PDCCH候选位置的起始偏移值;
获取针对终端特定搜索空间USS配置的第一伪随机数种子,根据所述第一伪随机数种子,确定所述终端在CORESET的USS中的PDCCH候选位置的起始偏移值。
具体地,不同的第一伪随机数种子通过不同的标识信息进行区分。
可选地,所述第二确定模块502,用于:
根据预设参数,确定所述终端在每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值;
其中,所述预设参数包括:CORESET的标识信息、传输配置指示TCI和TRP指示参数中的至少一项。
进一步地,当所述预设参数中包括:CORESET的标识信息时,所述第二确定模块502,用于:
若CORESET的标识信息小于第一预设值,则按照预设规则,确定PDCCH候选位置的起始偏移值;
其中,所述预设规则包括以下方式中的至少一项:
确定每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
利用预设伪随机数种子,确定每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
进一步地,当所述预设参数中包括:CORESET的标识信息时,所述第二确定模块502,用于:
若CORESET的标识信息大于或等于第一预设值,则根据搜索空间的类型,确定CORESET的PDCCH候选位置的起始偏移值。
具体地,所述第一预设值为每个BWP最多支持配置的CORESET的个数;或者
所述第一预设值等于终端支持的带宽部分BWP的个数与每个BWP最多 支持配置的CORESET的个数的乘积;
其中,所述每个BWP最多支持配置的CORESET的个数等于3。
进一步地,当所述预设参数中包括:传输配置指示TCI时,所述第二确定模块502,用于:
若TCI的标志信息小于第二预设值,按照预设规则,确定PDCCH候选位置的起始偏移值;
其中,所述预设规则包括以下方式中的至少一项:
确定所述终端在每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
利用预设伪随机数种子,确定所述终端在每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
进一步地,当所述预设参数中包括:传输配置指示TCI时,所述第二确定模块502,用于:
若TCI的标志信息大于或等于第二预设值,则根据搜索空间的类型,确定所述终端在CORESET的PDCCH候选位置的起始偏移值。
具体地,当搜索空间的类型为公共搜索空间CSS时,所述第二确定模块502根据搜索空间的类型,确定所述终端在CORESET的PDCCH候选位置的起始偏移值的实现方式为:
将目标值确定为CORESET的PDCCH候选位置的起始偏移值;
其中,所述目标值为第一预设常量值;或者
所述目标值根据CORESET中的控制信道单元CCE的个数、TRP的个数、载波指示字段值、聚合等级和传输配置指示TCI的标识信息中的至少一项确定。
具体地,当搜索空间的类型为终端特定搜索空间USS时,所述第二确定模块502根据搜索空间的类型,确定所述终端在CORESET的PDCCH候选位置的起始偏移值的实现方式包括以下方式中的一项:
根据第二伪随机数种子,确定所述终端在CORESET的PDCCH候选位置的起始偏移值;
根据第一目标偏移量和预设伪随机数种子,确定CORESET的PDCCH 候选位置的起始偏移值;
根据每个BWP中最多支持配置的CORESET的个数以及CORESET的标识信息,确定获取所述终端在CORESET的PDCCH候选位置的起始偏移值的第三伪随机数种子,根据所述第三伪随机数种子确定所述终端在CORESET的PDCCH候选位置的起始偏移值;
其中,第二伪随机数种子不同于CORESET的标识信息小于所述预设个数时对应的伪随机数种子;所述第一目标偏移量根据CORESET中的控制信道单元CCE的个数、TRP的个数、载波指示字段值、聚合等级和传输配置指示TCI的标识信息中的至少一项确定,或者,所述第一目标偏移量为第二预设常量值;所述每个BWP中最多支持配置的CORESET的个数大于3。
进一步地,当所述预设参数中包括:TRP指示参数时,所述第二确定模块502,实现以下方式中的至少一项:
将第三预设常量值确定为所述终端在CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值,所述第三预设常量值由TRP指示参数的标识信息确定;
根据第四伪随机数种子,确定所述终端在CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值,所述第四伪随机数种子由TRP指示参数的标识信息确定;
根据预设伪随机数种子和第二目标偏移量,确定CORESET的USS中的PDCCH候选位置的起始偏移值,所述第二目标偏移量由TRP指示参数的标识信息确定。
需要说明的是,该网络设备实施例是与上述应用于网络设备的物理下行控制信道候选的位置确定方法相对应的网络设备,上述实施例的所有实现方式均适用于该网络设备实施例中,也能达到与其相同的技术效果。
本公开实施例还提供一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述的应用于网络设备的物理下行控制信道候选的位置确定方法实施例中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图6是本公开一实施例的网络设备的结构图,能够实现上述的物理下行 控制信道候选的位置确定方法的细节,并达到相同的效果。如图6所示,网络设备600包括:处理器601、收发机602、存储器603和总线接口,其中:
处理器601,用于读取存储器603中的程序,执行下列过程:
通过收发机602接收终端发送的终端能力信息,所述终端能力信息包括:终端是否支持超过预设个数的控制资源集CORESET的能力和/或是否支持至少两个发送接收点接收TRP的能力;
确定所述终端在每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值;
根据所述起始偏移值,确定所述终端在每个CORESET的搜索空间中的PDCCH候选的位置。
在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器601代表的一个或多个处理器和存储器603代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机602可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
具体地,所述预设个数为所述终端的每个BWP最多支持配置的CORESET的个数;或者
所述预设个数等于所述终端支持的带宽部分BWP的个数与所述终端的每个BWP最多支持配置的CORESET的个数的乘积;
其中,所述每个BWP最多支持配置的CORESET的个数等于3。
可选地,处理器601,用于读取存储器603中的程序,执行下列过程:
则按照预设规则,确定PDCCH候选位置的起始偏移值;
其中,所述预设规则包括以下方式中的至少一项:
确定所述终端在每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
利用预设伪随机数种子,确定所述终端在每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
可选地,处理器601,用于读取存储器603中的程序,执行下列过程中 的至少一项:
获取针对公共搜索空间CSS配置的无线资源控制RRC参数配置值,将RRC参数配置值确定为所述终端在CORESET的CSS中的PDCCH候选位置的起始偏移值;
获取针对终端特定搜索空间USS配置的第一伪随机数种子,根据所述第一伪随机数种子,确定所述终端在CORESET的USS中的PDCCH候选位置的起始偏移值。
具体地,不同的第一伪随机数种子通过不同的标识信息进行区分。
可选地,处理器601,用于读取存储器603中的程序,执行下列过程:
根据预设参数,确定所述终端在每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值;
其中,所述预设参数包括:CORESET的标识信息、传输配置指示TCI和TRP指示参数中的至少一项。
可选地,当所述预设参数中包括:CORESET的标识信息时,处理器601,用于读取存储器603中的程序,执行下列过程:
若CORESET的标识信息小于第一预设值,则按照预设规则,确定PDCCH候选位置的起始偏移值;
其中,所述预设规则包括以下方式中的至少一项:
确定每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
利用预设伪随机数种子,确定每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
可选地,当所述预设参数中包括:CORESET的标识信息时,处理器601,用于读取存储器603中的程序,执行下列过程:
若CORESET的标识信息大于或等于第一预设值,则根据搜索空间的类型,确定CORESET的PDCCH候选位置的起始偏移值。
具体地,所述第一预设值为每个BWP最多支持配置的CORESET的个数;或者
所述第一预设值等于终端支持的带宽部分BWP的个数与每个BWP最多 支持配置的CORESET的个数的乘积;
其中,所述每个BWP最多支持配置的CORESET的个数等于3。
可选地,当所述预设参数中包括:传输配置指示TCI时,处理器601,用于读取存储器603中的程序,执行下列过程:
若TCI的标志信息小于第二预设值,按照预设规则,确定PDCCH候选位置的起始偏移值;
其中,所述预设规则包括以下方式中的至少一项:
确定所述终端在每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
利用预设伪随机数种子,确定所述终端在每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
可选地,当所述预设参数中包括:传输配置指示TCI时,处理器601,用于读取存储器603中的程序,执行下列过程:
若TCI的标志信息大于或等于第二预设值,则根据搜索空间的类型,确定所述终端在CORESET的PDCCH候选位置的起始偏移值。
进一步地,当搜索空间的类型为公共搜索空间CSS时,处理器601,用于读取存储器603中的程序,执行下列过程:
将目标值确定为CORESET的PDCCH候选位置的起始偏移值;
其中,所述目标值为第一预设常量值;或者
所述目标值根据CORESET中的控制信道单元CCE的个数、TRP的个数、载波指示字段值、聚合等级和传输配置指示TCI的标识信息中的至少一项确定。
进一步地,当搜索空间的类型为终端特定搜索空间USS时,处理器601,用于读取存储器603中的程序,执行下列过程中的一项:
根据第二伪随机数种子,确定所述终端在CORESET的PDCCH候选位置的起始偏移值;
根据第一目标偏移量和预设伪随机数种子,确定CORESET的PDCCH候选位置的起始偏移值;
根据每个BWP中最多支持配置的CORESET的个数以及CORESET的标 识信息,确定获取所述终端在CORESET的PDCCH候选位置的起始偏移值的第三伪随机数种子,根据所述第三伪随机数种子确定所述终端在CORESET的PDCCH候选位置的起始偏移值;
其中,第二伪随机数种子不同于CORESET的标识信息小于所述预设个数时对应的伪随机数种子;所述第一目标偏移量根据CORESET中的控制信道单元CCE的个数、TRP的个数、载波指示字段值、聚合等级和传输配置指示TCI的标识信息中的至少一项确定,或者,所述第一目标偏移量为第二预设常量值;所述每个BWP中最多支持配置的CORESET的个数大于3。
可选地,当所述预设参数中包括:TRP指示参数时,处理器601,用于读取存储器603中的程序,执行下列过程中的至少一项:
将第三预设常量值确定为所述终端在CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值,所述第三预设常量值由TRP指示参数的标识信息确定;
根据第四伪随机数种子,确定所述终端在CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值,所述第四伪随机数种子由TRP指示参数的标识信息确定;
根据预设伪随机数种子和第二目标偏移量,确定CORESET的USS中的PDCCH候选位置的起始偏移值,所述第二目标偏移量由TRP指示参数的标识信息确定。
其中,网络设备可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现应用于网络设备侧的物理下行控制信道候选的位置确定方法实施例的各个过程,且能达到相同的 技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些要素可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器或随机存取存储器等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (33)

  1. 一种物理下行控制信道候选的位置确定方法,应用于终端,包括:
    发送终端能力信息给网络设备,所述终端能力信息包括:终端是否支持超过预设个数的控制资源集CORESET的能力和/或是否支持至少两个发送接收点TRP接收的能力;
    获取每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值;
    根据所述起始偏移值,确定每个CORESET的搜索空间中的PDCCH候选的位置。
  2. 根据权利要求1所述的物理下行控制信道候选的位置确定方法,其中,所述预设个数为每个带宽部分BWP最多支持配置的CORESET的个数;或者
    所述预设个数等于终端支持的BWP的个数与每个BWP最多支持配置的CORESET的个数的乘积;
    其中,所述每个BWP最多支持配置的CORESET的个数等于3。
  3. 根据权利要求1所述的物理下行控制信道候选的位置确定方法,其中,所述获取每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值,包括:
    若未接收到所述网络设备发送的配置信息,则按照预设规则,确定PDCCH候选位置的起始偏移值;
    其中,所述预设规则包括以下方式中的至少一项:
    确定每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
    利用预设伪随机数种子,确定每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
  4. 根据权利要求1所述的物理下行控制信道候选的位置确定方法,其中,所述获取每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值,包括:
    若接收到所述网络设备发送的配置信息,则根据所述配置信息确定每个 CORESET的搜索空间中的PDCCH候选位置的起始偏移值。
  5. 根据权利要求4所述的物理下行控制信道候选的位置确定方法,其中,所述根据所述配置信息确定每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括以下方式中的至少一项:
    获取所述配置信息中针对公共搜索空间CSS配置的无线资源控制RRC参数配置值,将RRC参数配置值确定为CORESET的CSS中的PDCCH候选位置的起始偏移值;
    获取所述配置信息中针对终端特定搜索空间USS配置的第一伪随机数种子,根据所述第一伪随机数种子,确定CORESET的USS中的PDCCH候选位置的起始偏移值。
  6. 根据权利要求5所述的物理下行控制信道候选的位置确定方法,其中,不同的第一伪随机数种子通过RRC信令指示的不同的标识信息进行区分。
  7. 根据权利要求4所述的物理下行控制信道候选的位置确定方法,其中,当所述配置信息中包括:CORESET的标识信息时,所述根据所述配置信息确定每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括:
    若CORESET的标识信息小于第一预设值,则按照预设规则,确定PDCCH候选位置的起始偏移值;
    其中,所述预设规则包括以下方式中的至少一项:
    确定每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
    利用预设伪随机数种子,确定每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
  8. 根据权利要求4所述的物理下行控制信道候选的位置确定方法,其中,当所述配置信息中包括:CORESET的标识信息时,所述根据所述配置信息确定每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括:
    若CORESET的标识信息大于或等于第一预设值,则根据搜索空间的类型,确定CORESET的PDCCH候选位置的起始偏移值。
  9. 根据权利要求7或8所述的物理下行控制信道候选的位置确定方法,其中,所述第一预设值为每个带宽部分BWP最多支持配置的CORESET的个 数;或者
    所述第一预设值等于终端支持的BWP的个数与每个BWP最多支持配置的CORESET的个数的乘积;
    其中,所述每个带宽部分BWP最多支持配置的CORESET的个数等于3。
  10. 根据权利要求4所述的物理下行控制信道候选的位置确定方法,其中,当所述配置信息中包括:传输配置指示TCI时,所述根据所述配置信息确定每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括:
    若TCI的标志信息小于第二预设值,按照预设规则,确定PDCCH候选位置的起始偏移值;
    其中,所述预设规则包括以下方式中的至少一项:
    确定每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
    利用预设伪随机数种子,确定每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
  11. 根据权利要求4所述的物理下行控制信道候选的位置确定方法,其中,当所述配置信息中包括:传输配置指示TCI时,所述根据所述配置信息确定每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括:
    若TCI的标志信息大于或等于第二预设值,则根据搜索空间的类型,确定CORESET的PDCCH候选位置的起始偏移值。
  12. 根据权利要求8或11所述的物理下行控制信道候选的位置确定方法,其中,当搜索空间的类型为公共搜索空间CSS时,所述根据搜索空间的类型,确定CORESET的PDCCH候选位置的起始偏移值,包括:
    将目标值确定为CORESET的PDCCH候选位置的起始偏移值;
    其中,所述目标值为第一预设常量值;或者
    所述目标值根据CORESET中的控制信道单元CCE的个数、TRP的个数、载波指示字段值、聚合等级和传输配置指示TCI的标识信息中的至少一项确定。
  13. 根据权利要求8或11所述的物理下行控制信道候选的位置确定方法,其中,当搜索空间的类型为终端特定搜索空间USS时,所述根据搜索空间的 类型,确定CORESET的PDCCH候选位置的起始偏移值,包括以下方式中的一项:
    根据第二伪随机数种子,确定CORESET的PDCCH候选位置的起始偏移值;
    根据第一目标偏移量和预设伪随机数种子,确定CORESET的PDCCH候选位置的起始偏移值;
    根据每个BWP中最多支持配置的CORESET的个数以及CORESET的标识信息,确定获取CORESET的PDCCH候选位置的起始偏移值的第三伪随机数种子,根据所述第三伪随机数种子确定CORESET的PDCCH候选位置的起始偏移值;
    其中,第二伪随机数种子不同于CORESET的标识信息小于所述预设个数时对应的伪随机数种子;所述第一目标偏移量根据CORESET中的控制信道单元CCE的个数、TRP的个数、载波指示字段值、聚合等级和传输配置指示TCI的标识信息中的至少一项确定,或者,所述第一目标偏移量为第二预设常量值;所述每个BWP中最多支持配置的CORESET的个数大于3。
  14. 根据权利要求4所述的物理下行控制信道候选的位置确定方法,其中,当所述配置信息中包括:TRP指示参数时,所述根据所述配置信息确定每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括以下方式中的至少一项:
    将第三预设常量值确定为CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值,所述第三预设常量值由TRP指示参数的标识信息确定;
    根据第四伪随机数种子,确定CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值,所述第四伪随机数种子由TRP指示参数的标识信息确定;
    根据预设伪随机数种子和第二目标偏移量,确定CORESET的USS中的PDCCH候选位置的起始偏移值,所述第二目标偏移量由TRP指示参数的标识信息确定。
  15. 一种物理下行控制信道候选的位置确定方法,应用于网络设备,包 括:
    接收终端发送的终端能力信息,所述终端能力信息包括:终端是否支持超过预设个数的控制资源集CORESET的能力和/或是否支持至少两个发送接收点接收TRP的能力;
    确定所述终端在每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值;
    根据所述起始偏移值,确定所述终端在每个CORESET的搜索空间中的PDCCH候选的位置。
  16. 根据权利要求15所述的物理下行控制信道候选的位置确定方法,其中,所述预设个数为所述终端的每个带宽部分BWP最多支持配置的CORESET的个数;或者
    所述预设个数等于所述终端支持的BWP的个数与所述终端的每个BWP最多支持配置的CORESET的个数的乘积;
    其中,所述每个BWP最多支持配置的CORESET的个数等于3。
  17. 根据权利要求15所述的物理下行控制信道候选的位置确定方法,其中,所述确定所述终端在每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值,包括:
    则按照预设规则,确定PDCCH候选位置的起始偏移值;
    其中,所述预设规则包括以下方式中的至少一项:
    确定所述终端在每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
    利用预设伪随机数种子,确定所述终端在每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
  18. 根据权利要求15所述的物理下行控制信道候选的位置确定方法,其中,所述确定所述终端在每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值,包括以下方式中的至少一项:
    获取针对公共搜索空间CSS配置的无线资源控制RRC参数配置值,将RRC参数配置值确定为所述终端在CORESET的CSS中的PDCCH候选位置的起始偏移值;
    获取针对终端特定搜索空间USS配置的第一伪随机数种子,根据所述第一伪随机数种子,确定所述终端在CORESET的USS中的PDCCH候选位置的起始偏移值。
  19. 根据权利要求18所述的物理下行控制信道候选的位置确定方法,其中,不同的第一伪随机数种子通过不同的标识信息进行区分。
  20. 根据权利要求15所述的物理下行控制信道候选的位置确定方法,其中,所述确定所述终端在每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值,包括:
    根据预设参数,确定所述终端在每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值;
    其中,所述预设参数包括:CORESET的标识信息、传输配置指示TCI和TRP指示参数中的至少一项。
  21. 根据权利要求20所述的物理下行控制信道候选的位置确定方法,其中,当所述预设参数中包括:CORESET的标识信息时,所述确定所述终端在每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括:
    若CORESET的标识信息小于第一预设值,则按照预设规则,确定PDCCH候选位置的起始偏移值;
    其中,所述预设规则包括以下方式中的至少一项:
    确定每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
    利用预设伪随机数种子,确定每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
  22. 根据权利要求20所述的物理下行控制信道候选的位置确定方法,其中,当所述预设参数中包括:CORESET的标识信息时,所述确定所述终端在每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括:
    若CORESET的标识信息大于或等于第一预设值,则根据搜索空间的类型,确定CORESET的PDCCH候选位置的起始偏移值。
  23. 根据权利要求21或22所述的物理下行控制信道候选的位置确定方法,其中,所述第一预设值为每个带宽部分BWP最多支持配置的CORESET 的个数;或者
    所述第一预设值等于终端支持的BWP的个数与每个BWP最多支持配置的CORESET的个数的乘积;
    其中,所述每个BWP最多支持配置的CORESET的个数等于3。
  24. 根据权利要求20所述的物理下行控制信道候选的位置确定方法,其中,当所述预设参数中包括:传输配置指示TCI时,所述确定所述终端在每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括:
    若TCI的标志信息小于第二预设值,按照预设规则,确定PDCCH候选位置的起始偏移值;
    其中,所述预设规则包括以下方式中的至少一项:
    确定所述终端在每个CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值为零;
    利用预设伪随机数种子,确定所述终端在每个CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值。
  25. 根据权利要求20所述的物理下行控制信道候选的位置确定方法,其中,当所述预设参数中包括:传输配置指示TCI时,所述确定所述终端在每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括:
    若TCI的标志信息大于或等于第二预设值,则根据搜索空间的类型,确定所述终端在CORESET的PDCCH候选位置的起始偏移值。
  26. 根据权利要求22或25所述的物理下行控制信道候选的位置确定方法,其中,当搜索空间的类型为公共搜索空间CSS时,所述根据搜索空间的类型,确定所述终端在CORESET的PDCCH候选位置的起始偏移值,包括:
    将目标值确定为CORESET的PDCCH候选位置的起始偏移值;
    其中,所述目标值为第一预设常量值;或者
    所述目标值根据CORESET中的控制信道单元CCE的个数、TRP的个数、载波指示字段值、聚合等级和传输配置指示TCI的标识信息中的至少一项确定。
  27. 根据权利要求22或25所述的物理下行控制信道候选的位置确定方法,其中,当搜索空间的类型为终端特定搜索空间USS时,所述根据搜索空 间的类型,确定所述终端在CORESET的PDCCH候选位置的起始偏移值,包括以下方式中的一项:
    根据第二伪随机数种子,确定所述终端在CORESET的PDCCH候选位置的起始偏移值;
    根据第一目标偏移量和预设伪随机数种子,确定CORESET的PDCCH候选位置的起始偏移值;
    根据每个BWP中最多支持配置的CORESET的个数以及CORESET的标识信息,确定获取所述终端在CORESET的PDCCH候选位置的起始偏移值的第三伪随机数种子,根据所述第三伪随机数种子确定所述终端在CORESET的PDCCH候选位置的起始偏移值;
    其中,第二伪随机数种子不同于CORESET的标识信息小于所述预设个数时对应的伪随机数种子;所述第一目标偏移量根据CORESET中的控制信道单元CCE的个数、TRP的个数、载波指示字段值、聚合等级和传输配置指示TCI的标识信息中的至少一项确定,或者,所述第一目标偏移量为第二预设常量值;所述每个BWP中最多支持配置的CORESET的个数大于3。
  28. 根据权利要求20所述的物理下行控制信道候选的位置确定方法,其中,当所述预设参数中包括:TRP指示参数时,所述确定所述终端在每个CORESET的搜索空间中的PDCCH候选位置的起始偏移值,包括以下方式中的至少一项:
    将第三预设常量值确定为所述终端在CORESET的公共搜索空间CSS中的PDCCH候选位置的起始偏移值,所述第三预设常量值由TRP指示参数的标识信息确定;
    根据第四伪随机数种子,确定所述终端在CORESET的终端特定搜索空间USS中的PDCCH候选位置的起始偏移值,所述第四伪随机数种子由TRP指示参数的标识信息确定;
    根据预设伪随机数种子和第二目标偏移量,确定CORESET的USS中的PDCCH候选位置的起始偏移值,所述第二目标偏移量由TRP指示参数的标识信息确定。
  29. 一种终端,包括:
    发送模块,用于发送终端能力信息给网络设备,所述终端能力信息包括:终端是否支持超过预设个数的控制资源集CORESET的能力和/或是否支持至少两个发送接收点TRP接收的能力;
    第一获取模块,用于获取每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值;
    第一确定模块,用于根据所述起始偏移值,确定每个CORESET的搜索空间中的PDCCH候选的位置。
  30. 一种终端,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至14中任一项所述的物理下行控制信道候选的位置确定方法的步骤。
  31. 一种网络设备,包括:
    接收模块,用于接收终端发送的终端能力信息,所述终端能力信息包括:终端是否支持超过预设个数的控制资源集CORESET的能力和/或是否支持至少两个发送接收点接收TRP的能力;
    第二确定模块,用于确定所述终端在每个CORESET的搜索空间中的物理下行控制信道PDCCH候选位置的起始偏移值;
    第三确定模块,用于根据所述起始偏移值,确定所述终端在每个CORESET的搜索空间中的PDCCH候选的位置。
  32. 一种网络设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求15至28中任一项所述的物理下行控制信道候选的位置确定方法的步骤。
  33. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至28中任一项所述的物理下行控制信道候选的位置确定方法的步骤。
PCT/CN2020/070072 2019-01-08 2020-01-02 物理下行控制信道候选的位置确定方法、终端及网络设备 WO2020143525A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910017033.X 2019-01-08
CN201910017033.XA CN111278004B (zh) 2019-01-08 2019-01-08 物理下行控制信道候选的位置确定方法、终端、介质及网络设备

Publications (1)

Publication Number Publication Date
WO2020143525A1 true WO2020143525A1 (zh) 2020-07-16

Family

ID=71003263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070072 WO2020143525A1 (zh) 2019-01-08 2020-01-02 物理下行控制信道候选的位置确定方法、终端及网络设备

Country Status (2)

Country Link
CN (1) CN111278004B (zh)
WO (1) WO2020143525A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114070521B (zh) * 2020-08-07 2023-03-31 中国移动通信有限公司研究院 控制信道的传输方法、装置、相关设备及存储介质
WO2022077247A1 (zh) * 2020-10-14 2022-04-21 北京小米移动软件有限公司 Tci状态的确定方法、装置、设备及存储介质
CN114374493A (zh) * 2020-10-15 2022-04-19 展讯通信(上海)有限公司 通信方法、装置及设备
WO2024092845A1 (zh) * 2022-11-06 2024-05-10 北京小米移动软件有限公司 一种探测参考信号的传输方法、装置及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215586A (zh) * 2010-04-02 2011-10-12 电信科学技术研究院 一种物理下行控制信道pdcch盲检的方法及设备
CN107113603A (zh) * 2015-01-12 2017-08-29 Lg 电子株式会社 无线通信系统中通过用户设备发送ue能力信息的方法及其设备
CN109121159A (zh) * 2017-06-22 2019-01-01 维沃移动通信有限公司 盲检能力上报方法、盲检配置、盲检方法、终端及基站
EP3565335A1 (en) * 2016-12-27 2019-11-06 NTT DoCoMo, Inc. User terminal and wireless communications method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10638497B2 (en) * 2017-05-05 2020-04-28 Huawei Technologies Co., Ltd. Systems and methods for scheduling and resource allocation with one or multiple numerologies
CN108811116B (zh) * 2017-05-05 2021-03-05 华为技术有限公司 传输控制信道的方法、网络设备、网络控制器和终端设备
CN108809505B (zh) * 2017-05-05 2019-12-24 维沃移动通信有限公司 下行控制信息的传输方法、终端及网络侧设备
CN109089316B (zh) * 2017-06-14 2020-11-17 华为技术有限公司 调度方法及相关装置
US20180368116A1 (en) * 2017-06-16 2018-12-20 Mediatek Inc. Design of coreset configurations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215586A (zh) * 2010-04-02 2011-10-12 电信科学技术研究院 一种物理下行控制信道pdcch盲检的方法及设备
CN107113603A (zh) * 2015-01-12 2017-08-29 Lg 电子株式会社 无线通信系统中通过用户设备发送ue能力信息的方法及其设备
EP3565335A1 (en) * 2016-12-27 2019-11-06 NTT DoCoMo, Inc. User terminal and wireless communications method
CN109121159A (zh) * 2017-06-22 2019-01-01 维沃移动通信有限公司 盲检能力上报方法、盲检配置、盲检方法、终端及基站

Also Published As

Publication number Publication date
CN111278004B (zh) 2021-06-08
CN111278004A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
JP7242701B2 (ja) サイドリンクの動作方法及び端末
CN111278129B (zh) 上行控制信息发送、接收方法、终端及网络侧设备
WO2020143525A1 (zh) 物理下行控制信道候选的位置确定方法、终端及网络设备
WO2019128578A1 (zh) 控制信道监听方法、监听指示方法、终端及网络设备
WO2021197336A1 (zh) 资源调度方法、装置及ue
US20220166583A1 (en) Method for determining mapping of antenna ports, and terminal
WO2020147817A1 (zh) 随机接入过程的信息传输方法及终端
WO2020200098A1 (zh) 随机接入过程的信息传输方法及终端
CN111435899A (zh) 混合自动重传请求harq反馈方法、终端及网络设备
WO2019091266A1 (zh) 载波配置方法、用户终端和网络侧设备
WO2021068872A1 (zh) 搜索空间分配方法、搜索空间配置方法及相关设备
CA3107136A1 (en) Determining method, terminal, and network device
US11910235B2 (en) Data processing method, information configuration method, terminal, and network device
US20210014716A1 (en) Method for processing communication range information and terminal
US11343815B2 (en) Method and device for detecting slot format indication, and method and device for configuring slot format indication
US20220408418A1 (en) Information detection method, information sending method, terminal, and network device
WO2020147827A1 (zh) 随机接入传输方法及终端
WO2020119243A1 (zh) 物理上行控制信道传输方法、网络侧设备和终端
WO2019214420A1 (zh) 业务调度方法、终端及网络设备
US20220015091A1 (en) Resource configuration method, resource determining method, network side device and terminal
WO2021000774A1 (zh) 信息传输、接收方法、终端及网络侧设备
KR102589486B1 (ko) 업링크 전송 방법 및 단말
WO2020147826A1 (zh) 随机接入传输方法及终端
WO2020143382A1 (zh) 上行传输方法、终端及网络设备
WO2019137423A1 (zh) 通信方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20739014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20739014

Country of ref document: EP

Kind code of ref document: A1