WO2021190255A1 - 一种非接触式人体睡眠生理参数检测传感器换能单元 - Google Patents

一种非接触式人体睡眠生理参数检测传感器换能单元 Download PDF

Info

Publication number
WO2021190255A1
WO2021190255A1 PCT/CN2021/078590 CN2021078590W WO2021190255A1 WO 2021190255 A1 WO2021190255 A1 WO 2021190255A1 CN 2021078590 W CN2021078590 W CN 2021078590W WO 2021190255 A1 WO2021190255 A1 WO 2021190255A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
electrode
piezoelectric film
detection sensor
physiological parameter
Prior art date
Application number
PCT/CN2021/078590
Other languages
English (en)
French (fr)
Inventor
单华锋
曹凯敏
王家冬
李红文
韩秀萍
金鑫
Original Assignee
麒盛科技股份有限公司
浙江清华长三角研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 麒盛科技股份有限公司, 浙江清华长三角研究院 filed Critical 麒盛科技股份有限公司
Priority to US17/908,910 priority Critical patent/US20230088408A1/en
Priority to EP21775886.1A priority patent/EP4131439A4/en
Publication of WO2021190255A1 publication Critical patent/WO2021190255A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • H10N30/073Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies by fusion of metals or by adhesives

Definitions

  • the invention relates to the technical field of piezoelectric films, in particular to a non-contact human sleep physiological parameter detection sensor transducer unit.
  • the existing transducer units are commonly piezoelectric ceramics.
  • the changing force that needs to be detected is loaded on the piezoelectric ceramics, and the piezoelectric ceramics converts the force into electrical signals.
  • piezoelectric films have a lower relative dielectric constant.
  • the piezoelectric strain constant is smaller than piezoelectric ceramics, it has a higher piezoelectric voltage constant, a wide frequency band response range, and high impact strength. And easy to cut and process.
  • the existing piezoelectric film such as the piezoelectric film element disclosed in the patent number ZL201110023507.5, requires the two electrodes of the piezoelectric film to be connected to the voltage detection device through a wire, and a clamp is also required to fix the pressure.
  • the electrical thin film makes the overall structure more complex and bulky, and it is not convenient to assemble on some testing equipment. At the same time, the electromechanical conversion efficiency is not high due to the complexity of the voltage signal conduction structure.
  • the purpose of the present invention is to solve the above-mentioned problems in the prior art and provide a non-contact human sleep physiological parameter detection sensor transducer unit, which has a simple structure, is easy to assemble and mass-produce, and has high electromechanical conversion efficiency.
  • a non-contact human sleep physiological parameter detection sensor transducer unit comprising a circuit board, a piezoelectric film and conductive glue.
  • the piezoelectric film includes a diaphragm and two electrodes respectively arranged on two sides of the diaphragm.
  • the piezoelectric film is attached to the circuit board, and the two electrodes of the piezoelectric film are respectively electrically connected to the two exposed pad electrodes on the circuit board through conductive glue.
  • the invention mainly uses conductive glue to attach the piezoelectric film to the circuit board, and at the same time connects the piezoelectric film and the electrodes of the circuit board through the conductive glue, and directly transmits the voltage signal to the processing circuit on the circuit board for processing through the conductive glue.
  • the structure is greatly simplified, the application range is wider, and it is easy to assemble and mass-produce. At the same time, the electromechanical conversion efficiency is high, and the conversion result is more accurate.
  • the circuit board described in this solution can be a rigid circuit board, such as a PCB with conventional FR4 as the base material, because the conventional rigid circuit board itself also has a certain deformation range, which can meet the requirements of the piezoelectric film. Sensing range, and the cost of the hard circuit board is low. Of course, this solution is also applicable to flexible circuit boards.
  • the electrode of the piezoelectric film facing the circuit board is connected to an exposed pad electrode on the circuit board through a piece of conductive glue, and a switch is also provided on the side of the diaphragm facing the circuit board.
  • a piece of conductive glue is also provided on the side of the diaphragm facing the circuit board.
  • One end of another piece of conductive glue is connected to the transfer electrode and another exposed pad electrode on the circuit board. The electrodes on the side are connected.
  • the one piece of conductive glue is a three-way conductive glue or a z-direction conductive glue
  • the other piece of conductive glue is a three-way conductive glue
  • the length of the circuit board is greater than the length of the piezoelectric film
  • an exposed pad electrode on the circuit board is arranged outside the covering surface of the piezoelectric film
  • a piece of conductive glue is connected to the piezoelectric film on both sides.
  • the piezoelectric film faces the electrode of the circuit board and an exposed pad electrode on the circuit board, and the other piece of conductive glue is connected to the electrode of the piezoelectric film facing away from the circuit board and the other electrode on the circuit board through the same side. Exposed pad electrode.
  • the one piece of conductive glue is a three-way conductive glue or a z-direction conductive glue
  • the other piece of conductive glue is a three-way conductive glue
  • an extension electrode is further provided on the side of the diaphragm facing the circuit board, the piezoelectric film faces the electrode of the circuit board, and the diaphragm and the extension electrode penetrate therebetween Through hole, the extension electrode is connected to the electrode on the side of the piezoelectric film facing away from the circuit board through the through hole, and the electrode of the piezoelectric film facing the circuit board and the extension electrode are respectively electrically conductive
  • the glue is electrically connected to the two exposed pad electrodes of the circuit board.
  • the conductive adhesive is one piece of z-direction conductive adhesive, or two separate z-direction conductive adhesives or three-direction conductive adhesive.
  • a protective film is further provided on the side of the piezoelectric film facing away from the circuit board.
  • the invention has the advantages of simple structure, wide application range, easy assembly and mass production, high electromechanical conversion efficiency, and more accurate conversion results.
  • Figure 1 is a schematic structural diagram of Embodiment 1 of the present invention.
  • Figure 2 is a schematic diagram of the explosive structure of Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of the explosive structure of Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a mode of Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of an exploded structure in one mode of Embodiment 3 of the present invention.
  • FIG. 7 is a schematic structural diagram of another mode of Embodiment 3 of the present invention.
  • FIG. 8 is a schematic diagram of an exploded structure in another mode of Embodiment 3 of the present invention.
  • a non-contact human sleep physiological parameter detection sensor transducer unit includes a circuit board 1, a piezoelectric film 2 and conductive glue with exposed pad electrodes that match the piezoelectric film.
  • the piezoelectric film 2 includes a diaphragm 21 and two electrodes respectively arranged on two sides of the diaphragm 21.
  • the two electrodes cannot extend to the edge at the same end of the diaphragm, so as to prevent the two electrodes from being on the diaphragm.
  • Contact at the edge causes a short circuit.
  • the exposed pad electrode adopts a plating layer that has good conductivity and is not easy to oxidize, and a leveling process, such as immersion gold, is used.
  • the piezoelectric film 2 is attached to the circuit board 1, and the two electrodes of the piezoelectric film 2 are electrically connected to the two electrodes on the circuit board 1 through conductive glue.
  • the circuit board 1 can be Rigid circuit boards, such as PCBs with conventional FR4 as the base material, because the conventional rigid circuit boards themselves also have a certain deformation range, which can meet the sensing range of the piezoelectric film, and the cost of the hard circuit boards is relatively low. Of course, this solution is also applicable to flexible circuit boards.
  • the upper side (shown in the figure) of the diaphragm 21 is the piezoelectric thin film anode 22
  • the lower side (shown in the figure) is the piezoelectric thin film anode 23
  • the exposed pad with a larger area on the circuit board 1 The electrode is the negative electrode 11 of the circuit board, and the exposed pad electrode with a smaller area is the positive electrode 12 of the circuit board.
  • the piezoelectric thin-film negative electrode 23 does not cover the entire lower side of the diaphragm 21, which is equivalent to the shape of the negative electrode 11 of the circuit board, and is bonded by a piece of three-directional conductive glue or z-direction conductive glue 31 of the same shape.
  • the portion of the lower side of the diaphragm 21 that is not covered by the negative electrode 23 of the piezoelectric film is provided with an adapter electrode 24.
  • the adapter electrode 24 has a shape equivalent to the circuit board positive electrode 12 and is passed through a piece of three-way conductive glue with a length greater than that of the adapter electrode 24. 32 for bonding.
  • the conductive glue that extends out of the diaphragm 21 is folded upward to bond with the piezoelectric film positive electrode 22 on the upper side of the diaphragm, thereby completing the bonding of the entire piezoelectric film 2 to the circuit board 1. , And the electrical connection of the two electrodes.
  • the conductive adhesive 32 adopts a structure with a small width, that is, it fails to cover most of the width of the circuit board 1 and the piezoelectric film 2.
  • the circuit board positive electrode 12 and the transfer electrode The width of 24 is also comparable. Therefore, in order to ensure the bonding area and bonding strength of the piezoelectric film 2 and the circuit board 1, the negative electrode 11 of the circuit board is extended to the positive electrode 12 side of the circuit board, and the negative electrode 23 of the piezoelectric thin film is extended to the side of the transfer electrode 24.
  • a protective film is generally provided on the upper side of the piezoelectric film.
  • a non-contact human sleep physiological parameter detection sensor transducer unit includes a circuit board 1, a piezoelectric film 2 and conductive glue with exposed pad electrodes that match the piezoelectric film.
  • the piezoelectric film 2 includes a diaphragm 21 and two electrodes respectively arranged on two sides of the diaphragm 21.
  • the two electrodes cannot extend to the edge at the same end of the diaphragm, so as to prevent the two electrodes from being on the diaphragm.
  • Contact at the edge causes a short circuit.
  • the exposed pad electrode adopts a plating layer that has good conductivity and is not easy to oxidize, and a leveling process, such as immersion gold, is used.
  • the piezoelectric film 2 is attached to the circuit board 1, and the two electrodes of the piezoelectric film 2 are electrically connected to the two electrodes on the circuit board 1 through conductive glue.
  • the circuit board 1 can be Rigid circuit boards, such as PCBs with conventional FR4 as the base material, because the conventional rigid circuit boards themselves also have a certain deformation range, which can meet the sensing range of the piezoelectric film, and the cost of the hard circuit boards is relatively low. Of course, this solution is also applicable to flexible circuit boards.
  • the upper side (shown in the figure) of the diaphragm 21 is the piezoelectric thin film anode 22, the lower side (shown in the figure) is the piezoelectric thin film anode 23, and the exposed pad with a larger area on the circuit board 1
  • the electrode is the negative electrode 11 of the circuit board, and the exposed pad electrode with a smaller area is the positive electrode 12 of the circuit board.
  • the thickness of the piezoelectric film, the circuit board and the conductive glue are deliberately increased, so that the conductive glue is not connected to the positive electrode 12 of the circuit board.
  • the length of the circuit board 1 is greater than the length of the piezoelectric film 2, and the positive electrode 12 of the circuit board is at the end that is not covered by the piezoelectric film 2.
  • the glue 31 is used for bonding.
  • a piece of three-way conductive adhesive 32 with a length greater than that of the piezoelectric film 2 is pasted on the piezoelectric film anode 22, and the part of the conductive adhesive that extends beyond the piezoelectric film 2 is just bonded to the circuit board anode 12 below to achieve piezoelectricity.
  • the film positive electrode 22 is electrically connected to the circuit board positive electrode 12.
  • the conductive glue 32 on the upper side of the piezoelectric film 2 and the positive electrode 12 of the circuit board are separated by a piece of conductive glue 31 and the thickness of the piezoelectric film 2, in order to make the transition at the bonding edge smoother, the length of the diaphragm 21 Slightly larger than the length of the conductive adhesive 31 for bonding the negative electrode, so that the transition between the positive electrode 12 of the circuit board near the negative electrode and the conductive adhesive 32 is smoother, so as to ensure the accuracy of piezoelectric film sensing.
  • a protective film is generally provided on the upper side of the piezoelectric film.
  • a non-contact human sleep physiological parameter detection sensor transducer unit includes a circuit board 1, a piezoelectric film 2 and conductive glue with exposed pad electrodes that match the piezoelectric film.
  • the piezoelectric film 2 includes a diaphragm 21 and two electrodes respectively arranged on two sides of the diaphragm 21.
  • the two electrodes cannot extend to the edge at the same end of the diaphragm, so as to prevent the two electrodes from being on the diaphragm.
  • Contact at the edge causes a short circuit.
  • the exposed pad electrode adopts a plating layer that has good conductivity and is not easy to oxidize, and a leveling process, such as immersion gold, is used.
  • the piezoelectric film 2 is attached to the circuit board 1, and the two electrodes of the piezoelectric film 2 are electrically connected to the two electrodes on the circuit board 1 through conductive glue.
  • the circuit board 1 can be Rigid circuit boards, such as PCBs with conventional FR4 as the base material, because the conventional rigid circuit boards themselves also have a certain deformation range, which can meet the sensing range of the piezoelectric film, and the cost of the hard circuit boards is relatively low. Of course, this solution is also applicable to flexible circuit boards.
  • the upper side (shown in the figure) of the diaphragm 21 is the piezoelectric thin film anode 22
  • the lower side (shown in the figure) is the piezoelectric thin film anode 23
  • the larger area on the circuit board 1 The exposed pad electrode is the negative electrode 11 of the circuit board, and the exposed pad electrode with a smaller area is the positive electrode 12 of the circuit board.
  • an extension electrode 25 is provided on the side of the piezoelectric thin film negative electrode 23, and on the upper side of the diaphragm 21, the side opposite to the extension electrode 25 is covered with a piezoelectric thin film positive electrode 22, a piezoelectric thin film A through hole 21 penetrates between the positive electrode 22, the diaphragm 21, and the extension electrode 25, and the extension electrode 25 is electrically connected to the piezoelectric thin film positive electrode 22 through the through hole 21.
  • conductive glue can be injected into the through hole 21, Electrical connection is achieved by setting copper sheets or edge electroplating. Then, two pieces of three-way conductive glue or z-direction conductive glue 31, 32 as shown in FIGS.
  • a piece of z-direction conductive adhesive 3 as shown in FIGS. 7 and 8 is used to connect the negative electrode 11 of the circuit board and the negative electrode 23 of the piezoelectric film, and the positive electrode 12 of the circuit board and the extension electrode 25.
  • a protective film is generally provided on the upper side of the piezoelectric film.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种非接触式人体睡眠生理参数检测传感器换能单元,属于压电薄膜技术领域,包括电路板(1)、压电薄膜(2)和导电胶,压电薄膜(2)包括膜片(21)、分别设于膜片两个侧面上的两个电极,压电薄膜(2)贴于电路板(1)上,压电薄膜(2)的两个电极分别通过导电胶电连接至电路板(1)上的两个裸露焊盘电极。此方案结构简单,易于装配及大规模生产,同时机电转换效率高。

Description

一种非接触式人体睡眠生理参数检测传感器换能单元 技术领域
本发明涉及压电薄膜技术领域,尤其涉及一种非接触式人体睡眠生理参数检测传感器换能单元。
背景技术
目前已有的换能单元,常用的为压电陶瓷,通过设计结构,使需要检测的变化力加载到压电陶瓷上,压电陶瓷将力转换为电信号。相比于压电陶瓷,压电薄膜相对介电常数较低,虽然压电应变常数小于压电陶瓷,但具有较高的压电电压常数,具有频带响应范围宽,具有高冲击强度等特点,并且易于裁剪和加工。
但是现有的压电薄膜,如专利号为ZL201110023507.5的发明专利所公开的压电薄膜元件,其需要通过导线将压电薄膜的两个电极连接至电压检测装置,同时需要夹具还固定压电薄膜,从而使得整体结构较为复杂,体积较大,不便于装配在一些检测设备上,同时由于电压信号传导结构的复杂性,导致机电转换效率不高。
发明内容
本发明的目的是为了解决上述现有技术存在的问题,提供一种非接触式人体睡眠生理参数检测传感器换能单元,其结构简单,易于装配及大规模生产,同时机电转换效率高。
本发明的目的是通过以下技术方案实现的:
一种非接触式人体睡眠生理参数检测传感器换能单元,包括电路板、压电薄膜和导电胶,所述压电薄膜包括膜片、分别设于膜片两个侧面上的两个电极,所述压电薄膜贴于所述电路板上,所述压电薄膜的两个电极分别通过导电胶电连接至所述电路板上的两个裸露焊盘电极。
本发明主要采用导电胶将压电薄膜贴于电路板上,同时通过导电胶连接压电薄膜和电路板的电极,直接通过导电胶将电压信号传输给电路板上的处理电路进行处理。大大简化了结构,适用范围更广,易于装配及大规模生产,同时机电转换效率高,转换结果更为准确。要说明的是,本方案中所述的电路板可采用硬质电路板,如常规FR4为基材的PCB,因为常规的硬质电路板本身也具有一定的形变范围,能够满足压电薄膜的感测范围,且硬质电路板成本较低。当然,本方案同样适用于柔性电路板。
作为本发明优选,所述压电薄膜朝向所述电路板的电极通过一片导电胶与电路板上的一个裸露焊盘电极连接,所述膜片朝向所述电路板的侧面上还设有转接电极,另一片导电胶一端连接所述转接电极和电路板上的另一个裸露焊盘电极,另一端经所述膜片的边缘翻折至所 述膜片的另一侧面上,并与该侧面上的电极连接。
作为本发明优选,所述的一片导电胶为三向导电胶或z向导电胶,所述的另一片导电胶为三向导电胶。
作为本发明优选,所述电路板的长度大于所述压电薄膜的长度,所述电路板上的一个裸露焊盘电极设于所述压电薄膜的覆盖面外,一片导电胶通过两侧面连接所述压电薄膜朝向所述电路板的电极和电路板上的一个裸露焊盘电极,另一片导电胶通过同一侧面连接所述压电薄膜背向所述电路板的电极和电路板上的另一个裸露焊盘电极。
作为本发明优选,所述的一片导电胶为三向导电胶或z向导电胶,所述的另一片导电胶为三向导电胶。
作为本发明优选,所述膜片朝向所述电路板的侧面上还设有延伸电极,所述压电薄膜背向所述电路板的电极、所述膜片及所述延伸电极之间贯穿有通孔,所述延伸电极通过所述通孔与所述压电薄膜背向所述电路板一侧的电极连接,所述压电薄膜朝向所述电路板的电极与所述延伸电极分别通过导电胶电连接至所述电路板的两个裸露焊盘电极。
作为本发明优选,所述导电胶为一片z向导电胶,或者分开的两片z向导电胶或三向导电胶。
作为本发明优选,所述压电薄膜背向所述电路板的一侧还设有保护膜。
本发明的优点是:结构简单,适用范围广,易于装配及大规模生产,同时机电转换效率高,转换结果更为准确。
附图说明
图1为本发明实施例1的结构示意图;
图2为本发明实施例1的爆炸结构示意图;
图3为本发明实施例2的结构示意图;
图4为本发明实施例2的爆炸结构示意图;
图5为本发明实施例3一种方式的结构示意图;
图6为本发明实施例3一种方式的爆炸结构示意图;
图7为本发明实施例3另一种方式的结构示意图;
图8为本发明实施例3另一种方式的爆炸结构示意图。
1-电路板;2-压电薄膜;3,31,32-导电胶;11-电路板负极;12-电路板正极;21-膜片;22-压电薄膜正极;23-压电薄膜负极;24-转接电极;25-延伸电极;211-通孔。
具体实施方式
下面将结合附图和具体实施方式对本发明做进一步的详细说明。
实施例1
如图1-2所示,一种非接触式人体睡眠生理参数检测传感器换能单元,包括带有与压电薄膜相匹配裸露焊盘电极的电路板1、压电薄膜2和导电胶,所述压电薄膜2包括膜片21、分别设于膜片21两个侧面上的两个电极,两个所述电极在膜片的同一端不能都延伸到边缘,以避免两个电极在膜片边缘处接触造成短路。裸露焊盘电极采用导电性好、不易氧化的镀层,整平工艺,如沉金等工艺。所述压电薄膜2贴于所述电路板1上,所述压电薄膜2的两个电极分别通过导电胶电连接至所述电路板1上的两个电极,所述电路板1可采用硬质电路板,如常规FR4为基材的PCB,因为常规的硬质电路板本身也具有一定的形变范围,能够满足压电薄膜的感测范围,且硬质电路板成本较低。当然,本方案同样适用于柔性电路板。
具体的,以膜片21的上侧面(图中所示)为压电薄膜正极22,下侧面(图中所示)为压电薄膜负极23,以电路板1上面积较大的裸露焊盘电极为电路板负极11,面积较小的裸露焊盘电极为电路板正极12进行说明。
压电薄膜负极23未覆盖整个膜片21下侧面,其与电路板负极11的形状相当,并通过同样形状的一片三向导电胶或z向导电胶31进行粘接。而膜片21下侧面未被压电薄膜负极23覆盖的部分设有转接电极24,转接电极24与电路板正极12的形状相当,并通过一片长度大于转接电极24的三向导电胶32进行粘接,该导电胶伸出膜片21外的部分通过向上翻折,与膜片上侧面的压电薄膜正极22进行粘接,从而完成整个压电薄膜2与电路板1的粘接,及两者电极的电连接。
另外,为了便于导电胶的翻折,该片导电胶32采用宽度较小的结构,即未能覆盖大部分电路板1及压电薄膜2的宽度,相应的,电路板正极12和转接电极24的宽度也与之相当。所以,为了确保压电薄膜2与电路板1的粘接面积和粘接强度,将电路板负极11延伸至电路板正极12一侧,将压电薄膜负极23延伸至转接电极24一侧,以增大对电路板1和压电薄膜2的覆盖面积,即增大了导电胶对电路板1和压电薄膜2的覆盖面积,从而提高电路板1与压电薄膜2的粘接强度,提高压电薄膜感测的准确性。
最后,为了保护压电薄膜,一般会在压电薄膜的上侧面设置一层保护膜。
实施例2
如图3-4所示,一种非接触式人体睡眠生理参数检测传感器换能单元,包括带有与压电薄膜相匹配裸露焊盘电极的电路板1、压电薄膜2和导电胶,所述压电薄膜2包括膜片21、分别设于膜片21两个侧面上的两个电极,两个所述电极在膜片的同一端不能都延伸到边缘, 以避免两个电极在膜片边缘处接触造成短路。裸露焊盘电极采用导电性好、不易氧化的镀层,整平工艺,如沉金等工艺。所述压电薄膜2贴于所述电路板1上,所述压电薄膜2的两个电极分别通过导电胶电连接至所述电路板1上的两个电极,所述电路板1可采用硬质电路板,如常规FR4为基材的PCB,因为常规的硬质电路板本身也具有一定的形变范围,能够满足压电薄膜的感测范围,且硬质电路板成本较低。当然,本方案同样适用于柔性电路板。
具体的,以膜片21的上侧面(图中所示)为压电薄膜正极22,下侧面(图中所示)为压电薄膜负极23,以电路板1上面积较大的裸露焊盘电极为电路板负极11,面积较小的裸露焊盘电极为电路板正极12进行说明。还要说明的是,图3为了清楚地展示本实施例结构,刻意增大了压电薄膜、电路板和导电胶的厚度,以至于未将导电胶与电路板正极12进行连接。
电路板1的长度大于压电薄膜2的长度,并且电路板正极12处于压电薄膜2未覆盖的一端,电路板负极11与压电薄膜负极23通过一片形状相当的三向导电胶或z向导电胶31进行粘接。而在压电薄膜正极22上粘贴一片长度大于压电薄膜2的三向导电胶32,而该片导电胶超出压电薄膜2的部分恰好与下方的电路板正极12粘接,以实现压电薄膜正极22与电路板正极12的电连接。
另外,由于压电薄膜2上侧面的导电胶32与电路板正极12之间隔了一片导电胶31和压电薄膜2的厚度,所以为了使粘接边缘处过渡更为平顺,膜片21的长度略大于粘接负极的导电胶31的长度,从而使得电路板正极12靠近负极一侧与导电胶32的粘接处过渡更为平顺,以保证压电薄膜感测的准确性。
最后,为了保护压电薄膜,一般会在压电薄膜的上侧面设置一层保护膜。
实施例3
如图5-6所示,一种非接触式人体睡眠生理参数检测传感器换能单元,包括带有与压电薄膜相匹配裸露焊盘电极的电路板1、压电薄膜2和导电胶,所述压电薄膜2包括膜片21、分别设于膜片21两个侧面上的两个电极,两个所述电极在膜片的同一端不能都延伸到边缘,以避免两个电极在膜片边缘处接触造成短路。裸露焊盘电极采用导电性好、不易氧化的镀层,整平工艺,如沉金等工艺。所述压电薄膜2贴于所述电路板1上,所述压电薄膜2的两个电极分别通过导电胶电连接至所述电路板1上的两个电极,所述电路板1可采用硬质电路板,如常规FR4为基材的PCB,因为常规的硬质电路板本身也具有一定的形变范围,能够满足压电薄膜的感测范围,且硬质电路板成本较低。当然,本方案同样适用于柔性电路板。
具体的,具体的,以膜片21的上侧面(图中所示)为压电薄膜正极22,下侧面(图中所示)为压电薄膜负极23,以电路板1上面积较大的裸露焊盘电极为电路板负极11,面积较小的裸露焊盘电极为电路板正极12进行说明。
在膜片21的下侧面,压电薄膜负极23边侧设置延伸电极25,而在膜片21的上侧面,与所述延伸电极25的相背侧覆盖有压电薄膜正极22,压电薄膜正极22、膜片21和延伸电极25之间贯穿有通孔21,所述延伸电极25通过所述通孔21与压电薄膜正极22电连接,具体可通过在通孔21中注入导电胶、设置铜片或边缘电镀等方式实现电连接。然后采用如图5及图6所示的两片三向导电胶或z向导电胶31,32分别连接电路板负极11与压电薄膜负极23,以及电路板正极12与延伸电极25。或者采用如图7及图8所示的一片z向导电胶3连接电路板负极11与压电薄膜负极23,以及电路板正极12与延伸电极25。
最后,为了保护压电薄膜,一般会在压电薄膜的上侧面设置一层保护膜。
以上所述,仅为本发明较佳的具体实施方式,该具体实施方式是基于本发明整体构思下的一种实现方式,而且本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (8)

  1. 一种非接触式人体睡眠生理参数检测传感器换能单元,包括电路板、压电薄膜和导电胶,其特征在于,所述压电薄膜包括膜片、分别设于膜片两个侧面上的两个电极,所述压电薄膜贴于所述电路板上,所述压电薄膜的两个电极分别通过导电胶电连接至所述电路板上的两个裸露焊盘电极。
  2. 根据权利要求1所述的一种非接触式人体睡眠生理参数检测传感器换能单元,其特征在于,所述压电薄膜朝向所述电路板的电极通过一片导电胶与电路板上的一个裸露焊盘电极连接,所述膜片朝向所述电路板的侧面上还设有转接电极,另一片导电胶一端连接所述转接电极和电路板上的另一个裸露焊盘电极,另一端经所述膜片的边缘翻折至所述膜片的另一侧面上,并与该侧面上的电极连接。
  3. 根据权利要求2所述的一种非接触式人体睡眠生理参数检测传感器换能单元,其特征在于,所述的一片导电胶为三向导电胶或z向导电胶,所述的另一片导电胶为三向导电胶。
  4. 根据权利要求1所述的一种非接触式人体睡眠生理参数检测传感器换能单元,其特征在于,所述电路板的长度大于所述压电薄膜的长度,所述电路板上的一个裸露焊盘电极设于所述压电薄膜的覆盖面外,一片导电胶通过两侧面连接所述压电薄膜朝向所述电路板的电极和电路板上的一个裸露焊盘电极,另一片导电胶通过同一侧面连接所述压电薄膜背向所述电路板的电极和电路板上的另一个裸露焊盘电极。
  5. 根据权利要求4所述的一种非接触式人体睡眠生理参数检测传感器换能单元,其特征在于,所述的一片导电胶为三向导电胶或z向导电胶,所述的另一片导电胶为三向导电胶。
  6. 根据权利要求1所述的一种非接触式人体睡眠生理参数检测传感器换能单元,其特征在于,所述膜片朝向所述电路板的侧面上还设有延伸电极,所述压电薄膜背向所述电路板的电极、所述膜片及所述延伸电极之间贯穿有通孔,所述延伸电极通过所述通孔与所述压电薄膜背向所述电路板一侧的电极连接,所述压电薄膜朝向所述电路板的电极与所述延伸电极分别通过导电胶电连接至所述电路板的两个裸露焊盘电极。
  7. 根据权利要求6所述的一种非接触式人体睡眠生理参数检测传感器换能单元,其特征在于,所述导电胶为一片z向导电胶,或者分开的两片z向导电胶或三向导电胶。
  8. 根据权利要求1所述的一种非接触式人体睡眠生理参数检测传感器换能单元,其特征在于,所述压电薄膜背向所述电路板的一侧还设有保护膜。
PCT/CN2021/078590 2020-03-25 2021-03-02 一种非接触式人体睡眠生理参数检测传感器换能单元 WO2021190255A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/908,910 US20230088408A1 (en) 2020-03-25 2021-03-02 Transduction unit of non-contact human sleep physiological parameter detection sensor
EP21775886.1A EP4131439A4 (en) 2020-03-25 2021-03-02 TRANSMISSION UNIT OF A SENSOR FOR THE CONTACTLESS DETECTION OF PHYSIOLOGICAL SLEEP PARAMETERS OF THE HUMAN BODY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010216305.1 2020-03-25
CN202010216305.1A CN111211218A (zh) 2020-03-25 2020-03-25 一种非接触式人体睡眠生理参数检测传感器换能单元

Publications (1)

Publication Number Publication Date
WO2021190255A1 true WO2021190255A1 (zh) 2021-09-30

Family

ID=70785968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078590 WO2021190255A1 (zh) 2020-03-25 2021-03-02 一种非接触式人体睡眠生理参数检测传感器换能单元

Country Status (4)

Country Link
US (1) US20230088408A1 (zh)
EP (1) EP4131439A4 (zh)
CN (1) CN111211218A (zh)
WO (1) WO2021190255A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211218A (zh) * 2020-03-25 2020-05-29 麒盛科技股份有限公司 一种非接触式人体睡眠生理参数检测传感器换能单元

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110175488A1 (en) * 2010-01-18 2011-07-21 Hitachi Cable, Ltd. Piezoelectric thin film element and piezoelectric thin film device
CN103674225A (zh) * 2013-11-25 2014-03-26 北京航空航天大学 一种局部极化压电薄膜传感器
CN106725338A (zh) * 2017-01-06 2017-05-31 山东诺安诺泰信息系统有限公司 一种人体睡眠信号检测方法
CN111211218A (zh) * 2020-03-25 2020-05-29 麒盛科技股份有限公司 一种非接触式人体睡眠生理参数检测传感器换能单元
CN211376665U (zh) * 2020-03-25 2020-08-28 麒盛科技股份有限公司 一种非接触式人体睡眠生理参数检测传感器换能单元

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088682A (ja) * 1994-06-17 1996-01-12 Fujitsu Ltd 直列共振デバイス及びその製造方法と試験方法
JP2001525706A (ja) * 1997-05-16 2001-12-11 レスメッド・リミテッド 呼吸分析システム
CN107615030B (zh) * 2015-05-29 2020-05-01 株式会社村田制作所 压电膜传感器以及保持状态检测装置
WO2019093796A1 (ko) * 2017-11-08 2019-05-16 주식회사 엠프로스 호흡 센싱 디바이스 및 이를 포함하는 호흡 모니터링 시스템
CN109668952A (zh) * 2018-12-19 2019-04-23 中国科学院苏州生物医学工程技术研究所 压电传感芯片、压电传感器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110175488A1 (en) * 2010-01-18 2011-07-21 Hitachi Cable, Ltd. Piezoelectric thin film element and piezoelectric thin film device
CN103674225A (zh) * 2013-11-25 2014-03-26 北京航空航天大学 一种局部极化压电薄膜传感器
CN106725338A (zh) * 2017-01-06 2017-05-31 山东诺安诺泰信息系统有限公司 一种人体睡眠信号检测方法
CN111211218A (zh) * 2020-03-25 2020-05-29 麒盛科技股份有限公司 一种非接触式人体睡眠生理参数检测传感器换能单元
CN211376665U (zh) * 2020-03-25 2020-08-28 麒盛科技股份有限公司 一种非接触式人体睡眠生理参数检测传感器换能单元

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4131439A4

Also Published As

Publication number Publication date
US20230088408A1 (en) 2023-03-23
EP4131439A4 (en) 2024-07-17
EP4131439A1 (en) 2023-02-08
CN111211218A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
CN103594076B (zh) 压电片结构
WO2021190255A1 (zh) 一种非接触式人体睡眠生理参数检测传感器换能单元
CN103200472A (zh) 一种压电陶瓷扬声器及移动终端
CN210379235U (zh) 电池和穿戴式电子设备
WO2021031495A1 (zh) 一种用于发声装置的导电膜以及发声装置
CN107847168A (zh) 脉搏波传感装置
CN211376665U (zh) 一种非接触式人体睡眠生理参数检测传感器换能单元
CN105704907A (zh) 一种降低压电谐振器阻抗的软性线路板
CN113177492A (zh) 超声波指纹识别组件和智能终端
CN205490447U (zh) 一种含有无胶基材软性线路板的压电谐振器
CN207992280U (zh) 具有应力检测的微欧姆电流检测电阻
CN113432773B (zh) 适用于柔性物体表面冲击波压力测量传感器及制作方法
CN207798303U (zh) 一种柔性薄膜压力传感器
CN214251325U (zh) 压力传感器和电子设备
CN205491433U (zh) 一种降低压电谐振器阻抗的软性线路板
CN105763168A (zh) 一种含有无胶基材软性线路板的压电谐振器
CN215955317U (zh) 一种压电薄膜传感器电极引出结构
JPH05114392A (ja) 偏平型電源素子の回路基板への実装構造および実装方法
CN218734823U (zh) 听诊器拾音装置
JPH0238556Y2 (zh)
CN220324458U (zh) 抗电磁干扰的柔性压电传感器
CN220819037U (zh) 传感器及电子设备
CN218975445U (zh) 一种屏蔽层及薄膜传感器结构
CN213186549U (zh) 一种mems麦克风的装配结构
CN116067533A (zh) 一种非对称式薄膜压力传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021775886

Country of ref document: EP

Effective date: 20221025