WO2021190045A1 - 一种高铁低钙硅酸盐水泥及其制备方法 - Google Patents

一种高铁低钙硅酸盐水泥及其制备方法 Download PDF

Info

Publication number
WO2021190045A1
WO2021190045A1 PCT/CN2020/141077 CN2020141077W WO2021190045A1 WO 2021190045 A1 WO2021190045 A1 WO 2021190045A1 CN 2020141077 W CN2020141077 W CN 2020141077W WO 2021190045 A1 WO2021190045 A1 WO 2021190045A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
low
portland cement
cement
calcium
Prior art date
Application number
PCT/CN2020/141077
Other languages
English (en)
French (fr)
Inventor
刘松辉
管学茂
王雨利
朱建平
张海波
勾密峰
史才军
Original Assignee
河南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南理工大学 filed Critical 河南理工大学
Publication of WO2021190045A1 publication Critical patent/WO2021190045A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/345Hydraulic cements not provided for in one of the groups C04B7/02 - C04B7/34
    • C04B7/3453Belite cements, e.g. self-disintegrating cements based on dicalciumsilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00215Mortar or concrete mixtures defined by their oxide composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the invention belongs to the technical field of red mud application, and specifically relates to a high-iron low-calcium Portland cement and a preparation method thereof.
  • Bayer process red mud is a solid waste discharged from natural bauxite ore after alumina has been dissolved in hot alkali. With the annual increase in alumina production capacity in my country, the annual discharge of Bayer process red mud in the country exceeds 100 million tons. At present, due to the lack of economically feasible technologies for the bulk utilization of red mud, the comprehensive utilization rate of red mud has been at a low level. On the other hand, cement is currently the most widely used building material in the world. The fundamental reason for the high energy consumption of traditional Portland cement clinker firing is its high-calcium mineral design.
  • low-calcium Portland cement with low-calcium minerals such as: dicalcium silicate, tetracalcium aluminate
  • the production of low-calcium Portland cement with low-calcium minerals can not only reduce CO 2 emissions, but also reduce calcination Temperature, and can greatly increase the proportion of solid wastes such as red mud in the raw materials of cement production, which is of great significance in many aspects.
  • the purpose of the present invention is to provide a high-iron and low-calcium Portland cement and a preparation method thereof (high-iron and low-calcium Portland cement is also called high-iron belite cement) to overcome the red mud accumulation in the prior art.
  • high-iron and low-calcium Portland cement is also called high-iron belite cement
  • Groundwater, soil, air and ecological environment have caused serious pollution, and the design of high calcium minerals in traditional Portland cement clinker has caused excessive energy consumption and serious environmental pollution.
  • a preparation method of high-iron low-calcium Portland cement includes the following steps:
  • Step 1 Mix the Bayer process red mud and limestone uniformly, wherein the Bayer process red mud is 50-60wt% and the limestone is 40-50wt%, ground into raw meal powder, and then pressed to obtain a raw meal;
  • Step 2 calcining the green chips obtained in step 1, and then cooling to obtain cement clinker;
  • Step 3 After uniformly mixing the cement clinker and gypsum obtained in Step 2, after grinding, high-iron and low-calcium Portland cement is prepared.
  • the raw meal powder includes the following components in mass percentage: Bayer process red mud 50 to 55 wt%, and limestone 45 to 50 wt%.
  • both the Bayer process red mud and limestone in step one include the following components: SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, K 2 O, Na 2 O and TiO 2 ;
  • the content of SiO 2 in the Bayer process red mud is 15 to 30 wt%; the content of Al 2 O 3 in the Bayer process red mud is 15 to 25 wt%; the content of Fe 2 O 3 in the Bayer process red mud is 15 to 20 wt% %; the content of CaO in the Bayer process red mud is 5-20wt%; the content of CaO in the limestone is 45-55wt%.
  • the content of MgO in the Bayer process red mud is less than 5 wt%, the total content of K 2 O and Na 2 O in the Bayer process red mud is less than 10 wt %, and the content of TiO 2 in the Bayer process red mud is less than 10 wt %.
  • the fineness of the raw meal powder pulverized in step one is less than 75 ⁇ m.
  • step one The purpose of tableting in step one is to make the raw meal powder come into close contact and promote the solid-phase reaction of the clinker during the calcination process.
  • the rotary kiln is used for calcination.
  • the tableting is the uniformly mixed raw meal powder under pressure It is pressed down to form a dense green sheet, which is then calcined in a furnace.
  • the calcination temperature in step 2 is 1100 to 1250°C, and the calcination time is 1 to 2 hours.
  • the cooling in step two is rapid cooling, and the rapid cooling rate is greater than 100°C/min.
  • the rapid cooling specifically refers to the use of cold air to exchange heat with the cement clinker calcined at a high temperature to achieve the purpose of reducing the temperature of the calcined cement clinker and stabilizing the high-temperature crystal form.
  • the mass ratio of gypsum to high-iron low-calcium Portland cement clinker in step three is 0-20%.
  • the specific surface area of the high-iron low-calcium Portland cement prepared by grinding in step 3 is 350-450 m 2 /kg.
  • High-iron and low-calcium Portland cement prepared by any of the above-mentioned methods for preparing high-iron and low-calcium Portland cement.
  • a high-iron and low-calcium Portland cement The cement clinker in the high-iron and low-calcium Portland cement includes minerals in the following mass percentages: C 2 S: 45-60%, C 4 AF: 25-40%, C 12 A 7 : 5-20%.
  • the cement clinker includes minerals in the following mass percentages: C 2 S: 50-60%, C 4 AF: 30-40%, and C 12 A 7 : 5-10%.
  • C 2 S is dicalcium silicate
  • the molecular formula is 2CaO ⁇ SiO 2
  • the content of CaO in C 2 S is 65.1wt%
  • C 4 AF is tetracalcium aluminate aluminate
  • the molecular formula is 4CaO ⁇ Al 2 O 3 ⁇ Fe 2 O 3
  • the content of CaO in C 4 AF is 46.2wt%
  • C 12 A 7 is calcium heptaaluminate
  • the molecular formula is 12CaO ⁇ 7Al 2 O 3
  • the content of CaO in C 12 A 7 is 48.4 wt%.
  • the cement clinker in the present invention uses Bayer process red mud and limestone as raw materials, and the mixing amount of Bayer process red mud is as high as 60%, which greatly improves the utilization rate of Bayer process red mud solid waste and not only reduces alumina The pressure of industry to reduce emissions, and less harm to the environment.
  • the sintering temperature of the cement clinker in the present invention is lower than that of the traditional Portland cement clinker by 200-350°C, thereby reducing the production cost of cement, and greatly reducing CO 2 and harmful gas SO during the production process. 2. Emissions of pollutant gases such as NO x.
  • C 12 A 7 and C 4 AF minerals provide early strength of cement after hydration
  • C 2 S mineral hydration provides late strength of cement, so that the prepared cement has high early strength and late strength
  • Continuous growth, mechanical properties slightly better than ordinary Portland cement, can be widely used in outdoor construction products, emergency repair projects, underground projects, etc.
  • Figure 1 is an XRD pattern of Bayer process red mud used in various embodiments and comparative examples of the present invention
  • Figure 2 is the XRD patterns of cement clinker prepared in specific examples 2, 4, and 7 of the present invention.
  • the high-iron low-calcium Portland cement in the present invention is made by mixing cement clinker with a certain proportion of gypsum and then grinding.
  • the cement clinker includes C 2 S, C 4 AF, C 12 A 7 minerals, cement
  • the C 12 A 7 and C 4 AF minerals in the clinker provide the early strength of cement after hydration, and the C 2 S mineral hydration provides the late strength of the cement, which makes the prepared cement have high early strength, continuous growth of late strength, and mechanical properties. Slightly better than ordinary Portland cement, it can be widely used in outdoor construction products, emergency repair projects, underground projects, etc.
  • the Bayer process red mud was taken from the Zhongzhou subsidiary of Aluminum Corporation of China, and the limestone was taken from the limestone used in the local (Jiaozuo, China) cement plant.
  • the chemical composition of the raw materials is shown in Table 1 below.
  • the XRD pattern of the Bayer process red mud used in the following examples and comparative examples.
  • the XRD phase analysis results show that the phase of the Bayer process red mud includes 1-Al 2 SiO 5 (OH) 5 (kaolin), 2-AlO(OH) (diaspore), 3-Ca 3 Al 2 (SiO 4 )(OH) 8 (hydrated garnet), 4-SiO 2 (quartz), 5-CaCO 3 (Calcite), 6-Na 8 (SiAlO 4 ) 6 (H 0.33 (CO 3 ) 1.44 ) (H 2 O) 2 (cancrinite), 7-Fe 2 O 3 (hematite).
  • the embodiment of the present invention provides a method for preparing high-iron low-calcium Portland cement, which includes the following steps:
  • Step 1 Mix 60 parts of Bayer process red mud and 40 parts of limestone evenly, grind them into raw meal powder with a fineness of less than 75 ⁇ m, and then press to obtain a green sheet;
  • Step 2 Place the green sheet obtained in step 1 at 1200°C for 2 hours and then cool it to obtain cement clinker;
  • Step 3 After mixing the cement clinker obtained in Step 2 with gypsum (the mass of gypsum is 10% of the mass of the cement clinker) uniformly, after grinding, high-iron and low-calcium Portland cement is prepared.
  • gypsum the mass of gypsum is 10% of the mass of the cement clinker
  • the cement clinker in the high-iron and low-calcium Portland cement prepared by the method for preparing high-iron and low-calcium Portland cement in the embodiment of the present invention includes the following minerals by mass percentage: C 2 S: 51%, C 4 AF: 32.7%, C 12 A 7 : 16.3%, as shown in Table 2.
  • the specific surface area test was carried out on the high-iron and low-calcium Portland cement prepared in the examples of the present invention.
  • the specific surface area test refer to the Cement Brinell specific surface area determination method "Cement Specific Surface Area Determination Method Brinell Method GB/T8074-2008", using Cement Brinell Specific surface area measurement.
  • the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention After mixing the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention with water, it is poured into a shape to produce a 4cm*4cm*4cm test block, and the test block is placed in a cement concrete standard curing room for curing (temperature 20°C ⁇ 2°C, humidity ⁇ 95%), curing for 28 days, refer to GB/T 17671-1999 cement mortar strength inspection method (ISO method) to determine the compressive strength of the test block after curing for 3 days and 28 days.
  • ISO method cement mortar strength inspection method
  • the specific surface area of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention is 373 m 2 /kg, as shown in Table 2.
  • the compressive strength of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention after 3 days is 18.6 MPa; after 28 days, the compressive strength is 44.4 MPa, as shown in Table 2.
  • step two the green sheet is calcined at 1100° C. for 2 hours; in step three, no gypsum is added.
  • step three no gypsum is added.
  • Other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention is analyzed for mineral composition and the specific surface area of the high-iron and low-calcium Portland cement, and the high-iron and low-calcium Portland cement is after 3d and 28d.
  • the compressive strength is tested, wherein the mineral component analysis method, specific surface area test standard and method, and compressive strength test standard and method are the same as those in Example 1, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared by the method for preparing high-iron and low-calcium Portland cement includes the following minerals by mass percentage: C 2 S: 50.3%, C 4 AF: 31.9%, C 12 A 7 : 17.8%, as shown in Table 2.
  • the specific surface area of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention is 365 m 2 /kg, as shown in Table 2.
  • the compressive strength of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention after 3 days was 19.1 MPa; after 28 days, the compressive strength was 43.9 MPa, as shown in Table 2.
  • the XRD pattern of the cement clinker prepared in this example it is known from XRD that the mineral composition of the cement clinker in the high iron low calcium Portland cement prepared in this example is C 2 S, C 4 AF and C 12 A 7 .
  • step 2 the green flakes are calcined at 1200°C for 2 hours; in step 3, the amount of gypsum added is 20% of the mass of cement clinker .
  • step 3 the amount of gypsum added is 20% of the mass of cement clinker .
  • the cement clinker in the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention is analyzed for mineral composition and the specific surface area of the high-iron and low-calcium Portland cement, and the high-iron and low-calcium Portland cement is after 3d and 28d.
  • the compressive strength is tested, wherein the mineral component analysis method, specific surface area test standard and method, and compressive strength test standard and method are the same as those in Example 1, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared by the method for preparing high-iron and low-calcium Portland cement in the embodiment of the present invention includes the following minerals by mass percentage: C 2 S: 51.3%, C 4 AF: 33.1%, C 12 A 7 : 15.6%, as shown in Table 2.
  • the specific surface area of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention is 369 m 2 /kg, as shown in Table 2.
  • the compressive strength of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention after 3 days is 18.4 MPa; after 28 days, the compressive strength is 45.2 MPa, as shown in Table 2.
  • step one 55 parts of Bayer process red mud and 45 parts of limestone are mixed. Other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention is analyzed for mineral composition and the specific surface area of the high-iron and low-calcium Portland cement, and the high-iron and low-calcium Portland cement is after 3d and 28d.
  • the compressive strength is tested, wherein the mineral component analysis method, specific surface area test standard and method, and compressive strength test standard and method are the same as those in Example 1, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared by the method for preparing high-iron and low-calcium Portland cement in the embodiment of the present invention includes the following minerals by mass percentage: C 2 S: 55.4%, C 4 AF: 33%, C 12 A 7 : 11.6%, as shown in Table 2.
  • the specific surface area of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention is 360 m 2 /kg, as shown in Table 2.
  • the compressive strength of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention after 3 days is 26.7 MPa; after 28 days, the compressive strength is 54.7 MPa, as shown in Table 2.
  • the XRD pattern of the cement clinker prepared in this example it is known from XRD that the mineral composition of the cement clinker in the high iron low calcium Portland cement prepared in this example is C 2 S, C 4 AF and C 12 A 7 .
  • step 2 the green sheet is calcined at 1100° C. for 2 hours.
  • the other methods and steps are the same as in Embodiment 4, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention is analyzed for mineral composition and the specific surface area of the high-iron and low-calcium Portland cement, and the high-iron and low-calcium Portland cement is after 3d and 28d.
  • the compressive strength is tested, wherein the mineral component analysis method, specific surface area test standard and method, and compressive strength test standard and method are the same as those in Example 1, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared by the method for preparing high-iron and low-calcium Portland cement in the embodiment of the present invention includes the following mass percentages of minerals: C 2 S: 54.4%, C 4 AF: 33.5%, C 12 A 7 : 12.1%, as shown in Table 2.
  • the specific surface area of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention is 367 m 2 /kg, as shown in Table 2.
  • the compressive strength of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention after 3 days is 27.1 MPa; after 28 days, the compressive strength is 52.8 MPa, as shown in Table 2.
  • step 2 the green flakes are calcined at 1250°C for 2 hours; in step 3, the amount of gypsum added is 20% of the mass of cement clinker .
  • step 3 the amount of gypsum added is 20% of the mass of cement clinker .
  • the cement clinker in the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention is analyzed for mineral composition and the specific surface area of the high-iron and low-calcium Portland cement, and the high-iron and low-calcium Portland cement is after 3d and 28d.
  • the compressive strength is tested, wherein the mineral component analysis method, specific surface area test standard and method, and compressive strength test standard and method are the same as those in Example 1, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared by the method for preparing high-iron and low-calcium Portland cement in the embodiment of the present invention includes the following minerals by mass percentage: C 2 S: 56.1%, C 4 AF: 32.4%, C 12 A 7 : 11.5%, as shown in Table 2.
  • the specific surface area of the high-iron low-calcium Portland cement prepared in the embodiment of the present invention is 364 m 2 /kg, as shown in Table 2.
  • the compressive strength of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention after 3 days is 26.9 MPa; after 28 days, the compressive strength is 55.2 MPa, as shown in Table 2.
  • step one 50 parts of Bayer process red mud and 50 parts of limestone are mixed; in step three, the addition amount of gypsum is 20% of the mass of cement clinker %.
  • step three 50 parts of Bayer process red mud and 50 parts of limestone are mixed; in step three, the addition amount of gypsum is 20% of the mass of cement clinker %.
  • Other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention is analyzed for mineral composition and the specific surface area of the high-iron and low-calcium Portland cement, and the high-iron and low-calcium Portland cement is after 3d and 28d.
  • the compressive strength is tested, wherein the mineral component analysis method, specific surface area test standard and method, and compressive strength test standard and method are the same as those in Example 1, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared by the method for preparing high-iron and low-calcium Portland cement in the embodiment of the present invention includes the following mass percentages of minerals: C 2 S: 58%, C 4 AF: 33.9%, C 12 A 7 : 8.1%, as shown in Table 2.
  • the specific surface area of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention is 370 m 2 /kg, as shown in Table 2.
  • the compressive strength of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention after 3 days is 28.1 MPa; after 28 days, the compressive strength is 64.4 MPa, as shown in Table 2.
  • the XRD pattern of the cement clinker prepared in this example it is known from XRD that the mineral composition of the cement clinker in the high iron low calcium Portland cement prepared in this example is C 2 S, C 4 AF and C 12 A 7 .
  • the high-iron and low-calcium Portland cement prepared in Example 2 and Example 4 the higher the content of limestone in the raw meal powder, the lower the content of Bayer process red mud.
  • the prepared high-iron, low-calcium silicate The content of C 2 S and C 4 AF in the mineral components of the cement clinker in the acid salt cement increased, while the content of C 12 A 7 decreased.
  • the prepared high-iron and low-calcium Portland cement was cured for 3 days and After 28 days of curing, the compressive strength has been improved.
  • step 2 the green flakes are calcined at 1100°C for 2 hours; in step 3, the amount of gypsum added is 10% of the mass of cement clinker .
  • step 3 the amount of gypsum added is 10% of the mass of cement clinker .
  • Other methods and steps are the same as in Embodiment 7, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention is analyzed for mineral composition and the specific surface area of the high-iron and low-calcium Portland cement, and the high-iron and low-calcium Portland cement is after 3d and 28d.
  • the compressive strength is tested, wherein the mineral component analysis method, specific surface area test standard and method, and compressive strength test standard and method are the same as those in Example 1, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared by the method for preparing high-iron and low-calcium Portland cement in the embodiment of the present invention includes the following minerals by mass percentage: C 2 S: 57.2%, C 4 AF: 34.0%, C 12 A 7 : 8.8%, as shown in Table 2.
  • the specific surface area of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention is 367 m 2 /kg, as shown in Table 2.
  • the compressive strength of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention after 3 days is 27.8 MPa; after 28 days, the compressive strength is 63.9 MPa, as shown in Table 2.
  • step 2 the green flakes are calcined at 1250°C for 2 hours; in step 3, the amount of gypsum added is 10% of the mass of cement clinker .
  • step 3 the amount of gypsum added is 10% of the mass of cement clinker .
  • Other methods and steps are the same as in Embodiment 7, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention is analyzed for mineral composition and the specific surface area of the high-iron and low-calcium Portland cement.
  • the high-iron and low-calcium Portland cement is after 3d and 28d.
  • the compressive strength is tested, wherein the mineral component analysis method, specific surface area test standard and method, and compressive strength test standard and method are the same as those in Example 1, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared by the method for preparing high-iron and low-calcium Portland cement in the embodiment of the present invention includes the following minerals by mass percentage: C 2 S: 58.1%, C 4 AF: 34.2%, C 12 A 7 : 7.7%, as shown in Table 2.
  • the specific surface area of the high-iron low-calcium Portland cement prepared in the embodiment of the present invention is 361 m 2 /kg, as shown in Table 2.
  • the compressive strength of the high-iron and low-calcium Portland cement prepared in the embodiment of the present invention after 3 days is 27.5 MPa; after 28 days, the compressive strength is 66.2 MPa, as shown in Table 2.
  • step one 80 parts of Bayer process red mud and 20 parts of limestone are mixed. Other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the mineral composition analysis of the cement clinker in the high-iron low-calcium Portland cement prepared in this comparative example and the specific surface area of the high-iron low-calcium Portland cement, the high-iron low-calcium Portland cement after 3d and 28d The compressive strength is tested, wherein the mineral component analysis method, the specific surface area test standard and method, and the compressive strength test standard and method are the same as those in Example 1, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared by the method for preparing high-iron and low-calcium Portland cement includes the following mass percentages of minerals: C 2 AS: 58.6%, C 2 S: 5.6 %, Fe 2 O 3 : 22.3%, CaTiO 3 : 13.5%.
  • C 2 AS is mayonnaise feldspar
  • C 2 S is dicalcium silicate
  • Fe 2 O 3 is hematite
  • CaTiO 3 is perovskite.
  • the specific surface area of the high-iron and low-calcium Portland cement prepared in this comparative example is 350 m 2 /kg, as shown in Table 2.
  • the compressive strength of the high-iron and low-calcium Portland cement prepared in this comparative example was 0.7 MPa after 3 days; the compressive strength after 28 days was 3.9 MPa, as shown in Table 2.
  • the compressive strength after 28 days was 3.9 MPa, as shown in Table 2.
  • C 2 S in the mineral component of cement clinker has hydration activity, and other minerals have no hydration activity. Therefore, the mechanical properties of the high-iron and low-calcium Portland cement prepared in this comparative example are very good after curing. Difference.
  • step one 40 parts of Bayer process red mud and 60 parts of limestone are mixed. Other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the mineral composition analysis of the cement clinker in the high-iron low-calcium Portland cement prepared in this comparative example and the specific surface area of the high-iron low-calcium Portland cement, the high-iron low-calcium Portland cement after 3d and 28d The compressive strength is tested, wherein the mineral component analysis method, the specific surface area test standard and method, and the compressive strength test standard and method are the same as those in Example 1, and will not be repeated here.
  • the cement clinker in the high-iron and low-calcium Portland cement prepared by the method for preparing high-iron and low-calcium Portland cement includes the following mass percentages of minerals: C 3 A: 50.9%, C 2 S: 22.7 %%, C 4 AF: 17.5%, f-CaO: 9.0%.
  • C 3 A is tricalcium aluminate
  • C 2 S is dicalcium silicate
  • C 4 AF is tetracalcium aluminate ferrite
  • f-CaO is free calcium oxide.
  • the specific surface area of the high-iron and low-calcium Portland cement prepared in this comparative example is 361 m 2 /kg, as shown in Table 2.
  • the compressive strength of the high-iron and low-calcium Portland cement prepared in this comparative example was 10.3 MPa after 3 days; the compressive strength after 28 days was 12.5 MPa, as shown in Table 2. Since the minerals C 3 A and C 4 AF in cement clinker have higher early hydration activity but poor gelling performance, the cement in this comparative example has rapid hydration and setting, but has poor mechanical properties and slow strength growth in the later period.
  • step two the green flakes are calcined at 900° C. for 2 hours.
  • Other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the mineral composition analysis of the cement clinker in the high-iron low-calcium Portland cement prepared in this comparative example and the specific surface area of the high-iron low-calcium Portland cement, the high-iron low-calcium Portland cement after 3d and 28d The compressive strength is tested, wherein the mineral component analysis method, the specific surface area test standard and method, and the compressive strength test standard and method are the same as those in Example 1, and will not be repeated here.
  • the limestone in the raw material is decomposed to produce calcium oxide, and then it reacts with the oxides such as alumina and silica in the Bayer process red mud to produce C 2 S and C 12 A 7 minerals, but the amount of production is very small, and C 4 AF cannot be produced.
  • the specific surface area of the high-iron and low-calcium Portland cement prepared in this comparative example is 372 m 2 /kg, as shown in Table 2.
  • the compressive strength of the high-iron and low-calcium Portland cement prepared in this comparative example was 5.2 MPa after 3 days; the compressive strength after 28 days was 7.8 MPa, as shown in Table 2.
  • Table 2 shows the mineral composition of the cement clinker in different examples, the specific surface area of the high-iron low-calcium Portland cement, the compressive strength of the high-iron low-calcium Portland cement after 3d and 28d, and the high-iron prepared by different comparative examples.
  • the cement clinker in the present invention mainly uses Bayer process red mud and limestone as raw materials, and the blending amount of Bayer process red mud is as high as 60wt%, which greatly improves the utilization rate of Bayer process red mud solid waste.
  • the firing temperature of cement clinker is lower than that of traditional Portland cement clinker
  • the temperature is 200-350°C, thereby reducing the production cost of cement, and greatly reducing the emission of CO 2 and harmful gases SO 2 , NO x and other polluting gases;
  • the final mechanical properties of the prepared high-iron low-calcium Portland cement are slightly Better than ordinary Portland cement, C 12 A 7 and C 4 AF minerals in cement clinker provide early strength of cement after hydration, and C 2 S mineral hydration provides late strength of cement, making the prepared cement early strength High and later intensity continues to grow.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种高铁低钙酸盐水泥及其制备方法,包括将拜耳法赤泥和石灰石混合均匀,粉磨后压片得到生料片,生料片经煅烧后快速冷却,得到水泥熟料,然后与石膏混合均匀经粉磨制备出高铁低钙硅酸盐水泥。水泥的早期强度高、后期强度持续增长,力学性能好,且水泥熟料中拜耳法赤泥的掺量大,很大程度上提高了拜耳法赤泥固体废弃物的利用率,且水泥熟料的烧成温度较低,降低水泥的生产成本,生产过程中降低CO 2和SO 2、NO x等污染气体的排放量。

Description

一种高铁低钙硅酸盐水泥及其制备方法 技术领域
本发明属于赤泥应用技术领域,具体涉及一种高铁低钙硅酸盐水泥及其制备方法。
背景技术
拜耳法赤泥是天然铝土矿经热碱溶出氧化铝后排放的固体废弃物,随着我国氧化铝产能的逐年上升,全国拜耳法赤泥每年的排放量超过1亿吨。目前由于缺乏赤泥大宗利用的经济可行技术,赤泥的综合利用率一直处于较低水平。另一方面,水泥是目前世界上使用量最大的建筑材料,传统硅酸盐水泥熟料烧成的高能耗的根本原因在于其高钙矿物设计。高钙矿物设计还导致了优质石灰石和优质煤资源的过多消耗,以及温室气体CO 2和有害气体SO 2、NO x等的大量排放,从而加剧了水泥工业的能源、资源的消耗及环境负荷。
基于节能减排和应对气候变化的新要求,生产以低钙矿物(如:硅酸二钙、铁铝酸四钙)为主要矿物的低钙硅酸盐水泥不仅能降低CO 2排放,降低煅烧温度,而且能大大提高赤泥等固体废弃物在水泥生产原料中的比例,具有多方面的重要意义。
因此,需要提供一种针对上述现有技术不足的改进技术方案。
发明内容
本发明的目的是提供一种高铁低钙硅酸盐水泥及其制备方法(高铁低钙硅酸盐水泥也称高铁贝利特水泥),用以克服上述现有技术中赤泥堆存对周围地下水体、土壤、空气和生态环境造成严重污染的问题以及传统硅酸盐水泥熟料中的高钙矿物设计导致能源过度消耗、环境污染严重的问题。
为了实现上述目的,本发明提供如下技术方案:
一种高铁低钙硅酸盐水泥的制备方法,制备方法包括以下步骤:
步骤一、将拜耳法赤泥和石灰石混合均匀,其中,拜耳法赤泥50~60wt%,石灰石40~50wt%,粉磨成生料粉,然后进行压片,得到生料片;
步骤二、将步骤一中得到的生料片进行煅烧,然后冷却,得到水泥熟料;
步骤三、将步骤二中得到的水泥熟料与石膏混合均匀后,经过粉磨,制备出高铁低钙硅酸盐水泥。
优选,生料粉包括以下质量百分比的组份:拜耳法赤泥50~55wt%,石灰石45~50wt%。
优选,步骤一中拜耳法赤泥和石灰石均包括以下组份:SiO 2、Al 2O 3、Fe 2O 3、CaO、MgO、K 2O、Na 2O和TiO 2
优选地,拜耳法赤泥中SiO 2的含量为15~30wt%;拜耳法赤泥中Al 2O 3的含量为15~25wt%;拜耳法赤泥中Fe 2O 3的含量为15~20wt%;拜耳法赤泥中CaO的含量为5~20wt%;石灰石中CaO的含量为45~55wt%。拜耳法赤泥中MgO的含量小于5wt%,拜耳法赤泥中K 2O和Na 2O的总含量小于10wt%,拜耳法赤泥中TiO 2的含量小于10wt%。
优选,步骤一中粉磨成的生料粉的细度小于75μm。
步骤一中压片的目的是使生料粉密切接触,促进熟料在煅烧过程中发生的固相反应,实际工业生产过程中使用回转窑煅烧,压片是混合均匀的生料粉在压力作用下压制成致密的生料片,然后在炉子里煅烧。
优选,步骤二中煅烧的温度为1100~1250℃,煅烧的时间为1~2h。
步骤二中冷却为快速冷却,快速冷却的速率大于100℃/min。快速冷却具体为,采用冷空气与高温煅烧后的水泥熟料进行热交换,达到降低煅烧水泥熟料的温度,稳定高温晶型的目的。
优选,步骤三中石膏与高铁低钙硅酸盐水泥熟料的质量比为0~20%。
优选,步骤三中经过粉磨制备出的高铁低钙硅酸盐水泥的比表面积为350~450m 2/kg。
如上任一的高铁低钙硅酸盐水泥的制备方法所制备出的高铁低钙硅酸盐水泥。
一种高铁低钙硅酸盐水泥,高铁低钙硅酸盐水泥中的水泥熟料包括以下 质量百分比的矿物:C 2S:45~60%,C 4AF:25~40%,C 12A 7:5~20%。
优选,水泥熟料包括以下质量百分比的矿物:C 2S:50~60%,C 4AF:30~40%,C 12A 7:5~10%。
其中,C 2S为硅酸二钙,分子式为2CaO·SiO 2,在C 2S中CaO的含量为65.1wt%;C 4AF为铁铝酸四钙,分子式为4CaO·Al 2O 3·Fe 2O 3,在C 4AF中CaO的含量为46.2wt%;C 12A 7为七铝酸十二钙,分子式为12CaO·7Al 2O 3,在C 12A 7中CaO的含量为48.4wt%。
与最接近的现有技术相比,本发明提供的技术方案具有如下优异效果:
本发明中的水泥熟料采用拜耳法赤泥和石灰石为原料,拜耳法赤泥的掺量高达60%,很大程度上提高了拜耳法赤泥固体废弃物的利用率,不仅降低了氧化铝工业的减排压力,而且较少了对环境的危害。
本发明中的水泥熟料的烧成温度比传统硅酸盐水泥熟料的烧成温度降低了200~350℃,从而降低水泥的生产成本,且生产过程中大大降低了CO 2和有害气体SO 2、NO x等污染气体的排放量。
本发明中的水泥熟料中C 12A 7和C 4AF矿物水化后提供水泥的早期强度,C 2S矿物水化提供水泥的后期强度,使得所制备的水泥的早期强度高、后期强度持续增长,力学性能稍优于普通硅酸盐水泥,可广泛应用于室外建筑制品、抢修工程、地下工程等。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。其中:
图1为本发明各实施例和对照例所使用的拜耳法赤泥的XRD图谱;
图2为本发明具体实施例2、4、7中所制备的水泥熟料的XRD图谱。
具体实施方式
本发明中的高铁低钙硅酸盐水泥是经过水泥熟料与一定比例的石膏混合后粉磨制成的,水泥熟料中包括有C 2S、C 4AF、C 12A 7矿物,水泥熟料中C 12A 7 和C 4AF矿物水化后提供水泥的早期强度,C 2S矿物水化提供水泥的后期强度,使得所制备的水泥的早期强度高、后期强度持续增长,力学性能稍优于普通硅酸盐水泥,可广泛应用于室外建筑制品、抢修工程、地下工程等。
以下实施例和对照例中所用的原料中,拜耳法赤泥取自中国铝业中州子公司,石灰石取自当地(中国焦作)水泥厂用石灰石,原料的化学成分如下表1所示。
表1拜耳法赤泥和石灰石的化学成分
Figure PCTCN2020141077-appb-000001
如图1所示,为以下各个实施例和对照例中所用的拜耳法赤泥的XRD图谱,从XRD物相分析结果表明,拜耳法赤泥的物相包括1-Al 2SiO 5(OH) 5(高岭土)、2-AlO(OH)(水铝石)、3-Ca 3Al 2(SiO 4)(OH) 8(水化石榴石)、4-SiO 2(石英)、5-CaCO 3(方解石)、6-Na 8(SiAlO 4) 6(H 0.33(CO 3) 1.44)(H 2O) 2(钙霞石)、7-Fe 2O 3(赤铁矿)。
实施例1
本发明实施例提供一种高铁低钙硅酸盐水泥的制备方法,包括以下步骤:
步骤一、将60份的拜耳法赤泥和40份的石灰石混合均匀,粉磨成细度为小于75μm的生料粉,然后进行压片,得到生料片;
步骤二、将步骤一中得到的生料片置于1200℃下煅烧2h,然后冷却,得到水泥熟料;
步骤三、将步骤二中得到的水泥熟料与石膏(石膏的质量为水泥熟料的质量的10%)混合均匀后,经过粉磨,制备出高铁低钙硅酸盐水泥。
矿物组成分析:采用XRD全谱拟合定量分析技术测定高铁低钙硅酸盐水泥熟料的矿物组份。
本发明实施例中采用高铁低钙硅酸盐水泥的制备方法所制备的高铁低钙硅酸盐水泥中的水泥熟料,包括以下质量百分比的矿物:C 2S:51%,C 4AF: 32.7%,C 12A 7:16.3%,如表2所示。
性能测试
对本发明实施例中制备的高铁低钙硅酸盐水泥进行比表面积测试,比表面积测试参照水泥勃氏比表面积测定法《水泥比表面积测定方法勃氏法GB/T8074-2008》,采用水泥勃氏比表面积仪测定。
将本发明实施例中制备的高铁低钙硅酸盐水泥与水拌和后,浇筑成型,制作成4cm*4cm*4cm试块,将试块放置在水泥混凝土标准养护室内养护(温度为20℃±2℃,湿度≥95%),养护28天,参照GB/T 17671-1999水泥胶砂强度检验方法(ISO法)测定养护3天和28天后试块的抗压强度。
本发明实施例中制备的高铁低钙硅酸盐水泥的比表面积为373m 2/kg,如表2所示。
本发明实施例中所制备的高铁低钙硅酸盐水泥在3d后的抗压强度为18.6MPa;在28d后的抗压强度为44.4MPa,如表2所示。
实施例2
本发明实施例中提供的高铁低钙硅酸盐水泥的制备方法中,步骤二中将生料片置于1100℃下煅烧2h;步骤三中未添加石膏。其他方法和步骤与实施例1相同,在此不再赘述。
对本发明实施例中所制备的高铁低钙硅酸盐水泥中的水泥熟料进行矿物组份分析以及对高铁低钙硅酸盐水泥的比表面积、高铁低钙硅酸盐水泥在3d和28d后的抗压强度进行测试,其中,矿物组份分析方法、比表面积测试标准和方法、抗压强度的测试标准和方法与实施例1相同,在此不再赘述。
本发明实施例中采用高铁低钙硅酸盐水泥的制备方法所制备的高铁低钙硅酸盐水泥中的水泥熟料,包括以下质量百分比的矿物:C 2S:50.3%,C 4AF:31.9%,C 12A 7:17.8%,如表2所示。
本发明实施例中制备的高铁低钙硅酸盐水泥的比表面积为365m 2/kg,如表2所示。
本发明实施例中所制备的高铁低钙硅酸盐水泥在3d后的抗压强度为19.1MPa;在28d后的抗压强度为43.9MPa,如表2所示。
如图2所示,为本实施例中所制备的水泥熟料的XRD图谱,由XRD得知,本实施例中所制备的高铁低钙硅酸盐水泥中的水泥熟料的矿物组成为C 2S、C 4AF和C 12A 7
实施例3
本发明实施例中提供的高铁低钙硅酸盐水泥的制备方法中,步骤二中将生料片置于1200℃下煅烧2h;步骤三中石膏的添加量为水泥熟料的质量的20%。其他方法和步骤与实施例1相同,在此不再赘述。
对本发明实施例中所制备的高铁低钙硅酸盐水泥中的水泥熟料进行矿物组份分析以及对高铁低钙硅酸盐水泥的比表面积、高铁低钙硅酸盐水泥在3d和28d后的抗压强度进行测试,其中,矿物组份分析方法、比表面积测试标准和方法、抗压强度的测试标准和方法与实施例1相同,在此不再赘述。
本发明实施例中采用高铁低钙硅酸盐水泥的制备方法所制备的高铁低钙硅酸盐水泥中的水泥熟料,包括以下质量百分比的矿物:C 2S:51.3%,C 4AF:33.1%,C 12A 7:15.6%,如表2所示。
本发明实施例中制备的高铁低钙硅酸盐水泥的比表面积为369m 2/kg,如表2所示。
本发明实施例中所制备的高铁低钙硅酸盐水泥在3d后的抗压强度为18.4MPa;在28d后的抗压强度为45.2MPa,如表2所示。
实施例4
本发明实施例中提供的高铁低钙硅酸盐水泥的制备方法中,步骤一中将55份拜耳法赤泥和45份石灰石混合。其他方法和步骤与实施例1相同,在此不再赘述。
对本发明实施例中所制备的高铁低钙硅酸盐水泥中的水泥熟料进行矿物组份分析以及对高铁低钙硅酸盐水泥的比表面积、高铁低钙硅酸盐水泥在3d和28d后的抗压强度进行测试,其中,矿物组份分析方法、比表面积测试标准和方法、抗压强度的测试标准和方法与实施例1相同,在此不再赘述。
本发明实施例中采用高铁低钙硅酸盐水泥的制备方法所制备的高铁低钙 硅酸盐水泥中的水泥熟料,包括以下质量百分比的矿物:C 2S:55.4%,C 4AF:33%,C 12A 7:11.6%,如表2所示。
本发明实施例中制备的高铁低钙硅酸盐水泥的比表面积为360m 2/kg,如表2所示。
本发明实施例中所制备的高铁低钙硅酸盐水泥在3d后的抗压强度为26.7MPa;在28d后的抗压强度为54.7MPa,如表2所示。
如图2所示,为本实施例中所制备的水泥熟料的XRD图谱,由XRD得知,本实施例中所制备的高铁低钙硅酸盐水泥中的水泥熟料的矿物组成为C 2S、C 4AF和C 12A 7
实施例5
本发明实施例中提供的高铁低钙硅酸盐水泥的制备方法中,步骤二中将生料片置于1100℃下煅烧2h。其他方法和步骤与实施例4相同,在此不再赘述。
对本发明实施例中所制备的高铁低钙硅酸盐水泥中的水泥熟料进行矿物组份分析以及对高铁低钙硅酸盐水泥的比表面积、高铁低钙硅酸盐水泥在3d和28d后的抗压强度进行测试,其中,矿物组份分析方法、比表面积测试标准和方法、抗压强度的测试标准和方法与实施例1相同,在此不再赘述。
本发明实施例中采用高铁低钙硅酸盐水泥的制备方法所制备的高铁低钙硅酸盐水泥中的水泥熟料,包括以下质量百分比的矿物:C 2S:54.4%,C 4AF:33.5%,C 12A 7:12.1%,如表2所示。
本发明实施例中制备的高铁低钙硅酸盐水泥的比表面积为367m 2/kg,如表2所示。
本发明实施例中所制备的高铁低钙硅酸盐水泥在3d后的抗压强度为27.1MPa;在28d后的抗压强度为52.8MPa,如表2所示。
实施例6
本发明实施例中提供的高铁低钙硅酸盐水泥的制备方法中,步骤二中将生料片置于1250℃下煅烧2h;步骤三中石膏的添加量为水泥熟料的质量的 20%。其他方法和步骤与实施例4相同,在此不再赘述。
对本发明实施例中所制备的高铁低钙硅酸盐水泥中的水泥熟料进行矿物组份分析以及对高铁低钙硅酸盐水泥的比表面积、高铁低钙硅酸盐水泥在3d和28d后的抗压强度进行测试,其中,矿物组份分析方法、比表面积测试标准和方法、抗压强度的测试标准和方法与实施例1相同,在此不再赘述。
本发明实施例中采用高铁低钙硅酸盐水泥的制备方法所制备的高铁低钙硅酸盐水泥中的水泥熟料,包括以下质量百分比的矿物:C 2S:56.1%,C 4AF:32.4%,C 12A 7:11.5%,如表2所示。
本发明实施例中制备的高铁低钙硅酸盐水泥的比表面积为364m 2/kg,如表2所示。
本发明实施例中所制备的高铁低钙硅酸盐水泥在3d后的抗压强度为26.9MPa;在28d后的抗压强度为55.2MPa,如表2所示。
实施例7
本发明实施例中提供的高铁低钙硅酸盐水泥的制备方法中,步骤一中将50份拜耳法赤泥和50份石灰石混合;步骤三中石膏的添加量为水泥熟料的质量的20%。其他方法和步骤与实施例1相同,在此不再赘述。
对本发明实施例中所制备的高铁低钙硅酸盐水泥中的水泥熟料进行矿物组份分析以及对高铁低钙硅酸盐水泥的比表面积、高铁低钙硅酸盐水泥在3d和28d后的抗压强度进行测试,其中,矿物组份分析方法、比表面积测试标准和方法、抗压强度的测试标准和方法与实施例1相同,在此不再赘述。
本发明实施例中采用高铁低钙硅酸盐水泥的制备方法所制备的高铁低钙硅酸盐水泥中的水泥熟料,包括以下质量百分比的矿物:C 2S:58%,C 4AF:33.9%,C 12A 7:8.1%,如表2所示。
本发明实施例中制备的高铁低钙硅酸盐水泥的比表面积为370m 2/kg,如表2所示。
本发明实施例中所制备的高铁低钙硅酸盐水泥在3d后的抗压强度为28.1MPa;在28d后的抗压强度为64.4MPa,如表2所示。
如图2所示,为本实施例中所制备的水泥熟料的XRD图谱,由XRD得 知,本实施例中所制备的高铁低钙硅酸盐水泥中的水泥熟料的矿物组成为C 2S、C 4AF和C 12A 7。与实施例2、实施例4中所制备的高铁低钙硅酸盐水泥作为对比,生料粉中石灰石的含量越高,拜耳法赤泥的含量越低,此时所制备的高铁低钙硅酸盐水泥中的水泥熟料的矿物组份中C 2S、C 4AF的含量均有所提高,而C 12A 7的含量降低,所制备的高铁低钙硅酸盐水泥在养护3d和养护28d后的抗压强度均有所提高。
实施例8
本发明实施例中提供的高铁低钙硅酸盐水泥的制备方法中,步骤二中将生料片置于1100℃下煅烧2h;步骤三中石膏的添加量为水泥熟料的质量的10%。其他方法和步骤与实施例7相同,在此不再赘述。
对本发明实施例中所制备的高铁低钙硅酸盐水泥中的水泥熟料进行矿物组份分析以及对高铁低钙硅酸盐水泥的比表面积、高铁低钙硅酸盐水泥在3d和28d后的抗压强度进行测试,其中,矿物组份分析方法、比表面积测试标准和方法、抗压强度的测试标准和方法与实施例1相同,在此不再赘述。
本发明实施例中采用高铁低钙硅酸盐水泥的制备方法所制备的高铁低钙硅酸盐水泥中的水泥熟料,包括以下质量百分比的矿物:C 2S:57.2%,C 4AF:34.0%,C 12A 7:8.8%,如表2所示。
本发明实施例中制备的高铁低钙硅酸盐水泥的比表面积为367m 2/kg,如表2所示。
本发明实施例中所制备的高铁低钙硅酸盐水泥在3d后的抗压强度为27.8MPa;在28d后的抗压强度为63.9MPa,如表2所示。
实施例9
本发明实施例中提供的高铁低钙硅酸盐水泥的制备方法中,步骤二中将生料片置于1250℃下煅烧2h;步骤三中石膏的添加量为水泥熟料的质量的10%。其他方法和步骤与实施例7相同,在此不再赘述。
对本发明实施例中所制备的高铁低钙硅酸盐水泥中的水泥熟料进行矿物组份分析以及对高铁低钙硅酸盐水泥的比表面积、高铁低钙硅酸盐水泥在3d 和28d后的抗压强度进行测试,其中,矿物组份分析方法、比表面积测试标准和方法、抗压强度的测试标准和方法与实施例1相同,在此不再赘述。
本发明实施例中采用高铁低钙硅酸盐水泥的制备方法所制备的高铁低钙硅酸盐水泥中的水泥熟料,包括以下质量百分比的矿物:C 2S:58.1%,C 4AF:34.2%,C 12A 7:7.7%,如表2所示。
本发明实施例中制备的高铁低钙硅酸盐水泥的比表面积为361m 2/kg,如表2所示。
本发明实施例中所制备的高铁低钙硅酸盐水泥在3d后的抗压强度为27.5MPa;在28d后的抗压强度为66.2MPa,如表2所示。
对照例1
本对照例中提供的高铁低钙硅酸盐水泥的制备方法中,步骤一中将80份拜耳法赤泥和20份石灰石混合。其他方法和步骤与实施例1相同,在此不再赘述。
对本对照例中所制备的高铁低钙硅酸盐水泥中的水泥熟料进行矿物组份分析以及对高铁低钙硅酸盐水泥的比表面积、高铁低钙硅酸盐水泥在3d和28d后的抗压强度进行测试,其中,矿物组份分析方法、比表面积测试标准和方法、抗压强度的测试标准和方法与实施例1相同,在此不再赘述。
本对照例中采用高铁低钙硅酸盐水泥的制备方法所制备的高铁低钙硅酸盐水泥中的水泥熟料,包括以下质量百分比的矿物:C 2AS:58.6%,C 2S:5.6%,Fe 2O 3:22.3%,CaTiO 3:13.5%。其中,C 2AS为钙铝黄长石;C 2S为硅酸二钙;Fe 2O 3为赤铁矿;CaTiO 3为钙钛矿。
本对照例中制备的高铁低钙硅酸盐水泥的比表面积为350m 2/kg,如表2所示。
本对照例中所制备的高铁低钙硅酸盐水泥在3d后的抗压强度为0.7MPa;在28d后的抗压强度为3.9MPa,如表2所示。本对照例中水泥熟料的矿物组份中仅C 2S具有水化活性,其他矿物均没有水化活性,因此本对照例中所制备的高铁低钙硅酸盐水泥养护后的力学性能很差。
对照例2
本对照例中提供的高铁低钙硅酸盐水泥的制备方法中,步骤一中将40份拜耳法赤泥和60份石灰石混合。其他方法和步骤与实施例1相同,在此不再赘述。
对本对照例中所制备的高铁低钙硅酸盐水泥中的水泥熟料进行矿物组份分析以及对高铁低钙硅酸盐水泥的比表面积、高铁低钙硅酸盐水泥在3d和28d后的抗压强度进行测试,其中,矿物组份分析方法、比表面积测试标准和方法、抗压强度的测试标准和方法与实施例1相同,在此不再赘述。
本对照例中采用高铁低钙硅酸盐水泥的制备方法所制备的高铁低钙硅酸盐水泥中的水泥熟料,包括以下质量百分比的矿物:C 3A:50.9%,C 2S:22.7%%,C 4AF:17.5%,f-CaO:9.0%。其中,C 3A为铝酸三钙;C 2S为硅酸二钙;C 4AF为铁铝酸四钙;f-CaO为游离氧化钙。
本对照例中制备的高铁低钙硅酸盐水泥的比表面积为361m 2/kg,如表2所示。
本对照例中所制备的高铁低钙硅酸盐水泥在3d后的抗压强度为10.3MPa;在28d后的抗压强度为12.5MPa,如表2所示。由于水泥熟料中的矿物C 3A和C 4AF早期水化活性较高,但胶凝性能较差,因此本对照例中的水泥水化凝结迅速,但力学性能差,后期强度增长缓慢。
对照例3
本对照例中提供的高铁低钙硅酸盐水泥的制备方法中,步骤二中将生料片置于900℃下煅烧2h。其他方法和步骤与实施例1相同,在此不再赘述。
对本对照例中所制备的高铁低钙硅酸盐水泥中的水泥熟料进行矿物组份分析以及对高铁低钙硅酸盐水泥的比表面积、高铁低钙硅酸盐水泥在3d和28d后的抗压强度进行测试,其中,矿物组份分析方法、比表面积测试标准和方法、抗压强度的测试标准和方法与实施例1相同,在此不再赘述。
本对照例中的生料片在900℃下煅烧后,原料中的石灰石分解生产氧化钙,然后与拜耳法赤泥中的氧化铝、二氧化硅等氧化物反应生产C 2S、C 12A 7矿物,但是生成量很少,无法生成C 4AF。
本对照例中制备的高铁低钙硅酸盐水泥的比表面积为372m 2/kg,如表2所示。
本对照例中所制备的高铁低钙硅酸盐水泥在3d后的抗压强度为5.2MPa;在28d后的抗压强度为7.8MPa,如表2所示。
表2为不同实施例中的水泥熟料的矿物组成、高铁低钙硅酸盐水泥的比表面积以及3d和28d后的高铁低钙硅酸盐水泥的抗压强度以及不同对照例所制备的高铁低钙硅酸盐水泥的比表面积以及3d和28d后的高铁低钙硅酸盐水泥的抗压强度。
表2
Figure PCTCN2020141077-appb-000002
综上,本发明中的水泥熟料主要采用拜耳法赤泥和石灰石为原料,拜耳法赤泥的掺量高达60wt%,在很大程度上提高了拜耳法赤泥固体废弃物的利用率,从而减少了对环境造成的污染,同时也减轻了氧化铝工业的减排压力;在水泥熟料的生产过程中,水泥熟料的烧成温度比传统硅酸盐水泥熟料的烧成温度降低了200~350℃,从而降低了水泥的生产成本,且大大降低了CO 2和有害气体SO 2、NO x等污染气体的排放量;最终所制备的高铁低钙硅酸盐 水泥的力学性能稍优于普通硅酸盐水泥,水泥熟料中C 12A 7和C 4AF矿物水化后提供水泥的早期强度,C 2S矿物水化提供水泥的后期强度,使得所制备的水泥的早期强度高、后期强度持续增长。

Claims (7)

  1. 一种高铁低钙硅酸盐水泥的制备方法,其特征在于,所述制备方法包括以下步骤:
    步骤一、将拜耳法赤泥和石灰石混合均匀,其中,拜耳法赤泥50~60wt%,石灰石40~50wt%,粉磨成生料粉,然后进行压片,得到生料片;
    所述拜耳法赤泥和所述石灰石均包括以下组份:SiO 2、Al 2O 3、Fe 2O 3、CaO、MgO、K 2O、Na 2O和TiO 2
    所述拜耳法赤泥中SiO 2的含量为15~30wt%;所述拜耳法赤泥中Al 2O 3的含量为15~25wt%;所述拜耳法赤泥中Fe 2O 3的含量为15~20wt%;所述拜耳法赤泥中CaO的含量为5~20wt%;
    所述石灰石中CaO的含量为45~55wt%;步骤二、将步骤一中得到的所述生料片进行煅烧,然后冷却,得到水泥熟料;所述煅烧的温度为1100~1250℃,所述煅烧的时间为1~2h;
    步骤三、将步骤二中得到的所述水泥熟料与石膏混合均匀后,经过粉磨,制备出高铁低钙硅酸盐水泥;所述石膏与所述水泥熟料的质量比为0~20%。
  2. 如权利要求1所述的高铁低钙硅酸盐水泥的制备方法,其特征在于,所述生料粉包括以下质量百分比的组份:拜耳法赤泥50~55wt%,石灰石45~50wt%。
  3. 如权利要求1所述的高铁低钙硅酸盐水泥的制备方法,其特征在于,步骤一中粉磨成的所述生料粉的细度小于75μm。
  4. 如权利要求1所述的高铁低钙硅酸盐水泥的制备方法,其特征在于,步骤三中经过粉磨制备出的所述高铁低钙硅酸盐水泥的比表面积为350~450m 2/kg。
  5. 一种如权利要求1~4任一所述的高铁低钙硅酸盐水泥的制备方法所制备出的高铁低钙硅酸盐水泥。
  6. 一种高铁低钙硅酸盐水泥,其特征在于,所述高铁低钙硅酸盐水泥中的水泥熟料包括以下质量百分比的矿物:C 2S:45~60%,C 4AF:25~40%,C 12A 7:5~20%。
  7. 如权利要求6所述的高铁低钙硅酸盐水泥,其特征在于,所述水泥熟料包括以下质量百分比的矿物:C 2S:50~60%,C 4AF:30~40%,C 12A 7:5~10%。
PCT/CN2020/141077 2020-03-27 2020-12-29 一种高铁低钙硅酸盐水泥及其制备方法 WO2021190045A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010232069.2A CN111393047B (zh) 2020-03-27 2020-03-27 一种高铁贝利特水泥及其制备方法
CN202010232069.2 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021190045A1 true WO2021190045A1 (zh) 2021-09-30

Family

ID=71427706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141077 WO2021190045A1 (zh) 2020-03-27 2020-12-29 一种高铁低钙硅酸盐水泥及其制备方法

Country Status (3)

Country Link
CN (1) CN111393047B (zh)
LU (1) LU500915B1 (zh)
WO (1) WO2021190045A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880475A (zh) * 2021-10-25 2022-01-04 福州大学 一种赤泥基磷酸镁水泥及其制备方法
CN115448624A (zh) * 2022-09-08 2022-12-09 中国建筑材料科学研究总院有限公司 一种高地热环境耐受型低热硅酸盐熟料的制备方法及应用
CN116282988A (zh) * 2023-03-20 2023-06-23 武汉理工大学 一种利用磷石膏制备低钙固碳胶凝材料的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393047B (zh) * 2020-03-27 2021-05-28 河南理工大学 一种高铁贝利特水泥及其制备方法
CN113754325B (zh) * 2021-10-20 2022-10-11 盐城工学院 一种赤泥调质制备的活性辅助胶凝材料及方法
CN115340308B (zh) * 2022-05-05 2023-08-18 山东大学 一种工业固废的预处理方法及所述固废在制备胶凝材料中的应用
CN115340307A (zh) * 2022-06-30 2022-11-15 山东大学 一种固废基低碳型高铁相-贝利特体系混凝土及其协同固废固碳方法
CN115838250B (zh) * 2022-12-01 2023-10-27 济南大学 一种赤泥基掺合料、熟料及其制备方法与应用
CN116462427A (zh) * 2023-04-13 2023-07-21 郑州大学 一种硅酸盐水泥熟料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100404337B1 (ko) * 2000-12-20 2003-11-01 한일시멘트 (주) 고활성시멘트의 제조방법
CN101439938A (zh) * 2008-12-16 2009-05-27 重庆市博赛矿业(集团)有限公司 一种赤泥制造快硬型铁铝酸盐水泥加工方法
CN101891406A (zh) * 2010-07-12 2010-11-24 山东大学 一种利用赤泥和脱硫石膏制备水泥的方法
CN102092971A (zh) * 2011-01-11 2011-06-15 天津城市建设学院 一种赤泥制备道路硅酸盐水泥的方法
CN104003633A (zh) * 2014-05-30 2014-08-27 内蒙古蒙西鄂尔多斯铝业有限公司 硅酸盐熟料和水泥的制备方法及制备硅酸盐熟料的回转窑
US20140311386A1 (en) * 2013-04-23 2014-10-23 University Of Kentucky Research Foundation Hybrid cement clinker and cement made from that clinker
CN105658599A (zh) * 2013-09-03 2016-06-08 海德堡水泥公司 包含硫铝酸钙水泥和镁化合物的结合料
CN111393047A (zh) * 2020-03-27 2020-07-10 河南理工大学 一种高铁贝利特水泥及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103833245B (zh) * 2014-02-23 2016-01-13 桂林理工大学 一种利用赤泥制备高铁水泥的方法
CN106316172B (zh) * 2016-08-25 2018-10-02 中国建筑材料科学研究总院 微细高强度高贝利特水泥及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100404337B1 (ko) * 2000-12-20 2003-11-01 한일시멘트 (주) 고활성시멘트의 제조방법
CN101439938A (zh) * 2008-12-16 2009-05-27 重庆市博赛矿业(集团)有限公司 一种赤泥制造快硬型铁铝酸盐水泥加工方法
CN101891406A (zh) * 2010-07-12 2010-11-24 山东大学 一种利用赤泥和脱硫石膏制备水泥的方法
CN102092971A (zh) * 2011-01-11 2011-06-15 天津城市建设学院 一种赤泥制备道路硅酸盐水泥的方法
US20140311386A1 (en) * 2013-04-23 2014-10-23 University Of Kentucky Research Foundation Hybrid cement clinker and cement made from that clinker
CN105658599A (zh) * 2013-09-03 2016-06-08 海德堡水泥公司 包含硫铝酸钙水泥和镁化合物的结合料
CN104003633A (zh) * 2014-05-30 2014-08-27 内蒙古蒙西鄂尔多斯铝业有限公司 硅酸盐熟料和水泥的制备方法及制备硅酸盐熟料的回转窑
CN111393047A (zh) * 2020-03-27 2020-07-10 河南理工大学 一种高铁贝利特水泥及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880475A (zh) * 2021-10-25 2022-01-04 福州大学 一种赤泥基磷酸镁水泥及其制备方法
CN115448624A (zh) * 2022-09-08 2022-12-09 中国建筑材料科学研究总院有限公司 一种高地热环境耐受型低热硅酸盐熟料的制备方法及应用
CN115448624B (zh) * 2022-09-08 2023-07-21 中国建筑材料科学研究总院有限公司 一种高地热环境耐受型低热硅酸盐熟料的制备方法及应用
CN116282988A (zh) * 2023-03-20 2023-06-23 武汉理工大学 一种利用磷石膏制备低钙固碳胶凝材料的方法

Also Published As

Publication number Publication date
LU500915B1 (en) 2022-03-14
LU500915A1 (en) 2021-12-01
CN111393047B (zh) 2021-05-28
CN111393047A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2021190045A1 (zh) 一种高铁低钙硅酸盐水泥及其制备方法
WO2015124044A1 (zh) 快凝快硬高贝利特硫铝酸盐水泥熟料、应用及其生产工艺
CN101367629B (zh) 利用电解锰渣生产类硫铝酸盐水泥及其制备方法
CN113880466B (zh) 一种利用工业废渣制备高碳化活性胶凝材料的方法
CN112608047B (zh) 一种改性硫铝酸盐水泥及其制备方法和应用
CN100357209C (zh) 贝利特-硫铝酸钡钙水泥
CN111635152B (zh) 一种高贝利特硫铝酸盐水泥熟料及其制备方法
CN101172801A (zh) 高掺量粉煤灰水泥及制备方法
CN106904848B (zh) 一次低温烧成贝利特-硫铝酸钙-硫硅酸钙水泥的方法及其制品
CN102491655B (zh) 自粉化熟料矿渣硅酸盐水泥及其制备方法
CN102765893B (zh) 利用废渣氟石膏和赤泥制备硫铝酸盐特种水泥熟料的方法
CN108675657B (zh) 一种利用废渣制备硅酸盐-硫铝酸盐复合体系熟料的方法
WO2024119867A1 (zh) 一种低碳水泥熟料及制备方法
CN101885589A (zh) 复合硫酸盐水泥
CN105502973A (zh) 一种贫钙富硅生态水泥及其用途
CN106966617B (zh) 一次低温烧成贝利特-硫铝酸盐-硫铁铝酸盐-硫硅酸钙水泥熟料的方法
CN106698991A (zh) 一种混凝土掺合料及其制备方法
NL2036279A (en) Boron-phosphorus composite modified high belite sulphoaluminate cement clinker and preparation method thereof
CN115368037B (zh) 一种耐热混凝土胶凝材料及其制备方法、应用
CN115368034B (zh) 一种利用固废制备的自粉化碳固化胶凝材料及其制备方法
LU501552B1 (en) Method for preparing gamma-c2s-based cementing material
CN115650609A (zh) 一种碳固化胶凝材料、制备方法及应用
CN112811835B (zh) 铝酸盐水泥的制备方法
CN108585735B (zh) 一种堵漏剂及其制备方法
CN115784653B (zh) 一种磷铝酸盐水泥熟料的制备方法及磷铝酸盐水泥熟料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927475

Country of ref document: EP

Kind code of ref document: A1