WO2021190026A1 - 一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统 - Google Patents

一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统 Download PDF

Info

Publication number
WO2021190026A1
WO2021190026A1 PCT/CN2020/140101 CN2020140101W WO2021190026A1 WO 2021190026 A1 WO2021190026 A1 WO 2021190026A1 CN 2020140101 W CN2020140101 W CN 2020140101W WO 2021190026 A1 WO2021190026 A1 WO 2021190026A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
solid
zinc
outlet
spray tower
Prior art date
Application number
PCT/CN2020/140101
Other languages
English (en)
French (fr)
Inventor
马黎阳
冯国军
罗彦
张武
李永华
陈锐
唐卫军
Original Assignee
鑫联环保科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鑫联环保科技股份有限公司 filed Critical 鑫联环保科技股份有限公司
Publication of WO2021190026A1 publication Critical patent/WO2021190026A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/16Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This application belongs to the technical field of solid waste utilization, and relates to a system for capturing semi-volatile heavy metals in zinc-containing solid waste, for example, it relates to a system for high-temperature separation and ammonium complex to capture semi-volatile heavy metals in zinc-containing solid waste.
  • volatile heavy metals According to the volatility of heavy metals, they can be divided into volatile heavy metals, semi-volatile heavy metals and non-volatile heavy metals.
  • Semi-volatile heavy metals refer to heavy metals such as Pb, Cd, Zn, etc. These heavy metals will volatilize into the flue gas when they reach a certain temperature, and then similar nucleation and heterogeneous condensation will occur during the condensation process of the flue gas to form fine particles Or it can be enriched in fine particles, which can be captured in the end.
  • the process commonly used in the domestic processing of low-grade zinc materials such as volatile oxide ore and leaching residue is: high temperature reduction oxidation-surface cooling-bag dust collection-alkali elution fluorine chloride-sulfuric acid leaching-electrowinning.
  • This process has the following shortcomings: 1. The operation is discontinuous and the production efficiency is low; 2. The operating environment is harsh and labor-intensive, and long-term working in a high dust environment, the operating process is likely to cause occupational diseases in the respiratory system; 3. Alkaline washing process The efficiency of fluorine and chlorine removal is low, and the amount of fluorine-containing chlorine wastewater produced is large, which is difficult to recycle, which causes a great waste of water resources; it is easy to cause secondary pollution; 4.
  • the operating cost is high and the equipment investment is large; 5. Construction machinery and production equipment are easily corroded and damaged by acid-containing gas, and the maintenance cost is high; 6.
  • the dust collection bag is easy to be blocked, the replacement cycle is frequent, and the cost is high; fine dust is easily dispersed in the air through the bag, which is harmful to the health of workers Causes harm and pollutes the environment; 7.
  • Dust collection and ash need to be packaged and transported to the zinc leaching system. Dust is scattered during transportation and pollutes the environment. The above process can no longer meet the future national requirements for environmental protection, energy, and health.
  • CN 104988537 A discloses an integrated wet dust collection and leaching electrowinning process for zinc-containing solid waste disposal, which belongs to a process method for processing low-grade zinc materials such as volatile oxide ore and leaching residue.
  • the main process is: high temperature reduction oxidation-spray dust collection-pneumatic emulsifier-electric mist removal. After spraying and dusting, the slurry is discharged to the leaching reactor, the filter press filtrate is transported to the zinc purification process, and the filter residue is returned to high temperature reduction and oxidation.
  • the leaching solution is directly transported to the zinc purification system, and the filter press residue is returned to high temperature reduction oxidation, in which the valuable metal indium, bismuth, and tin are enriched, and the flue gas discharged meets the national emission standards .
  • this method requires a large amount of electrolytic circulating liquid, and it is difficult to increase the concentration of zinc in the electrolytic circulating liquid to the required level.
  • a large amount of fugitive ammonia and ammonium salt aerosols are entrained in the flue gas, which makes it difficult to meet the increasingly stringent air pollution control standards.
  • CN 109797280 A discloses a method and system for generating electricity from waste heat of steel low-zinc ash hazardous waste for electrolytic zinc production.
  • the crude zinc oxide obtained from the dust outlet of the bag filter is added to the slurrying device.
  • the patent does not disclose the method used to add crude zinc oxide to the slurrying device.
  • the purpose of this application is to provide a system for high-temperature separation and ammonium complex to capture semi-volatile heavy metals in zinc-containing solid waste.
  • the system does not require additional desulfurization facilities to increase the concentration of zinc in the solution and reduce the electrowinning reaction solution. Recycling volume, to achieve the full recovery of zinc, no leaching slag is discharged outside, to achieve the role of purification, to provide protection for obtaining high-purity zinc.
  • the present application provides a system for high-temperature separation and ammonium complex collection of semi-volatile heavy metals in zinc-containing solid waste.
  • the system includes a pretreatment unit, a gas treatment unit, and a solid treatment unit;
  • the pre-treatment system includes a reduction and oxidation device and a gas-solid separation device connected in sequence.
  • the gas outlet of the gas-solid separation device is connected to the gas processing unit, and the solid outlet of the gas-solid separation device is connected to the solid processing unit.
  • the solid processing unit includes a leaching device, a purification device, and an electrolysis device connected in sequence;
  • the gas processing unit includes a gas absorption device, the absorption liquid inlet of the gas absorption device is connected with the electrolyte outlet of the electrolysis device, and the absorption liquid outlet of the gas absorption device is connected with the leaching device.
  • the reduction and oxidation device is a fire method device.
  • the pyrotechnic device is a rotary kiln.
  • the pyrotechnic device is not limited to the rotary kiln, and the heating device that can thermally reduce the zinc-containing solid waste is applicable to this application.
  • the temperature and treatment time of the rotary kiln can be specifically selected according to the zinc content in the zinc-containing solid waste and the content of other elements.
  • the gas-solid separation device is a cyclone dust collector.
  • a waste heat boiler is provided between the rotary kiln and the cyclone dust collector.
  • the separation rate of the cyclone separator can be appropriately adjusted according to the gas-solid ratio in the treated gas.
  • the temperature of the waste heat boiler can be adjusted according to the feed temperature of the gas processing unit.
  • the gas processing unit includes a first spray tower and a second spray tower connected in sequence, and the absorption liquid inlet of the second spray tower and the electrolyte outlet of the electrolysis device
  • the absorption liquid inlet of the first spray tower is connected with the absorption liquid outlet of the second spray tower, and the absorption liquid outlet of the first spray tower is connected with the leaching device.
  • the spray amount of the absorption liquid of the first spray tower and the second spray tower can be specifically selected according to the content of heavy metal substances, sulfur dioxide, carbon dioxide and other harmful substances in the exhaust gas.
  • the second spray tower is connected to the ammonia capture tower.
  • a solid-liquid separation device is provided between the purification device and the inlet and outlet device.
  • the solid-liquid separation device is a filter press.
  • two sets of parallel connection pipelines are provided between the purification device and the electrolysis device, and at least one set of the connection pipelines is provided with a precision filter device.
  • the precision filter device is used to remove heavy metal substances such as copper, lead, cadmium, and cobalt in the filtrate produced by the filter press device.
  • the purification device is added with zinc particles and/or zinc blocks.
  • the size of the zinc particles and/or zinc blocks is 0.1-50mm, such as 0.15mm, 2mm, 5mm, 10mm, 15mm, 20mm, 25mm, 35mm or 45mm, etc., but not limited to the listed values, Other unlisted values within this value range also apply.
  • a refrigeration device is provided between the electrolysis device and the second spray tower.
  • the heat exchange device is a lithium bromide refrigeration device.
  • the inlet and outlet temperatures of the heat exchange device are independently 60-70°C and lower than 55°C, for example, the inlet temperature can be 61°C, 62°C, 63°C, 64°C, 65°C, 66°C, 67°C, 68°C, or 69°C, etc., the outlet temperature can be 50°C, 45°C, 40°C, 35°C, 30°C or 25°C, etc., but not limited to the listed values. The ranges of the above values Other unlisted ranges within the same apply.
  • the inlet and outlet temperatures of the heat exchange device are independently 65°C and lower than 40°C, respectively.
  • a liquid ammonia adding device is provided between the heat exchange device and the second spray tower.
  • This application uses the circulating liquid at the outlet of the electrowinning zinc electrolytic cell to spray to remove sulfur dioxide and carbon dioxide from the flue gas, without the need to build additional desulfurization facilities;
  • This application uses the pyrotechnical device to generate the waste heat of the flue gas, heats the electrolyte in the process, increases the concentration of zinc in the solution, and reduces the circulation volume of the electrowinning reaction solution;
  • This application uses a fire method device to process the leaching residue generated in the purification and filtration process, which realizes the full recovery of zinc, and no leaching residue is discharged;
  • This application utilizes sulfur dioxide in the flue gas to be converted into ammonium sulfate, which is used to remove calcium and magnesium ions in the electrolytic solution to form a precipitate to achieve a purification effect and provide a guarantee for obtaining high-purity zinc.
  • Fig. 1 is a schematic structural diagram of a system for high-temperature separation and ammonium complex capture of semi-volatile heavy metals in zinc-containing solid waste provided by Example 2 of the present application.
  • This embodiment provides a system for high-temperature separation and ammonium complex collection of semi-volatile heavy metals in zinc-containing solid waste, the system including a pretreatment unit, a gas treatment unit, and a solid treatment unit;
  • the pre-treatment system includes a reduction and oxidation device and a gas-solid separation device connected in sequence.
  • the gas outlet of the gas-solid separation device is connected to the gas processing unit, and the solid outlet of the gas-solid separation device is connected to the solid processing unit.
  • the solid processing unit includes a leaching device, a purification device, and an electrolysis device connected in sequence;
  • the gas processing unit includes a gas absorption device, the absorption liquid inlet of the gas absorption device is connected with the electrolyte outlet of the electrolysis device, and the absorption liquid outlet of the gas absorption device is connected with the leaching device.
  • This embodiment provides a system for high-temperature separation and ammonium complex collection of semi-volatile heavy metals in zinc-containing solid waste. Its structure is shown in Figure 1.
  • the system includes a pre-processing unit, a gas processing unit, and a solid processing unit;
  • the pre-treatment system includes a rotary kiln, a waste heat boiler, and a cyclone dust collector that are connected in sequence.
  • the gas outlet of the cyclone dust collector is connected to the gas processing unit, and the solid outlet of the gas-solid separation device is connected to the solid processing unit.
  • the solid processing unit includes a leaching device, a purification device, and an electrolysis device connected in sequence;
  • the gas processing unit includes a gas absorption device, the absorption liquid inlet of the gas absorption device is connected with the electrolyte outlet of the electrolysis device, and the absorption liquid outlet of the gas absorption device is connected with the leaching device.
  • the gas processing unit includes a first spray tower and a second spray tower connected in sequence, the absorption liquid inlet of the second spray tower is connected to the electrolyte outlet of the electrolysis device, and the first spray tower
  • the absorption liquid inlet is connected with the absorption liquid outlet of the second spray tower, the absorption liquid outlet of the first spray tower is connected with the leaching device; the second spray tower is connected with the ammonia trap.
  • a filter press is arranged between the purification device and the in-out device, two parallel connection pipelines are arranged between the purification device and the electrolysis device, and one of the connection pipelines is provided with a precision filter Device.
  • the purification device is added with zinc particles and/or zinc blocks with a size of 0.1-50 mm;
  • a lithium bromide heat exchange device is arranged between the electrolysis device and the second spray tower, and a liquid ammonia adding device is arranged between the lithium bromide heat exchange device and the second spray tower.
  • This embodiment provides a method for using the system for high-temperature separation and ammonium complex collection of semi-volatile heavy metals in zinc-containing solid waste provided by embodiment 2, and the method includes:
  • the semi-volatile heavy metals mainly zinc volatilize to form soot, which is then oxidized into heavy metal oxides.
  • the soot which is dominated by zinc oxide, enters the cyclone dust collector to collect large particles of soot, and then directly enters the two-stage spray tower, where the electrolytic circulating liquid is used to absorb heavy metal oxides, sulfur dioxide and carbon dioxide.
  • the first spray tower uses the electrolytic circulating solution from the second spray tower for spraying, and the electrolytic circulating solution used in the second spray tower comes from the outlet of the electrolytic tank.
  • the electrolyte at the outlet of the electrolytic cell adopts a lithium bromide cooling device to indirectly exchange heat, and the temperature of the spray liquid is reduced to below 35°C, and then enters the second-stage spray tower, and the temperature is lowered in order to reduce the decomposition of the generated ammonium carbonate or ammonium bicarbonate.
  • the trapped material of the cyclone dust collector and the spray waste liquid enter the leaching device together.
  • the leaching slurry enters the filter press device to produce filter cake and filtrate.
  • the filtrate enters the purification device, where copper, lead, cadmium, and cobalt are removed by a precision filter.
  • the purified liquid enters the electrolysis device, and electrolysis produces zinc flakes.
  • Example 2 for high-temperature separation and ammonium complex trapping of semi-volatile heavy metals in zinc-containing solid waste and the method provided in Example 3 are used to treat the zinc-containing solid waste.
  • the sources of zinc-containing solid waste are 80% by mass blast furnace bag dust removal ash and 20% zinc tailings, and the zinc content is 8%.
  • the temperature in the reaction zone of the rotary kiln is controlled at 1100 ⁇ 1200°C. After high-temperature separation, the zinc content in the kiln slag is 0.8% and the lead content is 0.1%.
  • the heavy metal leaching toxicity index of the kiln slag meets the requirements of national standards to ensure that the kiln slag is not a hazardous waste.
  • the temperature of the flue gas at the kiln tail is 500 ⁇ 20°C
  • the dust content is 50 ⁇ 80g/Nm 3
  • the inlet gas flow rate of the cyclone dust collector is set to 20m/s
  • the spray volume of the absorption liquid in the spray tower is 8 according to the liquid-gas ratio. -25L/m 3
  • Example 2 takes 10L/m 3 .
  • the inlet temperature of the lithium bromide refrigeration unit is controlled at 60-65°C and the outlet temperature is controlled below 40°C. 10mm zinc particles are used in the purification device. After ammonium trapping, the zinc content in the filter cake is 3% and the lead content is 1%, which is reused as a raw material in a rotary kiln.
  • the anode of the electrolytic cell is made of graphite, and the cathode is made of aluminum or titanium.
  • the current density is 550A/m 2 , the temperature is 50°C, the average cell voltage is 2.8V, the current efficiency is 96%, and the power consumption is 2800kwh/t Zn.
  • the purity of zinc flakes is 99.998%.
  • the sulfur dioxide content in the treated exhaust gas is 15 mg/Nm 3 .

Abstract

一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统,其包括:前处理系统,包括依次连接的还原氧化装置以及气固分离装置,气固分离装置的固体出口与固体处理单元相连;固体处理单元,包括依次连接的浸出装置、净化装置以及电解装置;气体处理单元,包括气体吸收装置,气体吸收装置的吸收液入口与电解装置的电解液出口相连,吸收液出口与浸出装置相连。

Description

一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统 技术领域
本申请属于固体废弃物利用技术领域,涉及一种捕集含锌固废中半挥发性重金属的系统,例如涉及一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统。
背景技术
根据重金属的挥发性可将其分为易挥发性重金属、半挥发性重金属和不易挥发性重金属。半挥发性重金属,是指如Pb、Cd、Zn等重金属,这类重金属达到一定温度,会挥发到烟气中,随后在烟气的冷凝过程中发生同类成核和异相凝结,形成细小颗粒物或者富集在细小颗粒物内,最后可被捕集获得。
国内在处理易挥发氧化矿、浸出渣等低品位锌物料普遍使用的工艺流程为:高温还原氧化-表面冷却-布袋收尘-碱洗脱氟氯-硫酸浸出-电积。这种工艺存在以下缺点:1、作业是非连续的,生产效率低;2、操作环境恶劣、劳动强度大,长期在高粉尘环境下工作,操作工艺易引发呼吸系统的职业病;3、碱洗过程脱氟氯效率低,产生的含氟氯废水量大,难以回收,对水资源造成了极大浪费;容易造成二次污染;4、运行成本高,设备投资较大;。5、工程机械及生产设备易被含酸气体腐蚀、损坏,维修维护费用高;6、收尘布袋易堵塞,更换周期频繁,成本高;细粉尘透过布袋易飘散在空气中,对工人健康造成伤害,对环境造成污染;7、收尘灰需包装运输至锌浸出系统,运输过程粉尘存在飘洒,污染环境,上述工艺已不能适应未来国家对环保、能源、卫生等方面的要求。
CN 104988537 A公开了一种含锌固废处置的湿法收尘及浸出电积一体化工艺,属于处理易挥发氧化矿、浸出渣等低品位锌物料的工艺方法。主要工艺过 程为:高温还原氧化-喷淋吸尘-气动乳化器-电除雾。喷淋吸尘后浆液排放至浸出反应釜,压滤滤液输送至锌净化工序,滤渣返回高温还原氧化。实现了直接由低品位锌物料转换成锌浸出液,浸出液直接输送至锌净化系统,压滤渣再返回高温还原氧化,其中有价金属铟铋锡等得到富集,且排放的烟气达到国家排放标准。由于烟气中含尘量较低,这种方式需要的电解循环液的量极大,锌在电解循环液中的浓度很难提升到所需要的水平。同时,由于温度较高,烟气中夹带大量的逃逸氨和铵盐的气溶胶,难以满足日益严格的大气污染控制标准。
CN 109797280 A公开了一种钢铁低锌灰危废物余热发电用于电解锌生产的方法及系统。将所述布袋除尘器的灰尘出口得到的粗氧化锌加入所述浆化装置。但该专利并没有公布采用何种方式将粗氧化锌加入到浆化装置。
发明内容
本申请的目的在于提供一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统,所述系统无需另行建设脱硫设施,提高锌在溶液中的浓度,减小电积反应溶液的循环量,实现了锌的全量回收,无浸出渣外排,达到净化的作用,为获得高纯锌提供保障。
为达此目的,本申请采用以下技术方案:
本申请提供了一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统,所述系统包括前处理单元、气体处理单元以及固体处理单元;
所述前处理系统包括依次连接的还原氧化装置以及气固分离装置,所述气固分离装置的气体出口与所述气体处理单元相连,所述气固分离装置的固体出口与所述固体处理单元相连;
所述固体处理单元包括依次连接的浸出装置、净化装置以及电解装置;
所述气体处理单元包括气体吸收装置,所述气体吸收装置的吸收液入口与所述电解装置的电解液出口相连,所述气体吸收装置的吸收液出口与所述浸出装置相连。
作为本申请可选的技术方案,所述还原氧化装置为火法装置。
可选地,所述火法装置为回转窑。
本申请中,火法装置不仅限于回转窑,可以对含锌固废进行热还原的加热装置,均适用于本申请。而回转窑的温度以及处理时间可根据含锌固废中锌含量以及其他元素的含量进行具体选择。
作为本申请可选的技术方案,所述气固分离装置为旋风除尘器。
可选地,所述回转窑与所述旋风除尘器之间设置有余热锅炉。
本申请中,旋风分离器的分离速率可根据处理后的气体中气固比进行适当调整。余热锅炉的温度可根据气体处理单元进料温度进行调整。
作为本申请可选的技术方案,所述气体处理单元包括依次连接的第一喷淋塔和第二喷淋塔,所述第二喷淋塔的吸收液入口与所述电解装置的电解液出口相连,所述第一喷淋塔的吸收液入口与所述第二喷淋塔的吸收液出口相连,所述第一喷淋塔的吸收液出口与所述浸出装置相连。
本申请中,第一喷淋塔以及第二喷淋塔的吸收液的喷淋量,可根据废气中重金属物质、二氧化硫以及二氧化碳等有害物质的含量进行具体选择。
作为本申请可选的技术方案,述第二喷淋塔与捕氨塔相连。
作为本申请可选的技术方案,所述净化装置与所述进出装置之间设置有固液分离装置。
可选地,所述固液分离装置为压滤机。
作为本申请可选的技术方案,所述净化装置与所述电解装置之间设置有两组并列的连接管路,至少一组所述连接管路上设置有精密过滤装置。
本申请中,精密过滤装置用于去除压滤装置产生滤液中的铜、铅、镉以及钴等的重金属物质的去除。
作为本申请可选的技术方案,所述净化装置添加有锌颗粒和/或锌块。
可选地,所述锌颗粒和/或锌块的尺寸为0.1~50mm,如0.15mm、2mm、5mm、10mm、15mm、20mm、25mm、35mm或45mm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本申请可选的技术方案,所述电解装置与所述第二喷淋塔之间设置有制冷装置。
可选地,所述换热装置为溴化锂制冷装置。
可选地,所述换热装置进液和出液温度分别独立地为60~70℃和低于55℃,如进液温度可以是61℃、62℃、63℃、64℃、65℃、66℃、67℃、68℃或69℃等,出液温度可以是50℃、45℃、40℃、35℃、30℃或25℃等,但并不仅限于所列举的数值,上述各数值范围内其他未列举的范围同样适用。
可选地,所述换热装置进液和出液温度分别独立地为65℃和低于40℃。
作为本申请可选的技术方案,所述换热装置与所述第二喷淋塔之间设置有液氨加入装置。
与现有技术相比,本申请具有以下有益效果:
(1)本申请利用电积锌电解槽出口循环液喷淋脱除烟气中的二氧化硫、二氧化碳,无需另行建设脱硫设施;
(2)本申请利用火法装置产生烟气的余热,加热工艺中电解液,提高锌在 溶液中的浓度,减小电积反应溶液的循环量;
(3)本申请利用火法装置处理净化过滤过程中产生的浸出渣,实现了锌的全量回收,无浸出渣外排;
(4)本申请利用烟气中的二氧化硫转化成硫酸铵,用于去除电解溶液中的钙镁离子,形成沉淀,达到净化的作用,为获得高纯锌提供保障。
附图说明
图1是本申请实施例2提供的高温分离协同铵络捕集含锌固废中半挥发性重金属的系统的结构示意图。
具体实施方式
为更好地说明本申请,便于理解本申请的技术方案,下面对本申请进一步详细说明,但下述的实施例仅是本申请的简易例子,并不代表或限制本申请的权利保护范围,本申请保护范围以权利要求书为准。
以下为本申请典型但非限制性实施例:
实施例1
本实施例提供一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统,所述系统包括前处理单元、气体处理单元以及固体处理单元;
所述前处理系统包括依次连接的还原氧化装置以及气固分离装置,所述气固分离装置的气体出口与所述气体处理单元相连,所述气固分离装置的固体出口与所述固体处理单元相连;
所述固体处理单元包括依次连接的浸出装置、净化装置以及电解装置;
所述气体处理单元包括气体吸收装置,所述气体吸收装置的吸收液入口与所述电解装置的电解液出口相连,所述气体吸收装置的吸收液出口与所述浸出 装置相连。
实施例2
本实施例提供一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统,其结构如图1所示,所述系统包括前处理单元、气体处理单元以及固体处理单元;
所述前处理系统包括依次连接的回转窑、余热锅炉以及旋风除尘器,所述旋风除尘器的气体出口与所述气体处理单元相连,所述气固分离装置的固体出口与所述固体处理单元相连;
所述固体处理单元包括依次连接的浸出装置、净化装置以及电解装置;
所述气体处理单元包括气体吸收装置,所述气体吸收装置的吸收液入口与所述电解装置的电解液出口相连,所述气体吸收装置的吸收液出口与所述浸出装置相连。
所述气体处理单元包括依次连接的第一喷淋塔和第二喷淋塔,所述第二喷淋塔的吸收液入口与所述电解装置的电解液出口相连,所述第一喷淋塔的吸收液入口与所述第二喷淋塔的吸收液出口相连,所述第一喷淋塔的吸收液出口与所述浸出装置相连;所述第二喷淋塔与捕氨塔相连。
所述净化装置与所述进出装置之间设置有压滤机,所述净化装置与所述电解装置之间设置有两组并列的连接管路,其中一组所述连接管路上设置有精密过滤装置。
所述净化装置添加有尺寸为0.1~50mm的锌颗粒和/或锌块;
所述电解装置与所述第二喷淋塔之间设置有溴化锂换热装置,所述溴化锂换热装置与所述第二喷淋塔之间设置有液氨加入装置。
实施例3
本实施例提供一种实施例2提供的高温分离协同铵络捕集含锌固废中半挥发性重金属的系统的使用方法,所述方法包括:
含锌固废经回转窑还原后,以锌为主的半挥发性重金属挥发形成烟尘,随后被氧化成重金属的氧化物。这种以次氧化锌为主的烟尘经余热锅炉后,进入旋风除尘器收集大颗粒烟尘之后,直接进入到两级喷淋塔,采用电解循环液吸收其中的重金属氧化物、二氧化硫和二氧化碳。第一喷淋塔采用来自第二喷淋塔的电解循环液进行喷淋,第二喷淋塔所使用的电解循环液来自电解槽出口。电解槽出口的电解液采用溴化锂冷却装置间接换热,将喷淋液温度降至35℃以下,再进入到第二级喷淋塔,降温为了减少生成的碳酸铵或碳酸氢铵分解。
所述的旋风除尘器捕集物和喷淋废液一起进入到浸出装置。浸出浆液进入压滤装置,产生滤饼和滤液,滤液进入到净化装置,利用精密过滤器将其中的铜、铅、镉、钴去除。净化液进入到电解装置,电解产生锌片。
应用例
使用实施例2提供的一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统以及实施例3提供的方法对含锌固废进行处理。
含锌固废的来源为质量百分比80%高炉布袋除尘灰和20%锌尾矿,锌的含量为8%。回转窑反应区温度控制在1100~1200℃。高温分离后窑渣中锌含量为0.8%,铅含量0.1%,窑渣的重金属浸出毒性指标符合国家标准要求,确保窑渣不属于危险废物。窑尾烟气温度为500±20℃,含尘量50~80g/Nm 3,旋风除尘器的进口气体流速设置为20m/s,喷淋塔中吸收液的喷淋量按液气比按8-25L/m 3,实施例2取10L/m 3。溴化锂制冷装置进液温度控制在60~65℃和出液 温度控制在40℃以下。净化装置中选用10mm锌颗粒。铵络捕集后,滤饼中锌含量为3%,铅含量1%,回用回转窑作原料使用。电解槽电极阳极选用石墨材质,阴极选用铝板或钛板。电流密度550A/m 2,温度50℃,平均槽电压2.8V,电流效率96%,电耗2800kwh/t Zn。锌片的纯度99.998%。处理后的排放气体中二氧化硫含量为15mg/Nm 3
申请人声明,本申请通过上述实施例来说明本申请的详细结构特征,但本申请并不局限于上述详细结构特征,即不意味着本申请必须依赖上述详细结构特征才能实施。
以上详细描述了本申请的可选实施方式,但是,本申请并不限于上述实施方式中的具体细节。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合。

Claims (10)

  1. 一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统,其包括前处理单元、气体处理单元以及固体处理单元;
    所述前处理系统包括依次连接的还原氧化装置以及气固分离装置,所述气固分离装置的气体出口与所述气体处理单元相连,所述气固分离装置的固体出口与所述固体处理单元相连;
    所述固体处理单元包括依次连接的浸出装置、净化装置以及电解装置;
    所述气体处理单元包括气体吸收装置,所述气体吸收装置的吸收液入口与所述电解装置的电解液出口相连,所述气体吸收装置的吸收液出口与所述浸出装置相连。
  2. 根据权利要求1所述的系统,其中,所述气体处理单元包括依次连接的第一喷淋塔和第二喷淋塔,所述第二喷淋塔的吸收液入口与所述电解装置的电解液出口相连,所述第一喷淋塔的吸收液入口与所述第二喷淋塔的吸收液出口相连,所述第一喷淋塔的吸收液出口与所述浸出装置相连。
  3. 根据权利要求2所述的系统,其中,所述第二喷淋塔与捕氨塔相连。
  4. 根据权利要求1-3任一项所述的系统,其中,所述还原氧化装置为火法装置;
    可选地,所述火法装置为回转窑。
  5. 根据权利要求1-4任一项所述的系统,其中,所述气固分离装置为旋风除尘器;
    可选地,所述回转窑与所述旋风除尘器之间设置有余热锅炉。
  6. 根据权利要求1-5任一项所述的系统,其中,所述净化装置与所述进出装置之间设置有固液分离装置;
    可选地,所述固液分离装置为压滤机。
  7. 根据权利要求1-6任一项所述的系统,其中,所述净化装置与所述电解装置之间设置有两组并列的连接管路,至少一组所述连接管路上设置有精密过滤装置。
  8. 根据权利要求1-7任一项所述的系统,其中,所述净化装置添加有锌颗粒和/或锌块;
    可选地,所述锌颗粒和/或锌块的尺寸为0.1~50mm。
  9. 根据权利要求1-8任一项所述的系统,其中,所述电解装置与所述第二喷淋塔之间设置有制冷装置;
    可选地,所述换热装置为溴化锂制冷装置;
    可选地,所述换热装置进液和出液温度分别独立地为60~70℃和低于55℃;
    可选地,所述换热装置进液和出液温度分别独立地为60~70℃和低于40℃。
  10. 根据权利要求9任一项所述的系统,其中,所述换热装置与所述第二喷淋塔之间设置有液氨加入装置。
PCT/CN2020/140101 2020-03-24 2020-12-28 一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统 WO2021190026A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010213352.0 2020-03-24
CN202010213352.0A CN111363931B (zh) 2020-03-24 2020-03-24 一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统

Publications (1)

Publication Number Publication Date
WO2021190026A1 true WO2021190026A1 (zh) 2021-09-30

Family

ID=71204735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140101 WO2021190026A1 (zh) 2020-03-24 2020-12-28 一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统

Country Status (2)

Country Link
CN (1) CN111363931B (zh)
WO (1) WO2021190026A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363931B (zh) * 2020-03-24 2022-11-25 鑫联环保科技股份有限公司 一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统
CN112542598B (zh) * 2020-12-24 2021-11-12 郑州佛光发电设备有限公司 利用自产氧方式加热金属空气电池电解液的系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177522A (ja) * 1989-12-07 1991-08-01 Kawasaki Steel Corp 高炉ダストの脱亜鉛法及びその亜鉛の回収法
CN1107895A (zh) * 1994-03-02 1995-09-06 张振逵 联产硫酸锌与铅精矿的工艺与装置
WO2001054800A1 (de) * 2000-01-25 2001-08-02 Paul Scherrer Institut Verfahren zur aufbereitung von metallhaltigen sekundärrohstoffen in brennbarem verbund
CN101608266A (zh) * 2009-07-23 2009-12-23 广西冶金研究院 一种挥发氧化锌的清洁收尘方法及其装置
CN104988537A (zh) * 2015-06-12 2015-10-21 江西金铂铼资源循环新技术有限公司 一种含锌固废处置的湿法收尘及浸出电积一体化工艺
CN109985509A (zh) * 2019-05-08 2019-07-09 安徽铜冠有色金属(池州)有限责任公司 一种氧化锌法二氧化硫废气处理工艺
CN110066898A (zh) * 2019-05-24 2019-07-30 关宇 一种高炉分离含锌固体废弃物的工艺方法
CN111363931A (zh) * 2020-03-24 2020-07-03 鑫联环保科技股份有限公司 一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206666608U (zh) * 2017-05-02 2017-11-24 英德广申鑫业金属有限公司 次氧化锌除杂富集有价金属锌的设备
CN206887182U (zh) * 2017-06-20 2018-01-16 青铜峡市鼎辉工贸有限公司 一种电解法生产锌锭的装置
CN109097588A (zh) * 2018-10-26 2018-12-28 宝钢工程技术集团有限公司 一种含铁含锌固废资源化利用的装置及方法
CN109266845A (zh) * 2018-11-21 2019-01-25 桂阳银龙科技有限责任公司 一种锌焙砂生产和烟气处理系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177522A (ja) * 1989-12-07 1991-08-01 Kawasaki Steel Corp 高炉ダストの脱亜鉛法及びその亜鉛の回収法
CN1107895A (zh) * 1994-03-02 1995-09-06 张振逵 联产硫酸锌与铅精矿的工艺与装置
WO2001054800A1 (de) * 2000-01-25 2001-08-02 Paul Scherrer Institut Verfahren zur aufbereitung von metallhaltigen sekundärrohstoffen in brennbarem verbund
CN101608266A (zh) * 2009-07-23 2009-12-23 广西冶金研究院 一种挥发氧化锌的清洁收尘方法及其装置
CN104988537A (zh) * 2015-06-12 2015-10-21 江西金铂铼资源循环新技术有限公司 一种含锌固废处置的湿法收尘及浸出电积一体化工艺
CN109985509A (zh) * 2019-05-08 2019-07-09 安徽铜冠有色金属(池州)有限责任公司 一种氧化锌法二氧化硫废气处理工艺
CN110066898A (zh) * 2019-05-24 2019-07-30 关宇 一种高炉分离含锌固体废弃物的工艺方法
CN111363931A (zh) * 2020-03-24 2020-07-03 鑫联环保科技股份有限公司 一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统

Also Published As

Publication number Publication date
CN111363931B (zh) 2022-11-25
CN111363931A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
CN108480360B (zh) 回转窑熔融法飞灰全资源回收利用及尾气超净排放方法
CN107959076B (zh) 废旧锂离子电池的处理方法
WO2021190026A1 (zh) 一种高温分离协同铵络捕集含锌固废中半挥发性重金属的系统
WO2020024350A1 (zh) 一种铜冶炼过程中回收硫磺的系统及方法
CN108654347B (zh) 一种氟化物体系电解稀土废气回收利用的方法
CN108172923B (zh) 废旧锂离子电池的处理系统
CN112807874A (zh) 一种危废焚烧飞灰和脱酸洗涤水资源化利用系统及方法
CN107658519B (zh) 一种回收再利用废铅酸电池铅膏的方法
CN104087761A (zh) 一种再生铅冶炼方法
CN105858716A (zh) 一种废旧铅蓄电池直接再生成铅粉的新方法
CN205062101U (zh) 一种无碳制铁装置
CN105274341A (zh) 一种废scr脱硝催化剂中金属钒和钨浸出的方法
CN114100318A (zh) 一种废旧锂电池回收过程废气减量化无害化的处理方法
CN107746066B (zh) 用于灰渣等离子熔融处理系统的氯化铵制备系统和方法
CN203731438U (zh) 电解铝废阴极碳块资源化处理系统
CN103851632B (zh) 电解铝废阴极碳块资源化处理系统及处理方法
CN112845515A (zh) 一种固体废弃物热解烟气的处理方法
CN101121965A (zh) 烟化炉硫化挥发回收锡的新工艺
CN112973408A (zh) 含铜废物资源化利用烟气净化的处理工艺
US11292718B2 (en) Process for preparing sulfur from reduction of sulfate/ nitrate by iron-carbon and recovering desulfurization/ denitration agents
CN102586621B (zh) 一种氧化锌浆液脱硫脱氟氯的方法和设备
CN108823429B (zh) 一种低品位含硫氧化锌矿的冶炼方法
CN109371249A (zh) 一种高效节能再生铅冶炼工艺
CN211133498U (zh) 一种高炉瓦斯灰、电炉灰碳化陪烧废气治理设备
CN211770757U (zh) 一种活性炭解吸用热风炉的尾气净化及余热利用装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926597

Country of ref document: EP

Kind code of ref document: A1