WO2021189791A1 - 一种利用畜禽粪污循环处理养殖废水和/或土壤改良的方法及装置 - Google Patents

一种利用畜禽粪污循环处理养殖废水和/或土壤改良的方法及装置 Download PDF

Info

Publication number
WO2021189791A1
WO2021189791A1 PCT/CN2020/117593 CN2020117593W WO2021189791A1 WO 2021189791 A1 WO2021189791 A1 WO 2021189791A1 CN 2020117593 W CN2020117593 W CN 2020117593W WO 2021189791 A1 WO2021189791 A1 WO 2021189791A1
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor
outlet
biochar
inlet
livestock
Prior art date
Application number
PCT/CN2020/117593
Other languages
English (en)
French (fr)
Inventor
余广炜
汪印
朱永官
Original Assignee
中国科学院城市环境研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院城市环境研究所 filed Critical 中国科学院城市环境研究所
Publication of WO2021189791A1 publication Critical patent/WO2021189791A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the present invention relates to the field of innocuous treatment of solid waste, and in particular to a method and device for recycling livestock and poultry manure to treat farming wastewater and/or soil improvement.
  • the purpose of the present invention is to provide a new technology that does not produce tail gas pollution, is simple in process, and is energy-saving and environmentally friendly.
  • the livestock and poultry farming manure is tempered and then dried and dehydrated, and then pyrolyzed and carbonized to prepare biochar powder; part of the obtained biochar is used
  • Conditioning and conditioning of farming manure can achieve the purpose of improving dehydration efficiency.
  • Part of it is used for adsorption and purification pretreatment of farming wastewater, pre-removing some effective elements such as COD, ammonia nitrogen, phosphorus and micro-pollutants such as antibiotics, in order to reduce the subsequent processing load of aquaculture wastewater.
  • biochar particles which can be directly used for soil improvement, or as an adsorption decolorizer for deep purification of aquaculture wastewater tail water, and finally used for soil improvement. It avoids the pollution caused by simple composting of livestock and poultry manure; at the same time, the pretreatment of farming wastewater reduces the effective elements such as COD, ammonia nitrogen, phosphorus and micro-pollutants such as antibiotics, which provides good progress for the treatment of farming wastewater. Water conditions greatly reduce the cost of aquaculture wastewater treatment and fully realize the comprehensive treatment of aquaculture waste, which has good social, economic and environmental benefits.
  • the present invention provides a method for recycling livestock and poultry manure to treat farming wastewater and/or soil improvement, which is characterized in that the steps are:
  • Conditioning adding a conditioning agent to the livestock and poultry manure for mixing and conditioning to obtain a conditioned livestock and poultry manure;
  • the conditioning agent is biochar; preferably, the livestock and poultry manure is pig manure;
  • the mixed conditioning makes the conditioned livestock
  • the moisture content of poultry manure is less than 70%;
  • Drying and dewatering The conditioned livestock and poultry manure is pre-dried and dehydrated in a drying device at low temperature to reduce the moisture content to ⁇ 10%, and the dried livestock and poultry manure, water vapor and a small amount of remaining tail gas are obtained;
  • Pyrolysis carbonization the dried livestock and poultry manure is indirectly heated in a pyrolysis carbonization device to obtain biochar powder and combustible gas; the pyrolysis combustible gas generated by the pyrolysis carbonization device is directly introduced into the furnace of the combustion device for combustion , The high-temperature flue gas is used for heating of the pyrolysis carbonization device; the outlet flue gas tail gas of the pyrolysis carbonization device is used as the heat source for the indirect heating of the low-temperature pre-drying dehydration in the drying and dehydration step, and the final flue gas is directly discharged after being purified;
  • the biochar powder is indirectly cooled by a cooling device, and the sensible heat of high-temperature biochar is recovered to preheat the air, which is used for the air required for fuel combustion in the combustion device; the cooled biochar powder is obtained, and the obtained biochar powder can be used as Conditioning agent for conditioning step;
  • Farming wastewater pretreatment adding part of the biochar powder obtained above to the farming wastewater, adsorbing and removing micro-pollutants, and then filtering by pressing, the obtained solid phase product is mixed with the livestock and poultry manure after conditioning in the conditioning step, and enters Dry dehydration and pyrolysis carbonization steps, and the obtained liquid phase wastewater can be treated by conventional aquaculture wastewater treatment process;
  • Molding and granulation mixing part of the biochar powder obtained above with a binder, and then molding to prepare biochar particles;
  • Soil improvement or adsorption purification the prepared biochar particles are directly used for soil improvement; or used for deep adsorption purification of the tail water of aquaculture wastewater before discharge.
  • the weight addition ratio of the conditioning agent is 20%-30% of the wet basis weight of livestock and poultry manure.
  • the temperature of the low-temperature pre-drying and dewatering of the livestock and poultry manure is less than 90°C, and the material residence time is 30-120 min.
  • the temperature of the indirect heating is 300° C.-500° C., and the material residence time is 30-60 min.
  • the final temperature of the indirect cooling is less than 40°C.
  • the addition ratio of the biochar powder is 5 g-100 g/L.
  • the binder is modified starch or CMC, and the molding method is flat die granulation, ring die granulation or pair-roll molding granulation.
  • the addition amount of the biochar particles is 150kg ⁇ 3000kg/mu.year; it is used for deep adsorption purification of the tail water of aquaculture wastewater before discharge At this time, the amount of biochar particles added is 5g-20g/L.
  • the present invention also provides a device for recycling livestock and poultry manure to treat farming wastewater and/or soil improvement.
  • the device connection method is:
  • the livestock and poultry manure in the manure yard (1) is transported into the manure silo (2) by a forklift, the exit of the manure silo (2) is connected with the entrance of the 1# conveyor (3), and the 1# is transported
  • the outlet of the machine (3) is connected with the manure inlet of the mixer (6);
  • the outlet of the conditioner storage bin (4) is connected with the inlet of the 2# conveyor (5); the outlet of the 2# conveyor (5) is connected with the conditioner inlet of the mixer (6); the outlet of the mixer (6) is connected with the 3# conveyor (7) The entrance is connected, and the exit of the 3# conveyor (7) is connected to the entrance of the indirect drying device (8);
  • the steam outlet of the indirect drying device (8) is connected to the inlet of the condensing device (12), the non-condensing gas outlet of the condensing device (12) is connected to the inlet of the 2# fan (13); the outlet of the 2# fan (13) is connected to the combustion device (15) The air inlet is connected.
  • the flue gas tail gas outlet of the indirect drying device (8) is connected to the inlet of the tail gas purification device (9), the outlet of the tail gas purification device (9) is connected to the inlet of the 1# fan (10), and the outlet of the 1# fan (10) is connected to the chimney (11) ) Connected;
  • the solid phase outlet of the indirect drying device (8) is connected to the inlet of the pyrolysis and carbonization device (14); the pyrolysis combustible gas produced by the pyrolysis and carbonization device (14) directly enters the combustion device (15) as a fuel burned as a pyrolysis and carbonization device (14) Use of its own energy; the exhaust gas outlet of the pyrolysis carbonization unit (14) is connected to the flue gas inlet of the indirect drying device (8), and the sensible heat of the exhaust gas is used as an indirect drying energy to realize waste heat recovery;
  • the solid phase product outlet of the pyrolysis carbonization unit (14) is connected to the inlet of the indirect cooling device (16); the cooling air outlet of the indirect cooling device (16) is connected to the inlet of the 3# fan (17), and the outlet of the 3# fan (17) is connected to the combustion
  • the air inlet of the device (15) is connected;
  • the solid phase product outlet of the indirect cooling device (16) is connected to the entrance of the 5# conveyor (18), and the exit of the 5# conveyor (18) is connected to the entrance of the biochar storage bin (19);
  • the biochar 1# outlet of the biochar storage bin (19) is connected with the 6# conveyor (22) inlet; the 6# conveyor (22) outlet is connected with the solid phase inlet of the aquaculture wastewater adsorption purification pretreatment device (23);
  • the biochar 2# outlet of the biochar storage bin (19) is connected with the inlet of the 8# conveyor (21); the outlet of the 8# conveyor (21) is connected with the inlet of the conditioner storage bin (4);
  • the biochar powder 3# outlet is connected with the 7# conveyor (20) inlet; the 7# conveyor (20) outlet is connected with the powerful mixer (32) inlet;
  • the wastewater outlet of the farming wastewater storage tank (24) is connected to the inlet of the 1# pump (25); it is connected to the aquaculture wastewater adsorption purification pretreatment device (23); the aquaculture wastewater adsorption purification pretreatment device (23) outlet and the pressure filter device (26) inlet Connected; the solid phase outlet of the filter press (26) is connected to the inlet of the 4# conveyor (27); the outlet of the 4# conveyor (27) is connected to the mixer (6); the liquid phase outlet of the filter press (26) is connected to the 2#
  • the inlet of the pump (28) is connected, the outlet of the 2# pump (28) is connected to the inlet of the farming wastewater treatment system (29), and the outlet of the farming wastewater treatment system (29) is connected to the inlet of the tail water deep purification device (36);
  • the outlet of the binder storage bin (30) is connected with the inlet of the dosing machine (31), the outlet of the dosing machine (31) is connected with the inlet of the powerful mixer (32), and the outlet of the powerful mixer (32) is connected with the forming granulator (33)
  • the inlet is connected, the outlet of the forming granulator (33) is connected to the inlet of the 9# conveying device (34), the 9# conveying device (34) is connected to the biochar particle storage bin (35), and the biochar particle storage bin ( 35)
  • the outlet is connected with the inlet of the 10# conveying device (36), and the outlet of the 10# conveying device (36) is connected with the inlet of the tail water deep purification device (37).
  • Said manure dump (1) is a conventional anti-seepage manure dump; manure silo (2) ordinary open steel square silo or round silo; 1# conveyor (3), 3 # Conveyor (7) and 4# Conveyor (27) are belt conveyors or screw conveyors; conditioner storage bin (4), bio-char powder storage bin (19), and bio-char particle storage bin (35) are Airtight ordinary steel square storage bin or round storage bin; 2# conveyor (5), 5# conveyor (18), 6# conveyor (22), 7# conveyor (20) and 8# conveyor (21) is a pneumatic conveyor, buried scraper conveyor or screw conveyor; mixer (6) is a double shaft mixer, ribbon mixer or coulter mixer; indirect drying device (8) is a disc Dryer or drum dryer, the drying method is indirect heating and drying of the flue gas; the exhaust gas purification device (9) is a conventional wet, dry or semi-dry flue gas purification system, preferably a dry or semi-dry flue gas purification system ; 1# fan (10) and 3# fan (17) are ordinary high
  • the present invention utilizes biochar to condition pig manure, takes advantage of the porous hygroscopic characteristics of biochar, and solves the problem of difficult dehydration of pig manure; at the same time, the viscosity of pig manure is greatly reduced after biochar and pig manure are mixed and adjusted.
  • the use of self-produced pig manure biochar for recycling is used as a conditioner and has good convenient conditions. This is also one of the characteristics of this process, and the use of pig manure pre-dehydration equipment is also avoided. If other biochar is selected, its characteristics are different from manure biochar, and the source and supply are all problematic, and the cost is higher.
  • the biochar powder prepared by the present invention is used for conditioning and pretreatment before drying of livestock and poultry manure, making full use of its porous properties, using the porous properties and moisture absorption characteristics of the biochar prepared from livestock and poultry manure to form a dehydration framework, which greatly improves To improve the drying efficiency of livestock and poultry manure; after conditioning the livestock and poultry farming manure, it is dried and dehydrated, and then pyrolyzed and carbonized to prepare biochar powder to achieve high-efficiency reduction and resource utilization, completely reduce antibiotics, and solidify heavy metals.
  • the integrated equipment system of the present invention not only solves the problem of preparing biochar from manure, but also solves the problem of coordinated treatment of aquaculture wastewater.
  • the present invention adopts drying and indirect pyrolysis carbonization process, simple temperature control, stable system operation and large processing capacity.
  • the combustible gas produced by pyrolysis and carbonization is directly introduced into the furnace of the combustion device for combustion, and the high-temperature flue gas is used for heating the pyrolysis and carbonization device; indirect cooling uses air as the cooling medium, and the air is preheated as the air for combustion. Improve combustion efficiency; exhaust flue gas at the outlet of the pyrolysis and carbonization unit is used as the heat source for indirect heating of low-temperature drying and dehydration to realize waste heat recovery.
  • the flue gas is purified and discharged directly to realize the energy self-sufficiency of the integrated treatment system and fully realize the recovery of waste heat and energy. Utilization, energy saving and emission reduction benefits are significant.
  • biochar powder directly, for soil improvement, it must be combined with other materials to form a matrix before it can be used. Otherwise, the powder will be applied to the soil alone, and the amount of loss will be large, and the effect will not be fully exerted.
  • the invention mixes the biochar powder with the binder, and then forms it to prepare biochar particles, which can be directly used for soil improvement; it can be used as an adsorption decolorant for deep purification of aquaculture wastewater tail water before discharge, and finally used for soil improvement , Provide a good adsorption material for ultra-low discharge of aquaculture wastewater tail water.
  • biochar powder to the breeding wastewater, pre-adsorb and remove some effective elements such as COD, ammonia nitrogen, phosphorus and micro-pollutants such as antibiotics, and then mix with the conditioned livestock and poultry manure after pressure filtration for drying, dehydration and pyrolysis
  • the carbonization process greatly reduces the pollutants in aquaculture wastewater, reduces its subsequent treatment costs, and significantly improves the quality of biochar.
  • the treatment of farming wastewater is very difficult now, and the process of removing COD, ammonia nitrogen and phosphorus is complicated. If the manure pyrolysis carbonization system can be used, a large number of pollutants from the water treatment can be directly subjected to high-temperature pyrolysis treatment, which greatly reduces the aquaculture wastewater. Biochemical treatment load, which is of great significance for reducing sewage treatment costs.
  • the advantages of the present invention are simple process, low investment, low operation and management costs, high energy efficiency, no tail gas pollution and any other environmental protection problems, and can simultaneously realize the comprehensive treatment of aquaculture manure and aquaculture wastewater, and is technically and economically feasible.
  • the energy saving and environmental protection benefits are significant, which fully embodies the concept of clean production and circular economy.
  • Figure 1 is a flow chart of the process equipment system involved in the present invention.
  • Figure 2 shows the S BET results of PM, CM and their biochar samples.
  • Figure 3 is the distribution diagram of heavy metals Cr and Pb in PM, CM and their biochar samples.
  • Figure 4 is the distribution diagram of heavy metals Ni, Cd and As in PM, CM and their biochar samples.
  • exhaust gas purification device
  • the device connection method is:
  • the livestock and poultry manure in the manure yard (1) is transported into the manure silo (2) by a forklift, the exit of the manure silo (2) is connected with the entrance of the 1# conveyor (3), and the 1# is transported
  • the outlet of the machine (3) is connected with the manure inlet of the mixer (6);
  • the outlet of the conditioner storage bin (4) is connected with the inlet of the 2# conveyor (5); the outlet of the 2# conveyor (5) is connected with the conditioner inlet of the mixer (6); the outlet of the mixer (6) is connected with the 3# conveyor (7) The entrance is connected, and the exit of the 3# conveyor (7) is connected to the entrance of the indirect drying device (8);
  • the steam outlet of the indirect drying device (8) is connected to the inlet of the condensing device (12), the non-condensing gas outlet of the condensing device (12) is connected to the inlet of the 2# fan (13); the outlet of the 2# fan (13) is connected to the combustion device (15) The air inlet is connected.
  • the flue gas tail gas outlet of the indirect drying device (8) is connected to the inlet of the tail gas purification device (9), the outlet of the tail gas purification device (9) is connected to the inlet of the 1# fan (10), and the outlet of the 1# fan (10) is connected to the chimney (11) ) Connected;
  • the solid phase outlet of the indirect drying device (8) is connected to the inlet of the pyrolysis and carbonization device (14); the pyrolysis combustible gas produced by the pyrolysis and carbonization device (14) directly enters the combustion device (15) as a fuel burned as a pyrolysis and carbonization device (14) Use of its own energy; the exhaust gas outlet of the pyrolysis carbonization unit (14) is connected to the flue gas inlet of the indirect drying device (8), and the sensible heat of the exhaust gas is used as an indirect drying energy to realize waste heat recovery;
  • the solid phase product outlet of the pyrolysis carbonization unit (14) is connected to the inlet of the indirect cooling device (16); the cooling air outlet of the indirect cooling device (16) is connected to the inlet of the 3# fan (17), and the outlet of the 3# fan (17) is connected to the combustion
  • the air inlet of the device (15) is connected;
  • the solid phase product outlet of the indirect cooling device (16) is connected to the entrance of the 5# conveyor (18), and the exit of the 5# conveyor (18) is connected to the entrance of the biochar storage bin (19);
  • the biochar 1# outlet of the biochar storage bin (19) is connected with the 6# conveyor (22) inlet; the 6# conveyor (22) outlet is connected with the solid phase inlet of the aquaculture wastewater adsorption purification pretreatment device (23);
  • the biochar 2# outlet of the biochar storage bin (19) is connected with the inlet of the 8# conveyor (21); the outlet of the 8# conveyor (21) is connected with the inlet of the conditioner storage bin (4);
  • the biochar powder 3# outlet is connected with the 7# conveyor (20) inlet; the 7# conveyor (20) outlet is connected with the powerful mixer (32) inlet;
  • the wastewater outlet of the farming wastewater storage tank (24) is connected to the inlet of the 1# pump (25); it is connected to the aquaculture wastewater adsorption purification pretreatment device (23); the aquaculture wastewater adsorption purification pretreatment device (23) outlet and the pressure filter device (26) inlet Connected; the solid phase outlet of the filter press (26) is connected to the inlet of the 4# conveyor (27); the outlet of the 4# conveyor (27) is connected to the mixer (6); the liquid phase outlet of the filter press (26) is connected to the 2#
  • the inlet of the pump (28) is connected, the outlet of the 2# pump (28) is connected to the inlet of the farming wastewater treatment system (29), and the outlet of the farming wastewater treatment system (29) is connected to the inlet of the tail water deep purification device (36);
  • the outlet of the binder storage bin (30) is connected with the inlet of the dosing machine (31), the outlet of the dosing machine (31) is connected with the inlet of the powerful mixer (32), and the outlet of the powerful mixer (32) is connected with the forming granulator (33)
  • the inlet is connected, the outlet of the forming granulator (33) is connected to the inlet of the 9# conveying device (34), the 9# conveying device (34) is connected to the biochar particle storage bin (35), and the biochar particle storage bin ( 35)
  • the outlet is connected with the inlet of the 10# conveying device (36), and the outlet of the 10# conveying device (36) is connected with the inlet of the tail water deep purification device (37).
  • the manure dump (1) is a conventional anti-seepage manure dump.
  • Said manure silo (2) is an ordinary open-type steel square silo or circular silo.
  • the 1# conveyor (3), 3# conveyor (7) and 4# conveyor (27) are belt conveyors or screw conveyors.
  • the conditioner storage bin (4), the biochar powder storage bin (19), and the biochar granule storage bin (35) are airtight ordinary steel square storage bins or circular storage bins.
  • the 2# conveyor (5), 5# conveyor (18), 6# conveyor (22), 7# conveyor (20) and 8# conveyor (21) are pneumatic conveyors and buried scrapers. Conveyor or screw conveyor.
  • the mixer (6) is a double-shaft mixer, a ribbon mixer or a coulter mixer.
  • the indirect drying device (8) is a disc dryer or a drum dryer, and the drying method is indirect heating and drying by flue gas.
  • the exhaust gas purification device (9) is a conventional wet, dry or semi-dry flue gas purification system, preferably a dry or semi-dry flue gas purification system.
  • the 1# fan (10) and 3# fan (17) are ordinary high-temperature fans.
  • the chimney (11) is ordinary steel, brick or concrete chimney.
  • the condensing device (12) is an indirect steam condensing device.
  • the 2# fan (13) is a conventional induced draft fan.
  • the pyrolysis and carbonization device (14) is a fixed bed, fluidized bed or drum type indirect pyrolysis and carbonization device;
  • the combustion device (15) is a conventional natural gas or pyrolysis gas combustion device.
  • the indirect cooling device (16) is a roller cooler, a screw conveyor cooler and a tube bundle cooling heat exchange device, and the cooling method is air indirect cooling.
  • the aquaculture wastewater adsorption purification pretreatment device (23) is a mixing tank with a stirring device, and the material is steel or concrete.
  • the farming wastewater storage tank (24) is a concrete storage tank.
  • the 1# pump (25) and 2# pump (28) are conventional water pumps.
  • the filter press device (26) is a plate and frame filter press, a high-pressure dehydrator or a vacuum belt filter press.
  • the aquaculture wastewater treatment system (29) is a conventional biochemical method aquaculture wastewater treatment system.
  • the binder storage bin (30) is a common steel storage bin with a heating device.
  • the quantitative feeder (31) is a screw scale.
  • the intensive mixer (32) is a mixer or a ribbon mixer.
  • the forming pelletizer (33) is a flat die pelletizer, a ring die pelletizer or a pair-roll forming machine.
  • the 9# conveying device (34) and 10# conveying device (36) are belt conveyors or bucket elevators.
  • the tail water deep purification device (37) is an ordinary fixed-bed adsorption device.
  • the livestock and poultry manure in the manure yard (1) is transported into the manure silo (2) by a forklift, and transported to the mixer (6) by the 1# conveyor (3); the conditioning agent storage bin
  • the manure biochar in (4) is conveyed into the mixer (6) by the 2# conveyor, and mixed with livestock and poultry manure for tempering.
  • the conditioning agent is the biochar powder produced by the system, and the weight addition ratio is 15%-30% of the wet basis weight of livestock and poultry manure.
  • Drying and dewatering the quenched and tempered mixture in the mixer (6) is transported by the 3# conveyor (7) into the indirect drying device (8) for low-temperature pre-drying and dewatering, so that the moisture content is reduced to ⁇ 10%, and the drying and dewatering is obtained
  • the water vapor and a small amount of remaining tail gas the water vapor enters the condensing device (12) to condense, and the obtained condensate can be directly used for greening water.
  • the non-condensable gas outlet is pumped to the combustion device through the 2# fan (13). 15) As a combustion supplementary gas, to avoid drying odor pollution.
  • the flue gas tail gas of the indirect drying device (8) enters the tail gas purification device (9) for purification treatment, and the purified flue gas is pumped into the chimney (11) through the 1# fan (10) to meet the emission standards.
  • the low-temperature pre-drying and dewatering temperature range of livestock and poultry manure is controlled at ⁇ 90°C, and the material residence time is 30-120min.
  • Pyrolysis and carbonization the dehydrated livestock manure obtained by the indirect drying device (8) directly enters the pyrolysis and carbonization device (14) for pyrolysis and carbonization treatment; the pyrolysis combustible gas produced by the pyrolysis and carbonization device (14) directly enters the combustion device (15) It is used as the own energy source of the pyrolysis carbonization device (14) after the fuel is burned; the flue gas tail gas of the pyrolysis and carbonization device (14) is used as the energy source of the indirect drying device (8) to realize waste heat recovery and cascade utilization.
  • the pyrolysis carbonization temperature is controlled within the temperature range of 300°C-500°C, and the material residence time is 30-60min.
  • Cooling recovery the high-temperature biochar powder produced by the pyrolysis carbonization device (14) enters the indirect cooling device (16) for cooling, and the final cooling temperature is less than 40°C.
  • the cooled biochar powder is transported into the biochar storage bin (19) by the 5# conveyor (18); the biochar powder in the biochar storage bin (19) is divided into three uses: one is through 8# Conveyor (21) transports and enters the conditioning agent storage bin (4) as a conditioning additive; second, it is transported to the aquaculture wastewater adsorption purification pretreatment device (23) through the 6# conveyor (22) to remove the aquaculture wastewater by adsorption
  • Some effective elements such as COD, ammonia nitrogen, and phosphorus, as well as micro-pollutants such as antibiotics.
  • the indirect cooling device (16) uses air as the cooling medium.
  • the biochar is cooled and the air is heated at the same time.
  • the heated air is fed into the combustion device (15) by the 3# fan (17) and used as combustion air to improve combustion efficiency;
  • the binder in the binder storage bin (30) is transported into the powerful mixer (32) through the dosing machine (31); and sent to the powerful mixer (32) by the 7# conveyor (20)
  • the biochar powder in 32) is uniformly mixed, and the mixed materials are directly sent to the forming granulator (33) to form biochar particles; the obtained biochar particles are transported by the 9# conveying device (34) into the biochar particle storage bin (35) )middle.
  • the preparation of biochar particles can be directly used for soil improvement.
  • the addition amount is 150kg ⁇ 3000kg/mu.year; it can also be used as an adsorption decolorizing agent for deep purification of aquaculture wastewater tail water before discharge, and finally Re-used for soil improvement.
  • Farming wastewater pretreatment the wastewater from the farming wastewater storage tank (24) is transported into the aquaculture wastewater adsorption and purification pretreatment device (23) via the 1# pump (25); the biochar powder is transported to the farming wastewater adsorption via the 6# conveyor (22)
  • the purification pretreatment device (23) is fully mixed with the farming wastewater, and the addition ratio is 5g-100g/L, to adsorb and remove part of the effective elements such as COD, ammonia nitrogen, phosphorus and antibiotics and other micro-pollutants in the farming wastewater; then, the filter press device (26) Press filter, the solid phase obtained is conveyed into the mixer (6) through the 4# conveyor (27), mixed with other materials, and then processed together, and the effective elements such as nitrogen and phosphorus in the wastewater are held by the subsequent pyrolysis process In biochar, organic pollutants such as antibiotics are reduced by 100%.
  • the filter press waste water obtained by the filter press device (26) is transported to the breeding waste water treatment system (29) through the 2# pump (28) for treatment.
  • Biochar particles are used for deep adsorption and purification of aquaculture wastewater tail water before discharge to achieve ultra-low standard discharge.
  • the biochar particles in the biochar particle storage bin (35) are conveyed by the 10# conveying device (36), and then enter the tail water deep purification device (37), and the addition ratio is 5g-20g/L.
  • the tail water treated by the aquaculture wastewater treatment system (29) is further adsorbed by the biochar particles in the tail water deep purification device (36) to achieve the goal of deep purification, achieve ultra-low discharge of aquaculture wastewater, and the biochar particles are effective in adsorbing P, etc.
  • the elements are then used for soil improvement to realize resource recycling.
  • biochar was prepared by pyrolysis of pig manure (PM) and chicken manure (CM) at different temperatures, and the antibiotic depletion characteristics were studied.
  • PM pig manure
  • CM chicken manure
  • ND means not detected
  • LQD means limit of quantification of the instrument.
  • the sample PM is pig manure
  • PM300 is the biochar obtained from pig manure when the pyrolysis temperature is 300°C
  • PM400 is the biochar obtained from pig manure when the pyrolysis temperature is 400°C
  • PM500 is the pyrolysis temperature is 500°C
  • PM600 is the biochar obtained from pig manure when the pyrolysis temperature is 600°C
  • PM700 is the biochar obtained from pig manure when the pyrolysis temperature is 700°C;
  • CM300 is the biochar obtained from chicken manure when the pyrolysis temperature is 300°C
  • PM400 is the biochar obtained from chicken manure when the pyrolysis temperature is 400°C
  • PM500 is the biochar obtained from chicken manure when the pyrolysis temperature is 500°C
  • the pyrolysis temperature is 600°C
  • the biochar obtained from chicken manure is 700°C.
  • Example 2 the BET measured values obtained from the pyrolysis of pig manure (PM) and chicken manure (CM) at different temperatures are shown in Figure 2. It can be seen from Figure 2 that the specific surface area of the biochar obtained from the pyrolysis of livestock and poultry manure increases significantly with the increase of the pyrolysis temperature.
  • Example 2 the pyrolysis of chicken manure (CM) and pig manure (PM) was carried out, and the ecological risk assessment of heavy metals was carried out. The results are shown in Table 2 and Figure 3-4. Table 2 lists the total amount of heavy metals in PM, CM and their biochar and the concentration thresholds of heavy metals in the "Agricultural Sludge Pollutant Control Standard" (GB 4282-2018) as reference values for discussion.
  • ND means not detected; a "Agricultural Sludge Pollutant Control Standard" (GB 4282-2018), the types of agricultural land allowed to be used for Grade A products are cultivated land, garden land, and pasture, while Grade B products are garden land and pasture. , Cultivated land where edible crops are not grown.
  • the toxicity of heavy metals in the environment is mainly related to their chemical forms. Among the four forms of heavy metals determined by the BCR continuous extraction method, the toxicity decreases from F1 to F4.
  • the weak acid extraction state (F1) and the reducible state (F2) are easily absorbed by plants and belong to the bioavailable state; the oxidizable state ( F3) There is a certain risk in long-term use; the residue state (F4) is a relatively stable heavy metal form.
  • the form distribution of heavy metals in PM, CM and their biochar samples is shown in Figure 3-4.
  • the TCLP toxicity leaching method was used to test the leaching toxicity of heavy metals in biochar samples. The results are shown in Table 3.
  • the leaching concentrations of Cr, Ni, Cd and As in PM and its biochar are all low and less than the standard concentration threshold.
  • the leaching concentration of various heavy metals in CM biochar is less than the standard concentration threshold, and as the pyrolysis temperature increases, the leaching concentration of most heavy metals decreases. With the increase of pyrolysis temperature, the leaching rate of different heavy metals is significantly reduced. Pyrolysis carbonization treatment can significantly reduce the leaching toxicity of heavy metals in PM and CM.
  • Example 4 Leaching characteristics of phosphorus in biochar from livestock and poultry manure
  • pig manure (PM) from a farm in Zhejiang is pyrolyzed at 300°C for 45 minutes to obtain pig manure biochar. After cooling to room temperature, it is crushed through a 100-mesh sieve and placed in a dry and airtight container for analysis, marked as PM3.
  • PM3 pig manure biochar
  • PM3 add 250mL of water, and shake continuously for 1d, 7d, 28d in a shaker at a temperature of 30°C and a rotating speed of 200r/min, each sample 5mL through a 0.45 ⁇ m microporous filter membrane
  • the filtered solution was measured for its phosphorus content by the ammonium molybdate method.
  • Example 1 Using chicken manure as a raw material, the method of Example 1 was used to perform pyrolysis and carbonization at a temperature of 400° C. to obtain chicken manure biochar CM400, the basic properties of which are shown in Table 6.
  • the obtained biochar was used for planting and potting experiments were carried out.
  • the test soil was red soil, which was collected from the soil of a vegetable field near a breeding farm in Xiang'an District, Xiamen.
  • the pakchoi for the test is a Taiwanese four season fast dish.
  • the pot experiment set up 2 treatments, namely the blank control (abbreviated as CK), chicken manure biochar CM400 added weight ratio of 4% (abbreviated as CB4). Potted plants were carried out in plastic pots with upper diameter, height and lower diameter of 20cm ⁇ 17cm ⁇ 14cm, each containing 3.0kg, and each treatment was set up with 3 replicates; potting was carried out in a greenhouse.
  • CK blank control
  • CB4 chicken manure biochar CM400 added weight ratio of 4%
  • the soil around the root system was collected at harvest.
  • the soil without biochar was recorded as Soil CK, and the soil samples with 4% biochar were recorded as Soil CB4 .
  • the collected soil samples were dried in an oven at 105°C, smashed through a 100-mesh sieve, and tested for soil electrical conductivity (EC), cation exchange capacity (CEC), available phosphorus and available potassium according to national standards. The results are shown in Table 8.
  • Cation exchange capacity is the total amount of all hydrolyzable acids and exchangeable bases (K + , Na + , Ca 2+ , Mg 2+ , NH 4 + , H + , Al 3+, etc.) in the sample.
  • the cation exchange capacity of the soil directly reflects whether the soil has nutrients and is an important basis for soil improvement and rational fertilization.
  • the CEC of the soil increased, indicating that the addition of biochar improved the soil's fertility retention and fertility capacity and improved soil fertility.
  • the cabbage was planted, the CEC of the soil decreased, indicating that some of the hydrolyzable acids or exchangeable bases in the soil were absorbed and utilized by plants.
  • the CEC of the soil added with biochar after planting pakchoi is still higher than that of the blank control group, and the addition of biochar can continuously improve the fertility of the soil.
  • the content of available phosphorus and available potassium in the soil added with biochar has increased. This may be due to the absorption and utilization of ammonium nitrogen by plants during the planting process, and the conversion of P and K in biochar to the usable state of plants, so
  • the application of biochar increases the content of available phosphorus and available potassium in the soil.
  • the carbon frame structure of biochar can act as a carrier to realize the combination of carbonaceous-mineral-fertilizer nutrients, delay the rapid dissolution and release process of fertilizers, and thus play a role of slow-release fertilizers, and ultimately improve effective elements. The efficiency of the utilization and reduction of fertilizer use.
  • the pig manure is pyrolyzed and carbonized at a temperature of 400°C, the obtained biochar is cooled and ground into powder, screened below 100 mesh and 0.5g is taken as the experimental sample, and added to the triangle containing 50ml of the liquid to be tested In an Erlenmeyer flask, seal it, put it in a shaker at room temperature (25°C) and shake at a shaking speed of 200r/min. Take it out after 24h.
  • the obtained liquid is centrifuged to obtain a solid phase and a liquid phase; the liquid phase is passed through a 0.2 ⁇ m filter membrane After filtration, the test solution is obtained.
  • biochar has good adsorption performance for COD, ammonia nitrogen and total phosphorus (TP) in wastewater, and has good applications in the fields of high COD or ammonia nitrogen wastewater pretreatment, deep purification of aquaculture wastewater tail water, etc. potential.

Abstract

一种利用畜禽粪污循环处理养殖废水和/或土壤改良的方法及装置,步骤为:将畜禽粪污添加调理剂进行混合调理;然后低温预烘干脱水,使含水率降至<10%,得到烘干后的畜禽粪污,再于热解炭化装置中进行间接加热,得到的生物炭粉末再间接冷却,所得冷却生物炭可添加到养殖废水中;可制备生物炭颗粒;可直接用于土壤改良;或用于养殖废水的尾水排放前的深度吸附净化,可去除部分COD、氨氮、磷等有效元素以及抗生素等微污染物,降低养殖废水生化处理负荷。避免了畜禽粪污简单堆肥所造成的污染,充分实现养殖废弃物综合处理,具有良好的社会效益、经济效益与环境效益。

Description

一种利用畜禽粪污循环处理养殖废水和/或土壤改良的方法及装置 技术领域
本发明涉及固体废弃物无害化处理领域,尤其涉及利用畜禽粪污循环处理养殖废水和/或土壤改良的方法及装置。
背景技术
我国农牧产业重点地点区因畜禽粪污未得到及时无害化处理与科学利用,致使其任意排放造成的环境污染问题日益突出。畜禽粪便为“城市矿产”的重要组成部分,其中总氮蕴含量为1394.60万t,总磷蕴含量为378.50万t,是良好的有机肥料。但畜禽粪便中的抗生素残留可以达到mg/kg的浓度水平,最高甚至可以达到200mg/kg。这些含有大量抗生素和重金属的畜禽粪便,通常直接施用作为有机肥料,以提高土壤肥力。在此过程中,氮磷的流失率达到30%以上,对流域水环境劣化造成长远影响;同时,畜禽粪污中残留抗生素必然转移到环境中,进而引发一系列环境问题,增加了环境中抗生素抗性基因污染威胁,影响土壤的生态环境和植物生长,对水生态环境造成影响等等,对人类健康和环境安全产生威胁。因此,在集约化养殖区,周边农林消纳堆肥粪污与养殖废水已经接近生态承载极限,急需开发新的养殖废弃物减量化、无害化与资源化技术,避免堆肥或直接农用造成的环境影响,尤其应该避免氮磷流失对中小流域水环境造成负面影响。
发明内容
本发明的目的在于提供一种不产生尾气污染,工艺简单,节能环保的新技术,将畜禽养殖粪污调质后进行干燥脱水,然后热解炭化制备生物炭粉末;所得生物炭一部分用于养殖粪污的调质,达到提高脱水效率的目的,一部分用于养殖废水吸附净化预处理,预除部分COD、氨氮、磷等有效元素以及抗生素等微污染物,为降低后续养殖废水处理负荷,提高处理效率,降低成本;剩余部分用于成型造粒,制备生物炭颗粒,可以直接用于土壤改良,也可以作为吸附脱色剂用于养殖废水尾水深度净化,最后再用于土壤改良,完全避免了畜禽粪污简单堆肥所造成的污染;同时,对养殖废水进行预处理,消减了COD、氨氮、磷等有效元素以及抗生素等微污染物,为养殖废水的达标处理提供了良好的进水条件,大幅降低养殖废水处理成本,充分实现养殖废弃物综合处理,具有良好的社会效益、经济效益与环境效益。
为实现上述目的,本发明提供一种利用畜禽粪污循环处理养殖废水和/或土壤改良的方法,其特征在于,步骤为,
调理:将畜禽粪污添加调理剂进行混合调理得到调理后的畜禽粪污;所述调理剂为生物炭;优选的,其畜禽粪污为猪粪污;混合调理使调理后的畜禽粪污的含水率<70%;
干燥脱水:将调理后的畜禽粪污在烘干装置中进行低温预烘干脱水,使含水率降至<10%,得到烘干后的畜禽粪污,水蒸汽和剩余少量尾气;
热解炭化:将所述烘干后的畜禽粪污于热解炭化装置中进行间接加热,得到生物炭粉末和可燃气;热解炭化装置产生的热解可燃气直接引入燃烧装置炉膛中燃烧,高温烟气用于热解炭化装置供热;热解炭化装置的出口烟气尾气作为干燥脱水步骤中低温预烘干脱水间接加热的热源,最后烟气被净化后直接排放;
冷却回收:将所述生物炭粉经冷却装置间接冷却,回收高温生物炭的显热来预热空气,用于燃烧装置燃料燃烧所需空气;得到冷却生物炭粉末,得到的生物炭粉末可作为调理步骤的调理剂;
养殖废水预处理:将上述所得的部分生物炭粉末添加到养殖废水中,吸附去除微污染物,然后经压滤,得到的固相产物与调理步骤中调理后的畜禽粪污一起混合,进入干燥脱水与热解炭化步骤,得到的液相废水采用常规养殖废水处理工艺处理即可;
成型造粒:将上述所得的部分生物炭粉末与粘结剂混合,然后成型,制备生物炭颗粒;
土壤改良或吸附净化:制备得到的生物炭颗粒直接用于土壤改良;或用于养殖废水的尾水排放前的深度吸附净化。
进一步,所述调理步骤中,调理剂的重量添加比例为畜禽粪污的湿基重量的20%-30%。
进一步,所述干燥脱水步骤中,畜禽粪污进行低温预烘干脱水的温度<90℃,物料停留时间为30-120min。
进一步,所述热解炭化步骤中,所述间接加热的温度为300℃-500℃,物料停留时间为30-60min。
进一步,所述冷却回收步骤中,所述间接冷却的终温小于40℃。
进一步,所述养殖废水预处理步骤中,生物炭粉末的添加比例为5g~100g/L。
进一步,所述成型造粒步骤中,所述粘结剂为改性淀粉或CMC,所述成型的方式为平模造粒、环模造粒或对辊成型造粒。
进一步,所述土壤改良或吸附净化步骤中,生物炭颗粒直接用于土壤改良时,生物炭颗粒的添加量为150kg~3000kg/亩.年;用于养殖废水的尾水排放前的深度吸附净化时,生物炭颗粒添加量为5g~20g/L。
本发明还提供一种利用畜禽粪污循环处理养殖废水和/或土壤改良的装置,其特征在于,包括粪污堆场(1),粪污料仓(2),1#输送机(3),调理剂储仓(4),2#输送机(5),混合机(6),3#输送机(7),间接烘干装置(8),尾气净化装置(9),1#风机(10),烟囱(11),冷凝装置(12),2#风机(13),热解炭化装置(14),燃烧装置(15),间接冷却装置(16),3#风机(17),5#输送机(18),生物炭粉储仓(19),7#输送机(20),8#输送机(21),6#输送机(22),养殖废水吸附净化预处理装置(23),养殖废水储池(24),1#泵(25),压滤装置(26),4#输送机(27),2#泵(28),养殖废水处理系统(29),粘结剂储仓(30),定量给料机(31),强力混合机(32),成型造粒机(33),9#输送装置(34),生物炭颗粒储仓(35),10#输送装置(36),尾水深度净化装置(37);
设备连接方式为:
粪污堆场(1)中的畜禽粪污经铲车输送入粪污料仓(2)中,粪污料仓(2)的出口与1#输送机(3)入口相连,1#输送机(3)出口与混合机(6)的粪污入口相连;
调理剂储仓(4)出口与2#输送机(5)入口相连;2#输送机(5)出口与混合机(6)的调理剂入口相连;混合机(6)出口与3#输送机(7)入口相连,3#输送机(7)出口与间接烘干装置(8)入口相连;
间接烘干装置(8)蒸汽出口与冷凝装置(12)入口相连,冷凝装置(12)不凝气出口与2#风机(13)入口相连;2#风机(13)出口与燃烧装置(15)空气入口相连。间接烘干装置(8)的烟气尾气出口与尾气净化装置(9)入口相连,尾气净化装置(9)出口与1#风机(10)入口相连,1#风机(10)出口与烟囱(11)相连;
间接烘干装置(8)固相出口与热解炭化装置(14)入口相连;热解炭化装置(14)产生的热解可燃气直接进入燃烧装置(15)作为燃料燃烧后作为热解炭化装置(14)自身能源使用;热解炭化装置(14)的烟气尾气出口与间接烘干装置(8)烟气入口相连,尾气显热作为间接烘干能源,实现余热回收;
热解炭化装置(14)的固相产物出口与间接冷却装置(16)入口相连;间接冷却装置(16)冷却空气出口与3#风机(17)入口相连,3#风机(17)出口与燃烧装置(15)空气入口相连;
间接冷却装置(16)固相产物出口与5#输送机(18)入口相连,5#输送机(18)出口与生物炭粉储仓(19)入口相连;
生物炭粉储仓(19)的生物炭粉1#出口与6#输送机(22)入口相连;6#输送机(22)出口与养殖废水吸附净化预处理装置(23)固相入口相连;生物炭粉储仓(19)的生物炭粉2#出口与8#输送机(21)入口相连;8#输送机(21)出口与调理剂储仓(4)入口相连; 生物炭粉储仓(19)的生物炭粉3#出口与7#输送机(20)入口相连;7#输送机(20)出口与强力混合机(32)入口相连;
养殖废水储池(24)废水出口与1#泵(25)入口相连;与养殖废水吸附净化预处理装置(23);养殖废水吸附净化预处理装置(23)出口与压滤装置(26)入口相连;压滤装置(26)固相出口与4#输送机(27)入口相连;4#输送机(27)出口与混合机(6)相连;压滤装置(26)液相出口与2#泵(28)入口相连,2#泵(28)出口与养殖废水处理系统(29)入口相连,养殖废水处理系统(29)出口与尾水深度净化装置(36)入口相连;
粘结剂储仓(30)出口与定量给料机(31)入口相连,定量给料机(31)出口与强力混合机(32)入口相连,强力混合机(32)出口与成型造粒机(33)入口相连,成型造粒机(33)出口与9#输送装置(34)入口相连,9#输送装置(34)出口生物炭颗粒储仓(35)入口相连,生物炭颗粒储仓(35)出口与10#输送装置(36)入口相连,10#输送装置(36)出口与尾水深度净化装置(37)入口相连。
进一步,其特征在于,
所述的粪污堆场(1)为常规防渗粪污堆场;粪污料仓(2)普通开口式钢质方型料仓或圆形料仓;1#输送机(3)、3#输送机(7)与4#输送机(27)为皮带输送机或或螺旋输送机;调理剂储仓(4)、生物炭粉储仓(19)、生物炭颗粒储仓(35)为密闭普通钢质方型储仓或圆形储仓;2#输送机(5)、5#输送机(18)、6#输送机(22),7#输送机(20)与8#输送机(21)为气力输送机、埋刮板输送机或螺旋输送机;混合机(6)为双轴混合机、螺带混合机或犁刀式混合机;间接烘干装置(8)为圆盘干燥机或滚筒干燥机,干燥方式为烟气间接加热烘干;尾气净化装置(9)为常规湿法、干法或半干法烟气净化系统,优选干法或半干法烟气净化系统;1#风机(10)与3#风机(17)为普通高温风机;烟囱(11)为普通钢质、砖质或混凝土质烟囱;冷凝装置(12)为间接蒸汽冷凝装置;2#风机(13)为常规引风机;热解炭化装置(14)为固定床、流化床或滚筒式间接热解炭化装置;燃烧装置(15)为常规天然气或热解气燃烧装置;间接冷却装置(16)为滚筒冷却机、螺旋输送冷却机与管束式冷却换热装置,冷却方式为空气间接冷却;养殖废水吸附净化预处理装置(23)为带搅拌装置的混合罐,材质为钢质或混凝土质;养殖废水储池(24)为混凝土质储水池;1#泵(25)与2#泵(28)为常规水泵;压滤装置(26)为板框压滤机、高压脱水机或真空带式压滤机;养殖废水处理系统(29)为常规生化法养殖废水处理系统;粘结剂储仓(30)为普通带加热装置的钢制储仓;定量给料机(31)螺旋秤;强力混合机(32)为混碾机或螺带式混合机;成型造粒机(33)为平模造粒机、环模造料机或对辊成型机;9#输送装置(34)与10#输送装置(36)为皮带输送机或斗提机;尾水深度净化装置(37)为普通固 定床式吸附装置。
本发明利用生物炭来调理猪粪污,利用了生物炭多孔吸湿特征,解决猪粪脱水难的问题;同时,经生物炭与猪粪混合调理后,极大降低了猪粪的粘度,从而为输送以及生产提供条件。选用自产的猪粪生物炭循环使用,作为调理剂有良好的便利条件,这也是这个工艺特色之一,也避免使用猪粪预脱水设备。若选用其它生物炭,则其特征与粪污生物炭不同,且来源供给等都有问题,成本较高。
采用本发明技术方案所产生的有益效果在于:
1)畜禽粪污特别是猪粪难以干燥,能耗大,如何在炭化前提高脱水效率,降低成本是本发明的一个重要要解决的问题。本发明制备得到的生物炭粉末用于畜禽粪污干燥前的调理预处理,充分利用其多孔性能,利用畜禽粪污制备得到的生物炭的多孔性能及吸湿特征,形成脱水骨架,大大提高了畜禽粪污干燥效率;将畜禽养殖粪污调理后进行干燥脱水,然后热解炭化制备生物炭粉末,实现高效减量化与资源化利用,完全消减抗生素,固化重金属。
本发明的集成设备系统不仅解决了粪污制备生物炭的问题,还能解决其对于养殖污水协同处理问题。
2)本发明采用干燥与间接热解炭化工艺,温度控制简单,系统运行稳定,处理量大。热解炭化产生的热解产生的可燃气直接引入燃烧装置炉膛中燃烧,高温烟气用于热解炭化装置供热;间接冷却以空气为却介质,空气被预热后作为燃烧所用的空气,提高燃烧效率;热解炭化装置出口烟气尾气作为低温烘干脱水间接加热的热源,实现余热回收用,最后烟气被净化后直接排放,实现综合处理系统能源自给,充分实现余热余能的回收利用,节能减排效益显著。
将生物炭粉末直接利用,对于土壤改良来讲,必须与其它材料复配成基质,才能利用,否则单独粉末施入土壤,流失量大,效果无法充分发挥。本发明将生物炭粉末与粘结剂混合,然后成型,制备生物炭颗粒,可以直接用于土壤改良;可以作为吸附脱色剂用于养殖废水尾水排放前的深度净化,最后再用于土壤改良,为养殖废水尾水超低排放提供良好的吸附材料。
将生物炭粉末添加到养殖废水中,预先吸附去除部分COD、氨氮、磷等有效元素以及抗生素等微污染物,然后经压滤后与调质畜禽粪污一起混合,进行干燥脱水与热解炭化工序,极大减少了养殖废水中污染物,降低其后续处理成本,显著提高了生物炭的品质。众所周知,现在养殖污水的处理非常困难,去除COD、氨氮、磷工艺复杂;如果能够利用粪污热解炭化系统,将水处理的大量污染物吸附后直接进行高温热解处理,大大降低了养殖 污水生化处理负荷,这对于降低污水处理成本具有重要意义。
综上所述,本发明的优势在于工艺简单,投资少,运行管理费用低,能源效率高,不产生尾气污染和其它任何环保问题,能够同时实现养殖粪污与养殖废水综合处理,技术经济可行的同时,节能环保效益显著,充分体现了清洁生产与循环经济理念。
附图说明
图1是本发明涉及的工艺设备系统流程图。
图2是PM、CM及其生物炭样品的S BET结果图。
图3是PM、CM及其生物炭样品中重金属Cr和Pb的形态分布图。
图4是PM、CM及其生物炭样品中重金属Ni、Cd和As的形态分布图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1:
下面结合附图对本发明作进一步说明:
请参阅图1。其中1.粪污堆场,2.粪污料仓,3.1#输送机,4.调理剂储仓,5.2#输送机,6.混合机,7.3#输送机,8.间接烘干装置,9.尾气净化装置,10.1#风机,11.烟囱,12.冷凝装置,13.2#风机,14.热解炭化装置,15.燃烧装置,16.间接冷却装置,17.3#风机,18.5#输送机,19.生物炭粉储仓,20.7#输送机,21.8#输送机,22.6#输送机,23.养殖废水吸附净化预处理装置,24.养殖废水储池,25.1#泵,26.压滤装置,27.4#输送机,28.2#泵,29.养殖废水处理系统,30.粘结剂储仓,31.定量给料机,32.强力混合机,33.成型造粒机,34.9#输送装置,35.生物炭颗粒储仓,36.10#输送装置,37.尾水深度净化装置。
主要包括:粪污堆场(1),粪污料仓(2),1#输送机(3),调理剂储仓(4),2#输送机(5),混合机(6),3#输送机(7),间接烘干装置(8),尾气净化装置(9),1#风机(10),烟囱(11),冷凝装置(12),2#风机(13),热解炭化装置(14),燃烧装置(15),间接冷却装置(16),3#风机(17),5#输送机(18),生物炭粉储仓(19),7# 输送机(20),8#输送机(21),6#输送机(22),养殖废水吸附净化预处理装置(23),养殖废水储池(24),1#泵(25),压滤装置(26),4#输送机(27),2#泵(28),养殖废水处理系统(29),粘结剂储仓(30),定量给料机(31),强力混合机(32),成型造粒机(33),9#输送装置(34),生物炭颗粒储仓(35),10#输送装置(36),尾水深度净化装置(37)。
设备连接方式为:
粪污堆场(1)中的畜禽粪污经铲车输送入粪污料仓(2)中,粪污料仓(2)的出口与1#输送机(3)入口相连,1#输送机(3)出口与混合机(6)的粪污入口相连;
调理剂储仓(4)出口与2#输送机(5)入口相连;2#输送机(5)出口与混合机(6)的调理剂入口相连;混合机(6)出口与3#输送机(7)入口相连,3#输送机(7)出口与间接烘干装置(8)入口相连;
间接烘干装置(8)蒸汽出口与冷凝装置(12)入口相连,冷凝装置(12)不凝气出口与2#风机(13)入口相连;2#风机(13)出口与燃烧装置(15)空气入口相连。间接烘干装置(8)的烟气尾气出口与尾气净化装置(9)入口相连,尾气净化装置(9)出口与1#风机(10)入口相连,1#风机(10)出口与烟囱(11)相连;
间接烘干装置(8)固相出口与热解炭化装置(14)入口相连;热解炭化装置(14)产生的热解可燃气直接进入燃烧装置(15)作为燃料燃烧后作为热解炭化装置(14)自身能源使用;热解炭化装置(14)的烟气尾气出口与间接烘干装置(8)烟气入口相连,尾气显热作为间接烘干能源,实现余热回收;
热解炭化装置(14)的固相产物出口与间接冷却装置(16)入口相连;间接冷却装置(16)冷却空气出口与3#风机(17)入口相连,3#风机(17)出口与燃烧装置(15)空气入口相连;
间接冷却装置(16)固相产物出口与5#输送机(18)入口相连,5#输送机(18)出口与生物炭粉储仓(19)入口相连;
生物炭粉储仓(19)的生物炭粉1#出口与6#输送机(22)入口相连;6#输送机(22)出口与养殖废水吸附净化预处理装置(23)固相入口相连;生物炭粉储仓(19)的生物炭粉2#出口与8#输送机(21)入口相连;8#输送机(21)出口与调理剂储仓(4)入口相连;生物炭粉储仓(19)的生物炭粉3#出口与7#输送机(20)入口相连;7#输送机(20)出口与强力混合机(32)入口相连;
养殖废水储池(24)废水出口与1#泵(25)入口相连;与养殖废水吸附净化预处理装置(23);养殖废水吸附净化预处理装置(23)出口与压滤装置(26)入口相连;压滤装 置(26)固相出口与4#输送机(27)入口相连;4#输送机(27)出口与混合机(6)相连;压滤装置(26)液相出口与2#泵(28)入口相连,2#泵(28)出口与养殖废水处理系统(29)入口相连,养殖废水处理系统(29)出口与尾水深度净化装置(36)入口相连;
粘结剂储仓(30)出口与定量给料机(31)入口相连,定量给料机(31)出口与强力混合机(32)入口相连,强力混合机(32)出口与成型造粒机(33)入口相连,成型造粒机(33)出口与9#输送装置(34)入口相连,9#输送装置(34)出口生物炭颗粒储仓(35)入口相连,生物炭颗粒储仓(35)出口与10#输送装置(36)入口相连,10#输送装置(36)出口与尾水深度净化装置(37)入口相连。
所述的粪污堆场(1)为常规防渗粪污堆场。
所述的粪污料仓(2)普通开口式钢质方型料仓或圆形料仓。
所述的1#输送机(3)、3#输送机(7)与4#输送机(27)为皮带输送机或或螺旋输送机。
调理剂储仓(4)、生物炭粉储仓(19)、生物炭颗粒储仓(35)为密闭普通钢质方型储仓或圆形储仓。
所述的2#输送机(5)、5#输送机(18)、6#输送机(22),7#输送机(20)与8#输送机(21)为气力输送机、埋刮板输送机或螺旋输送机。
所述的混合机(6)为双轴混合机、螺带混合机或犁刀式混合机。
所述的间接烘干装置(8)为圆盘干燥机或滚筒干燥机,干燥方式为烟气间接加热烘干。
所述尾气净化装置(9)为常规湿法、干法或半干法烟气净化系统,优选干法或半干法烟气净化系统。
所述1#风机(10)与3#风机(17)为普通高温风机。
所述烟囱(11)为普通钢质、砖质或混凝土质烟囱。
所述冷凝装置(12)为间接蒸汽冷凝装置。
所述2#风机(13)为常规引风机。
所述热解炭化装置(14)为固定床、流化床或滚筒式间接热解炭化装置;
所述燃烧装置(15)为常规天然气或热解气燃烧装置。
所述间接冷却装置(16)为滚筒冷却机、螺旋输送冷却机与管束式冷却换热装置,冷却方式为空气间接冷却。
所述养殖废水吸附净化预处理装置(23)为带搅拌装置的混合罐,材质为钢质或混凝土质。
所述养殖废水储池(24)为混凝土质储水池。
所述1#泵(25)与2#泵(28)为常规水泵。
所述压滤装置(26)为板框压滤机、高压脱水机或真空带式压滤机。
所述养殖废水处理系统(29)为常规生化法养殖废水处理系统。
所述粘结剂储仓(30)为普通带加热装置的钢制储仓。
所述定量给料机(31)螺旋秤。
所述强力混合机(32)为混碾机或螺带式混合机。
所述成型造粒机(33)为平模造粒机、环模造料机或对辊成型机。
所述9#输送装置(34)与10#输送装置(36)为皮带输送机或斗提机。
所述尾水深度净化装置(37)为普通固定床式吸附装置。
方法步骤:
调理:粪污堆场(1)中的畜禽粪污经铲车输送入粪污料仓(2)中,经1#输送机(3)输送到混合机(6)中;调理剂储仓(4)中的粪污生物炭经2#输送机输送进入混合机(6),与畜禽粪污进行混合调质。调理剂为系统产生的生物炭粉末,重量添加比例为畜禽粪污湿基重量15%-30%。
干燥脱水:混合机(6)中的调质混合物经3#输送机(7)输送进入间接烘干装置(8)进行低温预烘干脱水,使含水率降至<10%,得到烘干脱水后的畜禽粪污,水蒸汽和剩余少量尾气;水蒸气进入冷凝装置(12)冷凝,得到冷凝水可以直接用于绿化用水,不凝气出口经2#风机(13)抽送至燃烧装置(15)作为燃烧补充气,避免烘干臭气污染。间接烘干装置(8)的烟气尾气进入尾气净化装置(9)净化处理,净化后的烟气经1#风机(10)抽送进入烟囱(11)达标排放。畜禽粪污进行低温预烘干脱水温度范围控制在<90℃,物料停留时间为30-120min。
热解炭化:间接烘干装置(8)得到的脱水畜禽粪污直接进入热解炭化装置(14)进行热解炭化处理;热解炭化装置(14)产生的热解可燃气直接进入燃烧装置(15)作为燃料燃烧后作为热解炭化装置(14)自身能源使用;热解炭化装置(14)的烟气尾气作为间接烘干装置(8)的能源,实现余热回收,梯级利用。热解炭化温度控制在温度范围为300℃-500℃,物料停留时间为30-60min。
冷却回收:热解炭化装置(14)产生的高温生物炭粉末进入间接冷却装置(16)进行冷却,冷却终温小于40℃。冷却后的生物炭粉末经5#输送机(18)输送进入生物炭粉储仓(19)中;生物炭粉储仓(19)中的生物炭粉末分为三个用途:一是通过8#输送机(21)输送,进入调理剂储仓(4)作为调质添加剂;二、是通过6#输送机(22)输送至养殖废水吸附净化预处理装置(23)中,吸附去除养殖废水中部分COD、氨氮、磷等有效元素以 及抗生素等微污染物。三、是用于后续与粘结剂在强力混合机(32)中混合后经成型造粒机(33)成型制备生物炭颗粒。间接冷却装置(16)以空气为却介质,生物炭被冷却的同时空气被加热,加热的空气由3#风机(17)输送进入燃烧装置(15)中,作为燃烧空气使用,提高燃烧效率;
成型造粒:粘结剂储仓(30)中的粘结剂通过定量给料机(31)输送进入强力混合机(32)中;与利用7#输送机(20)送至强力混合机(32)中的生物炭粉末均匀混合,混合后物料直接送入成型造粒机(33)成型制备生物炭颗粒;所得生物炭颗粒经9#输送装置(34)输送进入生物炭颗粒储仓(35)中。制备生物炭颗粒,可以直接用于土壤改良,生物炭颗粒直接用于土壤改良时添加量150kg~3000kg/亩.年;也可以作为吸附脱色剂用于养殖废水尾水排放前的深度净化,最后再用于土壤改良。
养殖废水预处理:养殖废水储池(24)废水经1#泵(25)输送进入养殖废水吸附净化预处理装置(23)中;生物炭粉末经6#输送机(22)输送至养殖废水吸附净化预处理装置(23)中与养殖废水充分混合,添加比例为5g~100g/L,吸附去除养殖废水中部分COD、氨氮、磷等有效元素以及抗生素等微污染物;然后,经压滤装置(26)压滤,得到的固相通过4#输送机(27)输送进入混合机(6)中,与其它物料混合后协同处理,通过后续热解工艺使废水中的氮磷等有效元素固持在生物炭中,抗生素等有机污染物100%消减。压滤装置(26)得到的压滤废水经2#泵(28)输送进入养殖废水处理系统(29)处理。
(g)尾水深度净化:生物炭颗粒用于养殖废水尾水排放前深度吸附净化,实现超低标准排放。生物炭颗粒储仓(35)中的生物炭颗粒经10#输送装置(36)输送,进入尾水深度净化装置(37),添加比例为5g~20g/L。;养殖废水处理系统(29)处理后的尾水,在尾水深度净化装置(36)中被生物炭颗粒进一步吸附实现深度净化的目标,实现养殖废水超低排放,生物炭颗粒吸附P等有效元素后用于土壤改良,实现资源回收利用。
实施例2对抗生素消减的影响
方法:
按照实施例1的方法,对猪粪(PM)和鸡粪(CM)在不同温度下的热解制备生物炭,研究抗生素消减特征。结果如表1所示:
表1 PM、CM及其生物炭样品中的抗生素残留表
Figure PCTCN2020117593-appb-000001
Figure PCTCN2020117593-appb-000002
注:检测结果为ND表示未检出;LQD表示仪器定量限。
TYL为泰乐菌素;CIP为环丙沙星;ENR为恩诺沙星;TC为四环素;CTC为金霉素;DOXY为强力霉素;
样品PM为猪粪,PM300为热解温度为300℃时,由猪粪得到的生物炭;PM400为热解温度为400℃时,由猪粪得到的生物炭;PM500为热解温度为500℃时,由猪粪得到的生物炭;PM600为热解温度为600℃时,由猪粪得到的生物炭;PM700为热解温度为700℃时,由猪粪得到的生物炭;
样品CM为鸡粪,CM300为热解温度为300℃时,由鸡粪得到的生物炭;PM400为热解温度为400℃时,由鸡粪得到的生物炭;PM500为热解温度为500℃时,由鸡粪得到的生物炭;PM600为热解温度为600℃时,由鸡粪得到的生物炭;PM700为热解温度为700℃时,由鸡粪得到的生物炭。
表1结果表明:当热解温度为300℃时,PM生物炭PM300和CM生物炭CM300中没有检出TYL、TC、CTC和SMZ残留。在此温度下,PM300中的DOXY从95500.24ug·kg -1降到了71.40ug·kg -1,CM300中的DOXY已经降到了定量限以下。当热解温度达到500℃时,PM500中的DOXY也降到了定量限以下,至600℃时,所有生物炭中TYL、TC、CTC和DOXY均未检出,表明这些抗生素已经被全部分解去除。因此,从抗生素100%消减角度,热解温度至500℃即可满足环境要求。
实施例3生物炭比表面积的影响
同实施例1,对猪粪(PM)和鸡粪(CM)在不同温度下的热解得到的BET测定值如图2所示。从图2可以看出,畜禽粪污热解所得生物炭比表面积随着热解温度升高而明显增加。
实施例4畜禽粪污中重金属的影响
同实施例1,对鸡粪(CM)、猪粪(PM)进行热解,开展重金属生态风险评估,结果见表2和图3-4。表2列出了PM、CM及其生物炭中重金属的总量和《农用污泥污染物控制标准》(GB 4282-2018)中重金属的浓度阈值作为讨论的参考值。
表2 PM、CM及其生物炭样品的重金属总量表
Figure PCTCN2020117593-appb-000003
注:ND表示未检出; a《农用污泥污染物控制标准》(GB 4282—2018),A级产物允许 使用的农用地类型为耕地、园地、牧草地,B级产物为园地、牧草地、不种植食用农作物的耕地。
样品PM,PM300,PM400,PM500,PM600,PM700;样品CM,CM300,PM400,PM500,PM600,PM700。同表1。
从表2可以看出,畜禽粪污生物炭中的重金属的浓度都在参考标准的浓度阈值以内。
重金属元素在环境中的毒性主要与其化学形态有关。BCR连续提取法测定的重金属四种形态中,从F1到F4毒性依次降低,其中弱酸提取态(F1)和可还原态(F2)很容易被植物吸收,属于生物可利用态;可氧化态(F3)在长期使用中存在一定的风险;残渣态(F4)属于相对稳定的重金属形态。PM、CM及其生物炭样品中重金属的形态分布如图3-4所示。结果表明,Cr主要以(F3+F4)态存在,在PM和CM中所占比例分别为98.19%和89.77%,在PM700和CM700中的比例分别为99.95%和99.60%。Pb主要以F4态存在,在PM300中,Pb的F4态接近100%。Ni、Cd和As的(F1+F2)态所占比例高于Cr和Pb,PM和CM中Ni的(F1+F2)态所占比例分别为28.55%和22.06%,在PM300和CM300中的比例分别降到0.89%和4.00%,而进一步升高热解温度对Ni的(F1+F2)态所占比例的影响不大,但F3态的比例明显下降,F4态的比例增加,Cd和As的变化趋势与Ni相同。PM、CM及其生物炭中重金属的形态分布结果表明,热解温度的升高总体上有利于重金属(F1+F2)态向更稳定的(F3+F4)态,F3态向F4态转化,较高的热解温度取得较好的重金属稳定固化效果。
采用TCLP毒性浸出法对生物炭样品中的重金属浸出毒性进行测试,结果见表3。
表3 PM、CM及其生物炭样品的重金属浸出浓度表
Figure PCTCN2020117593-appb-000004
Figure PCTCN2020117593-appb-000005
注:ND表示未检出; aUSEPA:40 CFR 261 1993。
样品PM,PM300,PM400,PM500,PM600,PM700;样品CM,CM300,PM400,PM500,PM600,PM700。同表1。
从表3可以看出,PM及其生物炭中Cr、Ni、Cd和As的浸出浓度都很低且小于标准浓度阈值。CM生物炭中各种重金属的浸出浓度都小于标准浓度阈值,且随着热解温度的升高,多数重金属的浸出浓度降低。随着热解温度的升高,不同重金属的浸出率都明显降低,热解炭化处理能显著降低PM和CM中重金属的浸出毒性。
实施例4畜禽粪污生物炭中磷元素浸出特征
根据本发明方法,选取浙江某养殖场的猪粪(PM)在300℃温度下热解45min得到猪粪生物炭,冷却至室温后粉碎过100目筛,装于干燥密闭容器待分析,标记为PM3。称取5g猪粪生物炭(PM3),加入250mL的水,在温度为30℃、转速为200r/min的摇床中连续振荡1d,7d,28d,每次取样5mL经0.45μm微孔滤膜过滤后的溶液用钼酸铵法测其磷含量。参照控释肥的缓释性能评价标准(如表4),进行磷元素浸出评价,磷元素溶出率结果如表5所示。
表4控释肥的缓释性能评价标准
Figure PCTCN2020117593-appb-000006
表5生物炭的磷元素溶出率
Figure PCTCN2020117593-appb-000007
结果表明:若将猪粪原料直接利用,磷元素的溶出超过了规定限值,易造成磷流失与磷污染;300℃热解得到的猪粪生物炭(PM3)的磷元素溶出满足标准值,可以直接施用于土壤并达到磷肥的效果。
实施例5畜禽粪污生物炭用于种植小白菜
将鸡粪作为原料采用实施例1的方法,在400℃温度下进行热解炭化,得到鸡粪生物炭CM400,其基本性质见表6。
表6生物炭CM400的主要技术指标表
Figure PCTCN2020117593-appb-000008
将所得生物炭用于种植,开展盆栽实验,供试土壤为赤红壤,采自厦门市翔安区某养殖场附近的蔬菜地土壤。供试小白菜为台湾四季快菜。盆栽实验设置2个处理,即空白对照(简称CK)、鸡粪生物炭CM400添加重量比例为4%(简称CB4)。盆栽在上口径、高和下口径分别为20cm×17cm×14cm的塑料盆中进行,每盆装3.0kg,每个处理设3个重复;盆栽在温室中进行。播种前按田间最大持水量70%浇透水,放置24h后每盆播种30粒种子。待出苗1周后间苗,每盆保留生长健壮幼苗6株,将盆栽随机排列放置,每天变换盆栽的位置,以确保每盆得到均匀光照。小白菜培养过程中不施肥,不打农药,每日补充一次水分。从播种开始计算,在温室中培养45d后收获。收获时沿土壤表层将小白菜剪下,分别截取地上部茎叶和地下部根系,冲洗干净并甩干附着水分后称取鲜重。将茎叶和根系样品置于105℃烘箱中杀青30min后,60℃烘干至恒重后称重,得到茎叶干重和根系干重。
结果见表7。
表7生物炭对小白菜产量的影响表
Figure PCTCN2020117593-appb-000009
从表7可知,CM400添加量为4%时小白菜的茎叶鲜重是空白对照的1.2倍,同时小白菜的根系鲜重和茎叶干重也有所增加。这说明生物炭适量的添加有利于提高作物的产量。
收获时采集根系周围的土壤,未添加生物炭土壤记为Soil CK,添加4%生物炭的土壤样品分别记为Soil CB4。采集到的土壤样品在105℃烘箱中烘干,粉碎过100目筛后按国标测定土壤电导率(EC)、阳离子交换量(CEC)、有效磷及速效钾,结果如表8所示。
表8种植前后根际土壤检测结果表
Figure PCTCN2020117593-appb-000010
从表8可知,鸡粪生物炭的添加提高了土壤的电导率。经过小白菜种植之后,空白对照组的电导率下降,而添加了生物炭的土壤的电导率增加。
阳离子交换量(CEC)是样品中全部水解性酸和交换性盐基(K +、Na +、Ca 2+、Mg 2+、NH 4 +、H +、Al 3+等)的总量。土壤的阳离子交换量直接反应土壤是否拥有养分,是改良土壤和合理施肥的重要依据。添加鸡粪生物炭后,土壤的CEC升高,说明生物炭的添加改善了土壤的保肥供肥能力,提高了土壤肥力。小白菜种植之后,土壤的CEC有所下降,说明部分土壤中的水解性酸或交换性盐基物被植物吸收利用。添加生物炭的土壤在小白菜种植之后的CEC仍然比空白对照组的高,生物炭的添加可以持续提高土壤的肥力。添加生物炭的土壤中有效磷和速效钾的含量有所提高,这可能是因为种植过程中铵态氮被植物吸收利用,而生物炭中的P和K向植物可利用态转化所致,所以生物炭的施加增加了土壤中有效磷和速效钾的含量。总体而言,生物炭的碳架结构可以起着载体的作用,实现炭质-矿物质-化肥养分的结合,延缓化肥的快速溶解释放过程,从而起到缓释化肥的作用,最终提高有效元素的利用效率、减少化肥使用量。
实施例6
按照本发明方法,将猪粪在400℃温度下进行热解炭化,得到的生物炭冷却后研磨成粉,筛选100目以下并取0.5g作为实验样品,加入至装有50ml待测液体的三角锥形瓶里,封口,放入摇床里常温(25℃)震荡,摇床震速200r/min,24h后取出,得到 的液体离心分离得到固相与液相;液相经0.2μm滤膜过滤后得到待测液。分别采用催化快速法,纳氏试剂分光光度法(HJ535-2009),钼酸铵分光光度法(GB 11893-89)测定吸附前后COD、氨氮、总磷的变化量,折算成单位吸附量,如表9所示。
表9单位吸附量结果表
Figure PCTCN2020117593-appb-000011
从表9可以看出,所得生物炭对于废水中的COD、氨氮、总磷(TP)具有良好的吸附性能,在高COD或氨氮废水预处理、养殖废水尾水深度净化等领域具有良好的应用潜力。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种利用畜禽粪污循环处理养殖废水和/或土壤改良的方法,其特征在于,步骤为,
    调理:将畜禽粪污添加调理剂进行混合调理得到调理后的畜禽粪污;所述调理剂为生物炭;优选的,其畜禽粪污为猪粪污;混合调理使调理后的畜禽粪污的含水率<70%;
    干燥脱水:将调理后的畜禽粪污在烘干装置中进行低温预烘干脱水,使含水率降至<10%,得到烘干后的畜禽粪污,水蒸汽和剩余少量尾气;
    热解炭化:将所述烘干后的畜禽粪污于热解炭化装置中进行间接加热,得到生物炭粉末和可燃气;热解炭化装置产生的热解可燃气直接引入燃烧装置炉膛中燃烧,高温烟气用于热解炭化装置供热;热解炭化装置的出口烟气尾气作为干燥脱水步骤中低温预烘干脱水间接加热的热源,最后烟气被净化后直接排放;
    冷却回收:将所述生物炭粉经冷却装置间接冷却,回收高温生物炭的显热来预热空气,用于燃烧装置燃料燃烧所需空气;得到冷却生物炭粉末;得到的生物炭粉末可作为调理步骤的调理剂;
    养殖废水预处理:将上述所得的部分生物炭粉末添加到养殖废水中,吸附去除微污染物,然后经压滤,得到的固相产物与调理步骤中调理后的畜禽粪污一起混合,进入干燥脱水与热解炭化步骤,得到的液相废水采用常规养殖废水处理工艺处理即可;
    成型造粒:将上述所得的部分生物炭粉末与粘结剂混合,然后成型,制备生物炭颗粒;
    土壤改良或吸附净化:制备得到的生物炭颗粒直接用于土壤改良;或用于养殖废水的尾水排放前的深度吸附净化。
  2. 如权利要求1所述利用畜禽粪污循环处理养殖废水和/或土壤改良的方法,其特征在于,所述调理步骤中,调理剂的重量添加比例为畜禽粪污的湿基重量的20%-30%。
  3. 如权利要求1所述利用畜禽粪污循环处理养殖废水和/或土壤改良的方法,其特征在于,所述干燥脱水步骤中,畜禽粪污进行低温预烘干脱水的温度<90℃,物料停留时间为30-120min。
  4. 如权利要求1所述利用畜禽粪污循环处理养殖废水和/或土壤改良的方法,其特征在于,所述热解炭化步骤中,所述间接加热的温度为300℃-500℃,物料停留时间为30-60min。
  5. 如权利要求1所述利用畜禽粪污循环处理养殖废水和/或土壤改良的方法,其特征在于,所述冷却回收步骤中,所述间接冷却的终温小于40℃。
  6. 如权利要求1所述利用畜禽粪污循环处理养殖废水和/或土壤改良的方法,其特征在 于,所述养殖废水预处理步骤中,生物炭粉末的添加比例为5g~100g/L。
  7. 如权利要求1所述利用畜禽粪污循环处理养殖废水和/或土壤改良的方法,其特征在于,所述成型造粒步骤中,所述粘结剂为改性淀粉或CMC,所述成型的方式为平模造粒、环模造粒或对辊成型造粒。
  8. 如权利要求1所述利用畜禽粪污循环处理养殖废水和/或土壤改良的方法,其特征在于,所述土壤改良或吸附净化步骤中,生物炭颗粒直接用于土壤改良时,生物炭颗粒的添加量为150kg~3000kg/亩.年;用于养殖废水的尾水排放前的深度吸附净化时,生物炭颗粒添加量为5g~20g/L。
  9. 一种利用畜禽粪污循环处理养殖废水和/或土壤改良的装置,其特征在于,包括粪污堆场(1),粪污料仓(2),1#输送机(3),调理剂储仓(4),2#输送机(5),混合机(6),3#输送机(7),间接烘干装置(8),尾气净化装置(9),1#风机(10),烟囱(11),冷凝装置(12),2#风机(13),热解炭化装置(14),燃烧装置(15),间接冷却装置(16),3#风机(17),5#输送机(18),生物炭粉储仓(19),7#输送机(20),8#输送机(21),6#输送机(22),养殖废水吸附净化预处理装置(23),养殖废水储池(24),1#泵(25),压滤装置(26),4#输送机(27),2#泵(28),养殖废水处理系统(29),粘结剂储仓(30),定量给料机(31),强力混合机(32),成型造粒机(33),9#输送装置(34),生物炭颗粒储仓(35),10#输送装置(36),尾水深度净化装置(37);
    设备连接方式为:
    粪污堆场(1)中的畜禽粪污经铲车输送入粪污料仓(2)中,粪污料仓(2)的出口与1#输送机(3)入口相连,1#输送机(3)出口与混合机(6)的粪污入口相连;
    调理剂储仓(4)出口与2#输送机(5)入口相连;2#输送机(5)出口与混合机(6)的调理剂入口相连;混合机(6)出口与3#输送机(7)入口相连,3#输送机(7)出口与间接烘干装置(8)入口相连;
    间接烘干装置(8)蒸汽出口与冷凝装置(12)入口相连,冷凝装置(12)不凝气出口与2#风机(13)入口相连;2#风机(13)出口与燃烧装置(15)空气入口相连。间接烘干装置(8)的烟气尾气出口与尾气净化装置(9)入口相连,尾气净化装置(9)出口与1#风机(10)入口相连,1#风机(10)出口与烟囱(11)相连;
    间接烘干装置(8)固相出口与热解炭化装置(14)入口相连;热解炭化装置(14)产生的热解可燃气直接进入燃烧装置(15)作为燃料燃烧后作为热解炭化装置(14)自身能源使用;热解炭化装置(14)的烟气尾气出口与间接烘干装置(8)烟气入口相连,尾气显热作为间接烘干能源,实现余热回收;
    热解炭化装置(14)的固相产物出口与间接冷却装置(16)入口相连;间接冷却装置(16)冷却空气出口与3#风机(17)入口相连,3#风机(17)出口与燃烧装置(15)空气入口相连;
    间接冷却装置(16)固相产物出口与5#输送机(18)入口相连,5#输送机(18)出口与生物炭粉储仓(19)入口相连;
    生物炭粉储仓(19)的生物炭粉1#出口与6#输送机(22)入口相连;6#输送机(22)出口与养殖废水吸附净化预处理装置(23)固相入口相连;生物炭粉储仓(19)的生物炭粉2#出口与8#输送机(21)入口相连;8#输送机(21)出口与调理剂储仓(4)入口相连;生物炭粉储仓(19)的生物炭粉3#出口与7#输送机(20)入口相连;7#输送机(20)出口与强力混合机(32)入口相连;
    养殖废水储池(24)废水出口与1#泵(25)入口相连;与养殖废水吸附净化预处理装置(23);养殖废水吸附净化预处理装置(23)出口与压滤装置(26)入口相连;压滤装置(26)固相出口与4#输送机(27)入口相连;4#输送机(27)出口与混合机(6)相连;压滤装置(26)液相出口与2#泵(28)入口相连,2#泵(28)出口与养殖废水处理系统(29)入口相连,养殖废水处理系统(29)出口与尾水深度净化装置(36)入口相连;
    粘结剂储仓(30)出口与定量给料机(31)入口相连,定量给料机(31)出口与强力混合机(32)入口相连,强力混合机(32)出口与成型造粒机(33)入口相连,成型造粒机(33)出口与9#输送装置(34)入口相连,9#输送装置(34)出口生物炭颗粒储仓(35)入口相连,生物炭颗粒储仓(35)出口与10#输送装置(36)入口相连,10#输送装置(36)出口与尾水深度净化装置(37)入口相连。
  10. 如权利要求9所述利用畜禽粪污循环处理养殖废水和/或土壤改良的装置,其特征在于,
    所述的粪污堆场(1)为常规防渗粪污堆场;粪污料仓(2)普通开口式钢质方型料仓或圆形料仓;1#输送机(3)、3#输送机(7)与4#输送机(27)为皮带输送机或或螺旋输送机;调理剂储仓(4)、生物炭粉储仓(19)、生物炭颗粒储仓(35)为密闭普通钢质方型储仓或圆形储仓;2#输送机(5)、5#输送机(18)、6#输送机(22),7#输送机(20)与8#输送机(21)为气力输送机、埋刮板输送机或螺旋输送机;混合机(6)为双轴混合机、螺带混合机或犁刀式混合机;间接烘干装置(8)为圆盘干燥机或滚筒干燥机,干燥方式为烟气间接加热烘干;尾气净化装置(9)为常规湿法、干法或半干法烟气净化系统,优选干法或半干法烟气净化系统;1#风机(10)与3#风机(17)为普通高温风机;烟囱(11)为普通钢质、砖质或混凝土质烟囱;冷凝装置(12)为间接蒸汽冷凝装置;2#风机(13)为常 规引风机;热解炭化装置(14)为固定床、流化床或滚筒式间接热解炭化装置;燃烧装置(15)为常规天然气或热解气燃烧装置;间接冷却装置(16)为滚筒冷却机、螺旋输送冷却机与管束式冷却换热装置,冷却方式为空气间接冷却;养殖废水吸附净化预处理装置(23)为带搅拌装置的混合罐,材质为钢质或混凝土质;养殖废水储池(24)为混凝土质储水池;1#泵(25)与2#泵(28)为常规水泵;压滤装置(26)为板框压滤机、高压脱水机或真空带式压滤机;养殖废水处理系统(29)为常规生化法养殖废水处理系统;粘结剂储仓(30)为普通带加热装置的钢制储仓;定量给料机(31)螺旋秤;强力混合机(32)为混碾机或螺带式混合机;成型造粒机(33)为平模造粒机、环模造料机或对辊成型机;9#输送装置(34)与10#输送装置(36)为皮带输送机或斗提机;尾水深度净化装置(37)为普通固定床式吸附装置。
PCT/CN2020/117593 2020-03-23 2020-09-25 一种利用畜禽粪污循环处理养殖废水和/或土壤改良的方法及装置 WO2021189791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010206083.5 2020-03-23
CN202010206083.5A CN111423096A (zh) 2020-03-23 2020-03-23 一种利用畜禽粪污循环处理养殖废水和/或土壤改良的方法及装置

Publications (1)

Publication Number Publication Date
WO2021189791A1 true WO2021189791A1 (zh) 2021-09-30

Family

ID=71548691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117593 WO2021189791A1 (zh) 2020-03-23 2020-09-25 一种利用畜禽粪污循环处理养殖废水和/或土壤改良的方法及装置

Country Status (2)

Country Link
CN (1) CN111423096A (zh)
WO (1) WO2021189791A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114315090A (zh) * 2021-12-31 2022-04-12 广东益康生环保设备有限公司 一种养殖场粪污干化方法和设备
CN114570330A (zh) * 2022-03-15 2022-06-03 福建稻田科技有限公司 一种生物炭材料及其快速净化畜禽养殖废水工艺
CN114684974A (zh) * 2022-04-22 2022-07-01 北京交通大学 一种源分离尿液处理系统及方法
CN116041102A (zh) * 2022-12-12 2023-05-02 塔里木大学 一种生物炭堆肥装置及方法、有机复合肥

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111423096A (zh) * 2020-03-23 2020-07-17 中国科学院城市环境研究所 一种利用畜禽粪污循环处理养殖废水和/或土壤改良的方法及装置
CN112028196A (zh) * 2020-08-12 2020-12-04 江苏里下河地区农业科学研究所 一种作物田绿色高效利用水产养殖尾水方法
CN112159063A (zh) * 2020-10-26 2021-01-01 哈尔滨工业大学 一种污泥热解安全资源化利用工艺
GB202101583D0 (en) * 2021-02-04 2021-03-24 Safe Waste Tech Limited Waste Treatment Apparatus and Method
CN113620744A (zh) * 2021-08-13 2021-11-09 中国科学院城市环境研究所 一种富磷生物炭及其制备方法、包含富磷生物炭的水培营养液
CN114540034B (zh) * 2022-01-17 2023-07-04 浙江省生态环境科学设计研究院 一种六价铬污染土壤修复药剂及其制备和应用
CN115403239A (zh) * 2022-08-02 2022-11-29 许国仁 一种污泥可利用能源绿色低碳干化处理工艺
CN115417548A (zh) * 2022-09-01 2022-12-02 中国环境科学研究院 黑水原位资源化方法和设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103951149A (zh) * 2014-04-25 2014-07-30 广东省生态环境与土壤研究所 一种有机废物制备生物炭的工艺
CN105418171A (zh) * 2016-01-12 2016-03-23 中国科学院城市环境研究所 一种富磷生物肥料的制备方法及其装置
US20170362135A1 (en) * 2011-06-06 2017-12-21 Cool Planet Energy Systems, Inc. Treated biochar for use in water treatment systems
CN109879576A (zh) * 2019-03-20 2019-06-14 北京科技大学 应用微波技术进行畜禽粪便干燥与热解处理装置及方法
CN110240386A (zh) * 2019-07-11 2019-09-17 中国科学院城市环境研究所 一种秸秆与污泥协同处理的装置及其方法
CN111423096A (zh) * 2020-03-23 2020-07-17 中国科学院城市环境研究所 一种利用畜禽粪污循环处理养殖废水和/或土壤改良的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170362135A1 (en) * 2011-06-06 2017-12-21 Cool Planet Energy Systems, Inc. Treated biochar for use in water treatment systems
CN103951149A (zh) * 2014-04-25 2014-07-30 广东省生态环境与土壤研究所 一种有机废物制备生物炭的工艺
CN105418171A (zh) * 2016-01-12 2016-03-23 中国科学院城市环境研究所 一种富磷生物肥料的制备方法及其装置
CN109879576A (zh) * 2019-03-20 2019-06-14 北京科技大学 应用微波技术进行畜禽粪便干燥与热解处理装置及方法
CN110240386A (zh) * 2019-07-11 2019-09-17 中国科学院城市环境研究所 一种秸秆与污泥协同处理的装置及其方法
CN111423096A (zh) * 2020-03-23 2020-07-17 中国科学院城市环境研究所 一种利用畜禽粪污循环处理养殖废水和/或土壤改良的方法及装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114315090A (zh) * 2021-12-31 2022-04-12 广东益康生环保设备有限公司 一种养殖场粪污干化方法和设备
CN114570330A (zh) * 2022-03-15 2022-06-03 福建稻田科技有限公司 一种生物炭材料及其快速净化畜禽养殖废水工艺
CN114684974A (zh) * 2022-04-22 2022-07-01 北京交通大学 一种源分离尿液处理系统及方法
CN114684974B (zh) * 2022-04-22 2023-08-11 北京交通大学 一种源分离尿液处理系统及方法
CN116041102A (zh) * 2022-12-12 2023-05-02 塔里木大学 一种生物炭堆肥装置及方法、有机复合肥

Also Published As

Publication number Publication date
CN111423096A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
WO2021189791A1 (zh) 一种利用畜禽粪污循环处理养殖废水和/或土壤改良的方法及装置
Shen et al. Effect of pyrolysis temperature on characteristics, chemical speciation and environmental risk of Cr, Mn, Cu, and Zn in biochars derived from pig manure
CN103121882B (zh) 一种生物质秸秆炭基有机肥及其生产方法
CN102173888B (zh) 一种污泥炭肥及其生产方法
CN1331819C (zh) 利用污泥粉煤灰混合造粒净化气体并副产复合肥料的方法
Samoraj et al. Biochar in environmental friendly fertilizers-Prospects of development products and technologies
CN103787750A (zh) 一种生物炭畜禽粪便堆肥调理剂及其制备和使用方法
CN115259952B (zh) 一种生物碳基土壤改良剂及其制备方法
CN106588274A (zh) 一种以农业固体废弃物制备生物质炭基缓释有机肥的方法
CN104119162A (zh) 粉煤灰压缩营养土的生产方法
CN103641593B (zh) 一种利用沼液制取园林基质的方法
CN108218571A (zh) 一种分散式养猪场发酵粪污与沸石复混制备缓释肥方法
CN112250503A (zh) 一种天然吸附材料复配的生物有机肥以及制备方法
CN104130072B (zh) 活性炭残渣压缩营养土的生产方法
CN104119194B (zh) 碳酸钙渣压缩营养土的生产方法
CN104119171B (zh) 石墨尾矿压缩营养土的生产方法
CN110229671A (zh) 一种土壤调理剂的制备方法及应用
CN107043291B (zh) 一种利用畜禽粪便制备具有缓释肥料功能的土壤修复袋的方法
CN105347972A (zh) 以介孔氧化硅为重金属钝化剂和微生物载体的堆肥方法
CN112374948A (zh) 一种酸性土壤复合改良剂及其制备方法
CN114561218B (zh) 一种废弃生物秸秆制备的镉污染土壤调理剂及其制备方法
CN110283023A (zh) 一种用于修复土壤镉污染的多效能玉米秸秆生物炭复合肥料及其制备方法
CN108840726A (zh) 一种微生物有机肥生产工艺
CN113620744A (zh) 一种富磷生物炭及其制备方法、包含富磷生物炭的水培营养液
CN1162581A (zh) 一种新型复合生物肥料成套生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926401

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20926401

Country of ref document: EP

Kind code of ref document: A1