WO2021189775A1 - 球形微型led及其制造方法、显示面板及其转移方法 - Google Patents

球形微型led及其制造方法、显示面板及其转移方法 Download PDF

Info

Publication number
WO2021189775A1
WO2021189775A1 PCT/CN2020/113524 CN2020113524W WO2021189775A1 WO 2021189775 A1 WO2021189775 A1 WO 2021189775A1 CN 2020113524 W CN2020113524 W CN 2020113524W WO 2021189775 A1 WO2021189775 A1 WO 2021189775A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
semiconductor layer
layer
micro led
spherical
Prior art date
Application number
PCT/CN2020/113524
Other languages
English (en)
French (fr)
Inventor
唐彪
许时渊
刘海平
冯中山
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010208376.7A external-priority patent/CN111540815A/zh
Priority claimed from CN202010211503.9A external-priority patent/CN111540819A/zh
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Publication of WO2021189775A1 publication Critical patent/WO2021189775A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the present invention relates to the fields of display technology and LED technology, to a spherical micro LED and a manufacturing method thereof, and to a display panel including the spherical micro LED and a transfer method thereof.
  • Micro LED or Micro LED
  • mass transfer technology In order to realize the display function, multiple Micro LEDs need to be loaded on the backplane to form a micro LED array.
  • mass transfer technologies mainly include electrostatic transfer, microprinting, and fluid assembly.
  • the fluid assembly uses the brush bucket to roll on the substrate, so that the Micro LED is placed in a liquid suspension, and the LED falls into the corresponding loading well on the substrate through fluid force.
  • the Micro LEDs in the related technology are all rectangular parallelepiped or cylindrical structures.
  • the Micro LED falls on the loading well on the substrate, due to its structure, it is difficult for the Micro LED to accurately align with the loading well on the substrate.
  • the problem that Micro LED cannot be embedded in the loading well is prone to occur, which greatly limits the transfer yield and production efficiency.
  • the technical problem to be solved by the present invention is to provide a spherical micro LED and a manufacturing method thereof, a display panel and a transfer method thereof in view of the above-mentioned defects of the prior art, which has the advantage of convenient alignment and can effectively improve the transfer yield and production efficiency.
  • a spherical miniature LED including:
  • a first electrode and a second electrode the first electrode is connected to the first semiconductor layer, and the second electrode is connected to the second semiconductor layer;
  • the first semiconductor layer, the second semiconductor layer, and the light emitting layer form a spherical structure, and a spherical structure is provided outside the first semiconductor layer, the second semiconductor layer and the light emitting layer, and the spherical structure
  • the package is arranged on the outer surface of the spherical structure.
  • the second electrode includes a magnetic conductive material, and the magnetism of the second electrode is opposite to that of the magnetic metal gasket arranged in the loading well.
  • the magnetic conductive material in the second electrode forms a patterned shape.
  • the patterned shape is triangle, rectangle, circle, cross, or ring.
  • the spherical micro LED includes an R-type LED, a G-type LED, and a B-type LED, and the diameter of the spherical structure on the R-type LED, the G-type LED and the B-type LED is different.
  • it also includes an insulating layer
  • the first electrode covers at least part of the surface of the first semiconductor layer
  • the second electrode covers at least part of the surface of the second semiconductor layer
  • the insulating layer covers or covers the light emitting layer. Outside the light-emitting layer and part of the surface of the first semiconductor layer and the second semiconductor layer;
  • the first semiconductor layer, the second semiconductor layer, and the light-emitting layer form a spherical structure, and the first electrode, the insulating layer, and the second electrode form a spherical structure.
  • the material of the first electrode is a transparent material
  • the material of the second electrode is a conductive material with high reflectivity
  • the material of the first semiconductor layer is n-GaN
  • the material of the second semiconductor layer is p-GaN
  • the material of the light-emitting layer is InGaN or InN
  • the material of the first electrode is ITO
  • the material of the insulating layer is silicon dioxide.
  • the second electrode is arranged around the first electrode, and a first insulating protection layer is arranged on the outer side of the first electrode;
  • the first insulating protection layer and the second electrode form an LED housing with a spherical outer contour for wrapping the first electrode.
  • the first electrode is arranged along the central axis of the spherical profile, and a second insulating protection layer is arranged between the first electrode and the second electrode.
  • the orthographic projection of the second electrode is ring-shaped.
  • the ring shape is a polygonal ring shape or a circular ring shape.
  • the second insulating protection layer is extended and disposed between the first electrode, the light-emitting layer, and the second semiconductor layer.
  • a method for manufacturing a spherical micro LED includes the following steps:
  • the epitaxial layer including a second semiconductor layer, a light emitting layer and a first semiconductor layer arranged on the substrate from top to bottom;
  • the bonding substrate and the soft layer are peeled off to obtain a spherical micro LED.
  • a method for manufacturing a spherical micro LED includes the following steps:
  • the epitaxial layer including a first semiconductor layer, a light emitting layer, and a second semiconductor layer that are sequentially superimposed from bottom to top;
  • the first hemisphere is etched on the epitaxial layer by a dry etching process, and the first electrode hole is etched;
  • the substrate is peeled off, and the second hemisphere is etched by a dry etching process on the side facing the substrate;
  • a miniature LED display panel including:
  • a backplane, a plurality of loading wells are arranged on the backplane, and the plurality of loading wells form a loading well array;
  • a plurality of spherical micro LEDs are respectively arranged in a plurality of the loading wells to form a micro LED array;
  • a transparent connection circuit is used to connect the first electrode of the spherical micro LED and the first port on the backplane to realize the electrical connection between the first electrode and the outside;
  • the magnetic metal gasket is arranged in the loading well, and the magnetic metal gasket is used to connect the second electrode of the spherical micro LED and the second port on the back plate to realize the second electrode Electrical connection with the outside world.
  • a micro LED display panel includes a back plate, a number of spherical micro LEDs are arranged on the back plate, a first metal pad for connecting with a first electrode is provided on the back plate, and a first metal pad for connecting with a first electrode is provided on the back plate.
  • a second metal pad connected to the second electrode, and the second metal pad has magnetism opposite to that of the second electrode.
  • a number of grooves are provided on the back plate, and the grooves are used for accommodating the spherical micro LED.
  • the second electrode is arranged in different patterns according to different colors of the pixels, and the second metal pad is arranged in a pattern matching the second electrode.
  • a method for transferring a miniature LED display panel includes the following steps:
  • the back plate is provided with a plurality of loading wells, and a plurality of the loading wells form a loading well array;
  • the loading A magnetic metal gasket is arranged in the well, the second electrode includes a magnetic conductive material, and the magnetism of the second electrode is opposite to that of the magnetic metal gasket arranged in the loading well;
  • the spherical micro LED is adsorbed in the loading well by the magnetic force between the second electrode and the magnetic metal gasket to form a micro LED array and complete the transfer.
  • the beneficial effect of this technical solution is that the first semiconductor layer, the second semiconductor layer and the light-emitting layer form a spherical structure to form a spherical micro LED, which prevents the micro LED from getting stuck outside the loading well and facilitates the transfer process
  • the precise alignment of the middle and loading wells can effectively improve the transfer yield and production efficiency.
  • Fig. 1 is a schematic diagram of the structure of a spherical micro LED of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the substrate and the epitaxial layer in the manufacturing method of the spherical micro LED of the present invention.
  • Fig. 3 is a schematic diagram of the structure of the first hemisphere etched in a manufacturing method of a spherical micro LED according to the present invention.
  • FIG. 4 is a schematic diagram of the structure of depositing an insulating layer on the first hemisphere in a manufacturing method of a spherical micro LED according to the present invention.
  • FIG. 5 is a schematic diagram of the first etching of the insulating layer in the manufacturing method of the spherical micro LED of the present invention.
  • Fig. 6 is a schematic diagram of the structure of a second electrode plated in a manufacturing method of a spherical micro LED according to the present invention.
  • FIG. 7 is a schematic diagram of the structure of loading a bonding substrate in a manufacturing method of a spherical micro LED of the present invention.
  • FIG. 8 is a schematic diagram of the structure of the peeled substrate in the manufacturing method of the spherical micro LED of the present invention.
  • Fig. 9 is a schematic structural diagram of a second hemisphere etched in a manufacturing method of a spherical micro LED of the present invention.
  • FIG. 10 is a schematic diagram of the structure of depositing an insulating layer on the second hemisphere in a manufacturing method of a spherical micro LED according to the present invention.
  • FIG. 11 is a schematic diagram of the second etching of the insulating layer in the manufacturing method of the spherical micro LED of the present invention.
  • FIG. 12 is a schematic diagram of the structure of the first electrode plated in the manufacturing method of the spherical micro LED of the present invention.
  • FIG. 13 is a schematic diagram of a transfer method of a micro LED display panel of the present invention.
  • Fig. 14 is a first schematic diagram of a patterned shape in a spherical micro LED of the present invention.
  • Fig. 15 is a second schematic diagram of a patterned shape in a spherical micro LED of the present invention.
  • Fig. 16 is a third schematic diagram of a patterned shape in a spherical micro LED of the present invention.
  • Figure 17 is a cross-sectional view of an embodiment of a spherical micro LED of the present invention.
  • FIG. 18 is a schematic diagram of orthographic projection of the second electrode of an embodiment of a spherical micro LED of the present invention.
  • FIG. 19 is a cross-sectional view of an embodiment of a micro LED display panel of the present invention.
  • Fig. 20 is a schematic diagram of the mass transfer method of fluid assembly of the present invention.
  • FIG. 21 is a structural diagram after step S100 in a manufacturing method of a spherical micro LED of the present invention is completed.
  • FIG. 22 is a structural diagram of a method for manufacturing a spherical micro LED according to the present invention after the first hemisphere is etched.
  • FIG. 23 is a structural diagram after step S200 in a manufacturing method of a spherical micro LED of the present invention is completed.
  • FIG. 24 is a structural diagram after completion of step S300 in a method for manufacturing a spherical micro LED of the present invention.
  • FIG. 25 is a structural diagram after step S400 in a manufacturing method of a spherical micro LED of the present invention is completed.
  • Fig. 26 is a structural diagram after the first electrode is plated in a manufacturing method of a spherical micro LED according to the present invention.
  • FIG. 27 is a structural diagram after completion of step S500 in a method for manufacturing a spherical micro LED according to the present invention.
  • FIG. 28 is a structural diagram after bonding is completed in step S600 in a manufacturing method of a spherical micro LED of the present invention.
  • FIG. 29 is a structural diagram of peeling off the substrate in step S600 in the manufacturing method of a spherical micro LED of the present invention.
  • FIG. 30 is a structural diagram after step S600 in the manufacturing method of a spherical micro LED of the present invention is completed.
  • FIG. 31 is a structural diagram after step S700 in a manufacturing method of a spherical micro LED of the present invention is completed.
  • the backplane 101, the substrate 102, the bonding substrate 103, the soft layer 104, the first chip hemisphere 105, and the second chip hemisphere 106 are identical to each other.
  • Spherical micro LED 100 first electrode 110, second electrode 120, first insulating protective layer 130, second insulating protective layer 140, first semiconductor layer 150, light emitting layer 151, second semiconductor layer 152;
  • Backplane 200 first metal pad 210, second metal pad 220, groove 230;
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • a component is referred to as being “fixed to” or “disposed on” another component, it can be directly on the other component or a central component may also be present.
  • a component is considered to be “connected” to another element, it can be directly connected to the other element or an intermediate element may be present at the same time.
  • the specific meaning of the above terms in the present invention can be understood under specific circumstances.
  • Mass transfer that is, the process of transferring a large number of micro LEDs of small size to a substrate to form a micro LED array, and then forming an LED display panel.
  • Traditional LED chips are usually cuboid or cylindrical structures.
  • the Micro LED will be stuck outside the loading well, and it is difficult to accurately align with the loading well on the substrate. It is easy for the Micro LED to be unable to be embedded and loaded.
  • the trap problem greatly limits the transfer yield and production efficiency.
  • the present invention provides a spherical micro LED and a manufacturing method thereof, a display panel and a transfer method thereof, so that the mass transfer process is simple and the transfer efficiency far exceeds the traditional solution.
  • the technical solution of the present invention will be described in detail below in conjunction with FIGS. 1 to 13.
  • a spherical micro LED is used to form a micro LED array in a loading well provided on a back plate 101.
  • the spherical micro LED includes a first semiconductor layer 1, a second semiconductor layer 2, The light emitting layer 3, the first electrode 4, the insulating layer 5, and the second electrode 6.
  • the working principle of the spherical micro LED is: the insulating layer 5 separates the first electrode 4 and the second electrode 6, and the first semiconductor layer 1 and the second semiconductor layer 2 are connected to each other through the first electrode 4 and the second electrode 6 respectively. External electrical connection.
  • Electrons and holes are injected into the first semiconductor layer 1 and the second semiconductor layer 2 from the first electrode 4 and the second electrode 6, respectively, and then recombine in the light emitting layer 3 between the first semiconductor layer 1 and the second semiconductor layer 2, and Release energy in the form of photons to achieve light emission.
  • the innovation of the present invention is that the first semiconductor layer 1, the second semiconductor layer 2 and the light emitting layer 3 form a spherical structure, and the first electrode 4, the insulating layer 5 and the second electrode 6 Form a spherical structure.
  • the first electrode 4, the insulating layer 5 and the second electrode 6 form a spherical structure to wrap the spherical structure formed by the first semiconductor layer 1, the second semiconductor layer 2 and the light emitting layer 3 to form a spherical micro LED as a whole.
  • the light-emitting layer 3 is disposed between the first semiconductor layer 1 and the second semiconductor layer 2; the first electrode 4 covers at least part of the surface of the first semiconductor layer 1, and The second electrode 6 covers at least part of the surface of the second semiconductor layer 2, and the insulating layer 5 covers the outside of the light emitting layer 3 or covers the outside of the light emitting layer 3 and the first semiconductor layer 1 and Said part of the surface of the second semiconductor layer 2.
  • the function of the insulating layer 5 is to separate the first semiconductor layer 1 and the second semiconductor layer 2, so that the first electrode 4 can completely cover the first semiconductor layer 1 and the second electrode 6 when making spherical micro LEDs.
  • the insulating layer 5 only covers the outside of the light-emitting layer 3.
  • the first electrode 4 covers part of the first semiconductor layer 1
  • the second electrode 6 covers part of the second semiconductor layer 2
  • the insulating layer 5 covers the light emitting layer 3.
  • it also covers part of the first semiconductor layer 1 and the second semiconductor layer 2.
  • the function of the insulating layer is to separate the first electrode and the second electrode. Therefore, structurally, the insulating layer can only be provided on the corresponding outer side of the light-emitting layer. In addition, it can also be based on this The upper part is further extended to cover the first semiconductor layer and the second semiconductor layer.
  • the first semiconductor layer 1, the second semiconductor layer 2 and the light emitting layer 3 form a spherical structure
  • the first electrode 4, the insulating layer 5 and the second electrode 6 form a spherical structure covering the outer layer.
  • the present invention also creatively utilizes magnetic force to improve the transfer efficiency of the spherical micro LED:
  • the second electrode 6 is made of a magnetic conductive material, and the magnetism of the second electrode 6 and the magnetic metal gasket arranged in the loading well The magnetism is opposite.
  • a magnetic conductive material is used as the second electrode 6, and a magnetic metal gasket is arranged in the loading well, and the magnetism of the second electrode 6 is opposite to that of the magnetic metal gasket, between the magnetic metal gasket and the second electrode 6
  • the interaction magnetic force is generated, the magnetic metal gasket is fixed in the loading trap, and the magnetic metal gasket absorbs the second electrode 6 of the spherical micro LED through the magnetic force, thereby adsorbing the spherical micro LED to the loading trap.
  • the magnetic metal gasket also has an electrical connection function.
  • the magnetic conductive material in the second electrode forms a patterned shape 7; as shown in FIG. 14, FIG. 15 and FIG. 16, the patterned shape 7 is a triangle or a rectangle or a circle or a cross or a ring.
  • the magnetic metal gasket is arranged in a patterned shape 7; the patterned shape 7 is also a triangle, a rectangle, a circle, a cross or a ring.
  • the surface of the sphere formed by the magnetic part can be in various shapes, such as triangles, squares, circles, etc.
  • the magnetic part is also conducive to alignment.
  • the patterned shape referred to here refers to the projected shape formed on the spherical surface.
  • the above technical solutions can facilitate fixing different spherical micro LEDs at specific positions.
  • the patterned shapes of the magnetic metal gaskets are set to triangles and circles, and correspondingly, spherical micro LEDs whose magnetic conductive materials are triangles and circles are produced.
  • When transferring first put in a triangular spherical micro LED with a magnetic conductive material.
  • the spherical micro LED will be fixed by the triangular magnetic metal gasket; even if a small amount is adsorbed by the circular magnetic metal gasket, this part The shape does not match, the generated magnetic force is not very strong, and it can be peeled off by lightly shaking it; similarly, put in a spherical micro LED with a circular magnetic conductive material, and this part of the spherical micro LED will be affected. Adsorbed and fixed by a circular magnetic metal gasket. Thus, a convenient transfer is realized.
  • the surface of the second electrode 6 is provided with an alignment protrusion for alignment; correspondingly, an alignment recess is provided in the loading well, that is, an alignment recess is further formed in the loading well by a recess.
  • the shape of the positioning concave portion, the shape of the positioning convex portion matches the shape of the positioning concave portion.
  • the cross section of the alignment protrusion can be set to be triangular, rectangular, circular, cross, or ring; correspondingly, the cross section of the alignment recess is triangular, rectangular, circular, or ten-shaped. Glyph or ring.
  • the three optical primary colors include red, green and blue. After the three primary optical colors are mixed, all the colors needed for display can be formed, so that the corresponding effect can be displayed on the display screen.
  • the spherical micro LED in the present invention includes R-type LED, G-type LED and B-type LED, wherein the R-type LED emits red light, the G-type LED emits green light, and the B-type LED emits blue light. In the process of making the display panel using the spherical miniature, it is necessary to arrange the R-type LED, the G-type LED and the B-type LED into a specific pattern to realize the display function.
  • the present invention can solve this problem through the shapes and outer contours of the alignment protrusions and the alignment depressions.
  • the shapes of the alignment protrusions on the R-type LED, the G-type LED, and the B-type LED are different from each other.
  • the cross section of the alignment protrusion of the R-type LED is set to be rectangular
  • the cross section of the alignment protrusion of the G-type LED is set to be circular
  • the cross section of the alignment protrusion of the B-type LED is set to Triangular
  • the cross section of part of the loading well is set to rectangle, circle and triangle.
  • the material of the first electrode is a transparent material
  • the material of the second electrode is a conductive material with high reflectivity.
  • the use of highly reflective conductive materials as the second electrode improves the light extraction efficiency; the use of transparent materials as the first electrode ensures that the light can be emitted smoothly.
  • the material of the first semiconductor layer 1 is n-GaN
  • the material of the second semiconductor layer 2 is p-GaN
  • the material of the light emitting layer 3 is InGaN or InN
  • the material of the first electrode 4 is The material is ITO
  • the material of the insulating layer 5 is silicon dioxide.
  • the material of the first semiconductor layer includes one of N-type gallium arsenide and N-type copper phosphide
  • the material of the second semiconductor layer includes P-type gallium arsenide and P A type of copper phosphide and other materials
  • the material of the light-emitting layer is one of indium gallium aluminum nitride, gallium arsenide, aluminum gallium arsenide, indium gallium phosphide, indium arsenide phosphide, or indium gallium arsenide or Multiple
  • the material of the first electrode includes one or any combination of titanium, aluminum, nickel and their alloys.
  • the above-mentioned materials are only one of the embodiments, and are not limited to the materials of the first semiconductor layer 1, the second semiconductor layer 2, the light-emitting layer 3, the first electrode 4, and the insulating layer 5.
  • the others are based on the same principle.
  • the material that achieves the same function should also be one of the embodiments of the present invention, and it will not be exhaustively listed here.
  • the present invention also provides a method for manufacturing a spherical micro LED, which specifically includes the following steps:
  • An epitaxial layer is formed by deposition on the substrate 102, and the epitaxial layer includes a second semiconductor layer 2, a light emitting layer 3, and a first semiconductor layer 1 arranged on the substrate 102 from top to bottom;
  • a second electrode 6 is plated on the second semiconductor layer 2; preferably, a magnetic conductive material is used as the second semiconductor layer 2;
  • the first electrode 4 is plated on the first semiconductor layer 1;
  • the bonding substrate 103 and the soft layer 104 are peeled off to obtain a spherical micro LED.
  • an epitaxial layer is first formed on a substrate 102.
  • the epitaxial layer includes a first semiconductor layer 1, a second semiconductor layer 2 and a light emitting layer 3; wherein, the light emitting layer 3 is located in the first semiconductor layer. Between layer 1 and second semiconductor layer 2.
  • the epitaxial layer is etched out of the first chip hemisphere 105 through a dry etching process, and the first chip hemisphere 105 is specifically a hemispherical structure left by etching away part of the second semiconductor layer and the light-emitting layer.
  • a first insulating layer is obtained by deposition on the second semiconductor layer 2 and the light emitting layer 3, and the first insulating layer covers the second semiconductor layer and the light emitting layer.
  • the first insulating layer covering the upper part of the first chip hemisphere 105 is etched away to expose the second semiconductor layer on the first chip hemisphere 105, leaving only at the junction of the second semiconductor layer and the light-emitting layer.
  • the lower part of the first insulating layer plays an insulating role.
  • the second electrode 6 is further plated on the second semiconductor layer.
  • the second electrode 6 is made of a magnetic conductive material to prepare for mass transfer.
  • the magnetism of the second electrode 6 is opposite to the magnetism of the magnetic metal gasket arranged in the loading well.
  • the first chip hemisphere 105 is turned upside down to cover the bonding substrate 103.
  • a soft layer 104 is provided on the bonding substrate 103. Therefore, the flipped first chip hemisphere 105 is equivalent to covering the soft layer 104 on the bonding substrate 103.
  • the first chip hemisphere 105 changes from the original upward to downward.
  • the substrate 102 located at the uppermost layer at this time is peeled off to expose the first semiconductor layer 1.
  • the top-down structure is the first semiconductor layer 1, the light emitting layer 3 and the second semiconductor layer 2, and the second semiconductor layer 2 is covered with a second electrode 6.
  • the second chip hemisphere 106 is etched by a dry etching process.
  • the second chip hemisphere 106 is specifically etched to remove part of the first semiconductor layer 1 and the light emitting.
  • the second chip hemisphere 106 and the first chip hemisphere 105 form a complete spherical structure, and the complete spherical structure is the first semiconductor layer, the second semiconductor layer and the light emitting layer 3 forming a spherical structure.
  • a second insulating layer is obtained by deposition on the first semiconductor layer 1 and the light emitting layer 3, and the second insulating layer covers the first semiconductor layer and the light emitting layer.
  • the second insulating layer covering the upper part of the second chip hemisphere 106 is etched away to expose the first semiconductor layer on the second chip hemisphere 106, leaving only at the junction of the first semiconductor layer and the light-emitting layer.
  • the lower part of the second insulating layer plays an insulating role.
  • the remaining first insulating layer and the second insulating layer are combined to form a complete structure of the insulating layer 5, which isolates the first semiconductor layer and the second semiconductor layer.
  • the first electrode 4 is further plated on the first semiconductor layer 1.
  • the second electrode 6 is made of a transparent material to facilitate light emission.
  • the first electrode 4, the insulating layer 5, and the second electrode 6 form a spherical structure, and this spherical structure wraps the first semiconductor layer 1, the second semiconductor layer 2 and the light emitting layer 3 into a spherical structure to obtain a spherical micro LED.
  • a hemispherical structure is formed twice on the first semiconductor layer 1, the second semiconductor layer 2 and the light-emitting layer 3, and the first electrode 4, the insulating layer 5 and the first electrode 4, the insulating layer 5 and the first electrode 4 are obtained by electroplating
  • the two electrodes 6 further form a spherical micro LED to prevent the micro LED from getting stuck outside the loading well, facilitating accurate alignment with the loading well during the transfer process, and effectively improving the transfer yield and production efficiency.
  • the present invention also provides a micro LED display panel, in fact, the main structure includes a back plate 101.
  • the above-mentioned spherical micro LEDs are mounted on the back plate 101 to form a micro LED display panel.
  • a plurality of loading wells matching the size of the spherical micro LED are provided on the back plate 101, and a magnetic metal pad matching the second electrode 6 is arranged in the loading well.
  • a micro LED array can be formed.
  • a transparent connection circuit is plated on the first electrode 4, and the transparent connection circuit is used to connect the first electrode 4 of the spherical micro LED and the first port on the back plate 101 to realize the electrical connection between the first electrode 4 and the outside world.
  • the second electrode 6 is connected to the second port on the back plate 101 through a magnetic metal gasket, so as to realize an electrical connection between the second electrode 6 and the outside.
  • the magnetism of the second electrode 6 is opposite to the magnetism of the magnetic metal gasket arranged in the loading well. It is convenient for the spherical micro LED to be adsorbed to the loading trap by magnetic force during the transfer process, and it can ensure the effective contact between the second electrode 6 and the magnetic metal gasket.
  • the surface of the second electrode 6 is provided with an alignment protrusion for alignment; correspondingly, an alignment recess is provided in the loading well, and the shape of the alignment protrusion is the same as that of the The shape of the alignment recess is matched.
  • the cross section of the alignment protrusion is triangular, rectangular, circular, cross, or ring; correspondingly, the cross section of the alignment recess is triangle, rectangle, circle, cross, or ring.
  • the spherical micro LED includes an R-type LED, a G-type LED and a B-type LED, and the diameter of the spherical structure of the R-type LED, the G-type LED and the B-type LED is different from each other.
  • the present invention also provides a method for transferring a micro LED display panel, which includes the following steps:
  • a plurality of the spherical micro LEDs are placed in a suspension
  • the back plate 101 is put the back plate 101 in the suspension, and make the spherical micro LED float above the back plate 101; wherein, the back plate 101 is provided with multiple loading wells, and multiple loading wells form loading wells.
  • Array The loading well is provided with a magnetic metal gasket, the second electrode 6 is a magnetic conductive material, and the magnetism of the second electrode 6 is opposite to that of the magnetic metal gasket provided in the loading well.
  • the spherical micro LED is adsorbed in the loading well by the magnetic force between the second electrode 6 and the magnetic metal gasket to form a micro LED array, and the transfer is completed.
  • a magnetic metal gasket is provided on the back plate 101.
  • the magnetic metal gasket has the opposite magnetism to the second electrode 6, and the spherical micro LEDs are adsorbed on the mount through the action of magnetic force. Inside the well, so that the spherical micro LED is accurately aligned to the loading well of the backplane 101.
  • the spherical micro LED includes R-type LED, G-type LED and B-type LED.
  • the surface of the second electrode is provided with an alignment protrusion for alignment; correspondingly, an alignment recess is provided in the loading well, and the shape of the alignment protrusion is the same as that of the alignment recess. Match the shape.
  • the shape or size of the alignment protrusions on the R-type LED, the G-type LED, and the B-type LED are different from each other.
  • the cross section of the alignment protrusion of the R-type LED is set to be rectangular, the cross section of the alignment protrusion of the G-type LED is set to be circular, and the cross section of the alignment protrusion of the B-type LED is set to Triangular;
  • the cross section of part of the loading well is set to rectangle, circle and triangle.
  • the R-type LED as a sphere structure with a radius of R1
  • the G-type LED as a sphere structure with a radius of R2
  • the B-type LED as a sphere structure with a radius of R3
  • the well is arranged in a circular shape with a cross-sectional radius of R1, R2, and R3. In this way, the effect of improving yield and production efficiency can also be achieved.
  • R-type LED, G-type LED, and B-type LED have three different color LEDs with different sizes and can be transferred from large to small. For example, if the largest R-type LED is transferred first, the R-type LED will only be stably absorbed and fixed to the loading trap of size R1. At this time, even if a small number of R-type LEDs are adsorbed to the loading trap of size R2 or R2, because The size of this part does not match, the generated magnetic force is not very strong, only need to shake it lightly to make it fall off. In the same way, the G-type LED and the B-type LED can be transferred sequentially, thereby greatly improving the transfer efficiency.
  • the present invention provides a spherical micro LED and a manufacturing method thereof, a display panel and a transfer method thereof.
  • a hemispherical structure is formed twice on the first semiconductor layer 1, the second semiconductor layer 2 and the light emitting layer 3, and
  • the first electrode 4, the insulating layer 5 and the second electrode 6 are obtained by electroplating to form a spherical micro LED to prevent the micro LED from getting stuck outside the loading well, facilitating precise alignment with the loading well during the transfer process, and effectively improving the transfer yield rate And production efficiency.
  • a spherical micro LED includes a first electrode 110, and a second electrode 120 surrounds the first electrode 110.
  • the first electrode 110 and the second electrode 120 are arranged at a distance from each other.
  • the second electrode 120 is magnetic, and is used to adsorb the LED chip to the back plate during the process of mass transfer of fluid assembly.
  • a first insulating protective layer 130 is provided on the outer side of the first electrode 110.
  • the first insulating protective layer 130 and the second electrode 120 form an LED housing, the outer contour of the LED housing is spherical, the LED housing wraps the first electrode 110, that is, an inner cavity is formed in the LED housing, and the first electrode 110 is located in the inner cavity.
  • the outer contour of the LED housing can also be hemispherical.
  • the LED housing is also used as the light-emitting surface of the LED chip to guide the light of the LED chip. It is easy to imagine that the outer contour of the LED housing is hemispherical, or the bottom surface of the first electrode is opened as a flat spherical shape, or the bottom surface of the first electrode and the top surface opposite to the bottom surface are both opened as a flat spherical shape; It may also be a spherical shape opened on the outer contour of the LED housing and located on the left and right sides of the first electrode.
  • the spherical micro LED in this solution forms an LED housing with a spherical outline through the first insulating protective layer 130 and the second electrode 120, which wraps the first electrode 110 and separates the first electrode 110 and the second electrode 120,
  • the LED is set into a spherical shape, so the light-emitting surface must be a spherical surface.
  • the spherical LED housing as the light-emitting surface is beneficial to reduce the total reflection inside the LED chip, and therefore can improve the light extraction efficiency. Since the LED chip has a spherical structure, a mounting position corresponding to the size of the LED chip can be set on the backplane.
  • the spherical LED housing passes through the first The magnetic positioning of the two electrodes 120 accurately attracts and locates the position on the back plate, and the spherical shape can be used to achieve smooth position adjustment, thereby replacing the rectangular or cylindrical LED chip, and realizing a large amount of accurate transfer.
  • the specific structure in this embodiment is that the first electrode 110 is arranged along the central axis of the spherical contour of the LED housing, and the first electrode 110 may be arranged in a cylindrical shape, a square pillar or a polygonal shape.
  • the bottom of the first electrode 110 is exposed at the bottom of the spherical outline of the LED housing, and a second insulating protection layer 140 is provided between the first electrode 110 and the second electrode 120, that is, the second The portion from the electrode 120 to the bottom of the first electrode 110 is provided as a second insulating protective layer 140, which separates the first electrode 110 and the second electrode 120, and the second insulating protective layer 140
  • the second electrode 120 is used as the lower part of the spherical contour of the LED housing
  • the first insulating protective layer 130 is used as the upper part of the spherical contour of the LED housing. The design needs to be adjusted.
  • the first electrode can also be arranged in a direction parallel to the central axis of the spherical profile of the LED housing, and the first electrode is offset from the central axis of the spherical profile by a certain distance, which can also achieve the functions of this solution.
  • the orthographic projection of the second insulating protective layer 140 is a ring shape, and the bottom projection of the first electrode 110 is located in the middle of the ring shape. Location.
  • the outer second electrode 120 is all magnetic, so the outer surface of the LED housing is all magnetized, so that when the LED chip is mounted by magnetism, the first electrode 110 can always be located at the center position, and the second electrode 120 Position adjustment by magnetic attraction to achieve precise positioning.
  • the ring in this embodiment is a polygonal ring or a circular ring, such as a triangular ring (a-2 in Figure 18), a four-sided ring (a-1 in Figure 18) or a circular ring (a-3 in Figure 18), It is easy to think that it can also be other rings, such as lace rings.
  • FIG. 17 it also includes a first semiconductor layer 150, a light emitting layer 151, and a second semiconductor layer 152 arranged in the cavity of the LED housing; from bottom to top, the second semiconductor layer 152, the light emitting layer 151, and a first semiconductor layer 150, the first semiconductor layer 150 is in contact with the first electrode 110, and the second semiconductor layer 152 is in contact with the second electrode 120, so that the first electrode 110 is implemented Conduction to the first semiconductor is achieved through the second electrode 120 to achieve conduction to the second semiconductor, so that under the action of the second semiconductor layer 152 and the first semiconductor layer 150, the light-emitting layer 151 can emit light.
  • the second insulating protection layer 140 is extended between the first electrode 110 and the light-emitting layer 151, and between the first electrode 110 and the second semiconductor layer 152, and is specifically: the second insulating protection layer 140 It extends into the cavity of the LED housing and is attached to the outer wall surface of the first electrode 110 to separate the first electrode 110 from the second insulating protective layer 140.
  • the first electrode 110 and the light-emitting layer 151 is separated; the upper surface of the first electrode 110 is exposed, so that the upper surface is connected to the first semiconductor layer 150 located above. In this way, a complete spherical micro LED 100 is formed.
  • this embodiment also proposes a micro LED display panel, which includes a back plate 200.
  • a number of spherical micro LEDs 100 as described above are fixedly arranged on the back plate 200.
  • Each LED on the back plate 200 The mounting position of the chip is fixedly provided with a first metal pad 210, the first metal pad 210 is used to connect with the first electrode 110 of the spherical micro LED 100, and is fixed on the mounting position of each LED chip on the backplane 200
  • a second metal pad 220 is provided, and the second metal pad 220 is used to connect with the second electrode 120, and the second metal pad 220 has magnetism opposite to that of the second electrode 120.
  • the first metal pad 210 and the second metal pad 220 are extended in the backplane 200 and used to connect to an external control circuit, and the first metal pad 210 and the second metal pad 220 are spaced apart in the backplane 200.
  • the miniaturization process technology and the mass transfer technology are the core processes of the Micro-LED transfer process, and the miniaturization process technology is to miniaturize, array, and thin the traditional LED crystal film.
  • Mass transfer technology is to transfer the miniaturized, arrayed LED crystal film to the circuit board in batches. In this embodiment, it is necessary to arrange the micro-spherical micro-LEDs smaller than 100 microns in a matrix, and then transfer them to the backplane in batches using the mass transfer technology for packaging to form a whole LED panel.
  • a large number of spherical micro LEDs 100 as described above are placed in a liquid environment to obtain a suspension, and the second metal pad 220 on the back plate 200 is on top After electricity, the second metal pad 220 has a magnetic opposite to that of the second electrode 120.
  • the suspension is flowing, as shown in b-2 in FIG. 220 are attracted to each other, so that the spherical micro LED 100 is accurately aligned to the installation position of the back plate 200.
  • the spherical micro LED 100 in the suspension When the second electrode 120 of the spherical micro LED 100 in the suspension is attracted to the second metal pad 220, the spherical micro LED 100 can be smoothly adjusted in the suspension due to its smooth outer surface, which is conducive to the automatic adjustment of the spherical micro LED 100. Adjust the position to the installation position of the back plate 200.
  • the back plate 200 is provided with a number of grooves 230, the grooves 230 are hemispherical grooves, and the grooves 230 are used to accommodate the spherical micro LED 100;
  • the groove 230 can also be a one-third spherical groove or other arc-shaped grooves for positioning the spherical micro LED 100. In this way, the spherical micro LED 100 is fixed in the groove 230, one is to accurately position the spherical micro LED 100 on the back plate 200, and the other is to make the fixing of the spherical micro LED 100 stronger.
  • the first metal pad 210 and the second metal pad 220 are both located in the groove 230, the contact point between the first metal pad 210 and the first electrode 110 of the spherical micro LED 100 is located at the bottom of the groove 230, and the second metal pad The contact point between 220 and the second electrode 120 of the spherical micro-LED 100 is located on the side of the groove 230, which facilitates direct communication with the spherical micro-LED 100.
  • the second electrode 120 is arranged in different patterns according to the different colors of the pixel, such as the above-mentioned ring pattern, and the second metal pad 220 is arranged to
  • the matching pattern of the second electrode 120 is, for example, a ring pattern.
  • the orthographic projection of the second electrode 120 of the spherical micro LED 100 representing red (R) on the plane perpendicular to the central axis of the first electrode 110 is a quadrangular ring; the second electrode 120 representing the spherical micro LED 100 of green (G)
  • the orthographic projection of the electrode 120 on the plane perpendicular to the central axis of the first electrode 110 is a triangular ring; the second electrode 120 representing the blue (B) spherical micro LED 100 is in the center where the first electrode 110 is located.
  • the orthographic projection on the plane perpendicular to the axis is a circular ring.
  • the second electrodes 120 of the spherical micro LEDs 100 of three different colors of R, G, and B By arranging the second electrodes 120 of the spherical micro LEDs 100 of three different colors of R, G, and B into different patterns, and the second metal used for mounting the grooves 230 of the three different colors of R, G, and B on the back plate 200
  • the pad 220 is provided with a corresponding pattern.
  • the second electrode 120 of the spherical micro LED 100 of three different colors of R, G, and B includes three different electrode patterns, the overlap between the different patterns is small, and the mutual adsorption force is also high.
  • the mismatched spherical micro LED 100 can be separated from the back plate 200 and re-adsorbed by vibration to achieve the effect of improving the yield.
  • the pixel is composed of three different colors of R, G, B spherical micro LED 100, so when transferring, the three different colors of R, G, B spherical micro LED 100 can be made into different sizes.
  • the back plate 200 is provided with grooves 230 corresponding to the size of the spherical micro LEDs 100 of three different colors of R, G, and B.
  • the three spherical micro LED 100 sizes of R, G, and B can be set freely.
  • a hemispherical groove 230 corresponding to the size of the spherical micro LED 100 can be provided on the back plate 200, which is beneficial to the mass transfer of the spherical micro LED 100 through fluid assembly. Transfer to the back plate 200; in addition, because the second electrode 120 of the spherical micro LED 100 is designed with a patterned magnetic electrode, precise alignment can be performed when the LED is transferred, and the transfer yield can be improved.
  • This solution also includes a manufacturing method of spherical micro LED, including the steps:
  • An epitaxial layer is formed on a substrate.
  • the epitaxial layer includes a first semiconductor layer, a light emitting layer, and a second semiconductor layer that are sequentially stacked from bottom to top.
  • the substrate 300 is located at the lowest layer, and an epitaxial layer is provided on the substrate 300, including a first semiconductor layer 150, a light emitting layer 151, and a second semiconductor layer which are sequentially superimposed on the substrate 300 from bottom to top.
  • Layer 152 forms a four-layer structure.
  • the first hemisphere is etched on the epitaxial layer through a dry etching process, and the first electrode hole is etched.
  • the first hemisphere 310 includes a second semiconductor layer 152 and a part of the light-emitting layer 151, and a first electrode hole 320 is etched at the top of the first hemisphere.
  • the insulating protection layer 370 covers the outer surface of the first hemisphere 310 and the inner wall of the first electrode hole 320.
  • a second electrode position 330 is etched at a lower end position on the outer surface of the first hemisphere 310.
  • the first electrode 110 is plated in the first electrode hole 320, and the second electrode 120 with magnetic is plated on the second electrode position 330.
  • the substrate is peeled off, and the second hemisphere is etched by a dry etching process on the side facing the substrate.
  • the first semiconductor layer 150 with the substrate, the light-emitting layer 151, and the formed first hemisphere 310 are transferred to the bonding substrate 360 through the adhesive material 350
  • the first hemisphere 310 is facing downward, and then the substrate 300 is peeled off to expose the first semiconductor layer 150, and the second hemisphere 340 is etched by a dry etching process on the side facing the substrate 300 to expose the first semiconductor layer.
  • Layer 150 and another part of the light-emitting layer 151 are transferred to the bonding substrate 360 through the adhesive material 350
  • the first hemisphere 310 is facing downward, and then the substrate 300 is peeled off to expose the first semiconductor layer 150, and the second hemisphere 340 is etched by a dry etching process on the side facing the substrate 300 to expose the first semiconductor layer.
  • Layer 150 and another part of the light-emitting layer 151 are transferred to the bonding substrate 360 through the adhesive material 350
  • the first hemisphere 310 is facing downward, and then the substrate 300 is
  • an insulating protective layer 370 is deposited on the first semiconductor layer 150 and another part of the light-emitting layer 151, and finally the adhesive material 350 is peeled off, thus forming a spherical micro LED 100.
  • the present invention proposes a spherical miniature LED, in which the LED chip forms a spherical LED housing through a first insulating protective layer and the second electrode, which wraps the first electrode and separates the first electrode from the second electrode ,
  • the LED chip forms a spherical LED housing through a first insulating protective layer and the second electrode, which wraps the first electrode and separates the first electrode from the second electrode ,
  • the LED into a spherical shape, so the light-emitting surface must be a spherical surface, and the spherical LED housing as the light-emitting surface is beneficial to reduce the total reflection inside the LED chip, thus improving the light extraction efficiency.
  • the LED chip has a spherical structure, a hemispherical groove corresponding to the size of the LED chip can be set on the backplane.
  • the spherical LED housing is in the fluid assembly.
  • the second electrode Through the magnetic positioning of the second electrode, it can precisely attract and locate the position on the substrate, and the spherical shape can be used to achieve smooth position adjustment, thereby replacing the rectangular or cylindrical LED chip and realizing a large amount of accurate transfer. Since the second electrodes of the LED chips of different colors are designed with different patterned magnetic electrodes, it is possible to accurately align the corresponding positions with the backplane during transfer and improve the transfer yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

本发明提供了一种球形微型LED及其制造方法、显示面板及其转移方法,球形微型LED,包括第一半导体层、第二半导体层、发光层、第一电极和第二电极;所述发光层设置于所述第一半导体层和所述第二半导体层之间;所述第一电极与所述第一半导体层相连,所述第二电极与所述第二半导体层相连;所述第一半导体层、所述第二半导体层和所述发光层形成球体结构,所述第一半导体层、所述第二半导体层和所述发光层外设置有一球面结构,所述球面结构包裹设置于所述球体结构的外表面。第一半导体层、第二半导体层和发光层形成球体结构,进而形成球形微型LED,避免转移过程中微型LED卡在装载阱外,便于在转移时与装载阱精准对位,能够有效提高转移良率和生产效率。

Description

球形微型LED及其制造方法、显示面板及其转移方法 技术领域
本发明涉及显示技术和LED技术领域,涉及一种球形微型LED及其制造方法,同时涉及一种包括上述球形微型LED的显示面板及其转移方法。
背景技术
微型LED即Micro LED,是新一代显示技术的重要组件,与现有的液晶显示相比,具有更理想的光电效率、亮度和对比度以及更低的功耗,而且还能结合柔性面板实现柔性显示。因此,业界把Micro LED视为下一代的显示技术。
为了实现显示功能,需要将多个Micro LED装载入背板上,形成微型LED阵列。在形成Micro LED阵列的过程中,巨量转移技术是关键所在。目前巨量转移技术主要包括静电转移、微印和流体组装等。其中,流体组装是利用刷桶在衬底上滚动,使得Micro LED置于液体悬浮液中,通过流体力,让LED落入衬底上对应的装载阱中。
然而,相关技术中的Micro LED均为长方体或圆柱体结构,在Micro LED落入基板上的装载阱上的过程中,受限于其结构,Micro LED难以与基板上的装载阱精准对位,容易出现Micro LED无法嵌入装载阱的问题,极大地限制了转移良率和生产效率。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供球形微型LED及其制造方法、显示面板及其转移方法,具有便于对位的优点,能够有效提高转移良率和生产效率。
本发明解决技术问题所采用的技术方案如下:
一种球形微型LED,包括:
第一半导体层、第二半导体层和发光层,所述发光层设置于所述第一半导体层和所述第二半导体层之间;
第一电极和第二电极,所述第一电极与所述第一半导体层相连,所述第二电极与所述第二半导体层相连;
所述第一半导体层、所述第二半导体层和所述发光层形成球体结构,所述第一半 导体层、所述第二半导体层和所述发光层外设置有一球面结构,所述球面结构包裹设置于所述球体结构的外表面。
进一步地,所述第二电极包括磁性导电材料,所述第二电极的磁性和设置于装载阱中的磁性金属垫片的磁性相反。
进一步地,所述第二电极内的磁性导电材料形成图案化形状。
进一步地,所述图案化形状为三角形或者矩形或者圆形或者十字形或者环形。
进一步地,所述球形微型LED包括R型LED、G型LED和B型LED,所述R型LED、所述G型LED和所述B型LED上的球体结构的直径各不相同。
进一步地,还包括绝缘层;
所述第一电极覆盖于所述第一半导体层的至少部分表面,所述第二电极覆盖于所述第二半导体层的至少部分表面,所述绝缘层覆盖于所述发光层外或者覆盖于所述发光层外及所述第一半导体层、所述第二半导体层的部分表面;
所述第一半导体层、所述第二半导体层和所述发光层形成球体结构,所述第一电极、所述绝缘层和所述第二电极形成球面结构。
进一步地,所述第一电极的材质为透明材料,所述第二电极的材质为高反射率的导电材料。
进一步地,所述第一半导体层的材料为n-GaN,所述第二半导体层的材料为p-GaN,所述发光层的材料为InGaN或者InN,所述第一电极的材料为ITO,所述绝缘层的材料为二氧化硅。
进一步地,所述第二电极环绕所述第一电极设置,所述第一电极的外侧设置有第一绝缘保护层;
所述第一绝缘保护层与所述第二电极组成用于包裹所述第一电极且外轮廓为球形的LED外壳。
进一步地,所述第一电极沿球形轮廓的中轴线设置,所述第一电极与所述第二电极之间设置有第二绝缘保护层。
进一步地,在所述第一电极所在的中轴线相垂直的平面上,所述第二电极的正投影为环形。
进一步地,所述环形为多边环形或圆环形。
进一步地,所述第二绝缘保护层延伸设置在所述第一电极与所述发光层、所述第二半导体层之间。
一种球形微型LED的制作方法,所述方法包括以下步骤:
在衬底上通过沉积形成外延层,所述外延层包括自上而下设置于衬底上的第二半导体层、发光层和第一半导体层;
蚀刻第二半导体层和部分发光层,得到第一芯片半球;
在第一芯片半球上沉积第一绝缘层;
蚀刻第一绝缘层,露出第二半导体层;
在第二半导体层上镀上第二电极;
将第一芯片半球翻转覆盖于bonding基板上的软质层上;
剥离衬底,露出第一半导体层;
蚀刻第一半导体层和部分发光层,得到第二芯片半球;
在第二芯片半球上沉积第二绝缘层;
蚀刻第二绝缘层,露出第一半导体层;
在第一半导体层上镀上第一电极;
剥离bonding基板和软质层,得到球形微型LED。
一种球形微型LED的制作方法,所述方法包括以下步骤:
在衬底上形成外延层,所述外延层包括从下至上依次叠加的第一半导体层、发光层、第二半导体层;
通过干蚀刻工艺在外延层上蚀刻出第一个半球,并蚀刻出第一电极孔;
沉积绝缘保护层;
对绝缘层进行蚀刻出第二电极位;
在第一电极孔内镀上第一电极,并在第二电极位上镀上带磁性的第二电极;
将衬底剥离,在朝向衬底的一侧通过干蚀刻工艺蚀刻出第二个半球;
在第二个半球上沉积绝缘保护层。
一种微型LED显示面板,包括:
背板,所述背板上设置有多个装载阱,多个所述装载阱形成装载阱阵列;
多个球形微型LED,多个所述球形微型LED分别设置于多个所述装载阱内,形成微型LED阵列;
透明连接电路,所述透明连接电路用于连接所述球形微型LED的第一电极和背板上的第一端口,实现第一电极与外界的电连接;
磁性金属垫片,所述磁性金属垫片设置于所述装载阱内,所述磁性金属垫片用于 连接所述球形微型LED的第二电极和背板上的第二端口,实现第二电极与外界的电连接。
一种微型LED显示面板,包括背板,设置在背板上若干一种球形微型LED,在背板上设置有用于与第一电极相连接的第一金属垫,在背板上设置有用于与所述第二电极相连接的第二金属垫,所述第二金属垫上带有与所述第二电极相反的磁性。
进一步地,所述背板上设置有若干个凹槽,所述凹槽用于容纳所述一种球形微型LED。
进一步地,其特征在于,所述第二电极根据像素的不同颜色设置为不同的图案,所述第二金属垫设置成与所述第二电极相匹配的图案。
一种微型LED显示面板的转移方法,包括以下步骤:
将多个球形微型LED放置于悬浮液中;
在悬浮液中放入背板,并使得球形微型LED漂浮于所述背板上方;其中,所述背板上设置有多个装载阱,多个所述装载阱形成装载阱阵列;所述装载阱内设置有磁性金属垫片,所述第二电极包括磁性导电材料,所述第二电极的磁性和设置于所述装载阱中的磁性金属垫片的磁性相反;
通过第二电极和磁性金属垫片之间的磁力将球形微型LED吸附于所述装载阱内,形成微型LED阵列,完成转移。
与现有技术相比,本技术方案的有益效果是:第一半导体层、第二半导体层和发光层形成球体结构,形成球形微型LED,避免微型LED卡在装载阱外,便于在转移的过程中与装载阱精准对位,能够有效提高转移良率和生产效率。
附图说明
图1是本发明一种球形微型LED的结构示意图。
图2是本发明一种球形微型LED的制作方法中衬底与外延层的结构示意图。
图3是本发明一种球形微型LED的制作方法中蚀刻出第一个半球的结构示意图。
图4是本发明一种球形微型LED的制作方法中在第一个半球上沉积绝缘层的结构示意图。
图5是本发明一种球形微型LED的制作方法中第一次蚀刻绝缘层的结构示意图。
图6是本发明一种球形微型LED的制作方法中镀上第二电极的结构示意图。
图7是本发明一种球形微型LED的制作方法中装载bonding基板的结构示意图。
图8是本发明一种球形微型LED的制作方法中剥离衬底的结构示意图。
图9是本发明一种球形微型LED的制作方法中蚀刻出第二个半球的结构示意图。
图10是本发明一种球形微型LED的制作方法中在第二个半球上沉积绝缘层的结构示意图。
图11是本发明一种球形微型LED的制作方法中第二次蚀刻绝缘层的结构示意图。
图12是本发明一种球形微型LED的制作方法中镀上第一电极的结构示意图。
图13是本发明一种微型LED显示面板的转移方法的示意图。
图14是本发明一种球形微型LED中图案化形状的第一种示意图。
图15是本发明一种球形微型LED中图案化形状的第二种示意图。
图16是本发明一种球形微型LED中图案化形状的第三种示意图。
图17为本发明一种球形微型LED的实施例的剖视图。
图18为本发明一种球形微型LED的实施例的第二电极的正投影示意图。
图19为本发明一种微型LED显示面板的实施例的剖视图。
图20为本发明流体组装的巨量转移方式的原理图。
图21为本发明一种球形微型LED的制造方法中的步骤S100完成后的结构图。
图22为本发明一种球形微型LED的制造方法中蚀刻出第一个半球后的结构图。
图23为本发明一种球形微型LED的制造方法中的步骤S200完成后的结构图。
图24为本发明一种球形微型LED的制造方法中的步骤S300完成后的结构图。
图25为本发明一种球形微型LED的制造方法中的步骤S400完成后的结构图。
图26为本发明一种球形微型LED的制造方法中镀上第一电极后的结构图。
图27为本发明一种球形微型LED的制造方法中的步骤S500完成后的结构图。
图28为本发明一种球形微型LED的制造方法中步骤S600中粘接完成后的结构图。
图29为本发明一种球形微型LED的制造方法中的步骤S600中将衬底剥离的结构图。
图30为本发明一种球形微型LED的制造方法中的步骤S600完成后的结构图。
图31为本发明一种球形微型LED的制造方法中的步骤S700完成后的结构图。
在图1-图16中,各标号所代表的部件列表如下:
第一半导体层1、第二半导体层2、发光层3、第一电极4、绝缘层5、第二电极6、图案化形状7;
背板101、衬底102、bonding基板103、软质层104、第一芯片半球105、第二芯片半球106。
在图17-图31中,各标号所代表的部件列表如下:
球形微型LED100、第一电极110、第二电极120、第一绝缘保护层130、第二绝缘保护层140、第一半导体层150、发光层151、第二半导体层152;
背板200、第一金属垫210、第二金属垫220、凹槽230;
衬底300、第一个半球310、第一电极孔320、第二电极位330、第二个半球340、粘接材料350、粘接基板360、绝缘保护层370。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要理解的是,术语中“中心”、“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或组件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”、“相连”应做广义理解,例如,可以是固定连接,也可以是拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以是通过中间媒介间接相连,可以是两个组件内部的连通。当组件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明的具体含义。
巨量转移,即将大量微小尺寸的Micro LED转移到基板上,形成微型LED阵列,进而构成LED显示面板的过程。传统的LED芯片通常为长方体或圆柱体结构,在转移过程中,受限于其形状,Micro LED会卡在装载阱外,难以与基板上的装载阱精准对位,容易出现Micro LED无法嵌入装载阱的问题,极大地限制了转移良率和生产效率。针对上述问题,本发明提供了球形微型LED及其制造方法、显示面板及其转移方法,以使得巨量转移过程简单,且使得转移效率远超传统方案。下面结合图1-图13对本发明中的技术方案进行详细叙述。
如图1所示,一种球形微型LED,所述球形微型LED用于设置于背板101上的装载阱中形成微型LED阵列,球形微型LED包括第一半导体层1、第二半导体层2、发光层3、第一电极4、绝缘层5和第二电极6。本球形微型LED的工作原理为:绝缘层5将第一电极4和第二电极6分隔开来,第一半导体层1和第二半导体层2分别通过第一电极4和第二电极6与外界电连接。电子和空穴分别从第一电极4和第二电极6注入第一半导体层1和第二半导体层2,然后在第一半导体层1和第二半导体层2之间的发光层3复合,并且以光子的形式释放能量,从而实现发光。
本发明的创新点在于:所述第一半导体层1、所述第二半导体层2和所述发光层3形成球体结构,所述第一电极4、所述绝缘层5和所述第二电极6形成球面结构。第一电极4、绝缘层5和第二电极6形成球面结构将第一半导体层1、第二半导体层2和发光层3所形成球体结构包裹起来,形成整体为球形的微型LED。具体地,所述发光层3设置于所述第一半导体层1和所述第二半导体层2之间;所述第一电极4覆盖于所述第一半导体层1的至少部分表面,所述第二电极6覆盖于所述第二半导体层2的至少部分表面,所述绝缘层5覆盖于所述发光层3外或者覆盖于所述发光层3外及所述第一半导体层1、所述第二半导体层2的部分表面。
绝缘层5的作用在于分隔开第一半导体层1和第二半导体层2,在制作球形微型LED时,可使得第一电极4完整覆盖于第一半导体层1外、第二电极6完整覆盖于第二半导体层2外,而绝缘层5则仅覆盖于发光层3外。另外,也可如图1所示,使得第一电极4覆盖于部分第一半导体层1外、第二电极6覆盖于部分第二半导体层2外,而绝缘层5则除了覆盖于发光层3外,还覆盖于部分第一半导体层1和所述第二半导体层2外。简单地说,即绝缘层的作用在于分隔开第一电极和第二电极,因此,从结构上可,绝缘层可以仅设置于发光层的对应外侧,除此之外,还可在此基础上进一步延伸,覆盖至第一半导体层和第二半导体层上。
通过上述技术方案,第一半导体层1、第二半导体层2和发光层3形成球体结构,第一电极4、绝缘层5和第二电极6则形成覆盖于外层的球面结构,通过球体结构和球面结构形成球形微型LED后,只需要在背板101上设置有多个半球形的装载阱,即可有效避免微型LED卡在装载阱外,从而方便、快捷且高效地将球形微型LED转移到背板101上,实现精准对位,能够有效提高转移良率和生产效率。
本发明还创造性地利用磁力提高球形微型LED的转移效率:优选地,所述第二电极6为磁性导电材料,所述第二电极6的磁性和设置于所述装载阱中的磁性金属垫片的 磁性相反。
采用磁性导电材料作为第二电极6,而在装载阱内设置有磁性金属垫片,且第二电极6的磁性和磁性金属垫片的磁性相反,在磁性金属垫片和第二电极6之间产生相互作用的磁力,磁性金属垫片固定在装载阱内,磁性金属垫片通过磁力将球形微型LED的第二电极6吸附过去,从而将球形微型LED吸附到装载阱上。另外,磁性金属垫片还具有电连接作用,上述技术方案不仅能够提高球形微型LED的转移效率,还能够保证第二电极6与磁性金属垫片的有效接触。
优选地,所述第二电极内的磁性导电材料形成图案化形状7;如图14、图15和图16所示,所述图案化形状7为三角形或者矩形或者圆形或者十字形或者环形。对应地,所述磁性金属垫片设置为图案化形状7;所述图案化形状7同为三角形或者矩形或者圆形或者十字形或者环形。简单地说,即第二电极一部分具有磁性而另一部分不具有磁性,从外表看,具有磁性的部分形成的球体表面可以是各种形状,例如三角形、正方形、圆形等,这种具有图案画的磁性部分也有利于对位。需要说明的是,此处所指图案化形状,是指形成与球面上的投影形状。
上述技术方案能够便于把不同的球形微型LED固定在特定的位置。例如,磁性金属垫片的图案化形状设置为三角形和圆形,而对应生产有磁性导电材料为三角形和圆形的球形微型LED。转移时,先放入磁性导电材料为三角形的球形微型LED,此部分球形微型LED大部分会被三角形的磁性金属垫片所吸附固定;就算有少量被圆形磁性金属垫片吸附,由于此部分的形状并不匹配,所产生的磁力不是很强,只需要轻轻用力抖动即可以使其脱落;同样地,再放入磁性导电材料为圆形的球形微型LED,此部分球形微型LED会被圆形的磁性金属垫片所吸附固定。由此,实现方便的转移。
优选地,所述第二电极6的表面设置有用于对位的对位凸起部;对应地,所述装载阱内设置有对位凹陷部,即在装载阱内通过凹陷的方式进一步形成对位凹陷部,所述对位凸起部的形状与所述对位凹陷部的形状相匹配。具体地,所述对位凸起部的横截面可设置为三角形或者矩形或者圆形或者十字形或者环形中;对应地,所述对位凹陷部的横截面为三角形或者矩形或者圆形或者十字形或者环形。
众所周知,光学三原色包括红色、绿色和蓝色,光学三原色混合后,可以形成显示所需要的所有颜色,从而在显示屏上显示出对应的效果。基于此,本发明中的所述球形微型LED包括R型LED、G型LED和B型LED,其中,R型LED发出红光、G型LED发出绿光、而B型LED发出蓝光。在利用球形微型制作显示面板的过程中,需要将R 型LED、G型LED和B型LED排布成特定样式,才能实现显示功能。现有技术中,由于LED芯片的体积过于微小且数量过于庞大,导致了难以将R型LED、G型LED和B型LED布置于特定的位置上。而本发明则可通过对位凸起部和对位凹陷部的形状和外部轮廓来解决这一问题。
所述R型LED、所述G型LED和所述B型LED上对位凸起部的形状各不相同。例如,将R型LED的对位凸起部的横截面设置为矩形,G型LED的对位凸起部的横截面设置为圆形,B型LED的对位凸起部的横截面设置为三角形;对应地,按照预定的样式,将部分装载阱的横截面设置为矩形、圆形和三角形。转移时,所有的装载阱上的磁性金属垫片会对所有的球形微型LED上的第二电极6产生磁力,但是,当对位凸起部和对位凹陷部的形状不匹配时,此吸附力会较小,通过振动即可使错误匹配的发光二极管脱离背板101并重新吸附,直到全部匹配正确,从而达到提高良率和生产效率的效果。
所述第一电极的材质为透明材料,所述第二电极的材质为高反射率的导电材料。采用高反射率的导电材料作为第二电极,提高光提取效率;采用透明材料作为第一电极,保证光能够顺利出射。
具体地,所述第一半导体层1的材料为n-GaN,所述第二半导体层2的材料为p-GaN,所述发光层3的材料为InGaN或者InN,所述第一电极4的材料为ITO,所述绝缘层5的材料为二氧化硅。除此之外,还可采用以下实现方式:第一半导体层的材料包括N型砷化镓及N型磷化铜等中的一种,第二半导体层的材料包括P型砷化镓及P型磷化铜等材料中的一种;发光层的材料为氮化铟镓铝、砷化镓、砷化铝镓、磷化铟镓、磷化铟砷或砷化铟镓中的一种或多种;第一电极的材料包括钛、铝、镍及其合金中的一种或其任意组合。需要说明的是,上述材料仅仅为实施方式之一,并不是对第一半导体层1、第二半导体层2、发光层3、第一电极4和绝缘层5的材料进行限定,其他以相同原理实现相同功能的材料,也应该为本发明的实施例之一,在此不进行穷举。
对应地,本发明还提供一种球形微型LED的制作方法,具体包括以下步骤:
在衬底102上通过沉积形成外延层,所述外延层包括自上而下设置于衬底102上的第二半导体层2、发光层3和第一半导体层1;
蚀刻第二半导体层2和部分发光层3,得到第一芯片半球105;
在第一芯片半球105上沉积第一绝缘层,将第一绝缘层覆盖于第一芯片半球105上;
蚀刻第一绝缘层,露出第二半导体层2;
在第二半导体层2上镀上第二电极6;优选地,采用磁性导电材料作为第二半导体层2;
将第一芯片半球105翻转覆盖于bonding基板103上的软质层104上;
剥离衬底102,露出第一半导体层1;
蚀刻第一半导体层1和部分发光层3,得到第二芯片半球106;
在第二芯片半球106上沉积第二绝缘层,使得第二绝缘层覆盖于第二芯片半球106上;
蚀刻第二绝缘层,露出第一半导体层1;
在第一半导体层1上镀上第一电极4;
剥离bonding基板103和软质层104,得到球形微型LED。
下面结合图2-图12,按照生产工艺的流程对上述方法进行说明。
如图2所示,先在衬底102上形成外延层,所述外延层包括第一半导体层1、第二半导体层2和发光层3;其中,所述发光层3位于所述第一半导体层1和第二半导体层2之间。
如图3所示,将外延层通过干蚀刻工艺蚀刻出第一芯片半球105,所述第一芯片半球105具体为蚀刻去掉部分第二半导体层和发光层所留下来的半球状结构。
如图4所示,在第二半导体层2和发光层3上通过沉积得到第一绝缘层,第一绝缘层覆盖于第二半导体层和发光层上。
如图5所示,将覆盖于第一芯片半球105上部的第一绝缘层蚀刻掉,以在第一芯片半球105上露出第二半导体层,只在第二半导体层和发光层的交界处留下小部分第一绝缘层起到绝缘作用。
如图6所示,在第一芯片半球105上露出第二半导体层后,再进一步在第二半导体层上镀上的第二电极6。优选地,所述第二电极6为磁性导电材料,以为进行巨量转移时作准备。所述第二电极6的磁性和设置于所述装载阱中的磁性金属垫片的磁性相反。
如图7所示,镀上的第二电极6后,将第一芯片半球105上下翻转过来覆盖于bonding基板103上。bonding基板103上设置有软质层104,因此,翻转的第一芯片半球105相当于覆盖在bonding基板103上的软质层104上。完成此步骤后,第一芯片半球105由原来的朝上变成朝下。
如图8所示,将此时位于最上层的衬底102剥离,以露出第一半导体层1。在球形微型LED的半成品上,自上而下的结构为第一半导体层1、发光层3和第二半导体层2, 且第二半导体层2外覆盖有第二电极6。
如图9所示,将衬底102剥离露出第一半导体层1后,通过干蚀刻工艺蚀刻出第二芯片半球106,所述第二芯片半球106具体为蚀刻去掉部分第一半导体层1和发光层3所留下来的半球状结构。此时,第二芯片半球106和第一芯片半球105形成一个完整的球形结构,此完整的球形结构即为第一半导体层、第二半导体层和发光层3形成球体结构。
如图10所示,在第一半导体层1和发光层3上通过沉积得到第二绝缘层,第二绝缘层覆盖于第一半导体层和发光层上。
如图11所示,将覆盖于第二芯片半球106上部的第二绝缘层蚀刻掉,以在第二芯片半球106上露出第一半导体层,只在第一半导体层和发光层的交界处留下小部分第二绝缘层起到绝缘作用。剩余的第一绝缘层和第二绝缘层组合成完整结构的绝缘层5,隔绝第一半导体层和第二半导体层。
如图12所示,在第二芯片半球106上露出第一半导体层1后,再进一步在第一半导体层1上镀上的第一电极4。优选地,所述第二电极6为透明材料,以便于光的出射。此时,第一电极4、绝缘层5和第二电极6形成球面结构,且此球面结构将第一半导体层1、第二半导体层2和发光层3形成球体结构包裹在内,得到球形微型LED。
总的来说,通过沉积和蚀刻的方式,在第一半导体层1、第二半导体层2和发光层3上先后形成两次半球结构,并通过电镀得到第一电极4、绝缘层5和第二电极6,进而形成球形微型LED,避免微型LED卡在装载阱外,便于在转移的过程中与装载阱精准对位,能够有效提高转移良率和生产效率。
对应地,本发明还提供一种微型LED显示面板,其实主要结构包括一背板101。特别地,将上述球形微型LED安装到背板101上,即可形成微型LED显示面板。
具体地,背板101上设置有多个与所述球形微型LED大小匹配的装载阱,装载阱内有与所述第二电极6匹配的磁性金属垫片。当多个球形微型LED被固定到背板101上的装载阱中后,即可形成微型LED阵列。在第一电极4上镀上透明的透明连接电路,透明连接电路用于连接所述球形微型LED的第一电极4和背板101上的第一端口,实现第一电极4与外界的电连接。另外,第二电极6通过磁性金属垫片连接背板101上的第二端口,实现第二电极6与外界的电连接。
优选地,所述第二电极6的磁性和设置于所述装载阱中的磁性金属垫片的磁性相反。便于在转移的过程中通过磁力作用将球形微型LED吸附到装载阱上,而且能够保证第 二电极6与磁性金属垫片的有效接触。
优选地,所述第二电极6的表面设置有用于对位的对位凸起部;对应地,所述装载阱内设置有对位凹陷部,所述对位凸起部的形状与所述对位凹陷部的形状相匹配。另外,所述对位凸起部的横截面为三角形或者矩形或者圆形或者十字形或者环形;对应地,所述对位凹陷部的横截面为三角形或者矩形或者圆形或者十字形或者环形。
优选地,所述球形微型LED包括R型LED、G型LED和B型LED,所述R型LED、所述G型LED和所述B型LED的球体结构的直径各不相同。
对应地,本发明还一种微型LED显示面板的转移方法,包括以下步骤:
如图13所示,首先,将多个所述球形微型LED放置于悬浮液中;
其次,在悬浮液中放入背板101,并使得球形微型LED漂浮于所述背板101上方;其中,所述背板101上设置有多个装载阱,多个所述装载阱形成装载阱阵列;所述装载阱内设置有磁性金属垫片,所述第二电极6为磁性导电材料,所述第二电极6的磁性和设置于所述装载阱中的磁性金属垫片的磁性相反。
再次,通过第二电极6和磁性金属垫片之间的磁力将球形微型LED吸附于所述装载阱内,形成微型LED阵列,完成转移。
需要说明的是,上述仅仅是将球形微型LED转移到背板上的过程,并未包括封装过程。需要再进一步进行封装,才能形成一整块的微型LED显示面板。
将大量的球形微型LED放于悬浮液中,背板101上设置有磁性金属垫片,磁性金属垫片具有与所述第二电极6相反的磁性,通过磁力的作用将球形微型LED吸附于装载阱内,从而使球形微型LED精确地对位到背板101的装载阱中。磁性金属垫片的实现方式有两种,一是采用磁性材料作为磁性金属垫片,直接存在磁力;二是利用电磁感应,上电后产生磁力。在悬浮液流动时,通过磁性电极的吸附使第二电极6和第二金属垫相互吸附。
球形微型LED包括R型LED、G型LED和B型LED。所述第二电极的表面设置有用于对位的对位凸起部;对应地,所述装载阱内设置有对位凹陷部,所述对位凸起部的形状与所述对位凹陷部的形状相匹配。所述R型LED、所述G型LED和所述B型LED上对位凸起部的形状或者尺寸各不相同。例如,将R型LED的对位凸起部的横截面设置为矩形,G型LED的对位凸起部的横截面设置为圆形,B型LED的对位凸起部的横截面设置为三角形;对应地,按照预定的样式,将部分装载阱的横截面设置为矩形、圆形和三角形。转移时,所有的装载阱上的磁性金属垫片会对所有的球形微型LED上 的第二电极产生磁力,但是,当对位凸起部和凹陷部的形状不匹配时,此吸附力会较小,通过振动即可使错误匹配的发光二极管脱离背板并重新吸附,直到全部匹配正确,从而达到提高良率和生产效率的效果。
除了通过将对位凸起部和对位凹陷部设置为不同形状将不同的球形微型LED区分开来外,还可通过把不同的球形微型LED的球体结构设置为不同尺寸,从而将其区分开来。例如,将R型LED设置为半径为R1的球体结构,G型LED设置为半径为R2的球体结构,B型LED设置为半径为R3的球体结构;对应地,按照预定的样式,将部分装载阱设置为横截面半径为R1、R2和R3的圆形。如此一来,同样能够达到提高良率和生产效率的效果。
假设R1>R2>R3,在利用悬浮液转移组装时,R型LED、G型LED、B型LED三种不同颜色的LED大小不同,可从大到小进行转移。例如,先转移最大的R型LED,R型LED只会被稳定地吸附固定在尺寸为R1的装载阱,此时,就算有少量R型LED被吸附在尺寸为R2或者R2的装载阱,由于此部分的尺寸并不匹配,所产生的磁力不是很强,只需要轻轻用力抖动即可以使其脱落。同样的道理,便可依次转移G型LED和B型LED,从而极大地提高了转移效率。
本发明提供球形微型LED及其制造方法、显示面板及其转移方法,通过沉积和蚀刻的方式,在第一半导体层1、第二半导体层2和发光层3上先后形成两次半球结构,并通过电镀得到第一电极4、绝缘层5和第二电极6,进而形成球形微型LED避免微型LED卡在装载阱外,便于在转移的过程中与装载阱精准对位,能够有效提高转移良率和生产效率。
如图17所示,一种球形微型LED,包括第一电极110,在第一电极110外侧环绕有第二电极120,第一电极110与第二电极120间隔一段距离设置,所述第二电极120带有磁性,用于在流体组装进行巨量转移的过程中LED芯片吸附到背板上,在所述第一电极110的外侧设置有第一绝缘保护层130,所述第一绝缘保护层130与所述第二电极120组成LED外壳,LED外壳的外轮廓为球形,LED外壳包裹所述第一电极110,即LED外壳内形成内腔,所述第一电极110位于内腔中。易于想到的是,所述LED外壳的外轮廓也可以为半球形。LED外壳也作为LED芯片的出光面,用于LED芯片的导光。易于想到的是,所述LED外壳的外轮廓为半球形,或第一电极的底面开设为平面的球形,或第一电极的底面与及与底面所对的顶面均开设为平面的球形;还可以是在所述LED外壳的外轮廓上且位于第一电极的左右两侧开设为平面的球形。
本方案中的球形微型LED通过第一绝缘保护层130与所述第二电极120组成轮廓为球形的LED外壳,包裹所述第一电极110,并使第一电极110和第二电极120分开,实现球形微型LED的供电,将LED设置成球形,因此出光面必定为球面,球面的LED外壳作为出光面有利于减少LED芯片内部的全反射,因此可以提升光提取效率。由于LED芯片为球形结构,所以可以在背板上设置与LED芯片大小对应的安装位,通过流体组装的巨量转移方式将LED芯片转移到背板上时,球形LED外壳在流体组装中通过第二电极120的磁性定位,精准的与背板上的位置进行吸引定位,并采用球形能实现平顺的位置调整,从而代替长方形或圆柱体的LED芯片,实现巨量精准转移。
如图17所示,本实施例中的具体结构为:所述第一电极110沿所述LED壳体的球形轮廓的中轴线设置,所述第一电极110可设置为圆柱,方柱或多边形柱,所述第一电极110的底部露出在所述LED壳体的球形轮廓的底部,所述第一电极110与所述第二电极120之间设置有第二绝缘保护层140,即第二电极120到第一电极110的底部这部分设置成第二绝缘保护层140,所述第二绝缘保护层140把第一电极110和第二电极120分隔开,所述第二绝缘保护层140和所述第二电极120作为LED壳体的球形轮廓的下部分,第一绝缘保护层130作为LED壳体的球形轮廓的上部分,其占有的LED壳体的球形轮廓的表面积大小可根据实际设计需要调整。易于想到的是,第一电极还可设置在沿所述LED壳体的球形轮廓的中轴线的平行方向上,第一电极与球形轮廓的中轴线偏移一段距离,同样能实现本方案的功能。在所述第一电极110所在的中轴线相垂直的平面上,如图18所示,所述第二绝缘保护层140的正投影为环形,所述第一电极110的底部投影位于环形的中间位置。这样外侧的第二电极120带都磁性,所以LED壳体的外表面一周均带有磁性,这样在利用磁性进行LED芯片的安装时,可使第一电极110始终位于中心位置,第二电极120通过磁性吸引力进行位置调整,实现精准定位。本实施中的所述环形为多边环形或圆环形,如三角环形(图18中a-2)、四边环形(图18中a-1)或圆环形(图18中a-3),易于想到的是,还可以为其他环形,如花边环形等。
如图17所示,还包括有位于所述LED外壳的腔体内且依次设置的第一半导体层150、发光层151、第二半导体层152;从下至上依次为第二半导体层152,发光层151,及第一半导体层150,所述第一半导体层150与所述第一电极110相接触,所述第二半导体层152与所述第二电极120相接触,这样通过第一电极110实现对第一半导体导通,通过第二电极120实现对第二半导体导通,这样第二半导体层152,及第一半导体层150的作用下,实现发光层151的发光。
所述第二绝缘保护层140延伸设置在所述第一电极110与所述发光层151、第一电极110与所述第二半导体层152之间,具体为:所述第二绝缘保护层140延伸至所述LED外壳的腔体内并贴附在所述第一电极110的外壁表面,使第一电极110与所述第二绝缘保护层140分隔开,第一电极110与所述发光层151分隔开;第一电极110的上表面露出,使上表面与位于上方的第一半导体层150相导通。这样形成完整的球形微型LED100。
如图19所示,本实施例中还提出一种微型LED显示面板,包括背板200,在背板200上固定设置有若干如上所述的球形微型LED100,在背板200上的每个LED芯片的安装位置上固定设置有第一金属垫210,所述第一金属垫210用于与球形微型LED100的第一电极110相连接,在背板200上的每个LED芯片的安装位置上固定设置有第二金属垫220,第二金属垫220用于与第二电极120相连接,所述第二金属垫220上带有与所述第二电极120相反的磁性。第一金属垫210和第二金属垫220在背板200内延伸设置并用于连接外部的控制电路,第一金属垫210和第二金属垫220在背板200内间隔设置。
如图20所示,微缩制程技术和巨量转移技术是Micro-LED转移过程的核心过程,其中微缩制程技术就是将传统LED晶体薄膜进行微缩化、阵列化、薄膜化。巨量转移技术就是将微缩化、阵列化的LED晶体薄膜批量转移到电路板。本实施例中需要将小于100微米的微型球形微型LED进行矩阵排列,再利用巨量转移技术将其批量转移到背板,进行封装,形成一整块LED面板。
如图20中b-1所示,在本发明方案的显示器组装拼接过程中,将大量如上所述球形微型LED100放于液体环境中得到悬浮液,背板200上的第二金属垫220在上电后,第二金属垫220具有与所述第二电极120相反的磁性,在悬浮液流动时,如图20中b-2所示,通过磁性吸附作用使第二电极120和第二金属垫220相互吸附,从而使球形微型LED100精确的对位到背板200的安装位置。当悬浮液中的球形微型LED100的第二电极120与第二金属垫220进行相吸,球形微型LED100由于其平滑的外表面,使其能在悬浮液中进行平滑调整,这样利于球形微型LED100自动调整位置到背板200的安装位置。
如图19、图20所示,所述背板200上设置有若干个凹槽230,所述凹槽230为半球形凹槽,所述凹槽230用于容纳所述球形微型LED100;所述凹槽230还可以是三分之一球形凹槽及其他用于球形微型LED100定位的弧形凹槽。这样使球形微型LED100固定在凹槽230中,一是使球形微型LED100在背板200上内准确定位,二是使球形微型LED100的固定更牢固。所述第一金属垫210与所述第二金属垫220均位与凹槽230内,第一金属垫210与球形微型LED100的第一电极110的接触点位于凹槽230底部,第二金属垫220与球 形微型LED100的第二电极120的接触点位于凹槽230的侧面,这样便于与球形微型LED100直接连通。
由于像素由R、G、B三种不同颜色的LED芯片组成,所述第二电极120根据像素的不同颜色设置为不同的图案,如上述的环形图案,所述第二金属垫220设置成与所述第二电极120相匹配的图案,如环形图案。如代表红色(R)的球形微型LED100的第二电极120在所述第一电极110所在的中轴线相垂直的平面上的正投影为四边环形;代表绿色(G)的球形微型LED100的第二电极120在所述第一电极110所在的中轴线相垂直的平面上的正投影为三角环形;代表蓝色(B)的球形微型LED100的第二电极120在所述第一电极110所在的中轴线相垂直的平面上的正投影为圆环形。通过将R、G、B三种不同颜色的球形微型LED100的第二电极120设置成不同图案,且背板200上用于安装R、G、B三种不同颜色的凹槽230的第二金属垫220设置对应的图案。在通过悬浮液转移组装时,由于R、G、B三种不同颜色的球形微型LED100的第二电极120包括三种不同电极图案,不同图案之间由于重合度较小,相互之间的吸附力也小,当出现错误匹配,通过振动即可使错误匹配的球形微型LED100脱离背板200并重新吸附,达到提高良率的效果。
易于想到的,由于像素由R、G、B三种不同颜色的球形微型LED100组成,所以在转移的时候,可以通过将R、G、B三种不同颜色的球形微型LED100做成不同大小的规格,且背板200上设置与R、G、B三种不同颜色的球形微型LED100的大小对应的凹槽230。在通过悬浮液转移组装时,由于R、G、B三种不同颜色的球形微型LED100大小不同,然后从最大的球形微型LED100开始转移。例如,先转移最大的红色球形微型LED100,然后第二大的绿色球形微型LED100,然后最小的蓝色球形微型LED100,当然R、G、B的三种球形微型LED100大小可以自由设置。
在本发明方案中,由于LED芯片为球形结构,所以可以在背板200上设置与球形微型LED100大小对应的半球形的凹槽230,这有利于通过流体组装的巨量转移方式将球形微型LED100转移到背板200上;此外,由于对球形微型LED100的第二电极120进行了图案化的磁性电极设计,所以可以在对led进行转移时进行精确的对位,提升转移良率。
本方案还包括一种球形微型LED的制造方法,包括步骤:
S100、在衬底上形成外延层,所述外延层包括从下至上依次叠加的第一半导体层、发光层、第二半导体层。
如图21所示,具体的,衬底300位于最下层,在衬底300上设置外延层,包括在衬底300上从下至上依次叠加的第一半导体层150、发光层151、第二半导体层152,形成四层 结构。
S200、通过干蚀刻工艺在外延层上蚀刻出第一个半球,并蚀刻出第一电极孔。
如图22、图23所示,具体的,第一个半球310包括第二半导体层152和部分发光层151,在第一半球的顶端蚀刻出第一电极孔320。
S300、沉积绝缘保护层。
如图24所示,具体的,绝缘保护层370覆盖第一个半球310的外表面和第一电极孔320的内壁。
S400、对绝缘层进行蚀刻出第二电极位。
如图25所示,具体的,在第一个半球310的外表面上靠下端的位置蚀刻出第二电极位330。
S500、在第一电极孔内镀上第一电极,并在第二电极位上镀上带磁性的第二电极。
如图26、图27所示,第一电极孔320内镀上第一电极110,第二电极位330上镀上带磁性的第二电极120。
S600、将衬底剥离,在朝向衬底的一侧通过干蚀刻工艺蚀刻出第二个半球。
如图28、图29、图30所示,具体为:通过粘接材料350将带有底衬的第一半导体层150、发光层151、及形成的第一个半球310转到粘接基板360上,使第一个半球310朝向下方,再将衬底300剥离,使第一半导体层150露出,在朝向衬底300的一侧通过干蚀刻工艺蚀刻出第二个半球340,露出第一半导体层150以及另一部分的发光层151。
S700、在第二个半球上沉积绝缘保护层。
如图31所示,具体为:在第一半导体层150以及另一部分的发光层151上沉积绝缘保护层370,最后剥离粘接材料350,这样形成球形微型LED100。
本发明提出的一种球形微型LED,其中LED芯片通过第一绝缘保护层与所述第二电极组成轮廓为球形的LED外壳,包裹所述第一电极,并使第一电极和第二电极分开,实现LED芯片的供电,将LED设置成球形,因此出光面必定为球面,球面的LED外壳作为出光面有利于减少LED芯片内部的全反射,因此可以提升光提取效率。由于LED芯片为球形结构,所以可以在背板上设置与LED芯片大小对应的半球形凹槽,通过流体组装的巨量转移方式将LED芯片转移到背板上时,球形LED外壳在流体组装中通过第二电极的磁性定位,精准的与衬底上的位置进行吸引定位,并采用球形能实现平顺的位置调整,从而代替长方形或圆柱体的LED芯片,实现巨量精准转移。由于对不同颜色的LED芯片的第二电极进行了不同图案化的磁性电极设计,所以可以在与进行转移 时与背板的对应位置进行精确的对位,提升转移良率。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (33)

  1. 一种球形微型LED,其特征在于,包括:
    第一半导体层、第二半导体层和发光层,所述发光层设置于所述第一半导体层和所述第二半导体层之间;
    第一电极和第二电极,所述第一电极与所述第一半导体层相连,所述第二电极与所述第二半导体层相连;
    所述第一半导体层、所述第二半导体层和所述发光层形成球体结构,所述第一半导体层、所述第二半导体层和所述发光层外设置有一球面结构,所述球面结构包裹设置于所述球体结构的外表面。
  2. 根据权利要求1所述的一种球形微型LED,其特征在于:所述第二电极包括磁性导电材料,所述第二电极的磁性和设置于装载阱中的磁性金属垫片的磁性相反。
  3. 根据权利要求2所述的一种球形微型LED,其特征在于:所述第二电极内的磁性导电材料形成图案化形状。
  4. 根据权利要求3所述的一种球形微型LED,其特征在于:所述图案化形状为三角形或者矩形或者圆形或者十字形或者环形。
  5. 根据权利要求3所述的一种球形微型LED,其特征在于:所述球形微型LED包括R型LED、G型LED和B型LED,所述R型LED、所述G型LED和所述B型LED上的球体结构的直径各不相同。
  6. 根据权利要求1-5任一项所述的一种球形微型LED,其特征在于:还包括绝缘层;
    所述第一电极覆盖于所述第一半导体层的至少部分表面,所述第二电极覆盖于所述第二半导体层的至少部分表面,所述绝缘层覆盖于所述发光层外或者覆盖于所述发光层外及所述第一半导体层、所述第二半导体层的部分表面;
    所述第一半导体层、所述第二半导体层和所述发光层形成球体结构,所述第一电极、所述绝缘层和所述第二电极形成球面结构。
  7. 根据权利要求6所述的一种球形微型LED,其特征在于:所述第一电极的材质为透明材料,所述第二电极的材质为高反射率的导电材料。
  8. 根据权利要求6所述的一种球形微型LED,其特征在于:所述第一半导体层的材料为n-GaN,所述第二半导体层的材料为p-GaN,所述发光层的材料为InGaN或者InN,所述第一电极的材料为ITO,所述绝缘层的材料为二氧化硅。
  9. 根据权利要求1-5任一项所述的一种球形微型LED,其特征在于:所述第二电极环绕所述第一电极设置,所述第一电极的外侧设置有第一绝缘保护层;
    所述第一绝缘保护层与所述第二电极组成用于包裹所述第一电极且外轮廓为球形的LED外壳。
  10. 根据权利要求9所述的一种球形微型LED,其特征在于,所述第一电极沿球形轮廓的中轴线设置,所述第一电极与所述第二电极之间设置有第二绝缘保护层。
  11. 根据权利要求10所述的一种球形微型LED,其特征在于,在所述第一电极所在的中轴线相垂直的平面上,所述第二电极的正投影为环形。
  12. 根据权利要求11所述的一种球形微型LED,其特征在于,所述环形为多边环形或圆环形。
  13. 根据权利要求10所述的一种球形微型LED,其特征在于,所述第二绝缘保护层延伸设置在所述第一电极与所述发光层、所述第二半导体层之间。
  14. 一种球形微型LED,其特征在于,包括:
    第一半导体层、第二半导体层和发光层,所述发光层设置于所述第一半导体层和所述第二半导体层之间;
    第一电极、绝缘层和第二电极,所述第一电极覆盖于所述第一半导体层的至少部分表面,所述第二电极覆盖于所述第二半导体层的至少部分表面,所述绝缘层覆盖于所述发光层外或者覆盖于所述发光层外及所述第一半导体层、所述第二半导体层的部分表面;
    所述第一半导体层、所述第二半导体层和所述发光层形成球体结构,所述第一电极、所述绝缘层和所述第二电极形成球面结构。
  15. 根据权利要求14所述的一种球形微型LED,其特征在于:所述第二电极包括磁性导电材料,所述第二电极的磁性和设置于装载阱中的磁性金属垫片的磁性相反。
  16. 根据权利要求15所述的一种球形微型LED,其特征在于:所述第二电极内的磁性导电材料形成图案化形状。
  17. 根据权利要求16所述的一种球形微型LED,其特征在于:所述图案化形状为三角形或者矩形或者圆形或者十字形或者环形。
  18. 根据权利要求16所述的一种球形微型LED,其特征在于:所述球形微型LED包括R型LED、G型LED和B型LED,所述R型LED、所述G型LED和所述B型LED上的球体结构的直径各不相同。
  19. 根据权利要求14所述的一种球形微型LED,其特征在于:所述第一电极的材质为透明材料,所述第二电极的材质为高反射率的导电材料。
  20. 根据权利要求14所述的一种球形微型LED,其特征在于:所述第一半导体层的材料为n-GaN,所述第二半导体层的材料为p-GaN,所述发光层的材料为InGaN或者InN,所述第一电极的材料为ITO,所述绝缘层的材料为二氧化硅。
  21. 一种球形微型LED,其特征在于,包括第一电极,环绕所述第一电极且带有磁性的第二电极,设置在所述第一电极的外侧的第一绝缘保护层,所述第一绝缘保护层与所述第二电极组成用于包裹所述第一电极且外轮廓为球形的LED外壳。
  22. 根据权利要求21所述的球形微型LED,其特征在于,所述第一电极沿球形轮廓的中轴线设置,所述第一电极与所述第二电极之间设置有第二绝缘保护层。
  23. 根据权利要求22所述的球形微型LED,其特征在于,在所述第一电极所在的中轴线相垂直的平面上,所述第二电极的正投影为环形。
  24. 根据权利要求23所述的球形微型LED,其特征在于,所述环形为多边环形或圆环形。
  25. 根据权利要求22所述的球形微型LED,其特征在于,还包括有位于所述LED外壳的腔体内且依次设置的第一半导体层、发光层、第二半导体层;所述第一半导体层与所述第一电极相接触,所述第二半导体层与所述第二电极相接触。
  26. 根据权利要求25所述的球形微型LED,其特征在于,所述第二绝缘保护层延伸设置在所述第一电极与所述发光层、所述第二半导体层之间。
  27. 一种球形微型LED的制作方法,所述方法用于制作权利要求1-8或14-20任一项中的球形微型LED,其特征在于,所述方法包括以下步骤:
    在衬底上通过沉积形成外延层,所述外延层包括自上而下设置于衬底上的第二半导体层、发光层和第一半导体层;
    蚀刻第二半导体层和部分发光层,得到第一芯片半球;
    在第一芯片半球上沉积第一绝缘层;
    蚀刻第一绝缘层,露出第二半导体层;
    在第二半导体层上镀上第二电极;
    将第一芯片半球翻转覆盖于bonding基板上的软质层上;
    剥离衬底,露出第一半导体层;
    蚀刻第一半导体层和部分发光层,得到第二芯片半球;
    在第二芯片半球上沉积第二绝缘层;
    蚀刻第二绝缘层,露出第一半导体层;
    在第一半导体层上镀上第一电极;
    剥离bonding基板和软质层,得到球形微型LED。
  28. 一种球形微型LED的制作方法,所述方法用于制作权利要求9-13或21-26任一项中的球形微型LED,其特征在于,所述方法包括以下步骤:
    在衬底上形成外延层,所述外延层包括从下至上依次叠加的第一半导体层、发光层、第二半导体层;
    通过干蚀刻工艺在外延层上蚀刻出第一个半球,并蚀刻出第一电极孔;
    沉积绝缘保护层;
    对绝缘层进行蚀刻出第二电极位;
    在第一电极孔内镀上第一电极,并在第二电极位上镀上带磁性的第二电极;
    将衬底剥离,在朝向衬底的一侧通过干蚀刻工艺蚀刻出第二个半球;
    在第二个半球上沉积绝缘保护层。
  29. 一种微型LED显示面板,其特征在于,包括:
    背板,所述背板上设置有多个装载阱,多个所述装载阱形成装载阱阵列;
    多个球形微型LED,所述球形微型LED为权利要求1-8或14-20任一项所述的球形微型LED,多个所述球形微型LED分别设置于多个所述装载阱内,形成微型LED阵列;
    透明连接电路,所述透明连接电路用于连接所述球形微型LED的第一电极和背板上的第一端口,实现第一电极与外界的电连接;
    磁性金属垫片,所述磁性金属垫片设置于所述装载阱内,所述磁性金属垫片用于连接所述球形微型LED的第二电极和背板上的第二端口,实现第二电极与外界的电连接。
  30. 一种微型LED显示面板,其特征在于,包括背板,设置在背板上若干如权利要求9-13或21-26任一所述的一种球形微型LED,在背板上设置有用于与第一电极相连接的第一金属垫,在背板上设置有用于与所述第二电极相连接的第二金属垫,所述第二金属垫上带有与所述第二电极相反的磁性。
  31. 根据权利要求30所述的一种微型LED显示面板,其特征在于,所述背板上设置有若干个凹槽,所述凹槽用于容纳所述一种球形微型LED。
  32. 根据权利要求30所述的一种微型LED显示面板,其特征在于,所述第二电极根据像素的不同颜色设置为不同的图案,所述第二金属垫设置成与所述第二电极相匹配的图案。
  33. 一种微型LED显示面板的转移方法,其特征在于,包括以下步骤:
    将多个球形微型LED放置于悬浮液中,所述球形微型LED为权利要求1-26任一项所述的球形微型LED;
    在悬浮液中放入背板,并使得球形微型LED漂浮于所述背板上方;其中,所述背板上设置有多个装载阱,多个所述装载阱形成装载阱阵列;所述装载阱内设置有磁性金属垫片,所述第二电极包括磁性导电材料,所述第二电极的磁性和设置于所述装载阱中的磁性金属垫片的磁性相反;
    通过第二电极和磁性金属垫片之间的磁力将球形微型LED吸附于所述装载阱内,形成微型LED阵列,完成转移。
PCT/CN2020/113524 2020-03-23 2020-09-04 球形微型led及其制造方法、显示面板及其转移方法 WO2021189775A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010211503.9 2020-03-23
CN202010208376.7A CN111540815A (zh) 2020-03-23 2020-03-23 球形垂直微型led及其制造方法、显示面板及其转移方法
CN202010208376.7 2020-03-23
CN202010211503.9A CN111540819A (zh) 2020-03-23 2020-03-23 一种球形led芯片及其制造方法、显示面板

Publications (1)

Publication Number Publication Date
WO2021189775A1 true WO2021189775A1 (zh) 2021-09-30

Family

ID=77890888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113524 WO2021189775A1 (zh) 2020-03-23 2020-09-04 球形微型led及其制造方法、显示面板及其转移方法

Country Status (1)

Country Link
WO (1) WO2021189775A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038953A (zh) * 2021-10-09 2022-02-11 重庆康佳光电技术研究院有限公司 一种微发光二极管显示器及制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1582502A (zh) * 2001-12-25 2005-02-16 中田仗祐 受光或发光用半导体装置
KR20120057169A (ko) * 2010-11-26 2012-06-05 한국표준과학연구원 광전소자 및 광전소자의 제조 방법
CN104733584A (zh) * 2013-12-18 2015-06-24 山东鲁鑫贵金属有限公司 一种多出光面、高光亮度、三维立体led半导体芯片
CN110611018A (zh) * 2019-10-21 2019-12-24 深圳市思坦科技有限公司 Led芯片的转移方法、基板及系统
CN211125685U (zh) * 2020-03-23 2020-07-28 重庆康佳光电技术研究院有限公司 一种球形led芯片及其显示面板
CN111540815A (zh) * 2020-03-23 2020-08-14 重庆康佳光电技术研究院有限公司 球形垂直微型led及其制造方法、显示面板及其转移方法
CN111540819A (zh) * 2020-03-23 2020-08-14 重庆康佳光电技术研究院有限公司 一种球形led芯片及其制造方法、显示面板
CN211350681U (zh) * 2020-03-23 2020-08-25 重庆康佳光电技术研究院有限公司 球形垂直微型led及其显示面板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1582502A (zh) * 2001-12-25 2005-02-16 中田仗祐 受光或发光用半导体装置
KR20120057169A (ko) * 2010-11-26 2012-06-05 한국표준과학연구원 광전소자 및 광전소자의 제조 방법
CN104733584A (zh) * 2013-12-18 2015-06-24 山东鲁鑫贵金属有限公司 一种多出光面、高光亮度、三维立体led半导体芯片
CN110611018A (zh) * 2019-10-21 2019-12-24 深圳市思坦科技有限公司 Led芯片的转移方法、基板及系统
CN211125685U (zh) * 2020-03-23 2020-07-28 重庆康佳光电技术研究院有限公司 一种球形led芯片及其显示面板
CN111540815A (zh) * 2020-03-23 2020-08-14 重庆康佳光电技术研究院有限公司 球形垂直微型led及其制造方法、显示面板及其转移方法
CN111540819A (zh) * 2020-03-23 2020-08-14 重庆康佳光电技术研究院有限公司 一种球形led芯片及其制造方法、显示面板
CN211350681U (zh) * 2020-03-23 2020-08-25 重庆康佳光电技术研究院有限公司 球形垂直微型led及其显示面板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038953A (zh) * 2021-10-09 2022-02-11 重庆康佳光电技术研究院有限公司 一种微发光二极管显示器及制作方法
CN114038953B (zh) * 2021-10-09 2023-04-18 重庆康佳光电技术研究院有限公司 一种微发光二极管显示器及制作方法

Similar Documents

Publication Publication Date Title
US20210296533A1 (en) Spherical vertical micro led and manufacturing method thereof, display panel, and transfer method for display panel
JP7387821B2 (ja) 発光積層構造体およびそれを備えたディスプレイ素子
US11777057B2 (en) Spherical LED chip, method for manufacturing the same, display panel, and method for spherical LED chip transfer
US10147622B2 (en) Electric-programmable magnetic module
CN211350681U (zh) 球形垂直微型led及其显示面板
TWI575775B (zh) 發光裝置及發光裝置封裝
CN110349989B (zh) 发光二极管、显示基板和转移方法
CN211125685U (zh) 一种球形led芯片及其显示面板
US20200185368A1 (en) Led display device and method for manufacturing same
CN107046004B (zh) 电子元件的转移方法及电子模块
CN110034218B (zh) 一种微型led芯片和显示面板
CN110709995A (zh) 具有发光堆叠结构的显示装置
US11894490B2 (en) Spherical flip-chip micro-LED, method for manufacturing the same, and display panel
CN107223285A (zh) 发光元件以及发光二极管
CN211605176U (zh) 发光芯片
CN113707787B (zh) 球形倒装微型led及其制造方法、显示面板
EP4036976A1 (en) Display apparatus using micro led and manufacturing method therefor
US11908841B2 (en) Back emission display
WO2021189775A1 (zh) 球形微型led及其制造方法、显示面板及其转移方法
JP7561842B2 (ja) Ledディスプレイ装置
KR20120130846A (ko) 발광 소자 패키지
US20230037604A1 (en) Light emitting device for display and display apparatus having the same
CN117012770B (zh) 一种可监测亮度的MicroLED及其制备方法
US20210057481A1 (en) Light emitting device for display and display apparatus having the same
JP2023512830A (ja) 発光素子を有するユニットピクセル、ピクセルモジュール及びディスプレイ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927064

Country of ref document: EP

Kind code of ref document: A1