WO2021189508A1 - 麦克风结构 - Google Patents

麦克风结构 Download PDF

Info

Publication number
WO2021189508A1
WO2021189508A1 PCT/CN2020/082341 CN2020082341W WO2021189508A1 WO 2021189508 A1 WO2021189508 A1 WO 2021189508A1 CN 2020082341 W CN2020082341 W CN 2020082341W WO 2021189508 A1 WO2021189508 A1 WO 2021189508A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
base
microphone
back plate
boundary
Prior art date
Application number
PCT/CN2020/082341
Other languages
English (en)
French (fr)
Inventor
柏杨
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2021189508A1 publication Critical patent/WO2021189508A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction

Definitions

  • the present invention relates to the field of microphones, in particular to microphone structure technology.
  • the microphone chip structure mainly includes a base structure with a back cavity, and a diaphragm and a fixed back plate structure located on the upper part of the base.
  • the membrane and the fixed backplane structure form the capacitive system.
  • External sound pressure passes through the through holes in the back plate, causing the diaphragm to move. This movement changes the distance between the membrane and the back plate, which in turn changes the capacitance and finally converts it into an electrical signal.
  • the diaphragm When repeated loud sound pressure or blowing, falling, etc., the diaphragm will move back and forth between the back plate and the base structure. We regard the stress borne by the diaphragm as an alternating stress. The initial microcracks mentioned above will Slow expansion occurs under the action of alternating stress. After the critical point is exceeded, the diaphragm will break, causing the microphone chip to fail.
  • the purpose of the present invention is to provide a microphone structure, which aims to solve the problem of damage to the microphone diaphragm under high sound pressure levels in the prior art.
  • a microphone structure which includes a substrate with a back cavity, a support provided on the substrate, and a diaphragm fixed to the support and located above the back cavity.
  • the membrane includes a central portion located at a central position and a boundary portion surrounding the central portion and fixed to the base. The boundary portion extends above the back cavity, and the thickness of the boundary portion is greater than the thickness of the central portion.
  • the base has a side wall that surrounds the back cavity and a top wall that faces the diaphragm and is connected to the side wall.
  • the connection between the top wall and the side wall forms a base boundary, so The boundary of the base is a chamfered structure or a rounded structure.
  • the back plate mounted on the base, the back plate is located on the side of the diaphragm away from the back cavity, and the back plate is provided with a through hole penetrating the back plate.
  • the support includes a back plate support that connects the back plate and the base, and a diaphragm support that connects the diaphragm and the base.
  • the back plate is connected to the base through the back plate support.
  • the diaphragms are arranged at intervals.
  • the beneficial effect of the present invention is that by increasing the thickness of the boundary portion of the diaphragm to make the thickness greater than the central portion, and setting the contact portion of the substrate and the diaphragm as a chamfered or rounded structure, the diaphragm is improved when the diaphragm is in contact with the substrate during vibration.
  • the critical value of fracture further extends the working time from the initial microcrack to the critical value, reduces the risk of diaphragm fracture, improves the mechanical reliability of the microphone device, and increases the working life of the microphone.
  • Figure 1 is a cross-sectional view of the microphone structure in the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the microphone structure in the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the microphone structure in the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the microphone structure in the fourth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of the microphone structure according to the first embodiment of the present invention.
  • the present invention provides a microphone structure, which includes a base with a back cavity 11, a support 4 provided on the base 1, and a diaphragm 2 fixed to the support 4 and located above the back cavity 11.
  • the diaphragm 2 includes a central portion 21 at a central position and a boundary portion 22 surrounding the central portion 21 and fixed to the base 1.
  • the boundary portion 22 extends above the back cavity 11, and the boundary The thickness of the portion 22 is greater than the thickness of the central portion 21.
  • the base 1 has a side wall 111 surrounding and forming the back cavity 11 and a top wall 112 facing the diaphragm, and a base boundary 113 is formed at the junction of the top wall and the side wall.
  • the boundary 22 of the diaphragm 2 will contact the substrate boundary 113 of the substrate 1, and the diaphragm 2 is subjected to alternating stress, causing the corresponding position of the diaphragm 2 to generate Microcracks.
  • the thickness of the boundary 22 of the diaphragm 2 is larger than that of the central portion 21, which can increase the critical value of the diaphragm 2 fracture and prolong the work from the initial microcrack to the critical value. Time reduces the risk of the diaphragm 2 breaking, improves the mechanical reliability level of the microphone device, and improves the working life of the microphone.
  • the diaphragm 2 may be a piezoelectric diaphragm.
  • FIG. 2 is a cross-sectional view of the microphone structure in the second embodiment of the present invention.
  • the microphone structure further includes a back plate 3 mounted on the base 1, the back plate 3 is located on the side of the diaphragm 2 away from the back cavity 11, and the back plate 3 is provided with a through hole 31 passing through it.
  • the structure of the diaphragm 2 and the back plate 3 constitute a capacitor system.
  • the external sound pressure causes the diaphragm 2 to move, and this movement changes the distance between the diaphragm 2 and the back plate 3, thereby changing the capacitance and finally converting the acoustic signal into an electrical signal.
  • the microphone structure includes a support 4, and the boundary portion 22 is fixed to the base 1 through the 4 supports.
  • the base boundary 113 can be configured as a chamfered structure 1131 or a rounded structure 1132.
  • the boundary portion 22 and the base 1 are spaced apart by the support 4 to provide a vibration space for the vibration of the diaphragm 2, and the support 4 is arranged on the top wall 111.
  • the four supporting members are arranged on the base wall 11 and do not touch the base boundary 113, which is beneficial to improve the overall stability.
  • FIG. 3 is a cross-sectional view of the microphone structure in the third embodiment of the present invention.
  • the difference from the second embodiment is only that the substrate boundary 113 is a chamfered structure 1131.
  • FIG. 4 is a cross-sectional view of a microphone structure according to a fourth embodiment of the present invention.
  • the difference from the second embodiment is only that the substrate boundary 113 is a rounded corner structure 1132.
  • the base boundary 113 adopts a chamfered structure 1131 or a rounded structure 1132. Compared with the original sharp structure, it can reduce the thickness of the diaphragm 2.
  • the size of the micro-cracks can avoid rapid fracture due to large cracks, prolong the effective working time of the diaphragm, and help avoid the micro-cracking of the diaphragm 2 at the corresponding position, and better reduce the occurrence of fracture of the diaphragm 2 risk.
  • the 4 support members include a back plate support 41 that connects the back plate 3 and the base 1, and a diaphragm support 42 that connects the diaphragm 2 and the base 1.
  • the back plate 3 is connected to the diaphragm through the back plate support 41. 2Interval settings.
  • the back plate support 41 can further strengthen the diaphragm 2, which is beneficial to improve the stability of the diaphragm 2 and avoid noise.
  • the backplane support 41 may be deposited from a backplane material.
  • boundary portion 22 is located above the substrate 1, and the other part extends above the back cavity 11. Due to repeated mechanical reliability tests such as loud sound pressure, air blowing, and dropping, the boundary portion 22 and the base boundary 113 may be rubbed. Because the boundary portion 22 has a large thickness, it is beneficial to prolong the life of the diaphragm 2.
  • the invention can be applied to a variety of microphone chips with a substrate 1, a diaphragm 2, a back cavity 12 structure, including a MEMES microphone, a piezoelectric microphone, and an optical microphone.
  • the thickness of the boundary portion of the diaphragm is increased to make it thicker than the central portion, and the contact portion of the substrate and the diaphragm is set to a chamfered or rounded structure to improve the vibration of the diaphragm when it contacts the substrate.
  • the critical value of fracture prolongs the working time from the initial microcrack to the critical value, reduces the risk of diaphragm fracture, improves the mechanical reliability of the microphone device, and increases the working life of the microphone.

Abstract

本发明提供了一种麦克风结构,其包括具有背腔的基底、设于基底上的支撑件及固定于支撑件并位于背腔上方的振膜,振膜包括位于中心位置的中心部以及环绕中心部且固定于基底的边界部,边界部延伸至背腔上方,边界部的厚度大于中心部的厚度。应用本发明中的麦克风结构之后,可以提高振膜断裂的临界值,延长了从初始微裂纹发展到临界值的工作时间,降低了振膜发生断裂的风险,提升了麦克风器件的机械类可靠性,提高了麦克风的工作寿命。

Description

麦克风结构 技术领域
本发明涉及麦克风领域,尤其涉及麦克风结构技术。
背景技术
麦克风的应用领域越来越广泛,对器件的可靠性要求也越来越高。麦克风芯片结构主要包括具有背腔的基底结构,以及位于基底上部的振膜和固定背板结构。膜和固定背板结构组成了电容系统。外来的声压通过背板中的通孔,引起振膜运动,这种运动改变薄膜与背板之间的距离,进而改变电容并最终转化为电信号。
在大声压级的应用场景和吹气、跌落等机械类可靠性试验中,边缘处的振膜若与基底上部的尖锐的背腔边界产生接触,接触后振膜的对应位置处会产生微裂纹。
在反复的大声压或吹气、跌落等情况产生的时候,振膜会在背板和基底结构之间来回运动,我们将振膜承受的应力视为一个交变应力,上述的初始微裂纹会在交变应力的作用下发生缓慢扩展,超过临界点之后,振膜会发生断裂,造成麦克风芯片的失效。
技术问题
本发明的目的在于提供一种麦克风结构,旨在解决现有技术中,在大声压级下麦克风振膜损坏的问题。
技术解决方案
本发明的技术方案如下:一种麦克风结构,其包括具有背腔的基底、设于所述基底上的支撑件及固定于所述支撑件并位于所述背腔上方的振膜,所述振膜包括位于中心位置的中心部以及环绕所述中心部且固定于所述基底的边界部,所述边界部延伸至所述背腔上方,所述边界部的厚度大于所述中心部的厚度。
进一步的,所述基底具有围设形成所述背腔的侧壁以及朝向所述振膜且与所述侧壁相连的顶壁,所述顶壁与所述侧壁连接处形成基底边界,所述基底边界为倒角结构或圆角结构。
进一步的,还包括安装于所述基底上的背板,所述背板位于所述振膜远离所述背腔的一侧,所述背板设有贯穿其上的通孔。
进一步的,所述支撑件包括连接所述背板与所述基底的背板支撑件、连接所述振膜与所述基底的振膜支撑件,所述背板通过所述背板支撑件与所述振膜间隔设置。
有益效果
本发明的有益效果在于:通过增大振膜边界部的厚度使其厚度大于中心部,并将基底与振膜接触部分设置为倒角或圆角结构提高了振膜在振动中与基底接触时断裂的临界值,进一步延长了从初始微裂纹发展到临界值的工作时间,降低了振膜发生断裂的风险,提升了麦克风器件的机械类可靠性水平,提高了麦克风的工作寿命。
附图说明
图1为本发明第一实施例中麦克风结构的剖面图;
图2为本发明第二实施例中麦克风结构的剖面图;
图3为本发明第三实施例中麦克风结构的剖面图;
图4为本发明第四实施例中麦克风结构的剖面图;
本发明的实施方式
下面结合附图和实施方式对本发明作进一步说明。
请参阅图1,图1为本发明第一实施例的麦克风结构结构剖面图。本发明提供了一种麦克风结构,其包括具有背腔11的基底1、设于所述基底1上的支撑件4及固定于所述支撑件4并位于所述背腔11上方的振膜2,所述振膜2包括位于中心位置的中心部21以及环绕所述中心部21且固定于所述基底1的边界部22,所述边界部22延伸至所述背腔11上方,所述边界部22的厚度大于所述中心部21的厚度。
基底1具有围设形成所述背腔11的侧壁111以及朝向所述振膜的顶壁112,所述顶壁与所述侧壁连接处形成基底边界113。
在声压或气流引起振膜2来回运动的过程中,振膜2的边界部22会与基底1的基底边界113接触,振膜2承受交变应力而使得振膜2的对应位置处会产生微裂纹,应用本发明中的麦克风结构之后,振膜2的边界部22的厚度比中心部21要大,可以提高振膜2断裂的临界值,延长了从初始微裂纹发展到临界值的工作时间,降低了振膜2发生断裂的风险,提升了麦克风器件的机械类可靠性水平,提高了麦克风的工作寿命。在本实施例中,振膜2可以是压电振膜。
请参阅图2,图2为本发明第二实施例中麦克风结构的剖面图。本实施例中,麦克风结构还包括安装于基底1上的背板3,背板3位于振膜2远离背腔11的一侧,背板3设有贯穿其上的通孔31。振膜2和背板3结构组成了电容系统。外来的声压引起振膜2运动,这种运动改变振膜2与背板3之间的距离,进而改变电容并最终将声信号转化为电信号。
进一步的,麦克风结构包括支撑件4,边界部22通过支撑件4件固定于基底1,所述基底边界113可设置为倒角结构1131或圆角结构1132。
通过支撑件4将边界部22与基底1间隔设置,为振膜2的振动提供了振动空间,支撑件4设置于所述顶壁111。而支撑件4件设置于基底壁11上且不接触基底边界113,有利于提高整体的稳定性。
参阅图3,图3为本发明第三实施例中麦克风结构的剖面图。作为一可选的实施例,其与第二实施例的区别仅为,基底边界113为倒角结构1131。
请参阅图4,图4为本发明第四实施例的麦克风结构的剖面图。作为一可选的实施例,其与第二实施例的区别仅在于,基底边界113为圆角结构1132。
在振膜2的边界部22的厚度大于中心部21的厚度的基础上,基底边界113采用倒角结构1131或者圆角结构1132,与原有的尖锐结构相比,更能够降低振膜2中产生微裂纹的尺寸,避免由于裂纹较大而带来的快速断裂,延长了振膜的有效工作时间,有利于避免对应位置的振膜2微裂,更好的降低了振膜2发生断裂的风险。
具体的,支撑件4件包括连接背板3与基底1的背板支撑件41、连接振膜2与基底1的振膜支撑件42,背板3通过背板支撑件41与所述振膜2间隔设置。具体的,背板支撑件41可以将振膜2进一步加固,有利于提升振膜2的稳定性,避免产生杂音。在本实施例中,背板支撑件41可以由背板材料沉积而成。
可以理解的是,边界部22的一部分位于基底1上方,另一部分延伸于背腔11上方。由于在反复的大声压或吹气、跌落等机械类可靠性试验中,边界部22与基底边界113可能会产生摩擦,因为边界部22厚度较大,所以有利于延长振膜2的寿命。
本发明可以适用于包括MEMES麦克风、压电式麦克风和光学式麦克风在内的多种拥有基底1、振膜2、背腔12结构的麦克风芯片。
本发明的麦克风结构中,通过增大振膜边界部的厚度使其厚度大于中心部,并将基底与振膜接触部分设置为倒角或圆角结构提高了振膜在振动中与基底接触时断裂的临界值,延长了从初始微裂纹发展到临界值的工作时间,降低了振膜发生断裂的风险,提升了麦克风器件的机械类可靠性水平,提高了麦克风的工作寿命。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (4)

  1. 一种麦克风结构,其包括具有背腔的基底、设于所述基底上的支撑件及固定于所述支撑件并位于所述背腔上方的振膜,其特征在于,所述振膜包括位于中心位置的中心部以及环绕所述中心部且固定于所述基底的边界部,所述边界部延伸至所述背腔上方,所述边界部的厚度大于所述中心部的厚度。
  2. 根据权利要求1所述的麦克风结构,其特征在于,所述基底具有围设形成所述背腔的侧壁以及朝向所述振膜且与所述侧壁相连的顶壁,所述顶壁与所述侧壁连接处形成基底边界,所述基底边界为倒角结构或圆角结构。
  3. 根据权利要求1或2所述的麦克风结构,其特征在于,还包括安装于所述基底上的背板,所述背板位于所述振膜远离所述背腔的一侧,所述背板设有贯穿其上的通孔。
  4. 根据权利要求3所述的麦克风结构,其特征在于,所述支撑件包括连接所述背板与所述基底的背板支撑件、连接所述振膜与所述基底的振膜支撑件,所述背板通过所述背板支撑件与所述振膜间隔设置。
PCT/CN2020/082341 2020-03-24 2020-03-31 麦克风结构 WO2021189508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010213370.9 2020-03-24
CN202010213370.9A CN111405402A (zh) 2020-03-24 2020-03-24 麦克风结构

Publications (1)

Publication Number Publication Date
WO2021189508A1 true WO2021189508A1 (zh) 2021-09-30

Family

ID=71436570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082341 WO2021189508A1 (zh) 2020-03-24 2020-03-31 麦克风结构

Country Status (2)

Country Link
CN (1) CN111405402A (zh)
WO (1) WO2021189508A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108609573A (zh) * 2016-12-12 2018-10-02 中芯国际集成电路制造(上海)有限公司 一种mems器件及其制备方法、电子装置
WO2018209727A1 (zh) * 2017-05-15 2018-11-22 歌尔股份有限公司 一种mems麦克风
CN108996466A (zh) * 2017-06-07 2018-12-14 中芯国际集成电路制造(天津)有限公司 Mems器件及其形成方法
CN109309884A (zh) * 2018-09-06 2019-02-05 歌尔股份有限公司 一种麦克风和电子设备
CN110574396A (zh) * 2018-12-29 2019-12-13 共达电声股份有限公司 Mems声音传感器、mems麦克风及电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9736590B2 (en) * 2014-06-06 2017-08-15 Infineon Technologies Ag System and method for a microphone
US9212045B1 (en) * 2014-07-31 2015-12-15 Infineon Technologies Ag Micro mechanical structure and method for fabricating the same
CN104270701B (zh) * 2014-09-30 2018-04-13 歌尔股份有限公司 一种mems麦克风中的振膜结构及其制造方法
CN104507014B (zh) * 2014-12-26 2018-08-28 上海集成电路研发中心有限公司 一种具有褶皱型振动膜的mems麦克风及其制造方法
CN205754849U (zh) * 2016-05-17 2016-11-30 歌尔股份有限公司 一种电容式麦克风芯片
CN206100451U (zh) * 2016-08-31 2017-04-12 歌尔股份有限公司 一种mems麦克风
CN109698991A (zh) * 2018-12-25 2019-04-30 西安易朴通讯技术有限公司 防水透声组件及含其的电子设备
CN209046883U (zh) * 2018-12-29 2019-06-28 华景科技无锡有限公司 一种麦克风芯片及麦克风
CN110582046B (zh) * 2019-09-29 2021-11-09 潍坊歌尔微电子有限公司 一种防水传感器封装、传感器及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108609573A (zh) * 2016-12-12 2018-10-02 中芯国际集成电路制造(上海)有限公司 一种mems器件及其制备方法、电子装置
WO2018209727A1 (zh) * 2017-05-15 2018-11-22 歌尔股份有限公司 一种mems麦克风
CN108996466A (zh) * 2017-06-07 2018-12-14 中芯国际集成电路制造(天津)有限公司 Mems器件及其形成方法
CN109309884A (zh) * 2018-09-06 2019-02-05 歌尔股份有限公司 一种麦克风和电子设备
CN110574396A (zh) * 2018-12-29 2019-12-13 共达电声股份有限公司 Mems声音传感器、mems麦克风及电子设备

Also Published As

Publication number Publication date
CN111405402A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
US9319798B2 (en) Capacitive transducer
CN109495829B (zh) 压电式mems麦克风
US11212623B2 (en) Piezoelectric MEMS microphone
KR101204281B1 (ko) 반도체 마이크로폰 칩
JP5218432B2 (ja) 静電容量型振動センサ
US20120139066A1 (en) Mems microphone
WO2019033854A1 (zh) 具有双振膜的差分电容式麦克风
US10536780B2 (en) Piezoelectric transducer
JP2015177336A (ja) 静電容量型トランスデューサ
CN109511067A (zh) 电容式麦克风
CN109803217B (zh) 压电式麦克风
KR20130039504A (ko) 멤스 마이크로폰 및 그 제조 방법
US10547954B2 (en) MEMS microphone and method for manufacturing the same
WO2022110270A1 (zh) 一种mems麦克风芯片
CN209659620U (zh) 压电式mems麦克风
WO2022105007A1 (zh) Mems麦克风芯片
CN107690114B (zh) Mems麦克风振膜及mems麦克风
CN2927580Y (zh) 半导体传声器芯片
CN103338427A (zh) Mems芯片以及mems麦克风
CN106996827A (zh) 一种感测膜片以及mems麦克风
WO2021189508A1 (zh) 麦克风结构
WO2021189585A1 (zh) 微机电系统麦克风芯片
CN213938322U (zh) 电容式mems麦克风
CN105848076B (zh) 声响传感器
CN104796831A (zh) 一种电容式麦克风及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926698

Country of ref document: EP

Kind code of ref document: A1