WO2018209727A1 - 一种mems麦克风 - Google Patents

一种mems麦克风 Download PDF

Info

Publication number
WO2018209727A1
WO2018209727A1 PCT/CN2017/085995 CN2017085995W WO2018209727A1 WO 2018209727 A1 WO2018209727 A1 WO 2018209727A1 CN 2017085995 W CN2017085995 W CN 2017085995W WO 2018209727 A1 WO2018209727 A1 WO 2018209727A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
comb
substrate
mems microphone
microphone according
Prior art date
Application number
PCT/CN2017/085995
Other languages
English (en)
French (fr)
Inventor
詹竣凱
蔡孟錦
周宗燐
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to EP17822537.1A priority Critical patent/EP3432605B1/en
Priority to JP2017568116A priority patent/JP6542918B2/ja
Priority to US15/743,509 priority patent/US10349186B2/en
Publication of WO2018209727A1 publication Critical patent/WO2018209727A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2815Enclosures comprising vibrating or resonating arrangements of the bass reflex type
    • H04R1/2823Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2207/00Details of diaphragms or cones for electromechanical transducers or their suspension covered by H04R7/00 but not provided for in H04R7/00 or in H04R2307/00
    • H04R2207/021Diaphragm extensions, not necessarily integrally formed, e.g. skirts, rims, flanges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms

Definitions

  • the present invention relates to the field of acoustics and, more particularly, to a MEMS microphone.
  • MEMS sensing components are now widely used in consumer electronics. How to speed up the production process is the focus of current component suppliers. For example, the dust generated by the mobile phone production and assembly process is directly cleaned by air guns. The lowest cost option. Therefore, it is necessary to propose a large sound pressure or atmospheric pressure anti-blowing improvement scheme for the MEMS sensor to avoid the failure of the microphone due to the air gun cleaning during the assembly process.
  • the current improvement scheme is to provide a pressure relief hole or a pressure relief valve structure on the diaphragm of the MEMS microphone.
  • the structure of the pressure relief hole reduces the effective area of the diaphragm.
  • the structure of the pressure relief valve in the middle of the diaphragm will be limited by the size, and its pressure relief capacity is limited; it will also directly affect the vibration characteristics of the diaphragm, especially affecting the low frequency characteristics of the diaphragm; the dynamic stability of the diaphragm is relatively poor. .
  • a MEMS microphone includes a substrate and a diaphragm and a back electrode positioned above the substrate; a plurality of comb teeth portions are formed at an edge position of the diaphragm, The comb teeth are spaced apart in a circumferential direction of the diaphragm; wherein a position between two adjacent comb teeth on the diaphragm is connected to the substrate through an insulating layer; a comb portion on the diaphragm At least partially overlapping the substrate with a gap therebetween and configured as an air flow passage for airflow therethrough.
  • the diaphragm comprises a diaphragm body and a plurality of connecting portions spaced apart from each other at an edge of the diaphragm body and protruding relative to an edge of the diaphragm body, the comb teeth portion being disposed adjacent to the diaphragm body A position between the two connecting portions; the connecting portion of the diaphragm is connected to the substrate through an insulating layer.
  • the diaphragm body and the connecting portion are integrally formed by a MEMS process.
  • each of the comb teeth includes at least one deflate valve flap formed by etching the diaphragm.
  • vent flap is rectangular, fan-shaped, elliptical, trapezoidal or S-shaped.
  • a sacrificial hole is disposed on the deflation valve flap.
  • a portion between the comb-tooth portion of the diaphragm and the center of the diaphragm overlaps the substrate.
  • the gap between the position of the comb portion on the diaphragm and the substrate is 1-2 ⁇ m.
  • the free end of the comb tooth portion extends to the outer edge of the diaphragm and is flush with the outer edge of the diaphragm or in a retracted state relative to the outer edge of the diaphragm.
  • the free end of the comb tooth portion is radially convex relative to the outer edge of the diaphragm.
  • the air flow passage of the diaphragm is formed between the comb tooth region of the diaphragm and the substrate, the sound pressure received by the diaphragm can be quickly released through the air flow passage to quickly equalize the inner and outer chambers of the microphone. Body pressure.
  • the airflow passage can be deformed according to its own compression condition, so that the size of the airflow passage passage can be adjusted in real time according to the received overload sound pressure, and a pressure relief path is provided to protect the diaphragm.
  • the airflow passage of the present invention also achieves regulation of the low frequency performance of the MEMS microphone.
  • the airflow passage can greatly improve the impact resistance of the microphone, and can effectively shield the dust and particles, and prevent the dust particles from invading the chip itself.
  • the inventors of the present invention have found that in the prior art, the pressure relief hole or the pressure relief valve structure has a limited pressure relief capability and affects the acoustic performance of the microphone. Therefore, the technical task to be achieved by the present invention or the technical problem to be solved is not thought of or expected by those skilled in the art, so the present invention is a new technical solution.
  • Figure 1 is a cross-sectional view showing a position where a microphone of the present invention is connected from a diaphragm to a substrate.
  • Fig. 2 is a schematic view showing the structure of a diaphragm of the present invention.
  • Figure 3 is a partial enlarged view of the comb tooth portion of Figure 2;
  • Fig. 7 is a schematic view showing another embodiment of the diaphragm of the present invention.
  • the present invention provides a MEMS microphone comprising a substrate 1 and a diaphragm 2, a back electrode 5, located above the substrate 1.
  • a central portion of the substrate 1 is formed with a back cavity, and the diaphragm 2 is supported above the substrate 1 by the first insulating layer 3, thereby ensuring insulation between the diaphragm 2 and the substrate 1, and the diaphragm 2 is The central region is suspended above the back cavity of the substrate 1.
  • the back electrode 5 is provided with a plurality of through holes 50 supported by the second insulating layer 4 above the diaphragm 2, and the second insulating layer 4 not only ensures mutual insulation between the back electrode 5 and the diaphragm 2, but also A certain gap can be provided between the back pole 5 and the diaphragm 2.
  • a capacitor structure that can convert a sound signal into an electrical signal is formed between the back pole 5 and the diaphragm 2.
  • the microphone of the invention is manufactured by the MEMS process, the substrate 1 can be made of single crystal silicon, the diaphragm 2 and the back pole 5 can be made of polysilicon material, and the first insulating layer 3 and the second insulating layer 4 can be made of silicon dioxide.
  • the structure of the microphone and the manufacturing process thereof are all common knowledge of those skilled in the art, and will not be specifically described herein.
  • the diaphragm 2 provided by the present invention has a plurality of comb teeth portions 22 formed at the edge positions thereof, and the comb tooth portions 22 may be at least one vent valve formed by etching at the edge position of the diaphragm 2.
  • the number of the relief flaps 220 may be one, two, three or more, depending on actual design requirements.
  • the deflation valve flap 220 may be in the form of a rectangular, scalloped, elliptical, trapezoidal or S-shaped venting valve structure as is well known to those skilled in the art.
  • the comb tooth portion 22 of the present invention may be disposed inside the diaphragm 2, for example, the deflation valve flap 220 is formed in an edge region of the diaphragm 2, and the free end thereof is still located in the diaphragm 2.
  • the free end of the comb tooth portion 22 extends to the outer edge of the diaphragm 2, and at the time of manufacture, the etched slit penetrates the edge of the diaphragm 2, thereby forming the vent valve
  • the flap 220 is released and the free end of the flap valve 220 is released, with reference to Figures 2 and 3.
  • the free end of the deflation valve flap 220 of the present invention may be flush with the outer edge of the diaphragm 2, that is, That is, the radial dimension of the center of the diaphragm 2 to the free end of the deflate valve flap 220 coincides with the radial dimension of the center of the diaphragm 2 to the edge of the diaphragm 2.
  • the free end of the deflate valve flap 220 of the present invention is radially retracted relative to the outer edge of the diaphragm 2, that is, the radial dimension of the center of the diaphragm 2 to the free end of the deflate valve flap 220 is smaller than that of the diaphragm 2 The radial dimension from the center to the edge of the diaphragm 2.
  • the free end of the comb tooth portion 22 can also be in a radially convex state with respect to the outer edge of the diaphragm 2. That is, the free end of the comb tooth portion 22 extends to the outside of the edge of the diaphragm 2, with reference to FIG.
  • the plurality of comb-tooth portions 22 of the present invention are spaced apart in the circumferential direction of the diaphragm 2, thereby achieving uniformity of pressure relief in the peripheral direction of the diaphragm.
  • the plurality of comb-tooth portions 22 can be uniformly distributed in the circumferential direction of the diaphragm 2.
  • the number of comb teeth 22 can be determined according to actual needs, for example, six as shown in FIG. 2 can be selected.
  • the position between the adjacent two comb-tooth portions 22 on the diaphragm 2 is connected to the substrate 1 through the first insulating layer 3, and the comb-tooth portion 22 on the diaphragm 2 is at least Partially overlapped with the substrate 1. Since the connection point between the diaphragm 2 and the substrate 1 is located between the adjacent two comb-tooth portions 22, and there is no first insulating layer 3 between the region of the comb-tooth portion 22 and the substrate 1, this causes the comb
  • the region of the tooth portion 22 has a certain gap with the substrate 1, which is configured as an air flow passage 6 through which air flows.
  • the size of the gap may be, for example, 1-2 ⁇ m, depending on the bias voltage provided by the ASIC chip.
  • FIG. 1 is a cross-sectional view showing a position where a microphone is connected to a substrate 1 along a diaphragm 2
  • FIG. 4 is a cross-sectional view showing a position of a microphone along a comb portion 22 of the diaphragm 2 of the present invention.
  • the area of the comb portion 22 at the edge of the diaphragm 2 is suspended above the substrate 1, which allows the enclosed air flow passage 6 to communicate to the outside of the microphone, thereby facilitating pressure relief.
  • MEMS microphones are obtained by layer-by-layer deposition, layer-by-layer etching, and subsequent etching. That is to say, the underside of the diaphragm layer is originally a whole layer of the first insulating layer.
  • the first insulating layer between the comb portion 22 and the substrate 1 can be etched through the gap between the deflation valve flaps 220.
  • a sacrificial hole 221 is provided on the deflation valve flap 220, with reference to FIG. The provision of the sacrificial hole 221 not only facilitates rapid corrosion of the first insulating layer, but also improves the pressure relief capability of the deflation valve flap 220 itself.
  • the diaphragm 2 of the present invention may be a circular diaphragm, in a preferred embodiment of the present invention, Referring to FIG. 2, the diaphragm 2 includes a diaphragm main body 20 and a plurality of connecting portions 21 spaced apart from each other at an edge of the diaphragm main body 20, and the connecting portion 21 is radially convex with respect to an edge of the diaphragm main body 20, so that The entire diaphragm 2 has a gear shape.
  • the connecting portion 21 of the diaphragm 2 is connected to the substrate 1 through the first insulating layer 3, thereby realizing support and connection of the diaphragm 2 as a whole on the substrate 1.
  • the comb tooth portion 22 is formed at a position on the diaphragm main body 20 between the adjacent two connecting portions 21.
  • the diaphragm body 20, the connecting portion 21, and the comb portion 22 of the present invention can be formed on the same diaphragm layer by etching. This MEMS process belongs to common knowledge of those skilled in the art, and will not be specifically described herein. .
  • the structure of the airflow passage 6 of the present invention is designed to have three operational states, with reference to Figures 4-6.
  • Fig. 4 shows the first operational state of the airflow passage 6 of the present invention.
  • the airflow will flow out through the airflow passage 6, thereby satisfying the need to regulate the low frequency performance of the microphone.
  • Fig. 5 shows a second operational state of the airflow passage 6 of the present invention.
  • a slight overload sound pressure for example, an overload sound pressure of 0.2-0.4 MPa
  • the comb portion 22 on the diaphragm 2 It will be bulged so that the airflow passage 6 forms a flared structure to facilitate rapid pressure relief and to ensure that the diaphragm 2 is not damaged by the overload sound pressure.
  • Fig. 6 shows a third operational state of the airflow passage 6 of the present invention.
  • a large overload sound pressure for example, an overload sound pressure of 0.4-0.8 MPa
  • the edge of the diaphragm 2 is only partially
  • the substrates 1 are joined together, which causes a large overload sound pressure to cause the diaphragm 2 to be pressed and displaced, thereby providing a maximum pressure relief path; at the same time, the comb teeth 22 on the diaphragm 2 are bulged.
  • the airflow passage 6 forms a flared structure to facilitate rapid pressure relief and ensure that the diaphragm 2 is not damaged by the overload sound pressure.
  • the air flow passage 6 communicating with the outside is formed between the comb tooth portion 22 region of the diaphragm 2 and the substrate 1, the sound pressure received by the diaphragm 2 can be quickly released through the air flow passage 6 To quickly equalize the air pressure inside and outside the microphone. Moreover, the airflow passage 6 can be deformed according to its own compression condition, so that the size of the airflow passage passage can be adjusted in real time according to the received overload sound pressure, and a pressure relief path is provided to protect the diaphragm 2.
  • the airflow passage of the present invention also achieves regulation of the low frequency performance of the MEMS microphone. Same Due to the structural design of the diaphragm 2, the airflow passage 6 can greatly improve the impact resistance of the microphone, and can effectively shield dust and particles from being invaded by the dust particles.
  • the overlapping size of the comb portion 22 on the diaphragm 2 and the substrate 1 determines the lateral length of the airflow passage 6.
  • the comb tooth portion 22 may partially overlap the substrate 1.
  • the comb tooth portions 22 are all overlapped with the substrate 1.
  • a portion between the comb-tooth portion 22 of the diaphragm 2 and the center of the diaphragm 2 is overlapped with the substrate 1. That is, not only the comb-tooth portion 22 is entirely overlapped with the substrate 1, but also the region between the comb-tooth portion 22 of the diaphragm 2 and the center of the diaphragm 2 partially extends above the substrate 1, and participates in airflow. Formation of channel 6. This greatly prolongs the lateral dimension of the airflow passage 6, and when subjected to a large overload sound pressure, it is advantageous to drive the diaphragm 2 as a whole to provide a maximum pressure relief path. And the long air flow passage 6 can effectively prevent the dust particles from invading into the interior of the chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Micromachines (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

本发明公开了一种MEMS麦克风,包括衬底以及位于衬底上方的振膜、背极;在所述振膜的边缘位置形成有多个梳齿部,所述多个梳齿部间隔分布在振膜的周向方向上;其中,所述振膜上相邻两个梳齿部之间的位置通过绝缘层连接在衬底上;所述振膜上的梳齿部至少部分地与衬底重叠在一起,二者之间具有间隙并被构造为供气流通过的气流流通通道。本发明的麦克风,具有更好的抗冲击能力,而且还可以避免粉尘的入侵。

Description

一种MEMS麦克风 技术领域
本发明涉及声学领域,更具体地,涉及一种MEMS麦克风。
背景技术
MEMS感测组件现已应用普及在消费性电子产品中,如何加快产品生产工艺是目前零组件供货商关注的焦点,例如手机生产组装过程中所产生的灰尘碎削通过气枪直接清理,是目前成本最低的方案。因此对MEMS传感器必须提出大声压或大气压的抗吹气改善方案,避免在组装过程,因气枪清理导致麦克风发生破裂失效。
目前的改善方案为在MEMS麦克风的振膜上设置泄压孔或者泄压阀结构。但是泄压孔的结构会减少振膜的有效面积。在振膜中部区域设置的泄压阀结构会受到尺寸的限制,其泄压能力有限;而且还会直接影响振膜的振动特性,尤其影响振膜的低频特性;振膜的动态稳定性比较差。
发明内容
本发明的一个目的是提供一种MEMS麦克风的新技术方案。
根据本发明的第一方面,提供了一种MEMS麦克风,包括衬底以及位于衬底上方的振膜、背极;在所述振膜的边缘位置形成有多个梳齿部,所述多个梳齿部间隔分布在振膜的周向方向上;其中,所述振膜上相邻两个梳齿部之间的位置通过绝缘层连接在衬底上;所述振膜上的梳齿部至少部分地与衬底重叠在一起,二者之间具有间隙并被构造为供气流通过的气流流通通道。
可选地,所述振膜包括振膜主体以及多个间隔分布在振膜主体边缘、且相对于振膜主体边缘凸起的连接部,所述梳齿部设置在振膜主体上位于相邻两个连接部之间的位置;所述振膜的连接部通过绝缘层连接在衬底上。
可选地,所述振膜主体与连接部通过MEMS工艺一体成型。
可选地,所述每个梳齿部包括至少一个通过刻蚀振膜形成的泄气阀瓣。
可选地,所述泄气阀瓣呈矩形、扇形、椭圆形、梯形或者S型。
可选地,在所述泄气阀瓣上设置有牺牲孔。
可选地,所述振膜上梳齿部至振膜中心之间的部分与衬底重叠在一起。
可选地,所述振膜上梳齿部位置与衬底之间的间隙为1-2μm。
可选地,所述梳齿部的自由端延伸至振膜的外侧边缘,并与所述振膜的外侧边缘齐平,或者相对于振膜的外侧边缘呈内缩状态。
可选地,所述梳齿部的自由端相对于振膜的外侧边缘呈径向凸起状态。
本发明的麦克风,由于振膜的梳齿部区域与衬底之间形成了连通外界的气流流通通道,振膜受到的声压可以通过该气流流通通道快速进行泄压,以迅速均衡麦克风内外腔体的气压。而且气流流通通道可以根据自身的受压情况发生形变,从而可实时依据受到的过载声压来调整气流流通通道通的尺寸,提供泄压路径以此保护振膜。
本发明的气流流通通道通还实现了MEMS麦克风低频性能的调控。同时由于振膜的结构设计,使得该气流流通通道可以大大提高麦克风的抗冲击能力,并可有效遮蔽粉尘、微粒,避免粉尘微粒入侵对本身芯片产生伤害。
本发明的发明人发现,在现有技术中,泄压孔或者泄压阀结构的泄压能力有限,而且会影响麦克风的声学性能。因此,本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
图1是本发明麦克风从振膜与衬底连接位置的剖面图。
图2是本发明振膜的结构示意图。
图3是图2中梳齿部的局部放大图。
图4至图6是本发明麦克风三种不同的操作状态。
图7是本发明振膜另一实施结构的示意图。
具体实施方式
为了使本发明解决的技术问题、采用的技术方案、取得的技术效果易于理解,下面结合具体的附图,对本发明的具体实施方式做进一步说明。
参考图1,本发明提供了一种MEMS麦克风,其包括衬底1以及位于衬底1上方的振膜2、背极5。衬底1的中部区域形成有背腔,所述振膜2通过第一绝缘层3支撑在衬底1的上方,从而保证振膜2与衬底1之间的绝缘,并使振膜2的中部区域悬置在衬底1背腔的上方。背极5上设置有多个贯通孔50,其通过第二绝缘层4支撑在振膜2的上方,该第二绝缘层4不但可以保证背极5与振膜2之间的相互绝缘,还可以使背极5与振膜2之间具有一定的间隙。背极5与振膜2之间构成了可以将声音信号转换为电信号的电容器结构。
本发明的麦克风采用MEMS工艺制造,衬底1可选用单晶硅材质,振膜2与背极5均可以采用多晶硅材质,第一绝缘层3、第二绝缘层4均可以采用二氧化硅材质,这种麦克风的结构及其制造工艺均属于本领域技术人员的公知常识,在此不再具体说明。
参考图2、图3,本发明提供的振膜2,在其边缘位置形成有多个梳齿部22,该梳齿部22可以是在振膜2边缘位置通过刻蚀形成的至少一个泄气阀瓣220。泄气阀瓣220的数量可以是一个、两个、三个或者更多个,具体根据实际设计要求而定。所述泄气阀瓣220可以呈矩形、扇形、椭圆形、梯形或者S型等本领域技术人员所熟知的泄气阀门结构。
本发明的梳齿部22可以设置在振膜2的内部,例如,所述泄气阀瓣220形成在振膜2的边缘区域,其自由端依然位于振膜2内。
在本发明另一个具体的实施方式中,所述梳齿部22的自由端延伸至振膜2的外侧边缘,在制作的时候,蚀刻的缝隙贯穿振膜2的边缘,从而形成所述泄气阀瓣220,并将泄气阀瓣220的自由端释放出来,参考图2、图3。本发明泄气阀瓣220的自由端可以与振膜2的外侧边缘齐平,也就 是说,振膜2中心至泄气阀瓣220自由端的径向尺寸与振膜2中心至振膜2边缘的径向尺寸一致。也可以是,本发明泄气阀瓣220的自由端相对于振膜2的外侧边缘呈径向内缩状态,也就是说,振膜2中心至泄气阀瓣220自由端的径向尺寸小于振膜2中心至振膜2边缘的径向尺寸。
当然,对于本领域的技术人员而言,所述梳齿部22的自由端相对于振膜2的外侧边缘也可以呈径向凸起的状态。也就是说,梳齿部22的自由端延伸至振膜2边缘的外侧,参考图7。
本发明的多个梳齿部22间隔分布在振膜2的周向方向上,从而实现振膜周边方向上泄压的均匀性。例如当振膜2为圆形时,多个梳齿部22可以均匀分布在振膜2的圆周方向上。梳齿部22的数量可以根据实际需求而定,例如可以选择如图2所示的六个。
本发明的MEMS麦克风,所述振膜2上相邻两个梳齿部22之间的位置通过第一绝缘层3连接在衬底1上,并且所述振膜2上的梳齿部22至少部分地与衬底1重叠在一起。由于振膜2与衬底1之间的连接点位于相邻两个梳齿部22之间,而梳齿部22的区域与衬底1之间并没有第一绝缘层3,这就使得梳齿部22的区域与衬底1之间具有一定的间隙,该间隙被构造为供气流通过的气流流通通道6。该间隙的尺寸例如可以为1-2μm,具体需要根据ASIC芯片所提供的偏压来决定。
图1为本发明麦克风沿振膜2与衬底1连接位置的剖面图,图4为本发明麦克风沿振膜2梳齿部22位置的剖面图。振膜2边缘的梳齿部22区域是悬空在衬底1的上方,这就使得围成的气流流通通道6可以连通到麦克风的外侧,从而便于泄压。
对于本领域的技术人员而言,MEMS麦克风是通过逐层沉积、逐层刻蚀以及后续的腐蚀得到的。也就是说,振膜层的下方原本是一整层的第一绝缘层。梳齿部22与衬底1之间的第一绝缘层可以通过泄气阀瓣220之间的间隙进行腐蚀。本发明优选的是,在所述泄气阀瓣220上设置有牺牲孔221,参考图3。该牺牲孔221的设置不但有利于第一绝缘层的快速腐蚀,而且还可以提高泄气阀瓣220自身的泄压能力。
本发明的振膜2可以是一圆形振膜,在本发明一个优选的实施方式中, 参考图2,所述振膜2包括振膜主体20以及多个间隔分布在振膜主体20边缘的连接部21,该连接部21相对于振膜主体20边缘呈径向凸起的状态,使得整个振膜2呈齿轮状。所述振膜2的连接部21通过第一绝缘层3连接在衬底1上,从而实现振膜2整体在衬底1上的支撑、连接。
所述梳齿部22形成在振膜主体20上位于相邻两个连接部21之间的位置。本发明的振膜主体20、连接部21、梳齿部22均可以通过刻蚀的方式在同一振膜层上形成,这种MEMS工艺属于本领域技术人员的公知常识,在此不再具体说明。
本发明气流流通通道6的结构设计使其具有三种操作状态,参考图4至图6。
图4示出了本发明气流流通通道6的第一种操作状态,当振膜2在正常的工作状态时,气流会通过气流流通通道6流出,从而可以满足调控麦克风低频性能的需求。
图5示出了本发明气流流通通道6的第二种操作状态,当振膜2受到微量的过载声压,例如受到0.2-0.4MPa的过载声压时,振膜2上的梳齿部22会被鼓起,从而使得气流流通通道6形成一个扩口的结构,以便于快速泄压,保证振膜2不受过载声压的损坏。
图6示出了本发明气流流通通道6的第三种操作状态,当振膜2受到较大的过载声压,例如受到0.4-0.8MPa的过载声压时,由于振膜2边缘仅部分与衬底1连接在一起,这就使得较大的过载声压会使振膜2受压并发生位移,从而提供最大的泄压路径;同时振膜2上的梳齿部22会被鼓起,从而使得气流流通通道6形成一个扩口的结构,以便于快速泄压,保证振膜2不受过载声压的损坏。
本发明的麦克风,由于振膜2的梳齿部22区域与衬底1之间形成了连通外界的气流流通通道6,振膜2受到的声压可以通过该气流流通通道6快速进行泄压,以迅速均衡麦克风内外腔体的气压。而且气流流通通道6可以根据自身的受压情况发生形变,从而可实时依据受到的过载声压来调整气流流通通道通的尺寸,提供泄压路径以此保护振膜2。
本发明的气流流通通道通还实现了MEMS麦克风低频性能的调控。同 时由于振膜2的结构设计,使得该气流流通通道6可以大大提高麦克风的抗冲击能力,并可有效遮蔽粉尘、微粒,避免粉尘微粒入侵对本身芯片产生伤害。
本发明的麦克风,振膜2上梳齿部22与衬底1的重叠尺寸决定了气流流通通道6的横向长度。所述梳齿部22可以部分地与衬底1重叠在一起。优选的是,所述梳齿部22全部与衬底1重叠在一起。
更优选的是,所述振膜2上梳齿部22至振膜2中心之间的部分与衬底1重叠在一起。也就是说,不但梳齿部22全部与衬底1重叠在一起,振膜2上梳齿部22至振膜2中心之间的区域也部分地延伸到衬底1的上方,并参与气流流通通道6的形成。这大大延长了气流流通通道6的横向尺寸,在受到较大的过载声压时,有利于驱动振膜2整体发生位移,以提供最大的泄压路径。并且较长的气流流通通道6,可有效地避免粉尘微粒入侵至芯片的内部。
本发明已通过优选的实施方式进行了详尽的说明。然而,通过对前文的研读,对各实施方式的变化和增加对于本领域的一般技术人员来说是显而易见的。申请人的意图是所有的这些变化和增加都落在了本发明权利要求所保护的范围中。

Claims (10)

  1. 一种MEMS麦克风,其特征在于:包括衬底(1)以及位于衬底(1)上方的振膜(2)、背极(5);在所述振膜(2)的边缘位置形成有多个梳齿部(22),所述多个梳齿部(22)间隔分布在振膜(2)的周向方向上;其中,所述振膜(2)上相邻两个梳齿部(22)之间的位置通过绝缘层连接在衬底(1)上;所述振膜(2)上的梳齿部(22)至少部分地与衬底(1)重叠在一起,二者之间具有间隙并被构造为通道(6)。
  2. 根据权利要求1所述的MEMS麦克风,其特征在于:所述振膜(2)包括振膜主体(20)以及多个间隔分布在振膜主体(20)边缘、且相对于振膜主体(20)边缘凸起的连接部(21),所述梳齿部(22)设置在振膜主体(20)上位于相邻两个连接部(21)之间的位置;所述振膜(2)的连接部(21)通过绝缘层连接在衬底(1)上。
  3. 根据权利要求2所述的MEMS麦克风,其特征在于:所述振膜主体(20)与连接部(21)通过MEMS工艺一体成型。
  4. 根据权利要求1至3任一项所述的MEMS麦克风,其特征在于:所述每个梳齿部(22)包括至少一个通过刻蚀振膜(2)形成的泄气阀瓣(220)。
  5. 根据权利要求4所述的MEMS麦克风,其特征在于:所述泄气阀瓣(220)呈矩形、扇形、椭圆形、梯形或者S型。
  6. 根据权利要求4或5所述的MEMS麦克风,其特征在于:在所述泄气阀瓣(220)上设置有牺牲孔(221)。
  7. 根据权利要求1至6任一项所述的MEMS麦克风,其特征在于:所述振膜(2)上梳齿部(22)至振膜(2)中心之间的部分与衬底(1)重叠在一起。
  8. 根据权利要求1至7任一项所述的MEMS麦克风,其特征在于:所述振膜(2)上梳齿部(22)位置与衬底(1)之间的间隙为1-2μm。
  9. 根据权利要求1至8任一项所述的MEMS麦克风,其特征在于:所述梳齿部(22)的自由端延伸至振膜(2)的外侧边缘,并与所述振膜(2)的外侧边缘齐平,或者相对于振膜(2)的外侧边缘呈内缩状态。
  10. 根据权利要求1至8任一项所述的MEMS麦克风,其特征在于:所述梳齿部(22)的自由端相对于振膜(2)的外侧边缘呈径向凸起状态。
PCT/CN2017/085995 2017-05-15 2017-05-25 一种mems麦克风 WO2018209727A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17822537.1A EP3432605B1 (en) 2017-05-15 2017-05-25 Mems microphone
JP2017568116A JP6542918B2 (ja) 2017-05-15 2017-05-25 Memsマイクロホン
US15/743,509 US10349186B2 (en) 2017-05-15 2017-05-25 MEMS microphone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710339052.5 2017-05-15
CN201710339052.5A CN107105377B (zh) 2017-05-15 2017-05-15 一种mems麦克风

Publications (1)

Publication Number Publication Date
WO2018209727A1 true WO2018209727A1 (zh) 2018-11-22

Family

ID=59669532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085995 WO2018209727A1 (zh) 2017-05-15 2017-05-25 一种mems麦克风

Country Status (5)

Country Link
US (1) US10349186B2 (zh)
EP (1) EP3432605B1 (zh)
JP (1) JP6542918B2 (zh)
CN (1) CN107105377B (zh)
WO (1) WO2018209727A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021189508A1 (zh) * 2020-03-24 2021-09-30 瑞声声学科技(深圳)有限公司 麦克风结构

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10715924B2 (en) * 2018-06-25 2020-07-14 Taiwan Semiconductor Manufacturing Co., Ltd. MEMS microphone having diaphragm
CN108769881A (zh) * 2018-06-26 2018-11-06 常州元晶电子科技有限公司 改善mems麦克风声学特性的通风孔结构及其制造方法
CN111031460A (zh) * 2019-12-27 2020-04-17 歌尔微电子有限公司 一种mems芯片、制备方法及包括其的mems麦克风
CN111885471B (zh) * 2020-06-16 2021-10-08 歌尔微电子有限公司 电容型微机电系统麦克风、麦克风单体及电子设备
CN111885473B (zh) * 2020-06-24 2021-11-16 歌尔微电子有限公司 电容型微机电系统麦克风、麦克风单体及电子设备
US11159893B1 (en) * 2020-07-21 2021-10-26 Aac Acoustic Technologies (Shenzhen) Co., Ltd. MEMS sound transducer
CN113347540B (zh) * 2021-08-05 2022-01-07 山东新港电子科技有限公司 一种膜片、mems麦克风芯片及其制作方法
JP7154462B1 (ja) * 2021-11-25 2022-10-17 サンコール株式会社 超音波トランスデューサー及びその製造方法
CN114598979B (zh) * 2022-05-10 2022-08-16 迈感微电子(上海)有限公司 一种双振膜mems麦克风及其制造方法
CN117376759B (zh) * 2023-12-07 2024-02-02 苏州敏芯微电子技术股份有限公司 麦克风组件及麦克风

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103338427A (zh) * 2013-07-18 2013-10-02 山东共达电声股份有限公司 Mems芯片以及mems麦克风
CN204316746U (zh) * 2014-11-28 2015-05-06 歌尔声学股份有限公司 一种mems传感器和mems麦克风
US20160150321A1 (en) * 2014-11-26 2016-05-26 Hyundai Motor Company Micro phone and method of manufacturing the same
CN106375912A (zh) * 2016-08-31 2017-02-01 歌尔股份有限公司 一种mems麦克风中的振膜及mems麦克风

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146435A (en) * 1989-12-04 1992-09-08 The Charles Stark Draper Laboratory, Inc. Acoustic transducer
JP2008541644A (ja) * 2005-05-17 2008-11-20 エヌエックスピー ビー ヴィ Mems型コンデンサマイクロホン用の改善された膜
JP2007210083A (ja) * 2006-02-13 2007-08-23 Hitachi Ltd Mems素子及びその製造方法
US8126167B2 (en) * 2006-03-29 2012-02-28 Yamaha Corporation Condenser microphone
EP2103173B1 (en) * 2007-01-17 2013-05-29 Analog Devices, Inc. Microphone with pressure relief
CN201118978Y (zh) * 2007-10-22 2008-09-17 瑞声声学科技(深圳)有限公司 驻极体麦克风
TWI358235B (en) * 2007-12-14 2012-02-11 Ind Tech Res Inst Sensing membrane and micro-electro-mechanical syst
JP5374077B2 (ja) * 2008-06-16 2013-12-25 ローム株式会社 Memsセンサ
JP2010098518A (ja) * 2008-10-16 2010-04-30 Rohm Co Ltd Memsセンサの製造方法およびmemsセンサ
JP2010103701A (ja) * 2008-10-22 2010-05-06 Rohm Co Ltd Memsセンサ
CN101415137B (zh) * 2008-11-14 2012-06-06 瑞声声学科技(深圳)有限公司 电容式麦克风
US9402137B2 (en) * 2011-11-14 2016-07-26 Infineon Technologies Ag Sound transducer with interdigitated first and second sets of comb fingers
US9002037B2 (en) * 2012-02-29 2015-04-07 Infineon Technologies Ag MEMS structure with adjustable ventilation openings
US9409763B2 (en) * 2012-04-04 2016-08-09 Infineon Technologies Ag MEMS device and method of making a MEMS device
DE102012220006A1 (de) * 2012-11-02 2014-05-08 Robert Bosch Gmbh Bauelement mit einer mikromechanischen Mikrofonstruktur
US9181080B2 (en) * 2013-06-28 2015-11-10 Infineon Technologies Ag MEMS microphone with low pressure region between diaphragm and counter electrode
CN204948352U (zh) * 2015-08-17 2016-01-06 北京卓锐微技术有限公司 Mems麦克风及移动终端
US9611135B1 (en) * 2015-10-30 2017-04-04 Infineon Technologies Ag System and method for a differential comb drive MEMS
KR101916052B1 (ko) * 2016-09-09 2018-11-07 현대자동차 주식회사 마이크로폰, 이의 제조 방법 및 제어 방법
CN206341427U (zh) * 2016-10-25 2017-07-18 瑞声科技(新加坡)有限公司 Mems麦克风
CN206908857U (zh) * 2017-05-15 2018-01-19 歌尔股份有限公司 一种mems麦克风

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103338427A (zh) * 2013-07-18 2013-10-02 山东共达电声股份有限公司 Mems芯片以及mems麦克风
US20160150321A1 (en) * 2014-11-26 2016-05-26 Hyundai Motor Company Micro phone and method of manufacturing the same
CN204316746U (zh) * 2014-11-28 2015-05-06 歌尔声学股份有限公司 一种mems传感器和mems麦克风
CN106375912A (zh) * 2016-08-31 2017-02-01 歌尔股份有限公司 一种mems麦克风中的振膜及mems麦克风

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021189508A1 (zh) * 2020-03-24 2021-09-30 瑞声声学科技(深圳)有限公司 麦克风结构

Also Published As

Publication number Publication date
US20190028814A1 (en) 2019-01-24
US10349186B2 (en) 2019-07-09
JP2019518341A (ja) 2019-06-27
EP3432605A4 (en) 2019-04-10
EP3432605B1 (en) 2021-07-07
CN107105377A (zh) 2017-08-29
JP6542918B2 (ja) 2019-07-10
CN107105377B (zh) 2021-01-22
EP3432605A1 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
WO2018209727A1 (zh) 一种mems麦克风
CN107071672B (zh) 一种压电式麦克风
US9066180B2 (en) Component having a micromechanical microphone structure
US10779101B2 (en) MEMS device
US9641939B2 (en) Acoustic transducer and microphone
JP2008099212A (ja) コンデンサマイクロホン及びその製造方法
CN110545511A (zh) 压电式mems麦克风
TW201637989A (zh) Mems裝置與製程
JP2008148283A (ja) 柔軟バネ型振動板を有するコンデンサーマイクロホン及びその製造方法
KR101916052B1 (ko) 마이크로폰, 이의 제조 방법 및 제어 방법
CN109803217B (zh) 压电式麦克风
TWI692255B (zh) 微機電傳感器
WO2018008181A1 (ja) Mems構造及び、mems構造を有する静電容量型センサ、圧電型センサ、音響センサ
CN105338457B (zh) Mems麦克风及其形成方法
US8929584B2 (en) Component having a micromechanical microphone structure
US20180002161A1 (en) Mems device and process
US9674618B2 (en) Acoustic sensor and manufacturing method of the same
JP7349090B2 (ja) 圧電素子
JP6307171B2 (ja) Memsマイクロホン
CN206908857U (zh) 一种mems麦克风
JP2008244627A (ja) 静電型圧力変換器およびコンデンサマイクロホン
JP6382032B2 (ja) Mems素子
JP2008022501A (ja) コンデンサマイクロホン及びその製造方法
JP2009089096A (ja) 振動トランスデューサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017568116

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17822537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE