WO2022110270A1 - 一种mems麦克风芯片 - Google Patents
一种mems麦克风芯片 Download PDFInfo
- Publication number
- WO2022110270A1 WO2022110270A1 PCT/CN2020/133745 CN2020133745W WO2022110270A1 WO 2022110270 A1 WO2022110270 A1 WO 2022110270A1 CN 2020133745 W CN2020133745 W CN 2020133745W WO 2022110270 A1 WO2022110270 A1 WO 2022110270A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base
- mems microphone
- microphone chip
- diaphragm
- back plate
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 10
- 239000012528 membrane Substances 0.000 claims description 11
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 239000000758 substrate Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 230000005684 electric field Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R19/00—Electrostatic transducers
- H04R19/04—Microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/02—Diaphragms for electromechanical transducers; Cones characterised by the construction
- H04R7/04—Plane diaphragms
Definitions
- the utility model belongs to the technical field of microphones, in particular to a MEMS microphone chip.
- MEMS Micro-Electro-Mechanical Micro-electromechanical system
- the existing capacitive MEMS microphone chip mainly includes a base structure with a back cavity, a diaphragm and a fixed back plate structure located on the upper part of the base, and the diaphragm and the fixed back plate form a capacitive system.
- the diaphragm When the sound pressure acts on the diaphragm, the diaphragm approaches the back plate under the action of electric field force and sound pressure until the electric field force, sound pressure and diaphragm elasticity reach a balance. At this time, when a small disturbance is applied to the microphone, the vibration The changing speed of the electric field force of the diaphragm is greater than the elastic force, and the diaphragm and the insulating protrusions on the back plate are attached together. To restore the diaphragm to its original state, the adhesive force between the diaphragm and the insulating protrusions must be overcome. In the related art, the plurality of insulating protrusions between the diaphragm and the back plate or the base are all at the same height.
- the large disturbance makes the insulating protrusions insufficient to prevent the continuous deformation of the diaphragm. It will be attached to the backplane or the base, and the adhesion will increase; when the density of the insulating protrusions is large, due to the increase in the number of insulating protrusions that absorb the diaphragm, the effective adhesion will increase. At this time, the voltage is reduced. Not enough to overcome the adhesive force, causing the microphone to fail.
- the purpose of the present invention is to provide a MEMS microphone chip, which can effectively reduce the adhesion between the diaphragm and the back plate or the substrate, and prevent the microphone from failing.
- a MEMS microphone chip comprising a substrate with a back cavity and a capacitor structure disposed on the substrate, the capacitor structure including a vibrating membrane fixed with the substrate and a vibrating membrane with the vibrating membrane
- the spaced back plate is characterized in that: at least one of the side of the back plate close to the vibrating film and the side of the vibrating film close to the base is provided with insulating protrusions, and the insulating protrusions It includes a plurality of first and second raised parts spaced apart, and the height of the first raised part is greater than that of the second raised part.
- first convex portion and the second convex portion are provided on the side of the back plate close to the vibrating film, and a plurality of third convex portions are provided on the side of the vibrating film close to the base.
- the height of the protruding parts is the same as that of the plurality of the third protruding parts.
- first protruding portion and the second protruding portion are provided on the side of the vibrating film close to the base, and a plurality of third protruding portions are provided on the side of the back plate close to the vibrating film.
- the height of the protruding parts is the same as that of the plurality of the third protruding parts.
- first protruding portion and the second protruding portion are provided on both the side of the back plate close to the vibrating film and the side of the vibrating film close to the base.
- first protruding parts and the second protruding parts are arranged alternately in sequence.
- At least one of the second raised portions is disposed between two adjacent first raised portions.
- first protruding portion and the second protruding portion are equidistantly distributed.
- the insulating protrusion is provided with a through hole penetrating the insulating protrusion along the vibration direction of the diaphragm.
- the insulating protrusions are columnar structures.
- the MEMS microphone chip further includes a support member fixed on the substrate and used for supporting the capacitive structure.
- the beneficial effect of the present invention is that: since the insulating protrusions on the side of the back plate close to the vibrating film or the side of the vibrating film close to the base include a plurality of first protrusions and second protrusions arranged at intervals, and the first protrusions and the second protrusions The height of a raised portion is greater than the height of the second raised portion.
- the first raised portion acts as a block, preventing the diaphragm and the back plate or the base from sticking together in a large area, and the adhesive force is small at this time.
- the elastic force of the diaphragm can overcome the action of the adhesion force and the electric field force to separate from the insulating protrusion, and the deformation of the diaphragm returns to the initial state; and when the disturbance is large, the first protrusion is not enough to prevent the vibration
- the second raised portion further acts as a block, thereby preventing the diaphragm from sticking to the back plate or the base, and at this time, the first raised portion and the second raised portion are equivalent to forming a
- the uneven adhesion surface can effectively reduce the adhesion with the diaphragm.
- FIG. 1 is a schematic diagram of the overall structure of a MEMS microphone chip provided in Embodiment 1 of the present invention.
- FIG. 2 is a schematic diagram of a split structure of a MEMS microphone chip provided in Embodiment 1 of the present invention
- FIG. 3 is a schematic cross-sectional structural diagram of a MEMS microphone chip provided in Embodiment 1 of the present invention.
- FIG. 4 is a schematic diagram of the deformation state of the diaphragm when a small disturbance is applied to the MEMS microphone chip provided in the first embodiment of the present invention
- FIG. 5 is a schematic diagram of the deformation state of the diaphragm when a large disturbance is applied to the MEMS microphone chip provided in the first embodiment of the present invention
- Fig. 6 is the structural representation of the insulating protrusion in Fig. 2;
- FIG. 7 is a schematic cross-sectional structural diagram of a MEMS microphone chip provided in Embodiment 2 of the present invention.
- FIG. 8 is a schematic diagram of the deformation state of the diaphragm when the MEMS microphone chip provided in the second embodiment of the present invention applies a large disturbance
- FIG. 9 is a schematic cross-sectional structural diagram of the MEMS microphone chip provided in Embodiment 3 of the present invention.
- FIG. 1 to FIG. 3 it is a MEMS microphone chip provided by the first embodiment of the present invention, which includes a substrate 1 having a back cavity 11 and a capacitor structure 2 disposed on the substrate 1 .
- the capacitor structure 2 includes a structure fixed to the substrate 1 .
- the vibrating film 22 and the back plate 21 spaced from the vibrating film 22 are provided.
- the MEMS microphone chip further includes a support member 3 disposed on the base 1 and fixedly connected to the base 1 .
- the capacitor structure 2 is fixed on the support member 3 , and the support member 3 is made of insulating material.
- an insulating protrusion 4 is provided on the side of the back plate 21 close to the diaphragm 22 , and the insulating protrusion 4 includes a plurality of first protrusions 41 and second protrusions 42 arranged at intervals. The height of the portion 41 is greater than the height of the second raised portion 42 . As shown in FIG. 4 , when the disturbance applied to the microphone is small, the first protruding portion 41 acts as a block, preventing the diaphragm 22 and the back plate 21 from sticking together in a large area.
- the adhesion force is small and only needs to be By reducing the voltage, the elastic force of the diaphragm 22 can overcome the action of the adhesive force and the electric field force to separate from the first protrusion 41, and the deformation of the diaphragm 22 returns to the initial state; as shown in FIG. 5, when the disturbance is large, the A raised portion 41 is not enough to prevent the diaphragm 22 from continuing to deform.
- the second raised portion 42 further acts as a block, thereby preventing the diaphragm 22 from being attached to the back plate 21.
- the first raised portion 41 and the second raised portion 42 are equivalent to forming an uneven adhesion surface, which can effectively reduce the adhesion force with the diaphragm 22 .
- a plurality of third protrusions 43 are provided on the side of the diaphragm 22 close to the base 1 , and the heights of the plurality of third protrusions 43 are the same.
- the heights of the first protruding portion 41 and the second protruding portion 42 refer to the extension of the first protruding portion 41 and the second protruding portion 42 from the surface of the back plate 21 close to the vibrating membrane 22 toward the vibrating membrane 22 .
- the length and the height difference between the first raised portion 41 and the second raised portion 42 can be adjusted according to actual needs.
- the first protruding parts 41 and the second protruding parts 42 are arranged alternately in sequence, and a second protruding part 42 is disposed between two adjacent first protruding parts 41 .
- the portion 41 and the second protruding portion 42 present an undulating shape, which further reduces the adhesive force with the diaphragm 22 .
- the number of the second raised portions 42 between two adjacent first raised portions 41 may also be two, three, or four, etc., which is not limited in this embodiment .
- the first protruding parts 41 and the second protruding parts 42 are equally spaced, and the first protruding parts 41 and the second protruding parts 42 are arranged in a row on the side of the back plate 21 close to the diaphragm 22 The distribution not only makes the overall appearance more beautiful, but also makes the deformation of the diaphragm 22 in contact with the insulating protrusion 4 more uniform.
- the insulating protrusion 4 is provided with a through hole 44 penetrating the insulating protrusion 4 along the vibration direction of the diaphragm 22 , and the through hole 44 can reduce the damage caused by the insulating protrusion 4 and the diaphragm 22 Adhesion due to contact.
- grooves can also be formed on the contact surface of the insulating protrusion 4 and the diaphragm 22 , which can also reduce the adhesion between the insulating protrusion 4 and the diaphragm 22 . force effect.
- the insulating protrusions 4 have a columnar structure, which may be cylindrical or square columnar. Of course, the shape of the insulating protrusions 4 is not limited thereto.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- FIG. 7 is a MEMS microphone chip provided by Embodiment 2 of the present invention.
- the MEMS microphone chip provided by this embodiment is basically the same as the MEMS microphone chip provided by Embodiment 1, and the difference lies in the first raised portion. 41 and the setting position of the second raised portion 42 .
- a first convex portion 41 and a second convex portion 42 are provided on the side of the diaphragm 22 close to the base 1
- a plurality of third convex portions 43 are provided on the side of the back plate 21 close to the diaphragm 22 .
- the heights of the plurality of third protrusions 43 are the same.
- the first raised portion 41 and the second raised portion 42 with different heights on the side of the diaphragm 22 close to the base 1 can perform under different disturbances.
- the first protruding portion 41 can play a blocking role.
- the second protruding portion 42 further The blocking diaphragm 22 is attached to the substrate 1 .
- FIG. 9 is a MEMS microphone chip provided in Embodiment 3 of the present invention.
- the MEMS microphone chip provided in this embodiment is basically the same as the MEMS microphone chip provided in Embodiment 1 and Embodiment 2, and the difference lies in the first and second embodiments.
- the location of the first raised portion 41 and the second raised portion 42 is basically the same as the MEMS microphone chip provided in Embodiment 1 and Embodiment 2, and the difference lies in the first and second embodiments.
- the location of the first raised portion 41 and the second raised portion 42 is a MEMS microphone chip provided in Embodiment 3 of the present invention.
- the MEMS microphone chip provided in this embodiment is basically the same as the MEMS microphone chip provided in Embodiment 1 and Embodiment 2, and the difference lies in the first and second embodiments.
- the location of the first raised portion 41 and the second raised portion 42 is a MEMS microphone chip provided in Embodiment 3 of the present invention.
- the side of the back plate 21 close to the diaphragm 22 and the side of the diaphragm 22 close to the base 1 are provided with a first convex portion 41 and a second convex portion 42, which can be used under different sound pressures.
- the vibrating film 22 is effectively prevented from being attached to the substrate 1 and the back plate 21 .
- the insulating protrusion 4 on the side of the back plate 21 close to the diaphragm 22 or the side of the diaphragm 22 close to the substrate 1 includes a plurality of spaced A raised portion 41 and a second raised portion 42, and the height of the first raised portion 41 is greater than the height of the second raised portion 42.
- the first raised portion 41 acts as a barrier to prevent the diaphragm 22 and the back plate 21 or the base 1 are attached together in a large area, and the adhesion force is small at this time.
- the elastic force of the diaphragm 22 can overcome the action of the adhesion force and the electric field force and separate from the insulating protrusions, and the vibration is reduced.
- the deformation of the diaphragm 22 returns to the initial state; and when the disturbance is large, the first convex portion 41 is not enough to prevent the continuous deformation of the diaphragm 22, and the second convex portion 42 further acts as a block at this time, thereby preventing the diaphragm 22 from interacting with the back.
- the plate 21 or the base 1 is attached together, and at this time, the first raised portion 41 and the second raised portion 42 are equivalent to forming an uneven adhesive surface, which can effectively reduce the adhesive force with the diaphragm 22 .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
- Pressure Sensors (AREA)
Abstract
本实用新型提供了一种MEMS麦克风芯片,MEMS麦克风芯片包括具有背腔的基底以及设置于所述基底上的电容结构,所述电容结构包括与所述基底固定的振膜以及与所述振膜间隔设置的背板,所述背板的靠近所述振膜一侧和所述振膜的靠近所述基底一侧中的至少一者设有绝缘凸起,所述绝缘凸起包括多个间隔设置的第一凸起部和第二凸起部,所述第一凸起部的高度大于所述第二凸起部的高度。本实用新型可有效减小振膜与背板或基底的黏附力,防止麦克风失效。
Description
本实用新型属于麦克风技术领域,尤其涉及一种MEMS麦克风芯片。
MEMS(Micro-Electro-Mechanical
System,微机电系统)麦克风是一种利用微机械加工技术制作出来的电能换声器,其具有体积小、频响特性好、噪声低等特点。随着电子设备的小巧化、轻薄化发展,MEMS麦克风被越来越广泛地运用到这些设备上。现有的电容式MEMS麦克风芯片主要包括具有背腔的基底结构,以及位于基底上部的振膜与固定背板结构,振膜与固定背板组成了电容系统。当声压作用于振膜时,振膜两面存在压强差,使得振膜做靠近背板或远离背板的运动,从而引起振膜与背板间电容的变化,实现声音信号到电信号的转换,这就是MEMS电容麦克风的工作原理。
当声压作用于振膜后,振膜在电场力与声压的作用下靠近背板,直到电场力、声压以及振膜弹力达到平衡,此时,当一个小扰动施加到麦克风时,振膜电场力变化的速度大于弹力,振膜与背板上的绝缘凸起贴合在一起,要使振膜恢复原状,必须克服振膜与绝缘凸起间的黏附力。相关技术中,振膜与背板或基底之间的多个绝缘凸起都为同一高度,当绝缘凸起的密度较小时,大扰动使得绝缘凸起不足以阻止振膜的继续变形,振膜会与背板或基底贴合在一起,黏附力增大;当绝缘凸起的密度较大时,由于吸附振膜的绝缘凸起的个数增多,有效黏附力增大,此时降低电压都不足以克服黏附力,造成麦克风失效。
本实用新型的目的在于提供一种MEMS麦克风芯片,可有效减小振膜与背板或基底的黏附力,防止麦克风失效。
本实用新型的技术方案如下:一种MEMS麦克风芯片,包括具有背腔的基底以及设置于所述基底上的电容结构,所述电容结构包括与所述基底固定的振膜以及与所述振膜间隔设置的背板,其特征在于:所述背板的靠近所述振膜一侧和所述振膜的靠近所述基底一侧中的至少一者设有绝缘凸起,所述绝缘凸起包括多个间隔设置的第一凸起部和第二凸起部,所述第一凸起部的高度大于所述第二凸起部的高度。
进一步地,所述背板的靠近所述振膜一侧设置有所述第一凸起部和所述第二凸起部,所述振膜的靠近所述基底一侧设有多个第三凸起部,多个所述第三凸起部的高度相同。
进一步地,所述振膜的靠近所述基底一侧设置有所述第一凸起部和所述第二凸起部,所述背板的靠近所述振膜一侧设有多个第三凸起部,多个所述第三凸起部的高度相同。
进一步地,所述背板的靠近所述振膜一侧和所述振膜的靠近所述基底一侧均设置有所述第一凸起部和所述第二凸起部。
进一步地,所述第一凸起部和所述第二凸起部依次交替排布。
进一步地,相邻两个所述第一凸起部之间设置有至少一个所述第二凸起部。
进一步地,所述第一凸起部和所述第二凸起部等距分布。
进一步地,所述绝缘凸起上设置有沿所述振膜的振动方向贯穿所述绝缘凸起的通孔。
进一步地,所述绝缘凸起为柱状结构。
进一步地,所述MEMS麦克风芯片还包括固定于所述基底上且用于支撑所述电容结构的支撑件。
本实用新型的有益效果在于:由于背板的靠近振膜一侧或振膜的靠近基底一侧上的绝缘凸起包括多个间隔设置的第一凸起部和第二凸起部,且第一凸起部的高度大于第二凸起部的高度,当扰动较小时,第一凸起部起阻挡作用,阻止振膜与背板或基底大面积贴合在一起,此时黏附力较小,仅需通过减小电压,振膜弹力便能够克服黏附力和电场力的作用与绝缘凸起分离,振膜形变恢复初始状态;而当扰动较大时,第一凸起部不足以阻止振膜的继续变形,此时第二凸起部进一步起阻挡作用,从而阻止振膜与背板或基底贴合在一起,并且此时第一凸起部和第二凸起部相当于形成了一个高低不平的黏附面,可以有效减小与振膜的黏附力。
图1是本实用新型实施例一提供的MEMS麦克风芯片的整体结构示意图;
图2是本实用新型实施例一提供的MEMS麦克风芯片的分体结构示意图;
图3是本实用新型实施例一提供的MEMS麦克风芯片的剖视结构示意图;
图4是本实用新型实施例一提供的MEMS麦克风芯片施加小扰动时振膜的形变状态示意图;
图5是本实用新型实施例一提供的MEMS麦克风芯片施加大扰动时振膜的形变状态示意图;
图6是图2中的绝缘凸起的结构示意图;
图7是本实用新型实施例二提供的MEMS麦克风芯片的剖视结构示意图;
图8是本实用新型实施例二提供的MEMS麦克风芯片施加大扰动时振膜的形变状态示意图;
图9是本实用新型实施例三提供的MEMS麦克风芯片的剖视结构示意图。
下面结合附图和实施方式对本实用新型作进一步说明。
实施例一:
请参阅图1至图3,是本实用新型实施例一提供的一种MEMS麦克风芯片,包括具有背腔11的基底1以及设置于基底1上的电容结构2,电容结构2包括与基底1固定的振膜22以及与振膜22间隔设置的背板21。MEMS麦克风芯片还包括设置于基底1上并与基底1固定连接的支撑件3,电容结构2固定在支撑件3上,支撑件3由绝缘材料制成。
本实施例中,背板21的靠近振膜22一侧设有绝缘凸起4,绝缘凸起4包括多个间隔设置的第一凸起部41和第二凸起部42,第一凸起部41的高度大于第二凸起部42的高度。如图4所示,当施加到麦克风上的扰动较小时,第一凸起部41起阻挡作用,阻止振膜22与背板21大面积贴合在一起,此时黏附力较小,仅需通过减小电压,振膜22弹力便能够克服黏附力和电场力的作用与第一凸起部41分离,振膜22的形变恢复初始状态;如图5所示,当扰动较大时,第一凸起部41不足以阻止振膜22的继续变形,此时第二凸起部42进一步起阻挡作用,从而阻止振膜22与背板21贴合在一起,并且此时第一凸起部41和第二凸起部42相当于形成了一个高低不平的黏附面,可以有效减小与振膜22的黏附力。进一步地,振膜22的靠近基底1一侧设有多个第三凸起部43,多个第三凸起部43的高度相同。
第一凸起部41和第二凸起部42的高度指的是第一凸起部41和第二凸起部42自背板21的靠近振膜22一侧表面朝振膜22方向的延伸长度,第一凸起部与41第二凸起部42之间的高度差可以根据实际需求进行调整。本实施例中,第一凸起部41和第二凸起部42依次交替排布,且相邻两个第一凸起部41之间设置有一个第二凸起部42,第一凸起部41和第二凸起部42呈现一个高低起伏状,进一步减小与振膜22的黏附力。在其他可能的实施方式中,相邻两个第一凸起部41之间的第二凸起部42的数量也可以为两个、三个或四个等,本实施例对此不做限制。优选的,第一凸起部41和第二凸起部42等距分布,并且第一凸起部41和第二凸起部42在背板21的靠近振膜22一侧成排且成列分布,不仅使得整体更为美观,而且使得振膜22与绝缘凸起4接触时的形变更加均匀。
本实施例中,如图6所示,绝缘凸起4上设置有沿振膜22的振动方向贯穿绝缘凸起4的通孔44,通孔44可减小绝缘凸起4与振膜22因接触产生的黏附力。可以理解的是,在其他可能的实施方式中,也可以在绝缘凸起4与振膜22的接触面上开设凹槽,同样可以起到减小绝缘凸起4与振膜22之间的黏附力的效果。另外,绝缘凸起4为柱状结构,可以为圆柱状或方柱状,当然,绝缘凸起4的形状不限于此。
实施例二:
请参阅图7,图7是本实用新型实施例二提供的一种MEMS麦克风芯片,本实施例提供的MEMS麦克风芯片与实施例一提供的MEMS麦克风芯片基本相同,不同点在于第一凸起部41和第二凸起部42的设置位置。
本实施例中,振膜22的靠近基底1一侧设置有第一凸起部41和第二凸起部42,背板21的靠近振膜22一侧设有多个第三凸起部43,多个第三凸起部43的高度相同。如图8所示,当声压向下作用于振膜22,振膜22的靠近基底1一侧的高度不同的第一凸起部41和第二凸起部42能够在不同的扰动下发挥作用,当扰动较小时,第一凸起部41就能起阻挡作用,当扰动较大时,第一凸起部41不足以阻止振膜22的继续变形,此时第二凸起部42进一步阻挡振膜22与基底1贴合。
实施例三:
请参阅图9,图9是本实用新型实施例三提供的一种MEMS麦克风芯片,本实施例提供的MEMS麦克风芯片与实施例一和实施例二提供的MEMS麦克风芯片基本相同,不同点在于第一凸起部41和第二凸起部42的设置位置。
本实施例中,背板21的靠近振膜22一侧和振膜22的靠近基底1一侧均设置有第一凸起部41和第二凸起部42,能够在不同的声压作用下有效阻止振膜22与基底1以及背板21贴合在一起。
综上所述,本实用新型实施例提供的MEMS麦克风芯片,由于背板21的靠近振膜22一侧或振膜22的靠近基底1一侧上的绝缘凸起4包括多个间隔设置的第一凸起部41和第二凸起部42,且第一凸起部41的高度大于第二凸起部42的高度,当扰动较小时,第一凸起部41起阻挡作用,阻止振膜22与背板21或基底1大面积贴合在一起,此时黏附力较小,仅需通过减小电压,振膜22弹力便能够克服黏附力和电场力的作用与绝缘凸起分离,振膜22形变恢复初始状态;而当扰动较大时,第一凸起部41不足以阻止振膜22的继续变形,此时第二凸起部42进一步起阻挡作用,从而阻止振膜22与背板21或基底1贴合在一起,并且此时第一凸起部41和第二凸起部42相当于形成了一个高低不平的黏附面,可以有效减小与振膜22的黏附力。
以上所述的仅是本实用新型的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本实用新型创造构思的前提下,还可以做出改进,但这些均属于本实用新型的保护范围。
Claims (10)
- 一种MEMS麦克风芯片,包括具有背腔的基底以及设置于所述基底上的电容结构,所述电容结构包括与所述基底固定的振膜以及与所述振膜间隔设置的背板,其特征在于:所述背板的靠近所述振膜一侧和所述振膜的靠近所述基底一侧中的至少一者设有绝缘凸起,所述绝缘凸起包括多个间隔设置的第一凸起部和第二凸起部,所述第一凸起部的高度大于所述第二凸起部的高度。
- 根据权利要求1所述的MEMS麦克风芯片,其特征在于,所述背板的靠近所述振膜一侧设置有所述第一凸起部和所述第二凸起部,所述振膜的靠近所述基底一侧设有多个第三凸起部,多个所述第三凸起部的高度相同。
- 根据权利要求1所述的MEMS麦克风芯片,其特征在于,所述振膜的靠近所述基底一侧设置有所述第一凸起部和所述第二凸起部,所述背板的靠近所述振膜一侧设有多个第三凸起部,多个所述第三凸起部的高度相同。
- 根据权利要求1所述的MEMS麦克风芯片,其特征在于,所述背板的靠近所述振膜一侧和所述振膜的靠近所述基底一侧均设置有所述第一凸起部和所述第二凸起部。
- 根据权利要求1所述的MEMS麦克风芯片,其特征在于,所述第一凸起部和所述第二凸起部依次交替排布。
- 根据权利要求5所述的MEMS麦克风芯片,其特征在于,相邻两个所述第一凸起部之间设置有至少一个所述第二凸起部。
- 根据权利要求1所述的MEMS麦克风芯片,其特征在于,所述第一凸起部和所述第二凸起部等距分布。
- 根据权利要求1至7中任一项所述的MEMS麦克风芯片,其特征在于,所述绝缘凸起上设置有沿所述振膜的振动方向贯穿所述绝缘凸起的通孔。
- 根据权利要求1至7中任一项所述的MEMS麦克风芯片,其特征在于,所述绝缘凸起为柱状结构。
- 根据权利要求1所述的MEMS麦克风芯片,其特征在于,所述MEMS麦克风芯片还包括固定于基底上且用于支撑电容结构的支撑件。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202022770540.1U CN213661943U (zh) | 2020-11-25 | 2020-11-25 | 一种mems麦克风芯片 |
CN202022770540.1 | 2020-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022110270A1 true WO2022110270A1 (zh) | 2022-06-02 |
Family
ID=76687927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/133745 WO2022110270A1 (zh) | 2020-11-25 | 2020-12-04 | 一种mems麦克风芯片 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN213661943U (zh) |
WO (1) | WO2022110270A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112929804A (zh) * | 2021-04-02 | 2021-06-08 | 瑞声声学科技(深圳)有限公司 | Mems麦克风芯片 |
US11943584B2 (en) * | 2021-08-31 | 2024-03-26 | Fortemedia, Inc. | MEMS microphone |
CN114786080A (zh) * | 2022-04-21 | 2022-07-22 | 维沃移动通信有限公司 | 麦克风的控制方法、装置、电子设备和可读存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150189444A1 (en) * | 2013-12-31 | 2015-07-02 | Aac Acoustic Technologies (Shenzhen) Co., Ltd. | MEMS Microphone |
CN105282671A (zh) * | 2014-07-24 | 2016-01-27 | 北京卓锐微技术有限公司 | 一种可在高声压级下工作的硅电容麦克风 |
CN105323687A (zh) * | 2014-07-14 | 2016-02-10 | 北京卓锐微技术有限公司 | 一种多晶硅层上设置有突起的硅电容麦克风及其制备方法 |
CN205491150U (zh) * | 2016-01-27 | 2016-08-17 | 瑞声声学科技(深圳)有限公司 | Mems麦克风 |
US20180020275A1 (en) * | 2016-07-13 | 2018-01-18 | Knowles Electronics, Llc | Stacked chip microphone |
-
2020
- 2020-11-25 CN CN202022770540.1U patent/CN213661943U/zh active Active
- 2020-12-04 WO PCT/CN2020/133745 patent/WO2022110270A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150189444A1 (en) * | 2013-12-31 | 2015-07-02 | Aac Acoustic Technologies (Shenzhen) Co., Ltd. | MEMS Microphone |
CN105323687A (zh) * | 2014-07-14 | 2016-02-10 | 北京卓锐微技术有限公司 | 一种多晶硅层上设置有突起的硅电容麦克风及其制备方法 |
CN105282671A (zh) * | 2014-07-24 | 2016-01-27 | 北京卓锐微技术有限公司 | 一种可在高声压级下工作的硅电容麦克风 |
CN205491150U (zh) * | 2016-01-27 | 2016-08-17 | 瑞声声学科技(深圳)有限公司 | Mems麦克风 |
US20180020275A1 (en) * | 2016-07-13 | 2018-01-18 | Knowles Electronics, Llc | Stacked chip microphone |
Also Published As
Publication number | Publication date |
---|---|
CN213661943U (zh) | 2021-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022110270A1 (zh) | 一种mems麦克风芯片 | |
US10993040B2 (en) | Piezoelectric microphone | |
US11159895B2 (en) | Piezoelectric type and capacitive type combined MEMS microphone | |
US11265657B2 (en) | Piezoelectric MEMS microphone | |
CN109803217B (zh) | 压电式麦克风 | |
US20120139066A1 (en) | Mems microphone | |
WO2020140569A1 (zh) | 压电式麦克风 | |
CN109511067A (zh) | 电容式麦克风 | |
CN215453273U (zh) | 一种麦克风组件及电子设备 | |
KR20080001568A (ko) | 반도체 마이크로폰 칩 | |
WO2023245789A1 (zh) | 一种mems压电扬声器 | |
CN112492474A (zh) | Mems麦克风芯片 | |
CN209659620U (zh) | 压电式mems麦克风 | |
CN107690114B (zh) | Mems麦克风振膜及mems麦克风 | |
WO2022007000A1 (zh) | 一种 mems 麦克风 | |
WO2022006999A1 (zh) | 一种mems麦克风 | |
US10450189B2 (en) | MEMS devices and processes | |
US10034101B2 (en) | Microphone | |
CN113301482B (zh) | 一种用于麦克风的振膜及麦克风 | |
CN113556657B (zh) | Mems麦克风 | |
CN218514507U (zh) | 一种微机电结构、麦克风以及终端 | |
CN211744726U (zh) | 一种mems扬声器 | |
Arevalo et al. | MEMS acoustic pixel | |
CN205491100U (zh) | 电容式微机电结构传感器 | |
CN212851006U (zh) | Mems芯片、麦克风和电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20963158 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20963158 Country of ref document: EP Kind code of ref document: A1 |