WO2021189467A1 - 一种电极组件和包含所述电极组件的电化学装置及电子装置 - Google Patents

一种电极组件和包含所述电极组件的电化学装置及电子装置 Download PDF

Info

Publication number
WO2021189467A1
WO2021189467A1 PCT/CN2020/081824 CN2020081824W WO2021189467A1 WO 2021189467 A1 WO2021189467 A1 WO 2021189467A1 CN 2020081824 W CN2020081824 W CN 2020081824W WO 2021189467 A1 WO2021189467 A1 WO 2021189467A1
Authority
WO
WIPO (PCT)
Prior art keywords
spinning layer
electrode assembly
pole piece
electrode
tab
Prior art date
Application number
PCT/CN2020/081824
Other languages
English (en)
French (fr)
Other versions
WO2021189467A9 (zh
Inventor
邵颖
张益博
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to KR1020227033835A priority Critical patent/KR20220140005A/ko
Priority to EP20927326.7A priority patent/EP4131457A4/en
Priority to JP2022549198A priority patent/JP7463534B2/ja
Priority to PCT/CN2020/081824 priority patent/WO2021189467A1/zh
Priority to CN202080095620.1A priority patent/CN115066762A/zh
Publication of WO2021189467A1 publication Critical patent/WO2021189467A1/zh
Publication of WO2021189467A9 publication Critical patent/WO2021189467A9/zh
Priority to US17/953,656 priority patent/US20230024456A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/48Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
    • H01M50/483Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/48Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
    • H01M50/486Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of electrochemistry, in particular to an electrode assembly and an electrochemical device and an electronic device including the electrode assembly.
  • Embedded tabs are used very frequently in soft pack batteries because they can increase energy density, reduce lithium-ion battery impedance, and achieve high-rate charge and discharge advantages.
  • the electrode assembly with embedded tab structure due to the existence of metal tab burrs and the need to ensure overhang, it is necessary to paste green glue on the tabs, and part of the green glue will cover the tabs.
  • the diaphragm area causes the loss of a part of the capacity of the active material, resulting in a waste of capacity.
  • the electrolyte gives a certain scouring force to the diaphragm, which is easy to cause the diaphragm to fold, flip, wrinkle, etc., resulting in a short circuit of the positive and negative electrodes, causing safety accidents in lithium-ion batteries .
  • the present application provides an electrode assembly whose electrode pole pieces do not need to be pasted with green glue, thereby increasing the capacity of the electrochemical device and improving the safety of the electrochemical device.
  • the present invention provides an electrode assembly including:
  • the surface of the electrode pole piece is provided with a spinning layer, and the spinning layer covers the surface of the electrode pole piece and is in contact with the surface of the electrode pole piece, wherein the surface of the electrode pole piece includes a tab surface.
  • the puncture resistance of the spinning layer on the surface of the tab is higher than the puncture resistance of the spinning layer on the surface of the non- tab.
  • the porosity and/or pore size of the spinning layer on the surface of the tab is smaller than the porosity and/or pore size of the spinning layer on the surface of the non- tab;
  • the thickness of the spinning layer on the surface of the tab is greater than the thickness of the spinning layer on the surface of the non-tab.
  • the upper and lower edges of the spinning layer are respectively 0.1 mm to 10 mm wider than the upper and lower edges of the electrode pole piece.
  • the polymer includes polyvinylidene fluoride, polyimide, polyamide, polyacrylonitrile, polyethylene glycol, polyacrylonitrile, poly Ethylene oxide, polyphenylene ether, polypropylene carbonate, polymethyl methacrylate, polyethylene terephthalate, poly(vinylidene fluoride-hexafluoropropylene), poly(vinylidene fluoride-co -At least one of chlorotrifluoroethylene), polyethylene oxide or derivatives of the above substances.
  • the spinning layer further comprises inorganic particles and/or low melting point polymer particles.
  • the inorganic particles include HfO 2 , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, BaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiO 2 , boehmite, magnesium hydroxide, aluminum hydroxide, lithium phosphate, lithium titanium phosphate, lithium aluminum titanium phosphate, lithium lanthanum titanate, lithium germanium thiophosphate, lithium nitride, SiS 2 glass , P 2 S 5 glass, Li 2 O, LiF, LiOH, Li 2 CO 3 , LiAlO 2 , Li 2 O-Al 2 O 3 -SiO 2 -P 2 O 5 -TiO 2 -GeO 2 ceramics or garnet ceramics At least one of them.
  • the low melting point polymer particles include polystyrene, polyethylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, acrylonitrile-butadiene-styrene, polylactic acid, poly At least one of vinyl chloride, polyvinyl butyral or polyacrylate.
  • the particle size of the inorganic particles and/or low melting point polymer particles is 0.001 ⁇ m to 10 ⁇ m.
  • the spinning layer satisfies at least one of the following characteristics:
  • the porosity of the spinning layer is 30% to 95%
  • the pore size of the spinning layer is 20 nm to 30 ⁇ m;
  • the thickness of the spinning layer is 1 ⁇ m to 20 ⁇ m.
  • the present application also provides an electrochemical device, which includes the electrode assembly described in any one of the above.
  • the present application also provides an electronic device, which includes the above-mentioned electrochemical device.
  • a spinning layer is used to replace the traditional diaphragm, and the spinning layer and the pole piece become a whole.
  • the spinning layer can isolate metal burrs, the spinning layer can be used instead of green glue, thereby eliminating the need for glue on the surface of the tabs; at the same time, the spinning layer will not block With the transmission of lithium ions, the capacity of the part of the positive electrode active material originally covered by the green glue can be used normally, thereby increasing the energy density of the electrochemical device.
  • Fig. 1 is a schematic diagram of the structure of an electrode pole piece with embedded tabs
  • FIG. 2 is a structure of an electrode assembly according to an embodiment of the application
  • FIG. 3 is a structure of an electrode assembly according to an embodiment of the application.
  • FIG. 4 is a structure of a negative pole piece of an electrode assembly according to an embodiment of the application.
  • the electrode assembly of the present application may be any electrode assembly used in an electrochemical device.
  • the electrochemical device may include a lithium ion battery, a super capacitor, etc.
  • the following takes the electrode assembly of a lithium ion battery as an example for description. Those skilled in the art should understand that the following description is only an example and does not limit the protection scope of the present application.
  • the present application provides an electrode assembly, which includes:
  • the surface of the electrode pole piece is provided with a spinning layer, and the spinning layer covers the surface of the electrode pole piece and is in contact with the surface of the electrode pole piece, wherein the surface of the electrode pole piece includes a tab surface.
  • the embedded tab means that the electrode tab includes a current collector and a diaphragm, and the tab is welded on the current collector.
  • the connection between the tab and the current collector usually adopts welding; during welding, metal burrs are generated at the junction of the tab and the current collector.
  • the electrode pole piece can be a positive pole piece or a negative pole piece.
  • the positive pole piece as an example, as shown in FIG. 1, it has a structure of a positive pole piece with embedded tabs.
  • the positive pole piece is provided with a positive pole tab 1 and a welding area 2.
  • the negative pole piece As an example, as shown in FIG. 2, it has a structure of a negative pole piece with embedded tabs, which specifically shows that the negative pole piece is provided with a negative tab 3 and a welding area 2.
  • the puncture resistance of the spinning layer on the surface of the tab is higher than the puncture resistance of the spinning layer on the surface of the non- tab. Since metal burrs are generated when the tabs are welded, the above technical solution can effectively ensure that the spinning layer completely covers the burrs and avoid unexpected situations such as short circuits.
  • the porosity and/or pore size of the spinning layer on the surface of the tab is smaller than the porosity and/or pore size of the spinning layer on the surface of the non- tab;
  • the thickness of the spinning layer on the surface of the tab is greater than the thickness of the spinning layer on the surface of the non-tab.
  • the upper and lower edges of the spinning layer are respectively wider than the upper and lower edges of the electrode pole piece by 0.1 mm to 10 mm; preferably 0.5 mm to 2 mm.
  • the entire positive pole piece is covered with a spinning layer 4; and the upper and lower edges of the spinning layer are respectively wider than the positive pole piece.
  • the structure of the electrode assembly of an embodiment of this application the entire positive pole piece is covered with a spinning layer 4, and the puncture resistance of the spinning layer on the surface of the tab 1 is higher than Puncture resistance of the spinning layer on the surface of the non-tab.
  • the polymer includes polyvinylidene fluoride (PVDF), polyimide (PI), polyamide (PA), polyacrylonitrile (PAN) ), polyethylene glycol (PEG), polyethylene oxide (PEO), polyphenylene oxide (PPO), polypropylene carbonate (PPC), polymethyl methacrylate (PMMA), polyethylene terephthalate Alcohol ester (PET), poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP), poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-PCTFE) or the derivatives of the above substances At least one, preferably polyvinylidene fluoride, polyimide, polyamide, polyacrylonitrile, polyethylene glycol, polyethylene oxide, polyphenylene ether, polypropylene carbonate, polymethyl methacrylate, poly At least one of ethylene terephthalate or derivative
  • the spinning layer is formed by oriented or random bonding of nanofibers prepared from polymers, and the random overlap between each nanofiber forms a large number of pores for ionization. transmission.
  • the spinning layer composed of nanofibers has good adhesion with the pole pieces. During the drop process of the lithium-ion battery, it can effectively prevent the diaphragm from being washed by the electrolyte and turning over and improve the safety of the lithium-ion battery.
  • the spinning layer further comprises inorganic particles and/or low melting point polymer particles.
  • the inorganic particles include HfO 2 , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, BaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiO 2 , boehmite, magnesium hydroxide, aluminum hydroxide, lithium phosphate, lithium titanium phosphate, lithium aluminum titanium phosphate, lithium lanthanum titanate, lithium germanium thiophosphate, lithium nitride, SiS 2 glass , P 2 S 5 glass, Li 2 O, LiF, LiOH, Li 2 CO 3 , LiAlO 2 , Li 2 O-Al 2 O 3 -SiO 2 -P 2 O 5 -TiO 2 -GeO 2 ceramics or garnet ceramics At least one of them.
  • the low melting point polymer particles include polystyrene, polyethylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, acrylonitrile-butadiene-styrene, polylactic acid, poly At least one of vinyl chloride, polyvinyl butyral or polyacrylate.
  • the particle size of the inorganic particles and/or low melting point polymer particles is 0.001 ⁇ m to 10 ⁇ m.
  • the spinning layer satisfies at least one of the following characteristics:
  • the porosity of the spinning layer is 30% to 95%
  • the pore size of the spinning layer is 20 nm to 30 ⁇ m;
  • the thickness of the spinning layer is 1 ⁇ m to 20 ⁇ m.
  • the inventor believes that by making the porosity range of the spinning layer within the above range, the ion conductivity can be guaranteed. If the porosity is too small, it will block the ion transmission path and hinder the normal circulation of the lithium ion battery. If the porosity is too large, the structure will be unstable, and the mechanical strength will be too poor, and it will not be able to resist the puncture of the particles on the surface of the pole piece. It is easy to cause a local short circuit of the positive and negative electrodes, resulting in electrical performance degradation and serious self-discharge problems.
  • the isolation layer has appropriate mechanical strength. If the pore size is too small, the ion transmission path will be insufficient, and it will also hinder the normal circulation of the lithium-ion battery. If the pore size is too large, the mechanical strength at the position of the hole will be too poor, and it will not be able to resist the puncture of the particles on the surface of the pole piece. It is easy to cause partial short circuit of the positive and negative electrodes, resulting in electrical performance degradation and serious self-discharge problems.
  • the thickness of the spinning layer between 1 ⁇ m and 20 ⁇ m, it is beneficial to increase the energy density of the lithium ion battery.
  • the spinning layer is prepared by electrospinning, air spinning, centrifugal spinning, over electric blowing, melt blowing, flash evaporation, or coating.
  • the order of depositing nanofibers, inorganic particles and/or low-melting polymer particles is not particularly limited, as long as the spinning layer of the present application can be formed.
  • the nanofibers and inorganic particles and/or low melting point polymer particles may be deposited simultaneously or alternately.
  • the deposition of nanofibers can be implemented with any spinning equipment known in the art, and there is no particular limitation, as long as the purpose of this application can be achieved, any spinning equipment known in the art can be used, for example, the electrospinning equipment can be Yongkangle Industry Elite series, etc.; the air spinning equipment can be the air jet spinning machine of Nanjing Genus New Material; the centrifugal spinning equipment can be the centrifugal spinning machine of Sichuan Zhiyan Technology.
  • the present application also provides an electrochemical device, which includes the above-mentioned electrode assembly.
  • the electrochemical device may be a lithium ion battery.
  • the positive pole piece includes a positive current collector and a positive diaphragm.
  • the positive electrode current collector can be any positive electrode current collector known in the art, such as aluminum foil, aluminum alloy foil, or composite current collector.
  • the positive electrode film contains a positive electrode active material.
  • the application has no particular limitation on the positive electrode active material. It can be any positive electrode active material in the prior art.
  • the active material can include NCM811, NCM622, NCM523, NCM111, NCA, At least one of lithium iron phosphate, lithium cobaltate, lithium manganate, lithium iron manganese phosphate, or lithium titanate.
  • the positive pole piece may further include a conductive layer located between the positive electrode current collector and the positive electrode membrane.
  • the composition of the conductive layer is not particularly limited, and may be a conductive layer commonly used in the art.
  • the conductive layer includes a composition of a conductive agent and an adhesive.
  • the negative electrode piece includes a negative electrode current collector and a negative electrode membrane.
  • the negative electrode current collector is not particularly limited, and any negative electrode current collector known in the art can be used, such as copper foil, copper alloy foil or composite current collector.
  • the negative electrode film contains a negative electrode active material, and there is no particular limitation on the negative electrode active material in this application, and any negative electrode active material known in the art can be used. For example, it may include at least one of graphite, silicon, silicon carbon, and the like.
  • the negative pole piece may further include a conductive layer located between the negative electrode current collector and the negative electrode membrane.
  • the composition of the conductive layer is not particularly limited, and may be a conductive layer commonly used in the art.
  • the conductive layer includes a composition of a conductive agent and an adhesive.
  • the aforementioned conductive agent is not particularly limited, and any conductive agent known in the art can be used as long as the purpose of the application can be achieved.
  • the conductive agent may include at least one of conductive carbon black (Super P), carbon nanotubes (CNTs), carbon fiber, graphene, and the like.
  • the conductive agent can be conductive carbon black (Super P).
  • the above-mentioned adhesive is not particularly limited, and any adhesive known in the art can be used as long as it can achieve the purpose of the present application.
  • the adhesive may be selected from at least one of styrene-butadiene rubber (SBR), polyvinyl alcohol (PVA), polytetrafluoroethylene (PTFE), sodium carboxymethyl cellulose (Na-CMC), and the like.
  • SBR styrene-butadiene rubber
  • PVA polyvinyl alcohol
  • PTFE polytetrafluoroethylene
  • Na-CMC sodium carboxymethyl cellulose
  • the adhesive can be styrene butadiene rubber (SBR).
  • the present application does not specifically limit the electrolyte of the lithium ion battery, and any electrolyte known in the art can be used, and it can be any of a gel state, a solid state, or a liquid state.
  • the liquid electrolyte includes a lithium salt and a non-aqueous solvent.
  • the lithium salt is not particularly limited, and any lithium salt known in the art can be used as long as the purpose of the application can be achieved.
  • the lithium salt may include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB(C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 At least one of CF 3 ) 3 or LiPO 2 F 2 and the like.
  • LiPF 6 can be used as the lithium salt.
  • the non-aqueous solvent is not particularly limited, as long as it can achieve the purpose of the present application.
  • the non-aqueous solvent may include at least one of carbonate compounds, carboxylate compounds, ether compounds, nitrile compounds, or other organic solvents, and the like.
  • the carbonate compound may include diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethylene propyl carbonate (EPC), methyl ethyl carbonate Ester (MEC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinyl ethylene carbonate (VEC), fluoroethylene carbonate (FEC), carbonic acid 1 ,2-Difluoroethylene, 1,1-difluoroethylene carbonate, 1,1,2-trifluoroethylene carbonate, 1,1,2,2-tetrafluoroethylene carbonate, 1 -Fluoro-2-methylethylene, 1-fluoro-1-methylethylene carbonate, 1,2-difluoro-1-methylethylene carbonate, 1,1,2-trifluorocarbonate- At least one of 2-methylethylene, trifluoromethylethylene carbonate, and the like.
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • the present application also provides an electronic device, which includes the above-mentioned electrochemical device.
  • the electronic device can be any electrochemical device in the field, such as a notebook computer, a mobile phone, an electric motorcycle, an electric car, an electric toy, and the like.
  • Average particle size of inorganic particles is represented by volume-based D50, that is, the volume content of inorganic particles with a particle size below D50 accounts for 50% of all particles.
  • Burr Metal bumps and pits produced during the welding of the tabs.
  • Overhang refers to the width or length of the negative pole piece relative to the positive pole piece, the separator relative to the negative pole piece, or the separator relative to the positive pole piece in the width direction or the length direction (the difference in size) .
  • Li-ion battery capacity and energy density Li-ion battery capacity and energy density:
  • the lithium-ion battery was allowed to stand for 60 minutes, then charged to 3.0V at a rate of 0.2C, discharged to the cut-off voltage at a rate of 0.5C, and then charged at a constant voltage to a charging current of 0.01C, and then allowed to stand for 60 minutes. Then charge to 2.8V at a rate of 0.5C, measure the capacity of the lithium-ion battery (in Ah), and calculate the energy density (in Wh/L) from the volume of the lithium-ion battery.
  • the test method is as follows: use 1.0C current to test the initial capacity of the electrode assembly at room temperature, charge to 4.2V at a constant current of 1.0C, then charge at constant voltage until the current drops to 0.05C, stop charging, and then stand for 1 hour; measure the open circuit Voltage, impedance; drop the electrode assembly freely from a height of 1 meter (3.28 feet) onto the concrete floor; each lithium-ion battery will drop 1 time along the positive and negative directions of three mutually perpendicular axes, a total of 6 times, then Let stand for 1 hour; measure the open circuit voltage and impedance; then test the remaining capacity at room temperature with a current of 1.0C. The remaining capacity refers to the discharge capacity after full charge.
  • the protection device of the lithium ion battery is intact, and the remaining capacity after the test is not less than 90% of the initial capacity, and the impedance increase after the test is not higher than the initial impedance 50% of it is regarded as a pass, otherwise it is regarded as a fail.
  • a microcomputer-controlled electronic universal testing machine (MTS-E44.104) is used to detect the puncture strength of the porous layer.
  • Test process disassemble the lithium-ion battery, take a laminate sample with a three-layer structure of positive pole piece, spinning layer, and negative pole piece, and place it on the aluminum plate on the side of the press, and place a steel ball (material iron, diameter 5mm), apply a voltage of 10V between the two pole ears, and apply pressure to the surface of the sample through the aluminum plates on both sides.
  • the pressure in the vertical direction is 0.1mm/min. The pressure when the resistance changes sharply is recorded, which is the puncture strength.
  • the battery diaphragm (spinning layer) is made into a disc with a diameter of 24mm, and the battery diaphragm through hole aperture analyzer CFP-1500AE is used for analysis.
  • the parameters are as follows: pressure range: 0-500psi; pressurized gas: N 2 ; infiltration liquid: GalWick, you can get the porosity and pore size of the spinning layer.
  • the spinning layer is provided on the positive pole piece as an example for description. It should be understood that the spinning layer may also be provided on the surface of the negative electrode piece. These embodiments can also achieve the purpose of this application. Those skilled in the art should understand that these embodiments are also within the protection scope of the present application.
  • the width of the positive pole piece is 89.8mm, and green glue is pasted on the positive pole piece corresponding to the welding point of the negative electrode tab.
  • an electrospinning method is used to prepare a polyimide (PI) spinning layer on the positive pole piece.
  • PI polyimide
  • the width of the negative pole piece is 91mm, and the lug is pasted with green glue.
  • the spun positive electrode and the unspun negative electrode are laminated and then wound to obtain an electrode assembly. After being placed in an aluminum plastic film, top-side sealing, injection of the electrolyte of Preparation Example 1, and packaging, the lithium ion battery of Example 1 is obtained.
  • the porosity of the spinning layer is 60%, the pore diameter is 100 nm, and the thickness is 10 ⁇ m.
  • the width of the positive pole piece is 89.8mm, and green glue is pasted on the positive pole piece corresponding to the welding point of the negative electrode tab. Then, on the positive pole piece, except for the welding area of the tab, an electrospinning method is used to prepare a polyimide (PI, polyimide) spinning layer; at the positive pole tab welding, a local spinning method is used to prepare a layer containing polyimide al 2 O 3 particles (PI, polyimide) layer is spun, wherein, al 2 O 3 particles of the total volume of the spacer layer is 30%.
  • PI polyimide
  • the width of the negative pole piece is 91mm, and the lug is pasted with green glue.
  • the spun positive electrode and the unspun negative electrode are wound to obtain an electrode assembly. After being placed in an aluminum plastic film, top-side sealing, injecting the electrolyte of Preparation Example 1, and packaging, the lithium ion battery of Example 2 is obtained.
  • the porosity of the spinning layer is 40%, the pore diameter is 150 nm, the thickness is 5 ⁇ m, and the particle size of Al 2 O 3 particles is 1 ⁇ m.
  • the width of the positive pole piece is 89.8mm, and green glue is pasted on the positive pole corresponding to the welding point of the negative pole lug.
  • an electrospinning method is used to prepare a polyimide (PI, polyimide) spinning layer on the positive pole piece, and a multi-layer partial spinning method is used to cover a layer of polyimide (PI, polyimide) spinning layer and an Al 2 O 3 particle layer, wherein the thickness ratio of the Al 2 O 3 particle layer and the polyimide (PI, polyimide) spinning layer is 2:5.
  • the width of the entire spinning layer beyond the positive pole piece on one side is 0.5 mm.
  • the width of the negative pole piece is 91mm, and the lug is pasted with green glue.
  • the spun positive pole piece and the unspun negative pole piece are wound to obtain an electrode assembly. After being placed in an aluminum plastic film, top-side sealing, injection of the electrolyte of Preparation Example 1, and packaging, the lithium ion battery of Example 3 is obtained.
  • the porosity of the polyimide (PI, polyimide) spinning layer is 55%
  • the pore diameter is 90 nm
  • the thickness is 8 ⁇ m
  • the particle size of Al 2 O 3 particles is 1 ⁇ m
  • the Al 2 O 3 The thickness of the particle layer is 3.2 ⁇ m.
  • the width of the positive pole piece is 89.8mm, and green glue is pasted on the positive pole piece corresponding to the welding point of the negative electrode tab.
  • an electrospinning method was used to prepare a polyimide (PI, polyimide) spinning layer on the negative pole piece, and the negative pole piece was 91mm wide.
  • the width of one side of the spinning layer beyond the negative pole piece is 0.5 mm.
  • the unspun positive pole piece and the spun negative pole piece are wound to obtain an electrode assembly. After being placed in an aluminum plastic film, top-side sealing, injection of the electrolyte of Preparation Example 1, and packaging, the lithium ion battery of Example 4 is obtained.
  • the porosity of the spinning layer is 60%, the pore diameter is 120 nm, and the thickness is 10 ⁇ m.
  • the width of the positive pole piece is 89.8mm, and green glue is pasted on the positive pole piece corresponding to the welding point of the negative electrode lug.
  • an electrospinning method is used to prepare a polyimide (PI) spinning layer on the positive pole piece.
  • PI polyimide
  • the width of the spinning layer beyond the positive pole piece is 0.5 mm.
  • an electrospinning method is used to prepare a polyimide (PI) spinning layer on the negative pole piece.
  • the width of the negative pole piece is 91mm, and the width of the one side of the spinning layer beyond the negative pole piece is 0.5mm.
  • the spun positive pole piece and the negative pole piece are wound to obtain an electrode assembly. After being placed in an aluminum plastic film, top-side sealing, injection of the electrolyte of Preparation Example 1, and packaging, the lithium ion battery of Example 5 is obtained.
  • the porosity of the spinning layer of the positive pole piece is 45%, the pore size is 1 ⁇ m, and the thickness is 12 ⁇ m; the porosity of the spinning layer of the negative pole piece is 45%, the pore size is 1 ⁇ m, and the thickness is 12 ⁇ m.
  • the width of the positive pole piece is 89.8mm, and the contact area between the green glue and the pole piece is 22 ⁇ 15mm.
  • the area of the film on the adhesive paper is 135mm 2 , so the total area of the active material on both sides of the positive electrode is covered by the green glue. It is 270mm 2.
  • Paste green glue on the positive electrode corresponding to the welding part of the negative electrode tab.
  • the width of the negative pole piece is 91mm, and the lug is pasted with green glue.
  • the diaphragm is a PE diaphragm with a width of 92.8mm.
  • the positive pole piece, the separator, and the negative pole piece are wound to obtain an electrode assembly. After being placed in an aluminum plastic film, top-side sealing, injection of the electrolyte of Preparation Example 1, and packaging, a lithium ion battery of Comparative Example 1 is obtained. Its cell capacity is 2.36Ah.
  • the spinning layer replaces the traditional diaphragm, which completely wraps the diaphragm area and part of the side surface of the pole piece, and the spinning layer and the pole piece become a whole.
  • the spinning layer can isolate metal burrs, the tabs that originally need to be pasted with green glue can be replaced by a spinning layer, thereby eliminating the pasting at the tabs; at the same time, the spinning layer Without blocking the transmission of lithium ions, the capacity of the part of the active material originally covered by the green glue can be used normally, thereby increasing the energy density.
  • the spinning layer completely wraps the membrane area of the electrode pole piece, it avoids the short circuit of the positive and negative poles during the drop and abuse, which greatly improves the drop performance of the battery.
  • the length of the electrode assembly depends only on the width of the negative electrode instead of the separator. Width (generally the width of the separator will exceed the negative electrode), the volumetric energy density of the entire lithium-ion battery can be further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种电极组件和包含所述电极组件的电化学装置,所述电极组件包括:电极极片和设置在所述电极极片上的内嵌式极耳(1,3);所述电极极片表面上设置有纺丝层(4),且所述纺丝层(4)覆盖电极极片表面并与电极极片表面接触,其中所述电极极片表面包括极耳表面。采用纺丝层(4)取代传统的隔膜,纺丝层(4)与极片成为一个整体。特别是在内嵌式极耳(1,3)的电池结构中,由于纺丝层(4)能够隔绝金属毛刺,需要贴绿胶的极耳处可以被纺丝层(4)取代,从而取消极耳处的贴胶;同时,纺丝层(4)不会阻断锂离子的传输,原来被绿胶覆盖的活性材料部分的容量得以正常发挥,从而提升了能量密度。

Description

一种电极组件和包含所述电极组件的电化学装置及电子装置 技术领域
本申请涉及电化学领域,具体涉及一种电极组件和包含所述电极组件的电化学装置及电子装置。
背景技术
嵌入式极耳,由于能够提升能量密度,减少锂离子电池阻抗,实现高倍率充放电等优点,在软包电池中的使用非常频繁。但是在嵌入式极耳结构的电极组件中,由于金属极耳毛刺的存在,以及需要保证伸出量(overhang)等原因,需要在极耳处贴绿胶,并且该绿胶会有一部分覆盖在膜片区,导致损失一部分活性物质的容量,造成容量的浪费。另外,在跌落的情况下,由于跌落时存在一定的加速度,电解液给予隔膜一定的冲刷力,容易造成隔膜折叠、翻转、褶皱等现象,导致正负极的短路,引起锂离子电池的安全事故。
发明内容
基于现有技术的缺陷,本申请提供一种电极组件,其电极极片不用贴绿胶,从而可以提高电化学装置容量,并提高电化学装置安全性。
在本发明的第一方面,本发明提供一种电极组件,其包括:
电极极片和设置在所述电极极片上的内嵌式极耳;
所述电极极片表面上设置有纺丝层,且所述纺丝层覆盖电极极片表面并与电极极片表面接触,其中所述电极极片表面包括极耳表面。
在一些实施方式中,其中,所述极耳表面上的纺丝层的抗穿刺强度,高于非极耳表面上的纺丝层的抗穿刺强度。
在一些实施方式中,其中,所述极耳表面上的纺丝层的孔隙率和/或孔径小于所述非极耳表面上的纺丝层的孔隙率和/或孔径;
和/或,
所述极耳表面上的纺丝层的厚度大于所述非极耳表面上的纺丝层的厚度。
在一些实施方式中,其中,所述纺丝层的上下边缘分别比所述电极极片上下边缘宽0.1mm至10mm。
在一些实施方式中,其中,所述纺丝层包含聚合物,所述聚合物包括聚偏二氟乙烯、聚酰亚胺、聚酰胺、聚丙烯腈、聚乙二醇、聚丙烯腈、聚氧化乙烯、聚苯醚、聚碳酸亚丙酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯,聚(偏二氟乙烯-六氟丙烯)、聚(偏二 氟乙烯-共-三氟氯乙烯)、聚环氧乙烷或上述物质的衍生物中的至少一种。
在一些实施方式中,其中,所述纺丝层还包含无机颗粒和/或低熔点聚合物颗粒。
在一些实施方式中,其中,所述无机颗粒包括HfO 2、SrTiO 3、SnO 2、CeO 2、MgO、NiO、CaO、BaO、ZnO、ZrO 2、Y 2O 3、Al 2O 3、TiO 2、SiO 2、勃姆石、氢氧化镁、氢氧化铝、磷酸锂、锂钛磷酸盐、锂铝钛磷酸盐、锂镧钛酸盐、锂锗硫代磷酸盐、锂氮化物、SiS 2玻璃、P 2S 5玻璃、Li 2O、LiF、LiOH、Li 2CO 3、LiAlO 2、Li 2O-Al 2O 3-SiO 2-P 2O 5-TiO 2-GeO 2陶瓷或石榴石陶瓷中的至少一种。
在一些实施方式中,其中,所述低熔点聚合物颗粒包括聚苯乙烯、聚乙烯、乙烯-丙烯共聚物、乙烯-醋酸乙烯共聚物、丙烯腈-丁二烯-苯乙烯、聚乳酸、聚氯乙烯、聚乙烯丁醛或聚丙烯酸酯中的至少一种。
在一些实施方式中,其中,所述无机颗粒和/或低熔点聚合物颗粒的粒径大小为0.001μm至10μm。
在一些实施方式中,其中,所述纺丝层满足如下特性至少之一:
所述纺丝层的孔隙率为30%至95%;
所述纺丝层的孔径为20nm至30μm;
所述纺丝层的厚度为1μm至20μm。
本申请同时提供一种电化学装置,其包含上述任一项所述的电极组件。
本申请同时提供一种电子装置,其包含上述的电化学装置。
本申请采用纺丝层取代传统的隔膜,纺丝层与极片成为一个整体。特别是在内嵌式极耳的电极组件中,由于纺丝层能够隔绝金属毛刺,可以用纺丝层替代绿胶,从而省去极耳表面的贴胶;同时,纺丝层不会阻断锂离子的传输,原来被绿胶覆盖的正极活性材料部分的容量得以正常发挥,从而提升了电化学装置能量密度。
附图说明
图1为具有内嵌式极耳的电极极片的结构示意图;
图2为本申请的一种实施方式的电极组件的结构;
图3为本申请的一种实施方式的电极组件的结构;
图4为本申请的一种实施方式的电极组件的负极极片的结构。
附图标记:
1:正极极耳
2:极耳焊接区
3:负极极耳
4:纺丝层
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图和实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的电极组件可以是用于电化学装置的任意电极组件,电化学装置可以包括锂离子电池、超级电容器等,以下以锂离子电池的电极组件为例进行说明。本领域技术人员应当理解,以下说明仅为举例说明,并不限定本申请的保护范围。
本申请提供一种电极组件,其中,包括:
电极极片和设置在所述电极极片上的内嵌式极耳;
所述电极极片表面上设置有纺丝层,且所述纺丝层覆盖电极极片表面并与电极极片表面接触,其中所述电极极片表面包括极耳表面。
在本文中,所述的内嵌式极耳是指,电极极片包括集流体和膜片,所述极耳焊接在集流体上。所述极耳与集流体的连接方式通常采用焊接;在焊接时,极耳和集流体相接处会产生金属毛刺。通过将纺丝层覆盖在极耳表面,可以取消电极极片所使用的绿胶,从而增加可以利用的膜片面积,以提升能量密度等性能。
在本申请中,所述的电极极片可以为正极极片或负极极片。
以正极极片为例,如图1所示的,为具有内嵌式极耳的正极极片的结构,正极极片设有正极极耳1和焊接区2。
以负极极片为例,如图2所示的,为具有内嵌式极耳的负极极片的结构,具体示出了负极极片设有负极极耳3和焊接区2。
在一些实施方式中,其中,所述极耳表面上的纺丝层的抗穿刺强度,高于非极耳表面上的纺丝层的抗穿刺强度。由于极耳焊接时会产生金属毛刺,所以采用上述技术方案,可有效保证纺丝层完全覆盖毛刺,避免发生短路等意外情况。
在一些实施方式中,其中,所述极耳表面上的纺丝层的孔隙率和/或孔径小于非极耳表面上的纺丝层的孔隙率和/或孔径;
和/或,
所述极耳表面上的纺丝层的厚度大于非极耳表面上的纺丝层的厚度。
在一些实施方式中,其中,所述纺丝层的上下边缘分别比所述电极极片上下边缘宽0.1mm至10mm;优选0.5mm至2mm。
以正极极片为例,如图3所示出的,整个正极极片上覆盖有纺丝层4;且纺丝层的上下边缘分别宽于正极极片。
如图4所示出的,为本申请的一种实施方式的电极组件的结构,整个正极极片上覆盖有纺丝层4,极耳1的表面上的纺丝层的抗刺穿强度高于非极耳表面上的纺丝层的抗刺穿强度。
在一些实施方式中,其中,所述纺丝层包含聚合物,所述聚合物包括聚偏二氟乙烯(PVDF)、聚酰亚胺(PI)、聚酰胺(PA)、聚丙烯腈(PAN)、聚乙二醇(PEG)、聚氧化乙烯(PEO)、聚苯醚(PPO)、聚碳酸亚丙酯(PPC)、聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二醇酯(PET)、聚(偏二氟乙烯-六氟丙烯)(PVDF-HFP)、聚(偏二氟乙烯-共-三氟氯乙烯)(PVDF-PCTFE)或上述物质的衍生物中的至少一种,优选聚偏二氟乙烯、聚酰亚胺、聚酰胺、聚丙烯腈、聚乙二醇、聚氧化乙烯、聚苯醚、聚碳酸亚丙酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯或上述物质的衍生物中至少一种。
在本申请的一些实施方案中,所述纺丝层是由聚合物所制备的纳米纤维定向或随机的结合在一起而形成,各纳米纤维之间的随机搭接形成了大量的孔用于离子传输。纳米纤维所组成的纺丝层与极片之间具有较好粘接力,在锂离子电池跌落过程中,可以有效避免隔膜被电解液冲刷而翻折,提高锂离子电池安全性。在一些实施方式中,其中,所述纺丝层还包含无机颗粒和/或低熔点聚合物颗粒。
在一些实施方式中,其中,所述无机颗粒包括HfO 2、SrTiO 3、SnO 2、CeO 2、MgO、NiO、CaO、BaO、ZnO、ZrO 2、Y 2O 3、Al 2O 3、TiO 2、SiO 2、勃姆石、氢氧化镁、氢氧化铝、磷酸锂、锂钛磷酸盐、锂铝钛磷酸盐、锂镧钛酸盐、锂锗硫代磷酸盐、锂氮化物、SiS 2玻璃、P 2S 5玻璃、Li 2O、LiF、LiOH、Li 2CO 3、LiAlO 2、Li 2O-Al 2O 3-SiO 2-P 2O 5-TiO 2-GeO 2陶瓷或石榴石陶瓷中的至少一种。
在一些实施方式中,其中,所述低熔点聚合物颗粒包括聚苯乙烯、聚乙烯、乙烯-丙烯共聚物、乙烯-醋酸乙烯共聚物、丙烯腈-丁二烯-苯乙烯、聚乳酸、聚氯乙烯、聚乙烯丁醛或聚丙烯酸酯中的至少一种。
在一些实施方式中,其中,所述无机颗粒和/或低熔点聚合物颗粒的粒径大小为0.001μm至10μm。
在一些实施方式中,其中,所述纺丝层满足如下特性中的至少一者:
所述纺丝层的孔隙率为30%至95%;
所述纺丝层的孔径为20nm至30μm;
所述纺丝层的厚度为1μm至20μm。
不基于任何理论,发明人认为:通过使纺丝层的孔隙率范围在上述范围内,可以保证离子传导性能。孔隙率过小,会导致离子传输通路堵塞,阻碍锂离子电池的正常循环。孔隙率过大,会导致结构不稳定,且机械强度太差,无法抵抗极片表面颗粒的穿刺,容易引发局部正负极短路,造成电性能衰减和严重的自放电问题。
通过使纺丝层的孔径范围在上述范围内,可以保证隔离层具有合适的机械强度。孔径过小,会导致离子传输通路不足,同样会阻碍锂离子电池的正常循环。孔径过大,会导致在孔的位置机械强度太差,无法抵抗极片表面颗粒的穿刺,容易引发局部正负极短路,造成电性能衰减和严重的自放电问题。
通过使纺丝层厚度在1μm至20μm之间,有利于提高锂离子电池的能量密度。
在本申请的一些实施方案中,其中,所述纺丝层通过电纺丝、气纺丝、离心纺丝、过电吹法、熔喷法、闪蒸法或涂布法制备而成。
沉积纳米纤维、无机颗粒和/或低熔点聚合物颗粒的顺序没有特别限制,只要能够形成本申请的纺丝层即可。例如,所述纳米纤维和无机颗粒和/或低熔点聚合物颗粒可以同时沉积或者交替沉积。
沉积纳米纤维可以用本领域已知的任何纺丝设备实施,没有特别限制,只要能实现本申请目的即可,可以使用本领域已知的任何纺丝设备,例如电纺丝设备可以为永康乐业Elite系列等;气纺丝设备可以为南京捷纳思新材料的气喷纺丝机等;离心纺丝设备可以为四川致研科技的离心纺丝机等。
本申请同时提供一种电化学装置,其包含上述的电极组件。所述电化学装置可以是锂离子电池。
在本申请的实施方案中,对正极极片的其他设置没有特别限制,只要能够实现本申请目的即可。例如,正极极片包括正极集流体和正极膜片。正极集流体可以为本领域公知的任何正极集流体,例如铝箔、铝合金箔或复合集流体等。所述正极膜片中含有正极活性材料,本申请对所述正极活性材料没有特别限制,可以为现有技术的任何正极活性材料,所述活性物质可以包括NCM811、NCM622、NCM523、NCM111、NCA、磷酸铁锂、钴酸锂、锰酸锂、磷酸锰铁锂或钛酸锂中的至少一种。
任选地,所述正极极片还可以包含导电层,所述导电层位于正极集流体和正极膜片之 间。所述导电层的组成没有特别限制,可以是本领域常用的导电层。例如,所述导电层包括导电剂和粘接剂的组成。
在本申请的实施方案中,对负极极片的其他设置没有特别限制,只要能够实现本申请目的即可。例如,负极极片包括负极集流体和负极膜片,对所述负极集流体没有特别限制,可以使用本领域公知的任何负极集流体,例如铜箔、铜合金箔或复合集流体等。所述负极膜片含有负极活性材料,本申请对负极活性材料没有特别限制,可以使用本领域公知的任何负极活性材料。例如,可以包括石墨、硅或硅碳等中的至少一种。
任选地,所述负极极片还可以包含导电层,所述导电层位于负极集流体和负极膜片之间。所述导电层的组成没有特别限制,可以是本领域常用的导电层。例如,所述导电层包括导电剂和粘接剂的组成。
上述导电剂没有特别限制,可以使用本领域公知的任何导电剂,只要能实现本申请目的即可。例如,导电剂可以包括导电炭黑(Super P)、碳纳米管(CNTs)、碳纤维或石墨烯等中的至少一种。例如,导电剂可选用导电炭黑(Super P)。上述粘接剂没有特别限制,可以使用本领域公知的任何粘接剂,只要能实现本申请目的即可。例如,粘接剂可以选自丁苯橡胶(SBR)、聚乙烯醇(PVA)、聚四氟乙烯(PTFE)或羧甲基纤维素钠(Na-CMC)等中的至少一种。例如,粘接剂可选用丁苯橡胶(SBR)。
本申请对锂离子电池的电解液没有特别限制,可以使用本领域公知的任何电解液,可以是凝胶态、固态或液态中的任一种。例如,液态电解液包括锂盐和非水溶剂。
所述锂盐没有特别限制,可以使用本领域公知的任何锂盐,只要能实现本申请的目的即可。例如,锂盐可以包括LiPF 6、LiBF 4、LiAsF 6、LiClO 4、LiB(C 6H 5) 4、LiCH 3SO 3、LiCF 3SO 3、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3或LiPO 2F 2等中的至少一种。例如,锂盐可选用LiPF 6
所述非水溶剂没有特别限定,只要能实现本申请的目的即可。例如,非水溶剂可以包括碳酸酯化合物、羧酸酯化合物、醚化合物、腈化合物或其它有机溶剂等中的至少一种。
例如,碳酸酯化合物可以包括碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸甲乙酯(MEC)、碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸乙烯基亚乙酯(VEC)、碳酸氟代亚乙酯(FEC)、碳酸1,2-二氟亚乙酯、碳酸1,1-二氟亚乙酯、碳酸1,1,2-三氟亚乙酯、碳酸1,1,2,2-四氟亚乙酯、碳酸1-氟-2-甲基亚乙酯、碳酸1-氟-1-甲基亚乙酯、碳酸1,2-二氟-1-甲基亚乙酯、碳酸1,1,2-三氟-2-甲基亚乙酯或碳酸三氟甲基亚乙酯等中的至少一种。
本申请同时提供一种电子装置,其包含上述的电化学装置。
在本申请中,所述的电子装置可以为本领域任意的电化学装置,例如笔记本电脑、手机、电动摩托车、电动汽车、电动玩具等。
本申请中所用的术语一般为本领域技术人员常用的术语,如果与常用术语不一致,以本申请中的术语为准。
具体地,在本申请中,以下术语的含义如下:
无机颗粒的平均粒径:无机颗粒的平均粒径用体积基准的D50表示,即粒径在D50以下的无机颗粒体积含量占全部颗粒的50%。
毛刺:在极耳焊接时所产生的金属凸点和凹点。
伸出量(Overhang):指负极极片相对于正极极片、隔离膜相对于负极极片、或隔离膜相对于正极极片在宽度方向或长度方向上的伸出量(为尺寸差值)。
测试方法:
锂离子电池容量以及能量密度:
室温下,将锂离子电池静置60min,然后以0.2C倍率充电至3.0V,以0.5C倍率放电至截至电压,再恒压充电至充电电流0.01C,静置60min。然后以0.5C倍率充电至2.8V,计量锂离子电池容量(以Ah计),由锂离子电池的体积计算能量密度(以Wh/L计)。
跌落滥用通过率:
跌落滥用测试未起火爆炸的锂离子电池数/参数实验的总锂离子电池数。
测试方法如下:用1.0C电流测试电极组件常温下的初始容量,以1.0C恒流充电至4.2V,接着恒压充电至电流降至0.05C,充电停止,然后静置1个小时;测量开路电压,阻抗;将电极组件从1米(3.28英尺)的高度自由跌落到水泥地面上;每个锂离子电池将沿着三个互相垂直轴的正负方向跌落1次,总共跌6次,然后静置1小时;测量开路电压,阻抗;然后以1.0C电流测试常温下的剩余容量,剩余容量是指满充之后的放电容量。若锂离子电池无泄漏,无冒烟,无起火,无爆炸,锂离子电池的保护装置完好,且试验后的剩余容量不低于初始容量的90%,试验后的阻抗增加不高过初始阻抗的50%即视为pass,否则视为fail。
抗刺穿强度:
采用微机控制电子万能试验机(MTS-E44.104)检测多孔层穿刺强度。
测试流程:拆解锂离子电池,取正极极片、纺丝层、负极极片三层结构的叠层样品,放置在压力机一侧的铝板上,在样品上方放置钢球(材质铁,直径5mm),在两极耳间加10V电压,并通过两侧铝板给样品表面施加压力,垂直方向压的速度为0.1mm/min,记录电阻急剧变化时的压力,即为穿刺强度。
孔隙率及孔径:
将电池隔膜(纺丝层)制作为直径24mm的圆片,采用电池隔膜通孔孔径分析仪CFP-1500AE进行分析,参数如下:压力范围:0-500psi;加压气体:N 2;浸润液:GalWick,即可得到纺丝层的孔隙率以及孔径。
制备例1
电解液的制备
在干燥氩气气氛中,将有机溶剂碳酸乙烯酯、碳酸甲乙酯和碳酸二乙酯以质量比EC:EMC:DEC=30:50:20混合得到有机溶液,然后向有机溶剂中加入锂盐六氟磷酸锂溶解并混合均匀,得到锂盐的浓度为1.15Mol/L的电解液。
实施例
以下实施例举例说明本申请的电极组件。这些实施例以纺丝层设置在正极极片为例进行说明。应当理解,所述纺丝层也可以设置在负极极片的表面上。这些实施方案同样可以实现本申请的目的。本领域技术人员应当理解,这些实施方案同样在本申请的保护范围内。
实施例1
在选定的333996model中,正极极片宽度89.8mm,在正极极片上对应于负极极耳焊接处贴绿胶。然后,在正极极片上采用静电纺丝的方法制备聚酰亚胺(PI,polyimide)纺丝层,沿所述正极极片的宽度方向,纺丝层的单侧超出正极极片的宽度为0.5mm。负极极片宽91mm,其极耳处贴绿胶。将纺丝后的正极与未纺丝的负极层叠后进行卷绕获得电极组件。置入铝塑膜中,经顶侧封、注入制备例1的电解液、封装后,获得实施例1的锂离子电池。
在本实施例中,所述纺丝层的孔隙率为60%,孔径为100nm,厚度为10μm。
实施例2
在选定的333996model中,正极极片宽度89.8mm,在正极极片上对应于负极极耳焊接处贴绿胶。然后,在正极极片上,除极耳焊接区以外的部分,采用静电纺丝的方法制备聚酰亚胺(PI,polyimide)纺丝层;在正极极耳焊接处采用局部纺丝的方法制备含有Al 2O 3颗粒的聚酰亚胺(PI,polyimide)纺丝层,其中,Al 2O 3颗粒占隔离层总体积的比为30%。沿所述正极极片的宽度方向,总体的纺丝层单侧超出正极极片的宽度为0.5mm。负极极片宽91mm,其极耳处贴绿胶。将纺丝后的正极与未纺丝的负极卷绕后获得电极组件。置入铝塑膜中,经顶侧封、注入制备例1的电解液、封装后,获得实施例2的锂离子电池。
在本实施例中,所述纺丝层的孔隙率为40%,孔径为150nm,厚度为5μm,Al 2O 3颗粒的粒径为1μm。
实施例3
在选定的333996model中,正极极片宽度89.8mm,在正极极上对应于负极极耳焊接处贴绿胶。然后,在正极极片上采用静电纺丝的方法制备聚酰亚胺(PI,polyimide)纺丝层,在正极极耳焊接处采用多层局部纺丝的方法覆盖一层聚酰亚胺(PI,polyimide)纺丝层和一层Al 2O 3颗粒层,其中Al 2O 3颗粒层和聚酰亚胺(PI,polyimide)纺丝层的厚度比为2:5。沿所述正极极片的宽度方向,总体的纺丝层单侧超出正极极片的宽度为0.5mm。负极极片宽91mm,其极耳处贴绿胶。将纺丝后的正极极片与未纺丝的负极极片卷绕后获得电极组件。置入铝塑膜中,经顶侧封、注入制备例1的电解液、封装后,获得实施例3的锂离子电池。
在本实施例中,所述聚酰亚胺(PI,polyimide)纺丝层的孔隙率为55%,孔径为90nm,厚度为8μm,Al 2O 3颗粒的粒径为1μm,Al 2O 3颗粒层的厚度为3.2μm。
实施例4
在选定的333996model中,正极极片宽度89.8mm,在正极极片上对应于负极极耳焊接处贴绿胶。然后,在负极极片上采用静电纺丝的方法制备聚酰亚胺(PI,polyimide)纺丝层,负极极片宽91mm。沿所述正极极片的宽度方向,纺丝层单侧超出负极极片的宽度为0.5mm。将未纺丝的正极极片与纺丝后的负极极片卷绕后获得电极组件。置入铝塑膜中,经顶侧封、注入制备例1的电解液、封装后,获得实施例4的锂离子电池。
在本实施例中,所述纺丝层的孔隙率为60%,孔径为120nm,厚度为10μm。
实施例5
在选定的333996model中,正极极片宽度89.8mm,在正极极片上对应于负极极耳焊 接处贴绿胶。然后,在正极极片上采用静电纺丝的方法制备聚酰亚胺(PI,polyimide)纺丝层,沿所述正极极片的宽度方向,纺丝层单侧超出正极极片的宽度为0.5mm。同时,在负极极片上采用静电纺丝的方法制备聚酰亚胺(PI,polyimide)纺丝层,负极极片宽91mm,纺丝层单侧超出负极极片的宽度为0.5mm。将纺丝后的正极极片与负极极片卷绕后获得电极组件。置入铝塑膜中,经顶侧封、注入制备例1的电解液、封装后,获得实施例5的锂离子电池。
在本实施例中,正极极片的纺丝层的孔隙率为45%,孔径为1μm,厚度为12μm;负极极片的纺丝层的孔隙率为45%,孔径为1μm,厚度为12μm。
对比例1
在选定的333996model中,正极极片宽度89.8mm,绿胶与极片的接触面积22×15mm,其中胶纸上膜片面积为135mm 2,则正极两侧被绿胶覆盖的活性材料总面积为270mm 2.在正极极上对应于负极极耳焊接处贴绿胶。负极极片宽91mm,其极耳处贴绿胶。隔膜选用宽度为92.8mm的PE隔膜。将正极极片、隔膜、负极极片卷绕后获得电极组件。置入铝塑膜中,经顶侧封、注入制备例1的电解液、封装后,获得对比例1的的锂离子电池。其电芯容量为2.36Ah。
其中,实施例1-3相比较对比例1的电极组件宽度差=92.8-91=1.8mm;
实施例4-5相比较对比例1的电极组件宽度差=92.8-(91+0.5×2)=0.8mm。
测试结果如表1所示:
表1
No. 能量密度提升 跌落测试通过率
对比例 - 5/10
实施例1 2.35% 10/10
实施例2 2.35% 10/10
实施例3 2.35% 10/10
实施例4 1.27% 10/10
实施例5 1.27% 10/10
通过表1可知,本申请通过采用纺丝层取代绿胶,可以防止绿胶遮挡电极活性材料造成的容量损失,锂离子电池能量密度得到提升;同时,由于纺丝层直接复合在极片的表面 和侧面,阻隔了正负极在滥用情况下的短路的可能性,使得跌落测试等滥用测试通过率大大提升。
本申请采用纺丝层取代传统的隔膜,完全包裹住极片的膜片区及部分侧面,纺丝层与极片成为一个整体。在内嵌式极耳的电池结构中,由于纺丝层能够隔绝金属毛刺,原本需要贴绿胶的极耳处可以被纺丝层取代,从而取消极耳处的贴胶;同时,纺丝层不会阻断锂离子的传输,原来被绿胶覆盖的活性材料部分的容量得以正常发挥,从而提升了能量密度。除此之外,由于纺丝层是完全包裹住电极极片的膜片区的,因此在跌落滥用时,避免产生正负极短路的现象,大大提升了电池的跌落性能。另外,在纺丝层仅附着在正极的情况下,由于其对正极宽度的增加不会超出负极与正极的伸出量(overhang),那么电极组件的长度只取决于负极的宽度而非隔膜的宽度(一般隔膜宽度会超出负极),则整个锂离子电池的体积能量密度得以进一步提高。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (12)

  1. 一种电极组件,其中,包括:
    电极极片和设置在所述电极极片上的内嵌式极耳;
    所述电极极片表面上设置有纺丝层,且所述纺丝层覆盖电极极片表面并与电极极片表面接触,其中所述电极极片表面包括极耳表面。
  2. 根据权利要求1所述的电极组件,其中,所述极耳表面上的纺丝层的抗穿刺强度,高于非极耳表面的纺丝层的抗穿刺强度。
  3. 根据权利要求2所述的电极组件,其中,所述极耳表面的纺丝层的孔隙率和/或孔径小于所述非极耳表面的纺丝层的孔隙率和/或孔径;
    和/或,
    所述极耳表面的纺丝层的厚度大于所述非极耳表面的纺丝层的厚度。
  4. 根据权利要求1所述的电极组件,其中,所述纺丝层的上下边缘分别比所述电极极片上下边缘宽0.1mm至10mm。
  5. 根据权利要求1所述的电极组件,其中,所述纺丝层包含聚合物,所述聚合物包括聚偏二氟乙烯、聚酰亚胺、聚酰胺、聚丙烯腈、聚乙二醇、聚丙烯腈、聚氧化乙烯、聚苯醚、聚碳酸亚丙酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯,聚(偏二氟乙烯-六氟丙烯)、聚(偏二氟乙烯-共-三氟氯乙烯)、聚环氧乙烷或上述物质的衍生物中的至少一种。
  6. 根据权利要求1所述的电极组件,其中,所述纺丝层还包含无机颗粒和/或低熔点聚合物颗粒。
  7. 根据权利要求6所述的电极组件,其中,所述无机颗粒包括HfO 2、SrTiO 3、SnO 2、CeO 2、MgO、NiO、CaO、BaO、ZnO、ZrO 2、Y 2O 3、Al 2O 3、TiO 2、SiO 2、勃姆石、氢氧化镁、氢氧化铝、磷酸锂、锂钛磷酸盐、锂铝钛磷酸盐、锂镧钛酸盐、锂锗硫代磷酸盐、锂氮化物、SiS 2玻璃、P 2S 5玻璃、Li 2O、LiF、LiOH、Li 2CO 3、LiAlO 2、Li 2O-Al 2O 3-SiO 2-P 2O 5-TiO 2-GeO 2陶瓷或石榴石陶瓷中的至少一种。
  8. 根据权利要求6所述的电极组件,其中,所述低熔点聚合物颗粒包括聚苯乙烯、聚乙烯、乙烯-丙烯共聚物、乙烯-醋酸乙烯共聚物、丙烯腈-丁二烯-苯乙烯、聚乳酸、聚氯乙烯、聚乙烯丁醛或聚丙烯酸酯中的至少一种。
  9. 根据权利要求6所述的电极组件,其中,所述无机颗粒和/或低熔点聚合物颗粒的粒径大小为0.001μm至10μm。
  10. 根据权利要求1-9中任一项所述的电极组件,其中,所述纺丝层满足如下特性中的 至少一者:
    所述纺丝层的孔隙率为30至95%;
    所述纺丝层的孔径为20nm至30μm;
    所述纺丝层的厚度为1μm至20μm。
  11. 一种电化学装置,其包含权利要求1-10中任一项所述的电极组件。
  12. 一种电子装置,其包含权利要求11的电化学装置。
PCT/CN2020/081824 2020-03-27 2020-03-27 一种电极组件和包含所述电极组件的电化学装置及电子装置 WO2021189467A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227033835A KR20220140005A (ko) 2020-03-27 2020-03-27 전극어셈블리 및 상기 전극어셈블리를 포함하는 전기화학 디바이스와 전자 디바이스
EP20927326.7A EP4131457A4 (en) 2020-03-27 2020-03-27 ELECTRODE ASSEMBLY AND ELECTROCHEMICAL DEVICE THEREOF AND ELECTRONIC DEVICE
JP2022549198A JP7463534B2 (ja) 2020-03-27 2020-03-27 電極アセンブリおよびその電極アセンブリを備える電気化学装置、並びに電子機器
PCT/CN2020/081824 WO2021189467A1 (zh) 2020-03-27 2020-03-27 一种电极组件和包含所述电极组件的电化学装置及电子装置
CN202080095620.1A CN115066762A (zh) 2020-03-27 2020-03-27 一种电极组件和包含所述电极组件的电化学装置及电子装置
US17/953,656 US20230024456A1 (en) 2020-03-27 2022-09-27 Electrode assembly, and electrochemical apparatus and electronic apparatus including such electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081824 WO2021189467A1 (zh) 2020-03-27 2020-03-27 一种电极组件和包含所述电极组件的电化学装置及电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/953,656 Continuation US20230024456A1 (en) 2020-03-27 2022-09-27 Electrode assembly, and electrochemical apparatus and electronic apparatus including such electrode assembly

Publications (2)

Publication Number Publication Date
WO2021189467A1 true WO2021189467A1 (zh) 2021-09-30
WO2021189467A9 WO2021189467A9 (zh) 2022-01-06

Family

ID=77891496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081824 WO2021189467A1 (zh) 2020-03-27 2020-03-27 一种电极组件和包含所述电极组件的电化学装置及电子装置

Country Status (6)

Country Link
US (1) US20230024456A1 (zh)
EP (1) EP4131457A4 (zh)
JP (1) JP7463534B2 (zh)
KR (1) KR20220140005A (zh)
CN (1) CN115066762A (zh)
WO (1) WO2021189467A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122518A (zh) * 2021-11-23 2022-03-01 珠海冠宇电池股份有限公司 一种电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109654A (ja) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd 電池用極板およびその製造方法
CN103168384A (zh) * 2010-09-30 2013-06-19 应用材料公司 电纺丝锂离子电池的整合隔离件
CN107516721A (zh) * 2016-06-16 2017-12-26 宁德新能源科技有限公司 电芯及储能装置
CN107579190A (zh) * 2013-09-30 2018-01-12 株式会社东芝 二次电池
CN110224097A (zh) * 2018-03-01 2019-09-10 株式会社东芝 层叠体及二次电池
CN110224170A (zh) * 2018-03-01 2019-09-10 株式会社东芝 层叠体及二次电池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889933B1 (en) * 2012-07-24 2017-07-05 Kabushiki Kaisha Toshiba Secondary battery
CN202758971U (zh) * 2012-08-22 2013-02-27 安赛锂能(合肥)有限公司 一种锂离子电池负极极片结构
JP6377586B2 (ja) * 2015-09-10 2018-08-22 株式会社東芝 電極、電極の製造方法及び非水電解質電池
CN105914339A (zh) * 2016-06-20 2016-08-31 吉安市优特利科技有限公司 锂离子二次电池
CN106129327A (zh) * 2016-08-10 2016-11-16 欣旺达电子股份有限公司 锂离子电池正极极片及锂离子电池
CN106450494B (zh) * 2016-08-29 2024-02-02 天津聚元新能源科技有限公司 埋极耳式极片的制备方法、极片及锂离子电池
JP6847893B2 (ja) * 2018-07-02 2021-03-24 株式会社東芝 電極構造体および二次電池
WO2021038860A1 (ja) * 2019-08-30 2021-03-04 株式会社 東芝 電極、積層体及び二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109654A (ja) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd 電池用極板およびその製造方法
CN103168384A (zh) * 2010-09-30 2013-06-19 应用材料公司 电纺丝锂离子电池的整合隔离件
CN107579190A (zh) * 2013-09-30 2018-01-12 株式会社东芝 二次电池
CN107516721A (zh) * 2016-06-16 2017-12-26 宁德新能源科技有限公司 电芯及储能装置
CN110224097A (zh) * 2018-03-01 2019-09-10 株式会社东芝 层叠体及二次电池
CN110224170A (zh) * 2018-03-01 2019-09-10 株式会社东芝 层叠体及二次电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4131457A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122518A (zh) * 2021-11-23 2022-03-01 珠海冠宇电池股份有限公司 一种电池
CN114122518B (zh) * 2021-11-23 2023-06-09 珠海冠宇电池股份有限公司 一种电池

Also Published As

Publication number Publication date
JP2023513813A (ja) 2023-04-03
WO2021189467A9 (zh) 2022-01-06
EP4131457A1 (en) 2023-02-08
KR20220140005A (ko) 2022-10-17
EP4131457A4 (en) 2023-05-31
JP7463534B2 (ja) 2024-04-08
US20230024456A1 (en) 2023-01-26
CN115066762A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
US7189478B2 (en) Lithium secondary battery
US20220223899A1 (en) Partition for electrochemical apparatus, electrochemical apparatus, and electronic apparatus
JP4108981B2 (ja) ハイブリッド型高分子電解質、それを含むリチウム二次電池及びこれらの製造方法
CN115104222B (zh) 一种电极组件及包含其的电化学装置和电子装置
WO2001089022A1 (en) A lithium secondary battery comprising a super fine fibrous polymer separator film and its fabrication method
WO2021189459A1 (zh) 一种电化学装置及包含该电化学装置的电子装置
JP2010225539A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
US20220223948A1 (en) Electrochemical apparatus and electronic apparatus
CN114270578A (zh) 电化学装置和电子装置
JP6973244B2 (ja) 非水電解質二次電池、および、非水電解質二次電池の製造方法
US20230024456A1 (en) Electrode assembly, and electrochemical apparatus and electronic apparatus including such electrode assembly
WO2022001235A1 (zh) 一种电化学装置用隔板、电化学装置及电子装置
WO2001089023A1 (en) A lithium secondary battery comprising a super fine fibrous polymer electrolyte and its fabrication method
US20220223982A1 (en) Electrochemical device and electronic device containing the same
WO2001091219A1 (en) A lithium secondary battery comprising a porous polymer separator film fabricated by a spray method and its fabrication method
JP2003257496A (ja) リチウム二次電池
JP2023518995A (ja) 電気化学装置
CN113826277B (zh) 一种电化学装置和包含所述电化学装置的电子装置
WO2001091222A1 (en) A lithium secondary battery comprising a polymer electrolyte fabricated by a spray method and its fabrication method
JPWO2019049886A1 (ja) 電極、及びリチウムイオン二次電池
WO2021189476A1 (zh) 电化学装置
CN116093538B (zh) 电极组件、电化学装置和电子装置
CN115088127B (zh) 电化学装置
WO2024046274A1 (zh) 正极极片、二次电池及用电装置
WO2001091220A1 (en) A hybrid polymer electrolyte fabricated by a spray method, a lithium secondary battery comprising the hybrid polymer electrolyte and their fabrication methods

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022549198

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227033835

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020927326

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020927326

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE