WO2021189404A1 - 温漂系数补偿方法、装置、镜头、成像装置和可移动平台 - Google Patents

温漂系数补偿方法、装置、镜头、成像装置和可移动平台 Download PDF

Info

Publication number
WO2021189404A1
WO2021189404A1 PCT/CN2020/081599 CN2020081599W WO2021189404A1 WO 2021189404 A1 WO2021189404 A1 WO 2021189404A1 CN 2020081599 W CN2020081599 W CN 2020081599W WO 2021189404 A1 WO2021189404 A1 WO 2021189404A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature drift
drift coefficient
focus position
preset temperature
coefficient
Prior art date
Application number
PCT/CN2020/081599
Other languages
English (en)
French (fr)
Inventor
韩守谦
胡涛
段纯杰
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080004402.2A priority Critical patent/CN112567274A/zh
Priority to PCT/CN2020/081599 priority patent/WO2021189404A1/zh
Publication of WO2021189404A1 publication Critical patent/WO2021189404A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/675Focus control based on electronic image sensor signals comprising setting of focusing regions

Definitions

  • the embodiments of the present invention relate to the field of imaging technology, and in particular to a method, device, lens, imaging device, and movable platform for compensating temperature drift coefficient.
  • Temperature drift refers to the phenomenon of changes in semiconductor device parameters caused by temperature changes, referred to as temperature drift.
  • the optical lens and structural components in the lens will expand and contract due to heat, which may cause a shift in the focus position.
  • a temperature compensation method is proposed for the effect of temperature drift on the focusing operation.
  • the temperature drift curve is fitted through the temperature drift parameter test of the main lens.
  • the difference of the lens is large, then the temperature drift data obtained through the temperature drift curve is unreliable.
  • the temperature drift calibration for a single lens is not only time-consuming and labor-intensive, but also costly, which cannot meet the requirements of large-scale production.
  • the embodiment of the present invention provides a temperature drift coefficient compensation method, device, lens, imaging device and movable platform.
  • the first aspect of the present invention is to provide a temperature drift coefficient compensation method, including:
  • a compensation parameter corresponding to the preset temperature drift coefficient is determined, and the compensation parameter is used to perform a compensation operation on the preset temperature drift coefficient.
  • the second aspect of the present invention is to provide a temperature drift coefficient compensation device, including:
  • Memory used to store computer programs
  • the processor is configured to run a computer program stored in the memory to realize:
  • a compensation parameter corresponding to the preset temperature drift coefficient is determined, and the compensation parameter is used to perform a compensation operation on the preset temperature drift coefficient.
  • the third aspect of the present invention is to provide a lens including:
  • the temperature drift coefficient compensation device is configured to be installed on the lens barrel.
  • the fourth aspect of the present invention is to provide an imaging device including:
  • the lens is fixedly or detachably mounted on the body.
  • the fifth aspect of the present invention is to provide a movable platform, including:
  • the power device is arranged on the main body of the platform and is used to provide power for the movable platform;
  • the imaging device according to the fourth aspect is arranged on the platform main body.
  • the sixth aspect of the present invention is to provide a computer-readable storage medium, the storage medium is a computer-readable storage medium, the computer-readable storage medium stores program instructions, and the program instructions are used in the first aspect.
  • the temperature drift coefficient compensation method, device, lens, imaging device, and movable platform provided by the embodiments of the present invention can realize the temperature compensation operation on the preset temperature drift coefficient of any lens, and the preset temperature drift coefficient is updated based on the temperature compensation operation. Determining the focus position ensures the accuracy and reliability of determining the focus position, and improves the scope of application of the method.
  • FIG. 1 is a schematic flowchart of a method for compensating a temperature drift coefficient according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the process of obtaining the theoretical focus position of the focus lens in FIG. 1 according to the preset temperature drift coefficient;
  • FIG. 3 is a schematic diagram of the process of determining the theoretical focus position of the focus lens in FIG. 2 according to the object distance and the preset temperature drift coefficient;
  • FIG. 4 is a schematic diagram of the process of determining the actual focus position of the imaging object in FIG. 1;
  • FIG. 5 is a schematic flowchart of determining the coefficient adjustment range corresponding to the preset temperature drift coefficient in FIG. 4;
  • FIG. 6 is a schematic diagram of determining at least a part of the maximum adjustment range in FIG. 5 as a coefficient adjustment range corresponding to the preset temperature drift coefficient;
  • FIG. 7 is a schematic flowchart of another method for compensating a temperature drift coefficient according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram 1 of the process of determining the compensation parameter corresponding to the preset temperature drift coefficient according to the theoretical focus position and the actual focus position in FIG. 1;
  • FIG. 9 is a schematic flowchart of another method for compensating a temperature drift coefficient according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the second process of determining the compensation parameter corresponding to the preset temperature drift coefficient according to the theoretical focus position and the actual focus position in FIG. 1;
  • FIG. 11 is a schematic flowchart of another method for compensating a temperature drift coefficient according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the third process of determining the compensation parameter corresponding to the preset temperature drift coefficient according to the theoretical focus position and the actual focus position in FIG. 1;
  • FIG. 13 is a schematic flowchart of another method for compensating a temperature drift coefficient according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a temperature drift coefficient compensation device provided by an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a lens provided by an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of an imaging device provided by an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention.
  • the optical lens and structural parts in the lens will cause the focus position to shift due to thermal expansion and contraction, which affects the focus quality.
  • the key is how to calculate the accurate and true image distance.
  • the above-mentioned Gaussian imaging formula can be used to calculate the image distance v corresponding to the object distance u.
  • the focus point can be calculated Location.
  • the Gaussian formula is only the result at a specific temperature, if the temperature changes, the effect of temperature drift must be considered. The greater the temperature drift, the greater the error calculated by the Gaussian formula.
  • the application premise of the above-mentioned temperature compensation method is to assume that the individual lenses have good consistency, and then the temperature drift curve is fitted by the temperature drift parameters of the main lens, and then the temperature is calculated based on the fitted temperature drift curve. Compensation operation. However, if the difference of the lens is large, then the temperature drift data obtained through the temperature drift curve is unreliable.
  • the temperature drift calibration for a single lens is not only time-consuming and labor-intensive, but also costly, which cannot meet the requirements of large-scale production.
  • a temperature drift coefficient compensation method device, lens, imaging device, and movable platform are proposed, which can realize the temperature compensation operation for the preset temperature drift coefficient of any lens, and based on the updated
  • the temperature drift coefficient is preset to determine the focus position, which ensures the accuracy and reliability of determining the focus position, and improves the scope of application of the method.
  • FIG. 1 is a schematic flow chart of a method for compensating a temperature drift coefficient provided by an embodiment of the present invention; referring to Figure 1, in order to overcome the “if the lens is very different from one another in the technical field, then the temperature drift curve The temperature drift data obtained is unreliable; and the temperature drift calibration for a single lens is not only time-consuming and labor-intensive, but also costly and cannot meet the requirements of mass production.”
  • This embodiment provides a temperature drift coefficient compensation Method.
  • the main body of the method is a temperature drift coefficient compensation device. It can be understood that the temperature drift coefficient compensation device can be implemented as software or a combination of software and hardware. Specifically, the temperature drift coefficient compensation method may include:
  • Step S101 Obtain a preset temperature drift coefficient corresponding to the focus lens at a preset temperature, and the focus lens is used to perform a focus operation on the imaging object.
  • Step S102 Acquire the theoretical focus position of the focus lens according to the preset temperature drift coefficient.
  • Step S103 Determine the actual focus position for the imaging object.
  • Step S104 According to the theoretical focus position and the actual focus position, a compensation parameter corresponding to the preset temperature drift coefficient is determined, and the compensation parameter is used to perform a compensation operation on the preset temperature drift coefficient.
  • Step S101 Obtain a preset temperature drift coefficient corresponding to the focus lens at a preset temperature, and the focus lens is used to perform a focus operation on the imaging object.
  • the preset temperature can be any temperature configured in advance or specified.
  • the preset temperature drift coefficient corresponding to the focus lens can be obtained, and the preset temperature drift coefficient corresponds to the preset temperature.
  • the corresponding relationship between the preset temperature drift coefficient and the preset temperature can be obtained by performing temperature drift calibration on the main lens. It can be understood that different preset temperatures may correspond to the same or different preset temperature drift coefficients.
  • this embodiment does not limit the specific implementation manner of obtaining the preset temperature drift coefficient corresponding to the focus lens, and those skilled in the art can set it according to specific application requirements and design requirements, for example, at a preset temperature
  • the preset temperature drift coefficient corresponding to the focus lens can be stored in the preset area, and the preset temperature drift coefficient corresponding to the focus lens can be obtained by accessing the preset area.
  • a mapping relationship between the preset temperature and the preset temperature drift coefficient is configured in advance. After the preset temperature is obtained, the preset temperature drift coefficient corresponding to the focus lens can be obtained based on the mapping relationship.
  • Step S102 Acquire the theoretical focus position of the focus lens according to the preset temperature drift coefficient.
  • the theoretical focus position of the focus lens can be obtained based on the preset temperature drift coefficient. It is understandable that when the imaging object is photographed, if the temperature drift effect at the preset temperature is not considered, at this time, the imaging formula can be directly used to obtain the focus point P1 where the focusing lens is located. , The obtained focus point P1 is the theoretical focus position with the focus lens.
  • Step S103 Determine the actual focus position for the imaging object.
  • the actual focus position of the imaging object can be determined.
  • this embodiment does not limit the implementation of determining the actual focus position, and those skilled in the art can determine the actual focus position according to specific application requirements and design requirements.
  • the settings are made, for example: the image frame corresponding to the imaging object can be acquired, and the actual focus position corresponding to the imaging object can be determined by analyzing and identifying the image frame.
  • steps S103 and S102 in this embodiment is not limited to the order defined by the aforementioned sequence numbers, that is, step S103 can be executed before step S102, or step S103 can be executed simultaneously with step S102.
  • step S103 can be executed before step S102, or step S103 can be executed simultaneously with step S102.
  • Those skilled in the art can perform any configuration according to specific application requirements and design requirements, which will not be repeated here.
  • Step S104 According to the theoretical focus position and the actual focus position, a compensation parameter corresponding to the preset temperature drift coefficient is determined, and the compensation parameter is used to perform a compensation operation on the preset temperature drift coefficient.
  • the preset temperature drift coefficient at this time can be obtained by fitting the temperature drift calibration parameters of the main lens.
  • the error caused by the preset temperature drift coefficient After the theoretical focus position and the actual focus position are obtained, the theoretical focus position and the actual focus position can be analyzed and processed to determine the compensation corresponding to the preset temperature drift coefficient Parameter, the compensation parameter is used to perform a compensation operation on the preset temperature drift coefficient, so as to reduce the error caused by the preset temperature drift coefficient to the determined focus position.
  • determining the compensation parameter corresponding to the preset temperature drift coefficient may include:
  • Step S1041 Determine the difference between the actual focus position and the theoretical focus position as a compensation parameter corresponding to the preset temperature drift coefficient.
  • the actual focus position and the theoretical focus position can be analyzed and compared to obtain the difference between the actual focus position and the theoretical focus position, and then the actual focus position can be compared with the theoretical focus position
  • the compensation parameter can be used to compensate and update the preset temperature drift coefficient, so that a new preset temperature drift coefficient can be obtained so that it can be based on the new preset temperature drift coefficient.
  • the temperature drift coefficient is used to determine the focus position of the focus lens, which further improves the accuracy and reliability of the determination of the focus position.
  • the temperature drift coefficient compensation method obtained in this embodiment obtains the preset temperature drift coefficient corresponding to the focus lens, obtains the theoretical focus position of the focus lens according to the preset temperature drift coefficient, determines the actual focus position for the imaging object, and then According to the theoretical focus position and the actual focus position, the compensation parameters corresponding to the preset temperature drift coefficients are determined, which effectively realizes the accurate and reliable acquisition of the compensation parameters, thereby facilitating the update operation of the preset temperature drift coefficients using the compensation parameters , Realize the temperature compensation operation for the preset temperature drift coefficient of any lens, so that not only the focus position can be determined based on the updated preset temperature drift coefficient, but also the accuracy and reliability of the determination of the focus position are guaranteed, and the The scope of application of the method, that is, it can be applied to various types of lenses, further improving the practicability of the method.
  • FIG. 2 is a schematic diagram of the process of obtaining the theoretical focus position of the focus lens according to the preset temperature drift coefficient in FIG. 1; Coefficient.
  • the specific implementation method for obtaining the theoretical focus position of the focus lens is not limited. Those skilled in the art can set it according to specific application requirements and design requirements.
  • Step S201 Obtain the object distance of the imaging object.
  • Step S202 Determine the theoretical focus position of the focus lens according to the object distance and the preset temperature drift coefficient.
  • the distance measuring unit when focusing on the imaging object, can be used to obtain the object distance of the imaging object in real time.
  • the distance measuring unit can be one or more of the following: monocular rangefinder camera, binocular vision camera , Lidar, TOF rangefinder, structured light rangefinder.
  • monocular rangefinder camera binocular vision camera
  • Lidar Lidar
  • TOF rangefinder structured light rangefinder
  • the object distance of the shooting object may be fixed or may change, for example, at least one of the shooting object and the shooting device has moved. In this case, the object distances of the various zoom positions are not equal.
  • determining the theoretical focus position of the focus lens according to the object distance and the preset temperature drift coefficient may include:
  • Step S301 Use the imaging formula to determine the image distance corresponding to the object distance.
  • Step S302 Determine the theoretical focus position of the focus lens according to the preset temperature drift coefficient and the image distance.
  • the focal length f corresponding to the zoom position and the object distance u measured in real time are substituted into the above-mentioned Gaussian imaging formula to obtain the image distance v at the zoom position.
  • the zoom lens moves to the first zoom position, assuming that the focal length corresponding to the first zoom position is f1, the measured object distance of the subject is u1. Substituting f1 and u1 into the Gaussian imaging formula, you can get The image distance v1 at the first zoom position. The same is true for other intermediate zoom positions.
  • the zoom lens moves to the target zoom position, the image distance at the target zoom position is obtained.
  • the zoom position can be obtained from a sensor set in the lens, a zoom motor, or a processor.
  • the focal length f can be obtained through the corresponding relationship.
  • the image distance at the zoom position can be obtained in a variety of ways.
  • the focal length corresponding to the zoom position and the object distance measured in real time can be directly substituted into the Gaussian imaging formula to calculate the image distance at the zoom position.
  • a correspondence table may be prepared in advance according to the Gaussian imaging formula, and the correspondence table reflects the numerical correspondence between the object distance, the focal length, and the image distance, and the correspondence table is stored in the lens.
  • the correspondence table is read from the lens, and the focal length corresponding to the zoom position and the image distance at the zoom position corresponding to the object distance measured in real time are found in the correspondence table by looking up the table.
  • the image distance at the zoom position After the image distance at the zoom position is obtained, the image distance can be converted to the focus position, and then the theoretical focus position of the focus lens is determined according to the preset temperature drift coefficient and the focus position. For example, when the image distance u1 at the first zoom position is obtained, the image distance u1 is converted to the first focus position, and then the first theoretical focus position of the focus lens is determined according to the preset temperature drift coefficient and the first focus position, and Move the focus lens to the first theoretical focus position so that the focus lens is in focus. The same is true for other intermediate zoom positions, so that the focus lens is in focus at each intermediate zoom position. After the image distance at the target zoom position is obtained, the focus lens is moved to the target theoretical focus position so that the focus lens is in focus at the target theoretical zoom position.
  • the focus position and the image distance v Similar to the correspondence between the zoom position and the focal length f, the focus position and the image distance v also have a fixed correspondence, and this correspondence is determined in advance and stored in the lens. First, the focus position corresponding to the image distance v is obtained according to the corresponding relationship, and then the theoretical focus position of the focus lens is determined according to the preset temperature drift coefficient and the focus position, and the focus motor can drive the focus lens to move to the theoretical focus position.
  • the determination of the actual focus position for the imaging object in this embodiment may include:
  • Step S401 Obtain an image frame corresponding to the imaging object.
  • Step S402 Determine the coefficient adjustment range corresponding to the preset temperature drift coefficient.
  • Step S403 Use the contrast focusing algorithm and the coefficient adjustment range to adjust the image frame to obtain the actual focusing position for the imaging object.
  • the image frame corresponding to the imaging object can be acquired in real time or according to a preset frequency, and the number of the image frames can be one or more. Then the coefficient adjustment range corresponding to the preset temperature drift coefficient can be determined.
  • the method for determining the coefficient adjustment range is not limited in this embodiment. Those skilled in the art can set it according to specific application requirements and design requirements, for example: After the preset temperature drift coefficient, the corresponding coefficient adjustment range can be determined based on the size of the preset temperature drift coefficient. Alternatively, the coefficient adjustment ranges corresponding to different temperatures are pre-configured, and after the preset temperature drift coefficient is obtained, the preset temperature corresponding to the preset temperature drift coefficient can be determined, and the coefficient adjustment range is determined based on the preset temperature.
  • the coefficient adjustment ranges corresponding to different coefficient segments are pre-configured. After the preset temperature drift coefficients are obtained, the coefficient segments corresponding to the preset temperature drift coefficients can be determined, and then the coefficient segments corresponding to the preset temperature drift coefficients can be determined based on the coefficient segments. Set the coefficient adjustment range corresponding to the temperature drift coefficient.
  • the sharpness of the image frame can be adjusted by adjusting the focus position. It should be noted that in order to avoid the sharpness of the image frame at a certain time The segment changes repeatedly between blurry and clear, which reduces the user's visual friendliness, and the determined focus adjustment range can be a relatively small range.
  • this embodiment does not limit the size of the coefficient adjustment range.
  • Those skilled in the art can configure the coefficient adjustment range according to specific application requirements and design requirements. It is conceivable that different application scenarios may correspond to the same or different The coefficient adjustment range.
  • the Contrast Detection Auto Focus algorithm After obtaining the coefficient adjustment range and the image frame, you can use the Contrast Detection Auto Focus algorithm to adjust the coefficient adjustment range to adjust the image frame. Specifically, use the contrast focus algorithm to perform the theoretical focus position within the focus adjustment range. When making adjustments, the sharpness of the image can be obtained in real time. When the sharpness (for example, contrast) of the image frame is the maximum, the actual focus position corresponding to the theoretical focus position can be obtained. The sharpness is greater than the sharpness of the image frame corresponding to the theoretical focus position.
  • steps S402 and S401 in this embodiment is not limited to the order defined by the aforementioned sequence numbers, that is, step S402 can be executed before step S401, or step S402 can be executed simultaneously with step S401.
  • step S402 can be executed before step S401, or step S402 can be executed simultaneously with step S401.
  • Those skilled in the art can perform any configuration according to specific application requirements and design requirements, which will not be repeated here.
  • the coefficient adjustment range corresponding to the preset temperature drift coefficient is determined, and then the image frame can be adjusted by using the contrast focusing algorithm and the coefficient adjustment range to obtain the image frame corresponding to the imaging object.
  • Fig. 5 is a schematic flow chart of determining the coefficient adjustment range corresponding to the preset temperature drift coefficient in Fig. 4; on the basis of the above-mentioned embodiment, referring to Fig. 5, the determination and preset temperature drift in this embodiment are
  • the coefficient adjustment range corresponding to the coefficient can include:
  • Step S501 Obtain the maximum adjustment range corresponding to the preset temperature drift coefficient.
  • Step S502 Determine at least a part of the maximum adjustment range as a coefficient adjustment range corresponding to the preset temperature drift coefficient.
  • a maximum adjustment range corresponding to the preset temperature drift coefficient is pre-configured, and the maximum adjustment range is used to limit the magnitude of the error corresponding to the preset temperature drift coefficient. It can be understood that the preset temperature drift coefficients at different temperatures may correspond to the same or different maximum adjustment ranges. After the preset temperature drift coefficient is obtained, the maximum adjustment range corresponding to the preset temperature drift coefficient line may be obtained based on the mapping relationship between the preset temperature drift coefficient and the maximum adjustment range.
  • At least a part of the maximum adjustment range may be determined as the coefficient adjustment range corresponding to the preset temperature drift coefficient, that is, the coefficient adjustment range is less than or equal to the maximum adjustment range.
  • determining at least a part of the maximum adjustment range as the coefficient adjustment range corresponding to the preset temperature drift coefficient may include:
  • Step S5021 In the maximum adjustment range, determine at least one neighborhood range corresponding to the preset temperature drift coefficient.
  • Step S5022 Determine at least one neighborhood range as a coefficient adjustment range corresponding to the preset temperature drift coefficient.
  • a maximum adjustment range (a, max) is pre-configured. After the maximum adjustment range and the preset temperature drift coefficient are obtained, the maximum adjustment range In the adjustment range, at least one neighborhood range corresponding to the preset temperature drift coefficient is determined. In general, the number of neighborhood ranges can be one or two. After the at least one neighborhood range is obtained, the at least one neighborhood range may be determined as the coefficient adjustment range corresponding to the preset temperature drift coefficient.
  • the maximum adjustment range corresponding to the preset temperature drift coefficient is obtained, and then at least a part of the maximum adjustment range is determined as the coefficient adjustment range corresponding to the preset temperature drift coefficient, thereby effectively ensuring the The accuracy and reliability of the coefficient adjustment range to be determined.
  • the method in this embodiment may further include:
  • Step S105 The preset temperature drift coefficient is updated based on the compensation parameter, and the updated temperature drift coefficient corresponding to the preset temperature is obtained.
  • the updated temperature drift coefficient is used to determine the focus position of the next focusing operation.
  • the compensation parameter is used to characterize the magnitude of the error between the actual focus position and the theoretical focus position, the magnitude of the error is related to the preset temperature drift coefficient, in order to improve the accuracy of the focus position for the next focus operation. Therefore, after the compensation parameter is obtained, the preset temperature drift coefficient can be updated based on the compensation parameter, and the updated temperature drift coefficient corresponding to the preset temperature can be obtained. The obtained updated temperature drift coefficient can be used for the next focusing operation. The focus position is determined, which can effectively reduce the degree of error in the determined focus position.
  • FIG. 7 is a schematic flowchart of another method for compensating a temperature drift coefficient according to an embodiment of the present invention. on the basis of the above-mentioned embodiment, referring to FIG. 7 continuously, after obtaining the updated temperature drift corresponding to the preset temperature After the coefficients, the method in this embodiment may further include:
  • Step S701 Detect whether the temperature drift coefficient after the update is within the preset maximum adjustment range.
  • Step S702 When the updated temperature drift coefficient is not within the maximum adjustment range, it is forbidden to use the updated temperature drift coefficient to determine the focus position of the next focusing operation.
  • the updated temperature drift coefficient is obtained, in order to ensure the accuracy and reliability of the determination of the focus position using the updated temperature drift coefficient, it can be recognized whether the updated temperature drift coefficient is within the preset maximum adjustment range.
  • the temperature drift coefficient is within the maximum adjustment range, it indicates that the updated temperature drift coefficient obtained is more reasonable, and then the updated temperature drift coefficient can be used to determine the focus position of the next focusing operation.
  • the updated temperature drift coefficient is not within the maximum adjustment range, it means that the updated temperature drift coefficient obtained is unreasonable.
  • FIG. 8 is a schematic diagram of the flow of determining compensation parameters corresponding to the preset temperature drift coefficient according to the theoretical focus position and the actual focus position in FIG. 1; Another implementation method of determining the compensation parameter corresponding to the preset temperature drift coefficient according to the theoretical focus position and the actual focus position is presented. Specifically, in this embodiment, the determination and the preset are based on the theoretical focus position and the actual focus position.
  • the compensation parameters corresponding to the temperature drift coefficient can include:
  • Step S801 Obtain a temperature interval corresponding to the preset temperature.
  • Step S802 Determine the difference between the actual focus position and the theoretical focus position as a compensation parameter corresponding to the temperature interval.
  • each temperature interval may include multiple temperature information.
  • the temperature interval corresponding to the preset temperature can be determined; after obtaining the theoretical focus position and the actual focus position, the difference between the actual focus position and the theoretical focus position can be determined as the temperature Compensation parameters corresponding to the interval, so that a corresponding relationship between the temperature interval and the compensation parameter is established, and then the corresponding relationship between the temperature interval and the compensation parameter can be used to determine the compensation parameter corresponding to different preset temperatures.
  • a temperature interval T1, a temperature interval T2, a temperature interval T3, and a temperature interval T4 are pre-configured, and each of the above-mentioned temperature ranges may correspond to a plurality of different temperature information T.
  • the preset temperature interval corresponding to the preset temperature can be determined, assuming that the preset temperature interval is the temperature interval T2.
  • the difference between the actual focus position and the theoretical focus position corresponding to the preset temperature can be determined as the compensation parameter corresponding to the temperature interval, that is, the temperature is established
  • the corresponding relationship between the interval and the compensation parameter, and then the corresponding relationship between the temperature interval and the compensation parameter can be used to determine the compensation parameter corresponding to different preset temperatures.
  • Fig. 9 is a schematic flow chart of another method for compensating temperature drift coefficient provided by an embodiment of the present invention; on the basis of the above-mentioned embodiment, referring to Fig. 9, in order to improve the practicability of the method, in determining and preset temperature After the compensation parameter corresponding to the drift coefficient, the method in this embodiment may further include:
  • Step S901 Acquire a first temperature drift coefficient for performing a first focusing operation on an imaging object at a first temperature.
  • Step S902 When the first temperature and the preset temperature are in the same temperature range, the compensation parameter is used to compensate the first temperature drift coefficient. or,
  • Step S903 When the first temperature and the preset temperature are different temperature intervals, determine the first temperature interval corresponding to the first temperature and the first compensation parameter corresponding to the first temperature interval, and use the first compensation The parameter compensates for the first temperature drift coefficient.
  • the temperature drift coefficient can be compensated and updated based on the compensation parameter. Specifically, since different temperature intervals can correspond to the same or different compensation parameters, in order to ensure the accuracy and reliability of the compensation and update of the temperature drift coefficient using the compensation parameters, when the first focusing operation is performed at the first temperature , The first temperature drift coefficient of the first focusing operation for the imaging object can be obtained. Since the compensation parameter corresponds to the preset temperature, after the first temperature is obtained, it can be identified whether the first temperature and the preset temperature belong to In the same temperature interval, when the first temperature and the preset temperature belong to the same temperature interval, since the compensation parameters corresponding to the same temperature interval are the same, the compensation parameter can be used to compensate the first temperature drift coefficient.
  • the compensation parameters corresponding to the different temperature ranges can be the same or different. Therefore, in order to ensure the accuracy and reliability of the compensation update operation for the temperature drift coefficient based on the compensation parameters , It is forbidden to use the compensation parameter to compensate the first temperature drift coefficient.
  • the first temperature interval corresponding to the first temperature and the first compensation parameter corresponding to the first temperature interval can be determined, and then the first The compensation parameter compensates the first temperature drift coefficient, which can effectively ensure the quality and efficiency of the compensation operation for the first temperature drift coefficient.
  • Fig. 10 is a schematic diagram of the second process of determining the compensation parameter corresponding to the preset temperature drift coefficient according to the theoretical focus position and the actual focus position in Fig. 1; on the basis of the above embodiment, referring to Fig. 10, this embodiment Another method for determining the compensation parameter corresponding to the preset temperature drift coefficient is provided. Specifically, according to the theoretical focus position and the actual focus position in this embodiment, the compensation corresponding to the preset temperature drift coefficient is determined Parameters can include:
  • Step S1001 Obtain a focal length range corresponding to the theoretical focus position and the actual focus position
  • Step S1002 Determine the difference between the actual focus position and the theoretical focus position as a compensation parameter corresponding to the focal length range.
  • each focal length range can correspond to multiple different focal length information.
  • the focus range corresponding to the theoretical focus position and the actual focus position can be determined. It should be noted that the actual focus position is determined by the image frame corresponding to the theoretical focus position Therefore, the difference between the actual focus position and the theoretical focus position is relatively small, so in general, the actual focus position and the theoretical focus position can correspond to the same focal length range. After determining the focus range corresponding to the theoretical focus position and the actual focus position, the difference between the actual focus position and the theoretical focus position can be determined as the compensation parameter corresponding to the focus range.
  • the focal length range 1, the focal length range 2, the focal length range 3, and the focal length range 4 are pre-configured.
  • Each of the aforementioned focal length ranges includes a plurality of different focal length information P, the theoretical focus position is P1, and the actual focus position is P2
  • the focal range corresponding to the actual focus position and the theoretical focus position can be determined. It is assumed that the focal length range corresponding to the theoretical focus position P1 and the actual focus position P2 is the focal length range 2, and then the actual The difference between the focus position and the theoretical focus position (P2-P1) is determined as the compensation parameter corresponding to the focus range 2, that is, the mapping relationship between the focus range and the compensation parameter is established.
  • the transition focus position between the theoretical focus position and the actual focus position can be obtained, and then it can be determined that the theoretical focus position corresponds to the transition focus position
  • the first focus range of the transition focus position and the actual focus position and the second focus range corresponding to the actual focus position is determined as the first compensation parameter corresponding to the first focus range
  • the difference between the actual focus position and the transition focus position is determined as the second compensation parameter corresponding to the second focal length range. Therefore, it is effectively realized that the focusing operation during one zooming process is divided into the focusing operation during two zooming processes, and the compensation parameters corresponding to different focal length ranges can be obtained.
  • Figure 11 is a schematic flow chart of another method for compensating temperature drift coefficient provided by an embodiment of the present invention. on the basis of the above embodiment, referring to Figure 11, in order to improve the practicability of the method, the determination and preset temperature After the compensation parameter corresponding to the drift coefficient, the method in this embodiment may further include:
  • Step S1101 Perform a zoom operation to obtain a second temperature drift coefficient for performing a second focusing operation on the imaging object.
  • Step S1102 Determine the second focal length range corresponding to the zoom operation and the first focal length range corresponding to the compensation parameter.
  • Step S1103 When the first focal length range and the second focal length range are the same focal length range, the second temperature drift coefficient is compensated by using the compensation parameter. or,
  • Step S1104 When the first focal length range and the second focal length range are different focal length ranges, a second compensation parameter corresponding to the second focal length range is determined, and the second temperature drift coefficient is calculated by using the second temperature drift compensation parameter compensate.
  • the temperature drift coefficient can be compensated and updated based on the compensation parameter.
  • different focal length ranges can correspond to the same or different compensation parameters, in order to ensure the accuracy and reliability of the compensation and update of the temperature drift coefficient using the compensation parameters, when a zoom operation is performed, the imaging target can be obtained.
  • the second temperature drift coefficient of the second focus operation since the compensation parameter corresponds to the focal length range, after the zoom operation is performed, the second focal length range corresponding to the zoom operation and the compensation parameter corresponding to the second focal length range can be determined The first focal length range. Then it can be recognized whether the second focal length range and the first focal length range belong to the same focal length range.
  • the first focal length range and the second focal length range are the same focal length range, since the compensation parameters corresponding to the same focal length range are the same, you can Use the compensation parameter to compensate the second temperature drift coefficient.
  • the compensation parameters corresponding to the different focal length ranges can be the same or different. Therefore, in order to ensure the accuracy of the temperature drift coefficient compensation update operation based on the compensation parameters Reliability, it is forbidden to use the compensation parameter to compensate the second temperature drift coefficient.
  • the second compensation parameter corresponding to the second focal length range can be determined, and the second temperature drift compensation parameter can be used to adjust the second temperature drift coefficient. Perform compensation, and then use the second temperature drift compensation parameter to compensate the second temperature drift coefficient, which can effectively ensure the quality and efficiency of the compensation operation for the second temperature drift coefficient.
  • FIG. 12 is a schematic diagram of the third process of determining the compensation parameter corresponding to the preset temperature drift coefficient according to the theoretical focus position and the actual focus position in FIG. 1; on the basis of the above embodiment, referring to FIG. 12, this embodiment Provides yet another way to determine the compensation parameter corresponding to the preset temperature drift coefficient.
  • the compensation corresponding to the preset temperature drift coefficient is determined according to the theoretical focus position and the actual focus position. Parameters can include:
  • Step S1201 Obtain an object distance range corresponding to the theoretical focus position and the actual focus position
  • Step S1202 Determine the difference between the actual focus position and the theoretical focus position as a compensation parameter corresponding to the object distance range.
  • each object distance range can correspond to multiple different object distance information.
  • the object distance range corresponding to the theoretical focus position and the actual focus position can be determined. It should be noted that the gap between the actual focus position and the theoretical focus position is small, so In general, the actual focus position and the theoretical focus position can correspond to the same object distance range.
  • the difference between the actual focus position and the theoretical focus position can be determined as the compensation parameter corresponding to the object distance range.
  • object distance range 1 there are pre-configured object distance range 1, object distance range 2, object distance range 3, and object distance range 4.
  • Each of the above object distance ranges includes a plurality of different object distance information M, and the theoretical focus position is P1 .
  • the object distance range corresponding to the actual focus position and the theoretical focus position can be determined within the above multiple object distance ranges, assuming the object distance range corresponding to the theoretical focus position P1 and the actual focus position P2 Is the object distance range 3, and then the difference between the actual focus position and the theoretical focus position (P2-P1) can be determined as the compensation parameter corresponding to the object distance range 3, that is, the distance between the object distance range and the compensation parameter is established Mapping relations.
  • FIG. 13 is a schematic flowchart of another method for compensating temperature drift coefficient provided by an embodiment of the present invention. on the basis of the foregoing embodiment, referring to FIG. 13, in order to improve the practicability of the method, the determination and preset temperature After the compensation parameter corresponding to the drift coefficient, the method in this embodiment may further include:
  • Step S1301 Perform a zooming operation to obtain a third temperature drift coefficient for performing a third focusing operation on the imaging object.
  • Step S1302 Determine the second object distance range corresponding to the zoom operation and the first object distance range corresponding to the compensation parameter.
  • Step S1303 When the first object distance range and the second object distance range are the same object distance range, the third temperature drift coefficient is compensated by the compensation parameter. or,
  • Step S1304 When the first object distance range and the second object distance range are different object distance ranges, a third compensation parameter corresponding to the second object distance range is determined, and the third compensation parameter is used to adjust the third temperature drift The coefficient performs the compensation operation.
  • the temperature drift coefficient can be compensated and updated based on the compensation parameter.
  • the compensation parameter corresponds to the object distance range for the third temperature drift coefficient of the subject during the third focusing operation
  • the second object distance range corresponding to the zoom operation and the compensation parameter can be determined.
  • the corresponding first object distance range identify whether the second object distance range and the first object distance range belong to the same object distance range.
  • the compensation parameters corresponding to the same object distance range are the same Therefore, the compensation parameter can be used to compensate the third temperature drift coefficient.
  • the compensation parameters corresponding to the different object distance ranges can be the same or different. Therefore, in order to ensure that the temperature drift coefficient is compensated based on the compensation parameters For the accuracy and reliability of the update operation, it is forbidden to use the compensation parameter to compensate the third temperature drift coefficient.
  • the third compensation parameter corresponding to the second object distance range can be determined, and the third compensation parameter can be used to compensate the third temperature drift coefficient.
  • the temperature drift coefficient is subjected to a compensation operation, and then the third compensation parameter is used to perform a compensation operation on the third temperature drift coefficient, which can effectively ensure the quality and efficiency of the compensation operation for the third temperature drift coefficient.
  • this application embodiment provides a temperature drift coefficient compensation method, which can perform temperature compensation operations on any type of lens, effectively avoiding the need for temperature drift calibration operations for each lens, thereby improving The quality and efficiency of the application based on the updated temperature drift coefficient of compensation.
  • the method may include:
  • Step 1 Obtain the preset temperature drift coefficient.
  • the calibration temperature drift method may be used to calibrate the preset temperature drift coefficient of the main lens (or golden lens) at different temperatures, and the preset temperature drift coefficient may be a value greater than 0, less than 0, or equal to 0.
  • Step 2 Obtain the maximum adjustment range corresponding to the preset temperature drift coefficient.
  • the preset temperature drift coefficients of the lens can be tested in batches, so that the maximum adjustment range corresponding to the preset temperature drift coefficients can be determined.
  • Step 3 When the focus operation is implemented based on the object distance measurement technology, the object distance information corresponding to the lens can be obtained, and then the theoretical focus position of the lens is calculated according to the object distance and the preset temperature drift coefficient.
  • Step 4 Within the maximum adjustment range, determine the coefficient adjustment range corresponding to the preset temperature drift coefficient, and the coefficient adjustment range is less than or equal to the maximum adjustment range.
  • Step 5 Within the coefficient adjustment range, determine the actual focus position corresponding to the theoretical focus position based on the contrast focus technology, and determine the difference between the actual focus position and the theoretical focus position as corresponding to the preset temperature drift coefficient Compensation parameters.
  • Step 6 In the next focus operation, the actual focus position corresponding to the theoretical focus position can be determined according to the compensation parameter.
  • Step 7 In order to avoid the inaccuracy and instability of the compensation parameters obtained by one calculation, in the subsequent focusing operation, the compensation parameters can be updated iteratively in the above-mentioned manner, so that the accuracy of the compensation parameters can be improved.
  • Step 8 When the method is applied to a zoom camera, when the zoom camera performs high-magnification zooming, the temperature drift coefficients at each focal length can be different, so the compensation parameters for the secondary compensation operation are also different. In this way, in order to improve the compensation update The accuracy and reliability of the operation can generate different compensation parameters based on different focal length intervals, and iteratively update the compensation parameters in different focal length intervals.
  • the temperature drift coefficient may also be different.
  • different compensations can be generated according to different temperature ranges (such as every 10 degrees, or several ranges). Parameters, and iteratively update the compensation parameters in different temperature ranges.
  • the temperature drift coefficient may also be different.
  • different compensation parameters can be generated according to different object distance ranges, and can be used for different object distance ranges.
  • the compensation parameters are updated iteratively.
  • the preset temperature drift coefficient may be updated through the iteratively updated compensation parameter, and the preset temperature drift coefficient after the iterative update may be stored in the preset area.
  • the preset temperature drift coefficient stored in the preset area can be loaded when the image capture device is turned on, and it is automatically saved when the device is turned off or the preset temperature after iterative update is saved in due course. Drift coefficient to achieve continuous iterative update operation.
  • the quality of the compensation update operation of the preset temperature drift coefficient through the compensation parameter can be evaluated in real time or according to the preset frequency.
  • the actual focus point obtained by the contrast focus technology and the theoretical focus point obtained through the iteratively updated preset temperature drift coefficient meet the preset requirements (for example: the distance between the actual focus point and the theoretical focus point is less than or Equal to the preset threshold), it can be determined that the theoretical focus point is close to the actual focus point, so that points can be added to the evaluation result of the compensation update operation, so as to improve the confidence of the above compensation update operation.
  • points will be deducted, and the greater the difference between the actual focus point and the theoretical focus point, the more points will be deducted.
  • the compensation parameters with lower confidence can be identified through the evaluation results, and the above compensation parameters can be disabled to update the preset temperature drift coefficients iteratively Operation to avoid reducing the accuracy of obtaining the focus point based on the preset temperature drift coefficient.
  • the temperature drift coefficient compensation method provided by this application embodiment effectively solves the defect that the focus method needs to rely strongly on the consistency of the temperature drift; moreover, the compensation parameters can be continuously updated iteratively, so that the theoretical calculation can be compared. The deviation between the focus point and the actual focus point is minimized, and even the theoretically calculated focus point and the actual focus point can be the same focus point.
  • the movable platform can realize the zoom tracking operation based on this method, and the quality and efficiency of zoom tracking are ensured, without relying heavily on the consistency of temperature compensation and Because of the error of the temperature compensation parameter, the effect of zoom tracking is reduced, which effectively improves the practicability of the method, which is beneficial to the promotion and application of the market.
  • FIG. 14 is a schematic structural diagram of a temperature drift coefficient compensation device provided by an embodiment of the present invention; referring to FIG. 14, this embodiment provides a temperature drift coefficient compensation device, which can perform the above-mentioned corresponding to FIG. 1
  • the temperature drift coefficient compensation method specifically, the compensation device may include:
  • the memory 12 is used to store computer programs
  • the processor 11 is configured to run a computer program stored in the memory 12 to realize:
  • Memory used to store computer programs
  • the processor is used to run a computer program stored in the memory to realize:
  • a compensation parameter corresponding to the preset temperature drift coefficient is determined, and the compensation parameter is used to compensate the preset temperature drift coefficient.
  • the structure of the device for determining the focus point may further include a communication interface 13 for the electronic device to communicate with other devices or a communication network.
  • the processor 11 when the processor 11 obtains the theoretical focus position of the focus lens according to the preset temperature drift coefficient, the processor 11 is used to: obtain the object distance of the imaging object; determine according to the object distance and the preset temperature drift coefficient The theoretical focus position where the focus lens is located.
  • the processor 11 determines the theoretical focus position of the focus lens according to the object distance and the preset temperature drift coefficient
  • the processor 11 is used to: use the imaging formula to determine the image distance corresponding to the object distance; Preset temperature drift coefficient and image distance to determine the theoretical focus position of the focus lens.
  • the processor 11 determines the actual focus position for the imaging object
  • the processor 11 is used to: obtain the image frame corresponding to the imaging object; determine the coefficient adjustment range corresponding to the preset temperature drift coefficient; The contrast focus algorithm and the coefficient adjustment range adjust the image frame to obtain the actual focus position for the imaging object.
  • the processor 11 determines the coefficient adjustment range corresponding to the preset temperature drift coefficient
  • the processor 11 is used to: obtain the maximum adjustment range corresponding to the preset temperature drift coefficient; At least a part is determined as the coefficient adjustment range corresponding to the preset temperature drift coefficient.
  • the processor 11 when the processor 11 determines at least a part of the maximum adjustment range as a coefficient adjustment range corresponding to the preset temperature drift coefficient, the processor 11 is configured to: determine and preset in the maximum adjustment range At least one neighborhood range corresponding to the temperature drift coefficient; at least one neighborhood range is determined as a coefficient adjustment range corresponding to the preset temperature drift coefficient.
  • the processor 11 determines the compensation parameter corresponding to the preset temperature drift coefficient according to the theoretical focus position and the actual focus position, the processor 11 is used to: calculate the difference between the actual focus position and the theoretical focus position, Determined as the compensation parameter corresponding to the preset temperature drift coefficient.
  • the processor 11 is further configured to: update the preset temperature drift coefficient based on the compensation parameter, and obtain the updated temperature corresponding to the preset temperature. Drift coefficient, the updated temperature drift coefficient is used to determine the focus position of the next focusing operation.
  • the processor 11 is further configured to: detect whether the updated temperature drift coefficient is within a preset maximum adjustment range; after the updated temperature drift coefficient When it is not within the maximum adjustment range, it is forbidden to use the updated temperature drift coefficient to determine the focus position for the next focus operation.
  • the processor 11 determines the compensation parameter corresponding to the preset temperature drift coefficient according to the theoretical focus position and the actual focus position, the processor 11 is used to: obtain a temperature interval corresponding to the preset temperature; The difference between the actual focus position and the theoretical focus position is determined as a compensation parameter corresponding to the temperature interval.
  • the processor 11 is further configured to: at the first temperature, obtain the first temperature drift coefficient for performing the first focusing operation on the imaging object; When the first temperature and the preset temperature are in the same temperature interval, the compensation parameter is used to compensate the first temperature drift coefficient; or, when the first temperature and the preset temperature are in different temperature intervals, it is determined that the temperature is different from the first temperature.
  • the corresponding first temperature interval and the first compensation parameter corresponding to the first temperature interval are used to compensate the first temperature drift coefficient by using the first compensation parameter.
  • the processor 11 determines the compensation parameter corresponding to the preset temperature drift coefficient according to the theoretical focus position and the actual focus position
  • the processor 11 is used to: obtain the compensation parameters corresponding to the theoretical focus position and the actual focus position.
  • Focus range The difference between the actual focus position and the theoretical focus position is determined as the compensation parameter corresponding to the focus range.
  • the processor 11 is further configured to: perform a zoom operation to obtain a second temperature drift coefficient for performing the second focusing operation on the imaging object; The second focal length range corresponding to the zoom operation and the first focal length range corresponding to the compensation parameter; when the first focal length range and the second focal length range are the same focal length range, the compensation parameter is used to compensate the second temperature drift coefficient; Or, when the first focal length range and the second focal length range are different focal length ranges, the second compensation parameter corresponding to the second focal length range is determined, and the second temperature drift compensation parameter is used to compensate the second temperature drift coefficient .
  • the processor 11 determines the compensation parameter corresponding to the preset temperature drift coefficient according to the theoretical focus position and the actual focus position
  • the processor 11 is used to: obtain the compensation parameters corresponding to the theoretical focus position and the actual focus position.
  • Object distance range The difference between the actual focus position and the theoretical focus position is determined as the compensation parameter corresponding to the object distance range.
  • the processor 11 is further configured to: perform a zoom operation to obtain a third temperature drift coefficient for performing a third focusing operation on the imaging object; The second object distance range corresponding to the zoom operation and the first object distance range corresponding to the compensation parameter; when the first object distance range and the second object distance range are the same object distance range, the compensation parameter is used to adjust the third temperature Drift coefficient; or, when the first object distance range and the second object distance range are different object distance ranges, the third compensation parameter corresponding to the second object distance range is determined, and the third compensation parameter is used to The third temperature drift coefficient performs compensation operation.
  • the device shown in Fig. 14 can execute the methods of the embodiments shown in Figs.
  • the implementation process and technical effects of this technical solution please refer to the description in the embodiment shown in FIG. 1 to FIG. 13, and will not be repeated here.
  • FIG. 15 is a schematic structural diagram of a lens provided by an embodiment of the present invention. referring to FIG. 15, as shown in FIG. 15, this embodiment provides a lens, and the lens may include:
  • the temperature drift coefficient compensation device 22 and the temperature drift coefficient compensation device 22 are used to be installed on the lens barrel 21.
  • FIG. 16 is a schematic structural diagram of an imaging device provided by an embodiment of the present invention. referring to FIG. 16, as shown in FIG. 16, this embodiment provides an imaging device, and the imaging device may include:
  • the lens 32 is fixedly or detachably mounted on the body 31.
  • FIG. 17 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention. referring to FIG. 17, as shown in FIG. 17, this embodiment provides a movable platform, and the movable platform may include:
  • the power device 42 is arranged on the main body 41 of the platform to provide power for the movable platform;
  • the imaging device 43 in the above embodiment is installed on the platform main body 41.
  • this embodiment provides a computer-readable storage medium.
  • the storage medium is a computer-readable storage medium.
  • the computer-readable storage medium stores program instructions. The program instructions are used to implement the temperature drift coefficient compensation in the above-mentioned embodiments. method.
  • the disclosed related remote control device and method can be implemented in other ways.
  • the embodiments of the remote control device described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units or components. It can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, remote control devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • the aforementioned storage media include: U disk, mobile hard disk, Read-Only Memory (ROM), Random Access Memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

本申请实施例提供了一种温漂系数补偿方法、装置、镜头、成像装置和可移动平台。方法包括:在预设温度下,获取与对焦镜头相对应的预设温漂系数,对焦镜头用于针对成像对象进行对焦操作;根据预设温漂系数,获取对焦镜头所在的理论对焦位置;确定针对成像对象的实际对焦位置;根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数,补偿参数用于对预设温漂系数进行补偿操作。本实施例提供的技术方案,可以实现对任何镜头的预设温漂系数进行温度补偿操作,并基于更新之后的预设温漂系数来确定对焦位置,保证了对对焦位置进行确定的准确可靠性,提高了该方法的适用范围。

Description

温漂系数补偿方法、装置、镜头、成像装置和可移动平台 技术领域
本发明实施例涉及摄像技术领域,尤其涉及一种温漂系数补偿方法、装置、镜头、成像装置和可移动平台。
背景技术
温度漂移是指由温度变化所引起的半导体器件参数的变化现象,简称温漂。对于支持对焦操作的成像装置而言,镜头中的光学镜片和结构部件会因热胀冷缩而引起合焦点位置的偏移。
在利用成像装置进行对焦操作时,为了保证拍摄图像的清晰程度,针对温漂对对焦操作的影响提出了一种温度补偿方法,该方法的应用前提是假设了镜头个体的一致性较好,而后通过主要镜头的温漂参数测试拟合出温漂曲线。然而,如果镜头的差异性较大,那么,经过温漂曲线获得的温漂数据是不可靠的。而针对单个镜头进行温漂标定不仅耗时耗力,并且成本巨高,无法满足大规模生产的要求。
发明内容
本发明实施例提供了一种温漂系数补偿方法、装置、镜头、成像装置和可移动平台。
本发明的第一方面是为了提供了一种温漂系数补偿方法,包括:
在预设温度下,获取与对焦镜头相对应的预设温漂系数,所述对焦镜头用于针对成像对象进行对焦操作;
根据所述预设温漂系数,获取所述对焦镜头所在的理论对焦位置;
确定针对所述成像对象的实际对焦位置;
根据所述理论对焦位置和实际对焦位置,确定与所述预设温漂系数相对应的补偿参数,所述补偿参数用于对所述预设温漂系数进行补偿操作。
本发明的第二方面是为了提供了一种温漂系数补偿装置,包括:
存储器,用于存储计算机程序;
处理器,用于运行所述存储器中存储的计算机程序以实现:
在预设温度下,获取与对焦镜头相对应的预设温漂系数,所述对焦镜头用于针对成像对象进行对焦操作;
根据所述预设温漂系数,获取所述对焦镜头所在的理论对焦位置;
确定针对所述成像对象的实际对焦位置;
根据所述理论对焦位置和实际对焦位置,确定与所述预设温漂系数相对应的补偿参数,所述补偿参数用于对所述预设温漂系数进行补偿操作。
本发明的第三方面是为了提供一种镜头,包括:
镜筒;
上述第二方面所述的温漂系数补偿装置,所述温漂系数补偿装置用于安装在所述镜筒上。
本发明的第四方面是为了提供一种成像装置,包括:
机身;
上述第三方面所述的镜头,所述镜头固定或可拆卸地安装于所述机身上。
本发明的第五方面是为了提供一种可移动平台,包括:
平台主体;
动力装置,设置与所述平台主体上,用于为可移动平台提供动力;
上述第四方面所述的成像装置,设置于所述平台主体上。
本发明的第六方面是为了提供一种计算机可读存储介质,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于第一方面所述的温漂系数补偿方法。
本发明实施例提供的温漂系数补偿方法、装置、镜头、成像装置和可移动平台,可以实现对任何镜头的预设温漂系数进行温度补偿操作,并基于更新之后的预设温漂系数来确定对焦位置,保证了对对焦位置进行确定的准确可靠性,提高了该方法的适用范围。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明实施例提供的一种温漂系数补偿方法的流程示意图;
图2为图1中根据所述预设温漂系数,获取所述对焦镜头所在的理论对焦位置的流程示意图;
图3为图2中根据所述物距和所述预设温漂系数,确定所述对焦镜头所在的理论对焦位置的流程示意图;
图4为图1中确定针对所述成像对象的实际对焦位置的流程示意图;
图5为图4中确定与所述预设温漂系数相对应的系数调整范围的流程示意图;
图6为图5中将所述最大调整范围中的至少一部分,确定为与所述预设温漂系数相对应的系数调整范围的示意图;
图7为本发明实施例提供的另一种温漂系数补偿方法的流程示意图;
图8为图1中根据所述理论对焦位置和实际对焦位置,确定与所述预设温漂系数相对应的补偿参数的流程示意图一;
图9为本发明实施例提供的又一种温漂系数补偿方法的流程示意图;
图10为图1中根据所述理论对焦位置和实际对焦位置,确定与所述预设温漂系数相对应的补偿参数的流程示意图二;
图11为本发明实施例提供的另一种温漂系数补偿方法的流程示意图;
图12为图1中根据所述理论对焦位置和实际对焦位置,确定与所述预设温漂系数相对应的补偿参数的流程示意图三;
图13为本发明实施例提供的还一种温漂系数补偿方法的流程示意图;
图14为本发明实施例提供的一种温漂系数补偿装置的结构示意图;
图15为本发明实施例提供的一种镜头的结构示意图;
图16为本发明实施例提供的一种成像装置的结构示意图;
图17为本发明实施例提供的一种可移动平台的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技 术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
为了便于理解本实施例中的技术方案,下面对图像采集设备的对焦操作进行说明:
以相机作为图像采集设备为例进行说明,对于支持对焦操作的相机而言,镜头中的光学镜片和结构部件会因热胀冷缩而引起对焦点位置的偏移,从而影响对焦质量。其原因在于,在对焦操作过程中,关键是如何计算得到准确真实的像距。参考高斯成像公式:1/u+1/v=1/f;其中,u是物距,v是像距,f是焦距。在获取到物距u之后,则可以利用上述的高斯成像公式来计算与物距u相对应的像距v,然后,根据像距v与对焦点位置之间的关系,从而计算得到对焦点的位置。但是,由于高斯公式只是一个特定温度下的结果,如果温度变了,就要考虑温漂的影响。温漂越大,高斯公式计算的误差就越大。
简单来说,上述的温度补偿方法的应用前提是假设了镜头个体的一致性较好,而后通过主要镜头的温漂参数拟合出温漂曲线,而后基于所拟合出的温漂曲线进行温度补偿操作。然而,如果镜头的差异性较大,那么,经过温漂曲线获得的温漂数据是不可靠的。而针对单个镜头进行温漂标定不仅耗时耗力,并且成本巨高,无法满足大规模生产的要求。因此,依据本发明实施方式,提出了一种温漂系数补偿方法、装置、镜头、成像装置和可移动平台,可以实现对任何镜头的预设温漂系数进行温度补偿操作,并基于更新之后的预设温漂系数来确定对焦位置,保证了对对焦位置进行确定的准确可靠性,提高了该方法的适用范围。
下面结合附图,对本发明的一些实施方式作详细说明。在各实施例之间不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图1为本发明实施例提供的一种温漂系数补偿方法的流程示意图;参考附图1所示,为了克服本技术领域中存在的“如果镜头的差异性较大,那么,经过温漂曲线获得的温漂数据是不可靠的;而针对单个镜头进行温漂标定不仅耗时耗力,并且成本巨高,无法满足大规模生产的要求”问题;本实施例提供了一种温漂系数补偿方法,该方法的执行主体为温漂系数补偿装置,可以理解的是,该温漂系数补偿装置可以实现为软件、或者软件和硬件的组合。具体的,该温漂系数补偿方法可以包括:
步骤S101:在预设温度下,获取与对焦镜头相对应的预设温漂系数,对 焦镜头用于针对成像对象进行对焦操作。
步骤S102:根据预设温漂系数,获取对焦镜头所在的理论对焦位置。
步骤S103:确定针对成像对象的实际对焦位置。
步骤S104:根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数,补偿参数用于对预设温漂系数进行补偿操作。
下面对上述各个步骤进行详细阐述:
步骤S101:在预设温度下,获取与对焦镜头相对应的预设温漂系数,对焦镜头用于针对成像对象进行对焦操作。
其中,预设温度可以是预先配置或者指定的任意温度,在预设温度下,可以获取与对焦镜头相对应的预设温漂系数,该预设温漂系数与预设温度相对应,具体的,预设温漂系数与预设温度之间的对应关系可以是通过对主要镜头进行温漂标定所获得的。可以理解的是,不同的预设温度可以对应有相同或者不同的预设温漂系数。
另外,本实施例对于获取与对焦镜头相对应的预设温漂系数的具体实现方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,例如:在预设温度下,与对焦镜头相对应的预设温漂系数可以存储在预设区域内,通过访问预设区域可以获取到与对焦镜头相对应的预设温漂系数。或者,预先配置预设温度与预设温漂系数之间存在映射关系,通过获取预设温度之后,可以基于映射关系来获取与对焦镜头相对应的预设温漂系数。
当然的,本领域技术人员也可以采用其他的方式来获取与对焦镜头相对应的预设温漂系数,只要能够保证对预设温漂系数进行获取的准确可靠性即可,在此不再赘述。
步骤S102:根据预设温漂系数,获取对焦镜头所在的理论对焦位置。
在获取到预设温漂系数之后,则可以基于预设温漂系数来获取对焦镜头所在的理论对焦位置。可以理解的是,在对成像对象进行拍摄操作时,若不考虑在预设温度下所产生的温漂影响,此时,则可以直接利用成像公式来获取对焦镜头所在的对焦点P1,此时,所获得的对焦点P1即为与对焦镜头所在的理论对焦位置。
若考虑在预设温度下所产生的温漂影响,则可以获得在预设温度下、与当前对焦镜头相对应的预设温漂系数a,其中,预设温漂系数a为大于0、小于0或者等于0的参数,在获取到对焦点P1时,则可以利用预设温漂系数对对焦 点P1进行补偿处理,从而可以获得与对焦镜头所在的理论对焦位置P2,该理论对焦位置P2=P1+a。
当然的,本领域技术人员也可以采用其他的方式来获取对焦镜头所在的理论对焦位置,本领域技术人员可以根据具体的应用需求和设计需求进行设置,只要能够保证获取对焦位置的准确可靠性即可,在此不再赘述。
步骤S103:确定针对成像对象的实际对焦位置。
在对成像对象进行拍摄操作时,可以确定针对成像对象的实际对焦位置,具体的,本实施例对于确定实际对焦位置的实现方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,例如:可以获取与成像对象相对应的图像帧,通过对图像帧进行分析识别,可以确定与成像对象相对应的实际对焦位置。
当然的,本领域技术人员也可以采用其他的方式来确定针对成像对象的实际对焦位置,只要能够保证对实际对焦位置进行获取的准确可靠性即可,在此不再赘述。
需要注意的是,本实施例中的上述步骤S103和步骤S102的执行顺序并不限于上述序号所限定的顺序,即步骤S103可以在步骤S102之前执行,或者,步骤S103可以与步骤S102同时执行,本领域技术人员可以根据具体的应用需求和设计需求进行任意配置,在此不再赘述。
步骤S104:根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数,补偿参数用于对预设温漂系数进行补偿操作。
由于理论对焦位置是根据预设温漂系数所获取的,此时的预设温漂系数可以是通过对主要镜头的温漂标定参数进行拟合获得的,为了避免因镜头的差异性较大而导致的预设温漂系数所带来的误差,在获取到理论对焦位置和实际对焦位置之后,可以对理论对焦位置和实际对焦位置进行分析处理,以确定与预设温漂系数相对应的补偿参数,该补偿参数用于对预设温漂系数进行补偿操作,以降低预设温漂系数对所确定的对焦位置所带来的误差。具体的,根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数可以包括:
步骤S1041:将实际对焦位置与理论对焦位置的差值,确定为与预设温漂系数相对应的补偿参数。
在获取到实际对焦位置和理论对焦位置之后,可以将实际对焦位置与理 论对焦位置进行分析比较,以获取实际对焦位置与理论对焦位置之间的差值,而后可以将实际对焦位置与理论对焦位置的差值确定为与预设温漂系数相对应的补偿参数,即补偿参数=实际对焦位置-理论对焦位置。
当然的,本领域技术人员也可以采用其他的方式来实现根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数,例如:可以获取预设温度所对应的权重信息,而后获取实际对焦位置与理论对焦位置之间的对焦位置差值,而后将对焦位置差值与权重信息的乘积确定为与预设温漂系数相对应的补偿参数,即补偿参数=权重信息*(实际对焦位置-理论对焦位置);只要能够保证可以准确地获取到补偿参数即可,在此不再赘述。
在获取到与预设温漂系数相对应的补偿参数之后,可以利用补偿参数对预设温漂系数进行补偿更新操作,从而可以获取到新的预设温漂系数,以便可以基于新的预设温漂系数来确定对焦镜头所在的对焦位置,进一步提高了对对焦位置进行确定的准确可靠性。
本实施例提供的温漂系数补偿方法,通过获取与对焦镜头相对应的预设温漂系数,根据预设温漂系数获取对焦镜头所在的理论对焦位置,确定针对成像对象的实际对焦位置,而后根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数,有效地实现了对补偿参数进行获取的准确可靠性,从而便于利用补偿参数对预设温漂系数进行更新操作,实现对任何镜头的预设温漂系数进行温度补偿操作,这样不仅可以基于更新之后的预设温漂系数来确定对焦位置,保证了对对焦位置进行确定的准确可靠性,并且还提高了该方法的适用范围,即可以适用于各种类型的镜头,进一步提高了该方法的实用性。
图2为图1中根据预设温漂系数,获取对焦镜头所在的理论对焦位置的流程示意图;在上述实施例的基础上,继续参考附图2所示,本实施例对于根据预设温漂系数,获取对焦镜头所在的理论对焦位置的具体实现方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,较为优选的,本实施例中的根据预设温漂系数,获取对焦镜头所在的理论对焦位置可以包括:
步骤S201:获取成像对象的物距。
步骤S202:根据物距和预设温漂系数,确定对焦镜头所在的理论对焦位置。
其中,在对成像对象进行对焦操作时,可以利用测距单元实时获取成像对象的物距,具体的,测距单元可以是以下的一种或几种:单目测距相机、双目视觉相机、激光雷达、TOF测距仪、结构光测距仪。以上只是举例说明,本实施例不对测距单元的具体类型进行限定,其还可以是其他任何类型的测距单元。需要注意的是,在变焦过程中,拍摄对象的物距可能是固定的,也可能发生变化,例如,拍摄对象和拍摄装置的至少一个发生了移动。在这种情况下,各个变焦位置的物距不相等。
在获取到物距之后,可以对物距和预设温漂系数进行分析处理,以确定对焦镜头所在的理论对焦位置。具体的,参考附图3所示,根据物距和预设温漂系数,确定对焦镜头所在的理论对焦位置可以包括:
步骤S301:利用成像公式,确定与物距相对应的像距。
步骤S302:根据预设温漂系数和像距,确定对焦镜头所在的理论对焦位置。
本实施例中,成像公式为高斯成像公式:1/u+1/v=1/f;其中,u是物距,v是像距,f是焦距。
具体来说,在每个变焦位置,将变焦位置对应的焦距f、实时测量的物距u代入上述高斯成像公式,即可得到在变焦位置处的像距v。
举例来说,当变焦镜头移动第一变焦位置后,假设第一变焦位置对应的焦距为f1,此时测量出的拍摄对象物距为u1,将f1和u1代入高斯成像公式,即可得到在第一变焦位置处的像距v1。对其他中间变焦位置也是如此。当变焦镜头移动目标变焦位置后,得到在目标变焦位置处的像距。
其中,变焦位置与焦距f之间具有固定的对应关系,这一对应关系事先确定并存储在镜头中。变焦位置可从镜头内设置的传感器、或变焦电机或者处理器中获取。当获取到变焦位置后,即可通过对应关系得到焦距f。
具体实现时,可通过多种方式得到变焦位置处的像距。
在一些实例中,可将变焦位置对应的焦距、实时测量的物距直接代入高斯成像公式,解算出变焦位置处的像距。
在另一些实例中,可预先根据高斯成像公式制作对应关系表,该对应关系表反映物距、焦距和像距的数值对应关系,并将对应关系表存储在镜头中。当需要计算像距时,从镜头中读取对应关系表,通过查表的方式,在对应关系表中查找出与变焦位置对应的焦距、实时测量的物距对应的变焦位置处的 像距。
在获取到变焦位置处的像距后,则可以将像距转换为对焦位置,而后根据预设温漂系数和对焦位置确定对焦镜头所在的理论对焦位置。例如,当得到第一变焦位置处的像距u1后,将像距u1转换为第一对焦位置,而后根据预设温漂系数和第一对焦位置确定对焦镜头所在的第一理论对焦位置,并将对焦镜头移动第一理论对焦位置,使对焦镜头处于合焦状态。对其他中间变焦位置也是如此,使对焦镜头在每个中间变焦位置均处于合焦状态。当得到目标变焦位置处的像距后,将对焦镜头移动目标理论对焦位置,使对焦镜头在目标理论变焦位置处于合焦状态。
和变焦位置与焦距f之间的对应关系相类似,对焦位置与像距v也具有固定的对应关系,这一对应关系事先确定并存储在镜头中。首先,根据对应关系得到像距v对应的对焦位置,然后,据预设温漂系数和对焦位置确定对焦镜头所在的理论对焦位置,对焦电机可以驱动对焦镜头移动至理论对焦位置。
本实施例中,通过获取成像对象的物距,而后根据物距和预设温漂系数确定对焦镜头所在的理论对焦位置,有效地保证了对理论对焦位置进行确定的准确可靠性。
图4为图1中确定针对成像对象的实际对焦位置的流程示意图;在上述实施例的基础上,继续参考附图4所示,本实施例对于确定针对成像对象的实际对焦位置的具体实现方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,较为优选的,本实施例中的确定针对成像对象的实际对焦位置可以包括:
步骤S401:获取与成像对象相对应的图像帧。
步骤S402:确定与预设温漂系数相对应的系数调整范围。
步骤S403:利用反差对焦算法和系数调整范围对图像帧进行调整,获得针对成像对象的实际对焦位置。
在对成像对象进行拍摄操作时,可以实时或者按照预设频率获取与成像对象相对应的图像帧,该图像帧的个数可以为一个或多个。而后可以确定与预设温漂系数相对应的系数调整范围,本实施例对于系数调整范围的确定方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,例如:在获取到预设温漂系数之后,可以基于预设温漂系数的大小来确定相对应的系数调整范围。或者,预先配置有与不同温度相对应的系数调整范围, 在获取到预设温漂系数之后,可以确定与预设温漂系数相对应的预设温度,基于预设温度确定系数调整范围。再或者,预先配置有与不同系数段相对应的系数调整范围,在获取到预设温漂系数之后,可以确定与预设温漂系数相对应的系数段,而后可以基于系数段来确定与预设温漂系数相对应的系数调整范围。
在利用反差对焦算法在焦点调整范围内进行对图像帧进行调整时,可以实现通过调整对焦位置来对图像帧的清晰度进行调整,需要注意的是,为了避免图像帧的清晰度在某一时间段内在模糊与清晰之间反复变化,降低用户的视觉友好度,所确定的焦点调整范围可以是一个比较小的范围。
另外,本实施例对于系数调整范围的大小不做限定,本领域技术人员可以根据具体的应用需求和设计需求对系数调整范围进行配置,可以想到的是,不同的应用场景可以对应有相同或者不同的系数调整范围。
在获取到系数调整范围和图像帧之后,可以利用反差对焦(Contrast Detection Auto Focus)算法对系数调整范围对图像帧进行调整,具体的,在利用反差对焦算法在焦点调整范围内进行对理论对焦位置进行调整时,可以实时获取图像的清晰度,在图像帧的清晰度(例如,对比度)最大时,则可以获得与理论对焦位置相对应的实际对焦位置,该实际对焦位置所对应的图像帧的清晰度大于理论对焦位置所对应的图像帧的清晰度。
需要注意的是,本实施例中的上述步骤S402和步骤S401的执行顺序并不限于上述序号所限定的顺序,即步骤S402可以在步骤S401之前执行,或者,步骤S402可以与步骤S401同时执行,本领域技术人员可以根据具体的应用需求和设计需求进行任意配置,在此不再赘述。
本实施例中,通过获取与成像对象相对应的图像帧,确定与预设温漂系数相对应的系数调整范围,而后可以利用反差对焦算法和系数调整范围对图像帧进行调整,获得针对成像对象的实际对焦位置,这样有效地保证了对实际对焦位置进行确定的准确可靠性,进一步提高了该方法使用的稳定可靠性。
图5为图4中确定与预设温漂系数相对应的系数调整范围的流程示意图;在上述实施例的基础上,继续参考附图5所示,本实施例中的确定与预设温漂系数相对应的系数调整范围可以包括:
步骤S501:获取与预设温漂系数相对应的最大调整范围。
步骤S502:将最大调整范围中的至少一部分,确定为与预设温漂系数相 对应的系数调整范围。
其中,预先配置有与预设温漂系数相对应的最大调整范围,该最大调整范围用于限定与预设温漂系数相对应的误差大小。可以理解的是,不同温度下的预设温漂系数可以对应有相同或者不同的最大调整范围。在获取到预设温漂系数之后,可以基于预设温漂系数与最大调整范围之间的映射关系,获取与预设温漂系数行对应的最大调整范围。
在获取到最大调整范围之后,可以将最大调整范围中的至少一部分确定为与预设温漂系数相对应的系数调整范围,即系数调整范围小于或等于最大而调整范围。具体的,将最大调整范围中的至少一部分,确定为与预设温漂系数相对应的系数调整范围可以包括:
步骤S5021:在最大调整范围中,确定与预设温漂系数相对应的至少一个邻域范围。
步骤S5022:将至少一个邻域范围,确定为与预设温漂系数相对应的系数调整范围。
具体的,参考附图6所示,针对预设温漂系数P而言,预先配置有最大调整范围(a,max),在获取到最大调整范围和预设温漂系数之后,则可以在最大调整范围中,确定与预设温漂系数相对应的至少一个邻域范围,一般情况下,邻域范围的个数可以为一个或两个。在获取到至少一个邻域范围之后,可以将至少一个邻域范围确定为与预设温漂系数相对应的系数调整范围。
本实施例中,通过获取与预设温漂系数相对应的最大调整范围,而后将最大调整范围中的至少一部分确定为与预设温漂系数相对应的系数调整范围,从而有效地保证了对系数调整范围进行确定的准确可靠性。
在一些实例中,在确定与预设温漂系数相对应的补偿参数之后,本实施例中的方法还可以包括:
步骤S105:基于补偿参数对预设温漂系数进行更新,获得与预设温度相对应的更新后温漂系数,更新后温漂系数用于确定下一次对焦操作的对焦位置。
由于补偿参数用于表征实际对焦位置与理论对焦位置之间的误差大小,该误差大小与预设温漂系数相关,为了能够提高对下一次对焦操作的对焦位置的精确度。因此,在获取到补偿参数之后,可以基于补偿参数对预设温漂系数进行更新,获得与预设温度相对应的更新后温漂系数,所获得的更新后 温漂系数可以对下一次对焦操作的对焦位置进行确定,这样可以有效地减小所确定的对焦位置的误差程度。
图7为本发明实施例提供的另一种温漂系数补偿方法的流程示意图;在上述实施例的基础上,继续参考附图7所示,在获得与预设温度相对应的更新后温漂系数之后,本实施例中的方法还可以包括:
步骤S701:检测更新后温漂系数是否位于预设的最大调整范围内。
步骤S702:在更新后温漂系数未位于最大调整范围内时,则禁止利用更新后温漂系数确定下一次对焦操作的对焦位置。
其中,在获取到更新后温漂系数之后,为了能够保证利用更新后温漂系数对对焦位置进行确定的准确可靠性,可以识别更新后温漂系数是否位于预设的最大调整范围,在更新后温漂系数位于最大调整范围内时,则说明所获得的更新后温漂系数较为合理,继而可以利用更新后温漂系数来确定下一次对焦操作的对焦位置。在更新后温漂系数未位于最大调整范围内时,则说明所获得的更新后温漂系数不合理,此时,为了避免降低对对焦位置进行确定的准确性,则可以禁止利用更新后温漂系数来确定下一次对焦操作的对焦位置。
本实施例中,通过检测更新后温漂系数是否位于预设的最大调整范围内,在所获得的更新后温漂系数较为合理时,允许基于更新后温漂系数来确定下一次对焦操作的对焦位置;在所获得的更新后温漂系数不合理时,则禁止利用更新后温漂系数确定下一次对焦操作的对焦位置,进而有效地保证了对焦操作的质量和效率。
图8为图1根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数的流程示意图;在上述实施例的基础上,继续参考附图8所示,本实施例提供了另一种根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数的实现方式,具体的,本实施例中的根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数可以包括:
步骤S801:获取与预设温度相对应的温度区间。
步骤S802:将实际对焦位置与理论对焦位置的差值,确定为与温度区间相对应的补偿参数。
其中,预先设置有不同的温度区间,每个温度区间内可以包括多个温度信息。在获取到预设温度之后,可以确定与预设温度相对应的温度区间;在 获取到理论对焦位置和实际对焦位置之后,可以将实际对焦位置与理论对焦位置之间的差值确定为与温度区间相对应的补偿参数,从而使得温度区间与补偿参数之间建立了对应关系,而后可以利用温度区间与补偿参数之间的对应关系来确定与不同的预设温度相对应的补偿参数。
举例来说,预先配置有温度区间T1、温度区间T2、温度区间T3和温度区间T4,上述各个温度范围可以对应多个不同的温度信息T。在获取到预设温度之后,可以确定与预设温度相对应的预设温度区间,假设该预设温度区间为温度区间T2。在获取到与预设温度相对应的温度区间之后,则可以将与预设温度相对应的实际对焦位置与理论对焦位置的差值,确定为与温度区间相对应的补偿参数,即建立了温度区间与补偿参数之间的对应关系,而后可以利用温度区间与补偿参数之间的对应关系来确定与不同的预设温度相对应的补偿参数。
图9为本发明实施例提供的又一种温漂系数补偿方法的流程示意图;在上述实施例的基础上,参考附图9所示,为了提高该方法的实用性,在确定与预设温漂系数相对应的补偿参数之后,本实施例中的方法还可以包括:
步骤S901:在第一温度下,获取针对成像对象进行第一对焦操作的第一温漂系数。
步骤S902:在第一温度与预设温度为同一温度区间时,则利用补偿参数对第一温漂系数进行补偿。或者,
步骤S903:在第一温度与预设温度为不同的温度区间时,则确定与第一温度相对应的第一温度区间以及与第一温度区间相对应的第一补偿参数,并利用第一补偿参数对第一温漂系数进行补偿。
在获取到与温漂系数相对应的补偿参数之后,可以基于补偿参数对温漂系数进行补偿更新操作。具体的,由于不同的温度区间可以对应有相同或者不同的补偿参数,因此,为了能够保证利用补偿参数对温漂系数进行补偿更新的准确可靠性,当在第一温度下执行第一对焦操作时,则可以获取针对成像对象进行第一对焦操作的第一温漂系数,由于补偿参数与预设温度相对应,因此,在获取到第一温度之后,可以识别第一温度与预设温度是否属于同一温度区间,在第一温度与预设温度属于同一温度区间时,由于同一个温度区间所对应的补偿参数相同,因此,则可以利用补偿参数对第一温漂系数进行补偿。
在第一温度与预设温度属于不同的温度区间时,由于不同的温度区间所对应的补偿参数可以相同或不同,因此,为了能够保证基于补偿参数对温漂系数进行补偿更新操作的准确可靠性,则禁止利用补偿参数对第一温漂系数进行补偿操作,此时,可以确定与第一温度相对应的第一温度区间以及与第一温度区间相对应的第一补偿参数,而后利用第一补偿参数对第一温漂系数进行补偿,这样可以有效地保证对第一温漂系数进行补偿操作的质量和效率。
图10为图1中根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数的流程示意图二;在上述实施例的基础上,参考附图10所示,本实施例提供了另一种可实现确定与预设温漂系数相对应的补偿参数的方式,具体的,本实施例中的根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数可以包括:
步骤S1001:获取与理论对焦位置和实际对焦位置相对应的焦距范围;
步骤S1002:将实际对焦位置与理论对焦位置的差值,确定为与焦距范围相对应的补偿参数。
其中,预先配置有不同的焦距范围,每个焦距范围内可以对应有多个不同的焦距信息。在获取到理论对焦位置和实际对焦位置之后,可以确定与理论对焦位置和实际对焦位置所对应的焦距范围,需要说明的是,由于实际对焦位置是通过理论对焦位置相对应的图像帧所确定的,因此,实际对焦位置与理论对焦位置之间的差距较小,故一般情况下,实际对焦位置和理论对焦位置可以对应同一个焦距范围。在确定与理论对焦位置和实际对焦位置所对应的焦距范围之后,则可以将实际对焦位置和理论对焦位置的差值确定为与焦距范围相对应的补偿参数。
举例来说,预先配置有焦距范围1、焦距范围2、焦距范围3和焦距范围4,上述各个焦距范围内包括有多个不同的焦距信息P,在理论对焦位置为P1,实际对焦位置为P2时,可以在上述多个焦距范围内确定与实际对焦位置和理论对焦位置相对应的焦距范围,假设与理论对焦位置P1和实际对焦位置P2相对应的焦距范围为焦距范围2,而后可以将实际对焦位置与理论对焦位置的差值(P2-P1),确定为与焦距范围2相对应的补偿参数,即建立了焦距范围与补偿参数之间的映射关系。
需要注意的是,当理论对焦位置和实际对焦位置对应不同的焦距范围时,则可以获取位于理论对焦位置和实际对焦位置之间的过渡对焦位置,而后可 以确定理论对焦位置与过渡对焦位置相对应的第一焦距范围、以及过渡对焦位置与实际对焦位置相对应的第二焦距范围;而后将过渡对焦位置与理论对焦位置的差值确定为与第一焦距范围相对应的第一补偿参数,将实际对焦位置与过渡对焦位置的差值确定为与第二焦距范围相对应的第二补偿参数。从而有效地实现了将一次变焦过程中的对焦操作拆分为两次变焦过程中的对焦操作,进而可以获取到与不同的焦距范围相对应的补偿参数。
图11为本发明实施例提供的另一种温漂系数补偿方法的流程示意图;在上述实施例的基础上,参考附图11所示,为了提高该方法的实用性,在确定与预设温漂系数相对应的补偿参数之后,本实施例中的方法还可以包括:
步骤S1101:执行一变焦操作,获取针对成像对象进行第二对焦操作的第二温漂系数。
步骤S1102:确定与变焦操作相对应的第二焦距范围以及与补偿参数相对应的第一焦距范围。
步骤S1103:在第一焦距范围与第二焦距范围为同一焦距范围时,则利用补偿参数对第二温漂系数进行补偿。或者,
步骤S1104:在第一焦距范围与第二焦距范围为不同的焦距范围时,则确定与第二焦距范围相对应的第二补偿参数,并利用第二温漂补偿参数对第二温漂系数进行补偿。
在获取到与温漂系数相对应的补偿参数之后,可以基于补偿参数对温漂系数进行补偿更新操作。具体的,由于不同的焦距范围可以对应有相同或不同的补偿参数,因此,为了能够保证利用补偿参数对温漂系数进行补偿更新的准确可靠性,当执行一变焦操作时,可以获取针对成像对象进行第二对焦操作的第二温漂系数时,由于补偿参数与焦距范围相对应,因此,在执行变焦操作之后,则可以确定与变焦操作相对应的第二焦距范围以及与补偿参数相对应的第一焦距范围。而后可以识别第二焦距范围与第一焦距范围是否属于同一焦距范围,在第一焦距范围与第二焦距范围为同一焦距范围时,由于同一个焦距范围所对应的补偿参数相同,因此,则可以利用补偿参数对第二温漂系数进行补偿。
在第一焦距范围与第二焦距范围为不同的焦距范围时,由于不同的焦距范围所对应的补偿参数可以相同或不同,因此,为了能够保证基于补偿参数对温漂系数进行补偿更新操作的准确可靠性,则禁止利用补偿参数对第二温 漂系数进行补偿操作,此时,可以确定与第二焦距范围相对应的第二补偿参数,并利用第二温漂补偿参数对第二温漂系数进行补偿,而后利用第二温漂补偿参数对第二温漂系数进行补偿,这样可以有效地保证对第二温漂系数进行补偿操作的质量和效率。
图12为图1中根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数的流程示意图三;在上述实施例的基础上,参考附图12所示,本实施例提供了又一种可实现确定与预设温漂系数相对应的补偿参数的方式,具体的,本实施例中的根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数可以包括:
步骤S1201:获取与理论对焦位置和实际对焦位置相对应的物距范围;
步骤S1202:将实际对焦位置与理论对焦位置的差值,确定为与物距范围相对应的补偿参数。
其中,预先配置有不同的物距范围,每个物距范围内可以对应有多个不同的物距信息。在获取到理论对焦位置和实际对焦位置之后,可以确定与理论对焦位置和实际对焦位置所对应的物距范围,需要说明的是,由于实际对焦位置与理论对焦位置之间的差距较小,故一般情况下,实际对焦位置和理论对焦位置可以对应同一个物距范围。在确定与理论对焦位置和实际对焦位置所对应的物距范围之后,则可以将实际对焦位置和理论对焦位置的差值确定为与物距范围相对应的补偿参数。
举例来说,预先配置有物距范围1、物距范围2、物距范围3和物距范围4,上述各个物距范围内包括有多个不同的物距信息M,在理论对焦位置为P1,实际对焦位置为P2时,可以在上述多个物距范围内确定与实际对焦位置和理论对焦位置相对应的物距范围,假设与理论对焦位置P1和实际对焦位置P2相对应的物距范围为物距范围3,而后可以将实际对焦位置与理论对焦位置的差值(P2-P1),确定为与物距范围3相对应的补偿参数,即建立了物距范围与补偿参数之间的映射关系。
图13为本发明实施例提供的还一种温漂系数补偿方法的流程示意图;在上述实施例的基础上,参考附图13所示,为了提高该方法的实用性,在确定与预设温漂系数相对应的补偿参数之后,本实施例中的方法还可以包括:
步骤S1301:执行一变焦操作,获取针对成像对象进行第三对焦操作的第三温漂系数。
步骤S1302:确定与变焦操作相对应的第二物距范围以及与补偿参数相对应的第一物距范围。
步骤S1303:在第一物距范围与第二物距范围为同一物距范围时,则利用补偿参数对第三温漂系数进行补偿。或者,
步骤S1304:在第一物距范围与第二物距范围为不同的物距范围时,则确定与第二物距范围相对应的第三补偿参数,并利用第三补偿参数对第三温漂系数进行补偿操作。
在获取到与温漂系数相对应的补偿参数之后,可以基于补偿参数对温漂系数进行补偿更新操作。具体的,由于不同的物距范围可以对应有相同或者不同的补偿参数,因此,为了能够保证利用补偿参数对温漂系数进行补偿更新的准确可靠性,当执行一变焦操作时,可以获取针对成像对象进行第三对焦操作的第三温漂系数,由于补偿参数与物距范围相对应,因此,在执行变焦操作之后,则可以确定与变焦操作相对应的第二物距范围以及与补偿参数相对应的第一物距范围。而后识别第二物距范围与第一物距范围是否属于同一物距范围,在第一物距范围与第二物距范围为同一焦距范围时,由于同一个物距范围所对应的补偿参数相同,因此,则可以利用补偿参数对第三温漂系数进行补偿。
在第一物距范围与第二物距范围为不同的物距范围时,由于不同的物距范围所对应的补偿参数可以相同或不同,因此,为了能够保证基于补偿参数对温漂系数进行补偿更新操作的准确可靠性,则禁止利用补偿参数对第三温漂系数进行补偿操作,此时,可以确定与第二物距范围相对应的第三补偿参数,并利用第三补偿参数对第三温漂系数进行补偿操作,而后利用第三补偿参数对第三温漂系数进行补偿操作,这样可以有效地保证对第三温漂系数进行补偿操作的质量和效率。
具体应用时,本应用实施例提供了一种温漂系数补偿方法,该方法可以对任何类型的镜头进行温度补偿操作,有效地避免了对每个镜头都需要进行温漂标定操作,从而可以提高基于补偿更新后的温漂系数进行应用的质量和效率。具体的,该方法可以包括:
步骤1:获取预设温漂系数。
具体的,可以采用标定温漂方法标定出主要镜头(或黄金镜头)在不同温度下的预设温漂系数,该预设温漂系数可以是大于0、小于0或者等于0的数 值。
步骤2:获取与预设温漂系数相对应的最大调整范围。
在获取到镜头在不同温度下的预设温度系数之后,则可以对镜头的预设温漂系数进行批量测试,从而可以确定与预设温漂系数相对应的最大调整范围。
步骤3:在基于物距测量技术来实现对焦操作时,可以获取与镜头相对应的物距信息,而后根据物距和预设温漂系数,计算镜头所在的理论对焦位置。
步骤4:在最大调整范围内,确定与预设温漂系数相对应的系数调整范围,系数调整范围小于或等于最大调整范围。
步骤5:在系数调整范围内,基于反差对焦技术确定与理论对焦位置相对应的实际对焦位置,并将实际对焦位置与理论对焦位置之间的差值,确定为与预设温漂系数相对应的补偿参数。
步骤6:在下一次执行对焦操作时,可以根据补偿参数来确定与理论对焦位置相对应的实际对焦位置。
步骤7:为了避免一次计算获得的补偿参数的不准确性和不稳定性,在后续的对焦操作过程中,可以按照上述方式不断迭代更新补偿参数,从而可以提高补偿参数的准确性。
步骤8:在该方法应用于变焦相机时,在变焦相机执行高倍率变焦时,各个焦距下的温漂系数可以不同,那么,进行二次补偿操作的补偿参数也不同,这样,为了提高补偿更新操作的准确可靠性,可以基于不用的焦段区间来生成不同的补偿参数,并可以对不同焦段区间内的补偿参数进行迭代更新。
相类似的,针对不同的温度范围(如高低温度),温漂系数也可能不同,此时,可以根据不同的温度范围(如每隔10度,或者划定几个范围)来生成不同的补偿参数,并可以对不同温度范围内的补偿参数进行迭代更新。
相类似的,针对不同的物距范围(如近景,远景),温漂系数也可能不同,此时,可以根据不同的物距范围来生成不同的补偿参数,并可以对不同物距范围内的补偿参数进行迭代更新。
此外,为了能够保证对补偿参数进行迭代更新操作的效果,可以通过迭代更新后的补偿参数对预设温漂系数进行更新,并将迭代更新后的预设温漂系数存储在预设区域中。当该方法应用在预设的图像采集设备中时,可以在图像采集设备开机时,加载预设区域中存储的预设温漂系数,在关机时自动 保存或者适时保存迭代更新后的预设温漂系数,以实现不断地迭代更新操作。
另外,为了避免通过反差对焦技术确定与预设温漂系数相对应的补偿参数的过程中存在偏差,例如:通过反差对焦技术所对焦的物距与物距测量单元测量的不是一个物距,偏差较大。可以实时地或者按照预设频率对通过补偿参数对预设温漂系数进行补偿更新操作的质量进行评价。具体的,如果反差对焦技术所获得的实际对焦点与通过迭代更新后的预设温漂系数所获得的理论对焦点满足预设要求(例如:实际对焦点与理论对焦点之间的距离小于或等于预设阈值),则可以确定理论对焦点与实际对焦点相接近,从而可以对补偿更新操作的评价结果加分,以提高上述补偿更新操作的置信度。反之,则进行减分,并且,实际对焦点与理论对焦点之间的差异越大,减分越多。当减分足够多时,例如:在某些特殊场景或者物距测量模块异常时,可以通过评价结果识别出来置信度较低的补偿参数,并禁用上述的补偿参数对预设温漂系数进行迭代更新操作,以避免降低基于预设温漂系数获取对焦点的准确性。
本应用实施例提供的温漂系数补偿方法,有效地解决了对焦方法中需要强依赖温漂的一致性的缺陷;并且,可以对补偿参数进行不断的迭代更新,从而可以实现将理论计算的对焦点与实际对焦点之间的偏差降到最低,甚至可以实现理论计算的对焦点与实际对焦点为同一对焦点。另外,在将该方法应用在可移动平台上时,可以使得可移动平台基于该方法实现变焦跟踪操作,并且保证了变焦跟踪的质量和效率,而不会严重依赖温补的一致性,不会因为温补参数存在误差而降低变焦跟踪的效果,进而有效地提高了该方法的实用性,有利于市场的推广与应用。
图14为本发明实施例提供的一种温漂系数补偿装置的结构示意图;参考附图14所示,本实施例提供了一种温漂系数补偿装置,该补偿装置可以执行上述图1所对应的温漂系数补偿方法,具体的,该补偿装置可以包括:
存储器12,用于存储计算机程序;
处理器11,用于运行存储器12中存储的计算机程序以实现:
存储器,用于存储计算机程序;
处理器,用于运行存储器中存储的计算机程序以实现:
在预设温度下,获取与对焦镜头相对应的预设温漂系数,对焦镜头用于针对成像对象进行对焦操作;
根据预设温漂系数,获取对焦镜头所在的理论对焦位置;
确定针对成像对象的实际对焦位置;
根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数,补偿参数用于对预设温漂系数进行补偿操作。
其中,对焦点的确定装置的结构中还可以包括通信接口13,用于电子设备与其他设备或通信网络通信。
在一些实例中,在处理器11根据预设温漂系数,获取对焦镜头所在的理论对焦位置时,处理器11用于:获取成像对象的物距;根据物距和预设温漂系数,确定对焦镜头所在的理论对焦位置。
在一些实例中,在处理器11根据物距和预设温漂系数,确定对焦镜头所在的理论对焦位置时,处理器11用于:利用成像公式,确定与物距相对应的像距;根据预设温漂系数和像距,确定对焦镜头所在的理论对焦位置。
在一些实例中,在处理器11确定针对成像对象的实际对焦位置时,处理器11用于:获取与成像对象相对应的图像帧;确定与预设温漂系数相对应的系数调整范围;利用反差对焦算法和系数调整范围对图像帧进行调整,获得针对成像对象的实际对焦位置。
在一些实例中,在处理器11确定与预设温漂系数相对应的系数调整范围时,处理器11用于:获取与预设温漂系数相对应的最大调整范围;将最大调整范围中的至少一部分,确定为与预设温漂系数相对应的系数调整范围。
在一些实例中,在处理器11将最大调整范围中的至少一部分,确定为与预设温漂系数相对应的系数调整范围时,处理器11用于:在最大调整范围中,确定与预设温漂系数相对应的至少一个邻域范围;将至少一个邻域范围,确定为与预设温漂系数相对应的系数调整范围。
在一些实例中,在处理器11根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数时,处理器11用于:将实际对焦位置与理论对焦位置的差值,确定为与预设温漂系数相对应的补偿参数。
在一些实例中,在确定与预设温漂系数相对应的补偿参数之后,处理器11还用于:基于补偿参数对预设温漂系数进行更新,获得与预设温度相对应的更新后温漂系数,更新后温漂系数用于确定下一次对焦操作的对焦位置。
在一些实例中,在获得与预设温度相对应的更新后温漂系数之后,处理器11还用于:检测更新后温漂系数是否位于预设的最大调整范围内;在更新 后温漂系数未位于最大调整范围内时,则禁止利用更新后温漂系数确定下一次对焦操作的对焦位置。
在一些实例中,在处理器11根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数时,处理器11用于:获取与预设温度相对应的温度区间;将实际对焦位置与理论对焦位置的差值,确定为与温度区间相对应的补偿参数。
在一些实例中,在确定与预设温漂系数相对应的补偿参数之后,处理器11还用于:在第一温度下,获取针对成像对象进行第一对焦操作的第一温漂系数;在第一温度与预设温度为同一温度区间时,则利用补偿参数对第一温漂系数进行补偿;或者,在第一温度与预设温度为不同的温度区间时,则确定与第一温度相对应的第一温度区间以及与第一温度区间相对应的第一补偿参数,并利用第一补偿参数对第一温漂系数进行补偿。
在一些实例中,在处理器11根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数时,处理器11用于:获取与理论对焦位置和实际对焦位置相对应的焦距范围;将实际对焦位置与理论对焦位置的差值,确定为与焦距范围相对应的补偿参数。
在一些实例中,在确定与预设温漂系数相对应的补偿参数之后,处理器11还用于:执行一变焦操作,获取针对成像对象进行第二对焦操作的第二温漂系数;确定与变焦操作相对应的第二焦距范围以及与补偿参数相对应的第一焦距范围;在第一焦距范围与第二焦距范围为同一焦距范围时,则利用补偿参数对第二温漂系数进行补偿;或者,在第一焦距范围与第二焦距范围为不同的焦距范围时,则确定与第二焦距范围相对应的第二补偿参数,并利用第二温漂补偿参数对第二温漂系数进行补偿。
在一些实例中,在处理器11根据理论对焦位置和实际对焦位置,确定与预设温漂系数相对应的补偿参数时,处理器11用于:获取与理论对焦位置和实际对焦位置相对应的物距范围;将实际对焦位置与理论对焦位置的差值,确定为与物距范围相对应的补偿参数。
在一些实例中,在确定与预设温漂系数相对应的补偿参数之后,处理器11还用于:执行一变焦操作,获取针对成像对象进行第三对焦操作的第三温漂系数;确定与变焦操作相对应的第二物距范围以及与补偿参数相对应的第一物距范围;在第一物距范围与第二物距范围为同一物距范围时,则利用补 偿参数对第三温漂系数进行补偿;或者,在第一物距范围与第二物距范围为不同的物距范围时,则确定与第二物距范围相对应的第三补偿参数,并利用第三补偿参数对第三温漂系数进行补偿操作。
图14所示装置可以执行图1-图13所示实施例的方法,本实施例未详细描述的部分,可参考对图1-图13所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1-图13所示实施例中的描述,在此不再赘述。
图15为本发明实施例提供的一种镜头的结构示意图;参考附图15所示,本实施例提供了一种镜头,该镜头可以包括:
镜筒21;
上述实施例中的温漂系数补偿装置22,温漂系数补偿装置22用于安装在镜筒21上。
图16为本发明实施例提供的一种成像装置的结构示意图;参考附图16所示,本实施例提供了一种成像装置,该成像装置可以包括:
机身31;
上述实施例中的镜头32,镜头32固定或可拆卸地安装于机身31上。
图17为本发明实施例提供的一种可移动平台的结构示意图;参考附图17所示,本实施例提供了一种可移动平台,该可移动平台可以包括:
平台主体41;
动力装置42,设置与平台主体41上,用于为可移动平台提供动力;
上述实施例中的成像装置43,设置于平台主体41上。
此外,本实施例提供了一种计算机可读存储介质,存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,程序指令用于实现上述实施例中的温漂系数补偿方法。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关遥控装置和方法,可以通过其它的方式实现。例如,以上所描述的遥控装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以 集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,遥控装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (34)

  1. 一种温漂系数补偿方法,其特征在于,包括:
    在预设温度下,获取与对焦镜头相对应的预设温漂系数,所述对焦镜头用于针对成像对象进行对焦操作;
    根据所述预设温漂系数,获取所述对焦镜头所在的理论对焦位置;
    确定针对所述成像对象的实际对焦位置;
    根据所述理论对焦位置和实际对焦位置,确定与所述预设温漂系数相对应的补偿参数,所述补偿参数用于对所述预设温漂系数进行补偿操作。
  2. 根据权利要求1所述的方法,其特征在于,根据所述预设温漂系数,获取所述对焦镜头所在的理论对焦位置,包括:
    获取所述成像对象的物距;
    根据所述物距和所述预设温漂系数,确定所述对焦镜头所在的理论对焦位置。
  3. 根据权利要求2所述的方法,其特征在于,根据所述物距和所述预设温漂系数,确定所述对焦镜头所在的理论对焦位置,包括:
    利用成像公式,确定与所述物距相对应的像距;
    根据所述预设温漂系数和像距,确定所述对焦镜头所在的理论对焦位置。
  4. 根据权利要求1所述的方法,其特征在于,确定针对所述成像对象的实际对焦位置,包括:
    获取与所述成像对象相对应的图像帧;
    确定与所述预设温漂系数相对应的系数调整范围;
    利用反差对焦算法和所述系数调整范围对所述图像帧进行调整,获得针对所述成像对象的实际对焦位置。
  5. 根据权利要求4所述的方法,其特征在于,确定与所述预设温漂系数相对应的系数调整范围,包括:
    获取与所述预设温漂系数相对应的最大调整范围;
    将所述最大调整范围中的至少一部分,确定为与所述预设温漂系数相对应的系数调整范围。
  6. 根据权利要求5所述的方法,其特征在于,将所述最大调整范围中的至少一部分,确定为与所述预设温漂系数相对应的系数调整范围,包括:
    在所述最大调整范围中,确定与所述预设温漂系数相对应的至少一个邻 域范围;
    将所述至少一个邻域范围,确定为与所述预设温漂系数相对应的系数调整范围。
  7. 根据权利要求1所述的方法,其特征在于,根据所述理论对焦位置和实际对焦位置,确定与所述预设温漂系数相对应的补偿参数,包括:
    将所述实际对焦位置与所述理论对焦位置的差值,确定为与所述预设温漂系数相对应的补偿参数。
  8. 根据权利要求1所述的方法,其特征在于,在确定与所述预设温漂系数相对应的补偿参数之后,所述方法还包括:
    基于所述补偿参数对所述预设温漂系数进行更新,获得与所述预设温度相对应的更新后温漂系数,所述更新后温漂系数用于确定下一次对焦操作的对焦位置。
  9. 根据权利要求8所述的方法,其特征在于,在获得与所述预设温度相对应的更新后温漂系数之后,所述方法还包括:
    检测所述更新后温漂系数是否位于预设的最大调整范围内;
    在所述更新后温漂系数未位于所述最大调整范围内时,则禁止利用所述更新后温漂系数确定下一次对焦操作的对焦位置。
  10. 根据权利要求1-9中任意一项所述的方法,其特征在于,根据所述理论对焦位置和实际对焦位置,确定与所述预设温漂系数相对应的补偿参数,包括:
    获取与所述预设温度相对应的温度区间;
    将所述实际对焦位置与所述理论对焦位置的差值,确定为与所述温度区间相对应的补偿参数。
  11. 根据权利要求10所述的方法,其特征在于,在确定与所述预设温漂系数相对应的补偿参数之后,所述方法还包括:
    在第一温度下,获取针对成像对象进行第一对焦操作的第一温漂系数;
    在所述第一温度与所述预设温度为同一温度区间时,则利用所述补偿参数对所述第一温漂系数进行补偿;或者,
    在所述第一温度与所述预设温度为不同的温度区间时,则确定与所述第一温度相对应的第一温度区间以及与所述第一温度区间相对应的第一补偿参数,并利用所述第一补偿参数对所述第一温漂系数进行补偿。
  12. 根据权利要求1-9中任意一项所述的方法,其特征在于,根据所述理论对焦位置和实际对焦位置,确定与所述预设温漂系数相对应的补偿参数,包括:
    获取与所述理论对焦位置和实际对焦位置相对应的焦距范围;
    将所述实际对焦位置与所述理论对焦位置的差值,确定为与所述焦距范围相对应的补偿参数。
  13. 根据权利要求12所述的方法,其特征在于,在确定与所述预设温漂系数相对应的补偿参数之后,所述方法还包括:
    执行一变焦操作,获取针对成像对象进行第二对焦操作的第二温漂系数;
    确定与所述变焦操作相对应的第二焦距范围以及与所述补偿参数相对应的第一焦距范围;
    在所述第一焦距范围与所述第二焦距范围为同一焦距范围时,则利用所述补偿参数对所述第二温漂系数进行补偿;或者,
    在所述第一焦距范围与所述第二焦距范围为不同的焦距范围时,则确定与所述第二焦距范围相对应的第二补偿参数,并利用所述第二温漂补偿参数对所述第二温漂系数进行补偿。
  14. 根据权利要求1-9中任意一项所述的方法,其特征在于,根据所述理论对焦位置和实际对焦位置,确定与所述预设温漂系数相对应的补偿参数,包括:
    获取与所述理论对焦位置和实际对焦位置相对应的物距范围;
    将所述实际对焦位置与所述理论对焦位置的差值,确定为与所述物距范围相对应的补偿参数。
  15. 根据权利要求14所述的方法,其特征在于,在确定与所述预设温漂系数相对应的补偿参数之后,所述方法还包括:
    执行一变焦操作,获取针对成像对象进行第三对焦操作的第三温漂系数;
    确定与所述变焦操作相对应的第二物距范围以及与所述补偿参数相对应的第一物距范围;
    在所述第一物距范围与所述第二物距范围为同一物距范围时,则利用所述补偿参数对所述第三温漂系数进行补偿;或者,
    在所述第一物距范围与所述第二物距范围为不同的物距范围时,则确定与所述第二物距范围相对应的第三补偿参数,并利用所述第三补偿参数对所 述第三温漂系数进行补偿操作。
  16. 一种温漂系数补偿装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于运行所述存储器中存储的计算机程序以实现:
    在预设温度下,获取与对焦镜头相对应的预设温漂系数,所述对焦镜头用于针对成像对象进行对焦操作;
    根据所述预设温漂系数,获取所述对焦镜头所在的理论对焦位置;
    确定针对所述成像对象的实际对焦位置;
    根据所述理论对焦位置和实际对焦位置,确定与所述预设温漂系数相对应的补偿参数,所述补偿参数用于对所述预设温漂系数进行补偿操作。
  17. 根据权利要求16所述的装置,其特征在于,在所述处理器根据所述预设温漂系数,获取所述对焦镜头所在的理论对焦位置时,所述处理器用于:
    获取所述成像对象的物距;
    根据所述物距和所述预设温漂系数,确定所述对焦镜头所在的理论对焦位置。
  18. 根据权利要求17所述的装置,其特征在于,在所述处理器根据所述物距和所述预设温漂系数,确定所述对焦镜头所在的理论对焦位置时,所述处理器用于:
    利用成像公式,确定与所述物距相对应的像距;
    根据所述预设温漂系数和像距,确定所述对焦镜头所在的理论对焦位置。
  19. 根据权利要求16所述的装置,其特征在于,在所述处理器确定针对所述成像对象的实际对焦位置时,所述处理器用于:
    获取与所述成像对象相对应的图像帧;
    确定与所述预设温漂系数相对应的系数调整范围;
    利用反差对焦算法和所述系数调整范围对所述图像帧进行调整,获得针对所述成像对象的实际对焦位置。
  20. 根据权利要求19所述的装置,其特征在于,在所述处理器确定与所述预设温漂系数相对应的系数调整范围时,所述处理器用于:
    获取与所述预设温漂系数相对应的最大调整范围;
    将所述最大调整范围中的至少一部分,确定为与所述预设温漂系数相对应的系数调整范围。
  21. 根据权利要求20所述的装置,其特征在于,在所述处理器将所述最大调整范围中的至少一部分,确定为与所述预设温漂系数相对应的系数调整范围时,所述处理器用于:
    在所述最大调整范围中,确定与所述预设温漂系数相对应的至少一个邻域范围;
    将所述至少一个邻域范围,确定为与所述预设温漂系数相对应的系数调整范围。
  22. 根据权利要求16所述的装置,其特征在于,在所述处理器根据所述理论对焦位置和实际对焦位置,确定与所述预设温漂系数相对应的补偿参数时,所述处理器用于:
    将所述实际对焦位置与所述理论对焦位置的差值,确定为与所述预设温漂系数相对应的补偿参数。
  23. 根据权利要求16所述的装置,其特征在于,在确定与所述预设温漂系数相对应的补偿参数之后,所述处理器还用于:
    基于所述补偿参数对所述预设温漂系数进行更新,获得与所述预设温度相对应的更新后温漂系数,所述更新后温漂系数用于确定下一次对焦操作的对焦位置。
  24. 根据权利要求23所述的装置,其特征在于,在获得与所述预设温度相对应的更新后温漂系数之后,所述处理器还用于:
    检测所述更新后温漂系数是否位于预设的最大调整范围内;
    在所述更新后温漂系数未位于所述最大调整范围内时,则禁止利用所述更新后温漂系数确定下一次对焦操作的对焦位置。
  25. 根据权利要求16-24中任意一项所述的装置,其特征在于,在所述处理器根据所述理论对焦位置和实际对焦位置,确定与所述预设温漂系数相对应的补偿参数时,所述处理器用于:
    获取与所述预设温度相对应的温度区间;
    将所述实际对焦位置与所述理论对焦位置的差值,确定为与所述温度区间相对应的补偿参数。
  26. 根据权利要求25所述的装置,其特征在于,在确定与所述预设温漂系数相对应的补偿参数之后,所述处理器还用于:
    在第一温度下,获取针对成像对象进行第一对焦操作的第一温漂系数;
    在所述第一温度与所述预设温度为同一温度区间时,则利用所述补偿参数对所述第一温漂系数进行补偿;或者,
    在所述第一温度与所述预设温度为不同的温度区间时,则确定与所述第一温度相对应的第一温度区间以及与所述第一温度区间相对应的第一补偿参数,并利用所述第一补偿参数对所述第一温漂系数进行补偿。
  27. 根据权利要求16-24中任意一项所述的装置,其特征在于,在所述处理器根据所述理论对焦位置和实际对焦位置,确定与所述预设温漂系数相对应的补偿参数时,所述处理器用于:
    获取与所述理论对焦位置和实际对焦位置相对应的焦距范围;
    将所述实际对焦位置与所述理论对焦位置的差值,确定为与所述焦距范围相对应的补偿参数。
  28. 根据权利要求27所述的装置,其特征在于,在确定与所述预设温漂系数相对应的补偿参数之后,所述处理器还用于:
    执行一变焦操作,获取针对成像对象进行第二对焦操作的第二温漂系数;
    确定与所述变焦操作相对应的第二焦距范围以及与所述补偿参数相对应的第一焦距范围;
    在所述第一焦距范围与所述第二焦距范围为同一焦距范围时,则利用所述补偿参数对所述第二温漂系数进行补偿;或者,
    在所述第一焦距范围与所述第二焦距范围为不同的焦距范围时,则确定与所述第二焦距范围相对应的第二补偿参数,并利用所述第二温漂补偿参数对所述第二温漂系数进行补偿。
  29. 根据权利要求16-24中任意一项所述的装置,其特征在于,在所述处理器根据所述理论对焦位置和实际对焦位置,确定与所述预设温漂系数相对应的补偿参数时,所述处理器用于:
    获取与所述理论对焦位置和实际对焦位置相对应的物距范围;
    将所述实际对焦位置与所述理论对焦位置的差值,确定为与所述物距范围相对应的补偿参数。
  30. 根据权利要求29所述的装置,其特征在于,在确定与所述预设温漂系数相对应的补偿参数之后,所述处理器还用于:
    执行一变焦操作,获取针对成像对象进行第三对焦操作的第三温漂系数;
    确定与所述变焦操作相对应的第二物距范围以及与所述补偿参数相对应 的第一物距范围;
    在所述第一物距范围与所述第二物距范围为同一物距范围时,则利用所述补偿参数对所述第三温漂系数进行补偿;或者,
    在所述第一物距范围与所述第二物距范围为不同的物距范围时,则确定与所述第二物距范围相对应的第三补偿参数,并利用所述第三补偿参数对所述第三温漂系数进行补偿操作。
  31. 一种镜头,其特征在于,包括:
    镜筒;
    权利要求16-30中任意一项所述的温漂系数补偿装置,所述温漂系数补偿装置用于安装在所述镜筒上。
  32. 一种成像装置,其特征在于,包括:
    机身;
    权利要求32所述的镜头,所述镜头固定或可拆卸地安装于所述机身上。
  33. 一种可移动平台,其特征在于,包括:
    平台主体;
    动力装置,设置与所述平台主体上,用于为可移动平台提供动力;
    权利要求32所述的成像装置,设置于所述平台主体上。
  34. 一种计算机可读存储介质,其特征在于,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现权利要求1-15中任意一项所述的温漂系数补偿方法。
PCT/CN2020/081599 2020-03-27 2020-03-27 温漂系数补偿方法、装置、镜头、成像装置和可移动平台 WO2021189404A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080004402.2A CN112567274A (zh) 2020-03-27 2020-03-27 温漂系数补偿方法、装置、镜头、成像装置和可移动平台
PCT/CN2020/081599 WO2021189404A1 (zh) 2020-03-27 2020-03-27 温漂系数补偿方法、装置、镜头、成像装置和可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081599 WO2021189404A1 (zh) 2020-03-27 2020-03-27 温漂系数补偿方法、装置、镜头、成像装置和可移动平台

Publications (1)

Publication Number Publication Date
WO2021189404A1 true WO2021189404A1 (zh) 2021-09-30

Family

ID=75034951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081599 WO2021189404A1 (zh) 2020-03-27 2020-03-27 温漂系数补偿方法、装置、镜头、成像装置和可移动平台

Country Status (2)

Country Link
CN (1) CN112567274A (zh)
WO (1) WO2021189404A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114945091A (zh) * 2022-07-19 2022-08-26 星猿哲科技(深圳)有限公司 深度相机的温度补偿方法、装置、设备及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113763485B (zh) * 2021-09-28 2022-07-26 合肥的卢深视科技有限公司 温漂系数获取方法、电子设备、存储介质和图像校正方法
CN114710603B (zh) * 2022-03-24 2024-02-13 深圳市维海德技术股份有限公司 温度漂移校正方法、系统、终端设备及介质
CN115061334B (zh) * 2022-05-19 2024-07-26 深圳市橙子数字科技有限公司 热虚焦解决方法、镜头、系统、计算机设备及介质
CN115236852B (zh) * 2022-08-16 2024-01-26 中国科学院上海技术物理研究所 一种全光路低温系统光学补偿装置及设计方法
CN116818129B (zh) * 2023-05-08 2024-01-12 广州图语信息科技有限公司 应用于结构光重建的温度估计与热畸变校正方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116593A (ja) * 2006-11-02 2008-05-22 Hitachi Ltd フォーカスレンズのトラッキング制御装置及び監視用途ズームカメラ装置
CN102262335A (zh) * 2010-05-28 2011-11-30 株式会社日立制作所 摄像装置
CN104092933A (zh) * 2014-04-11 2014-10-08 华为技术有限公司 一种对摄像机进行温度补偿的方法和装置
CN107942463A (zh) * 2017-11-02 2018-04-20 广东欧珀移动通信有限公司 对焦方法、装置、计算机设备及可读存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846546A (zh) * 2016-09-18 2018-03-27 中兴通讯股份有限公司 一种摄像头模组的对焦补偿装置及其方法、摄像终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116593A (ja) * 2006-11-02 2008-05-22 Hitachi Ltd フォーカスレンズのトラッキング制御装置及び監視用途ズームカメラ装置
CN102262335A (zh) * 2010-05-28 2011-11-30 株式会社日立制作所 摄像装置
CN104092933A (zh) * 2014-04-11 2014-10-08 华为技术有限公司 一种对摄像机进行温度补偿的方法和装置
CN107942463A (zh) * 2017-11-02 2018-04-20 广东欧珀移动通信有限公司 对焦方法、装置、计算机设备及可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114945091A (zh) * 2022-07-19 2022-08-26 星猿哲科技(深圳)有限公司 深度相机的温度补偿方法、装置、设备及存储介质
CN114945091B (zh) * 2022-07-19 2022-10-25 星猿哲科技(深圳)有限公司 深度相机的温度补偿方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN112567274A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2021189404A1 (zh) 温漂系数补偿方法、装置、镜头、成像装置和可移动平台
US20170070731A1 (en) Single And Multi-Camera Calibration
JP6266714B2 (ja) マルチカメラデバイスを較正するためのシステムおよび方法
US20160295097A1 (en) Dual camera autofocus
CN102984530B (zh) 图像处理系统及自动对焦方法
TWI511081B (zh) 影像擷取裝置及其影像形變校正方法
US10630884B2 (en) Camera focusing method, apparatus, and device for terminal
WO2015154676A1 (zh) 一种对摄像机进行温度补偿的方法和装置
US9697604B2 (en) Image capturing device and method for detecting image deformation thereof
CN111932636B (zh) 双目摄像头的标定及图像矫正方法、装置、存储介质、终端、智能设备
US10764486B2 (en) Multi-camera autofocus synchronization
JP2016533105A (ja) オートフォーカスフィードバックを使用するステレオヨー補正
WO2021189403A1 (zh) 对焦点的确定方法、装置、镜头、成像装置和可移动平台
WO2017117749A1 (zh) 基于多种测距方式的跟焦系统、方法及拍摄系统
CN113215653B (zh) 一种确定液口距的方法和系统
US20170230649A1 (en) Calibration of hybrid auto focus (af) imaging systems
CN108933937A (zh) 用于动态地校准图像捕获装置的方法
CN110233963A (zh) 一种双目相机间距调节方法及装置
WO2017070884A1 (zh) 基于无线测距的图像调焦系统、方法及拍摄系统
US20160147131A1 (en) Multiple Camera Apparatus and Method for Synchronized Autofocus
WO2019085260A1 (zh) 自动调焦系统、方法以及投影设备
US10235773B2 (en) Image capturing device and calibration method of phase detection autofocus thereof
JP5776212B2 (ja) 画像処理装置、方法、プログラムおよび記録媒体
CN104811604B (zh) 图像获取装置及其图像形变校正方法
CN104811680A (zh) 图像获取装置及其图像形变校正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927936

Country of ref document: EP

Kind code of ref document: A1