WO2021189403A1 - 对焦点的确定方法、装置、镜头、成像装置和可移动平台 - Google Patents

对焦点的确定方法、装置、镜头、成像装置和可移动平台 Download PDF

Info

Publication number
WO2021189403A1
WO2021189403A1 PCT/CN2020/081598 CN2020081598W WO2021189403A1 WO 2021189403 A1 WO2021189403 A1 WO 2021189403A1 CN 2020081598 W CN2020081598 W CN 2020081598W WO 2021189403 A1 WO2021189403 A1 WO 2021189403A1
Authority
WO
WIPO (PCT)
Prior art keywords
focus position
focus
distance
compensation parameter
theoretical
Prior art date
Application number
PCT/CN2020/081598
Other languages
English (en)
French (fr)
Inventor
韩守谦
张祝
潘子逸
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/081598 priority Critical patent/WO2021189403A1/zh
Priority to CN202080004403.7A priority patent/CN112585518A/zh
Publication of WO2021189403A1 publication Critical patent/WO2021189403A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/285Systems for automatic generation of focusing signals including two or more different focus detection devices, e.g. both an active and a passive focus detecting device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems

Definitions

  • the embodiments of the present invention relate to the field of imaging technology, and in particular to a method, device, lens, imaging device, and movable platform for determining a focus point.
  • the zoom tracking technology refers to the technology that focuses on the object being photographed by controlling the focus lens during the movement of the zoom lens. Specifically, when the zoom lens moves, because the size of the object, the brightness of the screen, etc. will change, if the focus lens is not moved properly, the focus of the object cannot be achieved, and thus it is not possible to guarantee a clear image of the object being photographed. . Therefore, in order to maintain focus during zooming, zoom tracking technology has emerged. Among them, the proportional mapping method is a zoom tracking technology.
  • the embodiment of the present invention provides a method, a device, a lens, an imaging device, and a movable platform for determining a focus point.
  • the first aspect of the present invention is to provide a method for determining a focus point, including:
  • the projection scale factor is updated by using the compensation parameter to obtain a target scale factor.
  • the target scale factor is used to determine the target focus position of the focus lens after the first zoom operation, based on the target focus position Output clear images.
  • the second aspect of the present invention is to provide a device for determining a focus point, including:
  • Memory used to store computer programs
  • the processor is configured to run a computer program stored in the memory to realize:
  • the projection scale factor is updated by using the compensation parameter to obtain a target scale factor.
  • the target scale factor is used to determine the target focus position of the focus lens after the first zoom operation, so as to output a clear output based on the target focus position image.
  • the third aspect of the present invention is to provide a lens including:
  • the device for determining the focus position is configured to be mounted on the lens barrel.
  • the fourth aspect of the present invention is to provide an imaging device including:
  • the lens is fixedly or detachably mounted on the body.
  • the fifth aspect of the present invention is to provide a movable platform, including:
  • the power device is arranged on the main body of the platform and is used to provide power for the movable platform;
  • the imaging device according to the fourth aspect is arranged on the platform main body.
  • the sixth aspect of the present invention is to provide a computer-readable storage medium, the storage medium is a computer-readable storage medium, the computer-readable storage medium stores program instructions, and the program instructions are used in the first aspect. The method of determining the focus point described above.
  • the method, device, lens, imaging device, and movable platform for determining the focus point provided by the embodiments of the present invention can accurately determine the target focus position during the zooming process.
  • Figure 1 provides a zoom tracking curve
  • Figure 2 is a schematic diagram of error magnification of the isometric mapping method
  • FIG. 3 is a schematic flowchart of a method for determining a focus point according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram of an apparatus for determining a focus point provided by an embodiment of the present invention.
  • FIG. 5 is a first schematic diagram of a process for obtaining compensation parameters for identifying the offset of the focus position of an imaging object according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram 1 of a process for determining a projection scale factor according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram 1 of the process of updating the projection scale factor by using the compensation parameter to obtain the target scale factor according to an embodiment of the present invention
  • FIG. 8 is a second schematic diagram of a process for determining a projection scale factor according to an embodiment of the present invention.
  • FIG. 9 is a second schematic diagram of the process of updating the projection scale factor by using the compensation parameter to obtain the target scale factor according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of another method for determining a focus point according to an embodiment of the present invention.
  • FIG. 11 is a second schematic diagram of a process for obtaining compensation parameters for identifying the offset of the focus position of an imaging object according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram 1 of the process of determining the actual focus position corresponding to the theoretical focus position according to an embodiment of the present invention
  • FIG. 13 is a second schematic diagram of the process of determining the actual focus position corresponding to the theoretical focus position according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram 1 of the process of determining the compensation parameter according to the theoretical focus position and the actual focus position according to an embodiment of the present invention
  • 15 is a second schematic diagram of the process of determining the compensation parameter according to the theoretical focus position and the actual focus position according to an embodiment of the present invention.
  • 16 is a schematic flowchart of yet another method for determining a focus point according to an embodiment of the present invention.
  • FIG. 17 is a schematic flowchart of obtaining the theoretical focus position of the focus lens after the second zoom operation according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of an apparatus for determining a focus point according to an embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of a lens provided by an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of an imaging device provided by an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention.
  • the equal-proportion mapping method is a method of mapping the focus position of the current focal length to the focus position of the target focal length according to the zoom tracking curve and the principle of equal ratio mapping.
  • the zoom tracking curve is a curve representing the relationship between the zoom position of the zoom lens and the focus position of the focus lens under different object distances.
  • Fig. 1 provides a zoom tracking curve.
  • the zoom tracking curve includes a curve 400 corresponding to the infinite end (infinite end), a curve 402 corresponding to the nearest end (mod end), and the infinite end and the nearest The curve corresponding to each object distance between the ends.
  • the corresponding current focus position is P1.
  • the distance between the current focus position P1 and the closest end curve 402 is b
  • the distance between the infinity end curve 400 and the closest end curve 402 at the current zoom position is a+b, thereby obtaining the projection scale factor of the current focus position P1 It is b/(a+b).
  • the distance between the infinite end curve 400 and the nearest end curve 402 is a ⁇ +b ⁇ .
  • the focus position P2 whose distance to the nearest curve 402 is b′ and the projection scale factor of b′ and the distance a′+b′ is equal to b/(a+b) can be used as the target focus position.
  • the above-mentioned equal-ratio mapping method is suitable for application scenarios with a relatively small zoom magnification, such as: application scenarios with a zoom magnification less than or equal to 2x or application scenarios with a zoom magnification less than or equal to 3x.
  • wide-angle The closest focusing distances of the wide end and tele end (tele end) are basically the same, and the super focus is also the same.
  • the wide end (wide end) corresponds to The numerical range of the focal length is similar to the numerical range of the focal length corresponding to the tele end (tele end). Therefore, the focusing operation during zooming can be basically realized based on the isometric mapping method.
  • the numerical range of the image distance expands with the expansion of the focal length.
  • the stroke of the focus motor is n
  • the stroke of the focus motor is 2 ⁇ n.
  • the focus motor has a total of 5 steps on the wide end and a total of 10 steps on the tele end. If the wide end's focus position (that is, the theoretical focus position) is in step 4.5, the actual focus position of the focus motor is on the fourth Step or Step 5, that is, the error between the actual focus position and the theoretical focus position is 0.5 step.
  • the actual focus position of the focus motor is the 8th or 10th step.
  • the error between the actual focus position and the theoretical focus position of the tele end is 1 step.
  • the error of the focus position is doubled (from 0.5 step to 1 step). If it is a 6x zoom lens, as shown in Figure 2, for similar reasons, the focus position error will be magnified six times. For ten times or several tens of times high magnification zoom lenses, the error of the focus position will also be magnified by the corresponding multiples. Therefore, the isometric mapping method will magnify the error in the focus position.
  • the isometric mapping method has another defect: when the isometric mapping method is used to determine the focus position, it is assumed that the wide end and the tele end have the same or approximate object distance range. If the closest end of the wide end is 0.5m, the hyperfocal distance is 4m, the closest focusing distance of the tele end is also 0.5m, and the hyperfocal distance is 4-6m, at this time, a more accurate focus position can be obtained through the isometric mapping method. However, for high-magnification zoom lenses, the range of object distances at different focal lengths varies greatly.
  • the closest focusing distance of the wide end of a high-magnification lens is 0.5m and the hyperfocal distance is 4m; the closest focusing distance of the tele end is 10m, and the hyperfocal distance is 1000m, at this time, if the focusing position determined by the proportional mapping method is used Focusing operation is prone to blurring of the image.
  • the wide end of a lens has a shortest focusing distance of 0.5m and a hyperfocal distance of 4m
  • the tele end has a shortest focusing distance of 10m and a hyperfocal distance of 1000m.
  • the object distance of 8 m may correspond to the infinite end curve 400 in FIG. 1.
  • the target focus position is still a point on the infinity end curve 400.
  • the isometric mapping method cannot get the correct focus position.
  • the isometric mapping method can hardly ensure that the focus is maintained during the zooming process.
  • the equal-proportion projection method also requires the lens to be in focus before zooming, that is, the realization of the equal-proportion projection method depends on the focus state before zooming.
  • the proportional projection method has the defects of magnification errors, failure of high-magnification zoom lenses, unsuitable scenes with varying object distances, and reliance on the focus state before zooming.
  • FIG. 3 is a schematic flowchart of a method for determining a focus point provided by an embodiment of the present invention. referring to FIG. 3, in order to overcome the above-mentioned technical defects of the isometric mapping method, this embodiment provides a focus point
  • the method for determining, the execution subject of the method is a device for determining a focus point. It is understood that the device for determining a focus point can be implemented as software or a combination of software and hardware. Specifically, the method for determining the focus point may include:
  • Step S301 Acquire a compensation parameter for identifying the offset of the focus position of the imaging object.
  • Step S302 Determine a projection scale factor.
  • the projection scale factor is used to identify the position information of the focus position of the focus lens before the first zoom operation relative to the infinity end and the closest end.
  • Step S303 Use the compensation parameter to update the projection scale factor to obtain the target scale factor.
  • the target scale factor is used to determine the target focus position of the focus lens after the first zoom operation, so as to output a clear image based on the target focus position.
  • Step S301 Acquire a compensation parameter for identifying the offset of the focus position of the imaging object.
  • the imaging object refers to any object on which the shooting operation is performed, such as: building people, people, animals, moving vehicles, and so on.
  • a focusing operation is required, so that the display clarity of the imaging object can be ensured.
  • a compensation parameter for identifying the focus position offset of the imaging object can be acquired.
  • this embodiment does not limit the specific acquisition method of the compensation parameter.
  • the theoretical focus position and actual focus corresponding to the imaging object can be acquired first. Position, and then determine the compensation parameters based on the actual focus position and the theoretical focus position.
  • the image frame corresponding to the imaging object can be acquired, and the image frame can be analyzed and processed using a preset algorithm, so that the compensation parameter can be acquired.
  • Step S302 Determine a projection scale factor.
  • the projection scale factor is used to identify the position information of the focus position of the focus lens before the first zoom operation relative to the infinity end and the closest end.
  • the determining device in this embodiment may include a zoom lens and a focus lens, as well as a zoom motor for driving the zoom lens and a focus motor for driving the focus lens.
  • the zoom lens and the focus lens can move along the axis of the lens.
  • the target zoom position of the zoom lens may be acquired first.
  • the target zoom position may be determined by the target focal length input by the user.
  • the zoom motor drives the zoom lens to move along the axis of the lens from the starting zoom position to the target zoom position.
  • the zoom lens usually passes through at least one intermediate zoom position, and these intermediate zoom positions are located between the initial zoom position and the target zoom position.
  • the object distance of the shooting object may be fixed or may change, for example, at least one of the shooting object and the shooting device has moved. In this case, the object distances of the various zoom positions are not equal.
  • the focus position corresponding to the zoom position can be determined, and the focus motor drives the focus lens to move to the focus position, so that the focus lens is in the zoom position.
  • the position is in focus, and then the zoom lens moves to the next zoom position. Repeat the above process until the zoom lens moves to the target zoom position.
  • the focus lens is also in focus at the target zoom position, completing the focusing process during the entire zooming process.
  • the target focus position corresponding to the target zoom position can be directly determined, and then the focus motor drives the focus lens to move to the target focus position to focus
  • the lens is in focus at the target zoom position.
  • the focus operation during the zooming process does not depend on the focus state of the zoom position before the zoom position, that is, it is not necessary to keep the zoom position always in focus, and the focus position of the next zoom position can be obtained. In focus.
  • the method of this embodiment has the advantages of small errors, high zoom tracking accuracy, suitable for high-magnification zoomable lenses and scenes with varying object distances, and does not rely on the focus state before zooming.
  • the current focus position of the focus lens can be obtained, and then the current focus position relative to the position information between the infinity end and the nearest end can be analyzed, so as to determine the current focus
  • the projection scale factor corresponding to the position For example, referring to Figure 1, before performing the first zoom operation, assuming that the zoom lens is at the current zoom position, based on the current zoom position, it can be determined that the current focus position of the focus lens is P1 point. At this time, it can be based on The P1 point relative to the location information of the infinity end and the nearest end determines the projection scale factor.
  • the projection scale factor can be used to identify the location information of the P1 point relative to the infinity end and the nearest end. In general, the projection scale factor can be A value greater than or equal to 0 and less than or equal to 1.
  • Step S303 Use the compensation parameter to update the projection scale factor to obtain the target scale factor.
  • the target scale factor is used to determine the target focus position of the focus lens after the first zoom operation, so as to output a clear image based on the target focus position.
  • the compensation parameter can identify the focus position offset of the imaging object, and the projection scale factor can be used to determine the focus position after the zoom operation, after obtaining the projection scale factor, the compensation parameter can be used to compare the projection scale factor. After updating, the target scale factor can be obtained, and then the target focus position of the focus lens after the first zoom operation can be determined based on the target scale factor, thereby effectively ensuring the accuracy and reliability of determining the target focus position.
  • the method for determining the focus point in this embodiment can be applied to a determination device that supports phase detection technology, and, in order to ensure the accuracy and reliability of the application of the method, it can be applied to those whose zoom magnification is less than or equal to the preset magnification threshold.
  • Zoom operation where the specific value range of the preset magnification threshold mentioned above is not limited in this embodiment, and those skilled in the art can set it arbitrarily according to specific application requirements and design requirements.
  • the preset magnification threshold may be 2 times. Magnification, 2.5 times, 3 times, 4 times, etc.
  • the focus point determination method can accurately and effectively determine the focus point after the zoom operation, thereby ensuring the quality and efficiency of the focus operation.
  • the phase detection technology can be used to obtain compensation parameters for identifying the offset of the focus position of the imaging object, thereby effectively improving the compensation.
  • the compensation parameter can be used to update the projection scale factor, so that the target scale factor can be obtained.
  • the target scale factor can be used to determine the target focus position after the first zoom operation, and then the focus lens can be controlled to be located at the above target focus position, thereby effectively ensuring the accuracy and reliability of determining the target focus position.
  • the method for determining the focus point effectively implements the method by obtaining a compensation parameter for identifying the offset of the focus position of the imaging object, and then using the compensation parameter to update the determined projection scale factor to obtain the target scale factor.
  • the target scale factor is used to determine the accuracy and reliability of the target focus position of the focus lens after the zoom operation.
  • Fig. 5 is a schematic diagram 1 of the process of obtaining compensation parameters for identifying the offset of the focus position of an imaging object provided by an embodiment of the present invention
  • the above-mentioned phase detection technology may include: Phase Diversity (PD), which outputs the current phase difference through a sensor that supports phase difference detection, and is based on the phase difference.
  • the difference and calibration data are used to calculate the current out-of-focus distance, which is used to determine the compensation parameter used to identify the offset of the focus position of the imaging object.
  • the obtaining of the compensation parameter used to identify the offset of the focus position of the imaging object in this embodiment may include:
  • Step S501 Obtain an image frame corresponding to the imaging object.
  • Step S502 Perform phase detection on the image frame to obtain a compensation parameter for identifying the offset of the focus position of the imaging object.
  • the image frame corresponding to the imaging object can be acquired in real time or according to a preset frequency, and the number of the image frames can be one or more.
  • the phase difference technology can be used to perform phase detection on the image frame, so that the phase offset corresponding to the imaging object can be obtained, and the phase offset can be analyzed and processed to identify the imaging The amount of compensation for the shift in the focus position of the subject.
  • Fig. 6 is a schematic diagram 1 of a process for determining a projection scale factor provided by an embodiment of the present invention; on the basis of the above-mentioned embodiment, with continued reference to Fig. 6, this embodiment does not limit the specific implementation manner of determining the projection scale factor.
  • a method for determining the projection scale factor may include:
  • Step S601 Obtain the total focus distance between the infinity end and the nearest end.
  • the total focus stroke refers to the stroke distance between the focus motor at the infinity end and the focus motor at the closest end when the zoom lens is at a zoom position.
  • Step S602 Determine the first distance between the focus position of the focus lens before the first zoom operation and the infinity end.
  • Step S603 Determine the ratio of the first distance to the total focus stroke as the projection scale factor.
  • the infinity end and the nearest end corresponding to the focus lens are determined immediately.
  • the projection scale factor can be determined by the infinity end and the nearest end. Specifically, the total focus distance between the infinity end and the nearest end can be obtained, and the focus position and infinity of the focus lens before the first zoom operation can be determined. The first distance between the ends, and then the ratio of the first distance to the total focus stroke can be determined as the projection scale factor.
  • the total focus stroke between the infinity end and the nearest end is a+b.
  • the focus position P1 and the infinity end are the first If a distance is a, then the projection scale factor can be determined to be a/(a+b), and the projection scale factor at this time can identify the position information of the focus position P1 relative to the infinity end and the closest end.
  • steps S601 and S602 in this embodiment is not limited to the order defined by the aforementioned sequence numbers, that is, step S602 can be executed before step S601, or step S602 can be executed simultaneously with step S601.
  • step S602 can be executed before step S601, or step S602 can be executed simultaneously with step S601.
  • Those skilled in the art can perform any configuration according to specific application requirements and design requirements, which will not be repeated here.
  • the first distance between the focus position of the focus lens before the first zoom operation and the infinity end is determined by obtaining the total focus stroke between the infinity end and the closest end, and then the first distance is compared with the infinity end.
  • the ratio of the total focus stroke is determined as the projection scale factor, which effectively guarantees the accuracy and reliability of obtaining the projection scale factor, and further improves the determination of the target focus position of the focus lens after the first zoom operation based on the projection scale factor. Accuracy.
  • Fig. 7 is a schematic diagram 1 of the process of updating the projection scale factor using the compensation parameter to obtain the target scale factor according to an embodiment of the present invention; on the basis of the above-mentioned embodiment, referring to Fig. 7, the first distance is compared with When the ratio of the total focus stroke is determined as the projection scale factor, using the compensation parameter in this embodiment to update the projection scale factor, and obtaining the target scale factor may include:
  • Step S701 Use the compensation parameter to update the first distance to obtain the updated first distance.
  • Step S702 Determine the ratio of the updated first distance to the total focus distance as the target scale factor.
  • the compensation parameter can be any one of the following: positive, negative or 0.
  • the first distance may be updated to the updated first distance by using the compensation parameter.
  • the first distance may be updated by using the compensation parameter.
  • Obtaining the updated first distance may include: comparing the compensation parameter with the first distance. The sum of a distance is determined as the first distance after the update.
  • the first distance is a and the compensation parameter is ⁇ , where ⁇ is greater than or equal to 0.
  • the updated first distance can be a+ ⁇ ;
  • the compensation parameter is - ⁇ , where ⁇ is greater than or equal to 0,
  • the ratio of the updated first distance to the total focus stroke can be determined as the target scale factor, thereby effectively realizing the accurate update operation of the projection scale factor, and then it is convenient to base on the target
  • the scale factor is used to determine the target focus position of the focus lens after the zoom operation.
  • FIG. 8 is a schematic diagram of the second process of determining the projection scale factor provided by an embodiment of the present invention; on the basis of the above-mentioned embodiment, referring to FIG. 8 continuously, this embodiment proposes another way to determine the projection scale factor. , Which can specifically include:
  • Step S801 Obtain the total focus distance between the infinity end and the nearest end.
  • Step S802 Determine a second distance between the focus position of the focus lens before the first zoom operation and the closest end.
  • Step S803 Determine the ratio of the second distance to the total focus stroke as the projection scale factor.
  • the total focus distance between the infinity end and the closest end can be obtained, and the second distance between the focus position of the focus lens before the first zoom operation and the closest end can be determined, and then the second distance can be compared with the total focus distance.
  • the ratio of the focus stroke is determined as the projection scale factor.
  • the projection scale factor can be determined to be b/(a+b), and the projection scale factor at this time can identify the position information of the focus position P1 relative to the infinity end and the closest end.
  • steps S801 and S802 in this embodiment is not limited to the order defined by the aforementioned sequence numbers, that is, step S802 can be executed before step S801, or step S802 can be executed simultaneously with step S801.
  • step S802 can be executed before step S801, or step S802 can be executed simultaneously with step S801.
  • Those skilled in the art can perform any configuration according to specific application requirements and design requirements, which will not be repeated here.
  • the second distance between the focus position of the focus lens before the first zoom operation and the closest end is determined, and then the second distance is compared with the total focus distance.
  • the ratio of the focus stroke is determined as the projection scale factor, which effectively ensures the accuracy and reliability of obtaining the projection scale factor, and further improves the accuracy of determining the target focus position of the focus lens after the first zoom operation based on the projection scale factor.
  • Fig. 9 is a second schematic diagram of the process of updating the projection scale factor using the compensation parameter to obtain the target scale factor according to an embodiment of the present invention; on the basis of the above-mentioned embodiment, referring to Fig.
  • the ratio of the total focus stroke is determined as the projection scale factor
  • using the compensation parameter in this embodiment to update the projection scale factor, and obtaining the target scale factor may include:
  • Step S901 Use the compensation parameter to update the second distance to obtain the updated second distance.
  • Step S902 Determine the ratio of the updated second distance to the total focus stroke as the target scale factor.
  • the second distance may be updated to the updated second distance by using the compensation parameter.
  • the second distance may be updated by using the compensation parameter, and obtaining the updated second distance may include: changing the compensation parameter The sum of the second distance is determined as the updated second distance.
  • the second distance is b and the compensation parameter is ⁇ , where ⁇ is greater than or equal to 0.
  • the updated second distance can be b+ ⁇ ; the compensation parameter is - ⁇ , where ⁇ is greater than or equal to 0
  • the ratio of the updated second distance to the total focus stroke can be determined as the target scale factor, thereby effectively realizing the accurate update operation of the projection scale factor, and then, it is convenient to base on the target
  • the scale factor is used to determine the target focus position of the focus lens after the zoom operation.
  • FIG. 10 is a schematic flowchart of another method for determining a focus point provided by an embodiment of the present invention; on the basis of any of the above embodiments, referring to FIG. 10, the method in this embodiment can be applied to a movable platform .
  • the above-mentioned movable platforms can include unmanned aerial vehicles, unmanned vehicles, unmanned ships, pan-tilts, mobile robots, and so on.
  • the method in this embodiment may further include:
  • Step S1001 Obtain the total focus distance between the infinity end and the nearest end.
  • Step S1002 Determine the product of the total focus stroke and the target scale factor as the target focus position of the focus lens after the first zoom operation.
  • Step S1003 Move the focus lens to the target focus position, so that the movable platform realizes the zoom tracking operation.
  • the target scale factor can be used to determine the target focus position of the focus lens after the zoom operation is performed.
  • the target zoom position corresponding to the first zoom operation may be used to obtain the total focus stroke between the infinity end and the closest end at the target zoom position.
  • the total focus stroke is related, therefore, the product of the total focus stroke and the target scale factor can be determined as the target focus position of the focus lens after the first zoom operation.
  • the focus lens can be moved to the target focus position, thereby realizing the focus operation during the zooming process, and when the method for determining the focus point is applied to a movable platform, it can be further made movable
  • the platform realizes zoom tracking operation, which further improves the stability and reliability of the use of the movable platform.
  • the focus position is P1.
  • the total focus distance between the infinity end and the closest end is a+b
  • the target scale factor is s
  • the target zoom position can be obtained, and then the total focus stroke between the infinity end and the closest end at the target zoom position is determined to be a ⁇ +b ⁇
  • the focus position corresponding to (a ⁇ +b ⁇ )*s can be determined as the target focus position of the focus lens after performing the first zoom operation.
  • the focus lens can be changed from The current focus position P1 is moved to the target focus position P2, which effectively realizes the focus operation during the zoom operation, which not only ensures the sharpness of shooting the imaging object, but also further improves the practicability of the method.
  • FIG. 11 is a schematic diagram of the second process of obtaining compensation parameters for identifying the offset of the focus position of the imaging object provided by an embodiment of the present invention; on the basis of the foregoing embodiment, referring to FIG. 11, when the zoom magnification is greater than the preset
  • the magnification threshold is used, in order to ensure the accuracy and reliability of obtaining the compensation parameters, the object distance measurement technology can be used to obtain the compensation parameters.
  • the determination method is suitable for the determining device that supports the object distance measurement technology.
  • the obtaining of the compensation parameter used to identify the offset of the focus position of the imaging object in this embodiment may include:
  • Step S1101 Acquire the theoretical focus position of the focus lens after the first zoom operation.
  • Step S1102 Determine the actual focus position corresponding to the theoretical focus position.
  • Step S1103 Determine the compensation parameter according to the theoretical focus position and the actual focus position.
  • the theoretical focus position of the focus lens after the first zoom operation can be obtained.
  • the phase detection technology can be used to determine the actual focus position corresponding to the theoretical focus position.
  • the compensation parameters can be determined according to the theoretical focus position and the actual focus position.
  • the theoretical focus position of the focus lens can be obtained as M1.
  • the definition of the image frame corresponding to the imaging object is blurry.
  • the phase detection technology can be used to analyze and process the image frame corresponding to the imaging object, so that the actual focus position M2 corresponding to the theoretical focus position can be determined, and then
  • the compensation parameter is determined according to the theoretical focus position M1 and the actual focus position M2.
  • the compensation parameter may be M2-M1, or the compensation parameter may be (M2-M1)*k, where k is a preset coefficient.
  • the theoretical focus position of the focus lens after the first zoom operation is acquired, and then the phase detection technology is used to determine the actual focus position corresponding to the theoretical focus position, and the theoretical focus position and the actual focus position are determined
  • the compensation parameter can then be used to determine the focus position after the zoom operation is performed based on the compensation parameter.
  • a way to determine the actual focus position corresponding to the theoretical focus position may include:
  • Step S1201 After the first zoom operation, an image frame corresponding to the theoretical focus position is acquired.
  • Step S1202 Based on the theoretical focus position, use the contrast focus algorithm to adjust the image frame to obtain the actual focus position corresponding to the theoretical focus position, wherein the sharpness of the image frame corresponding to the actual focus position is greater than that corresponding to the theoretical focus position The sharpness of the image frame.
  • the image frame corresponding to the theoretical focus position can be obtained, and then the image frame can be adjusted using the contrast focus algorithm and the theoretical focus position.
  • the focus adjustment corresponding to the theoretical focus position can be determined Range, use the contrast focus algorithm to adjust the theoretical focus position within the focus adjustment range, so that the sharpness of the image frame can be adjusted by adjusting the focus position. It should be noted that in order to avoid the sharpness of the image frame in a certain It changes repeatedly between blurry and clear within a period of time, which reduces the user's visual friendliness, and the determined focus adjustment range can be a relatively small range.
  • the sharpness of the image can be obtained in real time.
  • the image frame is at its maximum sharpness, the actual focus position corresponding to the theoretical focus position can be obtained.
  • the definition of the image frame corresponding to the actual focus position is greater than the definition of the image frame corresponding to the theoretical focus position.
  • the theoretical focus position when the theoretical focus position is 3m, you can first obtain the focus adjustment range corresponding to the theoretical focus position as (2.5m, 3.5m). Within the focus adjustment range, use the contrast focus algorithm to perform the theoretical focus adjustment. Adjustment, which realizes the adjustment of the sharpness of the image frame by adjusting the focus position. When the focus position is adjusted to 3.2m, the sharpness (ie, contrast) of the image frame is the maximum. At this time, the theoretical focus position can be obtained.
  • the corresponding actual focus position that is, the actual focus position may be 3.2 m, which effectively realizes the accuracy and reliability of determining the actual focus position.
  • determining the actual focus position corresponding to the theoretical focus position may include:
  • Step S1301 After the first zoom operation, an image frame corresponding to the theoretical focus position is acquired.
  • Step S1302 Use the phase detection algorithm to analyze and process the image frame to obtain the actual focus position corresponding to the theoretical focus position.
  • the image frame corresponding to the theoretical focus position can be obtained, and then the image frame can be analyzed and processed by the phase detection algorithm, so that the actual focus position corresponding to the theoretical focus position can be obtained, which effectively improves The quality and efficiency of obtaining the actual focus position are improved.
  • the theoretical focus position can be determined by any one of phase detection technology and object distance measurement technology.
  • the corresponding actual focus position for example, the actual focus position corresponding to the theoretical focus position can be determined by the phase detection side technology, or the actual focus position corresponding to the theoretical focus position can also be determined by the object distance measurement technology.
  • the determination method can be applied to a determination device that supports phase detection technology and object distance measurement technology
  • different methods can be selected to determine the actual focus position based on different application scene information.
  • the environment information corresponding to the shooting operation of the imaging object can be acquired first, and then based on the environment information, an implementation method for determining the actual focus position corresponding to the theoretical focus position can be selected, and the implementation method can include phase detection technology or object distance Measurement technology; the selected implementation can then be used to determine the actual focus position corresponding to the theoretical focus position.
  • the implementation of determining the actual focus position corresponding to the theoretical focus position is not limited to the above-exemplified method. Those skilled in the art can also make any configuration according to specific application requirements and design requirements, as long as the actual focus position can be guaranteed The accuracy and reliability of the determination of the focus position is sufficient, and will not be repeated here.
  • the compensation parameter can be determined according to the theoretical focus position and the actual focus position.
  • this embodiment provides an implementation manner that can determine the compensation parameter.
  • the determination of the compensation parameter according to the theoretical focus position and the actual focus position in this embodiment may include:
  • Step S1401 Obtain the focal length range corresponding to the theoretical focus position and the actual focus position.
  • Step S1402 Determine the difference between the actual focus position and the theoretical focus position as a compensation parameter corresponding to the focal length range.
  • each focal length range can correspond to multiple different focal length information.
  • the focus range corresponding to the theoretical focus position and the actual focus position can be determined. It should be noted that the actual focus position is determined by the image frame corresponding to the theoretical focus position Therefore, the difference between the actual focus position and the theoretical focus position is relatively small, so in general, the actual focus position and the theoretical focus position can correspond to the same focal length range. After determining the focus range corresponding to the theoretical focus position and the actual focus position, the difference between the actual focus position and the theoretical focus position can be determined as the compensation parameter corresponding to the focus range.
  • the focal length range 1, the focal length range 2, the focal length range 3, and the focal length range 4 are pre-configured.
  • Each of the aforementioned focal length ranges includes a plurality of different focal length information P, the theoretical focus position is P1, and the actual focus position is P2
  • the focal range corresponding to the actual focus position and the theoretical focus position can be determined. It is assumed that the focal length range corresponding to the theoretical focus position P1 and the actual focus position P2 is the focal length range 2, and then the actual The difference between the focus position and the theoretical focus position (P2-P1) is determined as the compensation parameter corresponding to the focus range 2, that is, the mapping relationship between the focus range and the compensation parameter is established.
  • the transition focus position between the theoretical focus position and the actual focus position can be obtained, and then it can be determined that the theoretical focus position corresponds to the transition focus position
  • the first focus range of the transition focus position and the actual focus position and the second focus range corresponding to the actual focus position is determined as the first compensation parameter corresponding to the first focus range
  • the difference between the actual focus position and the transition focus position is determined as the second compensation parameter corresponding to the second focal length range. Therefore, it is effectively realized that the focusing operation during one zooming process is divided into the focusing operation during two zooming processes, and the compensation parameters corresponding to different focal length ranges can be obtained.
  • the method in this embodiment may further include:
  • Step S1403 Perform a compensation operation on the focus position corresponding to the focal length range by using the compensation parameter.
  • the compensation parameter can be used to compensate the focus position corresponding to the focal length range, which not only improves the quality and efficiency of the focus position determination, but also ensures the clarity of the image display .
  • the focal distance range corresponding to the theoretical focus position and the actual focus position is obtained, and the difference between the actual focus position and the theoretical focus position is determined as the compensation parameter corresponding to the focus range, and then the determined focus range can be used.
  • the compensation parameter performs a compensation operation on the focus position within the focal range, which effectively realizes that the focus point can be accurately and effectively determined, and then the focus operation can be performed based on the determined focus point, thereby ensuring the quality and efficiency of the focus operation.
  • this embodiment provides another implementation method for determining compensation parameters.
  • determining the compensation parameters according to the theoretical focus position and the actual focus position in this embodiment may include:
  • Step S1501 Obtain the temperature range corresponding to the theoretical focus position and the actual focus position.
  • Step S1502 Determine the difference between the actual focus position and the theoretical focus position as a compensation parameter corresponding to the temperature range.
  • temperature ranges corresponding to different focal points are pre-configured, and each temperature range can correspond to multiple different temperature information.
  • the temperature range corresponding to the theoretical focus position and the actual focus position can be determined. It should be noted that the actual focus position is determined by the image frame corresponding to the theoretical focus position Therefore, the actual focus position and the theoretical focus position theoretically correspond to the same temperature range.
  • the difference between the actual focus position and the theoretical focus position can be determined as a compensation parameter corresponding to the temperature range.
  • a temperature range T1, a temperature range T2, a temperature range T3, and a temperature range T4 are pre-configured.
  • Each of the above temperature ranges can correspond to multiple different temperature information T.
  • the temperature information T1 corresponding to the theoretical focus position P1 and the actual focus position P2 can be detected, and then the temperature information T1 determines the temperature range corresponding to the actual focus position and the theoretical focus position within the above-mentioned multiple temperature ranges.
  • the temperature range corresponding to the focus position P1 and the actual focus position P2 is the temperature range T3, and then the difference between the actual focus position and the theoretical focus position (P2-P1) can be determined as the compensation parameter corresponding to the temperature range T3, namely The mapping relationship between temperature range and compensation parameters is established.
  • the method in this embodiment may further include:
  • Step S1503 Perform a compensation operation on the focus position corresponding to the temperature range by using the compensation parameter.
  • the compensation parameter can be used to compensate the focus position corresponding to the temperature range, which not only improves the quality and efficiency of determining the focus position, but also ensures the clarity of the image display .
  • the temperature range corresponding to the theoretical focus position and the actual focus position is obtained, and the difference between the actual focus position and the theoretical focus position is determined as the compensation parameter corresponding to the temperature range, and then the determined temperature range can be used.
  • the compensation parameter compensates the focus position within the temperature range, which not only avoids the effect of different temperatures on the focus shift of the lens, but also overcomes the defect that the lens's temperature drift coefficient is less consistent, effectively ensuring the The accuracy and reliability of the focus point is determined, and then the focus operation can be performed based on the determined focus point, thereby ensuring the quality and efficiency of the focus operation.
  • FIG. 16 is a schematic flowchart of another method for determining a focus point provided by an embodiment of the present invention. on the basis of the above-mentioned embodiment, with continued reference to FIG. 16, the compensation parameters are determined according to the theoretical focus position and the actual focus position After that, the method in this embodiment may further include:
  • Step S1601 Acquire the theoretical focus position of the focus lens after the second zoom operation.
  • Step S1602 Use the compensation parameter to update the theoretical focus position to obtain the target focus position.
  • Step S1603 Move the focus lens to the target focus position to implement the zoom tracking operation.
  • the second zoom operation can be performed.
  • the theoretical focus position of the focus lens after the second zoom operation can be obtained.
  • acquiring the theoretical focus position of the focus lens after the second zoom operation may include:
  • Step S1701 Obtain a target zoom position corresponding to the second zoom operation.
  • Step S1702 Obtain the image distance at the target zoom position according to the focal length corresponding to the target zoom position, the object distance measured in real time, and the imaging formula.
  • Step S1703 Determine the theoretical focus position based on the image distance at the target zoom position.
  • u is the object distance
  • v is the image distance
  • f is the focal length. Specifically, at each zoom position, the focal length f corresponding to the zoom position and the object distance u measured in real time are substituted into the above-mentioned Gaussian imaging formula to obtain the image distance v at the zoom position.
  • the zoom lens moves to the first zoom position, assuming that the focal length corresponding to the first zoom position is f1, the measured object distance of the subject is u1. Substituting f1 and u1 into the Gaussian imaging formula, you can get The image distance v1 at the first zoom position. The same is true for other intermediate zoom positions.
  • the zoom lens moves to the target zoom position, the image distance at the target zoom position is obtained.
  • the zoom position can be obtained from a sensor set in the lens, a zoom motor, or a processor.
  • the focal length f can be obtained through the corresponding relationship.
  • the image distance at the zoom position After the image distance at the zoom position is obtained, the image distance can be converted to the focus position, and the focus lens can be moved to the focus position. For example, after the image distance u1 at the first zoom position is obtained, the image distance u1 is converted to the first focus position, and the focus lens is moved to the first focus position, so that the focus lens is in focus. The same is true for other intermediate zoom positions, so that the focus lens is in focus at each intermediate zoom position. When the image distance at the target zoom position is obtained, the focus lens is moved to the target focus position so that the focus lens is in focus at the target zoom position.
  • the focus position and the image distance v Similar to the correspondence between the zoom position and the focal length f, the focus position and the image distance v also have a fixed correspondence, which is determined in advance and stored in the lens. First, the focus position corresponding to the image distance v is obtained according to the corresponding relationship, and then the focus motor can drive the focus lens to move to the focus position.
  • the image distance and focus position at the zoom position can be obtained only according to the focal length and the object distance, instead of focusing on the current focal length like the isometric mapping method.
  • the position is mapped to the focus position of the target focal length. Therefore, the error magnification problem of zooming from the wide end to the tele end in the isometric mapping method is fundamentally eliminated, and the zoom tracking accuracy is greatly improved.
  • the focus state of the zoom position before the zoom position is not dependent, that is, the next zoom position can be obtained without keeping the zoom position in focus. Focus at the focus position.
  • the method of this embodiment has the advantages of small errors, high zoom tracking accuracy, suitable for high-magnification zoomable lenses and scenes with varying object distances, and does not rely on the focus state before zooming.
  • this embodiment provides a method for determining a focus point.
  • the subject of the determination method may be a device for determining a focus point.
  • the determining device may be implemented as a shooting device.
  • the shooting device is used to determine the focus point.
  • the zoom tracking operation can be implemented, so that the image displayed by the camera can be kept in a clear state. It should be noted that the determination method provided in this application embodiment can be flexibly adjusted according to different application scenarios.
  • the isometric projection method can be used to determine the focus point after zooming.
  • the method for determining the focus point may include:
  • the projection scale factor corresponding to the current focus position and use the ratio of the distance b between the current focus position and the nearest curve to the distance (a+b) between the infinity curve and the nearest curve as the projection scale factor as the projection scale factor as For example, after obtaining the projection scale factor, the focus position with the distance b ⁇ from the nearest curve and the ratio of b ⁇ to the distance a ⁇ +b ⁇ equal to b/(a+b) can be used as the target focus. Location.
  • a focus operation can be performed based on the target focus position, so that the determining device can implement a zoom tracking operation, so that the displayed picture can be kept in a clear focus state during the zooming process.
  • the method for determining the focus point may include:
  • the projection scale factor can be used to identify the focus position of the focus lens before the first zoom operation relative to the infinity end And the nearest position information, and then use the compensation parameter to continuously update the projection scale factor to obtain the target scale factor. After the target scale factor is obtained, the target focus position after the zoom operation can be determined based on the target scale factor.
  • a focus operation can be performed based on the target focus position, so that the determining device can implement a zoom tracking operation, so that the displayed image can always maintain a clear focus state during the zooming process.
  • variable-scale projection method in this embodiment In order to facilitate the understanding of the difference between the variable-scale projection method in this embodiment and the above-mentioned equal-scale projection method, an example is as follows:
  • the realization process of the proportional projection method includes:
  • the realization process of the variable scale projection method includes:
  • the phase detection technology can be used to determine the compensation parameter used to identify the offset of the focus position of the imaging object, and then the compensation parameter can be used to update the projection scale factor, so as to obtain a new target scale factor.
  • the compensation parameter is offset1
  • the above update operation can be performed one or more times.
  • the projection scale factor can be continuously updated iteratively, which further improves the use of the target scale factor. Determine the accuracy and reliability of the focus position.
  • the method for determining the focus point uses the projection scale factor corresponding to the variable-scale projection method that is continuously iterated by the phase detection technology, which can effectively avoid the limitation that the equal-scale projection method is only suitable for small-magnification zooming, and , There is no need to maintain the focus state before zooming, which further improves the flexibility and reliability of the method.
  • the zoom operation can be determined based on the continuous iterative variable scale projection method implemented by the phase detection technology After the focus point, or, you can also use the object distance measurement technology to achieve the focus point determination method.
  • different methods for determining the focus point can be selected based on different application scenarios, for example: the light in the application scenario is relatively dark, or facing the sky or white area, or the physical distance between the device and the shooting is determined to be relatively low.
  • the object distance measurement technology can be used to realize the method of determining the focus point.
  • variable-scale projection method based on the phase detection technology can be used to determine the focus point during the zoom operation.
  • the object distance measurement technology can be used to realize the method of determining the focus point.
  • the continuously iterative variable-scale projection method based on phase detection technology can be used to determine the focus point after zooming.
  • the object distance measurement technology is used to realize the method of determining the focus point; then the weighted sum of the target focus points obtained by the above two methods can be performed, so that the final target focus point after the zoom operation can be obtained.
  • the method for determining the focus point achieved by phase detection technology can determine the target focus point P1, and the method for determining the focus point achieved through object distance measurement technology can determine the target focus point P2, and then the above-mentioned target pair can be determined.
  • the method for determining the focus point can be automatically adjusted based on changes in the application scene.
  • the continuously iterative variable-scale projection method based on the phase detection technology can be preferentially used to determine the focus point after the zoom operation.
  • a contrast focus operation Contrast Detection Auto Focus, CDAF
  • this method can be switched to a method for determining the focus point based on the object distance measurement technology, which can greatly improve the effect and quality of the focus operation.
  • the object distance measurement technology is used to achieve the focus determination method.
  • the Methods can include:
  • the theoretical focus position of the focus lens after the first zoom operation is obtained, and the object distance detection technology is used to determine the actual focus position corresponding to the theoretical focus position, and then the theoretical focus position and the actual focus position can be determined Determine the compensation parameters.
  • the theoretical focus position of the focus lens is a
  • the retrieval range corresponding to the theoretical focus position is determined.
  • the retrieval range can be limited to a preset small range, so that Avoid the situation that the sharpness of the image frame changes back and forth due to the large-scale adjustment, which reduces the user experience.
  • the compensation parameters After the compensation parameters are obtained, they can be applied during the next zoom operation.
  • the target focus point corresponding to the current zoom operation can be obtained based on the compensation parameters, and then the secondary corrected compensation parameters can be obtained again based on the object distance measurement technology. .
  • the focus point of the zoom tracking operation can be continuously iterated and approached to the ideal focus position, so that the compensation parameter can be as close to 0 as possible, thereby improving the determination of the focus point. Accurate and reliable.
  • the corresponding compensation parameters can be calculated and iterated twice according to the zoom focal lengths. Similarly, if the compensation parameters of different temperature sections have large differences, the corresponding compensation parameters can also be calculated and iteratively performed for the corresponding compensation parameters based on the temperature section.
  • the method for determining the focus point determines the compensation parameters used to determine the focus point through the contrast focus operation, which effectively solves the situation that the temperature compensation consistency of the lens unit is poor, thereby avoiding the influence of temperature drift
  • the fuzzy display of the obtained image further improves the stability and reliability of the method.
  • FIG. 18 is a schematic structural diagram of a device for determining a focus point provided by an embodiment of the present invention. referring to FIG. 18, this embodiment provides a device for determining a focus point, which can perform the above corresponding FIG. 1
  • the method for determining the focus point specifically, the determining device may include:
  • the memory 12 is used to store computer programs
  • the processor 11 is configured to run a computer program stored in the memory 12 to realize:
  • the projection scale factor is updated by the compensation parameter to obtain the target scale factor.
  • the target scale factor is used to determine the target focus position of the focus lens after the first zoom operation, so as to output a clear image based on the target focus position.
  • the structure of the device for determining the focus point may further include a communication interface 13 for the electronic device to communicate with other devices or a communication network.
  • the processor 11 when the processor 11 obtains the compensation parameter for identifying the offset of the focus position of the imaging object, the processor 11 is used to: obtain an image frame corresponding to the imaging object; perform phase detection on the image frame to obtain A compensation parameter used to identify the offset of the focus position of the imaging object.
  • the processor 11 determines the projection scale factor
  • the processor 11 is used to: obtain the total focus stroke between the infinity end and the closest end; and determine the focus position and the infinity of the focus lens before the first zoom operation.
  • the first distance between the far ends; the ratio of the first distance to the total focus stroke is determined as the projection scale factor.
  • the processor 11 when the processor 11 uses the compensation parameter to update the projection scale factor to obtain the target scale factor, the processor 11 is configured to: use the compensation parameter to update the first distance to obtain the updated first distance; The ratio of the first rear distance to the total focus stroke is determined as the target scale factor.
  • the processor 11 when the processor 11 uses the compensation parameter to update the first distance to obtain the updated first distance, the processor 11 is configured to: determine the sum of the compensation parameter and the first distance as the updated first distance. distance.
  • the processor 11 determines the projection scale factor
  • the processor 11 is used to: obtain the total focus distance between the infinity end and the nearest end; determine the focus position of the focus lens before the first zoom operation and the nearest The second distance between the ends; the ratio of the second distance to the total focus stroke is determined as the projection scale factor.
  • the processor 11 when the processor 11 uses the compensation parameter to update the projection scale factor to obtain the target scale factor, the processor 11 is configured to: use the compensation parameter to update the second distance to obtain the updated second distance; The ratio of the second rear distance to the total focus stroke is determined as the target scale factor.
  • the processor 11 when the processor 11 uses the compensation parameter to update the second distance to obtain the updated second distance, the processor 11 is configured to: determine the sum of the compensation parameter and the second distance as the updated second distance distance.
  • the determining device is suitable for an imaging device that supports phase detection technology.
  • the determining device is applied to a movable platform; after obtaining the target scale factor, the processor 11 is also used to: obtain the total focus distance between the infinity end and the nearest end; The product is determined as the target focus position of the focus lens after the first zoom operation; the focus lens is moved to the target focus position, so that the movable platform realizes the zoom tracking operation.
  • the determining device is suitable for zooming operations in which the zoom magnification is less than or equal to the preset magnification threshold.
  • the processor 11 when the zoom magnification is greater than the preset magnification threshold; when the processor 11 obtains the compensation parameter for identifying the offset of the focus position of the imaging object, the processor 11 is used to: obtain the focus after the first zoom operation The theoretical focus position of the lens; determine the actual focus position corresponding to the theoretical focus position; determine the compensation parameters according to the theoretical focus position and the actual focus position.
  • the processor 11 determines the actual focus position corresponding to the theoretical focus position
  • the processor 11 is configured to: after the first zoom operation, obtain an image frame corresponding to the theoretical focus position; and based on the theoretical focus position Using the contrast focusing algorithm to adjust the image frame to obtain the actual focus position corresponding to the theoretical focus position, wherein the definition of the image frame corresponding to the actual focus position is greater than the definition of the image frame corresponding to the theoretical focus position.
  • the processor 11 determines the actual focus position corresponding to the theoretical focus position
  • the processor 11 is configured to: after the first zoom operation, obtain an image frame corresponding to the theoretical focus position; use a phase detection algorithm The image frame is analyzed and processed to obtain the actual focus position corresponding to the theoretical focus position.
  • the processor 11 determines the compensation parameters based on the theoretical focus position and the actual focus position
  • the processor 11 is used to: obtain the theoretical focus position and the focal distance range corresponding to the actual focus position; and compare the actual focus position with the theoretical focus position. The position difference is determined as the compensation parameter corresponding to the focal length range.
  • the processor 11 is configured to: use the compensation parameter to perform a compensation operation on the focus position corresponding to the focal length range.
  • the processor 11 determines the compensation parameters according to the theoretical focus position and the actual focus position
  • the processor 11 is used to: obtain the theoretical focus position and the temperature range corresponding to the actual focus position; and compare the actual focus position with the theoretical focus position. The position difference is determined as the compensation parameter corresponding to the temperature range.
  • the processor 11 is further configured to: use the compensation parameter to perform a compensation operation on the focus position corresponding to the temperature range.
  • the processor 11 is further configured to: obtain the theoretical focus position of the focus lens after the second zoom operation; Update to obtain the target focus position; move the focus lens to the target focus position to achieve zoom tracking operation.
  • the processor 11 when the processor 11 obtains the theoretical focus position of the focus lens after the second zoom operation, the processor 11 is also used to: obtain a target zoom position corresponding to the second zoom operation; Corresponding focal length, real-time measured object distance and imaging formula, obtain the image distance at the target zoom position; determine the theoretical focus position based on the image distance at the target zoom position.
  • the determining device is suitable for an imaging device that supports object distance measurement and/or phase detection.
  • the device shown in Fig. 18 can execute the methods of the embodiments shown in Figs.
  • the implementation process and technical effects of this technical solution please refer to the description in the embodiment shown in FIG. 1 to FIG. 17, which will not be repeated here.
  • FIG. 19 is a schematic structural diagram of a lens provided by an embodiment of the present invention. referring to FIG. 19, this embodiment provides a lens, which may include:
  • the device 22 for determining the focus point and the device 22 for determining the focus position are used to be mounted on the lens barrel 21.
  • FIG. 20 is a schematic structural diagram of an imaging device provided by an embodiment of the present invention. referring to FIG. 20, as shown in FIG. 20, this embodiment provides an imaging device, and the imaging device may include:
  • the lens 32 is fixedly or detachably mounted on the body 31.
  • FIG. 21 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention. referring to FIG. 21, this embodiment provides a movable platform, and the movable platform may include:
  • the power device 42 is arranged on the main body 41 of the platform to provide power for the movable platform;
  • the imaging device 43 in the above embodiment is installed on the platform main body 41.
  • this embodiment provides a computer-readable storage medium.
  • the storage medium is a computer-readable storage medium.
  • the computer-readable storage medium stores program instructions. The program instructions are used to determine the focus point in the above-mentioned embodiments. method.
  • the method, device, lens, imaging device, and movable platform for determining the focus point provided by the embodiments of the present invention can not only accurately determine the focus point during zooming, but also apply to high-magnification zoom lenses and object distance changes In addition, the method does not need to maintain the focus state before zooming, which further improves the practicability of the method.
  • the disclosed related devices and methods can be implemented in other ways.
  • the embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, remote control devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • the aforementioned storage media include: U disk, mobile hard disk, Read-Only Memory (ROM), Random Access Memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

本申请实施例提供了一种对焦点的确定方法、装置、镜头、成像装置和可移动平台。其中,方法包括:获取用于标识成像对象的对焦位置偏移量的补偿参数;确定投影比例系数,所述投影比例系数用于标识第一变焦操作前的对焦镜头所在的对焦位置相对于无穷远端和最近端的位置信息;利用所述补偿参数对所述投影比例系数进行更新,获得目标比例系数,所述目标比例系数用于确定所述第一变焦操作后的对焦镜头所在的目标对焦位置,以基于所述目标对焦位置输出清晰图像。本实施例提供的技术方案,可以在变焦过程中准确地确定目标对焦位置。

Description

对焦点的确定方法、装置、镜头、成像装置和可移动平台 技术领域
本发明实施例涉及摄像技术领域,尤其涉及一种对焦点的确定方法、装置、镜头、成像装置和可移动平台。
背景技术
变焦跟踪技术是指在变焦透镜移动的过程中,通过控制对焦透镜来对被拍摄的物体进行对焦的技术。具体的,在变焦透镜移动时,由于物体的大小、屏幕的亮度等会发生改变,所以如果对焦透镜没有恰当地移动,则不能实现物体的对焦,进而则无法保证对被拍摄的物体进行清晰成像。因此,为了在变焦过程中保持对焦状态,出现了变焦跟踪技术。其中,等比例映射法就是一种变焦跟踪技术。
发明内容
本发明实施例提供了一种对焦点的确定方法、装置、镜头、成像装置和可移动平台。
本发明的第一方面是为了提供一种对焦点的确定方法,包括:
获取用于标识成像对象的对焦位置偏移量的补偿参数;
确定投影比例系数,所述投影比例系数用于标识第一变焦操作前的对焦镜头所在的对焦位置相对于无穷远端和最近端的位置信息;
利用所述补偿参数对所述投影比例系数进行更新,获得目标比例系数,所述目标比例系数用于确定所述第一变焦操作后的对焦镜头所在的目标对焦位置,以基于所述目标对焦位置输出清晰图像。
本发明的第二方面是为了提供一种对焦点的确定装置,包括:
存储器,用于存储计算机程序;
处理器,用于运行所述存储器中存储的计算机程序以实现:
获取用于标识成像对象的对焦位置偏移量的补偿参数;
确定投影比例系数,所述投影比例系数用于标识第一变焦操作前的对焦 镜头所在的对焦位置相对于无穷远端和最近端的位置信息;
利用所述补偿参数对所述投影比例系数进行更新,获得目标比例系数,所述目标比例系数用于确定第一变焦操作后的对焦镜头所在的目标对焦位置,以基于所述目标对焦位置输出清晰图像。
本发明的第三方面是为了提供一种镜头,包括:
镜筒;
上述第二方面所述的对焦点的确定装置,所述对焦位置的确定装置用于安装在所述镜筒上。
本发明的第四方面是为了提供一种成像装置,包括:
机身;
上述第三方面所述的镜头,所述镜头固定或可拆卸地安装于所述机身上。
本发明的第五方面是为了提供一种可移动平台,包括:
平台主体;
动力装置,设置与所述平台主体上,用于为可移动平台提供动力;
上述第四方面所述的成像装置,设置于所述平台主体上。
本发明的第六方面是为了提供一种计算机可读存储介质,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于第一方面所述的对焦点的确定方法。
本发明实施例提供的对焦点的确定方法、装置、镜头、成像装置和可移动平台,可以在变焦过程中准确地确定目标对焦位置。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1提供了一种变焦跟踪曲线;
图2为等比例映射法的误差放大示意图;
图3为本发明实施例提供的一种对焦点的确定方法的流程示意图;
图4为本发明实施例提供的一种对焦点的确定装置的结构框图;
图5为本发明实施例提供的获取用于标识成像对象的对焦位置偏移量的补偿参数的流程示意图一;
图6为本发明实施例提供的确定投影比例系数的流程示意图一;
图7为本发明实施例提供的利用所述补偿参数对所述投影比例系数进行更新,获得目标比例系数的流程示意图一;
图8为本发明实施例提供的确定投影比例系数的流程示意图二;
图9为本发明实施例提供的利用所述补偿参数对所述投影比例系数进行更新,获得目标比例系数的流程示意图二;
图10为本发明实施例提供的另一种对焦点的确定方法的流程示意图;
图11为本发明实施例提供的获取用于标识成像对象的对焦位置偏移量的补偿参数的流程示意图二;
图12为本发明实施例提供的确定与所述理论对焦位置相对应的实际对焦位置的流程示意图一;
图13为本发明实施例提供的确定与所述理论对焦位置相对应的实际对焦位置的流程示意图二;
图14为本发明实施例提供的根据所述理论对焦位置和实际对焦位置,确定所述补偿参数的流程示意图一;
图15为本发明实施例提供的根据所述理论对焦位置和实际对焦位置,确定所述补偿参数的流程示意图二;
图16为本发明实施例提供的又一种对焦点的确定方法的流程示意图;
图17为本发明实施例提供的获取第二变焦操作后的对焦镜头所在的理论对焦位置的流程示意图;
图18为本发明实施例提供的一种对焦点的确定装置的结构示意图;
图19为本发明实施例提供的一种镜头的结构示意图;
图20为本发明实施例提供的一种成像装置的结构示意图;
图21为本发明实施例提供的一种可移动平台的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
为了便于理解本实施例中的技术方案,下面对等比例映射法进行说明:
等比例映射法(等比例投影法)是一种依据变焦跟踪曲线,根据等比例映射原则将当前焦距的对焦位置映射到目标焦距的对焦位置的方法。其中,变焦跟踪曲线是表示不同物距下,变焦镜头的变焦位置与对焦镜头的对焦位置之间的关系的曲线。
图1提供了一种变焦跟踪曲线,参考附图1所示,变焦跟踪曲线包括无穷远端(infinite端)对应的曲线400、最近端(mod端)对应的曲线402、以及无穷远端和最近端之间的各个物距所对应的曲线。
在变焦跟踪过程中,假设拍摄对象的物距位于无穷远端与最近端之间,在当前变焦位置下,对应的当前对焦位置为P1。此时,当前对焦位置P1与最近端曲线402的距离为b,当前变焦位置下,无穷远端曲线400与最近端曲线402的距离为a+b,由此得到当前对焦位置P1的投影比例系数为b/(a+b)。
在变焦镜头由当前变焦位置变焦到目标变焦位置之后,无穷远端曲线400与最近端曲线402的距离为a`+b`。基于等比例映射法,可以将与最近端曲线402的距离为b`、且b`与距离a`+b`的投影比例系数等于b/(a+b)的对焦位置P2作为目标对焦位置。
具体应用时,上述的等比例映射法适用于变焦倍率比较小的应用场景,例如:变焦倍率小于或等于2x的应用场景或者变焦倍率小于或等于3x的应用场景,在上述的应用场景中,广角端(wide端)和远摄端(tele端)的最近对焦距离基本是一致的,超焦点也差不多,简单来说,在变焦倍率比较小的应用场景中,广角端(wide端)所对应的焦距的数值范围和远摄端(tele端)所对应的焦距的数值范围相近似。因此,基于等比例映射法基本可以实现变焦过程中的对焦操作。
另外,考虑到像距与焦距之间的关系满足高斯成像公式:1/u+1/v=1/f;其中,u为物距,v为像距,f为焦距。并且,根据上述的高斯公式以及相机成像原理可知,在物距u大于2倍焦距f时,像距v在[f,2f]之间;当物距u在无穷远端时,像距v=f;当物距u是2f时,像距v=2f。
由上述关系可知,对于变焦镜头而言,像距的数值范围随焦距的扩大而 扩大。例如,对于2x的可变焦镜头,如果在wide端,对焦电机的行程为n,那么,在tele端,对焦电机的行程即为2×n。如图2所示,对焦电机在wide端的行程共有5步,tele端的行程共有10步,如果wide端的对焦位置(即理论对焦位置)在第4.5步,则对焦电机的实际对焦位置是在第4步或第5步,即实际对焦位置与理论对焦位置的误差为0.5步。当变焦到tele端后,根据等比例映射法,对焦电机的实际对焦位置为第8步或第10步,这样,实际对焦位置与tele端的理论对焦位置第9步之间的误差为1步,此时,将对焦位置的误差放大了一倍(由0.5步到1步)。如果是6x的可变焦镜头,如图2所示,基于类似的原因,对焦位置的误差将会被放大六倍。对于十倍、几十倍的高倍率可变焦镜头,对焦位置的误差同样会被放大相应的倍数。因此,等比例映射法会放大对焦位置的误差。
举例来说,对于一个10x或者30x的可变焦镜头而言,按照上述陈述方式进行计算,当tele端的行程为50步和150步时,在wide端的一步将对应tele端的10步和30步,此时,wide端的对焦位置的误差会被放大10和30倍。这样的误差放大效果会造成变焦后图像直接模糊掉,从而无法实现变焦跟踪操作。
此外,等比例映射法存在另一个缺陷:在利用等比例映射法确定对焦位置时,假设了wide端和tele端具有相同或者大致的物距范围。如果wide端最近端是0.5m,超焦距是4m,tele端最近对焦距离也是0.5m,超焦距是4-6m,此时,通过等比例映射法可以获取到较为准确的对焦位置。但是,对于高倍率的可变焦镜头,不同焦距下的物距范围相差很大。因此,如果一个高倍率镜头的wide端的最近对焦距离是0.5m,超焦距是4m;tele端的最近对焦距离是10m,超焦距是1000m,此时,若按照等比例映射法所确定的对焦位置进行对焦操作,则容易出现图像模糊的现象。
举例来说,一个镜头的wide端的最近对焦距离为0.5m、超焦距为4m,tele端的最近对焦距离为10m、超焦距为1000m。此时,如果镜头在wide端对8m物距的拍摄对象进行成像操作,8m物距可以对应图1中的无穷远端曲线400。根据等比例投影法,当焦距变焦到tele端后,目标对焦位置仍然是无穷远端曲线400上的一个点。然而,对于tele端来说,8m的物距小于tele端的最近对焦距离,即此时的物距对应最近端曲线402,tele端的目标对焦位置实际应位于最近端曲线402上。因此,对于高倍率的可变焦镜头,等比例映射法不能得到正确的对焦位置。
另外,如果变焦过程中拍摄对象与镜头之间发生相对移动,物距发生变化,等比例映射法也难以保证在变焦过程中保持对焦状态,即等比例投影法不适用物距变化的场景。同时,等比例投影法还要求变焦开始前,镜头处于对焦状态,即等比例投影法的实现依赖于变焦前的对焦状态。
综上,等比例投影法存在放大误差、对高倍率的可变焦镜头失效、不适用物距变化的场景、以及依赖变焦前的对焦状态的缺陷。
下面结合附图,对本发明的一些实施方式作详细说明。在各实施例之间不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图3为本发明实施例提供的一种对焦点的确定方法的流程示意图;参考附图3所示,为了克服等比例映射法所存在的上述技术缺陷,本实施例提供了一种对焦点的确定方法,该方法的执行主体为对焦点的确定装置,可以理解的是,该对焦点的确定装置可以实现为软件、或者软件和硬件的组合。具体的,该对焦点的确定方法可以包括:
步骤S301:获取用于标识成像对象的对焦位置偏移量的补偿参数。
步骤S302:确定投影比例系数,投影比例系数用于标识第一变焦操作前的对焦镜头所在的对焦位置相对于无穷远端和最近端的位置信息。
步骤S303:利用补偿参数对投影比例系数进行更新,获得目标比例系数,目标比例系数用于确定第一变焦操作后的对焦镜头所在的目标对焦位置,以基于目标对焦位置输出清晰图像。
下面对上述各个步骤进行详细阐述:
步骤S301:获取用于标识成像对象的对焦位置偏移量的补偿参数。
其中,成像对象是指被执行拍摄操作的任意对象,例如:建筑人、人物、动物、移动车辆等等。在对成像对象进行拍摄操作时,需要进行对焦操作,这样可以保证成像对象的显示清晰度。然而,由于所确定的对焦位置往往会存在一定偏移,因此,为了能够实现对成像对象进行准确地对焦操作,则可以获取用于标识成像对象的对焦位置偏移量的补偿参数。具体的,本实施例对于补偿参数的具体获取方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,例如:可以先获取与成像对象相对应的理论对焦位置和实际对焦位置,而后基于实际对焦位置和理论对焦位置确定补偿参数。或者,可以获取与成像对象相对应的图像帧,利用预设算法对图像帧进行分析处理,从而可以获取补偿参数。
当然的,本领域技术人员也可以采用其他的方式来获取用于标识成像对象的对焦位置偏移量的补偿参数,只要能够保证对补偿参数进行获取的准确可靠性即可,在此不再赘述。
步骤S302:确定投影比例系数,投影比例系数用于标识第一变焦操作前的对焦镜头所在的对焦位置相对于无穷远端和最近端的位置信息。
为了能够清楚地了解本实施例中方法的实现过程,下面对变焦过程中的对焦操作进行简要说明:
具体的,参考附图4所示,本实施例中的确定装置可以包括变焦镜头和对焦镜头、以及用于驱动变焦镜头的变焦电机和用于驱动对焦镜头的对焦电机。在变焦电机和对焦电机的驱动下,变焦镜头和对焦镜头可沿镜头的轴向移动。当执行第一变焦操作时,可以先获取变焦镜头的目标变焦位置,一般情况下,目标变焦位置可以由用户输入的目标焦距来确定。然后,将变焦镜头的当前变焦位置作为起始变焦位置,变焦电机驱动变焦镜头沿着镜头的轴向、从起始变焦位置向目标变焦位置移动。另外,在移动的过程中,变焦镜头通常经过至少一个中间变焦位置,这些中间变焦位置位于起始变焦位置与目标变焦位置之间。
需要说明的是,在变焦过程中,拍摄对象的物距可能是固定的,也可能发生变化,例如,拍摄对象和拍摄装置的至少一个发生了移动。在这种情况下,各个变焦位置的物距不相等。
在一些实例中,当变焦镜头移动至起始变焦位置之后的每个变焦位置后,可以确定与该变焦位置对应的对焦位置,对焦电机驱动对焦镜头移动至该对焦位置,使对焦镜头在该变焦位置处于合焦状态,然后变焦镜头再向下一个变焦位置移动。重复上述过程,直到变焦镜头移动至目标变焦位置,此时,对焦镜头在目标变焦位置也处于合焦状态,完成整个变焦过程中的对焦过程。通过在每个变焦位置均进行对焦操作,可以对所拍摄的成像对象始终处于合焦状态,进而可以实现持续地对成像对象清晰显示,不会出现模糊-清晰-模糊-清晰的情况,提高了用户的视觉友好性。
在另一些实例中,当变焦镜头由起始变焦位置移动至目标变焦位置之后,可以直接确定与目标变焦位置相对应的目标对焦位置,而后对焦电机驱动对焦镜头移动至该目标对焦位置,使对焦镜头在该目标变焦位置处于合焦状态。此时,变焦过程中的对焦操作并不依赖该变焦位置之前的变焦位置的对焦状 态,也就是说,不需要在保持变焦位置始终处于合焦状态,就可以得到下一个变焦位置的对焦位置而合焦。在获取第一对焦位置时,在起始变焦位置,无需对焦镜头合焦。因此,本实施例的方法具有误差小、变焦跟踪精度高、适用高倍率的可变焦镜头和物距变化的场景、以及不依赖变焦前的对焦状态的优点。
基于上述陈述内容可知,当执行第一变焦操作之前,可以获取对焦镜头所在的当前对焦位置,而后可以分析当前对焦位置相对于无穷远端和最近端之间的位置信息,从而可以确定与当前对焦位置相对应的投影比例系数。举例来说,参考附图1所示,在执行第一变焦操作之前,假设变焦镜头处于当前变焦位置,基于当前变焦位置可以确定对焦镜头所在的当前对焦位置为P1点,此时,则可以基于P1点相对于无穷远端和最近端所在的位置信息确定投影比例系数,该投影比例系数可以用于标识P1点相对于无穷远端和最近端的位置信息,一般情况下,该投影比例系数可以是大于或等于0、且小于或等于1的值。
步骤S303:利用补偿参数对投影比例系数进行更新,获得目标比例系数,目标比例系数用于确定第一变焦操作后的对焦镜头所在的目标对焦位置,以基于目标对焦位置输出清晰图像。
其中,由于补偿参数可以标识成像对象的对焦位置偏移量、且投影比例系数可以用于确定进行变焦操作后的对焦位置,因此,在获取到投影比例系数之后,可以利用补偿参数对投影比例系数进行更新,从而可以获得目标比例系数,而后可以基于目标比例系数来确定第一变焦操作后的对焦镜头所在的目标对焦位置,进而有效地保证了对目标对焦位置进行确定的准确可靠性。
具体实现时,本实施例中的对焦点的确定方法可以适用于支持相位检测技术的确定装置,并且,为了保证该方法应用的准确可靠性,可以适用于变焦倍率小于或等于预设倍率阈值的变焦操作,其中,本实施例对于上述的预设倍率阈值的具体数值范围不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行任意设置,例如:预设倍率阈值可以为2倍倍率、2.5倍倍率、3倍倍率或者4倍倍率等等。在变焦倍率小于或等于预设倍率阈值时,通过该对焦点的确定方法可以准确、有效地确定进行变焦操作后的对焦点,进而保证了对焦操作的质量和效率。
具体的,在基于支持相位检测技术的确定装置来执行该对焦点的确定方 法时,可以利用相位检测技术获取用于标识成像对象的对焦位置偏移量的补偿参数,从而有效地提高了对补偿参数进行获取的质量和效率。在确定投影比例系数之后,则可以利用补偿参数对投影比例系数进行更新,从而可以获得目标比例系数。之后,可以利用目标比例系数来确定进行第一变焦操作后目标对焦位置,而后可以控制对焦镜头位于上述的目标对焦位置上,进而可以有效地保证对目标对焦位置进行确定的准确可靠性。
本实施例提供的对焦点的确定方法,通过获取用于标识成像对象的对焦位置偏移量的补偿参数,而后利用补偿参数对所确定的投影比例系数进行更新,获得目标比例系数,有效地实现了在利用目标比例系数确定进行变焦操作后的对焦镜头所在的目标对焦位置的准确可靠性,另外,由于不同的应用场景(高倍率变焦的应用场景和低倍率变焦的应用场景)可以对应有不同的补偿参数,这样在利用不同的补偿参数对投影比例系数进行更新之后,可以获得与不同应用场景相对应的不同的目标比例系数,这样不仅有效地提高了该对焦点的确定方法的使用精确度和适用范围,也不存在放大对焦点的识别误差的情况,同时也适用于高倍率的可变焦镜头和物距变化的场景,并且,该方法也在变焦前保持对焦状态,进一步提高了该方法的实用性,有利于市场的推广与应用。
图5为本发明实施例提供的获取用于标识成像对象的对焦位置偏移量的补偿参数的流程示意图一;在上述实施例的基础上,继续参考附图5所示,在将该确定方法适用于支持相位检测技术的成像装置时,上述的相位检测技术可以包括:相位差异技术(Phase Diversity,简称PD),该相位差异技术通过支持相位差检测的传感器来输出当前相位差,并且基于相位差和标定数据,来计算当前失焦距离,以用于确定用于标识成像对象的对焦位置偏移量的补偿参数。具体的,本实施例中的获取用于标识成像对象的对焦位置偏移量的补偿参数可以包括:
步骤S501:获取与成像对象相对应的图像帧。
步骤S502:对图像帧进行相位检测,获得用于标识成像对象的对焦位置偏移量的补偿参数。
在对成像对象进行拍摄操作时,可以实时或者按照预设频率获取与成像对象相对应的图像帧,该图像帧的个数可以为一个或多个。在获取到图像帧之后,可以利用相位差异技术对图像帧进行相位检测,从而可以获得与成像 对象相对应的相位偏移量,通过对相位偏移量进行分析处理,从而可以确定用于标识成像对象的对焦位置偏移量的补偿量。
本实施例中,通过获取与成像对象相对应的图像帧,而后对图像帧进行相位检测,不仅有效地保证了补偿参数进行获取的质量和效率,并且也提高了对投影比例系数进行更新操作的准确性,进一步提高了该方法使用的准确可靠性。
图6为本发明实施例提供的确定投影比例系数的流程示意图一;在上述实施例的基础上,继续参考附图6所示,本实施例对于确定投影比例系数的具体实现方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,其中,一种可实现确定投影比例系数的方式可以包括:
步骤S601:获取无穷远端与最近端之间的总聚焦行程。其中,总聚焦行程是指,在变焦镜头处于一变焦位置时,对焦电机在无穷远端与对焦电机在最近端之间的行程距离。
步骤S602:确定第一变焦操作前的对焦镜头所在的对焦位置与无穷远端之间的第一距离。
步骤S603:将第一距离与总聚焦行程的比值,确定为投影比例系数。
其中,在对焦镜头的结构参数和配置参数确定之后,与该对焦镜头所对应的无穷远端和最近端随即确定。而投影比例系数可以通过无穷远端和最近端来确定,具体的,可以获取无穷远端与最近端之间的总聚焦行程,并确定第一变焦操作前的对焦镜头所在的对焦位置与无穷远端之间的第一距离,而后可以将第一距离与总聚焦行程的比值确定为投影比例系数。
举例来说,如图1所示,以对焦位置P1点为例,无穷远端与最近端之间的总聚焦行程为a+b,此时,对焦位置P1点与无穷远端之间的第一距离为a,那么,则可以确定投影比例系数为a/(a+b),此时的投影比例系数可以标识对焦位置P1相对于无穷远端和最近端的位置信息。
需要注意的是,本实施例中的上述步骤S601和步骤S602的执行顺序并不限于上述序号所限定的顺序,即步骤S602可以在步骤S601之前执行,或者,步骤S602可以与步骤S601同时执行,本领域技术人员可以根据具体的应用需求和设计需求进行任意配置,在此不再赘述。
本实施例中,通过获取无穷远端与最近端之间的总聚焦行程,确定第一变焦操作前的对焦镜头所在的对焦位置与无穷远端之间的第一距离,而后将 第一距离与总聚焦行程的比值,确定为投影比例系数,有效地保证了对投影比例系数进行获取的准确可靠性,进一步提高了基于投影比例系数来确定第一变焦操作后的对焦镜头所在的目标对焦位置的精确度。
图7为本发明实施例提供的利用补偿参数对投影比例系数进行更新,获得目标比例系数的流程示意图一;在上述实施例的基础上,继续参考附图7所示,在将第一距离与总聚焦行程的比值确定为投影比例系数时,本实施例中的利用补偿参数对投影比例系数进行更新,获得目标比例系数可以包括:
步骤S701:利用补偿参数对第一距离进行更新,获得更新后第一距离。
步骤S702:将更新后第一距离与总聚焦行程的比值,确定为目标比例系数。
其中,补偿参数可以为以下任意之一:正数、负数或者0。在获取到补偿参数之后,可以利用补偿参数将第一距离更新为更新后第一距离,具体的,利用补偿参数对第一距离进行更新,获得更新后第一距离可以包括:将补偿参数与第一距离的和值,确定为更新后第一距离。
举例来说,第一距离为a,补偿参数为β,其中,β大于或等于0,此时,更新后第一距离可以为a+β;补偿参数为-β,其中β大于或等于0,此时,更新后第一距离可以为a+(-β)=a-β。
在获取到更新后第一距离之后,则可以将更新后第一距离与总聚焦行程的比值确定为目标比例系数,从而有效地实现了对投影比例系数进行准确地更新操作,而后,便于基于目标比例系数来确定变焦操作后的对焦镜头所在的目标对焦位置。
图8为本发明实施例提供的确定投影比例系数的流程示意图二;在上述实施例的基础上,继续参考附图8所示,本实施例提出了另一种可实现确定投影比例系数的方式,具体可以包括:
步骤S801:获取无穷远端与最近端之间的总聚焦行程。
步骤S802:确定第一变焦操作前的对焦镜头所在的对焦位置与最近端之间的第二距离。
步骤S803:将第二距离与总聚焦行程的比值,确定为投影比例系数。
具体的,可以获取无穷远端与最近端之间的总聚焦行程,并确定第一变焦操作前的对焦镜头所在的对焦位置与最近端之间的第二距离,而后可以将第二距离与总聚焦行程的比值确定为投影比例系数。
举例来说,如图1所示,以对焦位置P1点为例,无穷远端与最近端之间的总聚焦行程为a+b,此时,对焦位置P1点与最近端之间的第二距离为b,那么,则可以确定投影比例系数为b/(a+b),此时的投影比例系数可以标识对焦位置P1相对于无穷远端和最近端的位置信息。
需要注意的是,本实施例中的上述步骤S801和步骤S802的执行顺序并不限于上述序号所限定的顺序,即步骤S802可以在步骤S801之前执行,或者,步骤S802可以与步骤S801同时执行,本领域技术人员可以根据具体的应用需求和设计需求进行任意配置,在此不再赘述。
本实施例中,通过获取无穷远端与最近端之间的总聚焦行程,确定第一变焦操作前的对焦镜头所在的对焦位置与最近端之间的第二距离,而后将第二距离与总聚焦行程的比值,确定为投影比例系数,有效地保证了对投影比例系数进行获取的准确可靠性,进一步提高了基于投影比例系数来确定第一变焦操作后的对焦镜头所在的目标对焦位置的精确度。
图9为本发明实施例提供的利用补偿参数对投影比例系数进行更新,获得目标比例系数的流程示意图二;在上述实施例的基础上,继续参考附图9所示,在将第二距离与总聚焦行程的比值确定为投影比例系数时,本实施例中的利用补偿参数对投影比例系数进行更新,获得目标比例系数可以包括:
步骤S901:利用补偿参数对第二距离进行更新,获得更新后第二距离。
步骤S902:将更新后第二距离与总聚焦行程的比值,确定为目标比例系数。
由于补偿参数可以为以下任意之一:正数、负数或者0。因此,在获取到补偿参数之后,可以利用补偿参数将第二距离更新为更新后第二距离,具体的,利用补偿参数对第二距离进行更新,获得更新后第二距离可以包括:将补偿参数与第二距离的和值,确定为更新后第二距离。
举例来说,第二距离为b,补偿参数为γ,其中,γ大于或等于0,此时,更新后第二距离可以为b+γ;补偿参数为-γ,其中,γ大于或等于0,此时,更新后第二距离可以为b+(-γ)=b-γ。
在获取到更新后第二距离之后,则可以将更新后第二距离与总聚焦行程的比值确定为目标比例系数,从而有效地实现了对投影比例系数进行准确地更新操作,而后,便于基于目标比例系数来确定变焦操作后的对焦镜头所在的目标对焦位置。
通过将第一距离与总聚焦行程的比值确定为投影比例系数,或者,将第二距离与总聚焦行程的比值确定为投影比例系数,有效地实现了可以采用不同的实现方式来获取投影比例参数,并且,还可以针对不同表达形式的投影比例参数进行不同的更新操作,进一步提高了该方法使用的灵活可靠性。
图10为本发明实施例提供的另一种对焦点的确定方法的流程示意图;在上述任意一个实施例的基础上,参考附图10所示,本实施例中的方法可以应用于可移动平台,上述的可移动平台可以包括无人机、无人车、无人船、云台、移动机器人等等。此时,在获得目标比例系数之后,本实施例中的方法还可以包括:
步骤S1001:获取无穷远端与最近端之间的总聚焦行程。
步骤S1002:将总聚焦行程与目标比例系数的乘积,确定为第一变焦操作后的对焦镜头所在的目标对焦位置。
步骤S1003:将对焦镜头移动至目标对焦位置,以使得可移动平台实现变焦跟踪操作。
其中,在获取到目标比例系数之后,可以利用目标比例系数来确定进行变焦操作后的对焦镜头的目标对焦位置。具体的,在执行第一变焦操作之后,可以基于与第一变焦操作相对应的目标变焦位置,而后获取目标变焦位置处的无穷远端与最近端之间的总聚焦行程,由于目标比例系数与总聚焦行程相关,因此,可以将总聚焦行程与目标比例系数的乘积确定为第一变焦操作后的对焦镜头所在的目标对焦位置。在获取到目标对焦位置之后,可以将对焦镜头移动至目标对焦位置,从而实现了在变焦过程中的对焦操作,并且,在该对焦点的确定方法应用于可移动平台时,可以进一步使得可移动平台实现变焦跟踪操作,进一步提高了可移动平台使用的稳定可靠性。
举例来说,参考附图1所示,在执行第一变焦操作前,对焦位置为P1,此时,无穷远端与最近端之间的总聚焦行程为a+b,在目标比例系数为s时,其中0≤s≤1,而后在执行第一变焦操作之后,则可以获取目标变焦位置,而后确定目标变焦位置处的无穷远端与最近端之间的总聚焦行程为a`+b`,进而则可以将(a`+b`)*s所对应的对焦位置确定为执行第一变焦操作后的对焦镜头所在的目标对焦位置,在目标对焦位置为P2时,则可以将对焦镜头由当前对焦位置P1移动至目标对焦位置P2,有效地实现了在变焦操作过程中进行对焦操作,这样不仅保证了对成像对象进行拍摄的清晰度,进一步提高了该方法 的实用性。
图11为本发明实施例提供的获取用于标识成像对象的对焦位置偏移量的补偿参数的流程示意图二;在上述实施例的基础上,参考附图11所示,在变焦倍率大于预设倍率阈值时,为了能够保证对补偿参数进行获取的准确可靠性,可以利用物距测量技术来获取补偿参数,此时,该确定方法适用于支持物距测量技术的确定装置。具体的,本实施例中的获取用于标识成像对象的对焦位置偏移量的补偿参数可以包括:
步骤S1101:获取第一变焦操作后的对焦镜头所在的理论对焦位置。
步骤S1102:确定与理论对焦位置相对应的实际对焦位置。
步骤S1103:根据理论对焦位置和实际对焦位置,确定补偿参数。
在执行第一变焦操作之后,可以获取第一变焦操作后的对焦镜头所在的理论对焦位置,在获取到理论对焦位置之后,可以利用相位检测技术来确定与理论对焦位置相对应的实际对焦位置,而后可以根据理论对焦位置和实际对焦位置来确定补偿参数。
举例来说,在执行第一变焦操作之后,可以获取对焦镜头所在的理论对焦位置为M1,基于理论对焦位置M1进行对焦操作之后,成像对象所对应的图像帧的清晰度较为模糊,此时,则说明基于上述所获得的理论对焦位置M1存在误差。为了能够保证成像对象所对应的图像帧的清晰度较高,则可以利用相位检测技术对成像对象所对应的图像帧进行分析处理,从而可以确定与理论对焦位置相对应的实际对焦位置M2,而后根据理论对焦位置M1和实际对焦位置M2来确定补偿参数,具体的,补偿参数可以为M2-M1,或者,补偿参数可以为(M2-M1)*k,其中,k为预设系数。
本实施例中,通过获取第一变焦操作后的对焦镜头所在的理论对焦位置,而后利用相位检测技术来确定与理论对焦位置相对应的实际对焦位置,并根据理论对焦位置和实际对焦位置来确定补偿参数,继而可以基于该补偿参数来确定进行变焦操作后的对焦位置,这样不仅有效地保证了对对焦位置进行确定的准确可靠性,并且也提高了该方法的适用范围和适用场景,进一步提高了该方法使用的准确可靠性。
具体的,本实施例对于确定与理论对焦位置相对应的实际对焦位置的具体实现方式不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,其中,参考附图12所示,一种可实现确定与理论对焦位置相对应 的实际对焦位置的方式可以包括:
步骤S1201:在第一变焦操作之后,获取与理论对焦位置相对应的图像帧。
步骤S1202:基于理论对焦位置,利用反差对焦算法对图像帧进行调整,获得与理论对焦位置相对应的实际对焦位置,其中,实际对焦位置所对应的图像帧的清晰度大于理论对焦位置所对应的图像帧的清晰度。
在执行第一变焦操作之后,可以获取与理论对焦位置相对应的图像帧,而后可以利用反差对焦算法和理论对焦位置对图像帧进行调整,具体的,可以确定与理论对焦位置相对应的焦点调整范围,利用反差对焦算法在焦点调整范围内进行对理论对焦位置进行调整,这样实现了通过调整对焦位置来对图像帧的清晰度进行调整,需要注意的是,为了避免图像帧的清晰度在某一时间段内在模糊与清晰之间反复变化,降低用户的视觉友好度,所确定的焦点调整范围可以是一个比较小的范围。
在利用反差对焦算法在焦点调整范围内进行对理论对焦位置进行调整时,可以实时获取图像的清晰度,在图像帧的清晰最大时,则可以获得与理论对焦位置相对应的实际对焦位置,该实际对焦位置所对应的图像帧的清晰度大于理论对焦位置所对应的图像帧的清晰度。
举例来说,在理论对焦位置为3m时,则可以先获取与理论对焦位置相对应的焦点调整范围为(2.5m,3.5m),在焦点调整范围内,利用反差对焦算法对理论对焦位置进行调整,这样实现了通过调整对焦位置来对图像帧的清晰度进行调整,当对焦位置调整至3.2m时,图像帧的清晰度(即,对比度)最大,此时,则可以获取与理论对焦位置相对应的实际对焦位置,即实际对焦位置可以为3.2m,进而有效地实现了对于实际对焦位置进行确定的准确可靠性。
在另一些实例中,在该确定方法可以适用于支持相位检测技术的确定装置时,本实施例提供了另一种可实现确定与理论对焦位置相对应的实际对焦位置的方式,具体的,参考附图13所示,确定与理论对焦位置相对应的实际对焦位置可以包括:
步骤S1301:在第一变焦操作之后,获取与理论对焦位置相对应的图像帧。
步骤S1302:利用相位检测算法对图像帧分析处理,获得与理论对焦位置相对应的实际对焦位置。
在执行第一变焦操作之后,可以获取与理论对焦位置相对应的图像帧, 而后可以利用相位检测算法对图像帧分析处理,从而可以获得与理论对焦位置相对应的实际对焦位置,这样有效地提高了获取实际对焦位置的质量和效率。
在又一些实例中,在该确定方法可以适用于支持相位检测技术和物距测量技术的确定装置时,此时,可以通过相位检测技术和物距测量技术中的任意一个来确定与理论对焦位置相对应的实际对焦位置,例如:可以通过相位检测侧技术来确定与理论对焦位置相对应的实际对焦位置,或者,也可以通过物距测量技术来确定与理论对焦位置相对应的实际对焦位置。
在另一些实例中,在该确定方法可以适用于支持相位检测技术和物距测量技术的确定装置时,此时,可以基于不同的应用场景信息来选择不同的方式来确定实际对焦位置,具体的,可以先获取对成像对象进行拍摄操作所对应的环境信息,而后可以基于环境信息选择用于确定与理论对焦位置相对应的实际对焦位置的实现方式,该实现方式可以包括相位检测技术或物距测量技术;而后可以利用所选择的实现方式来确定与理论对焦位置相对应的实际对焦位置。
当然的,确定与理论对焦位置相对应的实际对焦位置的实现方式并不限于上述所例举的方式,本领域技术人员还可以根据具体的应用需求和设计需求进行任意配置,只要能够保证对实际对焦位置进行确定的准确可靠性即可,在此不再赘述。
此外,在获取到理论对焦位置和实际对焦位置之后,可以根据理论对焦位置和实际对焦位置来确定补偿参数。其中,本实施例提供了一种可以确定补偿参数的实现方式,具体的,参考附图14所示,本实施例中的根据理论对焦位置和实际对焦位置,确定补偿参数可以包括:
步骤S1401:获取理论对焦位置和实际对焦位置所对应的焦距范围。
步骤S1402:将实际对焦位置与理论对焦位置的差值,确定为与焦距范围相对应的补偿参数。
其中,预先配置有不同的焦距范围,每个焦距范围内可以对应有多个不同的焦距信息。在获取到理论对焦位置和实际对焦位置之后,可以确定与理论对焦位置和实际对焦位置所对应的焦距范围,需要说明的是,由于实际对焦位置是通过理论对焦位置相对应的图像帧所确定的,因此,实际对焦位置与理论对焦位置之间的差距较小,故一般情况下,实际对焦位置和理论对焦 位置可以对应同一个焦距范围。在确定与理论对焦位置和实际对焦位置所对应的焦距范围之后,则可以将实际对焦位置和理论对焦位置的差值确定为与焦距范围相对应的补偿参数。
举例来说,预先配置有焦距范围1、焦距范围2、焦距范围3和焦距范围4,上述各个焦距范围内包括有多个不同的焦距信息P,在理论对焦位置为P1,实际对焦位置为P2时,可以在上述多个焦距范围内确定与实际对焦位置和理论对焦位置相对应的焦距范围,假设与理论对焦位置P1和实际对焦位置P2相对应的焦距范围为焦距范围2,而后可以将实际对焦位置与理论对焦位置的差值(P2-P1),确定为与焦距范围2相对应的补偿参数,即建立了焦距范围与补偿参数之间的映射关系。
需要注意的是,当理论对焦位置和实际对焦位置对应不同的焦距范围时,则可以获取位于理论对焦位置和实际对焦位置之间的过渡对焦位置,而后可以确定理论对焦位置与过渡对焦位置相对应的第一焦距范围、以及过渡对焦位置与实际对焦位置相对应的第二焦距范围;而后将过渡对焦位置与理论对焦位置的差值确定为与第一焦距范围相对应的第一补偿参数,将实际对焦位置与过渡对焦位置的差值确定为与第二焦距范围相对应的第二补偿参数。从而有效地实现了将一次变焦过程中的对焦操作拆分为两次变焦过程中的对焦操作,进而可以获取到与不同的焦距范围相对应的补偿参数。
在一些实例中,在确定补偿参数之后,本实施例中的方法还可以包括:
步骤S1403:利用补偿参数对焦距范围所对应的对焦位置进行补偿操作。
在获取到与焦距范围相对应的补偿参数之后,可以利用补偿参数对该焦距范围所对应的对焦位置进行补偿操作,不仅提高了对焦位置确定的质量和效率,并且还保证了图像显示的清晰度。
本实施例中,通过获取理论对焦位置和实际对焦位置所对应的焦距范围,并将实际对焦位置与理论对焦位置的差值,确定为与焦距范围相对应的补偿参数,而后可以利用所确定的补偿参数对焦距范围内的对焦位置进行补偿操作,有效地实现了可以准确、有效地确定对焦点,而后可以基于所确定的对焦点进行对焦操作,进而保证了对焦操作的质量和效率。
另外,本实施例提供了另一种可以确定补偿参数的实现方式,具体的,参考附图15所示,本实施例中的根据理论对焦位置和实际对焦位置,确定补偿参数可以包括:
步骤S1501:获取理论对焦位置和实际对焦位置所对应的温度范围。
步骤S1502:将实际对焦位置与理论对焦位置的差值,确定为与温度范围相对应的补偿参数。
其中,预先配置有与不同焦点相对应的温度范围,每个温度范围内可以对应多个不同的温度信息。在获取到理论对焦位置和实际对焦位置之后,可以确定与理论对焦位置和实际对焦位置所对应的温度范围,需要说明的是,由于实际对焦位置是通过理论对焦位置相对应的图像帧所确定的,因此,实际对焦位置和理论对焦位置理论上对应的是同一个温度范围。在确定与理论对焦位置和实际对焦位置所对应的温度范围之后,则可以将实际对焦位置与理论对焦位置的差值,确定为与温度范围相对应的补偿参数。
举例来说,预先配置有温度范围T1、温度范围T2、温度范围T3和温度范围T4,上述各个温度范围可以对应多个不同的温度信息T,在理论对焦位置为P1,实际对焦位置为P2时,则可以检测与理论对焦位置P1和实际对焦位置P2所对应的温度信息T1,而后温度信息T1在上述多个温度范围内确定与实际对焦位置和理论对焦位置相对应的温度范围,假设与理论对焦位置P1和实际对焦位置P2相对应的温度范围为温度范围T3,而后可以将实际对焦位置与理论对焦位置的差值(P2-P1),确定为与温度范围T3相对应的补偿参数,即建立了温度范围与补偿参数之间的映射关系。
在一些实例中,在确定补偿参数之后,本实施例中的方法还可以包括:
步骤S1503:利用补偿参数对温度范围所对应的对焦位置进行补偿操作。
在获取到与温度范围相对应的补偿参数之后,可以利用补偿参数对该温度范围所对应的对焦位置进行补偿操作,不仅提高了对焦位置确定的质量和效率,并且还保证了图像显示的清晰度。
本实施例中,通过获取理论对焦位置和实际对焦位置所对应的温度范围,并将实际对焦位置与理论对焦位置的差值,确定为与温度范围相对应的补偿参数,而后可以利用所确定的补偿参数对温度范围内的对焦位置进行补偿操作,这样不仅避免了不同温度对镜头的对焦点的偏移影响,并且也克服了镜头的温漂系数一致性越差的缺陷,有效地保证了对对焦点进行确定的准确可靠性,而后可以基于所确定的对焦点进行对焦操作,进而保证了对焦操作的质量和效率。
图16为本发明实施例提供的又一种对焦点的确定方法的流程示意图;在 上述实施例的基础上,继续参考附图16所示,在根据理论对焦位置和实际对焦位置,确定补偿参数之后,本实施例中的方法还可以包括:
步骤S1601:获取第二变焦操作后的对焦镜头所在的理论对焦位置。
步骤S1602:利用补偿参数对理论对焦位置进行更新,获得目标对焦位置。
步骤S1603:将对焦镜头移动至目标对焦位置,以实现变焦跟踪操作。
在获取到补偿参数之后,可以执行第二变焦操作,在执行第二变焦操作之后,则可以获取第二变焦操作后的对焦镜头所在的理论对焦位置,具体的,参考附图17所示,本实施例中的获取第二变焦操作后的对焦镜头所在的理论对焦位置可以包括:
步骤S1701:获取与第二变焦操作相对应的目标变焦位置。
步骤S1702:根据目标变焦位置所对应的焦距、实时测量的物距以及成像公式,获得目标变焦位置处的像距。
步骤S1703:基于目标变焦位置处的像距,确定理论对焦位置。
其中,成像公式可以为高斯成像公式:1/u+1/v=1/f,上述公式中,u是物距,v是像距,f是焦距。具体来说,在每个变焦位置,将变焦位置对应的焦距f、实时测量的物距u代入上述高斯成像公式,即可得到在变焦位置处的像距v。
举例来说,当变焦镜头移动第一变焦位置后,假设第一变焦位置对应的焦距为f1,此时测量出的拍摄对象物距为u1,将f1和u1代入高斯成像公式,即可得到在第一变焦位置处的像距v1。对其他中间变焦位置也是如此。当变焦镜头移动目标变焦位置后,得到在目标变焦位置处的像距。
其中,变焦位置与焦距f之间具有固定的对应关系,这一对应关系事先确定并存储在镜头中。变焦位置可从镜头内设置的传感器、或变焦电机或者处理器中获取。当获取到变焦位置后,即可通过对应关系得到焦距f。
在获取到变焦位置处的像距后,则可以将像距转换为对焦位置,并将对焦镜头移动至对焦位置。例如,当得到第一变焦位置处的像距u1后,将像距u1转换为第一对焦位置,并将对焦镜头移动第一对焦位置,使对焦镜头处于合焦状态。对其他中间变焦位置也是如此,使对焦镜头在每个中间变焦位置均处于合焦状态。当得到目标变焦位置处的像距后,将对焦镜头移动目标对焦位置,使对焦镜头在目标变焦位置处于合焦状态。
和变焦位置与焦距f之间的对应关系相类似,对焦位置与像距v也具有固 定的对应关系,这一对应关系事先确定并存储在镜头中。首先根据对应关系得到像距v对应的对焦位置,然后,对焦电机可以驱动对焦镜头移动至对焦位置。
由此可见,本实施例的变焦跟踪方法,在每个变焦位置,只根据焦距、物距即可得到变焦位置处的像距以及对焦位置,而不是像等比例映射法那样将当前焦距的对焦位置映射到目标焦距的对焦位置,因此,从根本上消除了等比例映射法存在的由wide端向tele端变焦时的误差放大问题,变焦跟踪精度大幅提升。
另外,对于高倍率的可变焦镜头,不论是在wide端还是tele端,均可得到精确的像距以及对焦位置,因此,对高倍率的可变焦镜头同样有效。在整个变焦过程中,拍摄对象的物距有可能发生变化,由于本实施例的方法也可以实现实时测量物距,并且变焦位置处的像距是根据物距的实时测量值得到的,所以即使物距发生变化,仍然可以得到精确的对焦位置,因此适用物距变化的场景。
此外,在获取变焦位置处的像距和对焦位置时,不依赖该变焦位置之前的变焦位置的对焦状态,也就是说,不需要在保持变焦位置处于合焦状态,就可以得到下一个变焦位置的对焦位置而合焦。在获取第一对焦位置时,在起始变焦位置,无需对焦镜头合焦。因此,本实施例的方法具有误差小、变焦跟踪精度高、适用高倍率的可变焦镜头和物距变化的场景、以及不依赖变焦前的对焦状态的优点。
具体应用时,本实施例提供了一种对焦点的确定方法,该确定方法的执行主体可以为对焦点的确定装置,该确定装置可以实现为拍摄装置,在利用拍摄装置执行该对焦点的确定方法时,可以实现变焦跟踪操作,从而能够使得拍摄装置所显示的画面保持清晰的状态,需要注意的是,本应用实施例提供的确定方法可以根据不同的应用场景进行灵活调整。
应用场景一:
对于不支持物距测量技术、也不支持相位检测技术(Phase Detection Auto Focus,简称PDAF)的确定装置(例如:相机)而言,可以利用等比例投影法来确定进行变焦操作后的对焦点,此时,对焦点的确定方法可以包括:
获取与当前对焦位置相对应的投影比例系数,以当前对焦位置与最近端曲线之间的距离b与无穷远端曲线与最近端曲线之间的距离(a+b)的比值作 为投影比例系数为例进行说明,在获取到投影比例系数之后,可以将与最近端曲线的距离为b`、且b`与距离a`+b`的比例等于b/(a+b)的对焦位置作为目标对焦位置。
在获取到目标对焦位置之后,可以基于目标对焦位置进行对焦操作,使得确定装置可以实现变焦跟踪操作,从而能够使得所显示的画面能够在变焦过程中保持清晰合焦的状态。
应用场景二:
对于不支持物距测量技术、但支持相位检测技术(Phase Detection Auto Focus,简称PDAF)的确定装置(例如:相机)而言,可以基于相位检测技术而实现的不断迭代的变比例投影法来确定进行变焦操作后的对焦点,此时,对焦点的确定方法可以包括:
通过相位检测技术获取用于标识成像对象的对焦位置偏移量的补偿参数,确定投影比例系数,该投影比例系数可以用于标识第一变焦操作前的对焦镜头所在的对焦位置相对于无穷远端和最近端的位置信息,而后利用补偿参数不断地对投影比例系数进行更新,获得目标比例系数,在获取到目标比例系数之后,可以基于目标比例系数来确定进行变焦操作后的目标对焦位置。
在获取到目标对焦位置之后,可以基于目标对焦位置进行对焦操作,使得确定装置可以实现变焦跟踪操作,从而能够使得所显示的画面能够在变焦过程中始终保持清晰合焦的状态。
为了便于理解本实施例中变比例投影法与上述等比例投影法的区别,举例如下:
等比例投影法的实现过程包括:
获取当前对焦位置与无穷远端之间的距离是b0,当前对焦位置与mod端之间的距离是a0,那么,当前焦距下,无穷远端和最近端之间的距离是a0+b0;此时,则可以获得一投影比例系数k0=b0/(a0+b0)。在后续进行变焦的过程中,对焦位置与无穷远端和最近端之间的相对位置可以保持与上述投影比例系数具有相同的表达方式,例如:如b1/(a1+b1)。
变比例投影法的实现过程包括:
在进行变焦的过程中,可以利用相位检测技术来确定用于标识成像对象的对焦位置偏移量的补偿参数,而后可以利用补偿参数对投影比例系数进行更新,从而可以获得新的目标比例系数。
举例来说,补偿参数为offset1,利用补偿参数offset1对投影比例系数b1/(a1+b1)进行更新,从而可以获得新的投影比例系数k1=(b1+offset1)/(a1+b1),即新的投影比例系数为b1’/(a1+b1)。
可以想到的是,上述的更新操作可以执行一次或多次,当进行多次的往复迭代的更新操作时,则可以实现对投影比例系数进行不断地更新迭代操作,进一步提高了利用目标比例系数来确定对焦位置的准确可靠性。
本应用实施例中提供的对焦点的确定方法,通过相位检测技术不断迭代的变比例投影法所对应的投影比例系数,可以有效避免了等比例投影法只适用于小倍率变焦的局限性,并且,也无需在变焦前保持对焦的状态,进一步提高了该方法使用的灵活可靠性。
应用场景三:
对于支持物距测量技术和相位检测技术(Phase Detection Auto Focus,简称PDAF)的确定装置(例如:相机)而言,可以基于相位检测技术而实现的不断迭代的变比例投影法来确定进行变焦操作后的对焦点,或者,也可以利用物距测量技术来实现对焦点的确定方法。具体实现时,可以基于不同的应用场景来选择不同的对焦点的确定方法,例如:在应用场景中的光线比较暗,或者,面对天空或者白色区域、或者,确定装置与拍摄物理的距离较远时,由于相位检测技术的准确度较低,则可以利用物距测量技术来实现对焦点的确定方法。在应用场景中的变焦倍率比较小时,则可以利用基于相位检测技术所实现的变比例投影法来确定变焦操作过程中的对焦点。在应用场景中的变焦倍率比较大时,则可以利用物距测量技术来实现对焦点的确定方法。
在另一些实例中,对于支持物距测量技术和相位检测技术的确定装置而言,可以基于相位检测技术而实现的不断迭代的变比例投影法来确定进行变焦操作后的对焦点,也可以利用物距测量技术来实现对焦点的确定方法;而后可以对通过上述两种方法所获得的目标对焦点进行加权求和,从而可以获得进行变焦操作后的最终目标对焦点。
举例来说:通过相位检测技术所实现的对焦点的确定方法可以确定目标对焦点P1,通过物距测量技术所实现的对焦点的确定方法可以确定目标对焦点P2,而后可以对上述的目标对焦点P1和目标对焦点P2进行加权求和,从而可以获得最终目标对焦点P,例如:P=α*P1+β*P2,其中,α是与目标对焦点P1相对应的权重信息,β是与目标对焦点P2相对应的权重信息。
在又一些实例中,可以基于应用场景的变化情况来自动调整实现对焦点的确定方法。例如:在该方法应用于小倍率的变焦跟踪应用场景时,可以优先采用基于相位检测技术而实现的不断迭代的变比例投影法来确定进行变焦操作后的对焦点。这样可以避免进行变焦操作后进行反差对焦操作(Contrast Detection Auto Focus,简称CDAF),同时也避免了变焦操作过程中出现的用户体验差的情况。在该方法应用于大倍率的变焦跟踪应用场景时,则可以切换为基于物距测量技术而实现的对焦点的确定方法,这样可以大幅度的提升对焦操作的效果和质量。
应用场景四:
对于支持物距测量技术、但不支持相位检测技术(Phase Detection Auto Focus,简称PDAF)的确定装置(例如:相机)而言,利用物距测量技术来实现对焦点的确定方法,具体的,该方法可以包括:
在执行第一变焦操作之后,获取第一变焦操作后的对焦镜头所在的理论对焦位置,利用物距检测技术确定与理论对焦位置相对应的实际对焦位置,而后可以根据理论对焦位置和实际对焦位置确定补偿参数。
举例来说,在执行第一变焦操作之后,对焦镜头所在的理论对焦位置为a,而后与确定与理论对焦位置相对应的检索范围,该检索范围可以限定在一个预设的小范围,这样可以避免因大范围进行调整时,容易产生使得图像帧的清晰度存在往复变化的情况,降低用户体验。
在确定检索范围之后,则可以在检索范围内进行反差对焦操作(Contrast Detection Auto Focus,简称CDAF),而后可以找到实际对焦位置为b,继而可以确定补偿参数offset=b-a。
在获取到补偿参数之后,可以在下一次的变焦操作过程中进行应用,可以基于补偿参数获取与当前变焦操作相对应的目标对焦点,而后可以再次基于物距测量技术获得经过二次校正的补偿参数。然后,在变焦操作结束之后,可以再启动一次小范围的反差对焦操作,继续迭代补偿参数。这样,通过上述反差对焦操作的二次补偿,可以让变焦跟踪操作的对焦点可以不断迭代和逼近理想的对焦位置,从而可以使得补偿参数可以尽量趋于0,进而提高了对对焦点进行确定的准确可靠性。
在另一些实例中,为了避免不同变焦焦段的补偿参数不同,可以按照变焦焦段来对相对应的补偿参数进行二次补偿的计算和迭代。相类似的,如果 不同温度段的补偿参数的差异较大,也可以基于温度段对相对应的补偿参数进行二次补偿的计算和迭代操作。
本实施例提供的对焦点的确定方法,通过反差对焦操作来确定用于确定对焦点的补偿参数,有效地解决了镜头单体的温度补偿一致性差的情况下,从而避免了因温漂的影响而使得所获得的图像显示模糊的情况,进一步提高了该方法使用的稳定可靠性。
图18为本发明实施例提供的一种对焦点的确定装置的结构示意图;参考附图18所示,本实施例提供了一种对焦点的确定装置,该确定装置可以执行上述图1所对应的对焦点的确定方法,具体的,该确定装置可以包括:
存储器12,用于存储计算机程序;
处理器11,用于运行存储器12中存储的计算机程序以实现:
获取用于标识成像对象的对焦位置偏移量的补偿参数;
确定投影比例系数,投影比例系数用于标识第一变焦操作前的对焦镜头所在的对焦位置相对于无穷远端和最近端的位置信息;
利用补偿参数对投影比例系数进行更新,获得目标比例系数,目标比例系数用于确定第一变焦操作后的对焦镜头所在的目标对焦位置,以基于目标对焦位置输出清晰图像。
其中,对焦点的确定装置的结构中还可以包括通信接口13,用于电子设备与其他设备或通信网络通信。
在一些实例中,在处理器11获取用于标识成像对象的对焦位置偏移量的补偿参数时,处理器11用于:获取与成像对象相对应的图像帧;对图像帧进行相位检测,获得用于标识成像对象的对焦位置偏移量的补偿参数。
在一些实例中,在处理器11确定投影比例系数时,处理器11用于:获取无穷远端与最近端之间的总聚焦行程;确定第一变焦操作前的对焦镜头所在的对焦位置与无穷远端之间的第一距离;将第一距离与总聚焦行程的比值,确定为投影比例系数。
在一些实例中,在处理器11利用补偿参数对投影比例系数进行更新,获得目标比例系数时,处理器11用于:利用补偿参数对第一距离进行更新,获得更新后第一距离;将更新后第一距离与总聚焦行程的比值,确定为目标比例系数。
在一些实例中,在处理器11利用补偿参数对第一距离进行更新,获得更 新后第一距离时,处理器11用于:将补偿参数与第一距离的和值,确定为更新后第一距离。
在一些实例中,在处理器11确定投影比例系数时,处理器11用于:获取无穷远端与最近端之间的总聚焦行程;确定第一变焦操作前的对焦镜头所在的对焦位置与最近端之间的第二距离;将第二距离与总聚焦行程的比值,确定为投影比例系数。
在一些实例中,在处理器11利用补偿参数对投影比例系数进行更新,获得目标比例系数时,处理器11用于:利用补偿参数对第二距离进行更新,获得更新后第二距离;将更新后第二距离与总聚焦行程的比值,确定为目标比例系数。
在一些实例中,在处理器11利用补偿参数对第二距离进行更新,获得更新后第二距离时,处理器11用于:将补偿参数与第二距离的和值,确定为更新后第二距离。
在一些实例中,确定装置适用于支持相位检测技术的成像装置。
在一些实例中,确定装置应用于可移动平台;在获得目标比例系数之后,处理器11还用于:获取无穷远端与最近端之间的总聚焦行程;将总聚焦行程与目标比例系数的乘积,确定为第一变焦操作后的对焦镜头所在的目标对焦位置;将对焦镜头移动至目标对焦位置,以使得可移动平台实现变焦跟踪操作。
在一些实例中,确定装置适用于变焦倍率小于或等于预设倍率阈值的变焦操作。
在一些实例中,在变焦倍率大于预设倍率阈值时;在处理器11获取用于标识成像对象的对焦位置偏移量的补偿参数时,处理器11用于:获取第一变焦操作后的对焦镜头所在的理论对焦位置;确定与理论对焦位置相对应的实际对焦位置;根据理论对焦位置和实际对焦位置,确定补偿参数。
在一些实例中,在处理器11确定与理论对焦位置相对应的实际对焦位置时,处理器11用于:在第一变焦操作之后,获取与理论对焦位置相对应的图像帧;基于理论对焦位置,利用反差对焦算法对图像帧进行调整,获得与理论对焦位置相对应的实际对焦位置,其中,实际对焦位置所对应的图像帧的清晰度大于理论对焦位置所对应的图像帧的清晰度。
在一些实例中,在处理器11确定与理论对焦位置相对应的实际对焦位置时,处理器11用于:在第一变焦操作之后,获取与理论对焦位置相对应的图 像帧;利用相位检测算法对图像帧分析处理,获得与理论对焦位置相对应的实际对焦位置。
在一些实例中,在处理器11根据理论对焦位置和实际对焦位置,确定补偿参数时,处理器11用于:获取理论对焦位置和实际对焦位置所对应的焦距范围;将实际对焦位置与理论对焦位置的差值,确定为与焦距范围相对应的补偿参数。
在一些实例中,在确定补偿参数之后,处理器11用于:利用补偿参数对焦距范围所对应的对焦位置进行补偿操作。
在一些实例中,在处理器11根据理论对焦位置和实际对焦位置,确定补偿参数时,处理器11用于:获取理论对焦位置和实际对焦位置所对应的温度范围;将实际对焦位置与理论对焦位置的差值,确定为与温度范围相对应的补偿参数。
在一些实例中,在确定补偿参数之后,处理器11还用于:利用补偿参数对温度范围所对应的对焦位置进行补偿操作。
在一些实例中,在根据理论对焦位置和实际对焦位置,确定补偿参数之后,处理器11还用于:获取第二变焦操作后的对焦镜头所在的理论对焦位置;利用补偿参数对理论对焦位置进行更新,获得目标对焦位置;将对焦镜头移动至目标对焦位置,以实现变焦跟踪操作。
在一些实例中,在处理器11获取第二变焦操作后的对焦镜头所在的理论对焦位置时,处理器11还用于:获取与第二变焦操作相对应的目标变焦位置;根据目标变焦位置所对应的焦距、实时测量的物距以及成像公式,获得目标变焦位置处的像距;基于目标变焦位置处的像距,确定理论对焦位置。
在一些实例中,确定装置适用于支持物距测量和/或相位检测的成像装置。
图18所示装置可以执行图1-图17所示实施例的方法,本实施例未详细描述的部分,可参考对图1-图17所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1-图17所示实施例中的描述,在此不再赘述。
图19为本发明实施例提供的一种镜头的结构示意图;参考附图19所示,本实施例提供了一种镜头,该镜头可以包括:
镜筒21;
上述实施例中的对焦点的确定装置22,对焦位置的确定装置22用于安装在镜筒21上。
图20为本发明实施例提供的一种成像装置的结构示意图;参考附图20所示,本实施例提供了一种成像装置,该成像装置可以包括:
机身31;
上述实施例中的镜头32,镜头32固定或可拆卸地安装于机身31上。
图21为本发明实施例提供的一种可移动平台的结构示意图;参考附图21所示,本实施例提供了一种可移动平台,该可移动平台可以包括:
平台主体41;
动力装置42,设置与平台主体41上,用于为可移动平台提供动力;
上述实施例中的成像装置43,设置于平台主体41上。
此外,本实施例提供了一种计算机可读存储介质,存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,程序指令用于实现上述实施例中的对焦点的确定方法。
本发明实施例提供的对焦点的确定方法、装置、镜头、成像装置和可移动平台,不仅可以在变焦过程中对焦点进行准确地确定,同时也适用于高倍率的可变焦镜头和物距变化的场景,并且,该方法也不需要在变焦前保持对焦状态,进一步提高了该方法的实用性。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关装置和方法,可以通过其它的方式实现。例如,以上所描述的实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,遥控装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (46)

  1. 一种对焦点的确定方法,其特征在于,包括:
    获取用于标识成像对象的对焦位置偏移量的补偿参数;
    确定投影比例系数,所述投影比例系数用于标识第一变焦操作前的对焦镜头所在的对焦位置相对于无穷远端和最近端的位置信息;
    利用所述补偿参数对所述投影比例系数进行更新,获得目标比例系数,所述目标比例系数用于确定所述第一变焦操作后的对焦镜头所在的目标对焦位置,以基于所述目标对焦位置输出清晰图像。
  2. 根据权利要求1所述的方法,其特征在于,获取用于标识成像对象的对焦位置偏移量的补偿参数,包括:
    获取与所述成像对象相对应的图像帧;
    对所述图像帧进行相位检测,获得用于标识所述成像对象的对焦位置偏移量的所述补偿参数。
  3. 根据权利要求1所述的方法,其特征在于,确定投影比例系数,包括:
    获取所述无穷远端与所述最近端之间的总聚焦行程;
    确定所述第一变焦操作前的对焦镜头所在的对焦位置与所述无穷远端之间的第一距离;
    将所述第一距离与所述总聚焦行程的比值,确定为所述投影比例系数。
  4. 根据权利要求3所述的方法,其特征在于,利用所述补偿参数对所述投影比例系数进行更新,获得目标比例系数,包括:
    利用所述补偿参数对所述第一距离进行更新,获得更新后第一距离;
    将所述更新后第一距离与所述总聚焦行程的比值,确定为所述目标比例系数。
  5. 根据权利要求4所述的方法,其特征在于,利用所述补偿参数对所述第一距离进行更新,获得更新后第一距离,包括:
    将所述补偿参数与所述第一距离的和值,确定为所述更新后第一距离。
  6. 根据权利要求1所述的方法,其特征在于,确定投影比例系数,包括:
    获取所述无穷远端与所述最近端之间的总聚焦行程;
    确定所述第一变焦操作前的对焦镜头所在的对焦位置与所述最近端之间的第二距离;
    将所述第二距离与所述总聚焦行程的比值,确定为所述投影比例系数。
  7. 根据权利要求6所述的方法,其特征在于,利用所述补偿参数对所述投影比例系数进行更新,获得目标比例系数,包括:
    利用所述补偿参数对所述第二距离进行更新,获得更新后第二距离;
    将所述更新后第二距离与所述总聚焦行程的比值,确定为所述目标比例系数。
  8. 根据权利要求7所述的方法,其特征在于,利用所述补偿参数对所述第二距离进行更新,获得更新后第二距离,包括:
    将所述补偿参数与所述第二距离的和值,确定为所述更新后第二距离。
  9. 根据权利要求1-8中任意一项所述的方法,其特征在于,所述方法适用于支持相位检测技术的成像装置。
  10. 根据权利要求1-8中任意一项所述的方法,其特征在于,所述方法应用于可移动平台;在获得目标比例系数之后,所述方法还包括:
    获取所述无穷远端与所述最近端之间的总聚焦行程;
    将所述总聚焦行程与所述目标比例系数的乘积,确定为所述第一变焦操作后的对焦镜头所在的目标对焦位置;
    将所述对焦镜头移动至所述目标对焦位置,以使得所述可移动平台实现变焦跟踪操作。
  11. 根据权利要求1-8中任意一项所述的方法,其特征在于,所述方法适用于变焦倍率小于或等于预设倍率阈值的变焦操作。
  12. 根据权利要求11所述的方法,其特征在于,在所述变焦倍率大于预设倍率阈值时;获取用于标识成像对象的对焦位置偏移量的补偿参数,包括:
    获取第一变焦操作后的对焦镜头所在的理论对焦位置;
    确定与所述理论对焦位置相对应的实际对焦位置;
    根据所述理论对焦位置和实际对焦位置,确定所述补偿参数。
  13. 根据权利要求12所述的方法,其特征在于,确定与所述理论对焦位置相对应的实际对焦位置,包括:
    在所述第一变焦操作之后,获取与所述理论对焦位置相对应的图像帧;
    基于所述理论对焦位置,利用反差对焦算法对所述图像帧进行调整,获得与所述理论对焦位置相对应的实际对焦位置,其中,所述实际对焦位置所对应的图像帧的清晰度大于所述理论对焦位置所对应的图像帧的清晰度。
  14. 根据权利要求12所述的方法,其特征在于,确定与所述理论对焦位 置相对应的实际对焦位置,包括:
    在所述第一变焦操作之后,获取与所述理论对焦位置相对应的图像帧;
    利用相位检测算法对所述图像帧分析处理,获得与所述理论对焦位置相对应的实际对焦位置。
  15. 根据权利要求12所述的方法,其特征在于,根据所述理论对焦位置和实际对焦位置,确定所述补偿参数,包括:
    获取所述理论对焦位置和实际对焦位置所对应的焦距范围;
    将所述实际对焦位置与所述理论对焦位置的差值,确定为与所述焦距范围相对应的补偿参数。
  16. 根据权利要求15所述的方法,其特征在于,在确定所述补偿参数之后,所述方法还包括:
    利用所述补偿参数对所述焦距范围所对应的对焦位置进行补偿操作。
  17. 根据权利要求12所述的方法,其特征在于,根据所述理论对焦位置和实际对焦位置,确定所述补偿参数,包括:
    获取所述理论对焦位置和实际对焦位置所对应的温度范围;
    将所述实际对焦位置与所述理论对焦位置的差值,确定为与所述温度范围相对应的补偿参数。
  18. 根据权利要求17所述的方法,其特征在于,在确定所述补偿参数之后,所述方法还包括:
    利用所述补偿参数对所述温度范围所对应的对焦位置进行补偿操作。
  19. 根据权利要求12所述的方法,其特征在于,在根据所述理论对焦位置和实际对焦位置,确定所述补偿参数之后,所述方法还包括:
    获取第二变焦操作后的对焦镜头所在的理论对焦位置;
    利用所述补偿参数对所述理论对焦位置进行更新,获得目标对焦位置;
    将所述对焦镜头移动至所述目标对焦位置,以实现变焦跟踪操作。
  20. 根据权利要求19所述的方法,其特征在于,获取第二变焦操作后的对焦镜头所在的理论对焦位置,包括:
    获取与所述第二变焦操作相对应的目标变焦位置;
    根据所述目标变焦位置所对应的焦距、实时测量的物距以及成像公式,获得所述目标变焦位置处的像距;
    基于所述目标变焦位置处的像距,确定所述理论对焦位置。
  21. 根据权利要求12所述的方法,其特征在于,
    所述方法适用于支持物距测量和/或相位检测的成像装置。
  22. 一种对焦点的确定装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于运行所述存储器中存储的计算机程序以实现:
    获取用于标识成像对象的对焦位置偏移量的补偿参数;
    确定投影比例系数,所述投影比例系数用于标识第一变焦操作前的对焦镜头所在的对焦位置相对于无穷远端和最近端的位置信息;
    利用所述补偿参数对所述投影比例系数进行更新,获得目标比例系数,所述目标比例系数用于确定第一变焦操作后的对焦镜头所在的目标对焦位置,以基于所述目标对焦位置输出清晰图像。
  23. 根据权利要求22所述的装置,其特征在于,在所述处理器获取用于标识成像对象的对焦位置偏移量的补偿参数时,所述处理器用于:
    获取与所述成像对象相对应的图像帧;
    对所述图像帧进行相位检测,获得用于标识所述成像对象的对焦位置偏移量的所述补偿参数。
  24. 根据权利要求22所述的装置,其特征在于,在所述处理器确定投影比例系数时,所述处理器用于:
    获取所述无穷远端与所述最近端之间的总聚焦行程;
    确定所述第一变焦操作前的对焦镜头所在的对焦位置与所述无穷远端之间的第一距离;
    将所述第一距离与所述总聚焦行程的比值,确定为所述投影比例系数。
  25. 根据权利要求24所述的装置,其特征在于,在所述处理器利用所述补偿参数对所述投影比例系数进行更新,获得目标比例系数时,所述处理器用于:
    利用所述补偿参数对所述第一距离进行更新,获得更新后第一距离;
    将所述更新后第一距离与所述总聚焦行程的比值,确定为所述目标比例系数。
  26. 根据权利要求25所述的装置,其特征在于,在所述处理器利用所述补偿参数对所述第一距离进行更新,获得更新后第一距离时,所述处理器用 于:
    将所述补偿参数与所述第一距离的和值,确定为所述更新后第一距离。
  27. 根据权利要求22所述的装置,其特征在于,在所述处理器确定投影比例系数时,所述处理器用于:
    获取所述无穷远端与所述最近端之间的总聚焦行程;
    确定所述第一变焦操作前的对焦镜头所在的对焦位置与所述最近端之间的第二距离;
    将所述第二距离与所述总聚焦行程的比值,确定为所述投影比例系数。
  28. 根据权利要求27所述的装置,其特征在于,在所述处理器利用所述补偿参数对所述投影比例系数进行更新,获得目标比例系数时,所述处理器用于:
    利用所述补偿参数对所述第二距离进行更新,获得更新后第二距离;
    将所述更新后第二距离与所述总聚焦行程的比值,确定为所述目标比例系数。
  29. 根据权利要求28所述的装置,其特征在于,在所述处理器利用所述补偿参数对所述第二距离进行更新,获得更新后第二距离时,所述处理器用于:
    将所述补偿参数与所述第二距离的和值,确定为所述更新后第二距离。
  30. 根据权利要求22-29中任意一项所述的装置,其特征在于,所述确定装置适用于支持相位检测技术的成像装置。
  31. 根据权利要求22-29中任意一项所述的装置,其特征在于,所述确定装置应用于可移动平台;在获得目标比例系数之后,所述处理器还用于:
    获取所述无穷远端与所述最近端之间的总聚焦行程;
    将所述总聚焦行程与所述目标比例系数的乘积,确定为所述第一变焦操作后的对焦镜头所在的目标对焦位置;
    将所述对焦镜头移动至所述目标对焦位置,以使得所述可移动平台实现变焦跟踪操作。
  32. 根据权利要求22-29中任意一项所述的装置,其特征在于,所述确定装置适用于变焦倍率小于或等于预设倍率阈值的变焦操作。
  33. 根据权利要求32所述的装置,其特征在于,在所述变焦倍率大于预设倍率阈值时;在所述处理器获取用于标识成像对象的对焦位置偏移量的补 偿参数时,所述处理器用于:
    获取第一变焦操作后的对焦镜头所在的理论对焦位置;
    确定与所述理论对焦位置相对应的实际对焦位置;
    根据所述理论对焦位置和实际对焦位置,确定所述补偿参数。
  34. 根据权利要求33所述的装置,其特征在于,在所述处理器确定与所述理论对焦位置相对应的实际对焦位置时,所述处理器用于:
    在所述第一变焦操作之后,获取与所述理论对焦位置相对应的图像帧;
    基于所述理论对焦位置,利用反差对焦算法对所述图像帧进行调整,获得与所述理论对焦位置相对应的实际对焦位置,其中,所述实际对焦位置所对应的图像帧的清晰度大于所述理论对焦位置所对应的图像帧的清晰度。
  35. 根据权利要求33所述的装置,其特征在于,在所述处理器确定与所述理论对焦位置相对应的实际对焦位置时,所述处理器用于:
    在所述第一变焦操作之后,获取与所述理论对焦位置相对应的图像帧;
    利用相位检测算法对所述图像帧分析处理,获得与所述理论对焦位置相对应的实际对焦位置。
  36. 根据权利要求33所述的装置,其特征在于,在所述处理器根据所述理论对焦位置和实际对焦位置,确定所述补偿参数时,所述处理器用于:
    获取所述理论对焦位置和实际对焦位置所对应的焦距范围;
    将所述实际对焦位置与所述理论对焦位置的差值,确定为与所述焦距范围相对应的补偿参数。
  37. 根据权利要求36所述的装置,其特征在于,在确定所述补偿参数之后,所述处理器用于:
    利用所述补偿参数对所述焦距范围所对应的对焦位置进行补偿操作。
  38. 根据权利要求33所述的装置,其特征在于,在所述处理器根据所述理论对焦位置和实际对焦位置,确定所述补偿参数时,所述处理器用于:
    获取所述理论对焦位置和实际对焦位置所对应的温度范围;
    将所述实际对焦位置与所述理论对焦位置的差值,确定为与所述温度范围相对应的补偿参数。
  39. 根据权利要求38所述的装置,其特征在于,在确定所述补偿参数之后,所述处理器还用于:
    利用所述补偿参数对所述温度范围所对应的对焦位置进行补偿操作。
  40. 根据权利要求33所述的装置,其特征在于,在根据所述理论对焦位置和实际对焦位置,确定所述补偿参数之后,所述处理器还用于:
    获取第二变焦操作后的对焦镜头所在的理论对焦位置;
    利用所述补偿参数对所述理论对焦位置进行更新,获得目标对焦位置;
    将所述对焦镜头移动至所述目标对焦位置,以实现变焦跟踪操作。
  41. 根据权利要求40所述的装置,其特征在于,在所述处理器获取第二变焦操作后的对焦镜头所在的理论对焦位置时,所述处理器还用于:
    获取与所述第二变焦操作相对应的目标变焦位置;
    根据所述目标变焦位置所对应的焦距、实时测量的物距以及成像公式,获得所述目标变焦位置处的像距;
    基于所述目标变焦位置处的像距,确定所述理论对焦位置。
  42. 根据权利要求33所述的装置,其特征在于,
    所述确定装置适用于支持物距测量和/或相位检测的成像装置。
  43. 一种镜头,其特征在于,包括:
    镜筒;
    权利要求22-42中任意一项所述的对焦点的确定装置,所述对焦位置的确定装置用于安装在所述镜筒上。
  44. 一种成像装置,其特征在于,包括:
    机身;
    权利要求43所述的镜头,所述镜头固定或可拆卸地安装于所述机身上。
  45. 一种可移动平台,其特征在于,包括:
    平台主体;
    动力装置,设置与所述平台主体上,用于为可移动平台提供动力;
    权利要求44所述的成像装置,设置于所述平台主体上。
  46. 一种计算机可读存储介质,其特征在于,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现权利要求1-21中任意一项所述的对焦点的确定方法。
PCT/CN2020/081598 2020-03-27 2020-03-27 对焦点的确定方法、装置、镜头、成像装置和可移动平台 WO2021189403A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/081598 WO2021189403A1 (zh) 2020-03-27 2020-03-27 对焦点的确定方法、装置、镜头、成像装置和可移动平台
CN202080004403.7A CN112585518A (zh) 2020-03-27 2020-03-27 对焦点的确定方法、装置、镜头、成像装置和可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081598 WO2021189403A1 (zh) 2020-03-27 2020-03-27 对焦点的确定方法、装置、镜头、成像装置和可移动平台

Publications (1)

Publication Number Publication Date
WO2021189403A1 true WO2021189403A1 (zh) 2021-09-30

Family

ID=75145519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081598 WO2021189403A1 (zh) 2020-03-27 2020-03-27 对焦点的确定方法、装置、镜头、成像装置和可移动平台

Country Status (2)

Country Link
CN (1) CN112585518A (zh)
WO (1) WO2021189403A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114157857A (zh) * 2021-11-01 2022-03-08 信利光电股份有限公司 一种基于全景深的摄像模组合格检测方法
CN114518217A (zh) * 2021-12-31 2022-05-20 深圳市瑞图生物技术有限公司 镜头间中心距离确定方法、显微镜控制设备及存储介质
CN114710603A (zh) * 2022-03-24 2022-07-05 深圳市维海德技术股份有限公司 温度漂移校正方法、系统、终端设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128566A (ja) * 2004-12-10 2005-05-19 Sony Corp 撮像装置
CN102238328A (zh) * 2010-04-27 2011-11-09 佳能企业股份有限公司 成像装置的自动校正视觉参数的方法
CN104301611A (zh) * 2014-10-14 2015-01-21 浙江宇视科技有限公司 一种变焦跟踪曲线的校正方法和装置
CN106657787A (zh) * 2016-12-28 2017-05-10 天津天地伟业生产力促进有限公司 变焦跟踪曲线的快速校正方法
CN106813635A (zh) * 2015-12-02 2017-06-09 南宁富桂精密工业有限公司 一种镜头马达对焦曲线的校正方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606969B2 (ja) * 2005-08-17 2011-01-05 株式会社日立ハイテクノロジーズ 写像投影型電子線式検査装置及びその方法
KR100691245B1 (ko) * 2006-05-11 2007-03-12 삼성전자주식회사 휴대단말의 렌즈 위치오차 보정방법
JP2011150179A (ja) * 2010-01-22 2011-08-04 Canon Inc オートフォーカス装置
JP2015114370A (ja) * 2013-12-09 2015-06-22 三星電子株式会社Samsung Electronics Co.,Ltd. 被写体位置検出装置および被写体位置検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128566A (ja) * 2004-12-10 2005-05-19 Sony Corp 撮像装置
CN102238328A (zh) * 2010-04-27 2011-11-09 佳能企业股份有限公司 成像装置的自动校正视觉参数的方法
CN104301611A (zh) * 2014-10-14 2015-01-21 浙江宇视科技有限公司 一种变焦跟踪曲线的校正方法和装置
CN106813635A (zh) * 2015-12-02 2017-06-09 南宁富桂精密工业有限公司 一种镜头马达对焦曲线的校正方法及装置
CN106657787A (zh) * 2016-12-28 2017-05-10 天津天地伟业生产力促进有限公司 变焦跟踪曲线的快速校正方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114157857A (zh) * 2021-11-01 2022-03-08 信利光电股份有限公司 一种基于全景深的摄像模组合格检测方法
CN114518217A (zh) * 2021-12-31 2022-05-20 深圳市瑞图生物技术有限公司 镜头间中心距离确定方法、显微镜控制设备及存储介质
CN114518217B (zh) * 2021-12-31 2024-03-26 深圳市瑞图生物技术有限公司 镜头间中心距离确定方法、显微镜控制设备及存储介质
CN114710603A (zh) * 2022-03-24 2022-07-05 深圳市维海德技术股份有限公司 温度漂移校正方法、系统、终端设备及介质
CN114710603B (zh) * 2022-03-24 2024-02-13 深圳市维海德技术股份有限公司 温度漂移校正方法、系统、终端设备及介质

Also Published As

Publication number Publication date
CN112585518A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2021189403A1 (zh) 对焦点的确定方法、装置、镜头、成像装置和可移动平台
US11586033B2 (en) High speed variable focal field lens assembly and related methods
JP5328384B2 (ja) レンズ制御装置、光学機器及びレンズ制御方法
CN109769088B (zh) 摄像装置和可更换镜头装置及其控制方法和存储介质
JP5755188B2 (ja) 撮像装置およびレンズ装置
US8780222B2 (en) Image processing apparatus that produces a higher resolution image, image pickup apparatus and image processing program
US20130250067A1 (en) Optical stereo device and autofocus method therefor
TW201312249A (zh) 影像處理系統及自動對焦方法
WO2021189404A1 (zh) 温漂系数补偿方法、装置、镜头、成像装置和可移动平台
KR20110120590A (ko) 광학 시스템 및 이를 적용한 영상투사장치
CN111614951B (zh) 一种一体化云台摄像机的光轴校准设备及方法
JP2017161741A (ja) 焦点調節装置およびその制御方法、撮像装置、プログラム、記憶媒体
US8625004B2 (en) Method and apparatus for determining the movement of an optical axis
JP2012141491A (ja) ズームトラッキング制御装置、複眼撮像装置、および、ズームトラッキング制御装置の制御方法
CN111385466B (zh) 自动聚焦方法、装置、设备及存储介质
US20190230340A1 (en) Three-dimensional image capturing device and method
CN108431660B (zh) 范围优化的全光变焦
JP2013141192A (ja) 被写界深度拡張システム及び被写界深度拡張方法
JP2014096761A (ja) 画像処理装置、その制御方法、および制御プログラム
WO2021092846A1 (zh) 一种变焦跟踪方法和系统、镜头、成像装置和无人机
CN105676563A (zh) 一种变焦相机的对焦方法及相机
JP6448267B2 (ja) 撮像装置、その制御方法、および制御プログラム、並びにシステムおよび交換レンズユニット
KR20190116856A (ko) 카메라 모듈 및 이의 동작 방법
WO2022202180A1 (ja) フォーカス制御方法及び撮像システム
US20230333452A1 (en) Autofocus method and associated optical imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926861

Country of ref document: EP

Kind code of ref document: A1