WO2021188754A1 - Système de dépôt à refroidissement intégré sur un tambour rotatif - Google Patents

Système de dépôt à refroidissement intégré sur un tambour rotatif Download PDF

Info

Publication number
WO2021188754A1
WO2021188754A1 PCT/US2021/022882 US2021022882W WO2021188754A1 WO 2021188754 A1 WO2021188754 A1 WO 2021188754A1 US 2021022882 W US2021022882 W US 2021022882W WO 2021188754 A1 WO2021188754 A1 WO 2021188754A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cylinder
source
reactive
cooling
Prior art date
Application number
PCT/US2021/022882
Other languages
English (en)
Other versions
WO2021188754A8 (fr
Inventor
Richard Devito
Original Assignee
Richard Devito
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/823,046 external-priority patent/US20200219704A1/en
Application filed by Richard Devito filed Critical Richard Devito
Publication of WO2021188754A1 publication Critical patent/WO2021188754A1/fr
Publication of WO2021188754A8 publication Critical patent/WO2021188754A8/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0073Reactive sputtering by exposing the substrates to reactive gases intermittently
    • C23C14/0078Reactive sputtering by exposing the substrates to reactive gases intermittently by moving the substrates between spatially separate sputtering and reaction stations
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0068Reactive sputtering characterised by means for confinement of gases or sputtered material, e.g. screens, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering

Definitions

  • the invention relates generally to a thin film deposition system. More specifically, the invention relates to a magnetron sputtered reactive ion assisted deposition system with separate metallization and reaction zones and with an integrated radiative cooling mechanism.
  • DC Magnetron Sputtering is a thin film deposition technique.
  • sputtering can occur in an environment containing Argon gas (Ar).
  • Ar Argon gas
  • a negative DC potential is applied to a conductive metal “target.”
  • a plasma discharge is established to ionize the gas thereby creating Ar+ ions.
  • the positively charged Ar+ ions accelerate towards the negatively charged target and cause ejection of the target atoms through sputtering, which in turn creates a metal film on an opposing placed substrate.
  • Conventional deposition systems are complex and suffer from issues including reduced wafer throughput and material contamination issues, which can limit film quality and require extended preventative maintenance cleaning of the deposition equipment.
  • Conventional deposition systems use a batch chamber where sputter source and ion source are placed in close proximity to one another, resulting in cross talk between their respective plasmas, and where oxidation is simultaneous with film deposition.
  • RF sputtering can be used to circumvent this poisoning effect since RF power is unaffected by insulating materials.
  • RF sputtering is a much more inefficient process for power delivery to the target versus heat generated at the target.
  • Asymmetric Bipolar Pulsing the target with devices such as a SPARCLETM or Pinnacle PlusTM and similar such devices have met with some measure of success but particles can still be ejected from the non-eroded racetrack area of the target and there is also slight reduction in deposition rate.
  • MFC reactive gas mass flow controller
  • US Patent No. 8,758,580 discloses a deposition system that produces reacted films in separate sputter and ion beam zones.
  • an aperture over the magnetron is required to build up a pressure difference between the argon at the magnetron and the much lower O2 pressure from the ion source.
  • the resulting pressure gradient prevents target poisoning, but at the cost of reduction in target utilization. From a cost of ownership issue this can be potentially problematic even for relatively inexpensive aluminum targets.
  • US 20070151842 A1 discloses producing reacted films in separate zones using a sputter and ion beam zones. Differential pumping of the sputter source is used to prevent target poisoning. Additionally, since the sputtering is performed downward on a circular disc, a uniformity aperture must be used between the target and substrate to tune the film uniformity.
  • a system of depositing a film on a substrate which includes at least one metallization source for generating metal atoms, and at least one reactive source for generating at least one reactive ionic species.
  • the system further includes a pair of inner and outer concentric cylinders, where the outer cylinder has first and second openings positioned relative to the metallization source and the reactive source to allow entry of the metal atoms and the reactive ionic species into a metallization region and a reaction region, respectively, between the two cylinders.
  • At least one mount is coupled to the inner cylinder for mounting the substrate thereto such that said substrate is in radiative thermal communication with the inner surface of the outer cylinder, said inner cylinder being rotatable for moving the substrate between the two regions so as to expose the substrate alternatingly to said metal atoms and said reactive ionic species.
  • the outer cylinder includes at least one cooling channel through which a cooling fluid can flow for maintaining the inner surface of the outer cylinder at a temperature suitable for radiative cooling of the substrate.
  • the system can further include an evacuated chamber in which the inner and the outer cylinders are disposed.
  • the cooling of the inner surface of the outer cylinder can be achieved in a variety of different ways. For example, at least one cooling channel can be mounted onto the outer surface of the outer cylinder. Alternatively, at least one cooling channel can be incorporated within the wall of the outer cylinder.
  • the metallization source can be a magnetron sputtering source.
  • the metallization source can be a magnetron sputtering source for generating aluminum (Al) atoms.
  • a plurality of metallization sources can be employed, where each source generates a different metal.
  • two metallization sources can be angularly separated from each other outside of the outer cylinder and the outer cylinder can have openings, each associated with one of the sources for introducing metal atoms into a space between the two cylinders to metalize one or more substrate mounted on the inner cylinder.
  • multiple metallization sources can be installed to achieve alloy deposition of films or nano-laminate deposition of two different materials.
  • one metallization source can be operated to deposit a metal film on substrate and another metallization source can be operated at a low power to introduce metal dopants into the deposited metal film.
  • the reactive ionic species can include any of oxygen, nitrogen and a carbon-containing ion.
  • the carbon-containing ion can be, for example, a hydrocarbon, such as CFU.
  • the at least one reactive ionic species can include a mixture of at least two different reactive ionic species.
  • such a mixture can include oxygen and nitrogen ions.
  • the reactive source is a plasma source, e.g., an inductively coupled plasma (ICP) source.
  • the reactive source can be a microwave source.
  • the reactive source is disposed in an evacuated vestibule.
  • at least one baffle (typically a pair of baffles) is coupled to the outer cylinder in a space between the outer and the inner cylinder so as to limit conductance of the ionic species from the reaction region to the metallization region.
  • the inner surface of the outer cylinder exhibits an emissivity coefficient greater than about 0.7.
  • the inner surface of the outer cylinder (or at least a portion thereof) can be treated with an alumina flame spray.
  • Plasma spray is one method for treating the inner surface of the outer cylinder with alumina flame spray.
  • a cooling fluid flows through at least one channel coupled to the outer cylinder so as to maintain its inner surface at a temperature less than about 273 K, e.g., in a range of about 273 K to about 77 K.
  • a system for depositing a film on a substrate which includes a metallization region including a metallization source for metal deposition, a reaction region including a reactive source, such as an ion source, for generating at least one reactive ionic species, a mount for mounting at least one substrate, a cooling surface in thermal communication with said mount for cooling said at least one substrate via radiative cooling, where the mount is movable so as to move said at least one substrate between said metallization region and said reaction region in order to deposit a metal film on the substrate in said metallization region and to react said metal film with said reactive species in said reaction region.
  • the system can include at least one cooling channel thermally coupled to the cooling surface.
  • a cooling liquid can circulate through the cooling channel for removing heat from the cooling surface.
  • the cooling surface can be maintained at a temperature in a range of about 273 K to about 77 K.
  • the mount can include an inner cylinder rotatable about an axis, such that rotation of the inner cylinder moves the substrate between the metallization region and the reaction region, where the cooling surface is at least a portion of an inner surface of an outer cylinder disposed concentrically relative to the inner cylinder.
  • the outer cylinder is fixedly positioned relative to the metallization source and the reactive source.
  • the outer cylinder can include a first opening positioned relative to the metallization source to allow deposition of a metal film on the substrate and a second opening positioned relative to the reactive source to allow exposing a metal film deposited on the substrate to the reactive species.
  • active radiative cooling of a substrate is achieved, for example, in a manner discussed in more detail below.
  • the above system can further include at least one baffle (typically a pair of baffles) for substantially isolating the metallization region from the reaction region.
  • a cooling channel is coupled to the outer cylinder through which a cooling liquid can flow to extract heat from the inner cooling surface of the outer cylinder.
  • the inner surface of the outer cylinder can exhibit an emissivity coefficient greater than about 0.7.
  • a system for depositing a film on a substrate which comprises at least one metallization source for generating metal atoms, and at least one reactive source for generating at least one reactive species.
  • the system further includes an inner cooling cylinder and a substrate cylinder, said inner cylinder being fixedly positioned relative to the substrate cylinder, said substrate cylinder at least partially surrounding said inner cooling cylinder.
  • At least one mount is coupled to the substrate cylinder for mounting the substrate thereto, said at least one mount having an opening for exposing at least a portion of a back surface of the substrate to the inner cooling cylinder so as to provide radiative thermal communication between the substrate and the inner cylinder.
  • the substrate cylinder is rotatable for moving the substrate between a metalization region and an ion reaction region so as to expose the substrate alternately to metal atoms and reactive ion species.
  • the inner cooling cylinder comprises at least one cooling channel through which a cooling fluid can flow so as to maintain the inner cylinder at a temperature suitable for radiative cooling of one or more substrates mounted to the substrate cylinder.
  • the inner cooling cylinder and the substrate cylinder are positioned concentrically relative to one another.
  • the outer surface of the inner cooling cylinder i.e., the surface in thermal communication with the substrate(s) exhibits an emissivity coefficient of at least about 0.7.
  • the system can further include an outer cylinder that is positioned so as to at least partially surround the pair of inner cooling cylinder and the substrate cylinder.
  • the outer cylinder is fixedly positioned relative to the metallization source and the reactive source and includes first and second openings positioned relative to the metallization source and the reactive source to allow entry of metal atoms and the reactive ionic species into a metallization region and a reaction region, respectively, between the substrate cylinder and the outer cylinder so as to expose a front surface of at least one substrate to the metal atoms and the reactive ionic species as the rotation of the substrate cylinder brings the substrate in substantial register with said openings.
  • the metallization source comprises a magnetron sputtering source.
  • the reactive ion species comprises any of oxygen ion, nitrogen ion and a carbon-containing ion.
  • the carbon-containing ion comprises a hydrocarbon.
  • the hydrocarbon comprises CFU.
  • the reactive ion source comprises a plasma source.
  • the reactive ion source comprises a microwave source.
  • the plasma source comprises an inductively-coupled plasma (ICP) source.
  • the at least one reactive species comprises a mixture of at least two different reactive species.
  • the mixture of at least two different reactive species comprises a mixture of oxygen and nitrogen ions.
  • the magnetron sputtering source is configured to generate aluminum atoms for forming an aluminum film on the substrate and the reactive source is configured to generate oxygen ions for reacting with said aluminum film to form an aluminum oxide layer on said substrate.
  • the reactive source is disposed in an evacuated vestibule.
  • a pair of baffles is coupled to the outer cylinder to limit conductance of the ionic species from the reaction region to the metallization region.
  • an outer surface of the inner cylinder is treated with alumina flame spray.
  • the cooling fluid maintains the outer surface of the inner cooling cylinder at a temperature less than about 273 K.
  • FIG. 1 is a schematic diagram showing two concentric cylinders according to aspects of the present disclosure
  • FIG. 2 is a graph showing the results of a theoretical calculation for heat removal from the inner cylinder for various substrate materials and emissivities as a function of the temperature of the outer cooled cylinder, according to aspects of the present disclosure.
  • FIG. 3 is a side view of one embodiment of a deposition apparatus according to aspects of the present disclosure.
  • FIG. 4A is a perspective view of the inner cylinder being inserted into the outer cylinder according to aspects of the present disclosure
  • FIG. 4B is a perspective view showing the assembled cylinders according to aspects of the present disclosure
  • FIG. 5 is a perspective view of the outer cylinder showing cooling channels and conductance baffles according to aspects of the present disclosure
  • FIG. 6 is a cutaway view of a vacuum chamber, showing the assembly of cylinders therein and the pumping of gas through the inter-annular distance according to aspects of the present disclosure
  • FIG. 7 is a top view of the deposition apparatus of FIG. 3, configured according to aspects of the present disclosure.
  • FIG. 8 is a detailed view of the ion source flange, showing ion sources and confinement shields according to aspects of the present disclosure
  • FIG. 9 is a schematic diagram showing active cooling of the substrates according to aspects of the present disclosure.
  • FIG. 10 schematically depicts an embodiment of a deposition system in which an inner cooling cylinder is employed to cool a plurality substrates mounted on a substrate cylinder surrounding the inner cooling cylinder,
  • FIG. 11 schematically depicts another embodiment of a deposition system, which includes two cooling cylinders between which a substrate cylinder is positioned,
  • FIG. 12 schematically depicts another embodiment of a deposition system, which includes a single cooling cylinder on an outer surface of which a plurality of cooling channels is disposed, and
  • FIG. 13 schematically depicts another embodiment of a deposition system, which includes a single cooling cylinder on an inner surface of which a plurality of cooling channels is disposed.
  • the present disclosure is generally directed to deposition of metal thin films on substrates, e.g., via magnetron sputter deposition, and their subsequent reaction and in some cases densification by exposure to a reactive species generated, for example, by a plasma or ion source, as well as temperature control, e.g., during deposition.
  • reaction refers to a chemical reaction, such as “oxidation,” nitriding or carburization of a film by one or more active ionic species, such as for example O2, N2 or some form of carbon-containing ionic species.
  • active ionic species such as for example O2, N2 or some form of carbon-containing ionic species.
  • ionic species can be introduced onto a deposited metallic film as a gas.
  • oxidation reactions it should be understood that the present teachings are not limited to oxidation and can employ other reactions, such as those noted above.
  • the term “about” as used herein denotes a variation of less than 5% around a numerical value.
  • the film sputtering and the subsequent oxidation take place sequentially in separate metallization and reaction zones. This is in contrast to many prior art systems that use a batch chamber in which a sputter source and an ion source are placed in close proximity to one another, resulting in cross talk between their respective plasmas, and where oxidation is simultaneous with film deposition.
  • both film deposition and film exposure to reactive species are shielded from one another by one or more conductance limiting shield.
  • a sputtered film for example, represented as metal M
  • metal M can be deposited as a thin layer on a substrate mounted onto a rotating drum that moves the substrate past a sputter source.
  • the thin metal layer can be subsequently oxidized as the drum rotates the substrate past a plasma source, which bombards the film with activated and ionized O2 and argon ions.
  • each film deposition stage can result in the deposition of a film having a thickness, e.g., equal to or less than 5 A/rev.
  • Multiple stages of metal deposition and exposure to reactive ionic species can result in a total film thickness , e.g., up to about 7 A/rev when fully reacted.
  • Embodiments disclosed herein allow for the deposition of a metal on a substrate using reactive magnetron sputtering in an open loop mode using a standard DC sputtering supply such as an MDXTM or PinnacleTM or similar DC sputtering supply with no need for feedback control of the MFC. Further, no pulsing is required since the process of metallization and reaction take place in separate zones with no cross talk between the respective plasmas. Due to this separation, there can be insignificant build-up, and in some cases no build-up, of insulating layers, which could otherwise cause arcing. Additionally, very high effective rates of metal oxide generation can be achieved using this method.
  • An added benefit due to the setup of the conductance limiting shield or baffle is to allow temperature control, and specifically reduction of the deposition temperatures to low temperatures of ⁇ 100°C that allow extrinsic stress control of the film, as well as deposition on temperature sensitive substrates such as plastic (e.g. polycarbonate).
  • embodiments disclosed herein may use a cylindrical structure for substrate mounting. In some such embodiments, no uniformity tuning may be needed across the substrate surface for flat substrates.
  • the substrate temperature is mainly governed by power input during the metallization and reaction processes.
  • Pi is not the actual power into the magnetron but the power input from the growing film due to the film deposition from the magnetron and other energetic particles.
  • P 2 contributes to the substrates’ temperature during film growth due to the ion energy and flux density (beam current).
  • the temperature of substrates may rise quickly during the initial stages of plasma deposition, and may eventually level off, reaching quasi thermal equilibrium, and proceeding to slowly rise to some final value at the end of the deposition cycle.
  • the control of substrate temperature during film growth is important for several reasons.
  • the substrate’s temperature can affect the film stress, as one aspect of film stress is directly linked to temperature during processing, as discussed further below.
  • the substrate’s temperature must stay well below the softening point so that they do not deform during the deposition process. This is especially important, for example, in plastic optical components and lenses, since raising their temperatures beyond their softening point can change their optical and/or mechanical tolerances.
  • the temperature of polycarbonate or LexanTM should be kept below 115 °C to avoid deformation.
  • the deposition temperature can have a significant role in the total film stress. As described in Milton Oring: The Material Science of thin Films Academic Press 1992, the total film stress is given by:
  • the intrinsic stress component can be caused by many factors such as inclusions, defects, bombarding energy of incoming particles, etc.
  • Total stress, a t in equation (1) can be measured by finding the bow in a substrate and from that calculating the stress using the modified Stoney equation.
  • the effect of the thermal component of the film stress and how it can be controlled by controlling substrate temperature during deposition is of particular interest in various embodiments disclosed herein.
  • the temperature or thermal component of the film stress is expressed as: where Ti is the final temperature and T2 is the initial temperature of the substrate, ai is the coefficient of thermal expansion (CTE) of the substrate over the AT range, 012 is the CTE of the growing film over the same temperature range, Vf is Poissons ratio for film, £ is the Young Modulus for the film, and k is E f /(1-V f ).
  • the final stress component can be either tensile or compressive. Since one does not have control over CTE as it is determined based on fixed properties of the film and substrate, one way to minimize this component of stress is to minimize AT in the above equation.
  • the cooling of substrate mounted on a rotating drum may be achieved via a coolant flowing through serpentine stainless lines affixed or welded to the drum, which receive the coolant via a rotating FerrofluidicTM type feedthrough.
  • these feedthroughs can be very expensive and have been known to leak over time.
  • substrates are usually held in place by point contact or flush mounted to a puck to maximize conductive cooling, in which case thermal heat transfer is limited by poor interface coupling.
  • cooling for the substrate in a vacuum in this way is extremely inefficient.
  • insulating substrates such as glass and plastic, which are poor thermal conductors, cooling in this way is even more inefficient.
  • Various embodiments disclosed herein may use radiative cooling, a passive cooling method using the film/substrate emissivity, and the absorptivity of a cooled surface placed in close proximity to the film/substrate, such that the heat generated in the film/substrate by the processes to which the film/substrate is exposed, such as the metal deposition process, is absorbed by the cooled surface.
  • radiative cooling can be an effective method not only for temperature reduction but also for temperature control using a feedback loop to a cooling generator.
  • FIG. 1 shows two concentric cylinders, an outer cylinder of radius Ri and outer area Ai, and an inner cylinder of radius R2.
  • the cylinder of radius Ri would be the cooled cylinder and the cylinder of radius R2 would be the substrate holder or carrier.
  • the heat transfer rate (Q 12 ) from the warm to cool surface for the concentric cylinders is then given by: where ei and ei denote, respectively, the emissivity of the surfaces of the inner and outer cylinders that are in radiative thermal communication with one another.
  • equation (4) In order to maximize the radiative heat transfer from the hot to the cold cylinder, based on equation (4), one may maximize the temperature difference, which can be expensive, or may optimize the emissivity, or both. As both ei and ei approach 1, equation (4) is maximized for fixed temperatures.
  • Emissivity can be affected, among other factors, by surface finish. Table I below lists the emissivities for various substrates and surface treatments.
  • the emissivity is about 0.9. This is true for a wide range of glasses.
  • the inner surface of the outer cylinder has preferably an emissivity close to 1.
  • Polished aluminum or stainless steel (SS) has an emissivity (e) of only about 0.1. Even bead blasted SS or aluminum will only have e of about 0.22.
  • SS surface is treated by the plasma flame spray method, that is flame sprayed alumina is deposited over a stainless steel shell, one can obtain an emissivity of about 0.8. This will be shown below (see FIG.
  • FIG. 2 is a graph of equation (4), showing the effectiveness or lack of radiation heat transfer for various combinations of emissivities in Table I for two concentric cylinders, with the outer cylinder being cooled and the inner cylinder being heated by the deposition process.
  • FIG. 2 shows the superiority of cooling capacity of an alumina flame sprayed stainless surface versus stainless steel that has been subjected only to bead blasting. These graphs also show that for any surface there is a saturation in heat removal for any cold surface for a temperature around 170- 180 K. This ideally happens to be the optimum operational temperature of many industrial cryogenic refrigerators such as a PolycoldTM from Helix Co.
  • FIG. 2 also shows the heat removal capacity for the alumina flame spray stainless for temperatures of 80 °C and 100'C on the inner cylinder, which is the typical temperature range for keeping a plastic type substrate.
  • a surface treated with flame spray can be about 1000 times rougher than a bead blasted surface.
  • the amount of film that can be deposited on the flame spray treated surface can be many orders of magnitude greater before the surface loses its ability to “grab” the film.
  • the reason is that the film will not be a continuous stressed body as in smooth surfaces or even in bead blasted surface, which can become planarized by deposition of growing films once it gets to some critical thickness. Once this critical thickness occurs, the top film layer is continuous again and the stress build up will eventually cause delamination or buckling in these layers.
  • the flame sprayed surface does not suffer from these issues as the surface is very rough and is not planarized, so the film is never continuous over large areas.
  • a properly prepared flame sprayed alumina stainless steel surface can survive the direct deposition of up to 1 ⁇ 4” of silicon for a sputtering target without producing any buckling.
  • FIG. 3 shows one embodiment of a deposition apparatus configured according to aspects of the present disclosure.
  • the deposition apparatus includes an stainless steel chamber 8, which is pumped by a cryogenic pump 3.
  • An assembly of two concentric cylinders is inserted within the chamber 8.
  • the outer cylinder 1 is fixed, and has an inner surface treated with an alumina flame spray 26 as described above and shown in FIG. 7. In other embodiments, the outer cylinder may be treated with different finishes.
  • the inner cylinder 2 is rotatable by a rotating vacuum feedthrough mechanism 4 attached on the atmospheric side of the top plate 10 of the chamber 8, and driven by a variable speed motor 5.
  • the outside surface of the outer cylinder 1 has a series of hollow cooling channels or weldments 6, which allow a cooling substance such as a cooling liquid, cryogen or gas to be flowed and recycled through a cooling system which is set to some operational condition.
  • a cooling substance such as a cooling liquid, cryogen or gas
  • coolant may flow in at inlet 28a and exit at outlet 28b.
  • the outer fixed cylinder 1 is affixed to stand offs 7, which also serve to thermally isolate the cylinder from chamber 8.
  • Chamber 8 has two top mounted lift mechanisms. Flange or mount
  • a hoist (not shown), which may lift both the outer and inner cylinders 1 and 2.
  • Outer cylinder 1 is affixed to flange or mount 9 by attachment mechanism 11.
  • This mechanism may be made of a thermal isolating material such as alumina.
  • the top plate or flange may be lifted by a hoist (not shown), which may lift both the outer and inner cylinders 1 and 2.
  • Outer cylinder 1 is affixed to flange or mount 9 by attachment mechanism 11.
  • This mechanism may be made of a thermal isolating material such as alumina.
  • a metallization source 12 shown herein as a magnetron sputter cathode
  • a reactive source or ion source 13 shown herein as an ion source assembly with electron neutralizer 14.
  • the electron neutralizer 14 is depicted as a filament.
  • a hollow cathode (H/C) neutralizer may also be used in various embodiments.
  • the gas flows are fed by separate mass flow controllers to the magnetron 12 and ion source 13 by conduits 15 and 16, respectively.
  • a vacuum pump 17 is disposed in the ion source area.
  • the vacuum pump 17 may be a turbomolecular pump. In various embodiments, more than one pump may be used depending on the number of ion sources and the required gas throughput.
  • the pump or pumps in this area provide gas throughput of the gases being fed to the ion source 13 and/or the electron neutralizer 14.
  • the reactive source or ion source is enclosed in a vestibule 27 below the vacuum pump 17.
  • the purpose of a pump 17 on the ion source vestibule 27 is to provide additional pumping speed, since the conductance of cylinders 1 and 2 limit the pumping speed to the ion source 13 from pump 3.
  • the ion source 13 is preferably operated under a gas load at 2-7x10 4 torr as measured at gauge 29 shown in FIG. 7. For this to occur, additional pumping speed is provided by the pump 17. This only modesty contributes to the overall pump speed for process gas coming from the magnetron sputter sources.
  • the outer cylinder 1 may have a plurality of openings, such as cutouts or openings 18 and 19 as shown in FIG. 3. These cutouts or openings allow atoms from the magnetron 12 and ions from the ion source 13 to strike the rotating inner cylinder 2 and the substrates thereon.
  • aperture or opening 18 disposed on the outer cylinder 1 allows the sputter film to deposit on the rotating inner cylinder 2 and the substrate attached thereto, whereas aperture 19 allows ions to bombard the rotating inner cylinder 2 and the substrate attached thereto.
  • FIG. 4A shows the outer cylinder 1 and the inner cylinder 2 being inserted into the outer cylinder.
  • the outer cylinder 1 is shown to include apertures 18 and 19. However, other embodiments may include more than two apertures.
  • the inner cylinder 2 is shown to include a plurality of substrates 20 mounted thereto.
  • FIG. 4B shows the assembled structure of FIG. 4A, with the concentric cylinders 1 and 2. As the inner cylinder 2 rotates, the substrates 20 are exposed through the apertures 18 and 19 to the metallization region and the reaction region.
  • FIG. 5 shows the outer cylinder 1 having cooling channels 6.
  • the outer cylinder 1 is coupled to conductance limited baffles 21, as shown.
  • FIG. 6 is a cutaway view of vacuum chamber 8, showing the assembled cylinders including the outer cylinder 1 and the inner cylinder 2 therein.
  • gas such as O2 or other ion source gas
  • the inter-annular distance 22 is the space between the outer cylinder 1 and the inner cylinder 2, towards the cryogenic pump 3.
  • FIG. 7 is a top view of the deposition apparatus of FIG. 3, showing the sputter source 12 and the ion source 13, a vacuum gauge 30 for measuring gas pressure at the magnetron, a pressure gauge 29 for measuring pressure at the ion source, the vacuum chamber 8, the outer cylinder 1 and inner cylinder 2 having substrates 20 disposed within the chamber 8, the flame sprayed inner surface 26 of the outer cylinder, the conductance limiting baffles 21, and the inter- annular distance or space 22 as marked between small arrows.
  • the number of conductance limiting baffles and the inter-annular distance may be chosen based on the gas load from the ion source 13 and the speed of the cryogenic pump 3.
  • the intra- annular distance 22 is chosen so as to optimize conductance for pump 3 so as to continually remove O2 gas 25, to prevent the gas from traversing from the ion source 13 to the sputter source 12.
  • the conductance of the structure may be calculated as follows. Conductance depends on whether the flow is molecular or viscous. As defined in A. Roth Vacuum Technology 3rd ed. 1990 Elsevier North Holland, if D is the pipe diameter and P avg is the average pressure:
  • FIG. 8 is a more detailed view of the ion source flange 23 shown in FIG. 7, further illustrating the two ion sources 13 in a linear arrangement with confinement shields 24 configured to confine the gas being introduced into the ion source area. Electron neutralizers are not shown in FIGS. 7 and 8 for clarity.
  • the substrates 20 may be loaded into the chamber 8 by lifting the inner cylinder 2 from the chamber via a hoist (not shown) on flange 10. Once the substrates 20 are loaded, the inner cylinder 2 may be lowered back into the outer cylinder 1.
  • the chamber 8 may be pumped down by pump 3 and to some extent pump(s) 17.
  • a base pressure of less than or equal to about lxlO 6 torr is obtained as measured by a vacuum gauge such as a Bayard-Alpert hot filament gauge or equivalent high vacuum gauge.
  • the substrates are depicted as being manually loaded in a batch style system. In other embodiments, they may also be loaded in a loaded locked arrangement. In such an arrangement, the main process chamber is not vented to the atmosphere, but only the load locked portion through which substrates are transferred to the process chamber is exposed to the atmosphere.
  • a cryogenic coolant is allowed to flow to the cooling channels 6.
  • the inner cylinder 2 may be rotated at a desired speed, for example at 100 revolutions per minute (rev/min), but the speed may vary from about 40 rev/min to about 600 rev/min.
  • the reactive gas and/or argon gas may be introduced into the ion source(s) 13.
  • the pressure may be set by gauge 29, shown in FIG. 7, to the optimum setting of the process.
  • Gauge 29 may be a capacitance manometer type gauge, which is mass insensitive.
  • the pressure range may be set based on the manufacturer’ s recommendation, but may be determined by the combination of the gas flow and beam parameters.
  • the source may be operated in a range of about lxlO 4 torr to about 8x10 4 torr for pure gases or combination of gases.
  • the inner cylinder 2 may be rotated for a fixed time past the ion beam to pre-clean the substrates 20.
  • the ion bombardment at the substrate may be tuned to remove several atomic layers of contaminant at the substrate surface. This may be estimated based on the voltage of the incoming ion beam, the current of the beam at the substrate, and the density and sputter yield of the substrate at the operating beam voltage.
  • the etch rate ER or removal rate of the substrate can be expressed for normal incident ions in units of angstrom per minute (Ang/min) as: where S is the sputter yield (atoms/ion) at the beam voltage, J is the current density of the beam (mA/cm 2 ), A is the area in cm 2 and p is the density of the material being removed (gm/cm 3 ). For a substrate rotating past the beam, the actual time in the beam is proportional to the area subtended by the beam in relation to the total surface area of the cylinder.
  • the sputter yield of various substrate materials is available as a function of incoming ion voltage.
  • a movable shutter may be placed over the magnetron.
  • the purpose of the shutter is to shield any target atoms to prevent deposition on the substrate at this time.
  • Argon gas may be fed into the magnetron and controlled by a mass flow controller such that the pressure is in a range of about 0.8 mtorr to about 10 mtorr.
  • the gas pressure at the magnetron may be measured by a vacuum gauge 30, as shown in FIG. 7.
  • the vacuum gauge may be a capacitance manometer.
  • gas may be provided to the sputter source 12 by a gas feed line. In other embodiments, gas may be fed directly into the magnetron for annular distribution around the ground shield.
  • gas may be fed from a gas ring distributed about the front of the magnetron.
  • the flow of gas may be balanced against the overall speed of the pump 3 to give an operational pressure of about 0.1 torr to about 10 3 torr at the magnetron as measured by gauge 30.
  • gauge 30 In the embodiment shown in FIG.
  • the gauge 30 is a capacitance manometer gauge, and the magnetron 12 is a linear magnetron.
  • the magnetron may be a cylindrical magnetron.
  • the pressure due to gas flow at the ion source 13 may be registered on the magnetron gauge 30. It should be noted that gauge 29 should be nulled against that existing pressure so as to measure on gauge 29 the true pressure at the magnetron.
  • the power to the magnetron may be ramped up to some fixed power PI for some quantity of time tl, to bum off any residual contaminants at the target surface.
  • the argon is left to continue to flow to the sputter cathode 12, and the ion source 13 now has an amount of O2 added to the argon gas already flowing in the ion source.
  • the ion beam voltage and current may be adjusted for the current process.
  • metal atoms sputtered from magnetron are continuously deposited onto the rotating substrate as it passes by.
  • the substrate subsequently passes by the ion source 13 and is quickly oxidized and densified via exposure to the argon and oxygen ion mix in the source.
  • pure O2 in the ion source may also be used.
  • oxygen atoms that are not gettered away by the film will make their way around the cylinder by way of the inter-annular distance 22 as shown in FIG. 7.
  • This O2 gas cannot flow elsewhere in any substantial way, as it is confined by the confinement plates 24 as shown in FIGS. 7 and 8.
  • the cryogenic pump 3 continuously pumps it out prior to reaching the magnetron aperture 18.
  • the conductance limiting baffles 21 also hinder the mobility of the O2 ions, and provide impedance to the O2 flow traversing the inter-annular distance 22, thereby allowing more time for the O2 to be pumped away by the pump 3.
  • the net effect is to have an O2 pressure of less than about 10 5 torr at the magnetron source 12. At this level of O2, the metal removal rate of the magnetron significantly diminishes the probability of arcing at the magnetron due to poisoning.
  • the power PI applied to the magnetron is such that less than or equal to about 7 Angstrom/revolution of metal is deposited. If the metal thickness is greater, the incoming average ion energy which is between about 40-350 eV may not be sufficient for the ions to penetrate the metal layer to completely oxidize it. In one embodiment, the incoming ion energy is a mean energy for the gridless end hall ion source used. In other embodiments, gridded DC or RF ion sources may be used, although they have a lower beam current than end hall ion sources.
  • the beam voltage cannot go below a minimum threshold, which may be about 30 to about 50 Volts depending on the film, as energetics do not produce stoichiometric films. Also, when the ion beam voltage is too great, such as greater than about 180 to about 250 Volts, then beam ions may begin to break bonds, causing films that are again absorbing.
  • the beam voltage is a main driver in film stress behavior. As beam voltage is increased, films become more compressively stressed. As the beam voltage decreases, films become less compressively stressed.
  • the recirculating cryogenic coolant removes heat from the ion beam and sputter sources through radiative cooling.
  • This cryogenic coolant may be run at a specific temperature, such as about 183 K. Therefore, the temperature of the substrate during the process may settle to some thermal equilibrium very quickly into the run and remain at that temperature thereafter.
  • the cryogenic refrigerant may be stopped, allowing the system to warm up to room temperature so that the system may be vented without thermal shock occurring to the substrates, and to prevent condensation on the cold substrates.
  • the substrate temperature may be actively controlled, as opposed to just letting the substrates come to some arbitrary equilibrium temperature as discussed above.
  • FIG. 9 shows one embodiment that provides active cooling of substrates.
  • the deposition apparatus may include a chiller 90, having a temperature T Ch .
  • the chiller 90 may be a closed cycle Polycold cryogenic chiller.
  • the chiller 90 is coupled to the cooling channels 6 of the outer cylinder 1, providing a coolant feed 92 and a coolant return 94.
  • the chiller 90 may include a computer interface 96 with either an analog or digital I/O linked to a computer or processor 100.
  • the substrate temperature T sub may be read in real time from a substrate as shown by interface 98, for example by using a pyrometer in reflectance mode. In one embodiment, T sub may be fed to an analog I/O port on the computer.
  • the chiller 90 may include the computer or processor 100.
  • the computer or processor 100 may be configured or programmed to minimize the difference between the substrate set point temperature T sub and the actual measured temperature T sub by controlling the chiller temperature T ch .
  • the controller may be a proportional integral derivative (PID) controller configured to drive T Ch so as to control the substrate temperature by minimizing the difference between the measured and set point substrate temperatures. Other types of controllers may also be used in various embodiments.
  • PID proportional integral derivative
  • One aspect of the method of conductively isolating the sputter and ion sources is that for a process using 100% O2 in the ion beam, there is no argon present in the film down to the detection limits of Rutherford backscattered spectroscopy (RBS). If argon is introduced into the ion beam, then argon may be inserted into the growing film up to about 4-6%.
  • RBS Rutherford backscattered spectroscopy
  • the intra-annular distance 22 between cylinders 1 and 2 may be chosen such that there is sufficient pumping speed for pump 3 to remove O2 or any reactive gas used in the source that is not consumed in the ion assisted deposition process at the substrate through aperture 19.
  • the O2 reacts with the metal film M, where M is converted to MO. Any residual O2 left must now be removed.
  • the goal is to choose the speed of the pump 3 and the conductance such that the reduced O2 left, if any, that reaches the magnetron, is in a range where arcing will be very unlikely to occur.
  • This threshold limit may be set such that the rate of removal of metal from the target is much greater than the arrival rate of any residual O2.
  • the threshold limit may be less than about lxlO 5 torr partial pressure of O2 at the magnetron.
  • an inner cooled cylinder is employed for providing radiative cooling of one or more substrates mounted on a substrate cylinder, which surrounds the inner cooled cylinder (the inner cylinder is also herein referred to as a cooling cylinder as it is not only cooled but it also causes the radiative cooling of substrates undergoing processing).
  • the inner cooled cylinder can be in radiative coupling with a back surface of the substrates mounted on the substrate cylinder so as to provide radiative cooling thereof.
  • both an inner and an outer cooling cylinder can be employed for cooling a plurality of substrates mounted on a substrate cylinder disposed between the cooling outer and inner cylinders.
  • FIG. 10 schematically depicts a system 1000 for depositing a film on a substrate according to another embodiment.
  • the system 1000 is similar to the deposition system discussed above in connection with FIGs 3-7 except that the system 1000 includes an inner cooling cylinder 1002, which is fixedly positioned and is surrounded by a rotatable substrate cylinder 1004 on which a plurality of substrates 1006 can be mounted (herein also referred to as a substrate cylinder), e.g., in a manner discussed above in connection with the previous embodiments.
  • the substrate cylinder includes a plurality of mounts to which the substrates can be mounted, where each mount includes an opening that exposes a back surface of a substrate mounted thereto to the cooling inner cylinder.
  • the substrates can be mounted on the substrate cylinder such that the back of the substrates are in radiative coupling with an outer surface of the inner cooling cylinder.
  • the inner cooling cylinder includes a plurality of cooling channels 1008 through which a cooling medium can circulate so as to cool the inner cylinder to a temperature below that of the substrates mounted onto the substrate cylinder.
  • the cooling fluid can lower the temperature of the inner cooling cylinder to a temperature less than about 273 K.
  • the emissivity of the inner cooling cylinder, and in particular its outer surface can be at least about 0.7. While in this embodiment the cooling channels 1008 are positioned on the inner surface of the cooling inner cylinder, in other embodiment the cooling channels 1008 can be positioned on the outer surface of the cooling inner cylinder.
  • the substrate cylinder is rotatable so as to expose the substrates alternatingly to the metalization source 12 and the source 13 generating reactive ionic species, e.g., in a manner discussed above in connection with the previous embodiments.
  • the substrate cylinder and the inner cooling cylinder are housed within an outer cylinder 2000, which forms the structural housing of the deposition system.
  • the outer cylinder 2000 is fixedly positioned relative to the substrate cylinder 1004 and the inner cooling cylinder 1002 and includes two apertures, where one of the apertures is substantially aligned with the magnetron and the other aperture is substantially aligned with the reactive ion source so as to allow the exposure of each mounted substrate to metal ions as well as the reactive ion species.
  • FIG. 11 schematically depicts a deposition system 3000 according to another embodiment, which includes an inner cooling cylinder 3002 having a plurality of cooling channels 3003 through which a cooling medium can flow and an outer cooling cylinder 3004 having cooling channels 3005, which are disposed on an outer surface of the outer cooling cylinder 3004.
  • a substrate cylinder 3006 is sandwiched between the inner and the outer cooling cylinders.
  • FIG. 12 schematically depicts a deposition system 4000 according to another embodiment, which includes a single cooling cylinder 4002 on an outer surface of which a plurality of cooling channels 4003 are disposed.
  • the cooling cylinder 4002 surrounds a substrate cylinder 4004 and cools a plurality of substrates 4006 mounted onto the substrate cylinder 4004.
  • FIG. 13 schematically depicts a deposition system 5000 according to another embodiment, in which, similar to the deposition system 4000 discussed above, only one cooling outer cylinder 5002 surrounding a substrate cylinder 5003 is employed for cooling a plurality of substrates mounted onto the substrate cylinder 5003. However, in this embodiment, a plurality of cooling channels 5006 are disposed on outer surface of the cooling outer cylinder 5002.
  • sputtering can be carried out by affixing substrates on the inner rotating cylinder, lowering the inner cylinder into the outer cylinder and pumping the main chamber to a base of less than or equal to about lxlO 6 torr .
  • the inner cylinder can be set to rotate from about 10 to about 600 rpm.
  • the ion source can have O2 flow into it such that a pressure of 5xl0 4 torr is established.
  • the ion source can be ignited with a neutralization source to provide a source of electrons to the plasma.
  • the cylinder can be set to rotate at a speed of about 100 rev/min.
  • the magnetron can have a gas flow provided such that the pressure at the gauge is about 5xl0 3 torr.
  • the magnetron power can then be set such that the combination of power and rotational speed is such that no more than 5-7 Angstrom/revolution is deposited on the inner cylinder and substrates.
  • the metal As the metal is deposited at the magnetron, it can subsequently be oxidized at the ion source and the process can be repeated at a rate determined by the rotational speed of the cylinder to which the substrates are affixed. For example, if the magnetron power is at 2 kW, 5 angstroms of film can deposited per rotation and the rotation is 60 rpm or 1 rev/sec, then the rate is 5 Angstrom/sec.
  • the effective rate would be 10 Angstrom/sec.
  • the power to the magnetron must also be increased to maintain the 5 Angstrom/rev.
  • the ion source beam voltage and current may be changed to reflect the increase in the other variables.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Selon un aspect, un système de dépôt d'un film sur un substrat est divulgué, qui comprend au moins une source de métallisation permettant la génération d'atomes métalliques, et au moins une source réactive permettant la génération d'au moins une espèce réactive. Le système comprend en outre un cylindre de refroidissement interne et un cylindre de substrat, où le cylindre de refroidissement interne est positionné à demeure par rapport au cylindre de substrat, et le cylindre de substrat entoure au moins partiellement le cylindre de refroidissement interne. Au moins un support est accouplé au cylindre de substrat pour permettre la fixation d'un ou plusieurs substrats sur le cylindre de substrat.
PCT/US2021/022882 2020-03-18 2021-03-18 Système de dépôt à refroidissement intégré sur un tambour rotatif WO2021188754A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/823,046 2020-03-18
US16/823,046 US20200219704A1 (en) 2015-10-22 2020-03-18 Deposition system with integrated cooling on a rotating drum

Publications (2)

Publication Number Publication Date
WO2021188754A1 true WO2021188754A1 (fr) 2021-09-23
WO2021188754A8 WO2021188754A8 (fr) 2022-08-25

Family

ID=75478213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/022882 WO2021188754A1 (fr) 2020-03-18 2021-03-18 Système de dépôt à refroidissement intégré sur un tambour rotatif

Country Status (1)

Country Link
WO (1) WO2021188754A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070151842A1 (en) 2005-12-15 2007-07-05 Fluens Corporation Apparatus for reactive sputtering
WO2011135667A1 (fr) * 2010-04-27 2011-11-03 株式会社シンクロン Procédé de production de substrat d'élément électroluminescent à semi-conducteurs
US20120045588A1 (en) * 2010-08-23 2012-02-23 Vaeco Inc. Deposition system with a rotating drum
WO2017070488A1 (fr) * 2015-10-22 2017-04-27 Richard Devito Système de dépôt avec refroidissement intégré sur un cylindre rotatif
EP3279364A1 (fr) * 2016-08-03 2018-02-07 IHI Hauzer Techno Coating B.V. Appareil de revêtement de substrats

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070151842A1 (en) 2005-12-15 2007-07-05 Fluens Corporation Apparatus for reactive sputtering
WO2011135667A1 (fr) * 2010-04-27 2011-11-03 株式会社シンクロン Procédé de production de substrat d'élément électroluminescent à semi-conducteurs
US20120045588A1 (en) * 2010-08-23 2012-02-23 Vaeco Inc. Deposition system with a rotating drum
US8758580B2 (en) 2010-08-23 2014-06-24 Vaeco Inc. Deposition system with a rotating drum
WO2017070488A1 (fr) * 2015-10-22 2017-04-27 Richard Devito Système de dépôt avec refroidissement intégré sur un cylindre rotatif
EP3279364A1 (fr) * 2016-08-03 2018-02-07 IHI Hauzer Techno Coating B.V. Appareil de revêtement de substrats

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Milton Oring: The Material Science of thin Films", 1992, ACADEMIC PRESS
A. ROTH: "Vacuum Technology", 1990, ELSEVIER NORTH HOLLAND

Also Published As

Publication number Publication date
WO2021188754A8 (fr) 2022-08-25

Similar Documents

Publication Publication Date Title
US10262838B2 (en) Deposition system with integrated cooling on a rotating drum
US6641702B2 (en) Sputtering device
CN107923037B (zh) 真空处理设备和用于真空处理基底的方法
EP0428358B1 (fr) Géométrie et configurations d'une appareillage de pulvérisation pour magnétron
US4793908A (en) Multiple ion source method and apparatus for fabricating multilayer optical films
Mattox Physical vapor deposition (PVD) processes
US9082595B2 (en) Sputtering apparatus
US20060196766A1 (en) Plasma deposition apparatus and method
TWI648418B (zh) 應用於磁控濺鍍裝置之環狀陰極
US6328858B1 (en) Multi-layer sputter deposition apparatus
JPH05171427A (ja) プラズマ強化装置と電気アーク蒸着法
US8758580B2 (en) Deposition system with a rotating drum
WO2000018979A9 (fr) Dispositif de pulverisation cathodique
US8192597B2 (en) Coating apparatus
JP2005048260A (ja) 反応性スパッタリング方法
JPH11256327A (ja) 金属化合物薄膜の形成方法および成膜装置
US20200219704A1 (en) Deposition system with integrated cooling on a rotating drum
CN107002228B (zh) 用于金属零件表面的热化学处理的等离子处理和反应器
WO2021188754A1 (fr) Système de dépôt à refroidissement intégré sur un tambour rotatif
JP2007092095A (ja) 薄膜形成方法及び薄膜形成装置
EP0747501A1 (fr) Déposition des couches minces
JP2009144252A (ja) 反応性スパッタリング装置及び反応性スパッタリング方法
GB2215739A (en) Ionisation assisted chemical vapour deposition
JPH0445580B2 (fr)
CN217052381U (zh) 一种离子辅助的多靶磁控溅射设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21718324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21718324

Country of ref document: EP

Kind code of ref document: A1