WO2021187138A1 - 高周波電源装置及びその出力制御方法 - Google Patents
高周波電源装置及びその出力制御方法 Download PDFInfo
- Publication number
- WO2021187138A1 WO2021187138A1 PCT/JP2021/008460 JP2021008460W WO2021187138A1 WO 2021187138 A1 WO2021187138 A1 WO 2021187138A1 JP 2021008460 W JP2021008460 W JP 2021008460W WO 2021187138 A1 WO2021187138 A1 WO 2021187138A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pulse
- frequency
- signal
- level
- output
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000010355 oscillation Effects 0.000 claims abstract description 92
- 230000001360 synchronised effect Effects 0.000 claims description 72
- 230000000737 periodic effect Effects 0.000 claims description 25
- 230000000630 rising effect Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 101001125481 Simulium damnosum Phenoloxidase subunit 1 Proteins 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32137—Radio frequency generated discharge controlling of the discharge by modulation of energy
- H01J37/32146—Amplitude modulation, includes pulsing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32137—Radio frequency generated discharge controlling of the discharge by modulation of energy
- H01J37/32155—Frequency modulation
- H01J37/32165—Plural frequencies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32174—Circuits specially adapted for controlling the RF discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32174—Circuits specially adapted for controlling the RF discharge
- H01J37/32183—Matching circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/334—Etching
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H2242/00—Auxiliary systems
- H05H2242/20—Power circuits
- H05H2242/22—DC, AC or pulsed generators
Definitions
- the present invention relates to a high-frequency power supply device applied to a plasma generator or the like, and more particularly to a high-frequency power supply device that outputs a high-frequency pulse to a target device based on a synchronous pulse and a clock pulse, and an output control method thereof.
- the high-frequency power supply device is applied as a power source for ultrasonic oscillation, generation of induced power, generation of plasma, etc., and a synchronous pulse that determines the output cycle of the high-frequency pulse and a clock that determines the pulse period of the oscillated high-frequency component. It is a power supply device capable of outputting a high frequency pulse containing a high frequency component with a predetermined period and an amplitude value by combining the pulse and the pulse.
- a switch-type high-frequency power supply device that includes high-level (first level) and low-level (second level) amplitude values in one oscillation cycle is known. There is.
- the object to be processed is sandwiched in a processing chamber in which a semiconductor wafer to be processed is filled with etching gas.
- the upper electrode and the lower electrode are opposed to each other, a high frequency voltage from a high frequency power source is applied to these upper electrode and the lower electrode, and the etching gas is converted into plasma by the discharge between the upper electrode and the lower electrode to etch the object to be processed.
- a plasma etching apparatus to be used is disclosed. In such a device, the voltage applied from the high-frequency power source is required to be stable in order to perform uniform processing on the entire surface of the object to be processed.
- Patent Document 2 states that the complex impedance of plasma seen from the end of a transmission path is high-frequency between a high-frequency generator and a plasma processing chamber.
- a technique for feedback-controlling the voltage of an induction coil that supplies high-frequency power to a plasma processing chamber by connecting a matching network that converts it to the nominal impedance of the generator is disclosed.
- the matching network makes it possible to align the phases of the power waveforms applied to the induction coil by feedback control, so that the substrate processing can be stabilized.
- a synchronous pulse generator that generates a synchronous pulse and a clock pulse generator that generates a clock pulse are usually configured as separate bodies, and both are configured as separate bodies. Since it operates independently, it is possible to avoid that the phase of the output waveform generated based on the clock pulse in the high-frequency pulse output at the timing based on the synchronous pulse is not uniform when the output level of the high-frequency pulse is switched. No. As a result, the number of pulses due to the first level amplitude and the number of pulses due to the second level amplitude are different among a plurality of continuously oscillated high-frequency pulses, which causes jitter. ..
- the present invention has been made to solve the above-mentioned conventional problems, and even if the structure generates synchronous pulses and clock pulses separately, the phases of the output high-frequency pulses are always aligned. It is an object of the present invention to provide a high frequency power supply device capable of the above and a method for controlling the output thereof.
- one of the typical embodiments of the present invention is a high frequency power supply device that outputs a high frequency pulse to a target device based on a synchronous pulse and a clock pulse, and the output level of the high frequency pulse.
- a synchronous pulse generation mechanism that generates a synchronous pulse including information and output timing information, an output level setting mechanism that generates an output level signal that sets the output level of the high frequency pulse based on the output level information, and the synchronous pulse and
- An oscillation waveform setting mechanism that transmits a frequency setting signal and a pulse number setting signal that set the oscillation frequency and the number of pulses of the high frequency pulse based on the phase difference of the clock pulse, a cycle reference signal of the synchronization pulse, and the output level signal.
- the synchronous pulse generation mechanism includes an oscillation mechanism that receives the frequency setting signal and the pulse number setting signal and oscillates the high frequency pulse, and the synchronous pulse generation mechanism includes a synchronous pulse forming circuit that forms the synchronous pulse and the timing information.
- the output level setting mechanism includes a cycle reference signal generator that generates a cycle reference signal at the cycle reference time included in the above, and the output level setting mechanism determines an output level set by the high frequency pulse according to the output level signal.
- the oscillation waveform setting mechanism includes a discrimination unit and a level setting signal generation unit that receives a discrimination result of the level discrimination unit and generates a level setting signal, and the oscillation waveform setting mechanism detects a cycle time of one cycle of the synchronization pulse.
- the oscillation mechanism includes an output parameter determining unit that calculates the oscillation frequency and the number of pulses of the high-frequency pulse and emits the oscillation frequency signal and the pulse number signal, and the oscillation mechanism generates the clock pulse based on the oscillation frequency signal.
- the output includes a clock pulse generator, an oscillation amplifier that receives the period reference signal, the level setting signal, the pulse number signal, and the clock pulse, and forms the high frequency pulse based on these signals.
- the parameter determination unit is characterized in determining the oscillation frequency and the number of pulses of the next cycle that cancel the phase difference of the previous cycle so that the phase becomes constant after the cycle time of the next cycle has elapsed. And.
- one of the other aspects of the present invention is an output control method of a high frequency power supply device that outputs a high frequency pulse to a target device based on a synchronous pulse and a clock pulse, and is an output level included in the waveform of the synchronous pulse.
- An output level signal for setting the output level of the high frequency pulse is generated from the information, a cycle reference signal is generated from the output timing information, the cycle time of one cycle of the synchronous pulse is detected, and at least 1 of the high frequency pulse is generated.
- the phase difference between the synchronous pulse and the clock pulse before the cycle is discriminated, and the oscillation frequency and the number of pulses of the high frequency pulse oscillated in the next cycle are calculated based on the cycle time and the phase difference to obtain the oscillation frequency signal and the number of pulses.
- the pulse number signal is transmitted, the clock pulse is generated based on the oscillation frequency signal, and the period reference signal, the level setting signal, the pulse number signal, and the clock pulse are received and based on these signals.
- the oscillation frequency and the number of pulses of the next cycle that cancel the phase difference before the one cycle are set so that the phase becomes constant after the cycle time of the next cycle elapses. It is characterized by determining.
- the cycle time of one cycle of the synchronous pulse is detected, and the phase difference between the synchronous pulse and the clock pulse at least one cycle before the high frequency pulse is discriminated, and the cycle time of these is determined.
- the oscillation frequency and the number of pulses of the high-frequency pulse oscillated in the next cycle are calculated based on the phase difference, and the oscillation frequency signal and the number of pulses signal are transmitted to generate a clock pulse based on the oscillation frequency signal, and the cycle reference.
- the phases of the output high-frequency pulses are always aligned even if the synchronous pulse and the clock pulse are generated separately. It becomes possible.
- FIG. 1 is a block diagram showing an outline of a high-frequency power supply device according to a typical example of the present invention.
- the high-frequency power supply device 100 shown in FIG. 1 has a synchronous pulse generation mechanism 110 that generates a synchronous pulse P1 including output level information and output timing information of the high-frequency pulse PO to be output, and a high-frequency pulse based on the output timing information of the synchronous pulse P1.
- the output level setting mechanism 120 that generates the output level signals SL1 and SL2 for setting the output level of PO, and the oscillation frequency and the number of pulses of the high frequency pulse PO are set based on the phase difference between the synchronous pulse P1 and the clock pulse P2.
- the oscillation waveform setting mechanism 130 that transmits the frequency setting signal S F and the pulse number setting signal S N , the periodic reference signal S S of the synchronous pulse P1, the output level signals S L1 and S L2 , the frequency setting signal S F , and the pulse number setting. comprises an oscillation mechanism 140 for oscillating a high-frequency pulse PO, the receiving signals S N.
- the high-frequency pulse PO output from the high-frequency power supply device 100 is supplied to a target device 10 such as a plasma or laser generator, an induction heating device, or an ultrasonic oscillator.
- FIG. 2 is a block diagram showing an example of a specific configuration of the synchronous pulse generation mechanism shown in FIG.
- the synchronization pulse generation mechanism 110 includes a synchronizing pulse forming circuit 112 for forming a synchronizing pulse P1 as described above, the periodic reference signal generator for generating a periodic reference signal S S in the periodic reference time in the synchronization pulses P1 114 and.
- the synchronous pulse P1 emitted from the synchronous pulse forming circuit 112 is also supplied to the output level setting mechanism 120 and the oscillation waveform setting mechanism 130, which will be described later.
- the synchronous pulse forming circuit 112 includes output level information (for example, amplitude value) and output timing information (for example, amplitude switching timing) as an example thereof, and has two output levels L1 on the vertical axis with respect to the passage of time on the horizontal axis. , L2 is output as a substantially rectangular periodic pulse waveform. In FIG. 2, the case where the output levels are set to the high level L1 and the low level L2 is illustrated, but if it is a periodic substantially rectangular wave, it may be a pulse waveform with three or more output levels.
- the synchronous pulse P1 is not limited to a square wave, and may include an arbitrary waveform such as a sine wave or an extremely short pulse as long as it includes output level information and output timing information. Further, the synchronous pulse P1 may be composed of a plurality of signal waveforms. As such an example, a method of obtaining an output level and an output timing by performing AND processing on a plurality of signal waveforms can be exemplified.
- the period reference signal generator 114 Based on the synchronization pulse P1 received from the synchronization pulse forming circuit 112, the period reference signal generator 114 identifies and identifies the output timing information which is the time reference of the period as one of the features of the synchronization pulse P1.
- the cycle reference signal SS is output at the timing.
- the time reference of the cycle for example, the time when the low level L2 is switched to the high level L1 (rise) can be mentioned.
- the periodic reference signal S S is not limited to only one per cycle, for example, in addition to the rise time from low level L2 mentioned above to a high level L1, from the high level L1 to the low level L2 The switching (falling) time may be adopted.
- FIG. 3 is a block diagram showing an example of a specific configuration of the output level setting mechanism shown in FIG.
- the output level setting mechanism 120 includes a level judging unit 122 for emitting a first level setting command S 1 or the second-level setting command S 2 according to the amplitude value of the synchronizing pulse P1 (the output level information) level to generate a first level setting command S 1 and level 2 setting command S 2 receiving and level setting signal generated from the level determination unit 122 (first level setting signal S L1 or the second level setting signal S L2) set
- the signal generation unit 124 and the like are included.
- the level setting signal generator 124 a first level setting signal generator 126 for generating a first level setting signal S L1 of the first level setting command S 1 during reception, receiving a second level setting command S 2 further comprising a second level setting signal generator 128 for generating a second level setting signal S L2 while the.
- the level determination unit 122 is configured to receive the synchronization pulse P1 from the synchronization pulse forming circuit 112 and transmit a predetermined setting command in real time according to the level of the output level of the synchronization pulse P1. There is. As an example, the level determination unit 122, while synchronizing pulse P1 is high level L1 is transmitted the command S 1 first level setting, synchronization pulses P1 outgoing When switched to the low level L2 the second level setting command S 2 do.
- the level setting signal generator 124 illustrates a configuration including the first level setting signal generator 126 and the second level setting signal generator 128, but three or more level settings A signal generator may be included.
- the first level setting signal generator 126 receives the first level setting command S 1 from the level determination unit 122, issues a first level setting signal S L1 to the oscillation mechanism 140 during that period.
- the second level setting signal generator 128 receives the second level setting command S 2 from the level judging unit 122, transmits a second level setting signal S L2 to the oscillation mechanism 140 during that period.
- FIG. 4 is a block diagram showing an example of a specific configuration of the oscillation waveform setting mechanism shown in FIG.
- the oscillation waveform setting mechanism 130 the oscillation waveform setting mechanism 130, a synchronization pulse cycle detection unit 132 for detecting a cycle time T n of one cycle of the synchronizing pulse P1 received from the synchronization pulse generating mechanism 110, at least the high-frequency pulse PO 1 a phase difference determination unit 134 for determining the phase difference ⁇ P between the sync pulses P1 and the clock pulse P2 in the previous cycle, the oscillation frequency of the high frequency pulse PO oscillated in the next period based on these periodic time T n and the phase difference ⁇ P and an output parameter determination unit for transmitting the oscillation frequency signal S F and the pulse number signal S N pulses number calculated by the.
- the synchronous pulse cycle detection unit 132 detects the cycle time T n (n is a natural number) of the synchronous pulse P1 received from the synchronous pulse generation mechanism 110 for each cycle, and continuously sets the cycle time T n for each cycle.
- the including cycle time signal SP is transmitted.
- the synchronization pulse period detector 132 in conjunction with the periodic reference signal generator 114 receives the sync pulses P1, 1 cycle in measuring the interval every cycle reference signal S S is transmitted (time) Let the cycle time Tn for each.
- the phase difference discriminating unit 134 receives the synchronous pulse P1 from the synchronous pulse generation mechanism 110 and the clock pulse P2 from the oscillation mechanism 140, calculates the phase difference ⁇ P between the two, and uses the result as the phase difference signal SD. send.
- the phase difference determination unit 134 with reference to the transmission time of the period reference signal S S in synchronization pulses P1 transmitted from the synchronization pulse period detecting unit 132, then the phase of the clock pulses P2 from the time (e.g. The difference from the time at the rising edge) is calculated as the phase difference ⁇ P.
- Output waveform parameter determination unit 136 based on the phase difference signal S D received from the periodic time signal S P and the phase difference determination unit 134 received from the synchronization pulse period detecting unit 132, the high frequency pulse PO oscillated in the next cycle
- the oscillation frequency and the number of pulses are calculated, and the oscillation frequency signal SF and the number of pulses signals NS are transmitted to the oscillation mechanism 140.
- the pulse number signal S N is determined so as to specify the number of pulses corresponding to each frequency value of the oscillation frequency signal S F.
- the period time signal SP and the phase difference signal S D determined based on the synchronous pulse P1 and the clock pulse P2 of the currently oscillating high-frequency pulse PO are the transmission frequencies and pulses calculated based on these. Since the number is applied to the waveform control of the high frequency pulse PO of the next cycle, as a result, the phases of the high frequency pulse PO are matched at the end time of the next cycle (the start time of the next cycle).
- the output waveform parameter determination unit 136 is composed of three types, as an example of the oscillation frequency to be determined, an intermediate frequency as a reference, a small frequency smaller than the reference frequency, and a large frequency larger than the reference frequency. Select from frequencies.
- the difference between the intermediate frequency and the large frequency and the small frequency is determined by the amplifier, filter, etc. built in the hardware to which the high frequency power supply device according to the present invention is applied (for example, ultrasonic oscillator, plasma processing device, etc.). It is determined based on the characteristics, and as an example, it is set to about ⁇ 3% of the intermediate frequency. Then, by multiplying the oscillation frequency determined in this way by a predetermined number of pulses, the pulse width (time) of each pulse included in one cycle can be changed.
- the output waveform parameter determination unit 136 determines the oscillation frequency and the number of pulses so that the phase after the elapse of the cycle time of the next cycle (end time) described above always coincides with the rising or falling timing of the pulse. It may be configured as follows.
- FIG. 5 is a block diagram showing an example of a specific configuration of the oscillation mechanism shown in FIG.
- the oscillation mechanism 140 includes a clock pulse generator 142 for generating a clock pulse P2 having a predetermined frequency range based on the oscillation frequency signal S F received from the oscillation waveform setting mechanism 130, the synchronization pulse generating mechanism
- the periodic reference signal S S from 110, the first level setting signal S L1 and the second level setting signal S L2 from the output level setting mechanism 120, the pulse number signal S N from the oscillation waveform setting mechanism 130, and the clock pulse P2.
- Is included, and an oscillation amplifier 144 which receives the signals and forms a high frequency pulse PO based on these signals.
- the clock pulse generator 142 based on the oscillation frequency signal S F received from the oscillation waveform setting mechanism 130, means for generating a clock pulse P2 of the high frequency corresponding to the output of the high frequency pulse PO (several hundred kHz ⁇ several tens MHz) That is, for example, a clock pulse P2 of 13.56 MHz is generated.
- the clock pulse generator 142 may employ any form of format such as to shift the frequency corresponding to each of the oscillation frequency signal S F received by the switched oscillation frequency instruction.
- Oscillation amplifier 144 determines the oscillation timing of the high frequency pulse PO based on the cycle reference signal S S, amplifies the amplitude value of the clock pulse P2 on the basis of the first level setting signal S L1 and the second level setting signal S L2 By doing so, a high frequency pulse PO is generated and oscillates.
- the oscillation amplifier 144 continuously outputs the high-frequency pulse PO in frequency and pulse number specified by the pulse number signal S N corresponding to the oscillation frequency signal S F.
- FIG. 6 is a graph showing an example of the output waveform of the high frequency pulse obtained by the high frequency power supply device shown in FIG.
- the synchronous pulse P1 formed by the synchronous pulse forming circuit 112 of the synchronous pulse generation mechanism 110 is high during the period of time TL1. It is formed as a periodic pulse signal that becomes level L1 and becomes low level L2 during the interval of time TL2.
- the period reference signal generator 114 is a periodic reference signal S S for each said rise time It transmits to the oscillation mechanism 140.
- the synchronization pulse P1 is also supplied to the output level setting mechanism 120, and the level determination unit 122 of the output level setting mechanism 120 sets the output level for each time. Then, the first level setting signal SL1 or the second level setting signal SL2 is continuously transmitted to the oscillation mechanism 140 from the first level setting signal generator 126 or the second level setting signal generator 128. That is, referring to FIG. 6A , the first level setting signal SL1 is transmitted in the time TL1 section, and the second level setting signal SL2 is transmitted in the time TL2 section.
- the amplitude value of the clock pulse P2 is amplified according to the received first level setting signal SL1 or the second level setting signal SL2. That is, when the first level setting signal SL1 is continuously received, as shown in FIG. 6B, a continuous pulse in which the average height of the clock pulse P2 becomes the high level L1 is output. On the other hand, when the first level setting signal SL2 is continuously received, as shown in FIG. 6C, a continuous pulse in which the average height of the clock pulse P2 is the low level L2 is output.
- FIG. 7 is a graph showing an example of an output waveform obtained by the output control method of the high frequency power supply device according to a typical example of the present invention.
- FIG. 7 for ease of explanation, there is shown a case that contains eight pulses per cycle time T n, for example, when the oscillation frequency of the high frequency pulse PO is about 400kHz, per period About 30 pulses are included, and in the case of a high frequency oscillation frequency of about 13.56 MHz, 1000 or more pulses are included per cycle.
- the output control method of the high-frequency power supply device according to a typical example of the present invention as shown in FIG. 7 (a), the output duty cycle output at time T n of the high frequency pulse PO described in FIGS. 1-6
- the phase difference between the synchronous pulse P1 and the clock pulse P2 in one cycle is detected.
- one pulse of the pulse frequency of the clock pulse P2 for example when it is formed by successive pulses by the intermediate frequency PM described above, transmission of the start time t0 (i.e. the periodic reference signal S S of the period time T n At time), the phase difference ⁇ P between the synchronous pulse P1 and one pulse of the output high frequency pulse PO is detected.
- the phase difference ⁇ P does not mean the mere horizontal axis in the drawing, but means the elapsed time in the output change in one pulse, and the intermediate frequency PM is assumed to be substantially equivalent to an integral multiple of the synchronous pulse P1.
- the frequency modulated pulse is oscillated by a predetermined number.
- the number of pulses N N is a natural number
- the phase difference when this is replaced with, for example, the large frequency PL is ⁇ P.
- the number of pulses N satisfying the above equation 1 may be selected.
- the periodic difference ⁇ is taken into consideration by adding the periodic difference ⁇ between the synchronous pulse P1 and the clock pulse P2 to the right side of the above equation 1. ..
- the difference between the intermediate frequency PM and the integer multiple is set to be less than the resolution of the clock pulse generator 142, the period difference ⁇ can be omitted.
- the phase difference ⁇ P between the synchronous pulse P1 and the high frequency pulse PO due to the clock pulse P2 is eliminated. That is, at time t2, the output waveform has an amplitude value A1 and a phase difference ⁇ P, but at time t4, the amplitude value A2 corrects the phase difference to 0. At this time, at the corrected time t4, it is preferable that the phase of the pulse is controlled so as to always coincide with the rising or falling timing of the pulse.
- the number of pulses N is selected so that the phase difference when this is replaced with, for example, the smaller frequency PS is ⁇ P. It may be.
- the number of pulses N satisfying the above equation 2 may be selected.
- the phase difference ⁇ P between the synchronous pulse P1 and the high frequency pulse PO due to the clock pulse P2 is eliminated at the end time t4 of the next period time Tn + 1 , as in the case shown in FIG. 7A. That is, at time t2, the output waveform has an amplitude value A1 and a phase difference ⁇ P, but at time t4, the amplitude value A2 corrects the phase difference to 0.
- the high-frequency power supply device and an output control method thereof detects a cycle time T n of one cycle of the synchronization pulses P1, the synchronization pulses in the previous cycle of at least the high-frequency pulse PO P1 and determine the phase difference ⁇ P of the clock pulse P2, based on the cycle time T n and the phase difference ⁇ P is calculated oscillation frequency and pulse number of the high frequency pulse PO oscillated in the next cycle oscillation signal S F and the pulse
- the number signal S N is transmitted to generate a clock pulse P2 based on the oscillation frequency signal S F , and the periodic reference signal S S S , the first level setting signal S L1, the second level setting signal S L2 , and the pulse number signal S
- the phase difference one cycle before is so that the phase after the cycle time Tn + 1 of the next cycle elapses becomes constant.
- control operation for canceling the phase difference ⁇ P due to pulse modulation in the time TL1 section of one cycle of the high-frequency pulse PO is illustrated, but only in the time TL2 section or in two sections at the same time. It may be configured to execute the control for canceling the phase difference ⁇ P. This makes it possible to execute output control that precisely eliminates the phase difference in a shorter time.
- Target device 100 High-frequency power supply device 110 Synchronous pulse generation mechanism 112 Synchronous pulse formation circuit 114 Periodic reference signal generator 116 Timing mechanism 120 Output level setting mechanism 122, 222, 222 Level discrimination unit 124 Level setting signal generation unit 126 First level setting Signal generator 128 Second level setting Signal generator 130 Oscillation waveform setting mechanism 132 Synchronous pulse cycle detector 134 Phase difference discriminator 136 Output waveform parameter determination unit 140 Oscillation mechanism 142 Clock pulse generator 144 Oscillation amplifier PO High frequency pulse P1 Synchronous pulse P2 clock pulse S S periodic reference signal S L1 first level setting signal S L2 second level setting signal S F oscillation frequency signal S n pulse number signal T n, T n + 1 cycle time
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
Abstract
同期パルスとクロックパルスとを別々に生成する構造でも、出力される高周波パルスの位相を常に揃えることができる高周波電源装置及びその出力制御方法を提供する。同期パルス及びクロックパルスに基づいて対象装置に高周波パルスを出力する高周波電源装置及びその出力制御方法であって、同期パルスの1周期の周期時間を検出するとともに、1周期前における同期パルス及びクロックパルスの位相差を判別し、周期時間及び位相差に基づいて次周期に発振される発振周波数及びパルス個数を演算し、発振周波数信号に基づいてクロックパルスを生成するとともに、周期基準信号、レベル設定信号、パルス個数信号及びクロックパルスに基づいて高周波パルスを形成する際に、次周期の周期時間が経過後における位相が一定となるように、1周期前における位相差を相殺する次周期の発振周波数及びパルス個数を決定する。
Description
本発明は、プラズマ発生装置等に適用される高周波電源装置に関し、特に、同期パルス及びクロックパルスに基づいて対象装置に高周波パルスを出力する高周波電源装置及びその出力制御方法に関する。
高周波電源装置は、超音波発振や誘導電力の発生あるいはプラズマの発生等の電源として適用されており、高周波パルスの出力周期を決定する同期パルスと、発振される高周波成分のパルス周期を決定するクロックパルスと、を組み合わせることにより、所定の周期及び振幅値で高周波成分を含む高周波パルスを出力可能とされた電源装置である。特に、プラズマ発生装置に適用される高周波電源としては、1つの発振周期の中にハイレベル(第1レベル)とローレベル(第2レベル)の振幅値を含むスイッチ方式高周波電源装置が知られている。
このようなスイッチ方式高周波電源装置が適用されるプラズマ処理装置として、例えば特許文献1には、エッチングガスが充填されて被処理体である半導体ウェハが収容される処理室内に、被処理体を挟んで上部電極と下部電極とを対向させ、これら上部電極及び下部電極に高周波電源からの高周波電圧を印加して、上部電極及び下部電極間の放電によりエッチングガスをプラズマ化して被処理体をエッチング処理するプラズマエッチング装置が開示されている。こうした装置では、被処理体の全面で均一な処理を行うために、高周波電源からの印加電圧が安定していることが求められる。
プラズマエッチング装置において、プラズマを安定して発生されることを意図して、例えば特許文献2には、高周波発生器とプラズマ処理チャンバとの間に、伝送路終端から見たプラズマの複素インピーダンスを高周波発生器の公称インピーダンスに変換するマッチングネットワークが接続され、プラズマ処理チャンバに高周波電力を供給する誘導コイルの電圧をフィードバック制御する技術が開示されている。この制御技術によれば、マッチングネットワークにより、誘導コイルに印加される電力波形の位相をフィードバック制御により揃えることが可能となるため、基板処理を安定化できるとされている。
上記したとおり、従来から知られている高周波電源装置では、同期パルスを生成する同期パルス用生成器とクロックパルスを生成するクロックパルス用生成器とが通常別体として構成されており、両者はそれぞれ独立して動作するため、同期パルスに基づくタイミングで出力される高周波パルスにおけるクロックパルスに基づいて生成される出力波形の位相は、当該高周波パルスの出力レベルの切り替え時において不揃いとなることが避けられない。その結果として、連続して発振される複数の高周波パルス間において、第1レベルの振幅によるパルス数と第2レベルの振幅によるパルス数とがバラバラとなってしまい、ジッタ発生の原因となっていた。
このような高周波電源装置の発振構造に起因する不安定な出力波形による問題を解決するべく、例えば上記した特許文献2のような技術が適用されているが、プラズマ処理装置と高周波電源装置との間に追加的な構成(マッチングネットワーク等)を付加することが必須であり、電源制御も複雑にならざるを得ない。また、マッチングネットワークの応答速度よりも高速で高周波パルスの出力波形に変動が生じてしまうと対応できないという事象が発生するため、スイッチ方式の高周波電源装置を適用する際に生じる問題の根本的な解決となっていない。
本発明は、上記した従来の問題点を解決するためになされたものであって、同期パルスとクロックパルスとを別々に生成する構造であっても、出力される高周波パルスの位相を常に揃えることが可能となる高周波電源装置及びその出力制御方法を提供することを目的とする。
上記の課題を解決するために、本発明の代表的な態様の1つは、同期パルス及びクロックパルスに基づいて対象装置に高周波パルスを出力する高周波電源装置であって、前記高周波パルスの出力レベル情報及び出力タイミング情報を含む同期パルスを生成する同期パルス生成機構と、前記出力レベル情報に基づいて前記高周波パルスの出力レベルを設定する出力レベル信号を生成する出力レベル設定機構と、前記同期パルス及び前記クロックパルスの位相差に基づいて前記高周波パルスの発振周波数及びパルス個数を設定する周波数設定信号及びパルス個数設定信号を発信する発振波形設定機構と、前記同期パルスの周期基準信号、前記出力レベル信号、前記周波数設定信号及び前記パルス個数設定信号を受信して前記高周波パルスを発振する発振機構と、を備え、前記同期パルス生成機構は、前記同期パルスを形成する同期パルス形成回路と、前記タイミング情報に含まれる周期基準時刻において周期基準信号を生成する周期基準信号生成器と、を含み、前記出力レベル設定機構は、前記出力レベル信号に応じて前記高周波パルスで設定される出力レベルを判別するレベル判別部と、前記レベル判別部の判別結果を受けてレベル設定信号を生成するレベル設定信号生成部と、を含み、前記発振波形設定機構は、前記同期パルスの1周期の周期時間を検出する同期パルス周期検出部と、少なくとも前記高周波パルスの1周期前における前記同期パルス及び前記クロックパルスの位相差を判別する位相差判別部と、前記周期時間及び前記位相差に基づいて次周期に発振される前記高周波パルスの発振周波数及びパルス個数を演算して発振周波数信号及びパルス個数信号を発信する出力パラメータ決定部と、を含み、前記発振機構は、前記発振周波数信号に基づいて前記クロックパルスを生成するクロックパルス生成器と、前記周期基準信号、前記レベル設定信号、前記パルス個数信号及び前記クロックパルスを受信して、これらの信号に基づいて前記高周波パルスを形成する発振増幅器と、を含み、前記出力パラメータ決定部は、前記次周期の前記周期時間が経過後における位相が一定となるように、前記1周期前における前記位相差を相殺する前記次周期の発振周波数及びパルス個数を決定することを特徴とする。
また、本発明の別の態様の1つは、同期パルス及びクロックパルスに基づいて対象装置に高周波パルスを出力する高周波電源装置の出力制御方法であって、前記同期パルスの波形に含まれる出力レベル情報から前記高周波パルスの出力レベルを設定する出力レベル信号を生成するとともに、出力タイミング情報から周期基準信号を生成し、前記同期パルスの1周期の周期時間を検出するとともに、少なくとも前記高周波パルスの1周期前における前記同期パルス及び前記クロックパルスの位相差を判別し、前記周期時間及び前記位相差に基づいて次周期に発振される前記高周波パルスの発振周波数及びパルス個数を演算して発振周波数信号及びパルス個数信号を発信し、前記発振周波数信号に基づいて前記クロックパルスを生成するとともに、前記周期基準信号、前記レベル設定信号、前記パルス個数信号及び前記クロックパルスを受信して、これらの信号に基づいて前記高周波パルスを形成する際に、前記次周期の前記周期時間が経過後における位相が一定となるように、前記1周期前における前記位相差を相殺する前記次周期の発振周波数及びパルス個数を決定することを特徴とする。
このような構成を備えた本発明によれば、同期パルスの1周期の周期時間を検出するとともに、少なくとも高周波パルスの1周期前における同期パルス及びクロックパルスの位相差を判別し、これらの周期時間及び位相差に基づいて次周期に発振される高周波パルスの発振周波数及びパルス個数を演算して発振周波数信号及びパルス個数信号を発信し、発振周波数信号に基づいてクロックパルスを生成するとともに、周期基準信号、レベル設定信号、パルス個数信号及びクロックパルスを受信して、これらの信号に基づいて高周波パルスを形成する際に、次周期の周期時間が経過後における位相が一定となるように、1周期前における位相差を相殺する次周期の発振周波数及びパルス個数を決定するように構成したため、同期パルスとクロックパルスとを別々に生成する構造であっても、出力される高周波パルスの位相を常に揃えることが可能となる。
以下、本発明による高周波電源装置及びその出力制御方法の代表的な具体例を図1~図7を用いて説明する。
図1は、本発明の代表的な一例による高周波電源装置の概要を示すブロック図である。
図1に示す高周波電源装置100は、出力する高周波パルスPOの出力レベル情報及び出力タイミング情報を含む同期パルスP1を生成する同期パルス生成機構110と、同期パルスP1の出力タイミング情報に基づいて高周波パルスPOの出力レベルを設定する出力レベル信号SL1、SL2を生成する出力レベル設定機構120と、同期パルスP1及びクロックパルスP2の位相差に基づいて高周波パルスPOの発振周波数及びパルス個数を設定する周波数設定信号SF及びパルス個数設定信号SNを発信する発振波形設定機構130と、同期パルスP1の周期基準信号SS、出力レベル信号SL1及びSL2、周波数設定信号SF並びにパルス個数設定信号SNを受信して高周波パルスPOを発振する発振機構140と、を備える。高周波電源装置100から出力された高周波パルスPOは、プラズマやレーザ発生装置、誘導加熱装置、あるいは超音波発振装置等の対象装置10に供給される。
図1に示す高周波電源装置100は、出力する高周波パルスPOの出力レベル情報及び出力タイミング情報を含む同期パルスP1を生成する同期パルス生成機構110と、同期パルスP1の出力タイミング情報に基づいて高周波パルスPOの出力レベルを設定する出力レベル信号SL1、SL2を生成する出力レベル設定機構120と、同期パルスP1及びクロックパルスP2の位相差に基づいて高周波パルスPOの発振周波数及びパルス個数を設定する周波数設定信号SF及びパルス個数設定信号SNを発信する発振波形設定機構130と、同期パルスP1の周期基準信号SS、出力レベル信号SL1及びSL2、周波数設定信号SF並びにパルス個数設定信号SNを受信して高周波パルスPOを発振する発振機構140と、を備える。高周波電源装置100から出力された高周波パルスPOは、プラズマやレーザ発生装置、誘導加熱装置、あるいは超音波発振装置等の対象装置10に供給される。
図2は、図1に示した同期パルス生成機構の具体的な構成の一例を示すブロック図である。図2に示すように、同期パルス生成機構110は、上記した同期パルスP1を形成する同期パルス形成回路112と、同期パルスP1における周期基準時刻において周期基準信号SSを生成する周期基準信号生成器114と、を含む。また、同期パルス形成回路112から発せられた同期パルスP1は、後述する出力レベル設定機構120及び発振波形設定機構130にも供給される。
同期パルス形成回路112は、その一例として、出力レベル情報(例えば振幅値)と出力タイミング情報(例えば振幅の切り替えタイミング)とを含み、横軸の時間経過に対して縦軸の2つの出力レベルL1、L2を規定する略矩形の周期的なパルス波形を出力する。なお、図2においては、出力レベルをハイレベルL1とローレベルL2とした場合を例示したが、周期的な略矩形波であれば3つ以上の出力レベルによるパルス波形としてもよい。
また、同期パルスP1は矩形波に限定されるものではなく、出力レベル情報と出力タイミング情報とを含むものであれば、正弦波や極短パルス等の任意の波形を含んでもよい。
さらに、同期パルスP1は複数の信号波形から構成されてもよい。このような例として、複数の信号波形についてAND処理を行うことで、出力レベルと出力タイミングを得る手法等が例示できる。
さらに、同期パルスP1は複数の信号波形から構成されてもよい。このような例として、複数の信号波形についてAND処理を行うことで、出力レベルと出力タイミングを得る手法等が例示できる。
周期基準信号生成器114は、同期パルス形成回路112から受信した同期パルスP1に基づいて、その同期パルスP1の特徴の1つとしての周期の時刻基準である出力タイミング情報を特定し、その特定したタイミングで周期基準信号SSを出力する。このとき、周期の時刻基準の一例としては、例えばローレベルL2からハイレベルL1に切り替わる(立ち上がる)時刻等が挙げられる。また、周期基準信号SSは1周期中に1つだけに限定されるものではなく、例えば上記したローレベルL2からハイレベルL1への立ち上がり時刻に加えて、ハイレベルL1からローレベルL2への切り替え(立ち下がり)時刻を採用してもよい。
図3は、図1に示した出力レベル設定機構の具体的な構成の一例を示すブロック図である。図3に示すように、出力レベル設定機構120は、同期パルスP1の振幅値(出力レベル情報)に応じて第1レベル設定指令S1又は第2レベル設定指令S2を発するレベル判別部122と、レベル判別部122から発せられる第1レベル設定指令S1及びレベル2設定指令S2を受けてレベル設定信号(第1レベル設定信号SL1又は第2レベル設定信号SL2)を生成するレベル設定信号生成部124と、を含む。そして、レベル設定信号生成部124は、第1レベル設定指令S1を受信中に第1レベル設定信号SL1を生成する第1レベル設定信号生成器126と、第2レベル設定指令S2を受信中に第2レベル設定信号SL2を生成する第2レベル設定信号生成器128と、をさらに含む。
レベル判別部122は、同期パルス形成回路112からの同期パルスP1を受信し、当該同期パルスP1の出力レベルがどのレベルにあるかに応じて所定の設定指令をリアルタイムで発信するように構成されている。その一例として、レベル判別部122は、同期パルスP1がハイレベルL1の間は第1レベル設定指令S1を発信し、同期パルスP1がローレベルL2に切り替わると第2レベル設定指令S2を発信する。
図3に示す具体例において、レベル設定信号生成部124は、第1レベル設定信号生成器126と第2レベル設定信号生成器128とを含む構成を例示しているが、3つ以上のレベル設定信号生成器を含んでもよい。また、第1レベル設定信号生成器126は、レベル判別部122からの第1レベル設定指令S1を受信すると、その期間中に発振機構140に第1レベル設定信号SL1を発信する。一方、第2レベル設定信号生成器128は、レベル判別部122からの第2レベル設定指令S2を受信すると、その期間中に発振機構140に第2レベル設定信号SL2を発信する。
図4は、図1に示した発振波形設定機構の具体的な構成の一例を示すブロック図である。図4に示すように、発振波形設定機構130は、同期パルス生成機構110から受信した同期パルスP1の1周期の周期時間Tnを検出する同期パルス周期検出部132と、少なくとも高周波パルスPOの1周期前における同期パルスP1とクロックパルスP2との位相差ΔPを判別する位相差判別部134と、これらの周期時間Tn及び位相差ΔPに基づいて次周期に発振される高周波パルスPOの発振周波数及びパルス個数を演算して発振周波数信号SF及びパルス個数信号SNを発信する出力パラメータ決定部と、を含む。
同期パルス周期検出部132は、同期パルス生成機構110から受信する同期パルスP1の1周期ごとの周期時間Tn(nは自然数)を検出し、その1周期ごとの周期時間Tnを連続的に含む周期時間信号SPを発信する。その一例として、同期パルス周期検出部132は、周期基準信号生成器114と連動して同期パルスP1を受信し、周期基準信号SSが発信されるごとの間隔(時間)を測定して1周期ごとの周期時間Tnとする。
位相差判別部134は、同期パルス生成機構110から同期パルスP1を受信するとともに発振機構140からクロックパルスP2を受信して、両者の位相差ΔPを演算してその結果を位相差信号SDとして発信する。その一例として、位相差判別部134は、同期パルス周期検出部132から発信された同期パルスP1における周期基準信号SSの発信時刻を基準とし、その時刻から次にクロックパルスP2の同位相(例えば立上り)における時刻との差を位相差ΔPとして算出する。
出力波形パラメータ決定部136は、同期パルス周期検出部132から受信した周期時間信号SPと位相差判別部134から受信した位相差信号SDとに基づいて、次周期に発振される高周波パルスPOの発振周波数及びパルス個数を演算し、発振機構140に発振周波数信号SF及びパルス個数信号SNを発信する。このとき、パルス個数信号SNは、発振周波数信号SFの周波数値ごとに対応するパルス個数を指定するように決定される。
また例えば、現在発振されている高周波パルスPOの同期パルスP1とクロックパルスP2とに基づいて決定された周期時間信号SP及び位相差信号SDは、これらに基づいて演算される発信周波数及びパルス個数として次周期の高周波パルスPOの波形制御に適用されるため、結果として、高周波パルスPOの位相は次周期の終了時刻(次々周期の開始時刻)において整合されることになる。
また例えば、現在発振されている高周波パルスPOの同期パルスP1とクロックパルスP2とに基づいて決定された周期時間信号SP及び位相差信号SDは、これらに基づいて演算される発信周波数及びパルス個数として次周期の高周波パルスPOの波形制御に適用されるため、結果として、高周波パルスPOの位相は次周期の終了時刻(次々周期の開始時刻)において整合されることになる。
ここで、出力波形パラメータ決定部136は、決定する発振周波数の一例として、基準となる中間周波数と、当該基準周波数より小さい小側周波数と、基準周波数より大きい大側周波数と、の3種類からなる周波数から選択する。このとき、中間周波数と大側周波数及び小側周波数との差は、本発明による高周波電源装置が適用されるハードウェア(例えば超音波発振装置やプラズマ処理装置等)が内蔵する増幅器やフィルタ等の特性に基づいて決定されるものであり、その一例として、中間周波数の±3%程度に設定される。そして、このように決定された発振周波数に所定のパルス個数をかけ合わせることにより、1周期内に含まれる個々のパルスのパルス幅(時間)を変化させることができる。
また、出力波形パラメータ決定部136は、上記した次周期の周期時間が経過後(終了時刻)における位相が常にパルスの立上り又は立下りのタイミングと一致するように、発振周波数及びパルス個数を決定するように構成してもよい。
図5は、図1に示した発振機構の具体的な構成の一例を示すブロック図である。図5に示すように、発振機構140は、発振波形設定機構130から受信した発振周波数信号SFに基づいて所定の高周波範囲のクロックパルスP2を生成するクロックパルス生成器142と、同期パルス生成機構110からの周期基準信号SS、出力レベル設定機構120からの第1レベル設定信号SL1及び第2レベル設定信号SL2、発振波形設定機構130からのパルス個数信号SN、並びに上記クロックパルスP2を受信して、これらの信号に基づいて高周波パルスPOを形成する発振増幅器144と、を含む。
クロックパルス生成器142は、発振波形設定機構130から受信する発振周波数信号SFに基づいて、高周波パルスPOの出力に応じた高周波(数百kHz~数十MHz)のクロックパルスP2を発生する手段であって、例えば13.56MHzのクロックパルスP2を発生する。このとき、クロックパルス生成器142は、受信した発振周波数信号SFが指示する発振周波数が切り替わるごとに対応する周波数にシフトする形式等の任意の形式のものを採用し得る。
発振増幅器144は、周期基準信号SSに基づいて高周波パルスPOの発振タイミングを決定するとともに、第1レベル設定信号SL1及び第2レベル設定信号SL2に基づいてクロックパルスP2の振幅値を増幅することにより、高周波パルスPOを生成して発振する。このとき、発振増幅器144は、発振周波数信号SFに対応するパルス個数信号SNで指定された周波数及びパルス個数で連続的に高周波パルスPOを出力する。
図6は、図1に示した高周波電源装置で得られる高周波パルスの出力波形の一例を示すグラフである。図1に示した高周波電源装置100では、まず図6(a)に示すように、同期パルス生成機構110の同期パルス形成回路112で形成された同期パルスP1は、時間TL1の区間中はハイレベルL1となり、時間TL2の区間中はローレベルL2となる周期的なパルス信号として形成される。そして、当該同期パルスP1から、上述のとおり、例えばパルス1周期の時刻基準であるハイレベルL1への立ち上がり時刻が抽出され、周期基準信号生成器114が当該立ち上がり時刻ごとに周期基準信号SSを発振機構140に発信する。
一方、上述のとおり、同期パルスP1は出力レベル設定機構120にも供給され、当該出力レベル設定機構120のレベル判別部122で時刻ごとの出力レベルが設定される。
そして、第1レベル設定信号生成器126あるいは第2レベル設定信号生成器128から第1レベル設定信号SL1又は第2レベル設定信号SL2が連続的に発振機構140に発信される。すなわち、図6(a)を参照すれば、時間TL1の区間では第1レベル設定信号SL1が発信され、時間TL2の区間では第2レベル設定信号SL2が発信されることになる。
そして、第1レベル設定信号生成器126あるいは第2レベル設定信号生成器128から第1レベル設定信号SL1又は第2レベル設定信号SL2が連続的に発振機構140に発信される。すなわち、図6(a)を参照すれば、時間TL1の区間では第1レベル設定信号SL1が発信され、時間TL2の区間では第2レベル設定信号SL2が発信されることになる。
続いて、発振機構140の発振増幅器144において、受信した第1レベル設定信号SL1あるいは第2レベル設定信号SL2に応じて、クロックパルスP2の振幅値が増幅される。すなわち、第1レベル設定信号SL1を連続的に受信した場合、図6(b)に示すように、クロックパルスP2の平均高さがハイレベルL1となる連続パルスが出力される。一方、第1レベル設定信号SL2を連続的に受信した場合、図6(c)に示すように、クロックパルスP2の平均高さがローレベルL2となる連続パルスが出力される。
そして、これらの動作を、同期パルスP1の生成から時間変化に伴い連続的に実行されると、図6(d)に示すように、発振機構140が周期基準信号SSを受信した時刻からパルスが連続的に生成され、時間TL1の区間ではハイレベルL1の連続パルスが発振される。同様に、時間TL2の区間ではローレベルL2の連続パルスが発振される。こうして1周期Tn(nは自然数)の区間の高周波パルスPOが出力される。
図7は、本発明の代表的な一例による高周波電源装置の出力制御方法で得られる出力波形の一例を示すグラフである。なお、図7では、説明を容易とするために、周期時間Tnごとに8つのパルスが含まれる場合が示されているが、例えば高周波パルスPOの発振周波数が400kHz程度の場合、1周期あたり30個前後のパルスが含まれ、さらに高周波の13.56MHz程度の発振周波数の場合には、1周期あたり1000個以上のパルスが含まれる。本発明の代表的な一例による高周波電源装置の出力制御方法では、図7(a)に示すように、図1~図6で説明した高周波パルスPOの出力動作で出力された周期時間Tnの1周期における同期パルスP1とクロックパルスP2との位相差を検出する。
具体的には、クロックパルスP2の1パルス分のパルス周波数が、例えば上記した中間周波数PMによる連続パルスで形成されている場合、周期時間Tnの開始時刻t0(すなわち周期基準信号SSの発信時刻)において、同期パルスP1と出力された高周波パルスPOの1パルスとの位相差ΔPを検出する。このとき、位相差ΔPは図示中の単なる横軸ではなく、1パルス中の出力変化における経過時間を意味し、また中間周波数PMは、同期パルスP1の整数倍とほぼ同等であるものとする。
続いて、次周期時間Tn+1の開始時刻t2から時間TL1の区間において、周波数変調されたパルスが所定個数だけ発振される。具体的には、中間周波数PMによるパルスを基準とした場合、これを例えば大側周波数PLに置換した際の位相差がΔPとなるようにパルス個数N(Nは自然数)を選択する。
このとき、中間周波数PMが同期パルスP1の整数倍と同一でない場合には、上記数1の右辺に同期パルスP1とクロックパルスP2との周期差αを加えることにより、その周期差αを考慮する。ただし、中間周波数PMと上記整数倍との差がクロックパルス生成器142の分解能未満となるように設定されている場合には、周期差αを省略できる。
これにより、次周期Tn+1の終了時刻t4において、同期パルスP1とクロックパルスP2による高周波パルスPOとの位相差ΔPが解消される。すなわち、時刻t2では出力波形は振幅値A1で位相差ΔPとなっているが、時刻t4においては、振幅値A2で位相差が0に補正される。このとき、補正後の時刻t4において、そのパルスにおける位相が常にパルスの立上り又は立下りのタイミングと一致するように制御されるのが好ましい。
一方、図7(b)に示すように、中間周波数PMによるパルスを基準とした場合、これを例えば小側周波数PSに置換した際の位相差がΔPとなるようにパルス個数Nを選択するようにしてもよい。
これにより、図7(a)に示した場合と同様に、次周期時間Tn+1の終了時刻t4において、同期パルスP1とクロックパルスP2による高周波パルスPOとの位相差ΔPが解消される。すなわち、時刻t2では出力波形は振幅値A1で位相差ΔPとなっているが、時刻t4においては、振幅値A2で位相差が0に補正される。
上記のような構成を備えることにより、本発明による高周波電源装置及びその出力制御方法は、同期パルスP1の1周期の周期時間Tnを検出するとともに、少なくとも高周波パルスPOの1周期前における同期パルスP1及びクロックパルスP2の位相差ΔPを判別し、周期時間Tn及び位相差ΔPに基づいて次周期に発振される高周波パルスPOの発振周波数及びパルス個数を演算して発振周波数信号SF及びパルス個数信号SNを発信し、発振周波数信号SFに基づいてクロックパルスP2を生成するとともに、周期基準信号SS、第1レベル設定信号SL1及び第2レベル設定信号SL2、パルス個数信号SN並びにクロックパルスP2を受信して、これらの信号に基づいて高周波パルスPOを形成する際に、次周期の周期時間Tn+1が経過後における位相が一定となるように、1周期前における位相差ΔPを相殺する次周期の発振周波数及びパルス個数を決定するように構成したため、同期パルスとクロックパルスとを別々に生成する構造であっても、出力される高周波パルスの位相を常に揃えることが可能となる。
なお、上記した実施の形態における記述は、本発明に係る高周波電源装置及びその出力制御方法の一例であって、本発明は各実施の形態に限定されるものではない。また、当業者であれば、本発明の趣旨を逸脱することなく種々の変形を行うことが可能であり、これらを本発明の範囲から排除するものではない。
例えば、上記した実施の形態では、高周波パルスPOの1周期の時間TL1の区間においてパルス変調による位相差ΔPを相殺する制御動作を例示したが、時間TL2の区間のみあるいは2つの区間で同時に位相差ΔPを相殺する制御を実行するように構成してもよい。これにより、より短時間で精緻に位相差を解消する出力制御を実行することが可能となる。
10 対象装置
100 高周波電源装置
110 同期パルス生成機構
112 同期パルス形成回路
114 周期基準信号生成器
116 計時機構
120 出力レベル設定機構
122、222、322 レベル判別部
124 レベル設定信号生成部
126 第1レベル設定信号生成器
128 第2レベル設定信号生成器
130 発振波形設定機構
132 同期パルス周期検出部
134 位相差判別部
136 出力波形パラメータ決定部
140 発振機構
142 クロックパルス生成器
144 発振増幅器
PO 高周波パルス
P1 同期パルス
P2 クロックパルス
SS 周期基準信号
SL1 第1レベル設定信号
SL2 第2レベル設定信号
SF 発振周波数信号
SN パルス個数信号
Tn、Tn+1 周期時間
100 高周波電源装置
110 同期パルス生成機構
112 同期パルス形成回路
114 周期基準信号生成器
116 計時機構
120 出力レベル設定機構
122、222、322 レベル判別部
124 レベル設定信号生成部
126 第1レベル設定信号生成器
128 第2レベル設定信号生成器
130 発振波形設定機構
132 同期パルス周期検出部
134 位相差判別部
136 出力波形パラメータ決定部
140 発振機構
142 クロックパルス生成器
144 発振増幅器
PO 高周波パルス
P1 同期パルス
P2 クロックパルス
SS 周期基準信号
SL1 第1レベル設定信号
SL2 第2レベル設定信号
SF 発振周波数信号
SN パルス個数信号
Tn、Tn+1 周期時間
Claims (8)
- 同期パルス及びクロックパルスに基づいて対象装置に高周波パルスを出力する高周波電源装置であって、
前記高周波パルスの出力レベル情報及び出力タイミング情報を含む同期パルスを生成する同期パルス生成機構と、前記出力レベル情報に基づいて前記高周波パルスの出力レベルを設定する出力レベル信号を生成する出力レベル設定機構と、前記同期パルス及び前記クロックパルスの位相差に基づいて前記高周波パルスの発振周波数及びパルス個数を設定する周波数設定信号及びパルス個数設定信号を発信する発振波形設定機構と、前記同期パルスの周期基準信号、前記出力レベル信号、前記周波数設定信号及び前記パルス個数設定信号を受信して前記高周波パルスを発振する発振機構と、を備え、
前記同期パルス生成機構は、前記同期パルスを形成する同期パルス形成回路と、前記出力タイミング情報に含まれる周期基準時刻において周期基準信号を生成する周期基準信号生成器と、を含み、
前記出力レベル設定機構は、前記出力レベル信号に応じて前記高周波パルスで設定される出力レベルを判別するレベル判別部と、前記レベル判別部の判別結果を受けてレベル設定信号を生成するレベル設定信号生成部と、を含み、
前記発振波形設定機構は、前記同期パルスの1周期の周期時間を検出する同期パルス周期検出部と、少なくとも前記高周波パルスの1周期前における前記同期パルス及び前記クロックパルスの位相差を判別する位相差判別部と、前記周期時間及び前記位相差に基づいて次周期に発振される前記高周波パルスの発振周波数及びパルス個数を演算して発振周波数信号及びパルス個数信号を発信する出力パラメータ決定部と、を含み、
前記発振機構は、前記発振周波数信号に基づいて前記クロックパルスを生成するクロックパルス生成器と、前記周期基準信号、前記レベル設定信号、前記パルス個数信号及び前記クロックパルスを受信して、これらの信号に基づいて前記高周波パルスを形成する発振増幅器と、を含み、
前記出力パラメータ決定部は、前記次周期の前記周期時間が経過後における位相が一定となるように、前記1周期前における前記位相差を相殺する前記次周期の発振周波数及びパルス個数を決定する
ことを特徴とする高周波電源装置。 - 前記レベル設定信号は、前記高周波パルスでの第1の出力レベルを規定する第1レベル設定信号と、第2の出力レベルを規定する第2レベル設定信号と、を含み、
前記レベル設定信号生成部は、前記第1レベル設定信号を生成する第1レベル設定信号生成器と、前記第2レベル設定信号を生成する第2レベル設定信号生成器と、を含む
ことを特徴とする請求項1に記載の高周波電源装置。 - 前記発振周波数は、基準となる中間周波数と、前記中間周波数より小さい小側周波数と、前記中間周波数より大きい大側周波数と、からなる
ことを特徴とする請求項1又は2に記載の高周波電源装置。 - 前記出力パラメータ決定部は、前記次周期の前記周期時間が経過後における位相が常に前記同期パルスの立上り又は立下りのタイミングと一致するように、前記発振周波数及び前記パルス個数を決定する
ことを特徴とする請求項1~3のいずれか1項に記載の高周波電源装置。 - 同期パルス及びクロックパルスに基づいて対象装置に高周波パルスを出力する高周波電源装置の出力制御方法であって、
前記同期パルスの波形に含まれる出力レベル情報から前記高周波パルスの出力レベルを設定する出力レベル信号を生成するとともに、出力タイミング情報から周期基準信号を生成し、
前記出力レベル信号に基づいてレベル設定信号を生成し、
前記同期パルスの1周期の周期時間を検出するとともに、少なくとも前記高周波パルスの1周期前における前記同期パルス及び前記クロックパルスの位相差を判別し、
前記周期時間及び前記位相差に基づいて次周期に発振される前記高周波パルスの発振周波数及びパルス個数を演算して発振周波数信号及びパルス個数信号を発信し、
前記発振周波数信号に基づいて前記クロックパルスを生成するとともに、前記周期基準信号、前記レベル設定信号、前記パルス個数信号及び前記クロックパルスを受信して、これらの信号に基づいて前記高周波パルスを形成する際に、
前記次周期の前記周期時間が経過後における位相が一定となるように、前記1周期前における前記位相差を相殺する前記次周期の発振周波数及びパルス個数を決定する
ことを特徴とする高周波電源装置の出力制御方法。 - 前記レベル設定信号は、前記高周波パルスの第1の出力レベルを規定する第1レベル設定信号と、第2の出力レベルを規定する第2レベル設定信号と、を含む
ことを特徴とする請求項5に記載の高周波電源装置の出力制御方法。 - 前記発振周波数は、基準となる中間周波数と、前記中間周波数より小さい小側周波数と、前記中間周波数より大きい大側周波数と、からなる
ことを特徴とする請求項5又は6に記載の高周波電源装置の出力制御方法。 - 前記発振周波数及び前記パルス個数は、前記次周期の前記周期時間が経過後における位相が常に前記同期パルスの立上り又は立下りのタイミングと一致するように決定される
ことを特徴とする請求項5~7のいずれか1項に記載の高周波電源装置の出力制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180020909.1A CN115280903A (zh) | 2020-03-16 | 2021-03-04 | 高频电源装置及其输出控制方法 |
US17/908,797 US12040158B2 (en) | 2020-03-16 | 2021-03-04 | High-frequency power supply device and output control method therefor |
KR1020227034826A KR20220154148A (ko) | 2020-03-16 | 2021-03-04 | 고주파 전원 장치 및 그 출력 제어 방법 |
EP21770777.7A EP4124180A4 (en) | 2020-03-16 | 2021-03-04 | HIGH-FREQUENCY POWER SUPPLY DEVICE AND CORRESPONDING OUTPUT CONTROL METHOD |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020045559A JP7291091B2 (ja) | 2020-03-16 | 2020-03-16 | 高周波電源装置及びその出力制御方法 |
JP2020-045559 | 2020-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021187138A1 true WO2021187138A1 (ja) | 2021-09-23 |
Family
ID=77772047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/008460 WO2021187138A1 (ja) | 2020-03-16 | 2021-03-04 | 高周波電源装置及びその出力制御方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US12040158B2 (ja) |
EP (1) | EP4124180A4 (ja) |
JP (1) | JP7291091B2 (ja) |
KR (1) | KR20220154148A (ja) |
CN (1) | CN115280903A (ja) |
TW (1) | TW202139789A (ja) |
WO (1) | WO2021187138A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11214363A (ja) | 1998-01-23 | 1999-08-06 | Hitachi Ltd | 半導体製造方法とその装置、並びに半導体素子 |
JP2007514300A (ja) | 2003-11-07 | 2007-05-31 | ラム リサーチ コーポレーション | プラズマ処理システムにおいて基板を最適化する方法および装置 |
US20170103871A1 (en) * | 2015-10-12 | 2017-04-13 | Semes Co., Ltd. | Apparatus for monitoring pulsed high-frequency power and substrate processing apparatus including the same |
JP2019091526A (ja) * | 2017-11-10 | 2019-06-13 | 東京エレクトロン株式会社 | パルスモニタ装置及びプラズマ処理装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7602127B2 (en) * | 2005-04-18 | 2009-10-13 | Mks Instruments, Inc. | Phase and frequency control of a radio frequency generator from an external source |
US8404598B2 (en) * | 2009-08-07 | 2013-03-26 | Applied Materials, Inc. | Synchronized radio frequency pulsing for plasma etching |
JP5808012B2 (ja) | 2011-12-27 | 2015-11-10 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US9462672B2 (en) * | 2012-02-22 | 2016-10-04 | Lam Research Corporation | Adjustment of power and frequency based on three or more states |
JP6035606B2 (ja) * | 2013-04-09 | 2016-11-30 | 株式会社日立ハイテクノロジーズ | プラズマ処理方法およびプラズマ処理装置 |
JP6374647B2 (ja) | 2013-11-05 | 2018-08-15 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US10115567B2 (en) * | 2014-09-17 | 2018-10-30 | Tokyo Electron Limited | Plasma processing apparatus |
JP6770868B2 (ja) * | 2016-10-26 | 2020-10-21 | 東京エレクトロン株式会社 | プラズマ処理装置のインピーダンス整合のための方法 |
JP6883488B2 (ja) * | 2017-08-18 | 2021-06-09 | 東京エレクトロン株式会社 | プラズマ処理装置 |
JP7175239B2 (ja) | 2018-06-22 | 2022-11-18 | 東京エレクトロン株式会社 | 制御方法、プラズマ処理装置、プログラム及び記憶媒体 |
CN113345788B (zh) * | 2018-06-22 | 2024-06-21 | 东京毅力科创株式会社 | 等离子体处理装置、等离子体处理方法和存储介质 |
WO2020117503A1 (en) * | 2018-12-05 | 2020-06-11 | Lam Research Corporation | Etching isolation features and dense features within a substrate |
CN118315254A (zh) * | 2019-01-22 | 2024-07-09 | 应用材料公司 | 用于控制脉冲电压波形的反馈回路 |
JP7542001B2 (ja) * | 2019-04-29 | 2024-08-29 | ラム リサーチ コーポレーション | Rfプラズマ・ツールにおける複数レベルのパルス化のためのシステム及び方法 |
-
2020
- 2020-03-16 JP JP2020045559A patent/JP7291091B2/ja active Active
-
2021
- 2021-03-03 TW TW110107468A patent/TW202139789A/zh unknown
- 2021-03-04 CN CN202180020909.1A patent/CN115280903A/zh active Pending
- 2021-03-04 EP EP21770777.7A patent/EP4124180A4/en active Pending
- 2021-03-04 US US17/908,797 patent/US12040158B2/en active Active
- 2021-03-04 KR KR1020227034826A patent/KR20220154148A/ko active Search and Examination
- 2021-03-04 WO PCT/JP2021/008460 patent/WO2021187138A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11214363A (ja) | 1998-01-23 | 1999-08-06 | Hitachi Ltd | 半導体製造方法とその装置、並びに半導体素子 |
JP2007514300A (ja) | 2003-11-07 | 2007-05-31 | ラム リサーチ コーポレーション | プラズマ処理システムにおいて基板を最適化する方法および装置 |
US20170103871A1 (en) * | 2015-10-12 | 2017-04-13 | Semes Co., Ltd. | Apparatus for monitoring pulsed high-frequency power and substrate processing apparatus including the same |
JP2019091526A (ja) * | 2017-11-10 | 2019-06-13 | 東京エレクトロン株式会社 | パルスモニタ装置及びプラズマ処理装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4124180A4 |
Also Published As
Publication number | Publication date |
---|---|
TW202139789A (zh) | 2021-10-16 |
EP4124180A4 (en) | 2024-04-03 |
JP2021150032A (ja) | 2021-09-27 |
JP7291091B2 (ja) | 2023-06-14 |
US12040158B2 (en) | 2024-07-16 |
CN115280903A (zh) | 2022-11-01 |
KR20220154148A (ko) | 2022-11-21 |
US20230134559A1 (en) | 2023-05-04 |
EP4124180A1 (en) | 2023-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11004658B2 (en) | Plasma processing apparatus and plasma processing method | |
JP5822795B2 (ja) | プラズマ処理装置 | |
KR101787501B1 (ko) | Rf 발생기들의 바이모달 자동 전력 및 주파수 동조의 시스템 및 방법 | |
US10037868B2 (en) | Plasma processing apparatus | |
US20160268100A1 (en) | Methods and apparatus for synchronizing rf pulses in a plasma processing system | |
JP2015115564A (ja) | プラズマ処理装置及びプラズマ処理方法 | |
WO2021187138A1 (ja) | 高周波電源装置及びその出力制御方法 | |
JP6043852B2 (ja) | プラズマ処理装置 | |
JP4916352B2 (ja) | レーダ装置 | |
JP6976228B2 (ja) | プラズマ処理装置 | |
WO2021187137A1 (ja) | 高周波電源装置及びその出力制御方法 | |
KR102328317B1 (ko) | 펄싱된 rf의 트랙 앤드 홀드 피드백 제어 | |
US20240222076A1 (en) | High-frequency power supply system | |
US20240222082A1 (en) | High-frequency power supply system | |
JP2024094788A (ja) | 高周波電源装置 | |
KR20230100647A (ko) | 고주파 전원 장치 | |
JP2000004060A (ja) | マイクロ波励起ガスレ―ザ発振装置 | |
JPH09179157A (ja) | 光周波数制御装置 | |
JPH08236846A (ja) | レーザ発振器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21770777 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227034826 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021770777 Country of ref document: EP Effective date: 20221017 |