WO2021187122A1 - 粒子測定装置及び粒子測定方法 - Google Patents

粒子測定装置及び粒子測定方法 Download PDF

Info

Publication number
WO2021187122A1
WO2021187122A1 PCT/JP2021/008302 JP2021008302W WO2021187122A1 WO 2021187122 A1 WO2021187122 A1 WO 2021187122A1 JP 2021008302 W JP2021008302 W JP 2021008302W WO 2021187122 A1 WO2021187122 A1 WO 2021187122A1
Authority
WO
WIPO (PCT)
Prior art keywords
movement amount
particles
correction
particle
sample
Prior art date
Application number
PCT/JP2021/008302
Other languages
English (en)
French (fr)
Inventor
和奈 坂東
郁 近藤
拓哉 田渕
聡太 近藤
Original Assignee
リオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リオン株式会社 filed Critical リオン株式会社
Priority to EP21770643.1A priority Critical patent/EP4123289A4/en
Priority to KR1020227008207A priority patent/KR20220153568A/ko
Priority to CN202180005328.0A priority patent/CN114424044A/zh
Priority to US17/642,920 priority patent/US20220364970A1/en
Publication of WO2021187122A1 publication Critical patent/WO2021187122A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N15/0227Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging using imaging, e.g. a projected image of suspension; using holography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1012Calibrating particle analysers; References therefor
    • G01N15/1433
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N2015/0238Single particle scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N2015/025Methods for single or grouped particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N2015/1452Adjustment of focus; Alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1493Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation

Definitions

  • the present invention relates to a particle measuring device and a particle measuring method.
  • the FPT (flow particle tracking) method is known as one method for determining the size of particles suspended in a sample.
  • the FPT method it is possible to observe the movement of particles by irradiating the sample with light and imaging the scattered light from the particles, and measure the size close to the geometrical dimensions of the particles from the amount of movement due to Brownian motion. can.
  • the refractive index of particles since it is possible to obtain the refractive index of particles by simultaneously measuring the light scattering intensity, it is particularly useful in controlling contaminated particles in the semiconductor production process.
  • FPT apparatus an apparatus in which a condensing optical system composed of a lens or the like is arranged at a position facing the flow direction of the sample is known (see, for example, Patent Document 1). ).
  • the sample flow direction is, in other words, the direction in which the particles are transported by the sample flow.
  • the condensing optical system since the condensing optical system is arranged at a position facing the flow direction of the sample, the movement of the particles due to the flow of the sample is not observed from the condensing optical system, and the particles due to Brownian motion are not observed. Only movement is observed.
  • the amount of movement of the particles is determined by specifying the amount of movement of the center of gravity of the particles between each frame from the position of the center of gravity of the particles captured in each frame image constituting the captured moving image. An error in the magnification of the optical optical system leads to an error in the amount of movement of particles.
  • Defocus causes a magnification error in each frame image, and particles are captured at different magnifications depending on the position of the sample in the flow direction. Also, even if the particles are moving parallel to the flow direction of the sample, the change in magnification depending on the defocus position makes it appear as if the particles are moving from the center to the outside on the plane perpendicular to the flow direction of the sample. Be done.
  • the optical error of the condensing optical system is inevitably affected by the particle size calculated from the amount of particle movement obtained based on the frame image captured in this way, and by extension, the amount of particle movement. Therefore, the optical error of the condensing optical system is a problem to be solved in order to accurately measure the particle size.
  • an object of the present invention is to provide a technique for accurately measuring the particle size.
  • the present invention employs the following particle measuring device and particle measuring method.
  • the wording in the following parentheses is merely an example, and the present invention is not limited thereto.
  • the flow path is irradiated with irradiation light, and the particles contained in the sample passing through the detection region formed in the predetermined section of the flow path by the irradiation of the irradiation light.
  • the scattered light is focused at a position where a predetermined section is virtually extended in the flow direction of the sample and imaged at a predetermined frame rate.
  • the amount of movement of the particles in the two-dimensional direction (direction perpendicular to the flow direction) due to Brownian motion is calculated based on a plurality of frame images.
  • the movement amount is corrected by using a correction value obtained in advance according to the defocus position in order to correct the magnification error that occurs when the scattered light is focused, and the movement amount of the particles is corrected based on the corrected movement amount. Identify the particle size.
  • the FPT device scattered light from particles contained in the sample is collected and imaged at a position (a position facing the flow of the sample) in which a predetermined section of the flow path is virtually extended in the flow direction of the sample.
  • an error in magnification due to defocus occurs when the scattered light is focused, and the particles are captured in the frame image at different magnifications depending on the position in the flow direction of the sample. Since the amount of movement of particles due to Brown motion calculated based on the frame image captured in this way includes an error, if the particle size of the particles is specified based on the calculated amount of movement, it is included in the amount of movement. The error spreads to the particle size, and the particle size cannot be measured accurately.
  • the calculated movement amount is corrected by using a correction value obtained in advance according to the defocus position in order to correct the error of the magnification generated when the scattered light is focused. Then, the particle size of the particles is specified based on the corrected movement amount. Therefore, according to this aspect, since the error of the magnification due to the defocus is corrected, the amount of movement of the particles can be obtained more accurately, and the particle size can be measured accurately.
  • a value expressed in units of velocity is used as a correction value. More specifically, a value indicating an error in the amount of movement per unit time calculated in advance based on the defocus position and the position on the frame image is used.
  • the correction value used for correcting the calculated movement amount is expressed as a unit of speed, that is, an error of the movement amount per unit time. Therefore, even when the particle measurement is performed by changing the frame rate of imaging, the movement amount can be corrected by using the same calculation formula.
  • a correction value a value obtained in advance assuming that the change in magnification depending on the defocus position is a linear function of the distance in the flow direction of the sample. Is used.
  • the correction value used for correcting the movement amount is obtained in advance by using a linear function of the distance in the flow direction of the sample to change the magnification depending on the defocus position. Therefore, according to this aspect, the error at a certain interval due to defocus can be corrected as a constant amount regardless of the defocus position.
  • the particle size can be measured with high accuracy.
  • FIG. 2A It is a block diagram which shows the structure of the particle measuring apparatus in one Embodiment. It is a figure which shows the structure of the detection unit in one Embodiment simply. It is a figure which shows the structure of the detection unit in one Embodiment simply. It is a vertical cross-sectional view (cross-sectional view along the III-III cutting line of FIG. 2A) which shows the structure of the detection unit in one Embodiment simply. It is a figure explaining the appearance of the movement of a particle in a detection area. It is a figure explaining the appearance of the movement of a particle on a light receiving surface of an image sensor. It is a figure explaining the error of the particle diameter caused by defocus. It is a figure explaining the error of the particle diameter caused by defocus.
  • FIG. 1 is a block diagram showing a configuration of a particle measuring device 1 according to an embodiment.
  • the particle measuring device 1 is an FPT device, and as shown in FIG. 1, the particle measuring device 1 includes a detection unit 2 and a control calculation unit 3 as a basic configuration.
  • the detection unit 2 is a group of devices involved in irradiating a fluid sample with light and detecting scattered light generated by the interaction between particles floating in the sample and the irradiation light.
  • the control calculation unit 3 controls each device constituting the detection unit 2 and calculates the movement amount of each particle based on the scattered light detected by the detection unit 2 to specify the particle size and the like. It is a function group related to.
  • the detection unit 2 is composed of, for example, a light source 10, an irradiation optical system 20, a flow cell 30, a condensing optical system 40, an imager 50, and the like.
  • the light source 10 is, for example, a semiconductor laser diode, and emits irradiation light such as laser light.
  • the irradiation optical system 20 is configured by combining, for example, a beam expander, a diffractive optical element, an optical slit, and the like, and the irradiation light emitted by the light source 10 is shaped into a predetermined shape and focused inside the flow cell 30.
  • the flow cell 30 is made of a transparent material such as quartz or sapphire, and a flow path through which the sample is poured is formed therein.
  • a detection region is formed in the flow path.
  • the condensing optical system 40 (light receiving lens system) has, for example, an optical lens configuration that is not a telecentric lens, and condenses scattered light from particles that pass through the detection region on the imager 50. That is, the "detection region" is a region where the irradiation light and the range focused on the imager 50 by the focusing optical system 40 intersect.
  • the imager 50 is a camera equipped with an image sensor such as a CCD (charge-coupled device) or a CMOS (complementary metal-oxide semiconductor), and is scattered on the light receiving surface of the image sensor by the condensing optical system 40. Image the light.
  • an image sensor such as a CCD (charge-coupled device) or a CMOS (complementary metal-oxide semiconductor)
  • CCD charge-coupled device
  • CMOS complementary metal-oxide semiconductor
  • FIGS. 2A and 2B are diagrams simply showing the configuration of the detection unit 2 in one embodiment.
  • FIG. 2A is a perspective view of the flow cell 30.
  • the flow cell 30 has an L-shape, and inside the flow cell 30, a first section 32 extending in the Y direction from the first opening 31 and a second section 34 extending in the Z direction from the second opening 33 are end portions thereof.
  • An L-shaped flow path is formed in the above.
  • the sample is poured from the first opening 31 into the first section 32, passed through the second section 34, and discharged to the outside from the second opening 33.
  • the shape of the flow cell 30 may be any shape having a portion bent into an L shape, and a U shape or a crank shape may be adopted instead of the L shape.
  • FIG. 2B is a configuration of the detection unit 2, and in particular, is a plan view simply showing the positional relationship between the configurations.
  • the irradiation optical system 20 causes the shaped irradiation light BI to enter the flow cell 30 from a direction (X direction) perpendicular to the flow direction (Y direction) of the sample in the first section 32.
  • the condensing optical system 40 and the imager 50 are arranged at a position facing the flow of the sample in the first section 32, that is, a position where the first section 32 is virtually extended in the flow direction of the sample, and the detection region.
  • the scattered light BS from the particles that have passed through M is condensed and imaged. With these configurations, the movement of individual particles in the XZ plane, that is, Brownian motion, is observed. The imaging of the scattered light BS will be described later with reference to another drawing.
  • FIG. 3 is a vertical cross-sectional view (cross-sectional view taken along the III-III cutting line of FIG. 2A) that simply shows the configuration of the detection unit 2 in one embodiment.
  • the cross section of the condensing optical system 40 and the imager 50 is not shown.
  • the shaped irradiation light BI enters the flow cell 30 from the X direction and forms the detection region M in the first section 32.
  • the shape of the detection region M has, for example, a long side in the Z direction, a short side in the Y direction, and a depth substantially equivalent to the long side in the X direction.
  • the inner wall of the flow cell 30 located between the detection region M and the condensing optical system 40 is formed with a concave surface portion 35 having a concave shape and having a radius of curvature approximately equal to the distance from the center of the detection region M. ..
  • a concave surface portion 35 having a concave shape and having a radius of curvature approximately equal to the distance from the center of the detection region M. ..
  • the positions of the condensing optical system 40 and the imager 50 with respect to the flow cell 30 are determined with reference to the optical axis of the condensing optical system 40, and in each configuration, the optical axis of the condensing optical system 40 is the center of the detection region M. , The center of the concave surface portion 35, and the position passing through the center of the light receiving surface of the image sensor included in the imager 50, respectively.
  • the imager 50 faces the XZ plane, observes the movement of scattered light generated in the detection region M, that is, the Brownian motion of individual particles P passing through the detection region M, and captures the image as a moving image at a predetermined frame rate. do.
  • the control calculation unit 3 includes, for example, a control unit 60, an image acquisition unit 70, a particle identification unit 80, a movement amount calculation unit 90, a movement amount correction unit 100, a particle size identification unit 110, a scattered light intensity identification unit 120, and an analysis unit 130. , The output unit 140 and the like.
  • the control unit 60 controls the operation of each device in the detection unit 2 and a series of processes executed in the control calculation unit 3.
  • the control unit 60 controls, for example, ON / OFF of the irradiation light by the light source 10, the flow velocity (flow rate) of the sample flowing into the flow cell 30, and the imaging of a moving image by the imager 50.
  • a device that controls a part or all of a series of processes may be provided separately from the control unit 60 and controlled there.
  • the flow velocity of the sample may be controlled by providing a flow control device such as a mass flow controller separately from the control unit 60.
  • the image acquisition unit 70 acquires a still image (frame image) for each frame from the moving image captured by the imager 50 at a predetermined frame rate.
  • the frame rate of the moving image and the flow velocity of the sample are controlled so that a predetermined number of frame images can be acquired for each particle from the captured moving image. For example, in order to acquire 10 frame images from a moving image in which the detection region M has a length of 20 ⁇ m in the Y direction and is captured at 30 fps (that is, 30 times per second), the flow velocity of the sample is 60 ⁇ m / sec. Will be set to.
  • the particle identification unit 80 identifies the particles from the frame image acquired by the image acquisition unit 70, associates the individual particles captured in the continuous frame images, and then identifies the trajectory.
  • the movement amount calculation unit 90 calculates the movement amount in the two-dimensional directions (X direction and Z direction) due to Brownian motion for each frame image for the particles specified by the particle identification unit 80.
  • the representative value of the position of the particles is used.
  • the position of the particle is specified by, for example, the center of gravity of the particle or the center of the particle.
  • the movement amount correction unit 100 uses a correction value defined in a correction map prepared in advance for the movement amount of the particles calculated by the movement amount calculation unit 90, and is caused by the magnification fluctuation due to the defocus position. Correct the error of the amount of movement that occurs.
  • the particle size specifying unit 110 specifies the particle size of each particle corresponding to the diffusion coefficient based on the movement amount corrected by the movement amount correction unit 100. Specific methods for calculating and correcting the amount of movement of particles and specifying the particle size will be described in detail later with reference to another drawing.
  • the scattered light intensity specifying unit 120 specifies the amount of scattered light of each tracked particle. Specifically, the scattered light intensity specifying unit 120 determines the brightness average value and the maximum brightness value of each bright spot of the same particle, which is obtained based on the image information sent when the particle is specified by the particle specifying unit 80. The value equivalent to the scattered light intensity of the particles is specified from the binarized area and the like.
  • the analysis unit 130 calculates the number concentration of particles for each predetermined particle size range based on the particle size specified by the particle size identification unit 110. Further, the analysis unit 130 analyzes the refractive index of the particles for each particle based on the particle size specified by the particle size specifying unit 110 and the scattered light intensity equivalent value specified by the scattered light intensity specifying unit 120. Specifically, scattered light relative to a known particle size and a known refractive index obtained in advance using sample particles having a known particle size and which can be regarded as a substantially single particle size, such as polystyrene latex particles, etc. The refractive index of the particle to be measured is specified based on the relationship of intensity, and solid particles and bubbles are distinguished by the difference in the refractive index.
  • the output unit 140 outputs the result of analysis by the analysis unit 130.
  • the output unit 140 can output the analysis result in various modes such as display on a screen, output to a printer, output to a storage unit (not shown), or transmission to another device via a network. be.
  • FIG. 4 and 5 are diagrams for explaining how the movement of particles is seen at the time of detection. More specifically, FIG. 4 shows the appearance of the detection region M when observed from a direction perpendicular to the flow direction of the sample, that is, the appearance of particles in the YZ plane. Further, FIG. 5 shows how the image is projected on the light receiving surface of the image sensor in the imager 50, that is, how the particles are seen in the XZ plane.
  • the condensing optical system 40 and the imager 50 are arranged at positions facing the flow of the sample, but the movement of the particles causes the focal movement due to the defocus of the condensing optical system 40. Occurs. That is, since the magnification changes according to the position of the particles in the Y direction, there is a difference in the image height in each frame image captured. Further, as shown in FIG. 4, even if the particles P1, P2, and P3 move in parallel in the Y direction, as shown in FIG. 5, each of these particles is in the defocus position on the XZ plane. It appears as if the detection region M is moving outward from the center due to the change in the magnification. Then, the scattered light from each particle that looks like this is imaged on the light receiving surface.
  • FIGS. 6A and 6B are diagrams illustrating a particle size error caused by defocus.
  • the condensing optical system 40 of the present embodiment of FIG. 6A has a magnification of 13.002293 times at the focus position. For example, when an object having an object height of 0.885 mm is in the focus position in the detection region, the image height formed on the light receiving surface 52 in the imager 50 is 11.507029 mm. Further, when this object is at a position defocused by 2 ⁇ m (close to the condensing optical system 40) in the flow direction (Y direction) of the sample, the image height formed on the light receiving surface 52 is 11.507432 mm. ..
  • the object height is calculated from the image height after defocus in FIG. 6B assuming that the object is in the focus position (image height after defocus ⁇ magnification at the focus position), it is 0.885031 mm. .. That is, according to the calculation result based on the image height after defocusing, there is an object with an object height of 0.885031 mm at the focus position, and an error of 0.031 ⁇ m with the actual object height of 0.885 mm ( Movement amount error) occurs. If the amount of movement of the particles due to Brownian motion is calculated without considering the error in the height of the object due to such defocus, the error spreads to the particle size of the particles.
  • the particles always approach the condensing optical system 40 from a distance (the particles are transported from a distant position to a near position by the flow of the sample), and the calibration curve of the magnification with respect to the defocus position obtained in advance is used. From the line, it was decided to correct the calculation error of the amount of movement of particles due to the fluctuation of magnification due to defocus.
  • FIG. 7 is a diagram showing a calibration curve of the magnification with respect to the defocus position.
  • the flow velocity of the sample poured into the flow cell 30 is constant and the calibration curve is a linear function of the distance in the Y direction.
  • the calibration curve is a linear function, it is possible to correct the error at a constant interval due to defocus as a constant quantity regardless of the defocus position.
  • FIG. 8 is a diagram showing pixels of the light receiving surface 52.
  • the light receiving surface 52 has, for example, 2448 pixels (px) pixels in each of the horizontal (X direction) and the vertical (Z direction), and captures the light generated in the detection region facing the XZ plane.
  • the scattered light generated from the particles in the XZ plane is imaged on the light receiving surface 52, whereby the Brownian motion of the particles is imaged as a moving image by the imager 50.
  • the particle specifying unit 80 When a frame image is acquired from the moving image captured by the image acquisition unit 70, the particle specifying unit 80 first identifies the particles from the frame image acquired from the moving image, and the coordinates of the center of gravity of the particles in each frame image "(xi”. , Zi) ”.
  • xi is the X coordinate in the frame image of the i-th frame
  • zi is the Z coordinate in the frame image of the i-th frame.
  • the movement amount calculation unit 90 identifies the trajectory of the particles and calculates each movement amount of the particles in the X direction and the Z direction between consecutive frames from the coordinates of the center of gravity of the particles in each frame image. Specifically, the movement amount calculation unit 90 calculates the movement amount ( ⁇ m) of the particles in the X direction between the i-th frame and the i + 1-th frame by "xi + 1-xi", and "zi + 1-zi". , The amount of movement ( ⁇ m) of particles in the Z direction between the i-th frame and the i + 1-th frame is calculated.
  • each movement amount of the particle in the X direction and the Z direction is a vector showing the trajectory from the position of the center of gravity in the i-th frame to the position of the center of gravity in the i + 1th frame in the XZ plane decomposed into the X component and the Z component. It was done.
  • the movement amount correction unit 100 sets the position of the center of gravity of the particle with reference to the correction map prepared in advance. Corresponding correction values are acquired, and each of the movement amounts in the X direction and the Z direction calculated by the movement amount calculation unit 90 is corrected by the following formula using the obtained correction values.
  • vx (xi, zi) ⁇ t and "vz (xi, zi) ⁇ t” represent the movement amount error ( ⁇ m) between frames due to the difference in magnification according to the position of the center of gravity coordinates of the particles in the XZ plane.
  • vx (xi, zi)” and “vz (xi, zi)” are correction values ( ⁇ m / s) obtained in advance based on the X-direction component and the Z-direction component of the apparent movement speed. ). By defining the correction value as the movement speed, it is possible to correct the movement amount using the same calculation formula even when the frame rate is changed.
  • each correction value differs depending on the object height, it is necessary to create a correction map in advance based on the correction value for each object height obtained in advance.
  • a correction value corresponding to an error amount for example, 0.031 ⁇ m with respect to the above-mentioned object height of 0.885 mm
  • an error amount for example, 0.031 ⁇ m with respect to the above-mentioned object height of 0.885 mm
  • the particle size specifying unit 110 specifies the particle size of each particle based on the corrected movement amount. do. Specifically, the particle size specifying unit 110 first calculates the average moving amount LR based on the corrected moving amounts of the particles in the X direction and the Y direction by the following formula.
  • the particle size specifying unit 110 calculates the diffusion coefficient D by the following formula.
  • the particle size specifying unit 110 specifies the particle size d according to the Stokes-Einstein formula shown below.
  • the average movement amount calculated without correcting the movement amount is the above-mentioned average movement amount LR0.
  • the movement amount error of 0.031 ⁇ m is added to 378 ⁇ m to obtain 0.409 ⁇ m.
  • the particle size d is specified as 85 nm from the above calculation formula (5). That is, when the movement amount includes an error, even though the actual particle size of the particles is 100 nm, the particle size of 15 nm is erroneously specified.
  • a predetermined correction value is applied to correct the movement amount of the particles, so that the magnification error due to defocus is corrected. Therefore, according to the present embodiment, the amount of movement of the particles can be obtained more accurately, and the measurement accuracy of the particle size can be improved.
  • the correction map is a map in which correction values for correcting a magnification error due to defocus are obtained in advance for each object height and summarized. Since the correction value differs depending on the position on the observation surface, it is determined for each pixel or division of the light receiving surface in the X coordinate direction and the Z coordinate direction. In the present embodiment, as described above, the correction value is calculated by the optical simulation software for each object height defined in advance, and is prepared in advance as a correction map corresponding to each object height.
  • FIGS. 9A to 10B are diagrams for explaining the correction map prepared in advance.
  • FIGS. 9A and 9B show an example of a correction map (X-direction correction map) for correcting the movement amount in the X direction
  • FIGS. 10A and 10B show corrections for correcting the movement amount in the Z direction.
  • An example of a map (Z direction correction map) is shown.
  • correction values obtained in advance based on the X-direction component and the Z-direction component of the apparent movement speed are defined.
  • the defocus of 2 ⁇ m causes an erroneous movement of 0.031 ⁇ m, that is, the amount of error per frame is 0.031 ⁇ m.
  • This velocity has the same value on the concentric circles from the center of the detection area, and the value of each component decomposed in the X direction and the Z direction according to the position of the coordinates is defined in each correction map as a correction value.
  • a value is defined in which the amount of error obtained in advance according to the position of the coordinates is expressed in the unit of speed.
  • the correction value for each pixel on the light receiving surface it is optimal to set the correction value for each pixel on the light receiving surface, but it may be set for each fixed division for the sake of simplification of the calculation process.
  • the detection area is divided into 10 areas substantially equally divided in the X-direction.
  • the range of the X coordinate for each of these areas and the correction value applied when the range is applicable are defined.
  • the corresponding area is selected by paying attention only to the position of the X coordinate regardless of the position of the Z coordinate, and the correction value for that area is applied.
  • the detection area is divided into 10 areas substantially equally divided in the Z direction.
  • a range of Z coordinates for each of these areas and a correction value applied when the range is applicable are defined.
  • the corresponding area is selected by paying attention only to the position of the Z coordinate regardless of the position of the X coordinate, and the correction value for that area is applied.
  • the above X coordinate corresponds to "Area 10". Therefore, the correction value "3.354993" is applied to the movement amount in the X direction before the correction, and the movement amount ⁇ x (i) in the X direction after the correction is calculated.
  • the above Z coordinate corresponds to "Area 1”. Therefore, the correction value "-3.354993” is applied to the movement amount in the Z direction before the correction, and the movement amount ⁇ z (i) in the Z direction after the correction is calculated.
  • the area division mode in the correction map shown in FIGS. 9A to 10B is merely an example, and is not limited to this.
  • the area may be further subdivided (for example, divided every 10 px), or if there is a margin in the amount of calculation, the correction value is individually defined for all the pixels without dividing the area. May be good.
  • each correction value differs depending on the object height, it is necessary to create a correction map in advance for each object height.
  • the amount of error can be obtained in advance by actual measurement.
  • the magnification of the optical system for example, the flow velocity of the sample
  • the error amount is calculated by the optical simulation as described above, it is not necessary to consider other factors that cause the error, and the error amount is targeted only at the error of the optical system. It is possible to find.
  • the movement amount of the particles is corrected by applying the correction value obtained in advance, the movement amount of the particles can be obtained more accurately by correcting the error of the magnification due to the defocus, and thereby the particle size. It is possible to improve the measurement accuracy.
  • the correction value is defined as the movement speed, even if the frame rate of the video to be captured is changed for measurement, the movement amount should be corrected using the same correction value as before the frame rate was changed. Can be done.
  • the movement amount is corrected by setting the error at a certain interval due to the defocus as a constant amount regardless of the defocus position. Can be done.
  • the irradiation optical system 20 is configured by combining a beam expander, a diffractive optical element, an optical slit, and the like, but is not limited to this, and is configured by combining, for example, a plurality of optical lenses. You may.
  • the irradiation light BI is incident on the first section 32 from the X direction, but instead, it may be incident on the first section 32 from the Z direction.
  • the sample is introduced in the flow cell 30 so that the sample flows from the first opening 31 to the second opening 33, but the present invention is not limited to this, and the second opening 33 to the first opening 31
  • the sample may be introduced so as to flow toward. Further, the sample may be introduced into the flow cell 30 by pressure feeding the sample to the opening serving as the inlet, or by sucking the sample from the opening serving as the outlet.

Abstract

流路に照射光を照射し、所定区間内に形成される検出領域を通過する試料に含まれる粒子からの散乱光を、試料の流れ方向に仮想的に延長させた位置で集光して所定のフレームレートで撮像する。その上で、複数のフレーム画像に基づいてブラウン運動による粒子の流れ方向に垂直な方向の移動量を算出する。さらにデフォーカス位置における倍率に起因する画像上の移動量の誤差を補正するために、予め求められた補正値を用いてその移動量を補正し、粒子の粒径を特定する。

Description

粒子測定装置及び粒子測定方法
 本発明は、粒子測定装置及び粒子測定方法に関する。
 従来、試料中に浮遊する粒子の大きさを求める1つの手法として、FPT(flow particle tracking)法が知られている。FPT法を用いることで、試料に光を照射して粒子からの散乱光を撮像することで粒子の動きを観察し、ブラウン運動による移動量から粒子の幾何寸法に近い大きさを測定することができる。また、光散乱強度を同時に測定することで粒子の屈折率を求めることなども可能であるため、半導体の生産工程における汚染粒子の制御等において特に有用である。
 FPT法を用いた装置(FPT装置)として、試料の流れ方向に対向する位置にレンズなどで構成される集光光学系が配置された装置が知られている(例えば、特許文献1を参照。)。試料の流れ方向とは、言い換えると、粒子が試料の流れによって輸送される方向である。このFPT装置においては、集光光学系が試料の流れ方向に対向する位置に配置されているため、集光光学系からは、試料の流れによる粒子の移動は観察されず、ブラウン運動による粒子の移動のみが観察される。
日本国 特許第6549747号公報
 ところで、FPT法においては、ブラウン運動による粒子の移動量、試料の粘度及び温度から、ストークス・アインシュタインの式により粒子の粒径が算出されるため、粒子の移動量を正確に求めることが、粒径を精度よく測定する上で重要である。また、粒子の移動量は、撮像された動画を構成する各フレーム画像に捉えられた粒子の重心の位置から、各フレーム間での粒子の重心の移動量を特定することにより求められるため、集光光学系の倍率の誤差は粒子の移動量の誤差につながる。
 FPT装置においては、集光光学系を構成するレンズの開口数を大きく且つ画角を広くすることが必要であり、そのことと高精度なテレセントリック光学系とを両立することは困難である。各フレーム画像にはデフォーカスによって倍率の誤差が生じ、粒子は試料の流れ方向における位置に応じて異なる倍率で捉えられる。また、粒子が試料の流れ方向に平行に移動していても、デフォーカス位置による倍率の変化によって、粒子があたかも試料の流れ方向に対し垂直な面において中心から外側に移動しているように捉えられる。したがって、このようにして捉えられたフレーム画像に基づいて求められる粒子の移動量、ひいては粒子の移動量等から算出される粒径は、集光光学系の光学的誤差が必然的に影響されるため、集光光学系の光学的誤差は、粒径を精度よく測定する上で解決すべき課題となる。
 そこで、本発明は、粒径を精度よく測定する技術の提供を目的とする。
 上記の課題を解決するため、本発明は以下の粒子測定装置及び粒子測定方法を採用する。なお、以下の括弧書中の文言はあくまで例示等であり、本発明はこれに限定されるものではない。
 すなわち、本発明の粒子測定装置及び粒子測定方法は、流路に照射光を照射し、照射光の照射により流路の所定区間内に形成される検出領域を通過する試料に含まれる粒子からの散乱光を、所定区間を試料の流れ方向に仮想的に延長させた位置で集光して所定のフレームレートで撮像する。その上で、複数のフレーム画像に基づいてブラウン運動による粒子の二次元方向(流れ方向に垂直な方向)の移動量を算出する。さらにその移動量を散乱光の集光時に生じる倍率の誤差を補正するためにデフォーカス位置に応じて、予め求められた補正値を用いて補正して、補正後の移動量に基づいて粒子の粒径を特定する。
 FPT装置において、試料に含まれる粒子からの散乱光が、流路の所定区間を試料の流れ方向に仮想的に延長させた位置(試料の流れに対向する位置)で集光されて撮像される場合には、散乱光の集光時にデフォーカスによる倍率の誤差が生じ、粒子は試料の流れ方向における位置に応じて異なる倍率でフレーム画像に捉えられることとなる。このようにして撮像されたフレーム画像に基づいて算出されるブラウン運動による粒子の移動量には誤差が含まれるため、算出された移動量に基づいて粒子の粒径を特定すると、移動量に含まれる誤差が粒径にも波及してしまい、粒径を精度よく測定することができない。
 これに対し、この態様においては、算出された移動量に対し、散乱光の集光時に生じる倍率の誤差を補正するためにデフォーカス位置に応じて予め求められた補正値を用いて補正を行った上で、補正後の移動量に基づいて粒子の粒径が特定される。したがって、この態様によれば、デフォーカスによる倍率の誤差が補正されるため、粒子の移動量をより正確に求めることができ、粒径を精度よく測定することが可能となる。
 好ましくは、上記の粒子測定装置及び粒子測定方法において、補正値として、速度の単位で表された値を用いる。より具体的には、デフォーカス位置及びフレーム画像上の位置に基づいて予め算出された単位時間当たりの移動量の誤差を示す値を用いる。
 この態様においては、算出された移動量の補正に用いられる補正値が、速度の単位、すなわち単位時間当たりの移動量の誤差として表されている。そのため、撮像のフレームレートを変更して粒子の測定を行う場合でも、同一の計算式を用いて移動量の補正を行うことができる。
 また好ましくは、上記のいずれかの粒子測定装置及び粒子測定方法において、補正値として、デフォーカス位置による倍率の変化が試料の流れ方向における距離の一次関数であると仮定して予め求められた値を用いる。
 この態様においては、移動量の補正に用いられる補正値は、デフォーカス位置による倍率の変化を試料の流れ方向における距離の一次関数を用いて予め求められたものである。したがって、この態様によれば、デフォーカス位置に関わらず、デフォーカスによる一定の間隔における誤差を一定量として補正することができる。
 以上のように、本発明によれば、粒径を精度よく測定することができる。
一実施形態における粒子測定装置の構成を示すブロック図である。 一実施形態における検出ユニットの構成を簡略的に示す図である。 一実施形態における検出ユニットの構成を簡略的に示す図である。 一実施形態における検出ユニットの構成を簡略的に示す垂直断面図(図2AのIII-III切断線に沿う断面図)である。 検出領域における粒子の動きの見え方を説明する図である。 イメージセンサの受光面における粒子の動きの見え方を説明する図である。 デフォーカスに起因して生じる粒径の誤差を説明する図である。 デフォーカスに起因して生じる粒径の誤差を説明する図である。 デフォーカス位置に対する倍率の検量線を示す図である。 受光面の画素を示す図である。 X方向の移動量を補正するための補正マップの一例を示す図である。 X方向の移動量を補正するための補正マップの一例を示す図である。 Z方向の移動量を補正するための補正マップの一例を示す図である。 Z方向の移動量を補正するための補正マップの一例を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施形態は好ましい例示であり、本発明はこの例示に限定されるものではない。
〔粒子測定装置の構成〕
 図1は、一実施形態における粒子測定装置1の構成を示すブロック図である。
 粒子測定装置1はFPT装置であり、図1に示されるように、基本的な構成として検出ユニット2及び制御演算ユニット3からなる。このうち、検出ユニット2は、流体である試料に光を照射し、試料中を浮遊する粒子と照射光との相互作用により生じる散乱光を検出することに関わる機器群である。また、制御演算ユニット3は、検出ユニット2を構成する各機器の制御、及び、検出ユニット2により検出された散乱光に基づき個々の粒子の移動量を算出して粒径の特定等を行うことに関わる機能群である。
〔検出ユニットの構成〕
 先ず、検出ユニット2の構成について説明する。
 検出ユニット2は、例えば、光源10、照射光学系20、フローセル30、集光光学系40、撮像器50等で構成されている。光源10は、例えば半導体レーザダイオードであり、レーザ光等の照射光を出射する。照射光学系20は、例えばビームエキスパンダ、回折光学素子及び光学スリット等を組み合わせて構成されており、光源10が出射した照射光を所定の形状に整形してフローセル30の内部に集光する。
 フローセル30は、石英やサファイア等の透明な材料からなり、その内部に試料が流し込まれる流路が形成されている。フローセル30に照射光が入射すると、流路内に検出領域が形成される。集光光学系40(受光レンズ系)は、例えばテレセントリックレンズでない光学レンズ構成であり、検出領域を通過する粒子からの散乱光を撮像器50に集光する。つまり、「検出領域」は、照射光と集光光学系40により撮像器50上へ集光される範囲とが交差する領域である。撮像器50は、例えばCCD(charge-coupled device)やCMOS(complementary metal-oxide semiconductor)等のイメージセンサを備えたカメラであり、集光光学系40によりイメージセンサの受光面に集光された散乱光を撮像する。
 図2AおよびBは、一実施形態における検出ユニット2の構成を簡略的に示す図である。
 図2Aは、フローセル30の斜視図である。フローセル30はL字状の形状をなしており、その内部には、第1開口31からY方向に延びる第1区間32と第2開口33からZ方向に延びる第2区間34とが各端部において連通したL字形の流路が形成されている。試料は、第1開口31から第1区間32に流し込まれ、第2区間34を経て第2開口33から外部へ排出される。なお、フローセル30の形状は、L字状に屈曲した部位を有する形状であればよく、L字形に代えて、例えばU字形やクランク形を採用してもよい。
 図2Bは、検出ユニット2の構成であり、特に各構成間の位置関係を簡略的に示す平面図である。照射光学系20は、第1区間32における試料の流れ方向(Y方向)に対して垂直な方向(X方向)から、整形した照射光BIをフローセル30に入射させる。また、集光光学系40及び撮像器50は、第1区間32における試料の流れに対向する位置、すなわち第1区間32を試料の流れ方向に仮想的に延長させた位置に配置され、検出領域Mを通過した粒子からの散乱光BSを集光して撮像する。これらの構成により、個々の粒子のXZ平面における動き、すなわちブラウン運動が観測される。なお、散乱光BSの撮像については、別の図面を用いてさらに後述する。
 図3は、一実施形態における検出ユニット2の構成を簡略的に示す垂直断面図(図2AのIII-III切断線に沿う断面図)である。なお、集光光学系40及び撮像器50については、断面の図示を省略している。
 上述したように、整形された照射光BIは、X方向からフローセル30に入射して第1区間32に検出領域Mを形成する。検出領域Mの形状は、例えば、長辺をZ方向とし、短辺をY方向として、長辺と略同等の奥行をX方向に有したものとなる。
 検出領域Mと集光光学系40との間に位置するフローセル30の内壁には、凹状の形状をなし検出領域Mの中心からの距離が概ねその曲率半径となる凹面部35が形成されている。検出領域Mを通過した粒子Pから生じた散乱光BSがフローセル30の内壁に入射する際には、試料の屈折率とフローセル30の屈折率との差異から光の屈折が生じうるが、凹面部35により、フローセル30の内壁に入射する散乱光BSの屈折を抑制することができる。
 フローセル30に対する集光光学系40及び撮像器50の位置は、集光光学系40の光軸を基準に決定されており、各構成は、集光光学系40の光軸が検出領域Mの中心、凹面部35の中心、撮像器50が備えるイメージセンサの受光面の中心を通過する位置にそれぞれ配置されている。撮像器50は、XZ平面に対向しており、検出領域Mで生じた散乱光の動き、すなわち検出領域Mを通過する個々の粒子Pのブラウン運動を観測し、所定のフレームレートで動画として撮像する。
 このように、第1区間32における試料の流れに対向する位置に散乱光を検出するための集光光学系40及び撮像器50を配置することで、散乱光の動き(粒子Pのブラウン運動)を観測することが可能となる。
〔制御演算ユニットの構成:図1参照〕
 続いて、制御演算ユニット3の構成について説明する。
 制御演算ユニット3は、例えば、制御部60、画像取得部70、粒子特定部80、移動量算出部90、移動量補正部100、粒径特定部110、散乱光強度特定部120、解析部130、出力部140等で構成されている。制御部60は、検出ユニット2における各機器の動作や、制御演算ユニット3において実行される一連の処理を制御する。制御部60は、例えば、光源10による照射光のON/OFF、フローセル30に流し込む試料の流速(流量)、撮像器50による動画の撮像を制御する。なお、一連の処理の一部あるいは全部を制御するものを制御部60とは別に設け、そこで制御してもよい。例えば、試料の流速については、マスフローコントローラ等の流量制御機器を制御部60とは別に設け、これを用いて制御してもよい。
 画像取得部70は、撮像器50により所定のフレームレートで撮像された動画からフレーム毎の静止画(フレーム画像)を取得する。なお、動画のフレームレート及び試料の流速は、撮像された動画から個々の粒子につき所定枚数のフレーム画像を取得できるように制御される。例えば、検出領域MのY方向の長さが20μmであり、30fpsで(すなわち1秒間に30回)撮像される動画から10枚のフレーム画像を取得するためには、試料の流速は60μm/秒に設定されることとなる。
 また、粒子特定部80は、画像取得部70により取得されたフレーム画像から粒子を特定し、連続するフレーム画像に捉えられた個々の粒子を関連付けた上でその軌跡を特定する。
 移動量算出部90は、粒子特定部80により特定された粒子に対し、フレーム画像毎にブラウン運動による二次元方向(X方向及びZ方向)の移動量を算出する。なお、粒子の軌跡を特定する場合や移動量を算出する場合は、粒子の位置の代表値を用いる。粒子の位置は、例えば粒子の重心や粒子の中心などにより特定される。
 移動量補正部100は、移動量算出部90により算出された粒子の移動量に対し、予め用意された補正マップに定義されている補正値を用いて、デフォーカス位置による倍率変動に起因して生じる移動量の誤差を補正する。
 粒径特定部110は、移動量補正部100により補正がなされた移動量に基づいて、拡散係数に相当する個々の粒子の粒径を特定する。なお、粒子の移動量の算出及び補正、粒径の特定に関する具体的な方法については、別の図面を参照しながら詳しく後述する。
 散乱光強度特定部120は、追跡された各粒子の散乱光量を特定する。具体的には、散乱光強度特定部120は、粒子特定部80により粒子が特定された場合に送られる画像情報に基づいて、求められる同一粒子の各輝点の輝度平均値、最大輝度値、二値化の面積等から、粒子の散乱光強度相当値を特定する。
 解析部130は、粒径特定部110により特定された粒径に基づいて、粒子の個数濃度を所定の粒径範囲毎に算出する。また、解析部130は、粒径特定部110により特定された粒径と散乱光強度特定部120により特定された散乱光強度相当値とに基づいて、粒子の屈折率を粒子毎に解析する。具体的には、粒径が既知であり概ね単一の粒径と見なせる試料粒子、例えばポリスチレンラテックス粒子等、を用いて予め求められた既知の粒径及び既知の屈折率に対する相対的な散乱光強度の関係に基づいて、被測定粒子の屈折率を特定したり、屈折率の違いによって固体粒子と気泡との区別を行ったりする。
 出力部140は、解析部130による解析の結果を出力する。出力部140は、画面への表示、プリンタへの出力、不図示の記憶部への出力、或いはネットワークを介した他のデバイスへの送信等、様々な態様により解析結果を出力することが可能である。
〔検出時における粒子の見え方〕
 図4及び図5は、検出時における粒子の動きの見え方を説明する図である。より具体的には、図4は、検出領域Mを試料の流れ方向に対し垂直な方向から観察した場合の見え方、すなわちYZ平面における粒子の見え方を表している。また、図5は、撮像器50内のイメージセンサの受光面に結像する際の写り方、すなわちXZ平面における粒子の見え方を表している。
 上述したように、本実施形態においては集光光学系40及び撮像器50が試料の流れに対向する位置に配置されているが、粒子の動きにより集光光学系40のデフォーカスによる焦点移動が生じる。つまり、粒子のY方向における位置に応じて倍率が変化するので、撮像される各フレーム画像における像高に差が生じる。また、図4に示されるように、粒子P1,P2,P3がそれぞれY方向に平行に移動していても、図5に示されるように、XZ平面においては、これらの各粒子がデフォーカス位置による倍率の変化によってあたかも検出領域Mの中心から外側に向かって移動しているかのように見える。そして、このように見える各粒子からの散乱光が、受光面に結像することとなる。
〔デフォーカスに起因する誤差〕
 図6AおよびBは、デフォーカスに起因して生じる粒径の誤差を説明する図である。
 図6Aの本実施形態の集光光学系40は、そのフォーカス位置での倍率が13.002293倍である。例えば、物体高が0.885mmの物体が検出領域内のフォーカス位置にある場合には、撮像器50内の受光面52に結像する像高は11.507029mmとなる。また、この物体が試料の流れ方向(Y方向)へ2μmデフォーカスした(集光光学系40に近づいた)位置にある場合には、受光面52に結像する像高は11.507432mmとなる。
 図6Bのデフォーカス後の像高から、物体がフォーカス位置にあると仮定した場合の物体高を算出してみると(デフォーカス後の像高÷フォーカス位置での倍率)、0.885031mmとなる。つまり、デフォーカス後の像高に基づく算出結果によれば、フォーカス位置には物体高0.885031mmの物体があることになり、実際の物体高0.885mmとの間に0.031μmの誤差(移動量誤差)が生じる。こうしたデフォーカスによる物体高の誤差を考慮せずに粒子のブラウン運動による移動量を算出すると、粒子の粒径にまで誤差が波及してしまう。
 そこで、本実施形態においては、粒子が必ず遠くから集光光学系40に近づく(試料の流れによって遠い位置から近い位置に輸送される)ことを利用し、予め求めたデフォーカス位置に対する倍率の検量線から、デフォーカスによる倍率変動に起因する粒子の移動量の算出誤差を補正することとした。
 図7は、デフォーカス位置に対する倍率の検量線を示す図である。
 本実施形態においては、フローセル30に流し込まれる試料の流速は一定であり、検量線はY方向における距離の一次関数であると仮定した。検量線を一次関数と仮定することにより、デフォーカス位置に関わらず、デフォーカスによる一定の間隔における誤差を一定量として補正することが可能となる。
 続いて、移動量の算出方法及び補正方法について説明する。
 図8は、受光面52の画素を示す図である。受光面52は、横(X方向)及び縦(Z方向)それぞれに、例えば2448ピクセル(px)の画素を有しており、検出領域において生じた光をXZ平面に対向して捉える。XZ平面において粒子から生じた散乱光は受光面52に結像し、これにより粒子のブラウン運動が撮像器50により動画として撮像される。
〔移動量の算出〕
 画像取得部70により撮像された動画からフレーム画像が取得されると、先ず、粒子特定部80が、動画から取得されたフレーム画像から粒子を特定し、各フレーム画像における粒子の重心座標「(xi,zi)」を求める。ここで、「xi」はi番目のフレームのフレーム画像におけるX座標であり、「zi」はi番目のフレームのフレーム画像におけるZ座標である。
 その上で、移動量算出部90が、粒子の軌跡を特定し、各フレーム画像における粒子の重心座標から、連続するフレーム間における粒子のX方向及びZ方向の各移動量を算出する。具体的には、移動量算出部90は、「xi+1-xi」により、i番目のフレームとi+1番目のフレームとの間における粒子のX方向の移動量(μm)を算出し、「zi+1-zi」により、i番目のフレームとi+1番目のフレームとの間における粒子のZ方向の移動量(μm)を算出する。つまり、粒子のX方向及びZ方向の各移動量とは、XZ平面におけるi番目のフレームでの重心位置からi+1番目のフレームでの重心位置までの軌跡を示すベクトルをX成分及びZ成分に分解したものである。
〔移動量の補正〕
 移動量算出部90により粒子のX方向及びZ方向の各移動量が算出されると、次に、移動量補正部100が、予め用意された補正マップを参照して粒子の重心座標の位置に応じた補正値を取得し、移動量算出部90により算出されたX方向及びZ方向の各移動量について、それぞれ取得した補正値を用いて以下の計算式により補正を行う。
Figure JPOXMLDOC01-appb-M000001
 上記の計算式(1)において、「Δx(i)」は、補正後のX方向の移動量(μm)である。また、上記の計算式(2)において、「Δz(i)」は、補正後のZ方向の移動量(μm)である。そして、計算式(1)及び(2)における「Δt」は、フレームレートの逆数、すなわち動画のフレームレートで規定される時間間隔(s)である。
 つまり、「vx(xi,zi)Δt」及び「vz(xi,zi)Δt」は、XZ平面における粒子の重心座標の位置に応じた倍率の違いによるフレーム間の移動量誤差(μm)を表している。ここで、「vx(xi,zi)」及び「vz(xi,zi)」は、見かけ上の移動速度のX方向成分とZ方向成分を元にして、予め求められた補正値(μm/s)である。補正値を移動速度として定義しておくことで、フレームレートを変更した場合でも同一の計算式を用いて移動量を補正することが可能となる。
 なお、各補正値は物体高により異なるため、予め求めた物体高毎の補正値を元に、予め補正マップを作成しておく必要がある。本実施形態においては、予め想定した物体高についての誤差量(例えば、上述した物体高0.885mmに対する0.031μm)に対応する補正値を予め光学シミュレーションソフトで計算し、当該物体高に対応する補正マップを作成した。なお、補正マップの態様については、別の図面を用いてさらに後述する。
〔粒径の特定〕
 移動量補正部100により粒子のX方向及びZ方向の各移動量が補正されると、次に、粒径特定部110が、補正後の各移動量に基づいて個々の粒子の粒径を特定する。具体的には、粒径特定部110は、先ず、粒子の補正後のX方向及びY方向の各移動量に基づいて平均移動量LRを以下の計算式により算出する。
Figure JPOXMLDOC01-appb-M000002
 上記の計算式(3)において、「LR」は1フレーム当たりの(連続フレーム間における)平均移動量(μm)であり、「i」はフレーム番号であり、「M」はフレーム画像から得られる移動量の個数である。例えば、M=10である場合には、フレーム番号は0~10となり11枚のフレーム画像に基づいて粒子の移動量が算出されるため、これらのフレーム画像から算出される移動量の数は10個となる。
 粒径特定部110は、次に、拡散係数Dを以下の計算式により算出する。
Figure JPOXMLDOC01-appb-M000003
 最後に、粒径特定部110は、以下に示すストークス・アインシュタインの式に従って、粒径dを特定する。
Figure JPOXMLDOC01-appb-M000004
 上記の計算式(5)において、「kB」はボルツマン定数であり、「T」は絶対温度であり、「η」は試料の粘性係数である。
〔補正による効果〕
 フレームレートで規定される時間間隔Δtが1/120s(フレームレートが120fps)、絶対温度Tが293.2K、粘度ηが0.001Pa・sである場合における、粒径100nmの粒子のブラウン運動における平均移動量LRは、上記の計算式(4)及び(5)から0.378μmと算出される。
 ここで、図6AおよびBで説明したように、0.031μmの移動量誤差が生じているとすると、移動量の補正を行わずに算出される平均移動量は、上記の平均移動量LR0.378μmに移動量誤差0.031μmを加算した0.409μmとなる。そして、この場合には、粒径dは、上記の計算式(5)から85nmと特定される。つまり、移動量に誤差が含まれている場合には、粒子の実際の粒径は100nmであるにも関わらず、粒径が15nmも誤って特定されてしまうこととなる。
 これに対し、本実施形態においては、予め定義された補正値が適用されて粒子の移動量の補正がなされることで、デフォーカスによる倍率の誤差が補正される。したがって、本実施形態によれば、粒子の移動量をより正確に求めることができ、粒径の測定精度を向上させることが可能となる。
〔補正マップ〕
 続いて、補正マップについて説明する。
 補正マップとは、デフォーカスによる倍率の誤差を補正するための補正値を、物体高毎に予め求め、まとめたものである。補正値は観測面上の位置により異なるため、X座標方向、Z座標方向の受光面の画素毎または区分毎に決定される。本実施形態においては、上述したように予め規定した物体高毎に補正値を光学シミュレーションソフトで計算し、物体高毎に対応する補正マップとして予め用意する。
 図9Aから図10Bは、予め用意された補正マップを説明する図である。このうち、図9AおよびBはX方向の移動量を補正するための補正マップ(X方向補正マップ)の一例を示しており、図10AおよびBは、Z方向の移動量を補正するための補正マップ(Z方向補正マップ)の一例を示している。
 各補正マップには、見かけ上の移動速度のX方向成分とZ方向成分を元にして予め求められた補正値が定義されている。例えば、フレームレートが120fpsであり、検出領域においてデフォーカス位置が-10μm~+10μmの区間を1フレーム(1/120s=8.333ms)当たり2μmの速度で粒子が通過すると仮定する。このとき、図6AおよびBで説明したように、物体高が0.885mmの場合には、2μmのデフォーカスで0.031μm誤って移動する、すなわち1フレーム当たりの誤差量は0.031μmであるため、誤差の速度は3.72μm/s(=0.031μm/8.333ms)と表すことができる。この速度は、検出領域の中心からの同心円上では同じ値となり、座標の位置に応じてX方向とZ方向とに分解された各成分の値が、それぞれ補正値として各補正マップに定義されている。つまり、各補正マップには、座標の位置に応じて予め求められた誤差量を速度の単位で表した値が定義されている。
 なお、上記の説明においては、一例として物体高0.885mmの場合を説明しているが、この他にも様々な物体高で計算が行われ誤差量が計算され、X方向及びZ方向の二次元の補正マップが作成されている。
 補正値は受光面の画素毎に設定するのが最適であるが、計算処理の簡単化等のために、一定区分毎に設定してもよい。例えば、図9Aに示されるように、X方向補正マップにおいては、検出領域がX方向において略等分された10個のエリアに分けられている。また、図9Bに示されるように、これらの各エリアに対するX座標の範囲と、その範囲に該当した場合に適用される補正値が定義されている。X方向補正マップの参照時には、Z座標の位置に関わらず、X座標の位置のみに着目して該当するエリアが選択され、そのエリアに対する補正値が適用される。
 また、図10Aに示されるように、Z方向補正マップにおいては、検出領域がZ方向において略等分された10個のエリアに分けられている。また、図10Bに示されるように、これらの各エリアに対するZ座標の範囲と、その範囲に該当した場合に適用される補正値が定義されている。Z方向補正マップの参照時には、X座標の位置に関わらず、Z座標の位置のみに着目して該当するエリアが選択され、そのエリアに対する補正値が適用される。
 例えば、図8に示した2448×2448の画素のうち、(xi,zi)=(2448,1)の位置に観測された粒子の重心があるとする。この位置に関し、図9AおよびBに示したX方向補正マップを参照すると、上記のX座標は「エリア10」に該当している。したがって、補正前のX方向の移動量に対しては補正値「3.359493」が適用されて、補正後のX方向の移動量Δx(i)が算出される。また、図10AおよびBに示したZ方向補正マップを参照すると、上記のZ座標は「エリア1」に該当している。したがって、補正前のZ方向の移動量に対しては補正値「-3.359493」が適用されて、補正後のZ方向の移動量Δz(i)が算出される。
 なお、図9Aから図10Bに示した補正マップにおけるエリアの分割態様はあくまで一例であり、これに限定されない。例えば、エリアをより細分化(例えば、10px毎に分割)してもよいし、計算量に余裕がある場合にはエリアを分割することなく全ての画素に対して個別に補正値を定義してもよい。いずれにしても、各補正値は物体高により異なるため、物体高毎に補正マップを予め作成しておく必要がある。
 ところで、誤差量については、光学シミュレーションの他に、実測により予め求めておくという手法も考えられる。しかしながら、実測により誤差量を求める場合には、誤差の要因が光学系の倍率の他にも存在するため(例えば、試料の流速等)、他の要因との切り分けが必要となるが、要因の切り分けには困難が伴うことが予想される。これに対し、本実施形態においては、上述したように誤差量を光学シミュレーションにより計算しているため、誤差を生じさせる他の要因を考慮する必要がなく、光学系の誤差のみを対象として誤差量を求めることが可能である。
〔本発明の優位性〕
 以上のように、上述した実施形態によれば、以下のような効果が得られる。
(1)予め求められた補正値を適用して粒子の移動量を補正するため、デフォーカスによる倍率の誤差を補正して粒子の移動量をより正確に求めることができ、これにより粒径の測定精度を向上させることが可能となる。
(2)補正値を移動速度として定義しているため、撮像する動画のフレームレートを変更して測定を行う場合でもフレームレートを変更する前と同一の補正値を用いて移動量を補正することができる。
(3)デフォーカス位置に対する倍率の検量線を距離の一次関数であると仮定しているため、デフォーカス位置に関わらず、デフォーカスによる一定間隔における誤差を一定量として移動量の補正を行うことができる。
(4)デフォーカスによる倍率の誤差を補正することができるため、集光光学系40をテレセントリック光学レンズで構成する必要がなく、集光光学系40の設計の自由度が増す。
 本発明は、上述した実施形態に制約されることなく、種々に変形して実施することが可能である。
 上述した実施形態においては、照射光学系20がビームエキスパンダ、回折光学素子及び光学スリット等を組み合わせて構成されているが、これに限定されず、例えば、複数枚の光学レンズを組み合わせて構成してもよい。
 上述した実施形態においては、照射光BIをX方向から第1区間32に入射させているが、これに代えて、Z方向から第1区間32に入射させてもよい。
 上述した実施形態においては、フローセル30において試料が第1開口31から第2開口33に向かって流れるように試料を導入しているが、これに限定されず、第2開口33から第1開口31に向かって流れるように試料を導入してもよい。また、フローセル30への試料の導入は、入口となる開口への試料の圧送により行ってもよいし、出口となる開口からの試料の吸引により行ってもよい。
 その他、粒子測定装置1の各構成部品の例として挙げた材料や数値等はあくまで例示であり、本発明の実施に際して適宜に変形が可能であることは言うまでもない。
 本出願は、2020年3月17日出願の日本特許出願2020-046243号に基づくものであり、その内容はここに参照として取り込まれる。
   1  粒子測定装置
   2  検出ユニット
   3  制御演算ユニット
  10  光源
  20  照射光学系
  30  フローセル
  40  集光光学系
  50  撮像器
  52  受光面
  60  制御部
  70  画像取得部
  80  粒子特定部
  90  移動量算出部
 100  移動量補正部
 110  粒径特定部
 120  散乱光強度特定部
 130  解析部
 140  出力部
 

Claims (9)

  1.  流路を内部に有するフローセルと、
     照射光を出射する光源と、
     前記流路を流れる試料に前記照射光を照射する照射光学系と、
     前記照射光の照射により前記流路の所定区間内に形成される検出領域を通過する前記試料に含まれる粒子からの散乱光を、前記所定区間を前記試料の流れ方向に仮想的に延長させた位置で集光する集光光学系と、
     集光された前記散乱光を所定のフレームレートで撮像する撮像部と、
     撮像された複数のフレーム画像に基づいてブラウン運動による前記粒子の二次元方向の移動量を算出する移動量算出部と、
     算出された前記移動量を、前記集光光学系において生じる倍率の誤差を補正するためにデフォーカス位置に応じて予め求められた補正値を用いて補正する移動量補正部と、
     補正された前記移動量に基づいて前記粒子の粒径を特定する粒径特定部と
    を備えた粒子測定装置。
  2.  請求項1に記載の粒子測定装置において、
     前記移動量補正部は、
     前記補正値として、前記デフォーカス位置及び前記フレーム画像上の位置に基づいて予め算出された値を用いることを特徴とする粒子測定装置。
  3.  請求項1又は2に記載の粒子測定装置において、
     前記移動量補正部は、
     前記補正値として、前記デフォーカス位置による倍率の変化が前記試料の流れ方向における距離の一次関数であると仮定して予め求められた値を用いることを特徴とする粒子測定装置。
  4.  請求項1から3のいずれかに記載の粒子測定装置において、
     前記移動量補正部は、
     前記補正値として、速度の単位で表された値を用いることを特徴とする粒子測定装置。
  5.  流路を流れる試料に照射光を照射する照射工程と、
     前記照射光の照射により前記流路の所定区間内に形成される検出領域を通過する前記試料に含まれる粒子からの散乱光を、前記所定区間を前記試料の流れ方向に仮想的に延長させた位置で集光して所定のフレームレートで撮像する撮像工程と、
     撮像された複数のフレーム画像に基づいてブラウン運動による前記粒子の二次元方向の移動量を算出する移動量算出工程と、
     算出された前記移動量を、前記散乱光の集光時に生じる倍率の誤差を補正するためにデフォーカス位置に応じて予め求められた補正値を用いて補正する移動量補正工程と、
     補正された前記移動量に基づいて前記粒子の粒径を特定する粒径特定工程と
    を含む粒子測定方法。
  6.  請求項5に記載の粒子測定方法において、
     前記移動量補正工程では、
     前記補正値として、前記デフォーカス位置及び前記フレーム画像上の位置に基づいて予め算出された値を用いることを特徴とする粒子測定方法。
  7.  請求項5又は6に記載の粒子測定方法において、
     前記移動量補正工程では、
     前記補正値として、前記デフォーカス位置による倍率の変化が前記試料の流れ方向における距離の一次関数であるとして予め求められた値を用いることを特徴とする粒子測定方法。
  8.  請求項5から7のいずれかに記載の粒子測定方法において、
     前記移動量補正工程では、
     前記補正値として、速度の単位で表された値を用いることを特徴とする粒子測定方法。
  9.  粒子からの散乱光を集光して所定のフレームレートで撮像する手段と、複数のフレーム画像に基づいてブラウン運動による前記粒子の二次元方向の移動量を算出する手段と、粒径を特定する手段と、を少なくとも備えた粒子測定装置の補正方法であって、
     前記散乱光の集光時に生じる倍率の誤差を補正するためにデフォーカス位置に応じて予め求められた補正値を用いて前記移動量を補正する工程を含む粒子測定装置の補正方法。
     
PCT/JP2021/008302 2020-03-17 2021-03-03 粒子測定装置及び粒子測定方法 WO2021187122A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21770643.1A EP4123289A4 (en) 2020-03-17 2021-03-03 PARTICLE MEASUREMENT DEVICE AND PARTICLE MEASUREMENT METHOD
KR1020227008207A KR20220153568A (ko) 2020-03-17 2021-03-03 입자 측정 장치 및 입자 측정 방법
CN202180005328.0A CN114424044A (zh) 2020-03-17 2021-03-03 颗粒测量装置和颗粒测量方法
US17/642,920 US20220364970A1 (en) 2020-03-17 2021-03-03 Particle measuring device and particle measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-046243 2020-03-17
JP2020046243A JP7421968B2 (ja) 2020-03-17 2020-03-17 粒子測定装置及び粒子測定方法

Publications (1)

Publication Number Publication Date
WO2021187122A1 true WO2021187122A1 (ja) 2021-09-23

Family

ID=77768061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008302 WO2021187122A1 (ja) 2020-03-17 2021-03-03 粒子測定装置及び粒子測定方法

Country Status (7)

Country Link
US (1) US20220364970A1 (ja)
EP (1) EP4123289A4 (ja)
JP (1) JP7421968B2 (ja)
KR (1) KR20220153568A (ja)
CN (1) CN114424044A (ja)
TW (1) TW202136740A (ja)
WO (1) WO2021187122A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140235A1 (ja) * 2022-01-20 2023-07-27 株式会社堀場製作所 粒子径分布測定装置、粒子径分布測定方法、及び粒子径分布測定用プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120250023A1 (en) * 2008-09-25 2012-10-04 Jonathan Todd Bartlett Light scattering flow cell device
WO2016171198A1 (ja) * 2015-04-21 2016-10-27 国立大学法人東京大学 微粒子検出システム及び微粒子検出プログラム
JP2018179971A (ja) * 2017-04-14 2018-11-15 リオン株式会社 粒子測定装置および粒子測定方法
JP2018535428A (ja) * 2015-09-22 2018-11-29 ワイアット テクノロジー コーポレイションWyatt Tecknology Corporation 液体サンプルからの複数の信号を測定する方法および装置
JP2020046243A (ja) 2018-09-18 2020-03-26 株式会社東芝 高度計測装置、飛しょう体、高度計測方法、及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2988263C (en) * 2014-06-03 2022-11-29 The Regents Of The University Of California Nanoparticle analyzer
WO2016159131A1 (ja) * 2015-03-30 2016-10-06 国立研究開発法人産業技術総合研究所 粒子径計測方法及びその装置
JP6559555B2 (ja) * 2015-12-02 2019-08-14 株式会社日立エルジーデータストレージ 光計測方法および装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120250023A1 (en) * 2008-09-25 2012-10-04 Jonathan Todd Bartlett Light scattering flow cell device
WO2016171198A1 (ja) * 2015-04-21 2016-10-27 国立大学法人東京大学 微粒子検出システム及び微粒子検出プログラム
JP2018535428A (ja) * 2015-09-22 2018-11-29 ワイアット テクノロジー コーポレイションWyatt Tecknology Corporation 液体サンプルからの複数の信号を測定する方法および装置
JP2018179971A (ja) * 2017-04-14 2018-11-15 リオン株式会社 粒子測定装置および粒子測定方法
JP6549747B2 (ja) 2017-04-14 2019-07-24 リオン株式会社 粒子測定装置および粒子測定方法
JP2020046243A (ja) 2018-09-18 2020-03-26 株式会社東芝 高度計測装置、飛しょう体、高度計測方法、及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4123289A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140235A1 (ja) * 2022-01-20 2023-07-27 株式会社堀場製作所 粒子径分布測定装置、粒子径分布測定方法、及び粒子径分布測定用プログラム

Also Published As

Publication number Publication date
US20220364970A1 (en) 2022-11-17
JP7421968B2 (ja) 2024-01-25
CN114424044A (zh) 2022-04-29
KR20220153568A (ko) 2022-11-18
JP2021148483A (ja) 2021-09-27
EP4123289A1 (en) 2023-01-25
EP4123289A4 (en) 2024-04-10
TW202136740A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN110573855B (zh) 粒子测量装置和粒子测量方法
US10234370B2 (en) Particle size measuring method and device
JP7420551B2 (ja) 粒子測定装置
KR20080111474A (ko) 스페클 패턴을 이용한 3차원 센싱
JP2006524831A (ja) 試料を結像する際の焦点位置を決定するための方法およびセット・アップ
WO2021187122A1 (ja) 粒子測定装置及び粒子測定方法
WO2018190162A1 (ja) 粒子測定装置および粒子測定方法
CN113008789B (zh) 具有透明工件表面模式的计量系统
TWI810375B (zh) 粒子測定裝置、校正方法以及測定裝置
CN106233125A (zh) 共聚焦线检验光学系统
GB2589012A (en) Particulate observation device and particulate observation method
US20170067811A1 (en) Device for determining the particle size and/or the particle shape of a particle mixture
JP2007183181A (ja) 3次元形状測定装置
Zhang et al. Theoretical analysis and experimental validation of sampling volume in tilted imaging system
JP2017187303A (ja) 粒度分布測定装置及び粒度分布測定方法
JP2008261740A (ja) 粒子計測装置
JP6847012B2 (ja) マルチチャンバの分析装置および分析方法
KR20220090081A (ko) 입자 측정 장치
CN117241000A (zh) 一种面向dlp面曝光3d打印的多光源像素级拼接方法
JP2006003335A (ja) 非接触三次元物体形状測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021770643

Country of ref document: EP

Effective date: 20221017