WO2021187005A1 - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
WO2021187005A1
WO2021187005A1 PCT/JP2021/006336 JP2021006336W WO2021187005A1 WO 2021187005 A1 WO2021187005 A1 WO 2021187005A1 JP 2021006336 W JP2021006336 W JP 2021006336W WO 2021187005 A1 WO2021187005 A1 WO 2021187005A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
heat medium
battery
heat
air
Prior art date
Application number
PCT/JP2021/006336
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 石関
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN202180021258.8A priority Critical patent/CN115551728A/en
Publication of WO2021187005A1 publication Critical patent/WO2021187005A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an air conditioner for vehicles.
  • Patent Document 1 when the battery of a vehicle is quickly charged, an external cooling circuit is connected to cool the battery, and a refrigeration cycle for air conditioning is used to cool the battery.
  • An object of the present invention is to optimize the balance between battery cooling and vehicle interior cooling without sacrificing vehicle interior comfort.
  • the vehicle air conditioner uses a cooling circuit for circulating a cooling heat medium and an air conditioning heat medium for air conditioning in the vehicle interior in a vehicle equipped with a battery that supplies power to an electric motor.
  • a vehicle air conditioner with a circulating refrigeration cycle circuit the cooling circuit being supplied by an external cooling device, with a battery requiring cooling and when the battery is being charged from an external power source.
  • a first heat exchanger that cools the battery by exchanging heat between the external heat medium and the cooling heat medium of the cooling circuit, and at least a part of the air conditioning heat medium cooled by the refrigeration cycle circuit.
  • a second heat exchanger that cools the battery by exchanging heat with the cooling heat medium of the cooling circuit is provided, and cooling operation is required when the battery is being charged from an external power source.
  • the circuit switching control unit includes a determination unit that determines whether or not the cooling power of the refrigeration cycle circuit has surplus power, and a circuit switching control unit that switches the circuit according to the determination result of the determination unit.
  • the refrigeration cycle circuit performs cooling operation, and the first heat exchanger and the second heat exchanger cool the battery, and the determination unit determines that there is no surplus capacity.
  • the cooling operation is performed by the refrigeration cycle circuit and the battery is cooled by the first heat exchanger.
  • the battery is cooled by the heat medium for air conditioning cooled by the refrigeration cycle circuit only when the cooling power of the refrigeration cycle circuit is sufficient, so that the comfort in the vehicle interior is not sacrificed.
  • the balance between battery cooling and vehicle interior cooling can be optimized.
  • FIG. 1 is a diagram showing a part of an air conditioner for a vehicle.
  • the vehicle is a vehicle such as an electric vehicle or a plug-in hybrid vehicle that can charge the battery 43 by charging from an external power source and drives an electric motor by the electric power charged in the battery 43 to travel.
  • the vehicle air conditioner 11 is mounted on the vehicle and is driven by the electric power of the battery 43.
  • the vehicle air conditioner 11 includes a refrigeration cycle circuit 12 and an HVAC unit 13, and selectively performs each air conditioning operation of heating operation, dehumidifying heating operation, cooling operation, and dehumidifying and cooling operation by a heat pump using a heat medium for air conditioning. Execute and air-condition the passenger compartment.
  • the refrigeration cycle circuit 12 includes a compressor 21, a radiator 22, an outdoor expansion valve 23, an outdoor heat exchanger 24, an indoor expansion valve 25, a heat absorber 26, and an accumulator 27.
  • the compressor 21 compresses a low-pressure air-conditioning heat medium, which is a gas phase, to boost the pressure to a high-pressure air-conditioning heat medium that is easily liquefied.
  • a scroll compressor, a swash plate compressor, or the like The drive source of the compressor 21 is, for example, an electric motor.
  • the compressor 21 is a refueling type in which lubrication is performed by oil circulating together with the heat medium for air conditioning, and the oil concentration with respect to the heat medium for air conditioning is about several percent.
  • the radiator 22 is provided in the HVAC unit 13 and exchanges heat between the air passing around the heat radiating fins and the high-temperature and high-pressure air-conditioning heat medium (heat medium) passing through the tube. That is, the air-conditioning heat medium in the tube is condensed and liquefied by heat dissipation, thereby heating the air around the heat-dissipating fins.
  • the outdoor expansion valve 23 atomizes a high-pressure air-conditioning heat medium in a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium that is easily vaporized, and the opening degree can be adjusted from fully closed to fully open. Is.
  • the outdoor heat exchanger 24 is provided inside the front grill of the vehicle body, and exchanges heat between the outside air passing around the heat radiation fins and the heat medium for air conditioning passing through the tube.
  • the outside air is mainly a running wind, but when a sufficient running wind cannot be obtained, the blower 28 is driven to blow the outside air to the heat radiating fins.
  • the outdoor heat exchanger 24 functions as an evaporator, that is, a heat absorber, and is used between the outside air passing around the heat radiation fins and the low-temperature air-conditioning heat medium (refrigerant) passing through the tube. Perform heat exchange. That is, the heat medium for air conditioning in the tube absorbs heat and evaporates and vaporizes.
  • the outdoor heat exchanger 24 functions as a condenser, that is, a radiator, and the outside air passing around the heat radiating fins and the high-temperature air-conditioning heat medium (heat medium) passing through the tube. Heat exchange between them. That is, heat is dissipated to the heat medium for air conditioning in the tube to form a condensed liquid.
  • the indoor expansion valve 25 atomizes a high-pressure air-conditioning heat medium in a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium that is easily vaporized, and the opening degree can be adjusted from fully closed to fully open.
  • the heat absorber 26 is provided in the HVAC unit 13 and exchanges heat between the air passing around the heat radiation fins and the low-temperature air-conditioning heat medium (refrigerant) passing through the tube. That is, the heat medium for air conditioning in the tube evaporates and vaporizes by absorbing heat, thereby cooling the air around the heat radiation fins and causing dew condensation on the surface of the heat radiation fins to dehumidify. Gas-liquid separation is performed between the accumulator 27 and the heat medium for air conditioning, and only the heat medium for air conditioning in the gas phase is supplied to the compressor 21.
  • the outlet of the compressor 21 communicates with the inlet of the radiator 22 via the pipe 31a.
  • the outlet of the radiator 22 communicates with the inlet of the outdoor heat exchanger 24 via the pipe 31b, and the pipe 31b is provided with the outdoor expansion valve 23.
  • the outlet of the outdoor heat exchanger 24 communicates with the inlet of the compressor 21 via the pipe 31c, and the pipe 31c has an on-off valve 32 from the side of the outdoor heat exchanger 24 toward the side of the radiator 22.
  • the check valve 33, and the accumulator 27 are provided in this order.
  • the on-off valve 32 opens or closes the pipe 31c.
  • the check valve 33 allows the passage from the on-off valve 32 side to the accumulator 27 side and blocks the passage in the reverse direction.
  • the pipe 31b there is a branch point 34 between the radiator 22 and the outdoor expansion valve 23, and this branch point 34 communicates with the inlet of the heat absorber 26 via the pipe 31d, and the pipe 31d has a branch point 34.
  • the on-off valve 35 and the indoor expansion valve 25 are provided in this order from the branch point 34 side to the heat absorber 26 side.
  • the on-off valve 35 opens or closes the pipe 31d.
  • the branch point 36 there is a branch point 36 between the outdoor heat exchanger 24 and the on-off valve 32, and in the pipe 31d, there is a branch point 37 between the on-off valve 35 and the indoor expansion valve 25.
  • the branch point 36 communicates with the branch point 37 via the pipe 31e, and the check valve 38 is provided in the pipe 31e.
  • the check valve 38 allows the passage from the side of the branch point 36 to the side of the branch point 37 and blocks the passage in the opposite direction.
  • the pipe 31c there is a branch point 39 between the on-off valve 32 and the check valve 33, and the outlet of the heat absorber 26 communicates with the branch point 39 via the pipe 31f.
  • the HVAC unit 13 (HVAC: Heating Ventilation and Air Conditioning) is arranged inside the dashboard, and is formed by a duct that introduces outside air and inside air from one end side and supplies air to the vehicle interior from the other end side. There is. Inside the HVAC unit 13, a blower fan 14, a heat absorber 26, a radiator 22, an air mix damper 15, and a heater 18 are provided. The blower fan 14 is provided on one end side of the HVAC unit 13, and when driven, sucks outside air or inside air and discharges it to the other end side. The heat absorber 26 is provided on the downstream side of the blower fan 14. All the air blown out from the blower fan 14 passes through the heat absorber 26. Inside the HVAC unit 13, on the downstream side of the heat absorber 26, a flow path 16 that passes through the radiator 22 and a flow path 17 that bypasses the radiator 22 are formed. The downstream side of the flow path 16 and the flow path 17 merge.
  • HVAC Heating Ventilation and Air Conditioning
  • the air mix damper 15 is rotatable between a position where the flow path 16 is opened to close the flow path 17 and a position where the flow path 16 is closed and the flow path 17 is opened.
  • the air mix damper 15 is in a position where the flow path 16 is opened and the flow path 17 is closed, all the air that has passed through the heat absorber 26 passes through the radiator 22.
  • the air mix damper 15 is in a position where the flow path 16 is closed and the flow path 17 is opened, all the air that has passed through the heat absorber 26 bypasses the radiator 22.
  • the air mix damper 15 is in a position to open both the flow path 16 and the flow path 17, part of the air that has passed through the heat absorber 26 passes through the radiator 22 and the rest bypasses the radiator 22.
  • the heater 18 is, for example, a PTC heater (PTC: Positive Temperature Coefficient) whose resistance value changes depending on the temperature, and is provided on the downstream side of the radiator 22 of the flow path 16.
  • PTC Positive Temperature Coefficient
  • the vehicle air conditioner 11 includes a cooling circuit 41 and cools the battery 43 by circulating a cooling heat medium.
  • the cooling heat medium is, for example, water, but other fluids such as a refrigerant and a coolant may be used.
  • the cooling circuit 41 includes a pump 42, a battery 43, a heat exchanger 44 (first heat exchanger), a heat exchanger 45 (second heat exchanger), and a radiator 46.
  • the pump 42 circulates the cooling heat medium by sucking the cooling heat medium of the cooling circuit 41 from one side and discharging it to the other side.
  • the battery 43 is a storage battery that supplies electric power to an electric motor for traveling a vehicle (not shown), and is, for example, a lithium ion battery.
  • the cooling heat medium flows through the water jacket formed on the battery 43 to cool the battery 43.
  • the heat exchanger 44 includes a cooling heat medium flow path 44A through which the cooling heat medium passes and an external heat medium flow path 44B through which the external heat medium passes, and charges the battery 43 from an external power source (not shown). At that time, heat exchange is performed between the external heat medium supplied from the external cooling device 47 and the cooling heat medium.
  • the external heat medium is, for example, water, but other fluids such as a refrigerant and a coolant may be used.
  • the heat exchanger 44 and the external cooling device 47 are detachably connected by a connector (not shown).
  • a heat exchanger may be further interposed between the heat exchanger 44 and the connector.
  • the heat exchanger 45 includes a cooling heat medium flow path 45A through which the cooling heat medium passes and an air conditioning heat medium flow path 45B through which the air conditioning heat medium passes, and air-conditions a part of the refrigeration cycle circuit 12. Heat exchange is performed between the heat medium for cooling and the heat medium for cooling of the cooling circuit 41.
  • the radiator 46 is arranged on the leeward side of the outdoor heat exchanger 24, exchanges heat between the cooling heat medium passing through the inside and the outside air passing around the inside, and dissipates heat to the cooling heat medium in the tube.
  • a blower 28 is provided on the windward side of the outdoor heat exchanger 24, and by driving the blower 28 even when the vehicle is stopped or traveling at a low speed, the outdoor heat exchanger 24 and Air is supplied to the radiator 46.
  • the outlet of the pump 42 communicates with the inlet of the radiator 46 via the pipe 51a.
  • the outlet of the radiator 46 communicates with the inlet of the pump 42 via the pipe 51b.
  • the pipe 51a is provided with a branch point 48 between the outlet side of the pump 42 and the inlet side of the radiator 46.
  • the pipe 51b has a three-way valve 49, a cooling heat medium flow path 44A in the heat exchanger 44, and a cooling heat medium flow path 45A in the heat exchanger 45 from the outlet side of the radiator 46 toward the inlet side of the pump 42. , Are provided in order.
  • one inlet communicates with the outlet of the radiator 46, the other inlet communicates with the branch point 48 via the pipe 51c (bypass flow path), and the outlet communicates with the cooling heat medium flow in the heat exchanger 44. It communicates with the road 44A.
  • the refrigeration cycle circuit 12 includes an expansion valve 55 and a heat exchanger 45.
  • the expansion valve 55 atomizes a high-pressure air-conditioning heat medium in a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium that is easily vaporized, and the opening degree can be adjusted from fully closed to fully open. be.
  • an additional circuit configuration of the refrigeration cycle circuit 12 will be described.
  • In the pipe 31d there is a branch point 48 between the branch point 37 and the indoor expansion valve 25, and in the pipe 31c, there is a branch point 57 between the check valve 33 and the accumulator 27.
  • the branch point 56 communicates with the inlet of the air-conditioning heat medium flow path 45B in the heat exchanger 45 via the pipe 31g, and the outlet of the air-conditioning heat medium flow path 45B in the heat exchanger 45 branches via the pipe 31h. It communicates with point 57.
  • the expansion valve 55 is provided in the pipe 31 g.
  • the controller 61 is, for example, a microcomputer, and selectively executes each air conditioning operation of heating operation, dehumidifying and heating operation, cooling operation, and dehumidifying and cooling operation in response to an operation request from the user to air-condition the vehicle interior.
  • the controller 61 drives and controls the compressor 21, the outdoor expansion valve 23, the on-off valve 32, the on-off valve 35, the indoor expansion valve 25, the expansion valve 55, the blower 28, the blower fan 14, and the air mix damper 15.
  • FIG. 2 is a diagram showing a heating operation.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the opened on-off valve is shown in white and closed.
  • the on-off valve is shown in black.
  • the heat medium for air conditioning includes the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the on-off valve 32, the branch point 39, the check valve 33, and the branch. It circulates through the point 57 and the accumulator 27 in order.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the radiator 22 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the outdoor expansion valve 23 to a low pressure, and by absorbing heat by the outdoor heat exchanger 24, it evaporates and vaporizes to a high temperature.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the radiator 22.
  • the introduced air is heated by the radiator 22, and warm air is supplied to the vehicle interior. Further, when the heater 18 is driven, it is further heated.
  • the outdoor heat exchanger 24 functions as an evaporator, the surroundings of the outdoor heat exchanger 24 are cooled, so that the moisture in the air sublimates and frost may occur on the heat radiation fins. .. Further, when frost grows and the ventilation passage of the heat radiation fin is blocked, the heat exchange efficiency of the outdoor heat exchanger 24 decreases. Therefore, when the occurrence of frost formation is detected from the temperature of the outdoor heat exchanger 24, the defrosting operation is performed. When performing the defrosting operation, except that the blower fan 14 is stopped and the flow path 16 is blocked by the air mix damper 15. It is the same as heating operation. As a result, the heat radiation for air conditioning is suppressed in the radiator 22, so that the heat medium is supplied to the outdoor heat exchanger 24 at a high temperature, and the frost is melted.
  • FIG. 3 is a diagram showing a dehumidifying and heating operation.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the opened on-off valve is shown in white and closed.
  • the on-off valve is shown in black.
  • the heat medium for air conditioning includes the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the on-off valve 32, the branch point 39, the check valve 33, and the branch. It circulates through the point 57 and the accumulator 27 in order.
  • a part of the heat medium for air conditioning that has passed through the radiator 22 is split from the branch point 34 and branched via the on-off valve 35, the branch point 37, the branch point 48, the indoor expansion valve 25, and the heat absorber 26. Join point 39.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the radiator 22 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the outdoor expansion valve 23 to a low pressure, and by absorbing heat by the outdoor heat exchanger 24, it evaporates and vaporizes to a high temperature. Further, a part of the heat medium for air conditioning in the liquid phase is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the radiator 22. As a result, after the introduced air is dehumidified by the heat absorber 26, it is heated by the radiator 22 and the dehumidified warm air is supplied to the vehicle interior. Further, when the heater 18 is driven, it is further heated.
  • FIG. 4 is a diagram showing a dehumidifying / cooling operation.
  • the flow path through which the low-pressure air-conditioning heat medium passes is indicated by a thick dotted line
  • the flow path through which the medium-pressure air-conditioning heat medium passes is indicated by a thick broken line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown. It is shown by a thick solid line, the open on-off valve is shown in white, and the closed on-off valve is shown in black.
  • the outdoor expansion valve 23 is slightly opened, the on-off valve 32 is closed, the on-off valve 35 is closed, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is opened.
  • the compressor 21 is driven in the closed state.
  • the heat medium for air conditioning is the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the check valve 38, the branch point 37, the branch point 48, and the room. It circulates through the expansion valve 25, the heat exchanger 26, the branch point 39, the check valve 33, the branch point 57, and the accumulator 27 in this order.
  • the heat medium for air conditioning of the gas phase is compressed by the compressor 21 to a high pressure, expanded by the outdoor expansion valve 23 to a medium pressure, and radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the radiator 22.
  • the introduced air is dehumidified and cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
  • FIG. 5 is a diagram showing a cooling operation.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the opened on-off valve is shown in white and closed.
  • the on-off valve is shown in black.
  • the heat medium for air conditioning is the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the check valve 38, the branch point 37, the branch point 48, and the room. It circulates through the expansion valve 25, the heat exchanger 26, the branch point 39, the check valve 33, the branch point 57, and the accumulator 27 in this order. In this circulation path, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the radiator 22.
  • the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
  • FIG. 6 is a block diagram of an air conditioner for a vehicle.
  • the vehicle air conditioner 11 includes a controller 61, an occupant sensor 62 (occupant detection unit), an outside air temperature sensor 63, an evaporator temperature sensor 64, a compressor rotation sensor 65, and a water temperature sensor 66.
  • the occupant sensor 62 detects whether or not there is an occupant in the vehicle interior. For example, a motion sensor or a seating sensor.
  • the outside air temperature sensor 63 detects the outside air temperature Ta.
  • the evaporator temperature sensor 64 detects the surface temperature Te of the heat absorber 26.
  • the compressor rotation sensor 65 detects the rotation speed Nc of the compressor 21.
  • the water temperature sensor 66 detects the temperature Tw of the cooling heat medium on the outlet side of the battery 43. The output of each sensor is input to the controller 61.
  • the controller 61 executes the charging control process and the bypass control process, and drives and controls the refrigeration cycle circuit 12, the HVAC unit 13, and the cooling circuit 41. That is, the controller 61 drives and controls the compressor 21, the outdoor expansion valve 23, the on-off valve 32, the on-off valve 35, the indoor expansion valve 25, the expansion valve 55, and the blower 28 of the refrigeration cycle circuit 12. Further, the controller 61 drives and controls the blower fan 14, the air mix damper 15, and the heater 18 of the HVAC unit 13. Further, the controller 61 drives and controls the pump 42 of the cooling circuit 41 and the three-way valve 49.
  • FIG. 7 is a flowchart showing an example of the charging control process.
  • the charging control process is executed as a timer interrupt process at predetermined time intervals.
  • step S101 it is determined whether or not the quick charging of the battery 43 is being executed.
  • the program returns to the predetermined main program as it is.
  • step S102 the battery 43 is cooled by the external heat medium supplied from the external cooling device 47.
  • the pump 42 is driven to circulate the cooling heat medium of the cooling circuit 41, and the heat exchanger 44 exchanges heat between the external heat medium and the cooling heat medium.
  • step S103 it is detected whether or not there is an occupant in the vehicle interior. When there is no occupant, the process proceeds to step S110. On the other hand, when there is an occupant, the process proceeds to step S104.
  • step S104 it is determined whether or not the air conditioning operation is required. When air conditioning is not required, the process proceeds to step S110. On the other hand, when the air conditioning operation is required, the process proceeds to step S105. In step S105, it is determined whether or not the cooling operation is required. When the cooling operation is not required, that is, the heating operation is required, the process proceeds to step S109. On the other hand, when the cooling operation is required, the process proceeds to step S106. Here, for the sake of simplicity, it is simply determined whether or not the cooling operation is required. However, since the cooling operation and the dehumidifying cooling operation are equivalent in terms of cooling the passenger compartment, the cooling operation and the dehumidifying cooling operation are performed.
  • the requirement for the heating operation includes the requirement for either the heating operation or the dehumidifying heating operation. Dehumidify.
  • step S106 whether or not the refrigerating cycle circuit 12 in the cooling operation has a surplus capacity based on the target temperature Te * of the endothermic device 26, the surface temperature Te of the endothermic device 26, and the rotation speed Nc of the compressor 21.
  • step S107 when the surface temperature Te of the endothermic absorber 26 has achieved the target temperature Te * and the rotation speed Nc of the compressor 21 is equal to or less than a predetermined threshold value Nth, it is determined that there is a surplus cooling power. The process proceeds to step S107. On the other hand, when the surface temperature Te of the endothermic absorber 26 does not reach the target temperature Te * or the rotation speed Nc of the compressor 21 exceeds the threshold value Nth, it is determined that there is no surplus cooling power, and step S108 is performed. Transition.
  • step S107 the cooling operation is performed by the refrigeration cycle circuit 12, and the battery 43 is assisted by a part of the heat medium for air conditioning supplied from the refrigeration cycle circuit 12, and the program returns to a predetermined main program.
  • the expansion valve 55 is opened, and a heat exchanger 45 exchanges heat between a part of the heat medium for air conditioning and the heat medium for cooling.
  • the target temperature Te * of the heat absorber 26 is increased and corrected. For example, it may be corrected according to a predetermined rate of increase, or it may be corrected by a predetermined amount of increase.
  • step S108 only the normal cooling operation is performed by the refrigeration cycle circuit 12, and the program returns to a predetermined main program.
  • step S109 the heating operation is performed by the refrigeration cycle circuit 12, and the cooling of the battery 43 is assisted by the heat medium for air conditioning supplied from the refrigeration cycle circuit 12, and the program returns to a predetermined main program.
  • the on-off valve 35 is opened, the expansion valve 55 is opened, and the heat exchanger 45 exchanges heat between the heat medium for air conditioning and the heat medium for cooling.
  • the cooling of the battery 43 is assisted by all of the heat media for air conditioning supplied from the refrigeration cycle circuit 12, and the program returns to a predetermined main program.
  • the indoor expansion valve 25 is closed, the expansion valve 55 is opened, and the heat exchanger 45 exchanges heat between the heat medium for air conditioning and the heat medium for cooling. Do it.
  • FIG. 8 is a flowchart showing an example of bypass control processing.
  • the bypass control process is executed as a timer interrupt process at predetermined time intervals.
  • step S121 it is determined whether or not the quick charging of the battery 43 is being executed. When the quick charge of the battery 43 is not executed, the program returns to the predetermined main program as it is. On the other hand, when the quick charge of the battery 43 is being executed, the process proceeds to step S122.
  • step S122 it is determined whether or not the temperature Tw of the cooling heat medium on the outlet side of the battery 43 is equal to or lower than the outside air temperature Ta. When the temperature Tw of the cooling heat medium is equal to or lower than the outside air temperature Ta, the process proceeds to step S123.
  • step S124 the three-way valve 49 is controlled, the radiator 46 is bypassed by the cooling heat medium, and the program returns to a predetermined main program.
  • step S124 the three-way valve 49 is controlled, the radiator 46 is passed through the cooling heat medium, and the program returns to a predetermined main program.
  • FIG. 9 is a diagram showing cooling operation + battery cooling assistance.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the opened on-off valve is shown in white and closed.
  • the on-off valve is shown in black.
  • the flow path through which the cooling heat medium and the external heat medium pass is indicated by a thick broken line.
  • the operation when there is a cooling request at the time of quick charging, the cooling power of the refrigerating cycle circuit 12 has a surplus, and the temperature Tw of the cooling heat medium on the outlet side of the battery 43 is equal to or lower than the outside air temperature Ta will be described. do.
  • an external heat medium cooled by the external cooling device 47 is supplied.
  • the outdoor expansion valve 23 is fully opened, the on-off valve 32 is closed, the on-off valve 35 is closed, and the indoor expansion valve 25 is slightly opened.
  • the compressor 21 is driven with the expansion valve 55 slightly opened. Further, the pump 42 is driven in a state where the radiator 46 is bypassed by the three-way valve 49.
  • the external heat medium first circulates through the external cooling device 47 and the external heat medium flow path 44B in the heat exchanger 44 in order.
  • the external heat medium is cooled by dissipating heat in the external cooling device 47, and becomes high temperature by absorbing heat in the external heat medium flow path 44B in the heat exchanger 44.
  • the heat medium for air conditioning includes a compressor 21, a radiator 22, a branch point 34, an outdoor expansion valve 23, an outdoor heat exchanger 24, a branch point 36, a check valve 38, a branch point 37, a branch point 56, and indoor expansion. It circulates through the valve 25, the heat exchanger 26, the branch point 39, the check valve 33, the branch point 57, and the accumulator 27 in this order. A part of the heat medium for air conditioning that has passed through the branch point 37 is split from the branch point 56 and merges with the branch point 57 via the expansion valve 55 and the heat medium flow path 45B for air conditioning in the heat exchanger 45. do.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • a part of the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat in the air-conditioning heat medium flow path 45B in the heat exchanger 45, it evaporates and vaporizes to a high temperature.
  • the cooling heat medium passes through the pump 42, the battery 43, the branch point 48, the three-way valve 49, the cooling heat medium flow path 44A in the heat exchanger 44, and the cooling heat medium flow path 45A in the heat exchanger 45 in this order. And circulate.
  • the cooling heat medium becomes high temperature by absorbing heat in the battery 43, radiates heat in the cooling heat medium flow path 44A in the heat exchanger 44, and becomes low temperature, and further cools heat in the heat exchanger 45.
  • the temperature becomes lower.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the radiator 22.
  • the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
  • FIG. 10 is a diagram showing a cooling operation (without battery cooling assistance).
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the opened on-off valve is shown in white and closed.
  • the on-off valve is shown in black.
  • the flow path through which the cooling heat medium and the external heat medium pass is indicated by a thick broken line.
  • the operation when there is a cooling request at the time of quick charging, the cooling power of the refrigerating cycle circuit 12 is insufficient, and the temperature Tw of the cooling heat medium on the outlet side of the battery 43 is equal to or lower than the outside air temperature Ta will be described. do.
  • an external heat medium cooled by the external cooling device 47 is supplied.
  • the outdoor expansion valve 23 is fully opened, the on-off valve 32 is closed, the on-off valve 35 is closed, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is opened.
  • the compressor 21 is driven in the closed state. Further, the pump 42 is driven in a state where the radiator 46 is bypassed by the three-way valve 49.
  • the external heat medium first circulates through the external cooling device 47 and the external heat medium flow path 44B in the heat exchanger 44 in order.
  • the external heat medium is cooled by dissipating heat in the external cooling device 47, and becomes high temperature by absorbing heat in the external heat medium flow path 44B in the heat exchanger 44.
  • the heat medium for air conditioning includes a compressor 21, a radiator 22, a branch point 34, an outdoor expansion valve 23, an outdoor heat exchanger 24, a branch point 36, a check valve 38, a branch point 37, a branch point 56, and indoor expansion. It circulates through the valve 25, the heat exchanger 26, the branch point 39, the check valve 33, the branch point 57, and the accumulator 27 in this order.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • the cooling heat medium includes the pump 42, the battery 43, the branch point 48, the three-way valve 49, the cooling heat medium flow path 44A in the heat exchanger 44, and the cooling heat medium flow path 45A in the heat exchanger 45 in this order. It circulates via. In this circulation path, the cooling heat medium becomes high temperature by absorbing heat in the battery 43, and becomes low temperature by radiating heat in the cooling heat medium flow path 44A in the heat exchanger 44.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the radiator 22. As a result, the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
  • FIG. 11 is a diagram showing heating operation + battery cooling assistance.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the opened on-off valve is shown in white and closed.
  • the on-off valve is shown in black.
  • the flow path through which the cooling heat medium and the external heat medium pass is indicated by a thick broken line.
  • an external heat medium cooled by the external cooling device 47 is supplied.
  • the outdoor expansion valve 23 is slightly opened, the on-off valve 32 is opened, the on-off valve 35 is opened, the indoor expansion valve 25 is closed, and the expansion valve 55 is slightly opened.
  • the compressor 21 is driven in the open state. Further, the pump 42 is driven in a state where the radiator 46 is bypassed by the three-way valve 49.
  • the external heat medium first circulates through the external cooling device 47 and the external heat medium flow path 44B in the heat exchanger 44 in order.
  • the external heat medium is cooled by dissipating heat in the external cooling device 47, and becomes high temperature by absorbing heat in the external heat medium flow path 44B in the heat exchanger 44.
  • the heat medium for air conditioning includes a compressor 21, a radiator 22, a branch point 34, an outdoor expansion valve 23, an outdoor heat exchanger 24, a branch point 36, an on-off valve 32, a branch point 39, a check valve 33, and a branch point. It circulates through 57 and the accumulator 27 in order.
  • a part of the heat medium for air conditioning that has passed through the radiator 22 is split from the branch point 34, and the heat medium for air conditioning in the on-off valve 35, the branch point 37, the branch point 56, the expansion valve 55, and the heat exchanger 45. It joins the branch point 57 via the flow path 45B.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the radiator 22 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the outdoor expansion valve 23 to a low pressure, and by absorbing heat by the outdoor heat exchanger 24, it evaporates and vaporizes to a high temperature.
  • a part of the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat by the heat exchanger 45, it evaporates and vaporizes to a high temperature.
  • the cooling heat medium includes the pump 42, the battery 43, the branch point 48, the three-way valve 49, the cooling heat medium flow path 44A in the heat exchanger 44, and the cooling heat medium flow path 45A in the heat exchanger 45 in this order. It circulates via. In this circulation path, the cooling heat medium becomes high temperature by absorbing heat in the battery 43, radiates heat in the cooling heat medium flow path 44A in the heat exchanger 44, and becomes low temperature, and further cools heat in the heat exchanger 45. By radiating heat in the medium flow path 45A, the temperature becomes lower.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the radiator 22. As a result, the introduced air is heated by the radiator 22, and warm air is supplied to the vehicle interior. Further, when the heater 18 is driven, it is further heated.
  • FIG. 12 is a diagram showing battery cooling assistance.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the opened on-off valve is shown in white and closed.
  • the on-off valve is shown in black.
  • the flow path through which the cooling heat medium and the external heat medium pass is indicated by a thick broken line.
  • an external heat medium cooled by the external cooling device 47 is supplied.
  • the outdoor expansion valve 23 is fully opened, the on-off valve 32 is closed, the on-off valve 35 is closed, the indoor expansion valve 25 is closed, and the expansion valve 55 is opened.
  • the compressor 21 is driven in a slightly open state. Further, the pump 42 is driven in a state where the radiator 46 is bypassed by the three-way valve 49.
  • the external heat medium first circulates through the external cooling device 47 and the external heat medium flow path 44B in the heat exchanger 44 in order.
  • the external heat medium is cooled by dissipating heat in the external cooling device 47, and becomes high temperature by absorbing heat in the external heat medium flow path 44B in the heat exchanger 44.
  • the heat medium for air conditioning includes a compressor 21, a radiator 22, a branch point 34, an outdoor expansion valve 23, an outdoor heat exchanger 24, a branch point 36, a check valve 38, a branch point 37, a branch point 56, and an expansion valve.
  • the heat exchanger 45 circulates through the air-conditioning heat medium flow path 45B, the branch point 57, and the accumulator 27 in this order.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat by the heat exchanger 45, it evaporates and vaporizes to a high temperature.
  • the cooling heat medium includes the pump 42, the battery 43, the branch point 48, the three-way valve 49, the cooling heat medium flow path 44A in the heat exchanger 44, and the cooling heat medium flow path 45A in the heat exchanger 45 in this order. It circulates via. In this circulation path, the cooling heat medium becomes high temperature by absorbing heat in the battery 43, radiates heat in the cooling heat medium flow path 44A in the heat exchanger 44, and becomes low temperature, and further cools heat in the heat exchanger 45. By radiating heat in the medium flow path 45A, the temperature becomes lower. On the other hand, in the HVAC unit 13, the blower fan 14 is stopped, and the air mix damper 15 closes the flow path passing through the radiator 22. As a result, the air conditioning is stopped.
  • FIG. 13 is a diagram showing cooling operation + battery cooling assistance (addition of radiator).
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the opened on-off valve is shown in white and closed.
  • the on-off valve is shown in black.
  • the flow path through which the cooling heat medium and the external heat medium pass is indicated by a thick broken line.
  • the cooling power of the refrigerating cycle circuit 12 is sufficient, and the temperature Tw of the cooling heat medium on the outlet side of the battery 43 exceeds the outside air temperature Ta.
  • an external heat medium cooled by the external cooling device 47 is supplied.
  • the outdoor expansion valve 23 is fully opened, the on-off valve 32 is closed, the on-off valve 35 is closed, and the indoor expansion valve 25 is slightly opened.
  • the compressor 21 is driven with the expansion valve 55 slightly opened. Further, the pump 42 is driven in a state where the radiator 46 is passed by the three-way valve 49.
  • the external heat medium first circulates through the external cooling device 47 and the external heat medium flow path 44B in the heat exchanger 44 in order.
  • the external heat medium is cooled by dissipating heat in the external cooling device 47, and becomes high temperature by absorbing heat in the external heat medium flow path 44B in the heat exchanger 44.
  • the heat medium for air conditioning includes a compressor 21, a radiator 22, a branch point 34, an outdoor expansion valve 23, an outdoor heat exchanger 24, a branch point 36, a check valve 38, a branch point 37, a branch point 56, and indoor expansion. It circulates through the valve 25, the heat exchanger 26, the branch point 39, the check valve 33, the branch point 57, and the accumulator 27 in this order.
  • a part of the heat medium for air conditioning that has passed through the branch point 37 is split from the branch point 56 and merges with the branch point 57 via the expansion valve 55 and the heat medium flow path 45B for air conditioning in the heat exchanger 45. do.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • a part of the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat by the heat exchanger 45, it evaporates and vaporizes to a high temperature.
  • the cooling heat medium includes the pump 42, the battery 43, the branch point 48, the radiator 46, the three-way valve 49, the cooling heat medium flow path 44A in the heat exchanger 44, and the cooling heat medium flow path in the heat exchanger 45. It circulates through 45A in order. In this circulation path, the cooling heat medium becomes high temperature by absorbing heat in the battery 43, becomes low temperature by radiating heat in the radiator 46, and becomes low temperature by radiating heat in the cooling heat medium flow path 44A in the heat exchanger 44. Further, heat is dissipated in the cooling heat medium flow path 45A in the heat exchanger 45, so that the temperature becomes lower.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the radiator 22.
  • the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
  • the cooling circuit 41 corresponds to the "cooling circuit”
  • the refrigeration cycle circuit 12 corresponds to the "refrigeration cycle circuit”
  • the battery 43 corresponds to the "battery”
  • the heat exchanger 44 corresponds to the "first heat exchange”.
  • the heat exchanger 45 corresponds to the "second heat exchanger”.
  • the processing of step S106 corresponds to the "determination unit”
  • the processing of steps S107 and S108, and the processing of steps S122 to S124 correspond to the "circuit switching control unit”.
  • the occupant sensor 62 corresponds to the "occupant detection unit”.
  • step S102 the battery 43 is cooled by an external heat medium supplied from the external cooling device 47.
  • the cooling effect is further improved.
  • the cooling power of the refrigeration cycle circuit 12 is consumed by the cooling assistance of the battery 43. Therefore, when the occupant wants the cooling operation, the cooling capacity in the vehicle interior may be insufficient and the comfort may be reduced.
  • the cooling force of the refrigeration cycle circuit 12 It is determined whether or not there is spare capacity in the battery (step S106). Then, when it is determined that the refrigerating cycle circuit 12 has a surplus cooling power (the determination in step S106 is “Yes”), the refrigerating cycle circuit 12 performs the cooling operation, and the heat exchanger 45 assists the cooling of the battery 43. (Step S107). In this way, the cooling effect is improved by cooling the battery 43 by the cooling power of both the external cooling device 47 and the refrigeration cycle circuit 12.
  • step S106 determines that the refrigerating cycle circuit 12 has no surplus cooling power
  • the refrigerating cycle circuit 12 does not assist the cooling of the battery 43, but only performs the cooling operation (step). S108).
  • the minimum cooling effect can be ensured by cooling the battery 43 only by the cooling power of the external cooling device 47.
  • the cooling of the battery 43 is assisted by the heat medium for air conditioning cooled by the refrigerating cycle circuit 12 only when the cooling power of the refrigerating cycle circuit 12 has a surplus. Therefore, the balance between the cooling of the battery 43 and the cooling of the vehicle interior can be optimized without sacrificing the comfort of the vehicle interior.
  • the cooling force of the refrigeration cycle circuit 12 Determine if there is spare capacity. In this way, since the presence of the occupant is added under the AND condition, the accuracy that the cooling operation is required is increased, and the reliability of the vehicle air conditioner 11 is improved. Further, based on the target temperature Te * of the endothermic device 26, the surface temperature Te of the endothermic device 26, and the rotation speed Nc of the compressor 21, it is determined whether or not the refrigerating cycle circuit 12 has a surplus cooling power. As described above, since the general arguments (or parameters) required for controlling the compressor 21 are used, it is possible to easily determine the presence or absence of the surplus power.
  • the target temperature Te * of the heat absorber 26 in the refrigeration cycle circuit 12 is increased and corrected. Thereby, the cooling power consumed by the cooling can be reduced. Therefore, the cooling power that can be consumed for cooling the battery 43 is relatively increased, and the cooling capacity can be improved. Further, since cooling is used when the outside air temperature Ta is high, the heat exchanger 45 has a higher cooling capacity for the cooling heat medium than the radiator 46. Therefore, in the cooling circuit 41, the radiator 46 is provided on the downstream side of the battery 43 and on the upstream side of the heat exchanger 45. That is, first, the radiator 46 cools the cooling heat medium, and then the heat exchanger 45 cools the cooling heat medium. As a result, the cooling effect of the radiator 46 can be enhanced.
  • the cooling heat medium bypasses the radiator 46 (step S123). This prevents the temperature Tw of the cooling heat medium from rising due to endothermic heat from the outside air.
  • the radiator 46 is passed through the cooling heat medium (step S124). As a result, the temperature Tw of the cooling heat medium can be reliably lowered by dissipating heat to the outside air.
  • ⁇ Modification example In the present embodiment, in the cooling circuit 41, whether the radiator 46 is passed through or bypassed by the cooling heat medium is switched by the three-way valve 49, but the present invention is not limited to this.
  • a two-way valve that can be opened and closed is provided in each of the flow path passing through the radiator 46 and the flow path bypassing the radiator 46 so that the other is closed when one is opened and the other is opened when one is closed. You may.
  • the configuration in which the outdoor expansion valve 23 is fully opened during cooling has been described, but the present invention is not limited to this.
  • a bypass flow path that bypasses the outdoor expansion valve 23 may be provided so that the bypass flow path can be opened and closed. As a result, the pressure loss can be reduced by closing the outdoor expansion valve 23 and opening the bypass flow path during cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

[Problem] To optimize the balance between battery cooling and cabin cooling without sacrificing comfort in the cabin of a vehicle. If a battery 43 is being charged from an external power source (step S101, "Yes") and cooling operation is demanded (step S105, "Yes"), it is determined whether or not a refrigeration cycle circuit 12 has excess cooling capacity (step S106). In the case of determining that the refrigeration cycle circuit 12 has excess cooling capacity (step S106, "Yes"), a cooling operation is performed by the refrigeration cycle circuit 12 and the battery 43 is also cooled by a heat exchanger 45 (step S107). In the case of determining that the refrigeration cycle circuit 12 does not have excess cooling capacity (step S106, "No"), only the cooling operation by the refrigeration cycle circuit 12 is performed (step S108).

Description

車両用空気調和装置Vehicle air conditioner
 本発明は、車両用空気調和装置に関するものである。 The present invention relates to an air conditioner for vehicles.
 特許文献1に示されるように、車両のバッテリを急速充電するときに、外部の冷却回路を接続してバッテリを冷却すると共に、空調用の冷凍サイクルを利用してバッテリを冷却するものがある。 As shown in Patent Document 1, when the battery of a vehicle is quickly charged, an external cooling circuit is connected to cool the battery, and a refrigeration cycle for air conditioning is used to cool the battery.
特開2019-75248号公報JP-A-2019-75248
 急速充電中に、空調用の冷凍サイクルも利用してバッテリを冷却すると、冷凍サイクルの冷力がバッテリの冷却によって消費される。したがって、乗員が冷房運転を求めているようなときには、車室内の冷房能力が不足し、快適性が低下する可能性がある。
 本発明の課題は、車室内の快適性を犠牲にすることなく、バッテリの冷却と車室内の冷房とのバランスを最適化することである。
If the battery is cooled by utilizing the refrigeration cycle for air conditioning during rapid charging, the cooling power of the refrigeration cycle is consumed by the cooling of the battery. Therefore, when the occupant wants the cooling operation, the cooling capacity in the vehicle interior may be insufficient and the comfort may be reduced.
An object of the present invention is to optimize the balance between battery cooling and vehicle interior cooling without sacrificing vehicle interior comfort.
 本発明の一態様に係る車両用空気調和装置は、電動モータに給電するバッテリを搭載した車両において、冷却用熱媒体を循環させる冷却回路と、車室内の空調を行うために空調用熱媒体を循環させる冷凍サイクル回路と、を備えた車両用空気調和装置であって、冷却回路は、冷却を必要とするバッテリと、バッテリを外部電源から充電しているときに、外部冷却装置から供給される外部熱媒体と冷却回路の冷却用熱媒体との間で熱交換を行なうことで、バッテリを冷却する第一の熱交換器と、冷凍サイクル回路で冷却された少なくとも一部の空調用熱媒体と冷却回路の冷却用熱媒体との間で熱交換を行なうことで、バッテリを冷却する第二の熱交換器と、を備え、バッテリを外部電源から充電しているときに、冷房運転が要求された場合、冷凍サイクル回路の冷力に余力があるか否かを判定する判定部と、判定部の判定結果に応じて回路を切り替える回路切替制御部と、を備え、回路切替制御部は、判定部で余力があると判定されたときに、冷凍サイクル回路によって冷房運転を行ない、且つ第一の熱交換器及び第二の熱交換器によってバッテリの冷却を行ない、判定部で余力がないと判定されたときには、冷凍サイクル回路によって冷房運転を行ない、且つ第一の熱交換器によってバッテリの冷却を行なうことを特徴とする。 The vehicle air conditioner according to one aspect of the present invention uses a cooling circuit for circulating a cooling heat medium and an air conditioning heat medium for air conditioning in the vehicle interior in a vehicle equipped with a battery that supplies power to an electric motor. A vehicle air conditioner with a circulating refrigeration cycle circuit, the cooling circuit being supplied by an external cooling device, with a battery requiring cooling and when the battery is being charged from an external power source. A first heat exchanger that cools the battery by exchanging heat between the external heat medium and the cooling heat medium of the cooling circuit, and at least a part of the air conditioning heat medium cooled by the refrigeration cycle circuit. A second heat exchanger that cools the battery by exchanging heat with the cooling heat medium of the cooling circuit is provided, and cooling operation is required when the battery is being charged from an external power source. In this case, the circuit switching control unit includes a determination unit that determines whether or not the cooling power of the refrigeration cycle circuit has surplus power, and a circuit switching control unit that switches the circuit according to the determination result of the determination unit. When it is determined that there is spare capacity in the unit, the refrigeration cycle circuit performs cooling operation, and the first heat exchanger and the second heat exchanger cool the battery, and the determination unit determines that there is no surplus capacity. When it is done, it is characterized in that the cooling operation is performed by the refrigeration cycle circuit and the battery is cooled by the first heat exchanger.
 本発明によれば、冷凍サイクル回路の冷力に余力があるときだけ、冷凍サイクル回路で冷却された空調用熱媒体によってバッテリの冷却を行なうため、車室内の快適性を犠牲にすることなく、バッテリの冷却と車室内の冷房のバランスを最適化することができる。 According to the present invention, the battery is cooled by the heat medium for air conditioning cooled by the refrigeration cycle circuit only when the cooling power of the refrigeration cycle circuit is sufficient, so that the comfort in the vehicle interior is not sacrificed. The balance between battery cooling and vehicle interior cooling can be optimized.
車両用空気調和装置を示す図である。It is a figure which shows the air conditioner for a vehicle. 暖房運転を示す図である。It is a figure which shows the heating operation. 除湿暖房運転を示す図である。It is a figure which shows the dehumidifying heating operation. 除湿冷房運転を示す図である。It is a figure which shows the dehumidifying cooling operation. 冷房運転を示す図である。It is a figure which shows the cooling operation. 車両用空気調和装置のブロック図である。It is a block diagram of the air conditioner for a vehicle. 充電時制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control process at the time of charging. バイパス制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of a bypass control process. 冷房運転+バッテリ冷却補助を示す図である。It is a figure which shows the cooling operation + battery cooling assistance. 冷房運転(バッテリ冷却補助なし)を示す図である。It is a figure which shows the cooling operation (without battery cooling assistance). 暖房運転+バッテリ冷却補助を示す図である。It is a figure which shows the heating operation + battery cooling assistance. バッテリ冷却補助を示す図である。It is a figure which shows the battery cooling assistance. 冷房運転+バッテリ冷却補助(ラジエータ追加)を示す図である。It is a figure which shows cooling operation + battery cooling assistance (radiator addition).
 以下、本発明の実施形態を図面に基づいて説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that each drawing is a schematic one and may differ from the actual one. In addition, the following embodiments exemplify devices and methods for embodying the technical idea of the present invention, and do not specify the configuration to the following. That is, the technical idea of the present invention can be modified in various ways within the technical scope described in the claims.
《一実施形態》
 《構成》
 図1は、車両用空気調和装置の一部を示す図である。
 車両は、電気自動車やプラグインハイブリッド自動車等、外部電源からの充電によってバッテリ43を充電可能で、且つバッテリ43に充電された電力によって電動モータを駆動し、走行する車両である。車両用空気調和装置11は、車両に搭載され、バッテリ43の電力で駆動される。車両用空気調和装置11は、冷凍サイクル回路12及びHVACユニット13を備え、空調用熱媒体を用いたヒートポンプにより、暖房運転、除湿暖房運転、冷房運転、除湿冷房運転の各空調運転を選択的に実行し、車室内の空調を行なう。
<< One Embodiment >>
"composition"
FIG. 1 is a diagram showing a part of an air conditioner for a vehicle.
The vehicle is a vehicle such as an electric vehicle or a plug-in hybrid vehicle that can charge the battery 43 by charging from an external power source and drives an electric motor by the electric power charged in the battery 43 to travel. The vehicle air conditioner 11 is mounted on the vehicle and is driven by the electric power of the battery 43. The vehicle air conditioner 11 includes a refrigeration cycle circuit 12 and an HVAC unit 13, and selectively performs each air conditioning operation of heating operation, dehumidifying heating operation, cooling operation, and dehumidifying and cooling operation by a heat pump using a heat medium for air conditioning. Execute and air-condition the passenger compartment.
 先ず、冷凍サイクル回路12の基本的な構成要素について説明する。
 冷凍サイクル回路12は、圧縮機21と、放熱器22と、室外膨張弁23、室外熱交換器24と、室内膨張弁25と、吸熱器26と、アキュムレータ27と、を備える。
 圧縮機21は、気相である低圧の空調用熱媒体を圧縮することにより、液化しやすい高圧の空調用熱媒体に昇圧させるものであり、例えばスクロール圧縮機、斜板式圧縮機等である。圧縮機21の駆動源は、例えば電動モータである。圧縮機21は、空調用熱媒体と共に循環するオイルによって潤滑が行なわれる給油式であり、空調用熱媒体に対するオイル濃度は数%程度である。
First, the basic components of the refrigeration cycle circuit 12 will be described.
The refrigeration cycle circuit 12 includes a compressor 21, a radiator 22, an outdoor expansion valve 23, an outdoor heat exchanger 24, an indoor expansion valve 25, a heat absorber 26, and an accumulator 27.
The compressor 21 compresses a low-pressure air-conditioning heat medium, which is a gas phase, to boost the pressure to a high-pressure air-conditioning heat medium that is easily liquefied. For example, a scroll compressor, a swash plate compressor, or the like. The drive source of the compressor 21 is, for example, an electric motor. The compressor 21 is a refueling type in which lubrication is performed by oil circulating together with the heat medium for air conditioning, and the oil concentration with respect to the heat medium for air conditioning is about several percent.
 放熱器22は、HVACユニット13内に設けられており、放熱フィンの周囲を通過する空気とチューブ内を通過する高温高圧の空調用熱媒体(熱媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体が放熱によって凝縮液化することにより、放熱フィンの周囲の空気を加温する。
 室外膨張弁23は、液相で高圧の空調用熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の空調用熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
The radiator 22 is provided in the HVAC unit 13 and exchanges heat between the air passing around the heat radiating fins and the high-temperature and high-pressure air-conditioning heat medium (heat medium) passing through the tube. That is, the air-conditioning heat medium in the tube is condensed and liquefied by heat dissipation, thereby heating the air around the heat-dissipating fins.
The outdoor expansion valve 23 atomizes a high-pressure air-conditioning heat medium in a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium that is easily vaporized, and the opening degree can be adjusted from fully closed to fully open. Is.
 室外熱交換器24は、車体におけるフロントグリルの内側に設けられており、放熱フィンの周囲を通過する外気とチューブ内を通過する空調用熱媒体との間で熱交換を行なう。外気とは主に走行風であるが、十分な走行風が得られないときは、送風機28が駆動されることで、放熱フィンに対して外気が送風される。暖房時や除湿暖房時には、室外熱交換器24を蒸発器、つまり吸熱器として機能させ、放熱フィンの周囲を通過する外気とチューブ内を通過する低温の空調用熱媒体(冷媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体に吸熱させ、蒸発気化させる。一方、除湿冷房時や冷房時には、室外熱交換器24を凝縮器、つまり放熱器として機能させ、放熱フィンの周囲を通過する外気とチューブ内を通過する高温の空調用熱媒体(熱媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体に放熱させ、凝縮液化させる。 The outdoor heat exchanger 24 is provided inside the front grill of the vehicle body, and exchanges heat between the outside air passing around the heat radiation fins and the heat medium for air conditioning passing through the tube. The outside air is mainly a running wind, but when a sufficient running wind cannot be obtained, the blower 28 is driven to blow the outside air to the heat radiating fins. During heating or dehumidifying heating, the outdoor heat exchanger 24 functions as an evaporator, that is, a heat absorber, and is used between the outside air passing around the heat radiation fins and the low-temperature air-conditioning heat medium (refrigerant) passing through the tube. Perform heat exchange. That is, the heat medium for air conditioning in the tube absorbs heat and evaporates and vaporizes. On the other hand, during dehumidifying cooling or cooling, the outdoor heat exchanger 24 functions as a condenser, that is, a radiator, and the outside air passing around the heat radiating fins and the high-temperature air-conditioning heat medium (heat medium) passing through the tube. Heat exchange between them. That is, heat is dissipated to the heat medium for air conditioning in the tube to form a condensed liquid.
 室内膨張弁25は、液相で高圧の空調用熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の空調用熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
 吸熱器26は、HVACユニット13内に設けられており、放熱フィンの周囲を通過する空気とチューブ内を通過する低温の空調用熱媒体(冷媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体が吸熱によって蒸発気化することにより、放熱フィンの周囲の空気を冷却すると共に、放熱フィンの表面に結露を生じさせて除湿を行なう。
 アキュムレータ27と、空調用熱媒体の気液分離を行ない、気相の空調用熱媒体だけを圧縮機21へと供給する。
The indoor expansion valve 25 atomizes a high-pressure air-conditioning heat medium in a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium that is easily vaporized, and the opening degree can be adjusted from fully closed to fully open. Is.
The heat absorber 26 is provided in the HVAC unit 13 and exchanges heat between the air passing around the heat radiation fins and the low-temperature air-conditioning heat medium (refrigerant) passing through the tube. That is, the heat medium for air conditioning in the tube evaporates and vaporizes by absorbing heat, thereby cooling the air around the heat radiation fins and causing dew condensation on the surface of the heat radiation fins to dehumidify.
Gas-liquid separation is performed between the accumulator 27 and the heat medium for air conditioning, and only the heat medium for air conditioning in the gas phase is supplied to the compressor 21.
 次に、冷凍サイクル回路12の基本的な回路構成について説明する。
 図中、空調用熱媒体の流路を実線で示している。圧縮機21の出口は、配管31aを介して放熱器22の入口に連通している。放熱器22の出口は、配管31bを介して室外熱交換器24の入口に連通しており、配管31bには、室外膨張弁23が設けられている。
 室外熱交換器24の出口は、配管31cを介して圧縮機21の入口に連通しており、配管31cには、室外熱交換器24の側から放熱器22の側に向かって、開閉弁32、逆止弁33、アキュムレータ27が、順に設けられている。開閉弁32は、配管31cを開放又は閉鎖する。逆止弁33は、開閉弁32の側からアキュムレータ27の側への通過を許容し、逆方向の通過を阻止する。
Next, the basic circuit configuration of the refrigeration cycle circuit 12 will be described.
In the figure, the flow path of the heat medium for air conditioning is shown by a solid line. The outlet of the compressor 21 communicates with the inlet of the radiator 22 via the pipe 31a. The outlet of the radiator 22 communicates with the inlet of the outdoor heat exchanger 24 via the pipe 31b, and the pipe 31b is provided with the outdoor expansion valve 23.
The outlet of the outdoor heat exchanger 24 communicates with the inlet of the compressor 21 via the pipe 31c, and the pipe 31c has an on-off valve 32 from the side of the outdoor heat exchanger 24 toward the side of the radiator 22. , The check valve 33, and the accumulator 27 are provided in this order. The on-off valve 32 opens or closes the pipe 31c. The check valve 33 allows the passage from the on-off valve 32 side to the accumulator 27 side and blocks the passage in the reverse direction.
 配管31bのうち、放熱器22と室外膨張弁23との間には分岐点34があり、この分岐点34は、配管31dを介して吸熱器26の入口に連通しており、配管31dには、分岐点34の側から吸熱器26の側に向かって、開閉弁35、及び室内膨張弁25が、順に設けられている。開閉弁35は、配管31dを開放又は閉鎖する。
 配管31cのうち、室外熱交換器24と開閉弁32との間には分岐点36があり、また配管31dのうち、開閉弁35と室内膨張弁25との間には分岐点37がある。分岐点36は、配管31eを介して分岐点37に連通しており、配管31eには、逆止弁38が設けられている。逆止弁38は、分岐点36の側から分岐点37の側への通過を許容し、逆方向の通過を阻止する。
 配管31cのうち、開閉弁32と逆止弁33との間には分岐点39があり、吸熱器26の出口は、配管31fを介して分岐点39に連通している。
Of the pipe 31b, there is a branch point 34 between the radiator 22 and the outdoor expansion valve 23, and this branch point 34 communicates with the inlet of the heat absorber 26 via the pipe 31d, and the pipe 31d has a branch point 34. The on-off valve 35 and the indoor expansion valve 25 are provided in this order from the branch point 34 side to the heat absorber 26 side. The on-off valve 35 opens or closes the pipe 31d.
In the pipe 31c, there is a branch point 36 between the outdoor heat exchanger 24 and the on-off valve 32, and in the pipe 31d, there is a branch point 37 between the on-off valve 35 and the indoor expansion valve 25. The branch point 36 communicates with the branch point 37 via the pipe 31e, and the check valve 38 is provided in the pipe 31e. The check valve 38 allows the passage from the side of the branch point 36 to the side of the branch point 37 and blocks the passage in the opposite direction.
Of the pipe 31c, there is a branch point 39 between the on-off valve 32 and the check valve 33, and the outlet of the heat absorber 26 communicates with the branch point 39 via the pipe 31f.
 次に、HVACユニット13の基本構成について説明する。
 HVACユニット13(HVAC:Heating Ventilation and Air Conditioning)は、ダッシュボードの内部に配置されており、一端側から外気や内気を導入し、他端側から車室内へ空気を供給するダクトによって形成されている。HVACユニット13の内部には、送風ファン14と、吸熱器26と、放熱器22と、エアミックスダンパ15と、ヒータ18と、が設けられている。送風ファン14は、HVACユニット13の一端側に設けられており、駆動されるときに、外気又は内気を吸引し、他端側へと吐出する。吸熱器26は、送風ファン14よりも下流側に設けられている。送風ファン14から吹き出された空気は、全て吸熱器26を通過する。HVACユニット13の内部で吸熱器26の下流側には、放熱器22を通過する流路16と、放熱器22を迂回する流路17と、が形成されている。流路16と流路17とは下流側が合流している。
Next, the basic configuration of the HVAC unit 13 will be described.
The HVAC unit 13 (HVAC: Heating Ventilation and Air Conditioning) is arranged inside the dashboard, and is formed by a duct that introduces outside air and inside air from one end side and supplies air to the vehicle interior from the other end side. There is. Inside the HVAC unit 13, a blower fan 14, a heat absorber 26, a radiator 22, an air mix damper 15, and a heater 18 are provided. The blower fan 14 is provided on one end side of the HVAC unit 13, and when driven, sucks outside air or inside air and discharges it to the other end side. The heat absorber 26 is provided on the downstream side of the blower fan 14. All the air blown out from the blower fan 14 passes through the heat absorber 26. Inside the HVAC unit 13, on the downstream side of the heat absorber 26, a flow path 16 that passes through the radiator 22 and a flow path 17 that bypasses the radiator 22 are formed. The downstream side of the flow path 16 and the flow path 17 merge.
 エアミックスダンパ15は、流路16を開放して流路17を閉鎖する位置と、流路16を閉鎖して流路17を開放する位置と、の間で回動可能である。エアミックスダンパ15が流路16を開放して流路17を閉鎖する位置にあるときには、吸熱器26を通過した空気は全て放熱器22を通過する。エアミックスダンパ15が流路16を閉鎖して流路17を開放する位置にあるときには、吸熱器26を通過した空気は全て放熱器22を迂回する。エアミックスダンパ15が流路16と流路17の双方を開放する位置にあるときには、吸熱器26を通過した空気のうち、一部が放熱器22を通過し、残りが放熱器22を迂回し、HVACユニット13の下流側にて、放熱器22を通過した空気と、放熱器22を迂回した空気とが混合される。
 ヒータ18は、例えば温度によって抵抗値が変化するPTCヒータ(PTC:Positive Temperature Coefficient)であり、流路16の放熱器22よりも下流側に設けられている。ヒータ18は、ON/OFFの切り替えが可能であり、ONのときに通過する空気を加温する。
The air mix damper 15 is rotatable between a position where the flow path 16 is opened to close the flow path 17 and a position where the flow path 16 is closed and the flow path 17 is opened. When the air mix damper 15 is in a position where the flow path 16 is opened and the flow path 17 is closed, all the air that has passed through the heat absorber 26 passes through the radiator 22. When the air mix damper 15 is in a position where the flow path 16 is closed and the flow path 17 is opened, all the air that has passed through the heat absorber 26 bypasses the radiator 22. When the air mix damper 15 is in a position to open both the flow path 16 and the flow path 17, part of the air that has passed through the heat absorber 26 passes through the radiator 22 and the rest bypasses the radiator 22. , The air that has passed through the radiator 22 and the air that has bypassed the radiator 22 are mixed on the downstream side of the HVAC unit 13.
The heater 18 is, for example, a PTC heater (PTC: Positive Temperature Coefficient) whose resistance value changes depending on the temperature, and is provided on the downstream side of the radiator 22 of the flow path 16. The heater 18 can be switched ON / OFF, and heats the air passing through when it is ON.
 次に、付加的な構成について説明する。
 車両用空気調和装置11は、冷却回路41を備え、冷却用熱媒体を循環させることでバッテリ43の冷却を行なう。冷却用熱媒体は、例えば水であるが、冷媒やクーラント等、他の流体を用いてもよい。
 先ず、冷却回路41の主な構成要素について説明する。
 冷却回路41は、ポンプ42と、バッテリ43と、熱交換器44(第一の熱交換器)と、熱交換器45(第二の熱交換器)と、ラジエータ46と、を備える。
Next, an additional configuration will be described.
The vehicle air conditioner 11 includes a cooling circuit 41 and cools the battery 43 by circulating a cooling heat medium. The cooling heat medium is, for example, water, but other fluids such as a refrigerant and a coolant may be used.
First, the main components of the cooling circuit 41 will be described.
The cooling circuit 41 includes a pump 42, a battery 43, a heat exchanger 44 (first heat exchanger), a heat exchanger 45 (second heat exchanger), and a radiator 46.
 ポンプ42は、冷却回路41の冷却用熱媒体を一方の側から吸引し、他方の側に吐出することで、冷却用熱媒体を循環させる。
 バッテリ43は、図示しない車両走行用の電動モータに電力を供給する蓄電池であり、例えばリチウムイオンバッテリである。バッテリ43に形成されたウォータージャケットに冷却用熱媒体が流れることで、バッテリ43の冷却が行なわれる。
 熱交換器44は、冷却用熱媒体が通過する冷却用熱媒体流路44Aと、外部熱媒体が通過する外部熱媒体流路44Bと、を備え、バッテリ43を図示しない外部電源から充電しているときに、外部冷却装置47から供給される外部熱媒体と冷却用熱媒体との間で熱交換を行なう。外部熱媒体は、例えば水であるが、冷媒やクーラント等、他の流体を用いてもよい。熱交換器44と外部冷却装置47とは、図示しないコネクタによって着脱可能に接続されている。なお、熱交換器44とコネクタとの間には、さらに熱交換器を介在させてもよい。
The pump 42 circulates the cooling heat medium by sucking the cooling heat medium of the cooling circuit 41 from one side and discharging it to the other side.
The battery 43 is a storage battery that supplies electric power to an electric motor for traveling a vehicle (not shown), and is, for example, a lithium ion battery. The cooling heat medium flows through the water jacket formed on the battery 43 to cool the battery 43.
The heat exchanger 44 includes a cooling heat medium flow path 44A through which the cooling heat medium passes and an external heat medium flow path 44B through which the external heat medium passes, and charges the battery 43 from an external power source (not shown). At that time, heat exchange is performed between the external heat medium supplied from the external cooling device 47 and the cooling heat medium. The external heat medium is, for example, water, but other fluids such as a refrigerant and a coolant may be used. The heat exchanger 44 and the external cooling device 47 are detachably connected by a connector (not shown). A heat exchanger may be further interposed between the heat exchanger 44 and the connector.
 熱交換器45は、冷却用熱媒体が通過する冷却用熱媒体流路45Aと、空調用熱媒体が通過する空調用熱媒体流路45Bと、を備え、冷凍サイクル回路12の一部の空調用熱媒体と冷却回路41の冷却用熱媒体との間で熱交換を行なう。
 ラジエータ46は、室外熱交換器24の風下側に配置され、内部を通過する冷却用熱媒体と周囲を通過する外気との間で熱交換を行ない、チューブ内の冷却用熱媒体に放熱させる。室外熱交換器24の風上側には、送風機28が設けられており、車両が停止しているとき又は低速で走行しているときでも、送風機28を駆動させることで、室外熱交換器24及びラジエータ46に送風が供給される。
The heat exchanger 45 includes a cooling heat medium flow path 45A through which the cooling heat medium passes and an air conditioning heat medium flow path 45B through which the air conditioning heat medium passes, and air-conditions a part of the refrigeration cycle circuit 12. Heat exchange is performed between the heat medium for cooling and the heat medium for cooling of the cooling circuit 41.
The radiator 46 is arranged on the leeward side of the outdoor heat exchanger 24, exchanges heat between the cooling heat medium passing through the inside and the outside air passing around the inside, and dissipates heat to the cooling heat medium in the tube. A blower 28 is provided on the windward side of the outdoor heat exchanger 24, and by driving the blower 28 even when the vehicle is stopped or traveling at a low speed, the outdoor heat exchanger 24 and Air is supplied to the radiator 46.
 次に、冷却回路41の回路構成について説明する。
 図中、冷却用熱媒体の流路を破線で示している。ポンプ42の出口は、配管51aを介してラジエータ46の入口に連通している。ラジエータ46の出口は、配管51bを介してポンプ42の入口に連通している。配管51aには、ポンプ42の出口側とラジエータ46の入口側との間に、分岐点48が設けられている。配管51bには、ラジエータ46の出口側からポンプ42の入口側に向かって、三方弁49、熱交換器44における冷却用熱媒体流路44A、熱交換器45における冷却用熱媒体流路45Aが、順に設けられている。三方弁49は、一方の入口がラジエータ46の出口に連通し、他方の入口が配管51c(バイパス流路)を介して分岐点48に連通し、出口が熱交換器44における冷却用熱媒体流路44Aに連通している。
Next, the circuit configuration of the cooling circuit 41 will be described.
In the figure, the flow path of the cooling heat medium is shown by a broken line. The outlet of the pump 42 communicates with the inlet of the radiator 46 via the pipe 51a. The outlet of the radiator 46 communicates with the inlet of the pump 42 via the pipe 51b. The pipe 51a is provided with a branch point 48 between the outlet side of the pump 42 and the inlet side of the radiator 46. The pipe 51b has a three-way valve 49, a cooling heat medium flow path 44A in the heat exchanger 44, and a cooling heat medium flow path 45A in the heat exchanger 45 from the outlet side of the radiator 46 toward the inlet side of the pump 42. , Are provided in order. In the three-way valve 49, one inlet communicates with the outlet of the radiator 46, the other inlet communicates with the branch point 48 via the pipe 51c (bypass flow path), and the outlet communicates with the cooling heat medium flow in the heat exchanger 44. It communicates with the road 44A.
 次に、冷凍サイクル回路12の付加的な構成要素について説明する。
 冷凍サイクル回路12は、膨張弁55と、熱交換器45と、を備える。
 膨張弁55は、液相で高圧の空調用熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の空調用熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
 次に、冷凍サイクル回路12の付加的な回路構成について説明する。
 配管31dのうち、分岐点37と室内膨張弁25との間には分岐点48があり、配管31cのうち、逆止弁33とアキュムレータ27との間には分岐点57がある。分岐点56は、配管31gを介して熱交換器45における空調用熱媒体流路45Bの入口に連通し、熱交換器45における空調用熱媒体流路45Bの出口は、配管31hを介して分岐点57に連通している。配管31gには、膨張弁55が設けられている。
Next, additional components of the refrigeration cycle circuit 12 will be described.
The refrigeration cycle circuit 12 includes an expansion valve 55 and a heat exchanger 45.
The expansion valve 55 atomizes a high-pressure air-conditioning heat medium in a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium that is easily vaporized, and the opening degree can be adjusted from fully closed to fully open. be.
Next, an additional circuit configuration of the refrigeration cycle circuit 12 will be described.
In the pipe 31d, there is a branch point 48 between the branch point 37 and the indoor expansion valve 25, and in the pipe 31c, there is a branch point 57 between the check valve 33 and the accumulator 27. The branch point 56 communicates with the inlet of the air-conditioning heat medium flow path 45B in the heat exchanger 45 via the pipe 31g, and the outlet of the air-conditioning heat medium flow path 45B in the heat exchanger 45 branches via the pipe 31h. It communicates with point 57. The expansion valve 55 is provided in the pipe 31 g.
 次に、車両用空気調和装置11の基本的な運転について説明する。
 コントローラ61は、例えばマイクロコンピュータであり、ユーザからの運転要求に応じて、暖房運転、除湿暖房運転、冷房運転、除湿冷房運転の各空調運転を選択的に実行し、車室内の空調を行なう。ここでは、基本的な運転について説明するため、冷凍サイクル回路12の動作、及びHVACユニット13の動作について説明する。すなわち、コントローラ61は、圧縮機21、室外膨張弁23、開閉弁32、開閉弁35、室内膨張弁25、膨張弁55、送風機28、送風ファン14、及びエアミックスダンパ15を駆動制御する。
Next, the basic operation of the vehicle air conditioner 11 will be described.
The controller 61 is, for example, a microcomputer, and selectively executes each air conditioning operation of heating operation, dehumidifying and heating operation, cooling operation, and dehumidifying and cooling operation in response to an operation request from the user to air-condition the vehicle interior. Here, in order to explain the basic operation, the operation of the refrigeration cycle circuit 12 and the operation of the HVAC unit 13 will be described. That is, the controller 61 drives and controls the compressor 21, the outdoor expansion valve 23, the on-off valve 32, the on-off valve 35, the indoor expansion valve 25, the expansion valve 55, the blower 28, the blower fan 14, and the air mix damper 15.
 [暖房運転]
 図2は、暖房運転を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。冷凍サイクル回路12によって、暖房運転を行なう場合、室外膨張弁23を僅かに開放し、開閉弁32を開放し、開閉弁35を閉鎖し、室内膨張弁25を閉鎖し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。
[Heating operation]
FIG. 2 is a diagram showing a heating operation.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line, and the opened on-off valve is shown in white and closed. The on-off valve is shown in black. When the heating operation is performed by the refrigeration cycle circuit 12, the outdoor expansion valve 23 is slightly opened, the on-off valve 32 is opened, the on-off valve 35 is closed, the indoor expansion valve 25 is closed, and the expansion valve 55 is closed. In this state, the compressor 21 is driven.
 これにより、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、開閉弁32、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、放熱器22で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室外膨張弁23で膨張され低圧となり、室外熱交換器24で吸熱することで蒸発気化し、高温になる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路17を閉じ気味にしつつ、放熱器22を通過する割合を調整する。これにより、導入された空気が放熱器22で加温され、温かい空気が車室内に供給される。また、ヒータ18を駆動すると、さらに加温される。
As a result, the heat medium for air conditioning includes the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the on-off valve 32, the branch point 39, the check valve 33, and the branch. It circulates through the point 57 and the accumulator 27 in order. In this circulation path, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the radiator 22 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the outdoor expansion valve 23 to a low pressure, and by absorbing heat by the outdoor heat exchanger 24, it evaporates and vaporizes to a high temperature.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the radiator 22. As a result, the introduced air is heated by the radiator 22, and warm air is supplied to the vehicle interior. Further, when the heater 18 is driven, it is further heated.
 なお、暖房運転では、室外熱交換器24が蒸発器として機能するため、室外熱交換器24の周囲が冷却されることで空気中の水分が昇華し、放熱フィンに着霜が生じることがある。また、霜が成長し放熱フィンの通風路が塞がれると、室外熱交換器24の熱交換効率が低下する。そこで、室外熱交換器24の温度から着霜の発生を検出したときには、除霜運転を行なう。除霜運転を行なう場合、送風ファン14を停止し、エアミックスダンパ15で流路16を閉塞することを除いては。暖房運転と同じである。これにより、空調用熱媒体は、放熱器22での放熱が抑制されるので、高温のまま室外熱交換器24へと供給され、霜が融解される。 In the heating operation, since the outdoor heat exchanger 24 functions as an evaporator, the surroundings of the outdoor heat exchanger 24 are cooled, so that the moisture in the air sublimates and frost may occur on the heat radiation fins. .. Further, when frost grows and the ventilation passage of the heat radiation fin is blocked, the heat exchange efficiency of the outdoor heat exchanger 24 decreases. Therefore, when the occurrence of frost formation is detected from the temperature of the outdoor heat exchanger 24, the defrosting operation is performed. When performing the defrosting operation, except that the blower fan 14 is stopped and the flow path 16 is blocked by the air mix damper 15. It is the same as heating operation. As a result, the heat radiation for air conditioning is suppressed in the radiator 22, so that the heat medium is supplied to the outdoor heat exchanger 24 at a high temperature, and the frost is melted.
 [除湿暖房運転]
 図3は、除湿暖房運転を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。冷凍サイクル回路12によって、除湿暖房運転を行なう場合、室外膨張弁23を僅かに開放し、開閉弁32を開放し、開閉弁35を開放し、室内膨張弁25を僅かに開放し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。
[Dehumidifying and heating operation]
FIG. 3 is a diagram showing a dehumidifying and heating operation.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line, and the opened on-off valve is shown in white and closed. The on-off valve is shown in black. When the dehumidifying and heating operation is performed by the refrigeration cycle circuit 12, the outdoor expansion valve 23 is slightly opened, the on-off valve 32 is opened, the on-off valve 35 is opened, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is opened. The compressor 21 is driven in the closed state.
 これにより、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、開閉弁32、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。また、放熱器22を通過した空調用熱媒体の一部は、分岐点34から分流され、開閉弁35、分岐点37、分岐点48、室内膨張弁25、及び吸熱器26を経由して分岐点39に合流する。これらの循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、放熱器22で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室外膨張弁23で膨張され低圧となり、室外熱交換器24で吸熱することで蒸発気化し、高温になる。また、液相の空調用熱媒体の一部は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路17を閉じ気味にしつつ、放熱器22を通過する割合を調整する。これにより、導入された空気が吸熱器26で除湿された後に、放熱器22で加温され、除湿された温かい空気が車室内に供給される。また、ヒータ18を駆動すると、さらに加温される。
As a result, the heat medium for air conditioning includes the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the on-off valve 32, the branch point 39, the check valve 33, and the branch. It circulates through the point 57 and the accumulator 27 in order. A part of the heat medium for air conditioning that has passed through the radiator 22 is split from the branch point 34 and branched via the on-off valve 35, the branch point 37, the branch point 48, the indoor expansion valve 25, and the heat absorber 26. Join point 39. In these circulation paths, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the radiator 22 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the outdoor expansion valve 23 to a low pressure, and by absorbing heat by the outdoor heat exchanger 24, it evaporates and vaporizes to a high temperature. Further, a part of the heat medium for air conditioning in the liquid phase is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the radiator 22. As a result, after the introduced air is dehumidified by the heat absorber 26, it is heated by the radiator 22 and the dehumidified warm air is supplied to the vehicle interior. Further, when the heater 18 is driven, it is further heated.
 [除湿冷房運転]
 図4は、除湿冷房運転を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、中圧の空調用熱媒体が通過する流路を太い破線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。冷凍サイクル回路12によって、除湿冷房運転を行なう場合、室外膨張弁23を開き気味にし、開閉弁32を閉鎖し、開閉弁35を閉鎖し、室内膨張弁25を僅かに開放し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。
[Dehumidifying and cooling operation]
FIG. 4 is a diagram showing a dehumidifying / cooling operation.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is indicated by a thick dotted line, the flow path through which the medium-pressure air-conditioning heat medium passes is indicated by a thick broken line, and the flow path through which the high-pressure air-conditioning heat medium passes is shown. It is shown by a thick solid line, the open on-off valve is shown in white, and the closed on-off valve is shown in black. When the dehumidifying and cooling operation is performed by the refrigeration cycle circuit 12, the outdoor expansion valve 23 is slightly opened, the on-off valve 32 is closed, the on-off valve 35 is closed, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is opened. The compressor 21 is driven in the closed state.
 これにより、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、逆止弁38、分岐点37、分岐点48、室内膨張弁25、吸熱器26、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外膨張弁23で膨張され中圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、放熱器22を迂回する割合を調整する。これにより、導入された空気が吸熱器26で除湿冷却され、涼しい空気が車室内に供給される。
As a result, the heat medium for air conditioning is the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the check valve 38, the branch point 37, the branch point 48, and the room. It circulates through the expansion valve 25, the heat exchanger 26, the branch point 39, the check valve 33, the branch point 57, and the accumulator 27 in this order. In this circulation path, the heat medium for air conditioning of the gas phase is compressed by the compressor 21 to a high pressure, expanded by the outdoor expansion valve 23 to a medium pressure, and radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. Become. The liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the radiator 22. As a result, the introduced air is dehumidified and cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
 [冷房運転]
 図5は、冷房運転を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。冷凍サイクル回路12によって、冷房運転を行なう場合、室外膨張弁23を全開にし、開閉弁32を閉鎖し、開閉弁35を閉鎖し、室内膨張弁25を僅かに開放し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。
[Cooling operation]
FIG. 5 is a diagram showing a cooling operation.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line, and the opened on-off valve is shown in white and closed. The on-off valve is shown in black. When the cooling operation is performed by the refrigeration cycle circuit 12, the outdoor expansion valve 23 is fully opened, the on-off valve 32 is closed, the on-off valve 35 is closed, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is closed. In this state, the compressor 21 is driven.
 これにより、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、逆止弁38、分岐点37、分岐点48、室内膨張弁25、吸熱器26、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、放熱器22を迂回する割合を調整する。これにより、導入された空気が吸熱器26で冷却され、涼しい空気が車室内に供給される。
As a result, the heat medium for air conditioning is the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the check valve 38, the branch point 37, the branch point 48, and the room. It circulates through the expansion valve 25, the heat exchanger 26, the branch point 39, the check valve 33, the branch point 57, and the accumulator 27 in this order. In this circulation path, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the radiator 22. As a result, the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
 次に、車両用空気調和装置11の主要な制御処理について説明する。
 図6は、車両用空気調和装置のブロック図である。
 車両用空気調和装置11は、コントローラ61と、乗員センサ62(乗員検出部)と、外気温センサ63と、エバポレータ温度センサ64と、コンプレッサ回転センサ65と、水温センサ66と、を備える。
 乗員センサ62は、車室内に乗員がいるか否かを検出する。例えば人感センサや着座センサである。外気温センサ63は、外気温度Taを検出する。エバポレータ温度センサ64は、吸熱器26の表面温度Teを検出する。コンプレッサ回転センサ65は、圧縮機21の回転数Ncを検出する。水温センサ66は、バッテリ43における出口側の冷却用熱媒体の温度Twを検出する。各センサの出力は、コントローラ61に入力される。
Next, the main control processing of the vehicle air conditioner 11 will be described.
FIG. 6 is a block diagram of an air conditioner for a vehicle.
The vehicle air conditioner 11 includes a controller 61, an occupant sensor 62 (occupant detection unit), an outside air temperature sensor 63, an evaporator temperature sensor 64, a compressor rotation sensor 65, and a water temperature sensor 66.
The occupant sensor 62 detects whether or not there is an occupant in the vehicle interior. For example, a motion sensor or a seating sensor. The outside air temperature sensor 63 detects the outside air temperature Ta. The evaporator temperature sensor 64 detects the surface temperature Te of the heat absorber 26. The compressor rotation sensor 65 detects the rotation speed Nc of the compressor 21. The water temperature sensor 66 detects the temperature Tw of the cooling heat medium on the outlet side of the battery 43. The output of each sensor is input to the controller 61.
 コントローラ61は、充電時制御処理、及びバイパス制御処理を実行し、冷凍サイクル回路12、HVACユニット13、及び冷却回路41を駆動制御する。すなわち、コントローラ61は、冷凍サイクル回路12の圧縮機21、室外膨張弁23、開閉弁32、開閉弁35、室内膨張弁25、膨張弁55、及び送風機28を駆動制御する。また、コントローラ61は、HVACユニット13の送風ファン14、エアミックスダンパ15、及びヒータ18を駆動制御する。さらに、コントローラ61は、冷却回路41のポンプ42、及び三方弁49を駆動制御する。 The controller 61 executes the charging control process and the bypass control process, and drives and controls the refrigeration cycle circuit 12, the HVAC unit 13, and the cooling circuit 41. That is, the controller 61 drives and controls the compressor 21, the outdoor expansion valve 23, the on-off valve 32, the on-off valve 35, the indoor expansion valve 25, the expansion valve 55, and the blower 28 of the refrigeration cycle circuit 12. Further, the controller 61 drives and controls the blower fan 14, the air mix damper 15, and the heater 18 of the HVAC unit 13. Further, the controller 61 drives and controls the pump 42 of the cooling circuit 41 and the three-way valve 49.
 図7は、充電時制御処理の一例を示すフローチャートである。
 充電時制御処理は、所定時間毎のタイマ割込み処理として実行される。
 ステップS101では、バッテリ43の急速充電が実行されているか否かを判定する。バッテリ43の急速充電が実行されていないときには、そのまま所定のメインプログラムに復帰する。一方、バッテリ43の急速充電が実行されているときには、ステップS102に移行する。
 ステップS102では、外部冷却装置47から供給される外部熱媒体によってバッテリ43の冷却を行なう。具体的には、ポンプ42を駆動し、冷却回路41の冷却用熱媒体を循環させ、熱交換器44によって外部熱媒体と冷却用熱媒体との熱交換を行なう。
 続くステップS103では、車室内に乗員がいるか否かを検出する。乗員がいないときにはステップS110に移行する。一方、乗員がいるときにはステップS104に移行する。
FIG. 7 is a flowchart showing an example of the charging control process.
The charging control process is executed as a timer interrupt process at predetermined time intervals.
In step S101, it is determined whether or not the quick charging of the battery 43 is being executed. When the quick charge of the battery 43 is not executed, the program returns to the predetermined main program as it is. On the other hand, when the quick charge of the battery 43 is being executed, the process proceeds to step S102.
In step S102, the battery 43 is cooled by the external heat medium supplied from the external cooling device 47. Specifically, the pump 42 is driven to circulate the cooling heat medium of the cooling circuit 41, and the heat exchanger 44 exchanges heat between the external heat medium and the cooling heat medium.
In the following step S103, it is detected whether or not there is an occupant in the vehicle interior. When there is no occupant, the process proceeds to step S110. On the other hand, when there is an occupant, the process proceeds to step S104.
 ステップS104では、空調運転が要求されているか否かを判定する。空調が要求されていないときにはステップS110に移行する。一方、空調運転が要求されているときにはステップS105に移行する。
 ステップS105では、冷房運転が要求されているか否かを判定する。冷房運転が要求されていない、つまり暖房運転が要求されているときにはステップS109に移行する。一方、冷房運転が要求されているときにはステップS106に移行する。ここでは、説明を簡単にするために、単に冷房運転が要求されているか否かを判定しているが、車室内を冷やすという点で冷房運転と除湿冷房運転は同等であるため、冷房運転及び除湿冷房運転の何れかが要求されているか否かを判定することも含むものとする。同様に、車室内を温めるという点で暖房運転と除湿暖房運転は同等であるため、暖房運転が要求されていることには、暖房運転及び除湿暖房運転の何れかが要求されていることも含むものとする。
In step S104, it is determined whether or not the air conditioning operation is required. When air conditioning is not required, the process proceeds to step S110. On the other hand, when the air conditioning operation is required, the process proceeds to step S105.
In step S105, it is determined whether or not the cooling operation is required. When the cooling operation is not required, that is, the heating operation is required, the process proceeds to step S109. On the other hand, when the cooling operation is required, the process proceeds to step S106. Here, for the sake of simplicity, it is simply determined whether or not the cooling operation is required. However, since the cooling operation and the dehumidifying cooling operation are equivalent in terms of cooling the passenger compartment, the cooling operation and the dehumidifying cooling operation are performed. It shall also include determining whether or not any of the dehumidifying and cooling operations is required. Similarly, since the heating operation and the dehumidifying heating operation are equivalent in terms of warming the passenger compartment, the requirement for the heating operation includes the requirement for either the heating operation or the dehumidifying heating operation. Dehumidify.
 ステップS106では、吸熱器26の目標温度Te、吸熱器26の表面温度Te、及び圧縮機21の回転数Ncに基づいて、冷房運転の冷凍サイクル回路12の冷力に余力があるか否かを判定する。具体的には、吸熱器26の表面温度Teが目標温度Teを達成しており、且つ圧縮機21の回転数Ncが予め定めた閾値Nth以下であるか否かを判定する。圧縮機21の最高回転数Nmaxが7000~9000回転程度であるなら、閾値Nthは4000~5000回転程度に設定する。ここで、吸熱器26の表面温度Teが目標温度Teを達成しており、且つ圧縮機21の回転数Ncが予め定めた閾値Nth以下であるときには、冷力に余力があると判断してステップS107に移行する。一方、吸熱器26の表面温度Teが目標温度Teを達成していない、又は圧縮機21の回転数Ncが閾値Nthを上回っているときには、冷力に余力がないと判断してステップS108に移行する。 In step S106, whether or not the refrigerating cycle circuit 12 in the cooling operation has a surplus capacity based on the target temperature Te * of the endothermic device 26, the surface temperature Te of the endothermic device 26, and the rotation speed Nc of the compressor 21. To judge. Specifically, it is determined whether or not the surface temperature Te of the endothermic absorber 26 has achieved the target temperature Te * and the rotation speed Nc of the compressor 21 is equal to or less than a predetermined threshold value Nth. If the maximum rotation speed Nmax of the compressor 21 is about 7,000 to 9000 rotations, the threshold value Nth is set to about 4000 to 5000 rotations. Here, when the surface temperature Te of the endothermic absorber 26 has achieved the target temperature Te * and the rotation speed Nc of the compressor 21 is equal to or less than a predetermined threshold value Nth, it is determined that there is a surplus cooling power. The process proceeds to step S107. On the other hand, when the surface temperature Te of the endothermic absorber 26 does not reach the target temperature Te * or the rotation speed Nc of the compressor 21 exceeds the threshold value Nth, it is determined that there is no surplus cooling power, and step S108 is performed. Transition.
 ステップS107では、冷凍サイクル回路12によって冷房運転を行ない、且つ冷凍サイクル回路12から供給される空調用熱媒体の一部によってバッテリ43の冷却補助を行ない、所定のメインプログラムに復帰する。具体的には、通常の冷房運転を行なうことに加え、膨張弁55を開き、熱交換器45によって空調用熱媒体の一部と冷却用熱媒体との熱交換を行なう。このとき、吸熱器26の目標温度Teを増加補正する。例えば、予め定めた増加率に従って補正したり、予め定めた増加量だけ補正したりする。
 ステップS108では、冷凍サイクル回路12によって通常の冷房運転だけを行ない、所定のメインプログラムに復帰する。
In step S107, the cooling operation is performed by the refrigeration cycle circuit 12, and the battery 43 is assisted by a part of the heat medium for air conditioning supplied from the refrigeration cycle circuit 12, and the program returns to a predetermined main program. Specifically, in addition to performing normal cooling operation, the expansion valve 55 is opened, and a heat exchanger 45 exchanges heat between a part of the heat medium for air conditioning and the heat medium for cooling. At this time, the target temperature Te * of the heat absorber 26 is increased and corrected. For example, it may be corrected according to a predetermined rate of increase, or it may be corrected by a predetermined amount of increase.
In step S108, only the normal cooling operation is performed by the refrigeration cycle circuit 12, and the program returns to a predetermined main program.
 ステップS109では、冷凍サイクル回路12によって暖房運転を行ない、且つ冷凍サイクル回路12から供給される空調用熱媒体によってバッテリ43の冷却補助を行ない、所定のメインプログラムに復帰する。具体的には、通常の暖房運転を行なうことに加え、開閉弁35を開き、且つ膨張弁55を開き、熱交換器45によって空調用熱媒体と冷却用熱媒体との熱交換を行なう。
 ステップS110では、冷凍サイクル回路12から供給される空調用熱媒体の全てによってバッテリ43の冷却補助を行ない、所定のメインプログラムに復帰する。具体的には、通常の冷房運転を行なっている状態から、室内膨張弁25を閉鎖し、且つ膨張弁55を開き、熱交換器45によって空調用熱媒体と冷却用熱媒体との熱交換を行なう。
In step S109, the heating operation is performed by the refrigeration cycle circuit 12, and the cooling of the battery 43 is assisted by the heat medium for air conditioning supplied from the refrigeration cycle circuit 12, and the program returns to a predetermined main program. Specifically, in addition to performing normal heating operation, the on-off valve 35 is opened, the expansion valve 55 is opened, and the heat exchanger 45 exchanges heat between the heat medium for air conditioning and the heat medium for cooling.
In step S110, the cooling of the battery 43 is assisted by all of the heat media for air conditioning supplied from the refrigeration cycle circuit 12, and the program returns to a predetermined main program. Specifically, from the state of normal cooling operation, the indoor expansion valve 25 is closed, the expansion valve 55 is opened, and the heat exchanger 45 exchanges heat between the heat medium for air conditioning and the heat medium for cooling. Do it.
 図8は、バイパス制御処理の一例を示すフローチャートである。
 バイパス制御処理は、所定時間毎のタイマ割込み処理として実行される。
 ステップS121では、バッテリ43の急速充電が実行されているか否かを判定する。バッテリ43の急速充電が実行されていないときには、そのまま所定のメインプログラムに復帰する。一方、バッテリ43の急速充電が実行されているときには、ステップS122に移行する。
 ステップS122では、バッテリ43における出口側の冷却用熱媒体の温度Twが外気温度Ta以下であるか否かを判定する。冷却用熱媒体の温度Twが外気温度Ta以下であるときにはステップS123に移行する。一方、冷却用熱媒体の温度Twが外気温度Taを超えているときにはステップS124に移行する。
 ステップS123では、三方弁49を制御し、冷却用熱媒体にラジエータ46を迂回させて、所定のメインプログラムに復帰する。
 ステップS124では、三方弁49を制御し、冷却用熱媒体にラジエータ46を通過させて、所定のメインプログラムに復帰する。
FIG. 8 is a flowchart showing an example of bypass control processing.
The bypass control process is executed as a timer interrupt process at predetermined time intervals.
In step S121, it is determined whether or not the quick charging of the battery 43 is being executed. When the quick charge of the battery 43 is not executed, the program returns to the predetermined main program as it is. On the other hand, when the quick charge of the battery 43 is being executed, the process proceeds to step S122.
In step S122, it is determined whether or not the temperature Tw of the cooling heat medium on the outlet side of the battery 43 is equal to or lower than the outside air temperature Ta. When the temperature Tw of the cooling heat medium is equal to or lower than the outside air temperature Ta, the process proceeds to step S123. On the other hand, when the temperature Tw of the cooling heat medium exceeds the outside air temperature Ta, the process proceeds to step S124.
In step S123, the three-way valve 49 is controlled, the radiator 46 is bypassed by the cooling heat medium, and the program returns to a predetermined main program.
In step S124, the three-way valve 49 is controlled, the radiator 46 is passed through the cooling heat medium, and the program returns to a predetermined main program.
 次に、車両用空気調和装置11の主要な運転について説明する。
 [冷房運転+バッテリ冷却補助]
 図9は、冷房運転+バッテリ冷却補助を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。また、冷却用熱媒体、及び外部熱媒体が通過する流路を太い破線で示す。
Next, the main operation of the vehicle air conditioner 11 will be described.
[Cooling operation + battery cooling assistance]
FIG. 9 is a diagram showing cooling operation + battery cooling assistance.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line, and the opened on-off valve is shown in white and closed. The on-off valve is shown in black. Further, the flow path through which the cooling heat medium and the external heat medium pass is indicated by a thick broken line.
 ここでは、急速充電時に、冷房要求があり、冷凍サイクル回路12の冷力に余力があり、且つバッテリ43における出口側の冷却用熱媒体の温度Twが外気温度Ta以下であるときの運転について説明する。急速充電時は、外部冷却装置47から冷却された外部熱媒体が供給されている。冷凍サイクル回路12によって、冷房運転、及びバッテリ43の冷却を行なう場合、室外膨張弁23を全開放し、開閉弁32を閉鎖し、開閉弁35を閉鎖し、室内膨張弁25を僅かに開放し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。また、三方弁49によってラジエータ46を迂回させた状態で、ポンプ42を駆動する。
 これにより、まず外部熱媒体は、外部冷却装置47、及び熱交換器44における外部熱媒体流路44Bを順に経由して循環する。この循環経路において、外部熱媒体は、外部冷却装置47で放熱することで冷却され、熱交換器44における外部熱媒体流路44Bで吸熱することで高温となる。
Here, the operation when there is a cooling request at the time of quick charging, the cooling power of the refrigerating cycle circuit 12 has a surplus, and the temperature Tw of the cooling heat medium on the outlet side of the battery 43 is equal to or lower than the outside air temperature Ta will be described. do. At the time of rapid charging, an external heat medium cooled by the external cooling device 47 is supplied. When the cooling operation and the cooling of the battery 43 are performed by the refrigeration cycle circuit 12, the outdoor expansion valve 23 is fully opened, the on-off valve 32 is closed, the on-off valve 35 is closed, and the indoor expansion valve 25 is slightly opened. , The compressor 21 is driven with the expansion valve 55 slightly opened. Further, the pump 42 is driven in a state where the radiator 46 is bypassed by the three-way valve 49.
As a result, the external heat medium first circulates through the external cooling device 47 and the external heat medium flow path 44B in the heat exchanger 44 in order. In this circulation path, the external heat medium is cooled by dissipating heat in the external cooling device 47, and becomes high temperature by absorbing heat in the external heat medium flow path 44B in the heat exchanger 44.
 また、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、逆止弁38、分岐点37、分岐点56、室内膨張弁25、吸熱器26、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。また、分岐点37を通過した空調用熱媒体の一部は、分岐点56から分流され、膨張弁55、及び熱交換器45における空調用熱媒体流路45Bを経由して分岐点57に合流する。これらの循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。また、液相の空調用熱媒体の一部は、膨張弁55で膨張され低圧となり、熱交換器45における空調用熱媒体流路45Bで吸熱することで蒸発気化し、高温となる。 The heat medium for air conditioning includes a compressor 21, a radiator 22, a branch point 34, an outdoor expansion valve 23, an outdoor heat exchanger 24, a branch point 36, a check valve 38, a branch point 37, a branch point 56, and indoor expansion. It circulates through the valve 25, the heat exchanger 26, the branch point 39, the check valve 33, the branch point 57, and the accumulator 27 in this order. A part of the heat medium for air conditioning that has passed through the branch point 37 is split from the branch point 56 and merges with the branch point 57 via the expansion valve 55 and the heat medium flow path 45B for air conditioning in the heat exchanger 45. do. In these circulation paths, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature. Further, a part of the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat in the air-conditioning heat medium flow path 45B in the heat exchanger 45, it evaporates and vaporizes to a high temperature.
 また、冷却用熱媒体は、ポンプ42、バッテリ43、分岐点48、三方弁49、熱交換器44における冷却用熱媒体流路44A、熱交換器45における冷却用熱媒体流路45Aを順に経由して循環する。この循環経路において、冷却用熱媒体は、バッテリ43で吸熱することで高温となり、熱交換器44における冷却用熱媒体流路44Aで放熱することで低温となり、さらに熱交換器45における冷却用熱媒体流路45Aで放熱することでより低温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、放熱器22を迂回する割合を調整する。これにより、導入された空気が吸熱器26で冷却され、涼しい空気が車室内に供給される。
The cooling heat medium passes through the pump 42, the battery 43, the branch point 48, the three-way valve 49, the cooling heat medium flow path 44A in the heat exchanger 44, and the cooling heat medium flow path 45A in the heat exchanger 45 in this order. And circulate. In this circulation path, the cooling heat medium becomes high temperature by absorbing heat in the battery 43, radiates heat in the cooling heat medium flow path 44A in the heat exchanger 44, and becomes low temperature, and further cools heat in the heat exchanger 45. By radiating heat in the medium flow path 45A, the temperature becomes lower.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the radiator 22. As a result, the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
 [冷房運転(バッテリ冷却補助なし)]
 図10は、冷房運転(バッテリ冷却補助なし)を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。また、冷却用熱媒体、及び外部熱媒体が通過する流路を太い破線で示す。
 ここでは、急速充電時に、冷房要求があり、冷凍サイクル回路12の冷力に余力がなく、且つバッテリ43における出口側の冷却用熱媒体の温度Twが外気温度Ta以下であるときの運転について説明する。急速充電時は、外部冷却装置47から冷却された外部熱媒体が供給されている。冷凍サイクル回路12によって、冷房運転だけを行なう場合、室外膨張弁23を全開放し、開閉弁32を閉鎖し、開閉弁35を閉鎖し、室内膨張弁25を僅かに開放し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。また、三方弁49によってラジエータ46を迂回させた状態で、ポンプ42を駆動する。
[Cooling operation (without battery cooling assistance)]
FIG. 10 is a diagram showing a cooling operation (without battery cooling assistance).
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line, and the opened on-off valve is shown in white and closed. The on-off valve is shown in black. Further, the flow path through which the cooling heat medium and the external heat medium pass is indicated by a thick broken line.
Here, the operation when there is a cooling request at the time of quick charging, the cooling power of the refrigerating cycle circuit 12 is insufficient, and the temperature Tw of the cooling heat medium on the outlet side of the battery 43 is equal to or lower than the outside air temperature Ta will be described. do. At the time of rapid charging, an external heat medium cooled by the external cooling device 47 is supplied. When only the cooling operation is performed by the refrigeration cycle circuit 12, the outdoor expansion valve 23 is fully opened, the on-off valve 32 is closed, the on-off valve 35 is closed, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is opened. The compressor 21 is driven in the closed state. Further, the pump 42 is driven in a state where the radiator 46 is bypassed by the three-way valve 49.
 これにより、まず外部熱媒体は、外部冷却装置47、及び熱交換器44における外部熱媒体流路44Bを順に経由して循環する。この循環経路において、外部熱媒体は、外部冷却装置47で放熱することで冷却され、熱交換器44における外部熱媒体流路44Bで吸熱することで高温となる。
 また、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、逆止弁38、分岐点37、分岐点56、室内膨張弁25、吸熱器26、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。
As a result, the external heat medium first circulates through the external cooling device 47 and the external heat medium flow path 44B in the heat exchanger 44 in order. In this circulation path, the external heat medium is cooled by dissipating heat in the external cooling device 47, and becomes high temperature by absorbing heat in the external heat medium flow path 44B in the heat exchanger 44.
The heat medium for air conditioning includes a compressor 21, a radiator 22, a branch point 34, an outdoor expansion valve 23, an outdoor heat exchanger 24, a branch point 36, a check valve 38, a branch point 37, a branch point 56, and indoor expansion. It circulates through the valve 25, the heat exchanger 26, the branch point 39, the check valve 33, the branch point 57, and the accumulator 27 in this order. In this circulation path, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
 また、冷却用熱媒体は、ポンプ42、バッテリ43、分岐点48、三方弁49、熱交換器44における冷却用熱媒体流路44A、及び熱交換器45における冷却用熱媒体流路45Aを順に経由して循環する。この循環経路において、冷却用熱媒体は、バッテリ43で吸熱することで高温となり、熱交換器44における冷却用熱媒体流路44Aで放熱することで低温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、放熱器22を迂回する割合を調整する。これにより、導入された空気が吸熱器26で冷却され、涼しい空気が車室内に供給される。
The cooling heat medium includes the pump 42, the battery 43, the branch point 48, the three-way valve 49, the cooling heat medium flow path 44A in the heat exchanger 44, and the cooling heat medium flow path 45A in the heat exchanger 45 in this order. It circulates via. In this circulation path, the cooling heat medium becomes high temperature by absorbing heat in the battery 43, and becomes low temperature by radiating heat in the cooling heat medium flow path 44A in the heat exchanger 44.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the radiator 22. As a result, the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
 [暖房運転+バッテリ冷却補助]
 図11は、暖房運転+バッテリ冷却補助を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。また、冷却用熱媒体、及び外部熱媒体が通過する流路を太い破線で示す。
 ここでは、急速充電時に、暖房要求があり、且つバッテリ43における出口側の冷却用熱媒体の温度Twが外気温度Ta以下であるときの運転について説明する。急速充電時は、外部冷却装置47から冷却された外部熱媒体が供給されている。冷凍サイクル回路12によって、暖房運転を行なう場合、室外膨張弁23を僅かに開放し、開閉弁32を開放し、開閉弁35を開放し、室内膨張弁25を閉鎖し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。また、三方弁49によってラジエータ46を迂回させた状態で、ポンプ42を駆動する。
[Heating operation + battery cooling assistance]
FIG. 11 is a diagram showing heating operation + battery cooling assistance.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line, and the opened on-off valve is shown in white and closed. The on-off valve is shown in black. Further, the flow path through which the cooling heat medium and the external heat medium pass is indicated by a thick broken line.
Here, the operation when there is a heating request at the time of quick charging and the temperature Tw of the cooling heat medium on the outlet side of the battery 43 is equal to or lower than the outside air temperature Ta will be described. At the time of rapid charging, an external heat medium cooled by the external cooling device 47 is supplied. When the heating operation is performed by the refrigeration cycle circuit 12, the outdoor expansion valve 23 is slightly opened, the on-off valve 32 is opened, the on-off valve 35 is opened, the indoor expansion valve 25 is closed, and the expansion valve 55 is slightly opened. The compressor 21 is driven in the open state. Further, the pump 42 is driven in a state where the radiator 46 is bypassed by the three-way valve 49.
 これにより、まず外部熱媒体は、外部冷却装置47、及び熱交換器44における外部熱媒体流路44Bを順に経由して循環する。この循環経路において、外部熱媒体は、外部冷却装置47で放熱することで冷却され、熱交換器44における外部熱媒体流路44Bで吸熱することで高温となる。
 また、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、開閉弁32、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。また、放熱器22を通過した空調用熱媒体の一部は、分岐点34から分流され、開閉弁35、分岐点37、分岐点56、膨張弁55、及び熱交換器45における空調用熱媒体流路45Bを経由して分岐点57に合流する。これらの循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、放熱器22で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室外膨張弁23で膨張され低圧となり、室外熱交換器24で吸熱することで蒸発気化し、高温になる。また、液相の空調用熱媒体の一部は、膨張弁55で膨張され低圧となり、熱交換器45で吸熱することで蒸発気化し、高温となる。
As a result, the external heat medium first circulates through the external cooling device 47 and the external heat medium flow path 44B in the heat exchanger 44 in order. In this circulation path, the external heat medium is cooled by dissipating heat in the external cooling device 47, and becomes high temperature by absorbing heat in the external heat medium flow path 44B in the heat exchanger 44.
The heat medium for air conditioning includes a compressor 21, a radiator 22, a branch point 34, an outdoor expansion valve 23, an outdoor heat exchanger 24, a branch point 36, an on-off valve 32, a branch point 39, a check valve 33, and a branch point. It circulates through 57 and the accumulator 27 in order. A part of the heat medium for air conditioning that has passed through the radiator 22 is split from the branch point 34, and the heat medium for air conditioning in the on-off valve 35, the branch point 37, the branch point 56, the expansion valve 55, and the heat exchanger 45. It joins the branch point 57 via the flow path 45B. In these circulation paths, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the radiator 22 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the outdoor expansion valve 23 to a low pressure, and by absorbing heat by the outdoor heat exchanger 24, it evaporates and vaporizes to a high temperature. Further, a part of the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat by the heat exchanger 45, it evaporates and vaporizes to a high temperature.
 また、冷却用熱媒体は、ポンプ42、バッテリ43、分岐点48、三方弁49、熱交換器44における冷却用熱媒体流路44A、及び熱交換器45における冷却用熱媒体流路45Aを順に経由して循環する。この循環経路において、冷却用熱媒体は、バッテリ43で吸熱することで高温となり、熱交換器44における冷却用熱媒体流路44Aで放熱することで低温となり、さらに熱交換器45における冷却用熱媒体流路45Aで放熱することでより低温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路17を閉じ気味にしつつ、放熱器22を通過する割合を調整する。これにより、導入された空気が放熱器22で加温され、温かい空気が車室内に供給される。また、ヒータ18を駆動すると、さらに加温される。
The cooling heat medium includes the pump 42, the battery 43, the branch point 48, the three-way valve 49, the cooling heat medium flow path 44A in the heat exchanger 44, and the cooling heat medium flow path 45A in the heat exchanger 45 in this order. It circulates via. In this circulation path, the cooling heat medium becomes high temperature by absorbing heat in the battery 43, radiates heat in the cooling heat medium flow path 44A in the heat exchanger 44, and becomes low temperature, and further cools heat in the heat exchanger 45. By radiating heat in the medium flow path 45A, the temperature becomes lower.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the radiator 22. As a result, the introduced air is heated by the radiator 22, and warm air is supplied to the vehicle interior. Further, when the heater 18 is driven, it is further heated.
 [バッテリ冷却補助]
 図12は、バッテリ冷却補助を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。また、冷却用熱媒体、及び外部熱媒体が通過する流路を太い破線で示す。
 ここでは、急速充電時に、車室内に乗員がおらず、且つバッテリ43における出口側の冷却用熱媒体の温度Twが外気温度Ta以下であるときの運転について説明する。急速充電時は、外部冷却装置47から冷却された外部熱媒体が供給されている。冷凍サイクル回路12によって、バッテリ43の冷却補助を行なう場合、室外膨張弁23を全開放し、開閉弁32を閉鎖し、開閉弁35を閉鎖し、室内膨張弁25を閉鎖し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。また、三方弁49によってラジエータ46を迂回させた状態で、ポンプ42を駆動する。
[Battery cooling assistance]
FIG. 12 is a diagram showing battery cooling assistance.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line, and the opened on-off valve is shown in white and closed. The on-off valve is shown in black. Further, the flow path through which the cooling heat medium and the external heat medium pass is indicated by a thick broken line.
Here, the operation when there is no occupant in the vehicle interior and the temperature Tw of the cooling heat medium on the outlet side of the battery 43 is equal to or lower than the outside air temperature Ta during quick charging will be described. At the time of rapid charging, an external heat medium cooled by the external cooling device 47 is supplied. When the battery 43 is assisted in cooling by the refrigeration cycle circuit 12, the outdoor expansion valve 23 is fully opened, the on-off valve 32 is closed, the on-off valve 35 is closed, the indoor expansion valve 25 is closed, and the expansion valve 55 is opened. The compressor 21 is driven in a slightly open state. Further, the pump 42 is driven in a state where the radiator 46 is bypassed by the three-way valve 49.
 これにより、まず外部熱媒体は、外部冷却装置47、及び熱交換器44における外部熱媒体流路44Bを順に経由して循環する。この循環経路において、外部熱媒体は、外部冷却装置47で放熱することで冷却され、熱交換器44における外部熱媒体流路44Bで吸熱することで高温となる。
 また、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、逆止弁38、分岐点37、分岐点56、膨張弁55、熱交換器45における空調用熱媒体流路45B、分岐点57、及びアキュムレータ27を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、膨張弁55で膨張され低圧となり、熱交換器45で吸熱することで蒸発気化し、高温となる。
As a result, the external heat medium first circulates through the external cooling device 47 and the external heat medium flow path 44B in the heat exchanger 44 in order. In this circulation path, the external heat medium is cooled by dissipating heat in the external cooling device 47, and becomes high temperature by absorbing heat in the external heat medium flow path 44B in the heat exchanger 44.
The heat medium for air conditioning includes a compressor 21, a radiator 22, a branch point 34, an outdoor expansion valve 23, an outdoor heat exchanger 24, a branch point 36, a check valve 38, a branch point 37, a branch point 56, and an expansion valve. 55, the heat exchanger 45 circulates through the air-conditioning heat medium flow path 45B, the branch point 57, and the accumulator 27 in this order. In this circulation path, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat by the heat exchanger 45, it evaporates and vaporizes to a high temperature.
 また、冷却用熱媒体は、ポンプ42、バッテリ43、分岐点48、三方弁49、熱交換器44における冷却用熱媒体流路44A、及び熱交換器45における冷却用熱媒体流路45Aを順に経由して循環する。この循環経路において、冷却用熱媒体は、バッテリ43で吸熱することで高温となり、熱交換器44における冷却用熱媒体流路44Aで放熱することで低温となり、さらに熱交換器45における冷却用熱媒体流路45Aで放熱することでより低温となる。
 一方、HVACユニット13では、送風ファン14を停止すると共に、エアミックスダンパ15で放熱器22を通過する流路を閉鎖する。これにより、空調が停止される。
The cooling heat medium includes the pump 42, the battery 43, the branch point 48, the three-way valve 49, the cooling heat medium flow path 44A in the heat exchanger 44, and the cooling heat medium flow path 45A in the heat exchanger 45 in this order. It circulates via. In this circulation path, the cooling heat medium becomes high temperature by absorbing heat in the battery 43, radiates heat in the cooling heat medium flow path 44A in the heat exchanger 44, and becomes low temperature, and further cools heat in the heat exchanger 45. By radiating heat in the medium flow path 45A, the temperature becomes lower.
On the other hand, in the HVAC unit 13, the blower fan 14 is stopped, and the air mix damper 15 closes the flow path passing through the radiator 22. As a result, the air conditioning is stopped.
 [冷房運転+バッテリ冷却補助(ラジエータ追加)]
 図13は、冷房運転+バッテリ冷却補助(ラジエータ追加)を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。また、冷却用熱媒体、及び外部熱媒体が通過する流路を太い破線で示す。
 ここでは、急速充電時に、冷房要求があり、冷凍サイクル回路12の冷力に余力があり、且つバッテリ43における出口側の冷却用熱媒体の温度Twが外気温度Taを超えているときの運転について説明する。急速充電時は、外部冷却装置47から冷却された外部熱媒体が供給されている。冷凍サイクル回路12によって、冷房運転、及びバッテリ43の冷却を行なう場合、室外膨張弁23を全開放し、開閉弁32を閉鎖し、開閉弁35を閉鎖し、室内膨張弁25を僅かに開放し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。また、三方弁49によってラジエータ46を通過させた状態で、ポンプ42を駆動する。
[Cooling operation + battery cooling assistance (additional radiator)]
FIG. 13 is a diagram showing cooling operation + battery cooling assistance (addition of radiator).
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line, and the opened on-off valve is shown in white and closed. The on-off valve is shown in black. Further, the flow path through which the cooling heat medium and the external heat medium pass is indicated by a thick broken line.
Here, regarding the operation when there is a cooling request at the time of quick charging, the cooling power of the refrigerating cycle circuit 12 is sufficient, and the temperature Tw of the cooling heat medium on the outlet side of the battery 43 exceeds the outside air temperature Ta. explain. At the time of rapid charging, an external heat medium cooled by the external cooling device 47 is supplied. When the cooling operation and the cooling of the battery 43 are performed by the refrigeration cycle circuit 12, the outdoor expansion valve 23 is fully opened, the on-off valve 32 is closed, the on-off valve 35 is closed, and the indoor expansion valve 25 is slightly opened. , The compressor 21 is driven with the expansion valve 55 slightly opened. Further, the pump 42 is driven in a state where the radiator 46 is passed by the three-way valve 49.
 これにより、まず外部熱媒体は、外部冷却装置47、及び熱交換器44における外部熱媒体流路44Bを順に経由して循環する。この循環経路において、外部熱媒体は、外部冷却装置47で放熱することで冷却され、熱交換器44における外部熱媒体流路44Bで吸熱することで高温となる。
 また、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、逆止弁38、分岐点37、分岐点56、室内膨張弁25、吸熱器26、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。また、分岐点37を通過した空調用熱媒体の一部は、分岐点56から分流され、膨張弁55、及び熱交換器45における空調用熱媒体流路45Bを経由して分岐点57に合流する。これらの循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。また、液相の空調用熱媒体の一部は、膨張弁55で膨張され低圧となり、熱交換器45で吸熱することで蒸発気化し、高温となる。
As a result, the external heat medium first circulates through the external cooling device 47 and the external heat medium flow path 44B in the heat exchanger 44 in order. In this circulation path, the external heat medium is cooled by dissipating heat in the external cooling device 47, and becomes high temperature by absorbing heat in the external heat medium flow path 44B in the heat exchanger 44.
The heat medium for air conditioning includes a compressor 21, a radiator 22, a branch point 34, an outdoor expansion valve 23, an outdoor heat exchanger 24, a branch point 36, a check valve 38, a branch point 37, a branch point 56, and indoor expansion. It circulates through the valve 25, the heat exchanger 26, the branch point 39, the check valve 33, the branch point 57, and the accumulator 27 in this order. A part of the heat medium for air conditioning that has passed through the branch point 37 is split from the branch point 56 and merges with the branch point 57 via the expansion valve 55 and the heat medium flow path 45B for air conditioning in the heat exchanger 45. do. In these circulation paths, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature. Further, a part of the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat by the heat exchanger 45, it evaporates and vaporizes to a high temperature.
 また、冷却用熱媒体は、ポンプ42、バッテリ43、分岐点48、ラジエータ46、三方弁49、熱交換器44における冷却用熱媒体流路44A、及び熱交換器45における冷却用熱媒体流路45Aを順に経由して循環する。この循環経路において、冷却用熱媒体は、バッテリ43で吸熱することで高温となり、ラジエータ46で放熱することで低温となり、熱交換器44における冷却用熱媒体流路44Aで放熱することで低温となり、さらに熱交換器45における冷却用熱媒体流路45Aで放熱することでより低温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、放熱器22を迂回する割合を調整する。これにより、導入された空気が吸熱器26で冷却され、涼しい空気が車室内に供給される。
The cooling heat medium includes the pump 42, the battery 43, the branch point 48, the radiator 46, the three-way valve 49, the cooling heat medium flow path 44A in the heat exchanger 44, and the cooling heat medium flow path in the heat exchanger 45. It circulates through 45A in order. In this circulation path, the cooling heat medium becomes high temperature by absorbing heat in the battery 43, becomes low temperature by radiating heat in the radiator 46, and becomes low temperature by radiating heat in the cooling heat medium flow path 44A in the heat exchanger 44. Further, heat is dissipated in the cooling heat medium flow path 45A in the heat exchanger 45, so that the temperature becomes lower.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the radiator 22. As a result, the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
 上記より、冷却回路41が「冷却回路」に対応し、冷凍サイクル回路12が「冷凍サイクル回路」に対応し、バッテリ43が「バッテリ」に対応し、熱交換器44が「第一の熱交換器」に対応し、熱交換器45が「第二の熱交換器」に対応する。また、ステップS106の処理が「判定部」に対応し、ステップS107、S108の処理、及びステップS122~S124の処理が「回路切替制御部」に対応する。また、乗員センサ62が「乗員検出部」に対応する。 From the above, the cooling circuit 41 corresponds to the "cooling circuit", the refrigeration cycle circuit 12 corresponds to the "refrigeration cycle circuit", the battery 43 corresponds to the "battery", and the heat exchanger 44 corresponds to the "first heat exchange". The heat exchanger 45 corresponds to the "second heat exchanger". Further, the processing of step S106 corresponds to the "determination unit", the processing of steps S107 and S108, and the processing of steps S122 to S124 correspond to the "circuit switching control unit". Further, the occupant sensor 62 corresponds to the "occupant detection unit".
 《作用》
 次に、一実施形態の主要な作用効果について説明する。
 短時間に多くの電流が流れる急速充電中は、外部冷却装置47から供給される外部熱媒体によってバッテリ43の冷却を行なう(ステップS102)。これにより、バッテリ43の温度上昇を抑制することができる。また、冷凍サイクル回路12も利用してバッテリ43の冷却補助を行なえば、さらに冷却効果が向上する。しかしながら、冷凍サイクル回路12を利用すると、冷凍サイクル回路12の冷力がバッテリ43の冷却補助によって消費される。したがって、乗員が冷房運転を求めているようなときには、車室内の冷房能力が不足し、快適性が低下する可能性がある。
《Action》
Next, the main effects of one embodiment will be described.
During rapid charging in which a large amount of current flows in a short time, the battery 43 is cooled by an external heat medium supplied from the external cooling device 47 (step S102). As a result, the temperature rise of the battery 43 can be suppressed. Further, if the refrigeration cycle circuit 12 is also used to assist the cooling of the battery 43, the cooling effect is further improved. However, when the refrigeration cycle circuit 12 is used, the cooling power of the refrigeration cycle circuit 12 is consumed by the cooling assistance of the battery 43. Therefore, when the occupant wants the cooling operation, the cooling capacity in the vehicle interior may be insufficient and the comfort may be reduced.
 そこで、バッテリ43を外部電源から充電しているときに(ステップS101の判定が“Yes”)、冷房運転が要求された場合(ステップS105の判定が“Yes”)、冷凍サイクル回路12の冷力に余力があるか否かを判定する(ステップS106)。そして、冷凍サイクル回路12の冷力に余力があると判定されたときには(ステップS106の判定が“Yes”)、冷凍サイクル回路12によって冷房運転を行なうと共に、熱交換器45によってバッテリ43の冷却補助を行なう(ステップS107)。このように、外部冷却装置47、及び冷凍サイクル回路12の双方の冷力によってバッテリ43の冷却を行なうことで、冷却効果が向上する。 Therefore, when the battery 43 is being charged from an external power source (the determination in step S101 is “Yes”) and the cooling operation is requested (the determination in step S105 is “Yes”), the cooling force of the refrigeration cycle circuit 12 It is determined whether or not there is spare capacity in the battery (step S106). Then, when it is determined that the refrigerating cycle circuit 12 has a surplus cooling power (the determination in step S106 is “Yes”), the refrigerating cycle circuit 12 performs the cooling operation, and the heat exchanger 45 assists the cooling of the battery 43. (Step S107). In this way, the cooling effect is improved by cooling the battery 43 by the cooling power of both the external cooling device 47 and the refrigeration cycle circuit 12.
 一方、冷凍サイクル回路12の冷力に余力がないと判定されたときには(ステップS106の判定が“No”)、冷凍サイクル回路12によってバッテリ43の冷却補助は行なわず、冷房運転だけを行なう(ステップS108)。このときは、外部冷却装置47の冷力だけでバッテリ43の冷却を行なうことで、最低限の冷却効果を確保することができる。
 このように、冷凍サイクル回路12の冷力に余力があるときだけ、冷凍サイクル回路12で冷却された空調用熱媒体によってバッテリ43の冷却補助を行なう。したがって、車室内の快適性を犠牲にすることなく、バッテリ43の冷却と車室内の冷房のバランスを最適化することができる。
On the other hand, when it is determined that the refrigerating cycle circuit 12 has no surplus cooling power (the determination in step S106 is “No”), the refrigerating cycle circuit 12 does not assist the cooling of the battery 43, but only performs the cooling operation (step). S108). At this time, the minimum cooling effect can be ensured by cooling the battery 43 only by the cooling power of the external cooling device 47.
In this way, the cooling of the battery 43 is assisted by the heat medium for air conditioning cooled by the refrigerating cycle circuit 12 only when the cooling power of the refrigerating cycle circuit 12 has a surplus. Therefore, the balance between the cooling of the battery 43 and the cooling of the vehicle interior can be optimized without sacrificing the comfort of the vehicle interior.
 また、車室内に乗員がいることを検出し(ステップS103の判定が“Yes”)、且つ冷房運転が要求されたときに(ステップS105の判定が“Yes”)、冷凍サイクル回路12の冷力に余力があるか否かを判定する。このように、乗員がいることをAND条件で追加しているので、冷房運転が必要であることの確度が上がり、車両用空気調和装置11の信頼性が向上する。
 また、吸熱器26の目標温度Te、吸熱器26の表面温度Te、及び圧縮機21の回転数Ncに基づいて、冷凍サイクル回路12の冷力に余力があるか否かを判定する。このように、圧縮機21を制御する際に必要とされる一般的な引数(又はパラメータ)を用いているため、余力の有無を容易に判定することができる。
Further, when it is detected that there is an occupant in the vehicle interior (the determination in step S103 is “Yes”) and the cooling operation is requested (the determination in step S105 is “Yes”), the cooling force of the refrigeration cycle circuit 12 Determine if there is spare capacity. In this way, since the presence of the occupant is added under the AND condition, the accuracy that the cooling operation is required is increased, and the reliability of the vehicle air conditioner 11 is improved.
Further, based on the target temperature Te * of the endothermic device 26, the surface temperature Te of the endothermic device 26, and the rotation speed Nc of the compressor 21, it is determined whether or not the refrigerating cycle circuit 12 has a surplus cooling power. As described above, since the general arguments (or parameters) required for controlling the compressor 21 are used, it is possible to easily determine the presence or absence of the surplus power.
 また、余力があると判定されたときに、冷凍サイクル回路12における吸熱器26の目標温度Teを増加補正する。これにより、冷房によって消費される冷力を低減することができる。したがって、相対的にバッテリ43の冷却に消費できる冷力が増加し、冷却能力を向上させることができる。
 また、冷房は外気温度Taが高いときに利用されるため、ラジエータ46よりも熱交換器45の方が冷却用熱媒体に対する冷却能力が高い。そこで、冷却回路41では、バッテリ43よりも下流側、且つ熱交換器45よりも上流側にラジエータ46を設けている。すなわち、まずラジエータ46によって冷却用熱媒体を冷却し、それから熱交換器45によって冷却用熱媒体を冷却する。これにより、ラジエータ46による冷却効果を高めることができる。
Further, when it is determined that there is a surplus capacity, the target temperature Te * of the heat absorber 26 in the refrigeration cycle circuit 12 is increased and corrected. Thereby, the cooling power consumed by the cooling can be reduced. Therefore, the cooling power that can be consumed for cooling the battery 43 is relatively increased, and the cooling capacity can be improved.
Further, since cooling is used when the outside air temperature Ta is high, the heat exchanger 45 has a higher cooling capacity for the cooling heat medium than the radiator 46. Therefore, in the cooling circuit 41, the radiator 46 is provided on the downstream side of the battery 43 and on the upstream side of the heat exchanger 45. That is, first, the radiator 46 cools the cooling heat medium, and then the heat exchanger 45 cools the cooling heat medium. As a result, the cooling effect of the radiator 46 can be enhanced.
 さらに、冷却用熱媒体の温度Twが外気温度Ta以下であるときには(ステップS122の判定が“Yes”)、冷却用熱媒体にラジエータ46を迂回させる(ステップS123)。これにより、外気から吸熱して冷却用熱媒体の温度Twが上昇することを防げる。一方、冷却用熱媒体の温度Twが外気温度Taを超えているときには(ステップS122の判定が“No”)、冷却用熱媒体にラジエータ46を通過させる(ステップS124)。これにより、外気への放熱によって冷却用熱媒体の温度Twを確実に低下させることができる。 Further, when the temperature Tw of the cooling heat medium is equal to or lower than the outside air temperature Ta (the determination in step S122 is “Yes”), the cooling heat medium bypasses the radiator 46 (step S123). This prevents the temperature Tw of the cooling heat medium from rising due to endothermic heat from the outside air. On the other hand, when the temperature Tw of the cooling heat medium exceeds the outside air temperature Ta (the determination in step S122 is “No”), the radiator 46 is passed through the cooling heat medium (step S124). As a result, the temperature Tw of the cooling heat medium can be reliably lowered by dissipating heat to the outside air.
 《変形例》
 本実施形態では、冷却回路41において、冷却用熱媒体にラジエータ46を通過させるか又は迂回させるかを三方弁49で切り替えているが、これに限定されるものではない。例えば、ラジエータ46を通過する流路、及びラジエータ46を迂回する流路に、夫々、開閉可能な二方弁を設け、一方を開くときに他方を閉じ、一方を閉じるときに他方を開くようにしてもよい。
 本実施形態では、冷房時に室外膨張弁23を全開にする構成について説明したが、これに限定されるものではない。例えば、室外膨張弁23を迂回するバイパス流路を設け、このバイパス流路を開閉可能に構成してもよい。これにより、冷房時に室外膨張弁23を閉鎖し、バイパス流路を開放すれば、圧力損失を低減することができる。
<< Modification example >>
In the present embodiment, in the cooling circuit 41, whether the radiator 46 is passed through or bypassed by the cooling heat medium is switched by the three-way valve 49, but the present invention is not limited to this. For example, a two-way valve that can be opened and closed is provided in each of the flow path passing through the radiator 46 and the flow path bypassing the radiator 46 so that the other is closed when one is opened and the other is opened when one is closed. You may.
In the present embodiment, the configuration in which the outdoor expansion valve 23 is fully opened during cooling has been described, but the present invention is not limited to this. For example, a bypass flow path that bypasses the outdoor expansion valve 23 may be provided so that the bypass flow path can be opened and closed. As a result, the pressure loss can be reduced by closing the outdoor expansion valve 23 and opening the bypass flow path during cooling.
 以上、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。 Although the above description has been made with reference to a limited number of embodiments, the scope of rights is not limited to them, and modifications of the embodiments based on the above disclosure are obvious to those skilled in the art.
 11…車両用空気調和装置、12…冷凍サイクル回路、13…HVACユニット、14…送風ファン、15…エアミックスダンパ、16…流路、17…流路、18…ヒータ、21…圧縮機、22…放熱器、23…室外膨張弁、24…室外熱交換器、25…室内膨張弁、26…吸熱器、27…アキュムレータ、28…送風機、31a…配管、31b…配管、31c…配管、31d…配管、31e…配管、31f…配管、31g…配管、31h…配管、32…開閉弁、33…逆止弁、34…分岐点、35…開閉弁、36…分岐点、37…分岐点、38…逆止弁、39…分岐点、41…冷却回路、42…ポンプ、43…バッテリ、44…熱交換器、44A…冷却用熱媒体流路、44B…外部熱媒体流路、45…熱交換器、45A…冷却用熱媒体流路、45B…空調用熱媒体流路、46…ラジエータ、47…外部冷却装置、48…分岐点、49…三方弁、51a…配管、51b…配管、51c…配管、55…膨張弁、56…分岐点、57…分岐点、61…コントローラ、62…乗員センサ、63…外気温センサ、64…エバポレータ温度センサ、65…コンプレッサ回転センサ、66…水温センサ 11 ... Vehicle air conditioner, 12 ... Refrigeration cycle circuit, 13 ... HVAC unit, 14 ... Blower fan, 15 ... Air mix damper, 16 ... Flow path, 17 ... Flow path, 18 ... Heater, 21 ... Compressor, 22 ... radiator, 23 ... outdoor expansion valve, 24 ... outdoor heat exchanger, 25 ... indoor expansion valve, 26 ... heat absorber, 27 ... accumulator, 28 ... blower, 31a ... piping, 31b ... piping, 31c ... piping, 31d ... Piping, 31e ... Piping, 31f ... Piping, 31g ... Piping, 31h ... Piping, 32 ... On / off valve, 33 ... Check valve, 34 ... Branch point, 35 ... On / off valve, 36 ... Branch point, 37 ... Branch point, 38 ... Check valve, 39 ... Branch point, 41 ... Cooling circuit, 42 ... Pump, 43 ... Battery, 44 ... Heat exchanger, 44A ... Cooling heat medium flow path, 44B ... External heat medium flow path, 45 ... Heat exchange Vessel, 45A ... Cooling heat medium flow path, 45B ... Air conditioning heat medium flow path, 46 ... Radiator, 47 ... External cooling device, 48 ... Branch point, 49 ... Three-way valve, 51a ... Piping, 51b ... Piping, 51c ... Piping, 55 ... expansion valve, 56 ... branch point, 57 ... branch point, 61 ... controller, 62 ... occupant sensor, 63 ... outside temperature sensor, 64 ... evaporator temperature sensor, 65 ... compressor rotation sensor, 66 ... water temperature sensor

Claims (6)

  1.  電動モータに給電するバッテリを搭載した車両において、
     冷却用熱媒体を循環させる冷却回路と、
     車室内の空調を行うために空調用熱媒体を循環させる冷凍サイクル回路と、を備えた車両用空気調和装置であって、
     前記冷却回路は、
     冷却を必要とする前記バッテリと、
     前記バッテリを外部電源から充電しているときに、外部冷却装置から供給される外部熱媒体と前記冷却回路の冷却用熱媒体との間で熱交換を行なうことで、前記バッテリを冷却する第一の熱交換器と、
     前記冷凍サイクル回路で冷却された少なくとも一部の前記空調用熱媒体と前記冷却回路の前記冷却用熱媒体との間で熱交換を行なうことで、前記バッテリを冷却する第二の熱交換器と、を備え、
     前記バッテリを外部電源から充電しているときに、冷房運転が要求された場合、前記冷凍サイクル回路の冷力に余力があるか否かを判定する判定部と、
     前記判定部の判定結果に応じて回路を切り替える回路切替制御部と、を備え、
     前記回路切替制御部は、
     前記判定部で余力があると判定されたときに、前記冷凍サイクル回路によって冷房運転を行ない、且つ前記第一の熱交換器及び前記第二の熱交換器によって前記バッテリの冷却を行ない、
     前記判定部で余力がないと判定されたときには、前記冷凍サイクル回路によって冷房運転を行ない、且つ前記第一の熱交換器によって前記バッテリの冷却を行なうことを特徴とする車両用空気調和装置。
    In a vehicle equipped with a battery that supplies power to an electric motor
    A cooling circuit that circulates a cooling heat medium and
    An air conditioner for vehicles equipped with a refrigeration cycle circuit that circulates a heat medium for air conditioning to air-condition the interior of the vehicle.
    The cooling circuit
    The battery that needs cooling and
    When the battery is being charged from an external power source, the first is to cool the battery by exchanging heat between the external heat medium supplied from the external cooling device and the cooling heat medium of the cooling circuit. Heat exchanger and
    A second heat exchanger that cools the battery by exchanging heat between at least a part of the heat medium for air conditioning cooled by the refrigeration cycle circuit and the heat medium for cooling of the cooling circuit. , Equipped with
    When cooling operation is required while the battery is being charged from an external power source, a determination unit for determining whether or not the cooling power of the refrigeration cycle circuit has surplus power, and a determination unit.
    A circuit switching control unit that switches circuits according to the determination result of the determination unit is provided.
    The circuit switching control unit
    When the determination unit determines that there is spare capacity, the refrigeration cycle circuit performs cooling operation, and the first heat exchanger and the second heat exchanger cool the battery.
    An air conditioner for a vehicle, characterized in that, when the determination unit determines that there is no spare capacity, the refrigeration cycle circuit performs a cooling operation and the first heat exchanger cools the battery.
  2.  車室内に乗員がいるか否かを検出する乗員検出部を備え、
     前記判定部は、
     前記乗員検出部で乗員がいることを検出し、且つ冷房運転が要求された場合、前記冷凍サイクル回路の冷力に余力があるか否かを判定することを特徴とする請求項1に記載の車両用空気調和装置。
    Equipped with an occupant detection unit that detects whether or not there are occupants in the passenger compartment
    The determination unit
    The first aspect of claim 1, wherein when the occupant detection unit detects the presence of an occupant and a cooling operation is required, it is determined whether or not there is a surplus cooling force in the refrigeration cycle circuit. Air conditioner for vehicles.
  3.  前記判定部は、
     前記冷凍サイクル回路における蒸発器の目標温度、前記蒸発器の温度、及び前記冷凍サイクル回路における圧縮機の回転数に基づいて、前記冷凍サイクル回路の冷力に余力があるか否かを判定することを特徴とする請求項1又は2に記載の車両用空気調和装置。
    The determination unit
    It is determined whether or not the cooling power of the refrigerating cycle circuit has a surplus based on the target temperature of the evaporator in the refrigerating cycle circuit, the temperature of the evaporator, and the rotation speed of the compressor in the refrigerating cycle circuit. The vehicle air conditioner according to claim 1 or 2.
  4.  前記回路切替制御部は、
     前記判定部で余力があると判定されたときに、前記冷凍サイクル回路における吸熱器の目標温度を増加補正することを特徴とする請求項1~3の何れか一項に記載の車両用空気調和装置。
    The circuit switching control unit
    The vehicle air conditioning according to any one of claims 1 to 3, wherein when the determination unit determines that there is a surplus capacity, the target temperature of the endothermic heater in the refrigeration cycle circuit is increased and corrected. Device.
  5.  前記冷却回路は、
     前記バッテリよりも下流側、且つ前記第二の熱交換器よりも上流側に設けられ、外気と前記冷却回路の前記冷却用熱媒体との間で熱交換を行なうことで、前記バッテリを冷却するラジエータを備えることを特徴とする請求項1~4の何れか一項に記載の車両用空気調和装置。
    The cooling circuit
    The battery is cooled by exchanging heat between the outside air and the cooling heat medium of the cooling circuit, which is provided on the downstream side of the battery and on the upstream side of the second heat exchanger. The vehicle air conditioner according to any one of claims 1 to 4, further comprising a radiator.
  6.  前記冷却回路は、
     前記ラジエータをバイパスするバイパス流路を備え、
     前記回路切替制御部は、
     前記バッテリを通過した前記冷却用熱媒体の温度が外気温度以下のときには、前記冷却用熱媒体に前記バイパス流路を通過させ、前記バッテリを通過した前記冷却用熱媒体の温度が外気温度よりも高いときには、前記冷却用熱媒体に前記ラジエータを通過させることを特徴とする請求項5に記載の車両用空気調和装置。
    The cooling circuit
    A bypass flow path that bypasses the radiator is provided.
    The circuit switching control unit
    When the temperature of the cooling heat medium that has passed through the battery is equal to or lower than the outside air temperature, the cooling heat medium is passed through the bypass flow path, and the temperature of the cooling heat medium that has passed through the battery is higher than the outside air temperature. The vehicle air conditioner according to claim 5, wherein when the temperature is high, the radiator is passed through the cooling heat medium.
PCT/JP2021/006336 2020-03-18 2021-02-19 Vehicle air conditioner WO2021187005A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180021258.8A CN115551728A (en) 2020-03-18 2021-02-19 Air conditioner for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-048169 2020-03-18
JP2020048169A JP7425636B2 (en) 2020-03-18 2020-03-18 Vehicle air conditioner

Publications (1)

Publication Number Publication Date
WO2021187005A1 true WO2021187005A1 (en) 2021-09-23

Family

ID=77770847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006336 WO2021187005A1 (en) 2020-03-18 2021-02-19 Vehicle air conditioner

Country Status (3)

Country Link
JP (1) JP7425636B2 (en)
CN (1) CN115551728A (en)
WO (1) WO2021187005A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114801643A (en) * 2022-03-10 2022-07-29 浙江银轮机械股份有限公司 Whole car thermal management system of new energy automobile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126226A (en) * 2012-12-25 2014-07-07 Denso Corp Refrigeration cycle device
JP2016082651A (en) * 2014-10-14 2016-05-16 トヨタ自動車株式会社 Electric vehicle
JP2020039226A (en) * 2018-09-05 2020-03-12 本田技研工業株式会社 Cooling control system for battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126226A (en) * 2012-12-25 2014-07-07 Denso Corp Refrigeration cycle device
JP2016082651A (en) * 2014-10-14 2016-05-16 トヨタ自動車株式会社 Electric vehicle
JP2020039226A (en) * 2018-09-05 2020-03-12 本田技研工業株式会社 Cooling control system for battery

Also Published As

Publication number Publication date
CN115551728A (en) 2022-12-30
JP7425636B2 (en) 2024-01-31
JP2021146860A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
JP7095848B2 (en) Vehicle air conditioner
JP6997558B2 (en) Vehicle air conditioner
US20220009309A1 (en) Refrigeration cycle device
JP7147279B2 (en) Vehicle refrigeration cycle equipment
CN108430813B (en) Air conditioner for vehicle
WO2020031568A1 (en) Vehicle air conditioning device
WO2020066719A1 (en) Vehicle air conditioner
JP7300264B2 (en) Vehicle air conditioner
JP7275621B2 (en) refrigeration cycle equipment
JP2014160594A (en) Cooling system
WO2018198582A1 (en) Vehicular air conditioner
CN114144320A (en) Temperature adjusting device for vehicle equipped with heating equipment and vehicle air conditioning device comprising same
WO2021177057A1 (en) Vehicle air conditioner
JP7280770B2 (en) Vehicle air conditioner
US20240059125A1 (en) Air conditioner for vehicle
WO2021192762A1 (en) Vehicle air conditioning device
WO2021187005A1 (en) Vehicle air conditioner
JP2022051623A (en) Refrigeration cycle device
JP7164986B2 (en) Vehicle air conditioner
JP7431637B2 (en) Vehicle air conditioner
JP7387520B2 (en) Vehicle air conditioner
WO2021192760A1 (en) Vehicle air conditioner
JP2019104443A (en) Vehicle air conditioner
JP7233953B2 (en) Vehicle air conditioner
WO2020045030A1 (en) Combination valve and vehicle air conditioner using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771056

Country of ref document: EP

Kind code of ref document: A1