WO2021192762A1 - Vehicle air conditioning device - Google Patents

Vehicle air conditioning device Download PDF

Info

Publication number
WO2021192762A1
WO2021192762A1 PCT/JP2021/006340 JP2021006340W WO2021192762A1 WO 2021192762 A1 WO2021192762 A1 WO 2021192762A1 JP 2021006340 W JP2021006340 W JP 2021006340W WO 2021192762 A1 WO2021192762 A1 WO 2021192762A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
heat medium
cold storage
storage device
cooling
Prior art date
Application number
PCT/JP2021/006340
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 石関
大典 荒木
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN202180020905.3A priority Critical patent/CN115552187A/en
Publication of WO2021192762A1 publication Critical patent/WO2021192762A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to an air conditioner for vehicles.
  • Patent Document 1 some electric vehicles and plug-in hybrid vehicles use a refrigeration cycle for air conditioning to cool the battery when the vehicle battery is rapidly charged.
  • An object of the present invention is to realize comfort in a vehicle interior without sacrificing battery cooling.
  • the vehicle air conditioner uses a cooling circuit for circulating a cooling heat medium and an air conditioning heat medium for air conditioning in the vehicle interior in a vehicle equipped with a battery that supplies power to an electric motor.
  • a vehicle air conditioner equipped with a circulating refrigeration cycle circuit wherein the cooling circuit is between a battery that requires cooling, a cold storage material capable of storing cold, and a heat medium for air conditioning of the refrigeration cycle circuit. It is equipped with a first heat exchanger that exchanges heat, and is equipped with a circuit switching control unit that switches circuits based on the state of battery charging, and the circuit switching control unit is before the reserved battery charge is executed.
  • the cold storage material is stored in the cold storage material by the cooling heat medium cooled by the first heat exchanger and the reserved battery is being charged, the battery is stored by the cooling heat medium cooled by the cold storage material. To cool.
  • cold is stored in a cold storage device in advance, and the battery being charged is cooled by this cold storage device. Therefore, even if there is a request for cooling operation, the cooling of the battery is not sacrificed in the vehicle interior. Comfort can be achieved.
  • FIG. 1 is a diagram showing an air conditioner for a vehicle.
  • the vehicle is a vehicle such as an electric vehicle or a plug-in hybrid vehicle that can charge the battery 45 by charging from an external power source and drives an electric motor by the electric power charged in the battery 45 to travel.
  • the vehicle air conditioner 11 is mounted on the vehicle and is driven by the electric power of the battery 45.
  • the vehicle air conditioner 11 includes a refrigeration cycle circuit 12 and an HVAC unit 13, and selectively performs heating operation, dehumidifying and heating operation, cooling operation, and dehumidifying and cooling operation by heat exchange using a heat medium for air conditioning. To air-condition the passenger compartment.
  • the refrigeration cycle circuit 12 includes a compressor 21, an outdoor expansion valve 23, an outdoor heat exchanger 24, an indoor expansion valve 25, a heat absorber 26, and an accumulator 27.
  • the compressor 21 compresses a low-pressure air-conditioning heat medium, which is a gas phase, to boost the pressure to a high-pressure air-conditioning heat medium that is easily liquefied.
  • a scroll compressor, a swash plate compressor, or the like For example, a scroll compressor, a swash plate compressor, or the like.
  • the drive source of the compressor 21 is, for example, an electric motor.
  • the compressor 21 is a refueling type in which lubrication is performed by oil circulating together with the heat medium for air conditioning, and the oil concentration with respect to the heat medium for air conditioning is about several percent.
  • the outdoor expansion valve 23 atomizes a high-pressure air-conditioning heat medium in a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium that is easily vaporized, and the opening degree can be adjusted from fully closed to fully open. Is.
  • the outdoor heat exchanger 24 is provided inside the front grill of the vehicle body, and exchanges heat between the outside air passing around the heat radiation fins and the heat medium for air conditioning passing through the tube.
  • the outside air is mainly a running wind, but when a sufficient running wind cannot be obtained, the blower 28 is driven to blow the outside air to the heat radiating fins.
  • the outdoor heat exchanger 24 functions as a condenser, that is, a radiator, and is between the outside air passing around the heat radiating fin and the high-temperature air-conditioning heat medium (heat medium) passing through the tube. Heat exchange is performed at. That is, heat is dissipated to the heat medium for air conditioning in the tube to form a condensed liquid.
  • the indoor expansion valve 25 atomizes a high-pressure air-conditioning heat medium in a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium that is easily vaporized, and the opening degree can be adjusted from fully closed to fully open.
  • the heat absorber 26 is provided in the HVAC unit 13 and exchanges heat between the air passing around the heat radiation fins and the low-temperature air-conditioning heat medium (refrigerant) passing through the tube. That is, the heat medium for air conditioning in the tube evaporates and vaporizes by absorbing heat, thereby cooling the air around the heat radiation fins and causing dew condensation on the surface of the heat radiation fins to dehumidify. Gas-liquid separation is performed between the accumulator 27 and the heat medium for air conditioning, and only the heat medium for air conditioning in the gas phase is supplied to the compressor 21.
  • the flow path of the heat medium for air conditioning is shown by a solid line.
  • the outlet of the compressor 21 communicates with the inlet of the outdoor heat exchanger 24 via the pipe 31b, and the pipe 31b is provided with the outdoor expansion valve 23.
  • the outlet of the outdoor heat exchanger 24 communicates with the inlet of the heat absorber 26 via the pipe 31c, and the pipe 31c is provided with the indoor expansion valve 25.
  • the outlet of the heat absorber 26 communicates with the inlet of the compressor 21 via the pipe 31f, and the accumulator 27 is provided in the pipe 31c.
  • the HVAC unit 13 (HVAC: Heating Ventilation and Air Conditioning) is arranged inside the dashboard, and is formed by a duct that introduces outside air and inside air from one end side and supplies air to the vehicle interior from the other end side. There is. Inside the HVAC unit 13, a blower fan 14, a heat absorber 26, and an air mix damper 15 are provided. The blower fan 14 is provided on one end side of the HVAC unit 13, and when driven, sucks outside air or inside air and discharges it to the other end side. The heat absorber 26 is provided on the downstream side of the blower fan 14. All the air blown out from the blower fan 14 passes through the heat absorber 26. Inside the HVAC unit 13, a flow path 16 and a flow path 17 bypassing the flow path 16 are formed on the downstream side of the heat absorber 26. The downstream side of the flow path 16 and the flow path 17 merge.
  • HVAC Heating Ventilation and Air Conditioning
  • the air mix damper 15 can rotate between a position where the flow path 16 is opened to close the flow path 17 and a position where the flow path 16 is closed and the flow path 17 is opened.
  • the air mix damper 15 is in a position where the flow path 16 is opened and the flow path 17 is closed, all the air that has passed through the heat absorber 26 passes through the flow path 16.
  • the air mix damper 15 is in a position where the flow path 16 is closed and the flow path 17 is opened, all the air that has passed through the heat absorber 26 bypasses the flow path 16.
  • the air mix damper 15 is in a position to open both the flow path 16 and the flow path 17, part of the air that has passed through the heat absorber 26 passes through the flow path 16 and the rest bypasses the flow path 16. , The air that has passed through the flow path 16 and the air that has bypassed the flow path 16 are mixed on the downstream side of the HVAC unit 13.
  • the vehicle air conditioner 11 includes a temperature control circuit 41, and controls the temperature of the battery 45 by circulating a heat medium for temperature control. Temperature control means adjusting or adjusting the temperature.
  • the heat medium for temperature control is, for example, water, but other fluids such as a refrigerant and coolant may be used.
  • the temperature control circuit 41 includes a main pump 42, a heater 43, a heater core 44, a battery 45, a cold storage material 46, and a heat exchanger 47.
  • the main pump 42 circulates the temperature control heat medium by sucking the temperature control heat medium of the temperature control circuit 41 from one side and discharging it to the other side.
  • the heater 43 is, for example, a water heater (ECH: Electric Coolant Heater) that heats a heat medium for temperature control.
  • EH Electric Coolant Heater
  • the heater core 44 is provided in the flow path 16 and exchanges heat between the air passing around the heat radiation fins and the heat medium for temperature control (heat medium) passing through the tube. The heater core 44 heats the air around the heat radiation fins when the heated heat medium for temperature control is supplied.
  • the battery 45 is a storage battery that supplies electric power to the electric motor, and is, for example, a lithium ion battery.
  • the temperature of the battery 45 is controlled by flowing a heat medium for temperature control through the water jacket formed on the battery 45.
  • the cold storage device 46 is a device that is allowed to have a lower temperature than the battery 45 among the devices capable of storing cold, and is, for example, at least one of an electric motor for traveling a vehicle and a fuel tank. By flowing the heat medium for temperature control through the water jacket formed on the cold storage device 46, cold storage is performed in the cold storage device 46.
  • the heat exchanger 47 includes a heat medium flow path 47A for temperature control through which the heat medium for temperature control passes and a heat medium flow path 47B for air conditioning through which the heat medium for air conditioning passes, and partially air-conditions the refrigeration cycle circuit 12. Heat exchange is performed between the heat medium for temperature control and the heat medium for temperature control of the temperature control circuit 41.
  • the outlet of the main pump 42 communicates with the inlet of the heater core 44 via the pipe 51a.
  • the outlet of the heater core 44 communicates with the inlet of the main pump 42 via the pipe 51b.
  • the pipe 51a is provided with a heater 43 and a three-way valve 52 in this order from the side of the main pump 42 toward the side of the heater core 44.
  • the pipe 51b is provided with a branch point 53 and a branch point 54 in this order from the side of the heater core 44 toward the side of the main pump 42.
  • the three-way valve 52 has an inlet communicating with the heater 43, one outlet communicating with the inlet of the heater core 44, and the other outlet communicating with the inlet of the temperature control heat medium flow path 47A in the heat exchanger 47 via the pipe 51c. doing.
  • the outlet of the temperature control heat medium flow path 47A in the heat exchanger 47 communicates with the branch point 54 via the pipe 51d.
  • the pipe 51c is provided with a three-way valve 61, a battery 45, a branch point 62, a three-way valve 63, a regenerator material 46, and a branch point 66 in this order from the side of the three-way valve 52 toward the side of the heat exchanger 47. ..
  • the three-way valve 61 has an inlet communicating with the three-way valve 52, one outlet communicating with the battery 45, and the other outlet communicating with the branch point 62 via the pipe 51e (battery bypass flow path).
  • the inlet communicates with the branch point 62, one outlet communicates with, and the other outlet communicates with the branch point 53 via the pipe 51f.
  • a three-way valve 68 is provided in the pipe 51f.
  • the three-way valve 68 has an inlet communicating with the three-way valve 63, one outlet communicating with the branch point 53, and the other outlet communicating with the branch point 66 via a pipe 51 g (cold storage equipment bypass flow path).
  • the refrigeration cycle circuit 12 includes an expansion valve 55 and a heat exchanger 47 (first heat exchanger).
  • the expansion valve 55 atomizes a high-pressure air-conditioning heat medium in a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium that is easily vaporized, and the opening degree can be adjusted from fully closed to fully open. be.
  • an additional circuit configuration of the refrigeration cycle circuit 12 will be described. In the pipe 31c, there is a branch point 56 between the outdoor heat exchanger 24 and the indoor expansion valve 25, and in the pipe 31f, there is a branch point 57 between the heat exchanger 26 and the accumulator 27.
  • the branch point 56 communicates with the inlet of the air-conditioning heat medium flow path 47B in the heat exchanger 47 via the pipe 31g, and the outlet of the air-conditioning heat medium flow path 47B in the heat exchanger 47 branches via the pipe 31h. It communicates with point 57.
  • the expansion valve 55 is provided in the pipe 31 g.
  • the controller 71 is, for example, a microcomputer, and selectively executes each air conditioning operation of heating operation, dehumidifying and heating operation, cooling operation, and dehumidifying and cooling operation in response to an operation request from the user to perform air conditioning in the vehicle interior.
  • the controller 71 includes a compressor 21, an outdoor expansion valve 23, an indoor expansion valve 25, an expansion valve 55, a blower 28, a blower fan 14, an air mix damper 15, a main pump 42, a heater 43, a three-way valve 52, and a three-way valve 61.
  • the three-way valve 63, and the three-way valve 68 are driven and controlled.
  • FIG. 2 is a diagram showing a heating operation.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the heating operation is performed by the heater 43 with the refrigeration cycle circuit 12 stopped. That is, in the refrigeration cycle circuit 12, the compressor 21 is stopped with the outdoor expansion valve 23 closed, the indoor expansion valve 25 closed, and the expansion valve 55 closed.
  • the temperature control circuit 41 the heater 43 is operated to drive the main pump 42, and the heat medium for temperature control is circulated. Further, each three-way valve is controlled so that the heat medium for temperature control circulates through the main pump 42, the heater 43, the three-way valve 52, the heater core 44, the branch point 53, and the branch point 54 in this order.
  • the heat medium for temperature control circulates through the main pump 42, the heater 43, the three-way valve 52, the heater core 44, the branch point 53, and the branch point 54 in this order.
  • the heat medium for temperature control becomes high temperature by absorbing heat by the heater 43, and becomes low temperature by dissipating heat by the heater core 44.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the heater core 44.
  • the introduced air is heated by the heater core 44, and warm air is supplied to the vehicle interior.
  • FIG. 3 is a diagram showing a dehumidifying and heating operation.
  • the flow path through which the low-pressure air-conditioning heat medium passes is indicated by a thick dotted line
  • the flow path through which the medium-pressure air-conditioning heat medium passes is indicated by a thick broken line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown. It is shown by a thick solid line.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the heating operation is performed by the heater 43 while dehumidifying by the refrigeration cycle circuit 12.
  • the compressor 21 is driven in a state where the outdoor expansion valve 23 is slightly opened, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is closed.
  • the heater 43 is operated to drive the main pump 42, and the heat medium for temperature control is circulated. Further, each three-way valve is controlled so that the heat medium for temperature control circulates through the main pump 42, the heater 43, the three-way valve 52, the heater core 44, the branch point 53, and the branch point 54 in this order.
  • the heat medium for air conditioning circulates in this order via the compressor 21, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 56, the indoor expansion valve 25, the heat absorber 26, the branch point 57, and the accumulator 27. do.
  • the heat medium for air conditioning of the gas phase is compressed by the compressor 21 to a high pressure, expanded by the outdoor expansion valve 23 to a medium pressure, and radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • the heat medium for temperature control circulates through the main pump 42, the heater 43, the three-way valve 52, the heater core 44, the branch point 53, and the branch point 54 in this order.
  • the heat medium for temperature control becomes high temperature by absorbing heat by the heater 43, and becomes low temperature by dissipating heat by the heater core 44.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the heater core 44.
  • the introduced air is dehumidified and cooled by the heater 26, then heated by the heater core 44, and the dehumidified warm air is supplied to the vehicle interior.
  • FIG. 4 is a diagram showing a dehumidifying / cooling operation.
  • the flow path through which the low-pressure air-conditioning heat medium passes is indicated by a thick dotted line
  • the flow path through which the medium-pressure air-conditioning heat medium passes is indicated by a thick broken line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown. It is shown by a thick solid line.
  • the dehumidifying and cooling operation is performed by the refrigeration cycle circuit 12. That is, in the refrigeration cycle circuit 12, the compressor 21 is driven in a state where the outdoor expansion valve 23 is slightly opened, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is closed.
  • the heater 43 is operated to drive the main pump 42, and the heat medium for temperature control is circulated.
  • the heat medium for air conditioning circulates in this order via the compressor 21, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 56, the indoor expansion valve 25, the heat absorber 26, the branch point 57, and the accumulator 27. do.
  • the heat medium for air conditioning of the gas phase is compressed by the compressor 21 to a high pressure, expanded by the outdoor expansion valve 23 to a medium pressure, and radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44.
  • the introduced air is dehumidified and cooled by the heat absorber 26, and dry and cool air is supplied to the vehicle interior.
  • FIG. 5 is a diagram showing a cooling operation.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line.
  • the heat medium for air conditioning circulates in this order via the compressor 21, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 56, the indoor expansion valve 25, the heat absorber 26, the branch point 57, and the accumulator 27. do.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44.
  • the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
  • FIG. 6 is a block diagram of an air conditioner for a vehicle.
  • the vehicle air conditioner 11 includes an information acquisition unit 72 and a charge reservation unit 73.
  • the information acquisition unit 72 acquires various types of information.
  • the inside air temperature is acquired by the inside air temperature sensor.
  • the temperature of the heat absorber 26 is acquired by the heat absorber temperature sensor.
  • the battery water temperature sensor detects the temperature of the temperature control heat medium on the inlet side of the battery 45.
  • the battery temperature sensor detects the temperature of the battery 45.
  • the fuel sensor detects the remaining amount of fuel.
  • the temperature of the cold storage device 46 is detected by the cold storage temperature sensor.
  • the charge sensor detects the charge status. Obtain the expected unexpected air temperature, etc. at the time of charging at the reserved charging base via Internet communication.
  • Various data are input to the controller 71.
  • the charge reservation unit 73 accepts the charge reservation of the battery 45 set by the user, and the charge reservation information including the time until the next charge is input to the controller 71.
  • the controller 71 executes pre-charging control processing and charging control processing, and drives and controls the refrigeration cycle circuit 12, the HVAC unit 13, and the temperature control circuit 41. That is, the controller 71 drives and controls the compressor 21, the outdoor expansion valve 23, the indoor expansion valve 25, the expansion valve 55, and the blower 28 of the refrigeration cycle circuit 12. Further, the controller 71 drives and controls the blower fan 14 and the air mix damper 15 of the HVAC unit 13. Further, the controller 71 drives and controls the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the three-way valve 63, and the three-way valve 68 of the temperature control circuit 41.
  • FIG. 7 is a flowchart showing an example of pre-charging control processing.
  • the pre-charging control process is executed as a timer interrupt process at predetermined time intervals.
  • step S101 it is determined whether or not the battery 45 is in a non-charged state, not a charged state. When the battery 45 is in the charged state, it returns to the predetermined main program as it is. On the other hand, when the battery 45 is in the non-charged state, the process proceeds to step S102.
  • step S102 it is determined whether or not there is a charge reservation for the battery 45. When there is no charge reservation for the battery 45, the process proceeds to step S108. On the other hand, when there is a charge reservation for the battery 45, the process proceeds to step S103.
  • step S103 it is determined whether or not the rotation speed Nc of the compressor 21 is less than a predetermined threshold value N1.
  • the threshold value N1 is a value of about 50% of the maximum rotation speed.
  • the rotation speed Nc is equal to or higher than the threshold value N1
  • the rotation speed Nc is less than the threshold value N1
  • step S104 it is determined whether or not the temperature Tb of the battery 45 is higher than the predetermined threshold value T1.
  • the threshold value T1 is an upper limit value of the temperature at which cooling is judged to be unnecessary, and is, for example, about 40 ° C.
  • the temperature Tb of the battery 45 is equal to or less than the threshold value T1
  • the temperature Tb of the battery 45 is higher than the threshold value T1
  • it is determined that the battery 45 needs to be cooled and the process proceeds to step S105.
  • step S105 the battery 45 is cooled by the cooling power of the refrigeration cycle circuit 12, and the program returns to a predetermined main program.
  • the compressor 21 is opened in a state where the outdoor expansion valve 23 is fully opened, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is slightly opened. Drive.
  • the heater 43 is stopped, the main pump 42 is driven, and the heat medium for temperature control is circulated.
  • the heat medium for temperature control is the heat for temperature control in the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47.
  • Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
  • it is determined whether or not the reserved time tn until the next charging is less than a predetermined threshold value t1.
  • the threshold value t1 varies depending on the heat capacity of the cold storage device 46, but is, for example, about several minutes to several tens of minutes.
  • step S108 when the time tn is equal to or greater than the threshold value t1, it is determined that it is still too early to start the cold storage in the cold storage device 46, and the process proceeds to step S108. On the other hand, when the time tn is less than the threshold value t1, the process proceeds to step S107.
  • the threshold value t1 may be a fixed value, but it is preferable to make it variable according to the unexpected outside air temperature at the time of charging at the reserved charging base and the set temperature of the cooling operation. Specifically, the threshold value t1 is set according to the unexpected outside air temperature and the set temperature with reference to the map.
  • FIG. 8 is a map used for setting the threshold value.
  • (A) in the figure is a map for setting the threshold value t1 according to the expected outside air temperature.
  • the threshold value Tth is set to increase as the unexpected air temperature increases.
  • (B) in the figure is a map for setting the threshold value t1 according to the set temperature.
  • the higher the set temperature the larger the threshold value t1 is set.
  • the higher the set temperature the earlier the start of cold storage in the cold storage device 46.
  • step S107 the cold power of the refrigeration cycle circuit 12 is used to store cold in the cold storage device 46, and the program returns to a predetermined main program.
  • the compressor 21 is opened in a state where the outdoor expansion valve 23 is fully opened, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is slightly opened. Drive.
  • the heater 43 is stopped, the main pump 42 is driven, and the heat medium for temperature control is circulated.
  • the heat medium for temperature control is the heat for temperature control in the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the pipe 51e, the branch point 62, the three-way valve 63, the cold storage material 46, the branch point 66, and the heat exchanger 47.
  • Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
  • step S108 normal air conditioning operation is performed, and the program returns to a predetermined main program.
  • FIG. 9 is a flowchart showing an example of the charging control process.
  • the charging control process is executed as a timer interrupt process at predetermined time intervals.
  • step S111 it is determined whether or not the battery 45 is in a charged state.
  • the process proceeds to step S112.
  • step S112 it is determined whether or not the temperature Tb of the battery 45 is higher than the predetermined threshold value T2.
  • the threshold value T2 is a lower limit value that is determined to be an abnormal temperature rise, and is, for example, about 50 ° C.
  • step S114 when the temperature Tb of the battery 45 is equal to or less than the threshold value T2, it is determined that the temperature does not rise abnormally, and the process proceeds to step S114.
  • the temperature Tb of the battery 45 is higher than the threshold value T2, it is determined that the temperature has risen abnormally, and the process proceeds to step S113.
  • step S113 the battery 45 is fully cooled and returned to a predetermined main program.
  • the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 closed, and the expansion valve 55 slightly opened.
  • the heater 43 is stopped, the main pump 42 is driven, and the heat medium for temperature control is circulated.
  • the heat medium for temperature control is the heat for temperature control in the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the cold storage material 46, the branch point 66, and the heat exchanger 47.
  • Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
  • step S114 it is determined whether or not the temperature Tb of the battery 45 is higher than the predetermined threshold value T3.
  • the threshold value T3 is an upper limit value at which it is determined that cooling is unnecessary, and is, for example, about 40 ° C.
  • the process proceeds to step S120.
  • the temperature Tb of the battery 45 is higher than the threshold value T3, it is determined that cooling is necessary, and the process proceeds to step S115.
  • step S115 it is determined whether or not the temperature Tc of the cold storage device 46 is lower than the predetermined threshold value T4.
  • the threshold value T4 is an upper limit value that is determined to have sufficient cooling capacity, and is, for example, about a dozen ° C.
  • the threshold value T4 is an upper limit value that is determined to have sufficient cooling capacity, and is, for example, about a dozen ° C.
  • step S116 the battery 45 is cooled by the cold storage device 46, and the program returns to a predetermined main program.
  • the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 slightly opened, and the expansion valve 55 closed. ..
  • the heater 43 is stopped, the main pump 42 is driven, and the heat medium for temperature control is circulated.
  • the heat medium for temperature control is the heat for temperature control in the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the cold storage material 46, the branch point 66, and the heat exchanger 47.
  • step S117 it is determined whether or not the rotation speed Nc of the compressor 21 is less than a predetermined threshold value N1.
  • the threshold value N1 is a value of about 50% of the maximum rotation speed.
  • the rotation speed Nc is equal to or higher than the threshold value N1, it is determined that there is no surplus cooling power of the refrigerating cycle circuit 12 performing the cooling operation, and the process proceeds to step S119.
  • the rotation speed Nc is less than the threshold value N1
  • step S118 the battery 45 is cooled by the refrigeration cycle circuit 12, and the program returns to the predetermined main program.
  • the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 slightly opened, and the expansion valve 55 slightly opened.
  • the heater 43 is stopped, the main pump 42 is driven, and the heat medium for temperature control is circulated.
  • the heat medium for temperature control is the heat for temperature control in the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47.
  • Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
  • step S119 the refrigerating cycle circuit 12 preferentially cools the battery 45 and returns to a predetermined main program.
  • the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 closed, and the expansion valve 55 slightly opened.
  • the temperature control circuit 41 the heater 43 is stopped, the main pump 42 is driven, and the heat medium for temperature control is circulated.
  • the heat medium for temperature control is the heat for temperature control in the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47.
  • Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
  • step S120 normal air conditioning operation is performed, and the program returns to a predetermined main program.
  • FIG. 10 is a diagram showing a cold storage operation before charging.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 slightly opened, and the expansion valve 55 slightly opened.
  • the heater 43 is stopped, the main pump 42 is driven, and the temperature control heat medium is circulated.
  • the heat medium for temperature control is the heat for temperature control of the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the pipe 51e, the branch point 62, the three-way valve 63, the cold storage material 46, the branch point 66, and the heat exchanger 47.
  • Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • a part of the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat in the air-conditioning heat medium flow path 47B in the heat exchanger 47, it evaporates and vaporizes to a high temperature.
  • the heat medium for temperature control becomes high temperature by absorbing heat in the cold storage device 46, and becomes low temperature by radiating heat in the heat medium flow path 47A for temperature control in the heat exchanger 47. Then, the cold storage device 46 having a large heat capacity is cooled by the heat medium for temperature control and is stored cold.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44. As a result, the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
  • FIG. 11 is a diagram showing a battery cooling operation before charging.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the battery cooling operation before charging which is executed when the temperature Tb of the battery 45 is higher than the threshold value T1 in the state where the cooling operation is performed, will be described.
  • the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 slightly opened, and the expansion valve 55 slightly opened.
  • the heater 43 is stopped, the main pump 42 is driven, and the temperature control heat medium is circulated.
  • the heat medium for temperature control is the heat for temperature control of the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47.
  • Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • a part of the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat in the air-conditioning heat medium flow path 47B in the heat exchanger 47, it evaporates and vaporizes to a high temperature.
  • the heat medium for temperature control becomes high temperature by absorbing heat by the battery 45, and becomes low temperature by dissipating heat in the heat medium flow path 47A for temperature control in the heat exchanger 47.
  • the battery 45 is cooled by the heat medium for temperature control.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44.
  • the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
  • FIG. 12 is a diagram showing a battery cooling operation (cold storage device) during charging.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the compressor 21 is driven in a state where the outdoor expansion valve 23 is fully opened, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is closed.
  • the heater 43 is stopped, the main pump 42 is driven, and the temperature control heat medium is circulated.
  • the heat medium for temperature control is the heat for temperature control of the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the cold storage material 46, the branch point 66, and the heat exchanger 47.
  • Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • the heat medium for temperature control becomes high temperature by absorbing heat by the battery 45, and becomes low temperature by dissipating heat by the cold storage device 46. As a result, the battery 45 is cooled by the heat medium for temperature control.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44.
  • the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
  • FIG. 13 is a diagram showing a battery cooling operation (full cooling) during charging.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 closed, and the expansion valve 55 slightly opened.
  • the heater 43 is stopped, the main pump 42 is driven, and the temperature control heat medium is circulated.
  • the heat medium for temperature control is the heat for temperature control of the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the cold storage material 46, the branch point 66, and the heat exchanger 47.
  • Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat in the air-conditioning heat medium flow path 47B in the heat exchanger 47, it evaporates and vaporizes to a high temperature.
  • the heat medium for temperature control becomes high temperature by absorbing heat in the battery 45, becomes low temperature by radiating heat in the regenerator material 46, and becomes even lower in temperature by radiating heat in the heat medium flow path 47A for temperature control in the heat exchanger 47. ..
  • the battery 45 is surely cooled by the heat medium for temperature control.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44. As a result, the introduced air is supplied to the passenger compartment.
  • FIG. 14 is a diagram showing a battery cooling operation (refrigeration cycle circuit) during charging.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the battery cooling operation (refrigeration cycle circuit) at the time of charging which is executed when the temperature Tc of the cold storage device 46 is equal to or higher than the threshold value T4 in the state where the reserved charging is being performed, will be described.
  • the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 slightly opened, and the expansion valve 55 slightly opened.
  • the heater 43 is stopped, the main pump 42 is driven, and the temperature control heat medium is circulated.
  • the heat medium for temperature control is the heat for temperature control of the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47.
  • Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • a part of the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat in the air-conditioning heat medium flow path 47B in the heat exchanger 47, it evaporates and vaporizes to a high temperature.
  • the heat medium for temperature control becomes high temperature by absorbing heat by the battery 45, and becomes low temperature by dissipating heat in the heat medium flow path 47A for temperature control in the heat exchanger 47.
  • the battery 45 is cooled by the heat medium for temperature control.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44.
  • the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
  • FIG. 15 is a diagram showing a battery cooling operation (cooling priority) during charging.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the battery cooling operation (cooling priority) at the time of charging which is executed when the temperature Tc of the cold storage device 46 is equal to or higher than the threshold value T4 in the reserved charging state, will be described.
  • the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 closed, and the expansion valve 55 slightly opened.
  • the heater 43 is stopped, the main pump 42 is driven, and the temperature control heat medium is circulated.
  • the heat medium for temperature control is the heat for temperature control of the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47.
  • Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat in the air-conditioning heat medium flow path 47B in the heat exchanger 47, it evaporates and vaporizes to a high temperature.
  • the heat medium for temperature control becomes high temperature by absorbing heat by the battery 45, and becomes low temperature by dissipating heat in the heat medium flow path 47A for temperature control in the heat exchanger 47.
  • the battery 45 is cooled by the heat medium for temperature control.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44. As a result, the introduced air is supplied to the passenger compartment.
  • FIG. 16 is a diagram showing a battery heating operation.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the battery heating operation executed when the temperature of the battery 45 is lower than a predetermined threshold value will be described.
  • the description of the refrigeration cycle circuit 12 will be omitted on the assumption that the refrigeration cycle circuit 12 functions independently.
  • the heater 43 is operated to drive the main pump 42, and the heat medium for temperature control is circulated.
  • the heat medium for temperature control passes through the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 53, and the branch point 54 in this order. Control each three-way valve so that it circulates.
  • the heat medium for temperature control becomes high temperature by absorbing heat by the heater 43, and becomes low temperature by dissipating heat by the battery 45.
  • the battery 45 is heated by the heat medium for temperature control.
  • the battery 45 corresponds to the "battery”
  • the temperature control circuit 41 corresponds to the "cooling circuit”
  • the refrigeration cycle circuit 12 corresponds to the "refrigeration cycle circuit”
  • the cold storage device 46 corresponds to the "cold storage device”.
  • the heat exchanger 47 corresponds to the "first heat exchanger”
  • the processes of steps S101 to S108 and the processes of steps S111 to S120 correspond to the "circuit switching control unit”.
  • the pipe 51e corresponds to the "battery bypass flow path”
  • a part of the pipe 51f and the pipe 51g correspond to the "cold storage equipment bypass flow path”.
  • the temperature control circuit 41 is provided with a battery 45, a cold storage material 46, and a heat exchanger 47.
  • the cold storage material 46 is stored in the cold storage material 46 by the heat medium for temperature control cooled by the heat exchanger 47 (S107). .. After that, when the reserved battery is being charged (the determination in S111 is “Yes”), the battery 45 is cooled by the heat control medium cooled by the cold storage device 46 (S116).
  • the cold storage device 46 is a device that is allowed to have a lower temperature than the battery 45, and is, for example, at least one of an electric motor for traveling a vehicle and a fuel tank. Sufficient cold storage performance can be ensured as long as the equipment allows the temperature to be lower than that of the battery 45. Further, since the electric motor and the fuel tank are existing components, it is possible to suppress an increase in cost by utilizing these components as compared with the case where a new cold storage material is mounted.
  • a pipe 51e that bypasses the battery 45 is provided, and it is selectively switched between passing the pipe 51e through the heat control heat medium and passing the battery 45. That is, the pipe 51e is passed through the temperature control heat medium before the reserved charging is executed, and the battery 45 is passed through the temperature control heat medium when the reserved charging is being executed. Thereby, the heat storage in the cold storage device 46 and the cooling of the battery 45 by the cold storage device 46 can be easily switched. Further, when the reserved time tn until the next charging becomes less than the threshold value t1 (determination of S106 is “Yes”), cold storage in the cold storage device 46 is started (S107). As a result, the cold storage device 46 can be sufficiently stored in advance by the time the reserved charging is started.
  • the threshold value t1 is increased to accelerate the start of cold storage in the cold storage device 46.
  • the cold storage device 46 can be sufficiently stored in the cold storage device 46 by the time the reserved charging is started.
  • the start of cold storage in the cold storage device 46 is accelerated by increasing the threshold value t1.
  • the cold storage device 46 can be sufficiently stored in the cold storage device 46 by the time the reserved charging is started.
  • the battery 45 and the cold storage device 46 are circulated in the heat medium for temperature control in this order. As a result, the battery 45 being charged can be cooled by the cold storage device 46. Further, when the reserved charging is being executed and the temperature Tc of the cold storage device 46 becomes equal to or higher than the threshold value T4 (the determination of S115 is “No”), the heat medium for air conditioning cooled by the refrigeration cycle circuit 12 Cools the battery 45 (S118 or S119). In this way, when the cooling power of the cold storage device 46 is lost, the battery 45 can be reliably cooled by switching to cooling by the refrigeration cycle circuit 12.
  • a pipe 51 g that bypasses the cold storage device 46 is provided, and it is selectively switched between passing the cold storage device 46 through the heat control heat medium and passing the pipe 51 g. That is, when the temperature Tc of the cold storage device 46 is lower than the threshold value T4 (the determination of S115 is “Yes”) in the state where the reserved charging is being executed, the cold storage device 46 is passed through the temperature control heat medium. On the other hand, when the temperature Tc of the cold storage device 46 is equal to or higher than the threshold value T4 (the determination in S115 is “No”), the temperature control heat medium is passed through the pipe 51 g. Thereby, the cooling of the battery 45 by the cold storage device 46 and the cooling of the battery 45 by the refrigeration cycle circuit 12 can be easily switched.
  • the threshold value t1 is made variable according to the unexpected outside air temperature and the set temperature, but the present invention is not limited to this.
  • the threshold value t1 is made variable according to the unexpected outside air temperature and the set temperature, but the present invention is not limited to this.
  • the configuration in which the outdoor expansion valve 23 is fully opened during cooling has been described, but the present invention is not limited to this.
  • a bypass flow path that bypasses the outdoor expansion valve 23 may be provided so that the bypass flow path can be opened and closed.
  • the pressure loss can be reduced by closing the outdoor expansion valve 23 and opening the bypass flow path during cooling.
  • the configuration in which the heating operation is performed by the heater 43 has been described, but the present invention is not limited to this. If it is a heat pump type refrigeration cycle circuit 12, the heating operation may be performed by the refrigeration cycle circuit 12.
  • FIG. 17 is a diagram showing a vehicle air conditioner according to the second embodiment.
  • the temperature control circuit 41 includes a sub pump 81.
  • the sub-pump 81 circulates the temperature control heat medium by sucking the temperature control heat medium of the temperature control circuit 41 from one side and discharging it to the other side.
  • the pipe 51a is provided with a branch point 82 between the three-way valve 52 and the heater core 44, and the pipe 51c is provided with a three-way valve 83 between the cold storage device 46 and the branch point 66.
  • the outlet of the sub pump 81 communicates with the branch point 82 via the pipe 51h.
  • the three-way valve 83 has an inlet communicating with the cold storage device 46, one outlet communicating with the branch point 66, and the other outlet communicating with the inlet of the sub pump 81 via the pipe 51i.
  • the pipe 51b is provided with a three-way valve 84 between the heater core 44 and the branch point 53, and the pipe 51c is provided with a branch point 85 between the three-way valve 63 and the cold storage device 46. ..
  • the three-way valve 84 has an inlet communicating with the heater core 44, one outlet communicating with the branch point 53, and the other outlet communicating with the branch point 85 via the pipe 51j.
  • the pipe 51d is provided with a three-way valve 86 between the heat exchanger 47 and the branch point 54, and the pipe 51a is provided with a branch point 87 between the three-way valve 52 and the branch point 82.
  • the three-way valve 86 has an inlet communicating with the heat exchanger 47, one outlet communicating with the branch point 54, and the other outlet communicating with the branch point 87 via the pipe 51k.
  • FIG. 18 is a diagram showing a cooling operation (cold storage device) during charging.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the cooling operation (cooling device material) at the time of charging in which the cooling operation is executed by the cold storage device 46 in the state where the reserved charging is being performed will be described.
  • the compressor 21 is driven in a state where the outdoor expansion valve 23 is fully opened, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is closed.
  • the heater 43 is stopped, the main pump 42 is stopped, the sub pump 81 is driven, and the heat medium for temperature control is circulated. Further, each three-way valve is controlled so that the heat medium for temperature control circulates through the sub pump 81, the branch point 82, the heater core 44, the three-way valve 84, the branch point 85, the cold storage device 46, and the three-way valve 83 in this order. ..
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • the heat medium for temperature control becomes low in temperature by dissipating heat in the cold storage device 46, and becomes high in temperature by absorbing heat in the heater core 44.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the heater core 44.
  • the introduced air is cooled by the heater core 44, and cool air is supplied to the vehicle interior.
  • FIG. 19 is a diagram showing battery cooling + cooling operation (refrigeration cycle circuit) during charging.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the battery cooling + cooling operation (refrigeration cycle circuit) at the time of charging in which the battery cooling and the cooling operation are executed by the refrigeration cycle circuit 12 in the state where the reserved charging is performed will be described.
  • the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 closed, and the expansion valve 55 slightly opened.
  • the heater 43 is stopped, the main pump 42 is driven, the sub pump 81 is stopped, and the heat medium for temperature control is circulated.
  • the heat medium for temperature control is the heat for temperature control in the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47.
  • Each three-way valve is controlled so as to circulate through the medium flow path 47A, the three-way valve 86, the branch point 87, the branch point 82, the heater core 44, the three-way valve 84, the branch point 53, and the branch point 54 in this order.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat in the air-conditioning heat medium flow path 47B in the heat exchanger 47, it evaporates and vaporizes to a high temperature.
  • the heat medium for temperature control becomes low in temperature by radiating heat in the heat medium flow path 47A for heat control in the heat exchanger 47, and becomes high in temperature by absorbing heat in the heater core 44.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the heater core 44.
  • the introduced air is cooled by the heater core 44, and cool air is supplied to the vehicle interior.
  • the heater core 44 corresponds to the "second heat exchanger".
  • the heater core 44 is cooled by the temperature control heat medium cooled by the cold storage device 46. At this time, since the heater core 44 acts as an endothermic, the cooling operation using the cold storage energy can be performed. Further, both the battery 45 and the heater core 44 are cooled by the temperature control heat medium cooled by the heat exchanger 47 when the reserved charging is being executed. At this time, since the heater core 44 acts as an endothermic device, both battery cooling and cooling operation using the refrigeration cycle circuit 12 can be performed.
  • Heat medium flow path for temperature control, 47B ... Heat medium flow path for air conditioning, 51a ... Piping, 51b ... Piping, 51c ... Piping, 51d ... Piping, 51e ... Piping, 51f ... Piping, 51g ... Piping, 51h ... Piping, 51i ... Piping, 51j ... Piping, 51k ... Piping, 52 ... Three-way valve, 53 ... Branch point, 54 ... Branch point, 55 ... Expansion valve, 56 ... Branch point, 57 ... Branch point, 61 ... Three-way valve, 62 ... Branch point, 63 ... Three-way valve, 66 ... Branch point, 68 ... Three-way valve, 71 ... Controller, 72 ...

Abstract

[Problem] To realize comfort in a vehicle interior without sacrificing battery cooling. [Solution] The present invention is provided with a temperature adjustment circuit 41 and a cooling cycle circuit 12. The temperature adjustment circuit 41 is provided with a battery 45, cold storage equipment 46, and a heat exchanger 47. Cold is stored in the cold storage equipment 46 by a temperature adjustment heat medium which has been cooled by the heat exchanger 47 before scheduled charging of the battery 45 is carried out, and the battery 45 is cooled by the temperature adjustment heat medium cooled by the cold storage equipment 46 when the scheduled charging of the battery 45 is carried out.

Description

車両用空気調和装置Vehicle air conditioner
 本発明は、車両用空気調和装置に関するものである。 The present invention relates to an air conditioner for vehicles.
 特許文献1に示されるように、電気自動車やプラグインハイブリッド自動車において、車両のバッテリを急速充電するときに、空調用の冷凍サイクルを利用してバッテリを冷却するものがある。 As shown in Patent Document 1, some electric vehicles and plug-in hybrid vehicles use a refrigeration cycle for air conditioning to cool the battery when the vehicle battery is rapidly charged.
特開2019-75248号公報JP-A-2019-75248
 トラック等では充電中に乗員が車室内で休憩することもあり、バッテリの冷却と冷房運転を同時に行なうことが考えられる。したがって、冷房運転によって冷凍サイクルの冷力が奪われると、バッテリ冷却能力が低下するため、充電電流の低下によって充電時間が長くなる可能性がある。
 本発明の課題は、バッテリの冷却を犠牲にすることなく、車室内の快適性を実現することである。
In a truck or the like, the occupant may take a break in the passenger compartment during charging, and it is conceivable that the battery is cooled and the cooling operation is performed at the same time. Therefore, when the cooling power of the refrigerating cycle is deprived by the cooling operation, the battery cooling capacity is lowered, so that the charging time may be lengthened due to the decrease in the charging current.
An object of the present invention is to realize comfort in a vehicle interior without sacrificing battery cooling.
 本発明の一態様に係る車両用空気調和装置は、電動モータに給電するバッテリを搭載した車両において、冷却用熱媒体を循環させる冷却回路と、車室内の空調を行うために空調用熱媒体を循環させる冷凍サイクル回路と、を備えた車両用空気調和装置であって、冷却回路は、冷却を必要とするバッテリと、蓄冷可能な蓄冷器材と、冷凍サイクル回路の空調用熱媒体との間で熱交換を行う第一の熱交換器と、を備え、バッテリの充電の状態に基づき回路を切り替える回路切替制御部を備え、回路切替制御部は、予約されていたバッテリの充電が実行される前に、第一の熱交換器で冷却された冷却用熱媒体によって蓄冷器材に蓄冷し、予約されていたバッテリの充電が実行されているときに、蓄冷器材で冷却された冷却用熱媒体よってバッテリを冷却する。 The vehicle air conditioner according to one aspect of the present invention uses a cooling circuit for circulating a cooling heat medium and an air conditioning heat medium for air conditioning in the vehicle interior in a vehicle equipped with a battery that supplies power to an electric motor. A vehicle air conditioner equipped with a circulating refrigeration cycle circuit, wherein the cooling circuit is between a battery that requires cooling, a cold storage material capable of storing cold, and a heat medium for air conditioning of the refrigeration cycle circuit. It is equipped with a first heat exchanger that exchanges heat, and is equipped with a circuit switching control unit that switches circuits based on the state of battery charging, and the circuit switching control unit is before the reserved battery charge is executed. In addition, when the cold storage material is stored in the cold storage material by the cooling heat medium cooled by the first heat exchanger and the reserved battery is being charged, the battery is stored by the cooling heat medium cooled by the cold storage material. To cool.
 本発明によれば、予め蓄冷器材に蓄冷しておき、この蓄冷器材によって充電中のバッテリを冷却するため、冷房運転の要求があっても、バッテリの冷却を犠牲にすることなく、車室内の快適性を実現することができる。 According to the present invention, cold is stored in a cold storage device in advance, and the battery being charged is cooled by this cold storage device. Therefore, even if there is a request for cooling operation, the cooling of the battery is not sacrificed in the vehicle interior. Comfort can be achieved.
車両用空気調和装置を示す図である。It is a figure which shows the air conditioner for a vehicle. 暖房運転を示す図である。It is a figure which shows the heating operation. 除湿暖房運転を示す図である。It is a figure which shows the dehumidifying heating operation. 除湿冷房運転を示す図である。It is a figure which shows the dehumidifying cooling operation. 冷房運転を示す図である。It is a figure which shows the cooling operation. 車両用空気調和装置のブロック図である。It is a block diagram of the air conditioner for a vehicle. 充電前制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control process before charging. 閾値の設定に用いるマップである。This is a map used to set the threshold value. 充電時制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control process at the time of charging. 充電前の蓄冷運転を示す図である。It is a figure which shows the cold storage operation before charging. 充電前のバッテリ冷却運転を示す図である。It is a figure which shows the battery cooling operation before charging. 充電時のバッテリ冷却運転(蓄冷器材)を示す図である。It is a figure which shows the battery cooling operation (cooling storage material) at the time of charging. 充電時のバッテリ冷却運転(フル冷却)を示す図である。It is a figure which shows the battery cooling operation (full cooling) at the time of charging. 充電時のバッテリ冷却運転(冷凍サイクル回路)を示す図である。It is a figure which shows the battery cooling operation (refrigeration cycle circuit) at the time of charging. 充電時のバッテリ冷却運転(冷却優先)を示す図である。It is a figure which shows the battery cooling operation (cooling priority) at the time of charging. バッテリ加温運転を示す図である。It is a figure which shows the battery heating operation. 第二実施形態の車両用空気調和装置を示す図である。It is a figure which shows the air conditioner for a vehicle of 2nd Embodiment. 充電時の冷房運転(蓄冷器材)を示す図である。It is a figure which shows the cooling operation (cooling storage device) at the time of charging. 充電時のバッテリ冷却+冷房運転(冷凍サイクル回路)を示す図である。It is a figure which shows the battery cooling + cooling operation (refrigeration cycle circuit) at the time of charging.
 以下、本発明の実施形態を図面に基づいて説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that each drawing is a schematic one and may differ from the actual one. In addition, the following embodiments exemplify devices and methods for embodying the technical idea of the present invention, and do not specify the configuration to the following. That is, the technical idea of the present invention can be modified in various ways within the technical scope described in the claims.
《第一実施形態》
 《構成》
 図1は、車両用空気調和装置を示す図である。
 車両は、電気自動車やプラグインハイブリッド自動車等、外部電源からの充電によってバッテリ45を充電可能で、且つバッテリ45に充電された電力によって電動モータを駆動し、走行する車両である。車両用空気調和装置11は、車両に搭載され、バッテリ45の電力で駆動される。車両用空気調和装置11は、冷凍サイクル回路12及びHVACユニット13を備え、空調用熱媒体を用いた熱交換により、暖房運転、除湿暖房運転、冷房運転、除湿冷房運転の各空調運転を選択的に実行し、車室内の空調を行なう。
<< First Embodiment >>
"composition"
FIG. 1 is a diagram showing an air conditioner for a vehicle.
The vehicle is a vehicle such as an electric vehicle or a plug-in hybrid vehicle that can charge the battery 45 by charging from an external power source and drives an electric motor by the electric power charged in the battery 45 to travel. The vehicle air conditioner 11 is mounted on the vehicle and is driven by the electric power of the battery 45. The vehicle air conditioner 11 includes a refrigeration cycle circuit 12 and an HVAC unit 13, and selectively performs heating operation, dehumidifying and heating operation, cooling operation, and dehumidifying and cooling operation by heat exchange using a heat medium for air conditioning. To air-condition the passenger compartment.
 先ず、冷凍サイクル回路12の基本的な構成要素について説明する。
 冷凍サイクル回路12は、圧縮機21と、室外膨張弁23、室外熱交換器24と、室内膨張弁25と、吸熱器26と、アキュムレータ27と、を備える。
 圧縮機21は、気相である低圧の空調用熱媒体を圧縮することにより、液化しやすい高圧の空調用熱媒体に昇圧させるものであり、例えばスクロール圧縮機、斜板式圧縮機等である。圧縮機21の駆動源は、例えば電動モータである。圧縮機21は、空調用熱媒体と共に循環するオイルによって潤滑が行なわれる給油式であり、空調用熱媒体に対するオイル濃度は数%程度である。
 室外膨張弁23は、液相で高圧の空調用熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の空調用熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
First, the basic components of the refrigeration cycle circuit 12 will be described.
The refrigeration cycle circuit 12 includes a compressor 21, an outdoor expansion valve 23, an outdoor heat exchanger 24, an indoor expansion valve 25, a heat absorber 26, and an accumulator 27.
The compressor 21 compresses a low-pressure air-conditioning heat medium, which is a gas phase, to boost the pressure to a high-pressure air-conditioning heat medium that is easily liquefied. For example, a scroll compressor, a swash plate compressor, or the like. The drive source of the compressor 21 is, for example, an electric motor. The compressor 21 is a refueling type in which lubrication is performed by oil circulating together with the heat medium for air conditioning, and the oil concentration with respect to the heat medium for air conditioning is about several percent.
The outdoor expansion valve 23 atomizes a high-pressure air-conditioning heat medium in a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium that is easily vaporized, and the opening degree can be adjusted from fully closed to fully open. Is.
 室外熱交換器24は、車体におけるフロントグリルの内側に設けられており、放熱フィンの周囲を通過する外気とチューブ内を通過する空調用熱媒体との間で熱交換を行なう。外気とは主に走行風であるが、十分な走行風が得られないときは、送風機28が駆動されることで、放熱フィンに対して外気が送風される。除湿冷房時や冷房時には、室外熱交換器24を凝縮器、つまり放熱器として機能させ、放熱フィンの周囲を通過する外気とチューブ内を通過する高温の空調用熱媒体(熱媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体に放熱させ、凝縮液化させる。 The outdoor heat exchanger 24 is provided inside the front grill of the vehicle body, and exchanges heat between the outside air passing around the heat radiation fins and the heat medium for air conditioning passing through the tube. The outside air is mainly a running wind, but when a sufficient running wind cannot be obtained, the blower 28 is driven to blow the outside air to the heat radiating fins. During dehumidifying cooling or cooling, the outdoor heat exchanger 24 functions as a condenser, that is, a radiator, and is between the outside air passing around the heat radiating fin and the high-temperature air-conditioning heat medium (heat medium) passing through the tube. Heat exchange is performed at. That is, heat is dissipated to the heat medium for air conditioning in the tube to form a condensed liquid.
 室内膨張弁25は、液相で高圧の空調用熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の空調用熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
 吸熱器26は、HVACユニット13内に設けられており、放熱フィンの周囲を通過する空気とチューブ内を通過する低温の空調用熱媒体(冷媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体が吸熱によって蒸発気化することにより、放熱フィンの周囲の空気を冷却すると共に、放熱フィンの表面に結露を生じさせて除湿を行なう。
 アキュムレータ27と、空調用熱媒体の気液分離を行ない、気相の空調用熱媒体だけを圧縮機21へと供給する。
The indoor expansion valve 25 atomizes a high-pressure air-conditioning heat medium in a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium that is easily vaporized, and the opening degree can be adjusted from fully closed to fully open. Is.
The heat absorber 26 is provided in the HVAC unit 13 and exchanges heat between the air passing around the heat radiation fins and the low-temperature air-conditioning heat medium (refrigerant) passing through the tube. That is, the heat medium for air conditioning in the tube evaporates and vaporizes by absorbing heat, thereby cooling the air around the heat radiation fins and causing dew condensation on the surface of the heat radiation fins to dehumidify.
Gas-liquid separation is performed between the accumulator 27 and the heat medium for air conditioning, and only the heat medium for air conditioning in the gas phase is supplied to the compressor 21.
 次に、冷凍サイクル回路12の基本的な回路構成について説明する。
 図中、空調用熱媒体の流路を実線で示している。圧縮機21の出口は、配管31bを介して室外熱交換器24の入口に連通しており、配管31bには、室外膨張弁23が設けられている。室外熱交換器24の出口は、配管31cを介して吸熱器26の入口に連通しており、配管31cには、室内膨張弁25が設けられている。吸熱器26の出口は、配管31fを介して圧縮機21の入口に連通しており、配管31cには、アキュムレータ27が設けられている。
Next, the basic circuit configuration of the refrigeration cycle circuit 12 will be described.
In the figure, the flow path of the heat medium for air conditioning is shown by a solid line. The outlet of the compressor 21 communicates with the inlet of the outdoor heat exchanger 24 via the pipe 31b, and the pipe 31b is provided with the outdoor expansion valve 23. The outlet of the outdoor heat exchanger 24 communicates with the inlet of the heat absorber 26 via the pipe 31c, and the pipe 31c is provided with the indoor expansion valve 25. The outlet of the heat absorber 26 communicates with the inlet of the compressor 21 via the pipe 31f, and the accumulator 27 is provided in the pipe 31c.
 次に、HVACユニット13の基本構成について説明する。
 HVACユニット13(HVAC:Heating Ventilation and Air Conditioning)は、ダッシュボードの内部に配置されており、一端側から外気や内気を導入し、他端側から車室内へ空気を供給するダクトによって形成されている。HVACユニット13の内部には、送風ファン14と、吸熱器26と、エアミックスダンパ15と、が設けられている。送風ファン14は、HVACユニット13の一端側に設けられており、駆動されるときに、外気又は内気を吸引し、他端側へと吐出する。吸熱器26は、送風ファン14よりも下流側に設けられている。送風ファン14から吹き出された空気は、全て吸熱器26を通過する。HVACユニット13の内部で吸熱器26の下流側には、流路16と、流路16を迂回する流路17と、が形成されている。流路16と流路17とは下流側が合流している。
Next, the basic configuration of the HVAC unit 13 will be described.
The HVAC unit 13 (HVAC: Heating Ventilation and Air Conditioning) is arranged inside the dashboard, and is formed by a duct that introduces outside air and inside air from one end side and supplies air to the vehicle interior from the other end side. There is. Inside the HVAC unit 13, a blower fan 14, a heat absorber 26, and an air mix damper 15 are provided. The blower fan 14 is provided on one end side of the HVAC unit 13, and when driven, sucks outside air or inside air and discharges it to the other end side. The heat absorber 26 is provided on the downstream side of the blower fan 14. All the air blown out from the blower fan 14 passes through the heat absorber 26. Inside the HVAC unit 13, a flow path 16 and a flow path 17 bypassing the flow path 16 are formed on the downstream side of the heat absorber 26. The downstream side of the flow path 16 and the flow path 17 merge.
 エアミックスダンパ15は、流路16を開放して流路17を閉鎖する位置と、流路16を閉鎖して流路17を開放する位置と、の間で回動可能である。エアミックスダンパ15が流路16を開放して流路17を閉鎖する位置にあるときには、吸熱器26を通過した空気は全て流路16を通過する。エアミックスダンパ15が流路16を閉鎖して流路17を開放する位置にあるときには、吸熱器26を通過した空気は全て流路16を迂回する。エアミックスダンパ15が流路16と流路17の双方を開放する位置にあるときには、吸熱器26を通過した空気のうち、一部が流路16を通過し、残りが流路16を迂回し、HVACユニット13の下流側にて、流路16を通過した空気と、流路16を迂回した空気とが混合される。 The air mix damper 15 can rotate between a position where the flow path 16 is opened to close the flow path 17 and a position where the flow path 16 is closed and the flow path 17 is opened. When the air mix damper 15 is in a position where the flow path 16 is opened and the flow path 17 is closed, all the air that has passed through the heat absorber 26 passes through the flow path 16. When the air mix damper 15 is in a position where the flow path 16 is closed and the flow path 17 is opened, all the air that has passed through the heat absorber 26 bypasses the flow path 16. When the air mix damper 15 is in a position to open both the flow path 16 and the flow path 17, part of the air that has passed through the heat absorber 26 passes through the flow path 16 and the rest bypasses the flow path 16. , The air that has passed through the flow path 16 and the air that has bypassed the flow path 16 are mixed on the downstream side of the HVAC unit 13.
 次に、付加的な構成について説明する。
 車両用空気調和装置11は、温調回路41を備え、温調用熱媒体を循環させることでバッテリ45の温調を行なう。温調とは温度を調整又は調節することを意味する。温調用熱媒体は、例えば水であるが、冷媒やクーラント等、他の流体を用いてもよい。
 先ず、温調回路41の主な構成要素について説明する。
 温調回路41は、メインポンプ42と、ヒータ43と、ヒータコア44と、バッテリ45と、蓄冷器材46と、熱交換器47と、を備える。
Next, an additional configuration will be described.
The vehicle air conditioner 11 includes a temperature control circuit 41, and controls the temperature of the battery 45 by circulating a heat medium for temperature control. Temperature control means adjusting or adjusting the temperature. The heat medium for temperature control is, for example, water, but other fluids such as a refrigerant and coolant may be used.
First, the main components of the temperature control circuit 41 will be described.
The temperature control circuit 41 includes a main pump 42, a heater 43, a heater core 44, a battery 45, a cold storage material 46, and a heat exchanger 47.
 メインポンプ42は、温調回路41の温調用熱媒体を一方の側から吸引し、他方の側に吐出することで、温調用熱媒体を循環させる。
 ヒータ43は、温調用熱媒体を加温する例えば水加熱ヒータ(ECH:Electric Coolant Heater)である。
 ヒータコア44は、流路16に設けられており、放熱フィンの周囲を通過する空気とチューブ内を通過する温調用熱媒体(熱媒)との間で熱交換を行なう。ヒータコア44は、加温された温調用熱媒体が供給されるときに、放熱フィンの周囲の空気を加温する。
The main pump 42 circulates the temperature control heat medium by sucking the temperature control heat medium of the temperature control circuit 41 from one side and discharging it to the other side.
The heater 43 is, for example, a water heater (ECH: Electric Coolant Heater) that heats a heat medium for temperature control.
The heater core 44 is provided in the flow path 16 and exchanges heat between the air passing around the heat radiation fins and the heat medium for temperature control (heat medium) passing through the tube. The heater core 44 heats the air around the heat radiation fins when the heated heat medium for temperature control is supplied.
 バッテリ45は、電動モータに電力を供給する蓄電池であり、例えばリチウムイオンバッテリである。バッテリ45に形成されたウォータージャケットに温調用熱媒体が流れることで、バッテリ45の温調が行なわれる。
 蓄冷器材46は、蓄冷可能な器材のうち、バッテリ45よりも低温になることが許容される器材であって、例えば車両走行用の電動モータ、及び燃料タンクの少なくとも一つである。蓄冷器材46に形成されたウォータージャケットに温調用熱媒体が流れることで、蓄冷器材46への蓄冷が行なわれる。
 熱交換器47は、温調用熱媒体が通過する温調用熱媒体流路47Aと、空調用熱媒体が通過する空調用熱媒体流路47Bと、を備え、冷凍サイクル回路12の一部の空調用熱媒体と温調回路41の温調用熱媒体との間で熱交換を行なう。
The battery 45 is a storage battery that supplies electric power to the electric motor, and is, for example, a lithium ion battery. The temperature of the battery 45 is controlled by flowing a heat medium for temperature control through the water jacket formed on the battery 45.
The cold storage device 46 is a device that is allowed to have a lower temperature than the battery 45 among the devices capable of storing cold, and is, for example, at least one of an electric motor for traveling a vehicle and a fuel tank. By flowing the heat medium for temperature control through the water jacket formed on the cold storage device 46, cold storage is performed in the cold storage device 46.
The heat exchanger 47 includes a heat medium flow path 47A for temperature control through which the heat medium for temperature control passes and a heat medium flow path 47B for air conditioning through which the heat medium for air conditioning passes, and partially air-conditions the refrigeration cycle circuit 12. Heat exchange is performed between the heat medium for temperature control and the heat medium for temperature control of the temperature control circuit 41.
 次に、温調回路41の回路構成について説明する。
 図中、温調用熱媒体の流路を破線で示している。メインポンプ42の出口は、配管51aを介してヒータコア44の入口に連通している。ヒータコア44の出口は、配管51bを介してメインポンプ42の入口に連通している。配管51aには、メインポンプ42の側からヒータコア44の側に向かって、ヒータ43、三方弁52が、順に設けられている。配管51bには、ヒータコア44の側からメインポンプ42の側に向かって、分岐点53、分岐点54が、順に設けられている。
Next, the circuit configuration of the temperature control circuit 41 will be described.
In the figure, the flow path of the heat medium for temperature control is shown by a broken line. The outlet of the main pump 42 communicates with the inlet of the heater core 44 via the pipe 51a. The outlet of the heater core 44 communicates with the inlet of the main pump 42 via the pipe 51b. The pipe 51a is provided with a heater 43 and a three-way valve 52 in this order from the side of the main pump 42 toward the side of the heater core 44. The pipe 51b is provided with a branch point 53 and a branch point 54 in this order from the side of the heater core 44 toward the side of the main pump 42.
 三方弁52は、入口がヒータ43に連通し、一方の出口がヒータコア44の入口に連通し、他方の出口が配管51cを介して熱交換器47における温調用熱媒体流路47Aの入口に連通している。熱交換器47における温調用熱媒体流路47Aの出口は、配管51dを介して分岐点54に連通している。配管51cには、三方弁52の側から熱交換器47の側に向かって、三方弁61、バッテリ45、分岐点62、三方弁63、蓄冷器材46、分岐点66が、順に設けられている。 The three-way valve 52 has an inlet communicating with the heater 43, one outlet communicating with the inlet of the heater core 44, and the other outlet communicating with the inlet of the temperature control heat medium flow path 47A in the heat exchanger 47 via the pipe 51c. doing. The outlet of the temperature control heat medium flow path 47A in the heat exchanger 47 communicates with the branch point 54 via the pipe 51d. The pipe 51c is provided with a three-way valve 61, a battery 45, a branch point 62, a three-way valve 63, a regenerator material 46, and a branch point 66 in this order from the side of the three-way valve 52 toward the side of the heat exchanger 47. ..
 三方弁61は、入口が三方弁52に連通し、一方の出口がバッテリ45に連通し、他方の出口が配管51e(バッテリバイパス流路)を介して分岐点62に連通している。三方弁63は、入口が分岐点62に連通し、一方の出口がに連通し、他方の出口が配管51fを介して分岐点53に連通している。配管51fには、三方弁68が設けられている。三方弁68は、入口が三方弁63に連通し、一方の出口が分岐点53に連通し、他方の出口が配管51g(蓄冷器材バイパス流路)を介して分岐点66に連通している。 The three-way valve 61 has an inlet communicating with the three-way valve 52, one outlet communicating with the battery 45, and the other outlet communicating with the branch point 62 via the pipe 51e (battery bypass flow path). In the three-way valve 63, the inlet communicates with the branch point 62, one outlet communicates with, and the other outlet communicates with the branch point 53 via the pipe 51f. A three-way valve 68 is provided in the pipe 51f. The three-way valve 68 has an inlet communicating with the three-way valve 63, one outlet communicating with the branch point 53, and the other outlet communicating with the branch point 66 via a pipe 51 g (cold storage equipment bypass flow path).
 次に、冷凍サイクル回路12の付加的な構成要素について説明する。
 冷凍サイクル回路12は、膨張弁55と、熱交換器47(第一の熱交換器)と、を備える。
 膨張弁55は、液相で高圧の空調用熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の空調用熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
 次に、冷凍サイクル回路12の付加的な回路構成について説明する。
 配管31cのうち、室外熱交換器24と室内膨張弁25との間には分岐点56があり、配管31fのうち、吸熱器26とアキュムレータ27との間には分岐点57がある。分岐点56は、配管31gを介して熱交換器47における空調用熱媒体流路47Bの入口に連通し、熱交換器47における空調用熱媒体流路47Bの出口は、配管31hを介して分岐点57に連通している。配管31gには、膨張弁55が設けられている。
Next, additional components of the refrigeration cycle circuit 12 will be described.
The refrigeration cycle circuit 12 includes an expansion valve 55 and a heat exchanger 47 (first heat exchanger).
The expansion valve 55 atomizes a high-pressure air-conditioning heat medium in a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium that is easily vaporized, and the opening degree can be adjusted from fully closed to fully open. be.
Next, an additional circuit configuration of the refrigeration cycle circuit 12 will be described.
In the pipe 31c, there is a branch point 56 between the outdoor heat exchanger 24 and the indoor expansion valve 25, and in the pipe 31f, there is a branch point 57 between the heat exchanger 26 and the accumulator 27. The branch point 56 communicates with the inlet of the air-conditioning heat medium flow path 47B in the heat exchanger 47 via the pipe 31g, and the outlet of the air-conditioning heat medium flow path 47B in the heat exchanger 47 branches via the pipe 31h. It communicates with point 57. The expansion valve 55 is provided in the pipe 31 g.
 次に、車両用空気調和装置11の基本的な運転について説明する。
 コントローラ71は、例えばマイクロコンピュータであり、ユーザからの運転要求に応じて、暖房運転、除湿暖房運転、冷房運転、除湿冷房運転の各空調運転を選択的に実行し、車室内の空調を行なう。ここでは、基本的な運転について説明するため、冷凍サイクル回路12の動作、HVACユニット13の動作、及び温調回路41の動作について説明する。すなわち、コントローラ71は、圧縮機21、室外膨張弁23、室内膨張弁25、膨張弁55、送風機28、送風ファン14、エアミックスダンパ15、メインポンプ42、ヒータ43、三方弁52、三方弁61、三方弁63、及び三方弁68を駆動制御する。
Next, the basic operation of the vehicle air conditioner 11 will be described.
The controller 71 is, for example, a microcomputer, and selectively executes each air conditioning operation of heating operation, dehumidifying and heating operation, cooling operation, and dehumidifying and cooling operation in response to an operation request from the user to perform air conditioning in the vehicle interior. Here, in order to explain the basic operation, the operation of the refrigeration cycle circuit 12, the operation of the HVAC unit 13, and the operation of the temperature control circuit 41 will be described. That is, the controller 71 includes a compressor 21, an outdoor expansion valve 23, an indoor expansion valve 25, an expansion valve 55, a blower 28, a blower fan 14, an air mix damper 15, a main pump 42, a heater 43, a three-way valve 52, and a three-way valve 61. , The three-way valve 63, and the three-way valve 68 are driven and controlled.
 [暖房運転]
 図2は、暖房運転を示す図である。
 図中、温調用熱媒体が通過する流路を太い破線で示す。
 ここでは、冷凍サイクル回路12を停止した状態で、ヒータ43によって暖房運転を行なう。すなわち、冷凍サイクル回路12では、室外膨張弁23を閉鎖し、室内膨張弁25を閉鎖し、膨張弁55を閉鎖した状態で、圧縮機21を停止する。一方、温調回路41では、ヒータ43を作動させ、メインポンプ42を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、ヒータコア44、分岐点53、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
[Heating operation]
FIG. 2 is a diagram showing a heating operation.
In the figure, the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
Here, the heating operation is performed by the heater 43 with the refrigeration cycle circuit 12 stopped. That is, in the refrigeration cycle circuit 12, the compressor 21 is stopped with the outdoor expansion valve 23 closed, the indoor expansion valve 25 closed, and the expansion valve 55 closed. On the other hand, in the temperature control circuit 41, the heater 43 is operated to drive the main pump 42, and the heat medium for temperature control is circulated. Further, each three-way valve is controlled so that the heat medium for temperature control circulates through the main pump 42, the heater 43, the three-way valve 52, the heater core 44, the branch point 53, and the branch point 54 in this order.
 これにより、温調用熱媒体は、メインポンプ42、ヒータ43、三方弁52、ヒータコア44、分岐点53、及び分岐点54を順に経由して循環する。この循環経路において、温調用熱媒体は、ヒータ43で吸熱することで高温となり、ヒータコア44で放熱することで低温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路17を閉じ気味にしつつ、ヒータコア44を通過する割合を調整する。これにより、導入された空気がヒータコア44で加温され、温かい空気が車室内に供給される。
As a result, the heat medium for temperature control circulates through the main pump 42, the heater 43, the three-way valve 52, the heater core 44, the branch point 53, and the branch point 54 in this order. In this circulation path, the heat medium for temperature control becomes high temperature by absorbing heat by the heater 43, and becomes low temperature by dissipating heat by the heater core 44.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the heater core 44. As a result, the introduced air is heated by the heater core 44, and warm air is supplied to the vehicle interior.
 [除湿暖房運転]
 図3は、除湿暖房運転を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、中圧の空調用熱媒体が通過する流路を太い破線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示している。また、温調用熱媒体が通過する流路を太い破線で示す。
 ここでは、冷凍サイクル回路12によって除湿しながら、ヒータ43によって暖房運転を行なう。すなわち、冷凍サイクル回路12では、室外膨張弁23を僅かに開放し、室内膨張弁25を僅かに開放し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。一方、温調回路41では、ヒータ43を作動させ、メインポンプ42を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、ヒータコア44、分岐点53、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
[Dehumidifying and heating operation]
FIG. 3 is a diagram showing a dehumidifying and heating operation.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is indicated by a thick dotted line, the flow path through which the medium-pressure air-conditioning heat medium passes is indicated by a thick broken line, and the flow path through which the high-pressure air-conditioning heat medium passes is shown. It is shown by a thick solid line. The flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
Here, the heating operation is performed by the heater 43 while dehumidifying by the refrigeration cycle circuit 12. That is, in the refrigeration cycle circuit 12, the compressor 21 is driven in a state where the outdoor expansion valve 23 is slightly opened, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is closed. On the other hand, in the temperature control circuit 41, the heater 43 is operated to drive the main pump 42, and the heat medium for temperature control is circulated. Further, each three-way valve is controlled so that the heat medium for temperature control circulates through the main pump 42, the heater 43, the three-way valve 52, the heater core 44, the branch point 53, and the branch point 54 in this order.
 これにより、空調用熱媒体は、圧縮機21、室外膨張弁23、室外熱交換器24、分岐点56、室内膨張弁25、吸熱器26、分岐点57、及びアキュムレータ27を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外膨張弁23で膨張され中圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。
 また、温調用熱媒体は、メインポンプ42、ヒータ43、三方弁52、ヒータコア44、分岐点53、及び分岐点54を順に経由して循環する。この循環経路において、温調用熱媒体は、ヒータ43で吸熱することで高温となり、ヒータコア44で放熱することで低温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路17を閉じ気味にしつつ、ヒータコア44を通過する割合を調整する。これにより、導入された空気が吸熱器26で除湿冷却された後に、ヒータコア44で加温され、除湿された温かい空気が車室内に供給される。
As a result, the heat medium for air conditioning circulates in this order via the compressor 21, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 56, the indoor expansion valve 25, the heat absorber 26, the branch point 57, and the accumulator 27. do. In this circulation path, the heat medium for air conditioning of the gas phase is compressed by the compressor 21 to a high pressure, expanded by the outdoor expansion valve 23 to a medium pressure, and radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. Become. The liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
Further, the heat medium for temperature control circulates through the main pump 42, the heater 43, the three-way valve 52, the heater core 44, the branch point 53, and the branch point 54 in this order. In this circulation path, the heat medium for temperature control becomes high temperature by absorbing heat by the heater 43, and becomes low temperature by dissipating heat by the heater core 44.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the heater core 44. As a result, the introduced air is dehumidified and cooled by the heater 26, then heated by the heater core 44, and the dehumidified warm air is supplied to the vehicle interior.
 [除湿冷房運転]
 図4は、除湿冷房運転を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、中圧の空調用熱媒体が通過する流路を太い破線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示している。
 ここでは、冷凍サイクル回路12によって除湿冷房運転を行なう。すなわち、冷凍サイクル回路12では、室外膨張弁23を僅かに開放し、室内膨張弁25を僅かに開放し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。一方、温調回路41では、ヒータ43を作動させ、メインポンプ42を駆動し、温調用熱媒体を循環させる。
[Dehumidifying and cooling operation]
FIG. 4 is a diagram showing a dehumidifying / cooling operation.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is indicated by a thick dotted line, the flow path through which the medium-pressure air-conditioning heat medium passes is indicated by a thick broken line, and the flow path through which the high-pressure air-conditioning heat medium passes is shown. It is shown by a thick solid line.
Here, the dehumidifying and cooling operation is performed by the refrigeration cycle circuit 12. That is, in the refrigeration cycle circuit 12, the compressor 21 is driven in a state where the outdoor expansion valve 23 is slightly opened, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is closed. On the other hand, in the temperature control circuit 41, the heater 43 is operated to drive the main pump 42, and the heat medium for temperature control is circulated.
 これにより、空調用熱媒体は、圧縮機21、室外膨張弁23、室外熱交換器24、分岐点56、室内膨張弁25、吸熱器26、分岐点57、及びアキュムレータ27を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外膨張弁23で膨張され中圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、ヒータコア44を迂回する割合を調整する。これにより、導入された空気が吸熱器26で除湿冷却され、乾燥した涼しい空気が車室内に供給される。
As a result, the heat medium for air conditioning circulates in this order via the compressor 21, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 56, the indoor expansion valve 25, the heat absorber 26, the branch point 57, and the accumulator 27. do. In this circulation path, the heat medium for air conditioning of the gas phase is compressed by the compressor 21 to a high pressure, expanded by the outdoor expansion valve 23 to a medium pressure, and radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. Become. The liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44. As a result, the introduced air is dehumidified and cooled by the heat absorber 26, and dry and cool air is supplied to the vehicle interior.
 [冷房運転]
 図5は、冷房運転を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示している。冷凍サイクル回路12によって、冷房運転を行なう場合、室外膨張弁23を全開にし、室内膨張弁25を僅かに開放し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。
[Cooling operation]
FIG. 5 is a diagram showing a cooling operation.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, and the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line. When the cooling operation is performed by the refrigeration cycle circuit 12, the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 slightly opened, and the expansion valve 55 closed.
 これにより、空調用熱媒体は、圧縮機21、室外膨張弁23、室外熱交換器24、分岐点56、室内膨張弁25、吸熱器26、分岐点57、及びアキュムレータ27を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、ヒータコア44を迂回する割合を調整する。これにより、導入された空気が吸熱器26で冷却され、涼しい空気が車室内に供給される。
As a result, the heat medium for air conditioning circulates in this order via the compressor 21, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 56, the indoor expansion valve 25, the heat absorber 26, the branch point 57, and the accumulator 27. do. In this circulation path, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44. As a result, the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
 次に、車両用空気調和装置11の主要な制御処理について説明する。
 図6は、車両用空気調和装置のブロック図である。
 車両用空気調和装置11は、情報取得部72と、充電予約部73と、を備える。
 情報取得部72は、各種情報を取得する。例えば、内気温度センサで内気温度を取得する。外気温度センサで外気温度を取得する。日射センサで日射量を取得する。吸熱器温度センサで吸熱器26の温度を取得する。ユーザによって設定された空調の設定温度を取得する。バッテリ水温センサでバッテリ45における入口側の温調用熱媒体の温度を検出する。バッテリ温度センサでバッテリ45の温度を検出する。燃料センサで燃料の残量を検出する。蓄冷温度センサで蓄冷器材46の温度を検出する。充電センサで充電状態を検出する。予約されていた充電拠点における充電時の予想外気温度等を、インターネット通信を介して取得する。各種データは、コントローラ71に入力される。
 充電予約部73は、ユーザによって設定されるバッテリ45の充電予約を受け付け、次回充電までの時間を含む充電予約情報は、コントローラ71に入力される。
Next, the main control processing of the vehicle air conditioner 11 will be described.
FIG. 6 is a block diagram of an air conditioner for a vehicle.
The vehicle air conditioner 11 includes an information acquisition unit 72 and a charge reservation unit 73.
The information acquisition unit 72 acquires various types of information. For example, the inside air temperature is acquired by the inside air temperature sensor. Acquire the outside air temperature with the outside air temperature sensor. Acquire the amount of solar radiation with the solar radiation sensor. The temperature of the heat absorber 26 is acquired by the heat absorber temperature sensor. Acquires the set temperature of air conditioning set by the user. The battery water temperature sensor detects the temperature of the temperature control heat medium on the inlet side of the battery 45. The battery temperature sensor detects the temperature of the battery 45. The fuel sensor detects the remaining amount of fuel. The temperature of the cold storage device 46 is detected by the cold storage temperature sensor. The charge sensor detects the charge status. Obtain the expected unexpected air temperature, etc. at the time of charging at the reserved charging base via Internet communication. Various data are input to the controller 71.
The charge reservation unit 73 accepts the charge reservation of the battery 45 set by the user, and the charge reservation information including the time until the next charge is input to the controller 71.
 コントローラ71は、充電前制御処理、及び充電時制御処理を実行し、冷凍サイクル回路12、HVACユニット13、及び温調回路41を駆動制御する。すなわち、コントローラ71は、冷凍サイクル回路12の圧縮機21、室外膨張弁23、室内膨張弁25、膨張弁55、及び送風機28を駆動制御する。また、コントローラ71は、HVACユニット13の送風ファン14、及びエアミックスダンパ15を駆動制御する。さらに、コントローラ71は、温調回路41のメインポンプ42、ヒータ43、三方弁52、三方弁61、三方弁63、及び三方弁68を駆動制御する。 The controller 71 executes pre-charging control processing and charging control processing, and drives and controls the refrigeration cycle circuit 12, the HVAC unit 13, and the temperature control circuit 41. That is, the controller 71 drives and controls the compressor 21, the outdoor expansion valve 23, the indoor expansion valve 25, the expansion valve 55, and the blower 28 of the refrigeration cycle circuit 12. Further, the controller 71 drives and controls the blower fan 14 and the air mix damper 15 of the HVAC unit 13. Further, the controller 71 drives and controls the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the three-way valve 63, and the three-way valve 68 of the temperature control circuit 41.
 図7は、充電前制御処理の一例を示すフローチャートである。
 充電前制御処理は、所定時間毎のタイマ割込み処理として実行される。
 ステップS101では、バッテリ45が充電状態ではない非充電状態であるか否かを判定する。バッテリ45が充電状態であるときには、そのまま所定のメインプログラムに復帰する。一方、バッテリ45が非充電状態であるときにはステップS102に移行する。
 ステップS102では、バッテリ45の充電予約があるか否かを判定する。バッテリ45の充電予約がないときにはステップS108に移行する。一方、バッテリ45の充電予約があるときにはステップS103に移行する。
FIG. 7 is a flowchart showing an example of pre-charging control processing.
The pre-charging control process is executed as a timer interrupt process at predetermined time intervals.
In step S101, it is determined whether or not the battery 45 is in a non-charged state, not a charged state. When the battery 45 is in the charged state, it returns to the predetermined main program as it is. On the other hand, when the battery 45 is in the non-charged state, the process proceeds to step S102.
In step S102, it is determined whether or not there is a charge reservation for the battery 45. When there is no charge reservation for the battery 45, the process proceeds to step S108. On the other hand, when there is a charge reservation for the battery 45, the process proceeds to step S103.
 ステップS103では、圧縮機21の回転数Ncが予め定めた閾値N1未満であるか否かを判定する。閾値N1は、最大回転数の50%程度の値である。ここで、回転数Ncが閾値N1以上であるときには、冷房運転を行なっている冷凍サイクル回路12の冷力に余力がないと判断してステップS108に移行する。一方、回転数Ncが閾値N1未満であるときには、冷房運転を行なっている冷凍サイクル回路12の冷力に余力があると判断してステップS104に移行する。
 ステップS104では、バッテリ45の温度Tbが予め定めた閾値T1より高いか否かを判定する。閾値T1は、冷却が不要と判断される温度の上限値であり、例えば40℃程度である。ここで、バッテリ45の温度Tbが閾値T1以下であるときには、バッテリ45の冷却は不要であると判断してステップS106に移行する。一方、バッテリ45の温度Tbが閾値T1より高いときには、バッテリ45の冷却が必要であると判断してステップS105に移行する。
In step S103, it is determined whether or not the rotation speed Nc of the compressor 21 is less than a predetermined threshold value N1. The threshold value N1 is a value of about 50% of the maximum rotation speed. Here, when the rotation speed Nc is equal to or higher than the threshold value N1, it is determined that there is no surplus cooling power of the refrigerating cycle circuit 12 performing the cooling operation, and the process proceeds to step S108. On the other hand, when the rotation speed Nc is less than the threshold value N1, it is determined that the refrigerating cycle circuit 12 performing the cooling operation has a surplus power, and the process proceeds to step S104.
In step S104, it is determined whether or not the temperature Tb of the battery 45 is higher than the predetermined threshold value T1. The threshold value T1 is an upper limit value of the temperature at which cooling is judged to be unnecessary, and is, for example, about 40 ° C. Here, when the temperature Tb of the battery 45 is equal to or less than the threshold value T1, it is determined that cooling of the battery 45 is unnecessary, and the process proceeds to step S106. On the other hand, when the temperature Tb of the battery 45 is higher than the threshold value T1, it is determined that the battery 45 needs to be cooled, and the process proceeds to step S105.
 ステップS105では、冷凍サイクル回路12の冷力によってバッテリ45の冷却を行ない、所定のメインプログラムに復帰する。具体的には、冷凍サイクル回路12で冷房運転を行なうために、室外膨張弁23を全開にし、室内膨張弁25を僅かに開放し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。温調回路41では、ヒータ43を停止し、メインポンプ42を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、バッテリ45、分岐点62、三方弁63、三方弁68、分岐点66、熱交換器47における温調用熱媒体流路47A、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
 ステップS106では、予約されている次回の充電までの時間tnが、予め定めた閾値t1未満であるか否かを判定する。閾値t1は、蓄冷器材46の熱容量によっても異なるが、例えば数分から数十分程度である。ここで、時間tnが閾値t1以上であるときには、蓄冷器材46への蓄冷を開始するにはまだ早いと判断してステップS108に移行する。一方、時間tnが閾値t1未満であるときにはステップS107に移行する。
In step S105, the battery 45 is cooled by the cooling power of the refrigeration cycle circuit 12, and the program returns to a predetermined main program. Specifically, in order to perform the cooling operation in the refrigeration cycle circuit 12, the compressor 21 is opened in a state where the outdoor expansion valve 23 is fully opened, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is slightly opened. Drive. In the temperature control circuit 41, the heater 43 is stopped, the main pump 42 is driven, and the heat medium for temperature control is circulated. Further, the heat medium for temperature control is the heat for temperature control in the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47. Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
In step S106, it is determined whether or not the reserved time tn until the next charging is less than a predetermined threshold value t1. The threshold value t1 varies depending on the heat capacity of the cold storage device 46, but is, for example, about several minutes to several tens of minutes. Here, when the time tn is equal to or greater than the threshold value t1, it is determined that it is still too early to start the cold storage in the cold storage device 46, and the process proceeds to step S108. On the other hand, when the time tn is less than the threshold value t1, the process proceeds to step S107.
 閾値t1は、固定値でもよいが、予約されていた充電拠点における充電時の予想外気温度や、冷房運転の設定温度に応じて可変にすることが好ましい。具体的にはマップを参照し、予想外気温度や設定温度に応じて閾値t1を設定する。
 図8は、閾値の設定に用いるマップである。
 図中の(a)は、予想外気温度に応じて閾値t1を設定するためのマップである。ここでは、予想外気温度が高いほど閾値Tthが大きくなるように設定されている。これにより、予想外気温度が高いほど、蓄冷器材46への蓄冷開始が早まる。図中の(b)は、設定温度に応じて閾値t1を設定するためのマップである。ここでは、設定温度が高いほど閾値t1が大きくなるように設定されている。これにより、設定温度が高いほど、蓄冷器材46への蓄冷開始が早まる。
The threshold value t1 may be a fixed value, but it is preferable to make it variable according to the unexpected outside air temperature at the time of charging at the reserved charging base and the set temperature of the cooling operation. Specifically, the threshold value t1 is set according to the unexpected outside air temperature and the set temperature with reference to the map.
FIG. 8 is a map used for setting the threshold value.
(A) in the figure is a map for setting the threshold value t1 according to the expected outside air temperature. Here, the threshold value Tth is set to increase as the unexpected air temperature increases. As a result, the higher the unexpected air temperature, the earlier the start of cold storage in the cold storage device 46. (B) in the figure is a map for setting the threshold value t1 according to the set temperature. Here, the higher the set temperature, the larger the threshold value t1 is set. As a result, the higher the set temperature, the earlier the start of cold storage in the cold storage device 46.
 ステップS107では、冷凍サイクル回路12の冷力によって蓄冷器材46への蓄冷を行ない、所定のメインプログラムに復帰する。具体的には、冷凍サイクル回路12で冷房運転を行なうために、室外膨張弁23を全開にし、室内膨張弁25を僅かに開放し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。温調回路41では、ヒータ43を停止し、メインポンプ42を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、配管51e、分岐点62、三方弁63、蓄冷器材46、分岐点66、熱交換器47における温調用熱媒体流路47A、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
 ステップS108では、通常の空調運転を行ない、所定のメインプログラムに復帰する。
In step S107, the cold power of the refrigeration cycle circuit 12 is used to store cold in the cold storage device 46, and the program returns to a predetermined main program. Specifically, in order to perform the cooling operation in the refrigeration cycle circuit 12, the compressor 21 is opened in a state where the outdoor expansion valve 23 is fully opened, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is slightly opened. Drive. In the temperature control circuit 41, the heater 43 is stopped, the main pump 42 is driven, and the heat medium for temperature control is circulated. Further, the heat medium for temperature control is the heat for temperature control in the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the pipe 51e, the branch point 62, the three-way valve 63, the cold storage material 46, the branch point 66, and the heat exchanger 47. Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
In step S108, normal air conditioning operation is performed, and the program returns to a predetermined main program.
 図9は、充電時制御処理の一例を示すフローチャートである。
 充電時制御処理は、所定時間毎のタイマ割込み処理として実行される。
 ステップS111では、バッテリ45が充電状態であるか否かを判定する。ここで、バッテリ45が充電状態ではない非充電状態であるときには、そのまま所定のメインプログラムに復帰する。一方、バッテリ45が充電状態であるときには、ステップS112に移行する。
 ステップS112では、バッテリ45の温度Tbが予め定めた閾値T2より高いか否かを判定する。閾値T2は、異常な温度上昇であると判断される下限値であり、例えば50℃程度である。ここで、バッテリ45の温度Tbが閾値T2以下であるときには、異常な温度上昇ではないと判断してステップS114に移行する。一方、バッテリ45の温度Tbが閾値T2より高いときには、異常な温度上昇であると判断してステップS113に移行する。
FIG. 9 is a flowchart showing an example of the charging control process.
The charging control process is executed as a timer interrupt process at predetermined time intervals.
In step S111, it is determined whether or not the battery 45 is in a charged state. Here, when the battery 45 is not in the charged state but in the non-charged state, it returns to the predetermined main program as it is. On the other hand, when the battery 45 is in the charged state, the process proceeds to step S112.
In step S112, it is determined whether or not the temperature Tb of the battery 45 is higher than the predetermined threshold value T2. The threshold value T2 is a lower limit value that is determined to be an abnormal temperature rise, and is, for example, about 50 ° C. Here, when the temperature Tb of the battery 45 is equal to or less than the threshold value T2, it is determined that the temperature does not rise abnormally, and the process proceeds to step S114. On the other hand, when the temperature Tb of the battery 45 is higher than the threshold value T2, it is determined that the temperature has risen abnormally, and the process proceeds to step S113.
 ステップS113では、バッテリ45に対してフル冷却を行ない、所定のメインプログラムに復帰する。具体的には、冷凍サイクル回路12で、室外膨張弁23を全開にし、室内膨張弁25を閉鎖し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。温調回路41では、ヒータ43を停止し、メインポンプ42を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、バッテリ45、分岐点62、三方弁63、蓄冷器材46、分岐点66、熱交換器47における温調用熱媒体流路47A、及び分岐点54を順に経由して循環するように、各三方弁を制御する。 In step S113, the battery 45 is fully cooled and returned to a predetermined main program. Specifically, in the refrigeration cycle circuit 12, the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 closed, and the expansion valve 55 slightly opened. In the temperature control circuit 41, the heater 43 is stopped, the main pump 42 is driven, and the heat medium for temperature control is circulated. Further, the heat medium for temperature control is the heat for temperature control in the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the cold storage material 46, the branch point 66, and the heat exchanger 47. Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
 ステップS114では、バッテリ45の温度Tbが予め定めた閾値T3より高いか否かを判定する。閾値T3は、冷却は不要と判断される上限値であり、例えば40℃程度である。ここで、バッテリ45の温度Tbが閾値T3以下であるときには、冷却は不要であると判断してステップS120に移行する。一方、バッテリ45の温度Tbが閾値T3より高いときには、冷却が必要であると判断してステップS115に移行する。
 ステップS115では、蓄冷器材46の温度Tcが予め定めた閾値T4より低いか否かを判定する。閾値T4は、十分な冷却能力があると判断される上限値であり、例えば十数℃程度である。ここで、蓄冷器材46の温度Tcが閾値T4以上であるときには、蓄冷器材46だけでは十分な冷却を行なえないと判断してステップS120に移行する。一方、蓄冷器材46の温度Tcが閾値T4より低いときには、蓄冷器材46だけで十分な冷却を行なえると判断してステップS116に移行する。
In step S114, it is determined whether or not the temperature Tb of the battery 45 is higher than the predetermined threshold value T3. The threshold value T3 is an upper limit value at which it is determined that cooling is unnecessary, and is, for example, about 40 ° C. Here, when the temperature Tb of the battery 45 is equal to or lower than the threshold value T3, it is determined that cooling is not necessary, and the process proceeds to step S120. On the other hand, when the temperature Tb of the battery 45 is higher than the threshold value T3, it is determined that cooling is necessary, and the process proceeds to step S115.
In step S115, it is determined whether or not the temperature Tc of the cold storage device 46 is lower than the predetermined threshold value T4. The threshold value T4 is an upper limit value that is determined to have sufficient cooling capacity, and is, for example, about a dozen ° C. Here, when the temperature Tc of the cold storage device 46 is equal to or higher than the threshold value T4, it is determined that sufficient cooling cannot be performed by the cold storage device 46 alone, and the process proceeds to step S120. On the other hand, when the temperature Tc of the cold storage device 46 is lower than the threshold value T4, it is determined that sufficient cooling can be performed only by the cold storage device 46, and the process proceeds to step S116.
 ステップS116では、蓄冷器材46によるバッテリ45の冷却を行ない、所定のメインプログラムに復帰する。具体的には、冷凍サイクル回路12で冷房運転を行なうために、室外膨張弁23を全開にし、室内膨張弁25を僅かに開放し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。温調回路41では、ヒータ43を停止し、メインポンプ42を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、バッテリ45、分岐点62、三方弁63、蓄冷器材46、分岐点66、熱交換器47における温調用熱媒体流路47A、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
 ステップS117では、圧縮機21の回転数Ncが予め定めた閾値N1未満であるか否かを判定する。閾値N1は、最大回転数の50%程度の値である。ここで、回転数Ncが閾値N1以上であるときには、冷房運転を行なっている冷凍サイクル回路12の冷力に余力がないと判断してステップS119に移行する。一方、回転数Ncが閾値N1未満であるときには、冷房運転を行なっている冷凍サイクル回路12の冷力に余力があると判断してステップS118に移行する。
In step S116, the battery 45 is cooled by the cold storage device 46, and the program returns to a predetermined main program. Specifically, in order to perform the cooling operation in the refrigeration cycle circuit 12, the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 slightly opened, and the expansion valve 55 closed. .. In the temperature control circuit 41, the heater 43 is stopped, the main pump 42 is driven, and the heat medium for temperature control is circulated. Further, the heat medium for temperature control is the heat for temperature control in the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the cold storage material 46, the branch point 66, and the heat exchanger 47. Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
In step S117, it is determined whether or not the rotation speed Nc of the compressor 21 is less than a predetermined threshold value N1. The threshold value N1 is a value of about 50% of the maximum rotation speed. Here, when the rotation speed Nc is equal to or higher than the threshold value N1, it is determined that there is no surplus cooling power of the refrigerating cycle circuit 12 performing the cooling operation, and the process proceeds to step S119. On the other hand, when the rotation speed Nc is less than the threshold value N1, it is determined that the refrigerating cycle circuit 12 performing the cooling operation has a surplus power, and the process proceeds to step S118.
 ステップS118では、冷凍サイクル回路12によるバッテリ45の冷却を行ない、所定のメインプログラムに復帰する。具体的には、冷凍サイクル回路12で、室外膨張弁23を全開にし、室内膨張弁25を僅かに開放し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。温調回路41では、ヒータ43を停止し、メインポンプ42を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、バッテリ45、分岐点62、三方弁63、三方弁68、分岐点66、熱交換器47における温調用熱媒体流路47A、及び分岐点54を順に経由して循環するように、各三方弁を制御する。 In step S118, the battery 45 is cooled by the refrigeration cycle circuit 12, and the program returns to the predetermined main program. Specifically, in the refrigeration cycle circuit 12, the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 slightly opened, and the expansion valve 55 slightly opened. In the temperature control circuit 41, the heater 43 is stopped, the main pump 42 is driven, and the heat medium for temperature control is circulated. Further, the heat medium for temperature control is the heat for temperature control in the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47. Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
 ステップS119では、冷凍サイクル回路12によるバッテリ45の冷却を優先的に行ない、所定のメインプログラムに復帰する。具体的には、冷凍サイクル回路12で、室外膨張弁23を全開にし、室内膨張弁25を閉鎖し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。温調回路41では、ヒータ43を停止し、メインポンプ42を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、バッテリ45、分岐点62、三方弁63、三方弁68、分岐点66、熱交換器47における温調用熱媒体流路47A、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
 ステップS120では、通常の空調運転を行ない、所定のメインプログラムに復帰する。
In step S119, the refrigerating cycle circuit 12 preferentially cools the battery 45 and returns to a predetermined main program. Specifically, in the refrigeration cycle circuit 12, the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 closed, and the expansion valve 55 slightly opened. In the temperature control circuit 41, the heater 43 is stopped, the main pump 42 is driven, and the heat medium for temperature control is circulated. Further, the heat medium for temperature control is the heat for temperature control in the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47. Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
In step S120, normal air conditioning operation is performed, and the program returns to a predetermined main program.
 次に、車両用空気調和装置11の主要な運転について説明する。
 [充電前の蓄冷運転]
 図10は、充電前の蓄冷運転を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示している。また、温調用熱媒体が通過する流路を太い破線で示す。ここでは、冷房運転が実施されている状態で、予約されている次回の充電までの時間tnが閾値t1未満であるときに実行される充電前の蓄冷運転について説明する。冷凍サイクル回路12では、室外膨張弁23を全開にし、室内膨張弁25を僅かに開放し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。一方、温調回路41では、ヒータ43を停止し、メインポンプ42を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、配管51e、分岐点62、三方弁63、蓄冷器材46、分岐点66、熱交換器47の温調用熱媒体流路47A、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
Next, the main operation of the vehicle air conditioner 11 will be described.
[Cold storage operation before charging]
FIG. 10 is a diagram showing a cold storage operation before charging.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, and the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line. The flow path through which the heat medium for temperature control passes is indicated by a thick broken line. Here, the cold storage operation before charging, which is executed when the reserved time tn until the next charging is less than the threshold value t1 in the state where the cooling operation is performed, will be described. In the refrigeration cycle circuit 12, the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 slightly opened, and the expansion valve 55 slightly opened. On the other hand, in the temperature control circuit 41, the heater 43 is stopped, the main pump 42 is driven, and the temperature control heat medium is circulated. Further, the heat medium for temperature control is the heat for temperature control of the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the pipe 51e, the branch point 62, the three-way valve 63, the cold storage material 46, the branch point 66, and the heat exchanger 47. Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
 これにより、空調用熱媒体は、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。また、液相の空調用熱媒体の一部は、膨張弁55で膨張され低圧となり、熱交換器47における空調用熱媒体流路47Bで吸熱することで蒸発気化し、高温となる。
 また、温調用熱媒体は、蓄冷器材46で吸熱することで高温となり、熱交換器47における温調用熱媒体流路47Aで放熱することで低温となる。そして、熱容量の大きな蓄冷器材46は、温調用熱媒体によって冷却され、蓄冷されてゆく。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、ヒータコア44を迂回する割合を調整する。これにより、導入された空気が吸熱器26で冷却され、涼しい空気が車室内に供給される。
As a result, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature. Further, a part of the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat in the air-conditioning heat medium flow path 47B in the heat exchanger 47, it evaporates and vaporizes to a high temperature.
Further, the heat medium for temperature control becomes high temperature by absorbing heat in the cold storage device 46, and becomes low temperature by radiating heat in the heat medium flow path 47A for temperature control in the heat exchanger 47. Then, the cold storage device 46 having a large heat capacity is cooled by the heat medium for temperature control and is stored cold.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44. As a result, the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
 [充電前のバッテリ冷却運転]
 図11は、充電前のバッテリ冷却運転を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示している。また、温調用熱媒体が通過する流路を太い破線で示す。ここでは、冷房運転が実施されている状態で、バッテリ45の温度Tbが閾値T1より高いときに実行される充電前のバッテリ冷却運転について説明する。冷凍サイクル回路12では、室外膨張弁23を全開にし、室内膨張弁25を僅かに開放し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。一方、温調回路41では、ヒータ43を停止し、メインポンプ42を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、バッテリ45、分岐点62、三方弁63、三方弁68、分岐点66、熱交換器47の温調用熱媒体流路47A、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
[Battery cooling operation before charging]
FIG. 11 is a diagram showing a battery cooling operation before charging.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, and the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line. The flow path through which the heat medium for temperature control passes is indicated by a thick broken line. Here, the battery cooling operation before charging, which is executed when the temperature Tb of the battery 45 is higher than the threshold value T1 in the state where the cooling operation is performed, will be described. In the refrigeration cycle circuit 12, the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 slightly opened, and the expansion valve 55 slightly opened. On the other hand, in the temperature control circuit 41, the heater 43 is stopped, the main pump 42 is driven, and the temperature control heat medium is circulated. Further, the heat medium for temperature control is the heat for temperature control of the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47. Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
 これにより、空調用熱媒体は、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。また、液相の空調用熱媒体の一部は、膨張弁55で膨張され低圧となり、熱交換器47における空調用熱媒体流路47Bで吸熱することで蒸発気化し、高温となる。
 また、温調用熱媒体は、バッテリ45で吸熱することで高温となり、熱交換器47における温調用熱媒体流路47Aで放熱することで低温となる。これにより、バッテリ45は、温調用熱媒体によって冷却される。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、ヒータコア44を迂回する割合を調整する。これにより、導入された空気が吸熱器26で冷却され、涼しい空気が車室内に供給される。
As a result, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature. Further, a part of the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat in the air-conditioning heat medium flow path 47B in the heat exchanger 47, it evaporates and vaporizes to a high temperature.
Further, the heat medium for temperature control becomes high temperature by absorbing heat by the battery 45, and becomes low temperature by dissipating heat in the heat medium flow path 47A for temperature control in the heat exchanger 47. As a result, the battery 45 is cooled by the heat medium for temperature control.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44. As a result, the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
 [充電時のバッテリ冷却運転(蓄冷器材)]
 図12は、充電時のバッテリ冷却運転(蓄冷器材)を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示している。また、温調用熱媒体が通過する流路を太い破線で示す。ここでは、冷房運転が実施されている状態で、予約されていた充電が行なわれているときに実行される充電時のバッテリ冷却運転(蓄冷器材)について説明する。冷凍サイクル回路12では、室外膨張弁23を全開にし、室内膨張弁25を僅かに開放し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。一方、温調回路41では、ヒータ43を停止し、メインポンプ42を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、バッテリ45、分岐点62、三方弁63、蓄冷器材46、分岐点66、熱交換器47の温調用熱媒体流路47A、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
[Battery cooling operation during charging (cooling equipment)]
FIG. 12 is a diagram showing a battery cooling operation (cold storage device) during charging.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, and the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line. The flow path through which the heat medium for temperature control passes is indicated by a thick broken line. Here, the battery cooling operation (cold storage device) at the time of charging, which is executed when the reserved charging is being performed in the state where the cooling operation is being performed, will be described. In the refrigeration cycle circuit 12, the compressor 21 is driven in a state where the outdoor expansion valve 23 is fully opened, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is closed. On the other hand, in the temperature control circuit 41, the heater 43 is stopped, the main pump 42 is driven, and the temperature control heat medium is circulated. Further, the heat medium for temperature control is the heat for temperature control of the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the cold storage material 46, the branch point 66, and the heat exchanger 47. Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
 これにより、空調用熱媒体は、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。
 また、温調用熱媒体は、バッテリ45で吸熱することで高温となり、蓄冷器材46で放熱することで低温となる。これにより、バッテリ45は、温調用熱媒体によって冷却される。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、ヒータコア44を迂回する割合を調整する。これにより、導入された空気が吸熱器26で冷却され、涼しい空気が車室内に供給される。
As a result, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
Further, the heat medium for temperature control becomes high temperature by absorbing heat by the battery 45, and becomes low temperature by dissipating heat by the cold storage device 46. As a result, the battery 45 is cooled by the heat medium for temperature control.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44. As a result, the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
 [充電時のバッテリ冷却運転(フル冷却)]
 図13は、充電時のバッテリ冷却運転(フル冷却)を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示している。また、温調用熱媒体が通過する流路を太い破線で示す。ここでは、予約されていた充電が行なわれている状態で、バッテリ45の温度Tbが閾値T2より高いときに実行される充電時のバッテリ冷却運転(フル冷却)について説明する。冷凍サイクル回路12では、室外膨張弁23を全開にし、室内膨張弁25を閉鎖し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。一方、温調回路41では、ヒータ43を停止し、メインポンプ42を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、バッテリ45、分岐点62、三方弁63、蓄冷器材46、分岐点66、熱交換器47の温調用熱媒体流路47A、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
[Battery cooling operation during charging (full cooling)]
FIG. 13 is a diagram showing a battery cooling operation (full cooling) during charging.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, and the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line. The flow path through which the heat medium for temperature control passes is indicated by a thick broken line. Here, the battery cooling operation (full cooling) at the time of charging, which is executed when the temperature Tb of the battery 45 is higher than the threshold value T2 in the state where the reserved charging is being performed, will be described. In the refrigeration cycle circuit 12, the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 closed, and the expansion valve 55 slightly opened. On the other hand, in the temperature control circuit 41, the heater 43 is stopped, the main pump 42 is driven, and the temperature control heat medium is circulated. Further, the heat medium for temperature control is the heat for temperature control of the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the cold storage material 46, the branch point 66, and the heat exchanger 47. Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
 これにより、空調用熱媒体は、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、膨張弁55で膨張され低圧となり、熱交換器47における空調用熱媒体流路47Bで吸熱することで蒸発気化し、高温となる。
 また、温調用熱媒体は、バッテリ45で吸熱することで高温となり、蓄冷器材46で放熱することで低温となり、熱交換器47における温調用熱媒体流路47Aで放熱することでさらに低温となる。これにより、バッテリ45は、温調用熱媒体によって確実に冷却される。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、ヒータコア44を迂回する割合を調整する。これにより、導入された空気が車室内に供給される。
As a result, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat in the air-conditioning heat medium flow path 47B in the heat exchanger 47, it evaporates and vaporizes to a high temperature.
Further, the heat medium for temperature control becomes high temperature by absorbing heat in the battery 45, becomes low temperature by radiating heat in the regenerator material 46, and becomes even lower in temperature by radiating heat in the heat medium flow path 47A for temperature control in the heat exchanger 47. .. As a result, the battery 45 is surely cooled by the heat medium for temperature control.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44. As a result, the introduced air is supplied to the passenger compartment.
 [充電時のバッテリ冷却運転(冷凍サイクル回路)]
 図14は、充電時のバッテリ冷却運転(冷凍サイクル回路)を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示している。また、温調用熱媒体が通過する流路を太い破線で示す。ここでは、予約されていた充電が行なわれている状態で、蓄冷器材46の温度Tcが閾値T4以上であるときに実行される充電時のバッテリ冷却運転(冷凍サイクル回路)について説明する。冷凍サイクル回路12では、室外膨張弁23を全開にし、室内膨張弁25を僅かに開放し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。一方、温調回路41では、ヒータ43を停止し、メインポンプ42を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、バッテリ45、分岐点62、三方弁63、三方弁68、分岐点66、熱交換器47の温調用熱媒体流路47A、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
[Battery cooling operation during charging (refrigeration cycle circuit)]
FIG. 14 is a diagram showing a battery cooling operation (refrigeration cycle circuit) during charging.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, and the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line. The flow path through which the heat medium for temperature control passes is indicated by a thick broken line. Here, the battery cooling operation (refrigeration cycle circuit) at the time of charging, which is executed when the temperature Tc of the cold storage device 46 is equal to or higher than the threshold value T4 in the state where the reserved charging is being performed, will be described. In the refrigeration cycle circuit 12, the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 slightly opened, and the expansion valve 55 slightly opened. On the other hand, in the temperature control circuit 41, the heater 43 is stopped, the main pump 42 is driven, and the temperature control heat medium is circulated. Further, the heat medium for temperature control is the heat for temperature control of the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47. Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
 これにより、空調用熱媒体は、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。また、液相の空調用熱媒体の一部は、膨張弁55で膨張され低圧となり、熱交換器47における空調用熱媒体流路47Bで吸熱することで蒸発気化し、高温となる。
 また、温調用熱媒体は、バッテリ45で吸熱することで高温となり、熱交換器47における温調用熱媒体流路47Aで放熱することで低温となる。これにより、バッテリ45は、温調用熱媒体によって冷却される。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、ヒータコア44を迂回する割合を調整する。これにより、導入された空気が吸熱器26で冷却され、涼しい空気が車室内に供給される。
As a result, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature. Further, a part of the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat in the air-conditioning heat medium flow path 47B in the heat exchanger 47, it evaporates and vaporizes to a high temperature.
Further, the heat medium for temperature control becomes high temperature by absorbing heat by the battery 45, and becomes low temperature by dissipating heat in the heat medium flow path 47A for temperature control in the heat exchanger 47. As a result, the battery 45 is cooled by the heat medium for temperature control.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44. As a result, the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
 [充電時のバッテリ冷却運転(冷却優先)]
 図15は、充電時のバッテリ冷却運転(冷却優先)を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示している。また、温調用熱媒体が通過する流路を太い破線で示す。ここでは、予約されていた充電が行なわれている状態で、蓄冷器材46の温度Tcが閾値T4以上であるときに実行される充電時のバッテリ冷却運転(冷却優先)について説明する。冷凍サイクル回路12では、室外膨張弁23を全開にし、室内膨張弁25を閉鎖し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。一方、温調回路41では、ヒータ43を停止し、メインポンプ42を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、バッテリ45、分岐点62、三方弁63、三方弁68、分岐点66、熱交換器47の温調用熱媒体流路47A、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
[Battery cooling operation during charging (cooling priority)]
FIG. 15 is a diagram showing a battery cooling operation (cooling priority) during charging.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, and the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line. The flow path through which the heat medium for temperature control passes is indicated by a thick broken line. Here, the battery cooling operation (cooling priority) at the time of charging, which is executed when the temperature Tc of the cold storage device 46 is equal to or higher than the threshold value T4 in the reserved charging state, will be described. In the refrigeration cycle circuit 12, the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 closed, and the expansion valve 55 slightly opened. On the other hand, in the temperature control circuit 41, the heater 43 is stopped, the main pump 42 is driven, and the temperature control heat medium is circulated. Further, the heat medium for temperature control is the heat for temperature control of the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47. Each three-way valve is controlled so as to circulate through the medium flow path 47A and the branch point 54 in order.
 これにより、空調用熱媒体は、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、膨張弁55で膨張され低圧となり、熱交換器47における空調用熱媒体流路47Bで吸熱することで蒸発気化し、高温となる。
 また、温調用熱媒体は、バッテリ45で吸熱することで高温となり、熱交換器47における温調用熱媒体流路47Aで放熱することで低温となる。これにより、バッテリ45は、温調用熱媒体によって冷却される。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、ヒータコア44を迂回する割合を調整する。これにより、導入された空気が車室内に供給される。
As a result, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat in the air-conditioning heat medium flow path 47B in the heat exchanger 47, it evaporates and vaporizes to a high temperature.
Further, the heat medium for temperature control becomes high temperature by absorbing heat by the battery 45, and becomes low temperature by dissipating heat in the heat medium flow path 47A for temperature control in the heat exchanger 47. As a result, the battery 45 is cooled by the heat medium for temperature control.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the heater core 44. As a result, the introduced air is supplied to the passenger compartment.
 次に、他の運転について補足説明する。
 [バッテリ加温運転]
 図16は、バッテリ加温運転を示す図である。
 図中、温調用熱媒体が通過する流路を太い破線で示す。ここでは、バッテリ45の温度が予め定めた閾値よりも低いときに実行されるバッテリ加温運転について説明する。冷凍サイクル回路12については、独立して機能しているものとして説明を省略する。温調回路41では、ヒータ43を作動させ、メインポンプ42を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、バッテリ45、分岐点62、三方弁63、三方弁68、分岐点53、及び分岐点54を順に経由して循環するように、各三方弁を制御する。この循環経路において、温調用熱媒体は、ヒータ43で吸熱することで高温となり、バッテリ45で放熱することで低温となる。これにより、バッテリ45は、温調用熱媒体によって加温される。
Next, other operations will be supplementarily described.
[Battery heating operation]
FIG. 16 is a diagram showing a battery heating operation.
In the figure, the flow path through which the heat medium for temperature control passes is indicated by a thick broken line. Here, the battery heating operation executed when the temperature of the battery 45 is lower than a predetermined threshold value will be described. The description of the refrigeration cycle circuit 12 will be omitted on the assumption that the refrigeration cycle circuit 12 functions independently. In the temperature control circuit 41, the heater 43 is operated to drive the main pump 42, and the heat medium for temperature control is circulated. Further, the heat medium for temperature control passes through the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 53, and the branch point 54 in this order. Control each three-way valve so that it circulates. In this circulation path, the heat medium for temperature control becomes high temperature by absorbing heat by the heater 43, and becomes low temperature by dissipating heat by the battery 45. As a result, the battery 45 is heated by the heat medium for temperature control.
 上記より、バッテリ45が「バッテリ」に対応し、温調回路41が「冷却回路」に対応し、冷凍サイクル回路12が「冷凍サイクル回路」に対応し、蓄冷器材46が「蓄冷器材」に対応する。また、熱交換器47が「第一の熱交換器」に対応し、ステップS101~S108の処理、及びステップS111~S120の処理が「回路切替制御部」に対応する。また、配管51eが「バッテリバイパス流路」に対応し、配管51fの一部、及び配管51gが「蓄冷器材バイパス流路」に対応する。 From the above, the battery 45 corresponds to the "battery", the temperature control circuit 41 corresponds to the "cooling circuit", the refrigeration cycle circuit 12 corresponds to the "refrigeration cycle circuit", and the cold storage device 46 corresponds to the "cold storage device". do. Further, the heat exchanger 47 corresponds to the "first heat exchanger", and the processes of steps S101 to S108 and the processes of steps S111 to S120 correspond to the "circuit switching control unit". Further, the pipe 51e corresponds to the "battery bypass flow path", and a part of the pipe 51f and the pipe 51g correspond to the "cold storage equipment bypass flow path".
 《作用効果》
 次に、第一実施形態の主要な作用効果について説明する。
 トラック等では充電中に乗員が車室内で休憩することもあり、バッテリ45の冷却と冷房運転を同時に行なうことが考えられる。したがって、冷房運転によって冷凍サイクル回路12の冷力が奪われると、バッテリ45の冷却能力が低下するため、充電電流の低下によって充電時間が長くなる可能性があった。
 そこで、温調回路41には、バッテリ45と、蓄冷器材46と、熱交換器47と、を設ける。そして、予約されていたバッテリ45の充電が実行される前に(S102の判定が“Yes”)、熱交換器47で冷却された温調用熱媒体によって蓄冷器材46に蓄冷しておく(S107)。その後、予約されていたバッテリの充電が実行されているときに(S111の判定が“Yes”)、蓄冷器材46で冷却された温調用熱媒体よってバッテリ45を冷却する(S116)。
《Effect》
Next, the main effects of the first embodiment will be described.
In a truck or the like, the occupant may take a break in the vehicle interior during charging, and it is conceivable that the battery 45 is cooled and the cooling operation is performed at the same time. Therefore, if the cooling power of the refrigeration cycle circuit 12 is deprived by the cooling operation, the cooling capacity of the battery 45 is lowered, so that the charging time may be lengthened due to the lowering of the charging current.
Therefore, the temperature control circuit 41 is provided with a battery 45, a cold storage material 46, and a heat exchanger 47. Then, before the reserved battery 45 is charged (the determination in S102 is “Yes”), the cold storage material 46 is stored in the cold storage material 46 by the heat medium for temperature control cooled by the heat exchanger 47 (S107). .. After that, when the reserved battery is being charged (the determination in S111 is “Yes”), the battery 45 is cooled by the heat control medium cooled by the cold storage device 46 (S116).
 このように、予め蓄冷器材46に蓄冷しておき、この蓄冷器材46によって充電中のバッテリ45を冷却するため、冷房運転の要求があっても、バッテリ45の冷却を犠牲にすることなく、車室内の快適性を実現することができる。
 蓄冷器材46とは、バッテリ45よりも低温になることが許容される器材であって、例えば車両走行用の電動モータ、及び燃料タンクの少なくとも一つである。バッテリ45よりも低温になることが許容される器材であれば、十分な蓄冷性能を確保することができる。また、電動モータや燃料タンクであれば、既存の構成部品であるため、これらを活用することによって、新たな蓄冷材を搭載する場合と比べてコストの増大を抑制することができる。
In this way, cold is stored in the cold storage device 46 in advance, and the battery 45 being charged is cooled by the cold storage device 46. Therefore, even if there is a request for cooling operation, the vehicle does not sacrifice the cooling of the battery 45. Indoor comfort can be achieved.
The cold storage device 46 is a device that is allowed to have a lower temperature than the battery 45, and is, for example, at least one of an electric motor for traveling a vehicle and a fuel tank. Sufficient cold storage performance can be ensured as long as the equipment allows the temperature to be lower than that of the battery 45. Further, since the electric motor and the fuel tank are existing components, it is possible to suppress an increase in cost by utilizing these components as compared with the case where a new cold storage material is mounted.
 バッテリ45をバイパスする配管51eを設け、温調用熱媒体に配管51eを通過させるか、又はバッテリ45を通過させるかを選択的に切り替えている。すなわち、予約されていた充電が実行される前には、温調用熱媒体に配管51eを通過させ、予約されていた充電が実行されているときに、温調用熱媒体にバッテリ45を通過させる。これにより、蓄冷器材46への蓄熱と、蓄冷器材46によるバッテリ45の冷却とを、容易に切り替えることができる。
 また、予約されている次回の充電までの時間tnが閾値t1未満となったときに(S106の判定が“Yes”)、蓄冷器材46への蓄冷を開始する(S107)。これにより、予約されている充電が開始されるまでに、予め蓄冷器材46を十分に蓄冷することができる。
A pipe 51e that bypasses the battery 45 is provided, and it is selectively switched between passing the pipe 51e through the heat control heat medium and passing the battery 45. That is, the pipe 51e is passed through the temperature control heat medium before the reserved charging is executed, and the battery 45 is passed through the temperature control heat medium when the reserved charging is being executed. Thereby, the heat storage in the cold storage device 46 and the cooling of the battery 45 by the cold storage device 46 can be easily switched.
Further, when the reserved time tn until the next charging becomes less than the threshold value t1 (determination of S106 is “Yes”), cold storage in the cold storage device 46 is started (S107). As a result, the cold storage device 46 can be sufficiently stored in advance by the time the reserved charging is started.
 また、予約されていた充電拠点における充電時の予想外気温度が高いほど、閾値t1を大きくすることで、蓄冷器材46への蓄冷開始を早める。これにより、予約されている充電が開始されるまでに、蓄冷器材46を十分に蓄冷することができる。
 また、冷房運転の設定温度が低いほど、充電拠点における外気温度が高いことが予想されるため、閾値t1を大きくすることで、蓄冷器材46への蓄冷開始を早める。これにより、予約されている充電が開始されるまでに、蓄冷器材46を十分に蓄冷することができる。
Further, as the unexpected air temperature at the time of charging at the reserved charging base is higher, the threshold value t1 is increased to accelerate the start of cold storage in the cold storage device 46. As a result, the cold storage device 46 can be sufficiently stored in the cold storage device 46 by the time the reserved charging is started.
Further, since it is expected that the lower the set temperature of the cooling operation, the higher the outside air temperature at the charging base, the start of cold storage in the cold storage device 46 is accelerated by increasing the threshold value t1. As a result, the cold storage device 46 can be sufficiently stored in the cold storage device 46 by the time the reserved charging is started.
 また、予約されていた充電が実行されているときには、温調用熱媒体にバッテリ45、及び蓄冷器材46を順に経由して循環させる。これにより、蓄冷器材46によって充電中のバッテリ45を冷却することができる。
 また、予約されていた充電が実行されている場合、蓄冷器材46の温度Tcが閾値T4以上になったときには(S115の判定が“No”)、冷凍サイクル回路12で冷却された空調用熱媒体によってバッテリ45を冷却する(S118又はS119)。このように、蓄冷器材46の冷力が失われたときには、冷凍サイクル回路12による冷却に切り替えることで、バッテリ45を確実に冷却することができる。
Further, when the reserved charging is being executed, the battery 45 and the cold storage device 46 are circulated in the heat medium for temperature control in this order. As a result, the battery 45 being charged can be cooled by the cold storage device 46.
Further, when the reserved charging is being executed and the temperature Tc of the cold storage device 46 becomes equal to or higher than the threshold value T4 (the determination of S115 is “No”), the heat medium for air conditioning cooled by the refrigeration cycle circuit 12 Cools the battery 45 (S118 or S119). In this way, when the cooling power of the cold storage device 46 is lost, the battery 45 can be reliably cooled by switching to cooling by the refrigeration cycle circuit 12.
 また、蓄冷器材46をバイパスする配管51gを設け、温調用熱媒体に蓄冷器材46を通過させるか、又は配管51gを通過させるかを選択的に切り替えている。すなわち、予約されていた充電が実行されている状態で、蓄冷器材46の温度Tcが閾値T4より低いときには(S115の判定が“Yes”)、温調用熱媒体に蓄冷器材46を通過させる。一方、蓄冷器材46の温度Tcが閾値T4以上であるときには(S115の判定が“No”)、温調用熱媒体に配管51gを通過させる。これにより、蓄冷器材46によるバッテリ45の冷却と、冷凍サイクル回路12によるバッテリ45の冷却とを、容易に切り替えることができる。 Further, a pipe 51 g that bypasses the cold storage device 46 is provided, and it is selectively switched between passing the cold storage device 46 through the heat control heat medium and passing the pipe 51 g. That is, when the temperature Tc of the cold storage device 46 is lower than the threshold value T4 (the determination of S115 is “Yes”) in the state where the reserved charging is being executed, the cold storage device 46 is passed through the temperature control heat medium. On the other hand, when the temperature Tc of the cold storage device 46 is equal to or higher than the threshold value T4 (the determination in S115 is “No”), the temperature control heat medium is passed through the pipe 51 g. Thereby, the cooling of the battery 45 by the cold storage device 46 and the cooling of the battery 45 by the refrigeration cycle circuit 12 can be easily switched.
 《変形例》
 本実施形態では、バッテリ45を加温したり冷却したりする構成について説明したが、これに限定されるものではない。すなわち、本実施形態では、バッテリ45を少なくとも冷却できればよいため、バッテリ45を加温する構成については省略してもよい。
 本実施形態では、充電時に冷房運転が実行される場合について説明したが、これに限定されるものではない。すなわち、車室内を冷やすという点で冷房運転と除湿冷房運転は同等であるため、充電時に除湿冷房が実行される場合についても適用可能である。
<< Modification example >>
In the present embodiment, the configuration for heating and cooling the battery 45 has been described, but the present invention is not limited to this. That is, in the present embodiment, since it is sufficient that the battery 45 can be cooled at least, the configuration for heating the battery 45 may be omitted.
In the present embodiment, the case where the cooling operation is executed at the time of charging has been described, but the present invention is not limited to this. That is, since the cooling operation and the dehumidifying / cooling operation are equivalent in terms of cooling the vehicle interior, it is also applicable to the case where the dehumidifying / cooling is executed at the time of charging.
 本実施形態では、予想外気温度や設定温度に応じて閾値t1を可変にしているが、これに限定されるものではない。蓄冷器材46として燃料タンクを使用している場合、燃料タンクの残量が多いほど、より多く蓄冷することができる。したがって、燃料タンクの残量が多いほど、閾値t1が大きくなるように設定することで、蓄冷器材46への蓄冷開始が早まるようにしてもよい。これにより、予約されている充電が開始されるまでに、蓄冷器材46を十分に蓄冷することができる。
 本実施形態では、温調回路41において、温調用熱媒体の流れを三方弁で切り替えているが、これに限定されるものではない。例えば、三方弁を設ける代わりに、各配管の夫々に開閉可能な二方弁を設け、一方を開くときに他方を閉じ、一方を閉じるときに他方を開くようにしてもよい。
In the present embodiment, the threshold value t1 is made variable according to the unexpected outside air temperature and the set temperature, but the present invention is not limited to this. When a fuel tank is used as the cold storage device 46, the larger the remaining amount of the fuel tank, the more cold can be stored. Therefore, by setting the threshold value t1 to increase as the remaining amount of the fuel tank increases, the cold storage start to the cold storage device 46 may be accelerated. As a result, the cold storage device 46 can be sufficiently stored in the cold storage device 46 by the time the reserved charging is started.
In the present embodiment, in the temperature control circuit 41, the flow of the heat medium for temperature control is switched by a three-way valve, but the present invention is not limited to this. For example, instead of providing a three-way valve, a two-way valve that can be opened and closed may be provided in each pipe, and the other may be closed when one is opened and the other may be opened when one is closed.
 本実施形態では、冷房時に室外膨張弁23を全開にする構成について説明したが、これに限定されるものではない。例えば、室外膨張弁23を迂回するバイパス流路を設け、このバイパス流路を開閉可能に構成してもよい。これにより、冷房時に室外膨張弁23を閉鎖し、バイパス流路を開放すれば、圧力損失を低減することができる。
 本実施形態では、ヒータ43によって暖房運転を行なう構成について説明したが、これに限定されるものではない。ヒートポンプ式の冷凍サイクル回路12であれば、冷凍サイクル回路12によって暖房運転を行なってもよい。
In the present embodiment, the configuration in which the outdoor expansion valve 23 is fully opened during cooling has been described, but the present invention is not limited to this. For example, a bypass flow path that bypasses the outdoor expansion valve 23 may be provided so that the bypass flow path can be opened and closed. As a result, the pressure loss can be reduced by closing the outdoor expansion valve 23 and opening the bypass flow path during cooling.
In the present embodiment, the configuration in which the heating operation is performed by the heater 43 has been described, but the present invention is not limited to this. If it is a heat pump type refrigeration cycle circuit 12, the heating operation may be performed by the refrigeration cycle circuit 12.
《第二実施形態》
 《構成》
 第二実施形態は、蓄冷器材46で冷却された温調用熱媒体によってヒータコア44(第二の熱交換器)を冷却できるようにしたものである。それ以外は、前述した第一実施形態と同様であるため、共通する構成については同一符号を付し、説明は省略する。
 図17は、第二実施形態の車両用空気調和装置を示す図である。
 先ず、温調回路41に追加された構成要素について説明する。
 温調回路41は、サブポンプ81を備える。
 サブポンプ81は、温調回路41の温調用熱媒体を一方の側から吸引し、他方の側に吐出することで、温調用熱媒体を循環させる。
<< Second Embodiment >>
"composition"
In the second embodiment, the heater core 44 (second heat exchanger) can be cooled by the heat medium for temperature control cooled by the cold storage device 46. Other than that, since it is the same as that of the first embodiment described above, the same reference numerals are given to common configurations, and the description thereof will be omitted.
FIG. 17 is a diagram showing a vehicle air conditioner according to the second embodiment.
First, the components added to the temperature control circuit 41 will be described.
The temperature control circuit 41 includes a sub pump 81.
The sub-pump 81 circulates the temperature control heat medium by sucking the temperature control heat medium of the temperature control circuit 41 from one side and discharging it to the other side.
 次に、温調回路41の回路構成について説明する。
 配管51aには、三方弁52とヒータコア44との間に分岐点82が設けられており、配管51cには、蓄冷器材46と分岐点66との間に、三方弁83が設けられている。サブポンプ81の出口は、配管51hを介して分岐点82に連通している。三方弁83は、入口が蓄冷器材46に連通し、一方の出口が分岐点66に連通し、他方の出口が配管51iを介してサブポンプ81の入口に連通している。
 配管51bには、ヒータコア44と分岐点53との間に、三方弁84が設けられており、配管51cには、三方弁63と蓄冷器材46との間に、分岐点85が設けられている。三方弁84は、入口がヒータコア44に連通し、一方の出口が分岐点53に連通し、他方の出口が配管51jを介して分岐点85に連通している。
 配管51dには、熱交換器47と分岐点54との間に、三方弁86が設けられており、配管51aには、三方弁52と分岐点82との間に、分岐点87が設けられている。三方弁86は、入口が熱交換器47に連通し、一方の出口が分岐点54に連通し、他方の出口が配管51kを介して分岐点87に連通している。
Next, the circuit configuration of the temperature control circuit 41 will be described.
The pipe 51a is provided with a branch point 82 between the three-way valve 52 and the heater core 44, and the pipe 51c is provided with a three-way valve 83 between the cold storage device 46 and the branch point 66. The outlet of the sub pump 81 communicates with the branch point 82 via the pipe 51h. The three-way valve 83 has an inlet communicating with the cold storage device 46, one outlet communicating with the branch point 66, and the other outlet communicating with the inlet of the sub pump 81 via the pipe 51i.
The pipe 51b is provided with a three-way valve 84 between the heater core 44 and the branch point 53, and the pipe 51c is provided with a branch point 85 between the three-way valve 63 and the cold storage device 46. .. The three-way valve 84 has an inlet communicating with the heater core 44, one outlet communicating with the branch point 53, and the other outlet communicating with the branch point 85 via the pipe 51j.
The pipe 51d is provided with a three-way valve 86 between the heat exchanger 47 and the branch point 54, and the pipe 51a is provided with a branch point 87 between the three-way valve 52 and the branch point 82. ing. The three-way valve 86 has an inlet communicating with the heat exchanger 47, one outlet communicating with the branch point 54, and the other outlet communicating with the branch point 87 via the pipe 51k.
 次に、車両用空気調和装置11の主要な運転について説明する。 Next, the main operation of the vehicle air conditioner 11 will be described.
 [充電時の冷房運転(蓄冷器材)]
 図18は、充電時の冷房運転(蓄冷器材)を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示している。また、温調用熱媒体が通過する流路を太い破線で示す。ここでは、予約されていた充電が行なわれている状態で、蓄冷器材46によって冷房運転が実行される充電時の冷房運転(蓄冷器材)について説明する。冷凍サイクル回路12では、室外膨張弁23を全開にし、室内膨張弁25を僅かに開放し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。一方、温調回路41では、ヒータ43を停止し、メインポンプ42を停止し、サブポンプ81を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、サブポンプ81、分岐点82、ヒータコア44、三方弁84、分岐点85、蓄冷器材46、及び三方弁83を順に経由して循環するように、各三方弁を制御する。
[Cooling operation during charging (cooling equipment)]
FIG. 18 is a diagram showing a cooling operation (cold storage device) during charging.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, and the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line. The flow path through which the heat medium for temperature control passes is indicated by a thick broken line. Here, the cooling operation (cooling device material) at the time of charging in which the cooling operation is executed by the cold storage device 46 in the state where the reserved charging is being performed will be described. In the refrigeration cycle circuit 12, the compressor 21 is driven in a state where the outdoor expansion valve 23 is fully opened, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is closed. On the other hand, in the temperature control circuit 41, the heater 43 is stopped, the main pump 42 is stopped, the sub pump 81 is driven, and the heat medium for temperature control is circulated. Further, each three-way valve is controlled so that the heat medium for temperature control circulates through the sub pump 81, the branch point 82, the heater core 44, the three-way valve 84, the branch point 85, the cold storage device 46, and the three-way valve 83 in this order. ..
 これにより、空調用熱媒体は、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。
 また、温調用熱媒体は、蓄冷器材46で放熱することで低温となり、ヒータコア44で吸熱することで高温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路17を閉じ気味にしつつ、ヒータコア44を通過する割合を調整する。これにより、導入された空気がヒータコア44で冷却され、涼しい空気が車室内に供給される。
As a result, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
Further, the heat medium for temperature control becomes low in temperature by dissipating heat in the cold storage device 46, and becomes high in temperature by absorbing heat in the heater core 44.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the heater core 44. As a result, the introduced air is cooled by the heater core 44, and cool air is supplied to the vehicle interior.
 [充電時のバッテリ冷却+冷房運転(冷凍サイクル回路)]
 図19は、充電時のバッテリ冷却+冷房運転(冷凍サイクル回路)を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示している。また、温調用熱媒体が通過する流路を太い破線で示す。ここでは、予約されていた充電が行なわれている状態で、冷凍サイクル回路12によってバッテリ冷却と冷房運転が実行される充電時のバッテリ冷却+冷房運転(冷凍サイクル回路)について説明する。冷凍サイクル回路12では、室外膨張弁23を全開にし、室内膨張弁25を閉鎖し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。一方、温調回路41では、ヒータ43を停止し、メインポンプ42を駆動し、サブポンプ81を停止し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、バッテリ45、分岐点62、三方弁63、三方弁68、分岐点66、熱交換器47における温調用熱媒体流路47A、三方弁86、分岐点87、分岐点82、ヒータコア44、三方弁84、分岐点53、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
[Battery cooling during charging + cooling operation (refrigeration cycle circuit)]
FIG. 19 is a diagram showing battery cooling + cooling operation (refrigeration cycle circuit) during charging.
In the figure, the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line, and the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line. The flow path through which the heat medium for temperature control passes is indicated by a thick broken line. Here, the battery cooling + cooling operation (refrigeration cycle circuit) at the time of charging in which the battery cooling and the cooling operation are executed by the refrigeration cycle circuit 12 in the state where the reserved charging is performed will be described. In the refrigeration cycle circuit 12, the compressor 21 is driven with the outdoor expansion valve 23 fully opened, the indoor expansion valve 25 closed, and the expansion valve 55 slightly opened. On the other hand, in the temperature control circuit 41, the heater 43 is stopped, the main pump 42 is driven, the sub pump 81 is stopped, and the heat medium for temperature control is circulated. Further, the heat medium for temperature control is the heat for temperature control in the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47. Each three-way valve is controlled so as to circulate through the medium flow path 47A, the three-way valve 86, the branch point 87, the branch point 82, the heater core 44, the three-way valve 84, the branch point 53, and the branch point 54 in this order.
 これにより、空調用熱媒体は、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、膨張弁55で膨張され低圧となり、熱交換器47における空調用熱媒体流路47Bで吸熱することで蒸発気化し、高温となる。
 また、温調用熱媒体は、熱交換器47における温調用熱媒体流路47Aで放熱することで低温となり、ヒータコア44で吸熱することで高温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路17を閉じ気味にしつつ、ヒータコア44を通過する割合を調整する。これにより、導入された空気がヒータコア44で冷却され、涼しい空気が車室内に供給される。
 上記より、ヒータコア44が「第二の熱交換器」に対応する。
As a result, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to become a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature. The liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat in the air-conditioning heat medium flow path 47B in the heat exchanger 47, it evaporates and vaporizes to a high temperature.
Further, the heat medium for temperature control becomes low in temperature by radiating heat in the heat medium flow path 47A for heat control in the heat exchanger 47, and becomes high in temperature by absorbing heat in the heater core 44.
On the other hand, in the HVAC unit 13, the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the heater core 44. As a result, the introduced air is cooled by the heater core 44, and cool air is supplied to the vehicle interior.
From the above, the heater core 44 corresponds to the "second heat exchanger".
 《作用効果》
 次に、第二実施形態の主要な作用効果について説明する。
 予約されていた充電が実行されているときに、蓄冷器材46で冷却された温調用熱媒体によってヒータコア44を冷却する。このとき、ヒータコア44が吸熱器として作用するため、蓄冷エネルギーを用いた冷房運転を行なうことができる。
 また、予約されていた充電が実行されているときに、熱交換器47で冷却された温調用熱媒体によってバッテリ45及びヒータコア44の双方を冷却する。このとき、ヒータコア44が吸熱器として作用するため、冷凍サイクル回路12を用いたバッテリ冷却と冷房運転の双方を行なうことができる。
《Effect》
Next, the main effects of the second embodiment will be described.
When the reserved charging is being performed, the heater core 44 is cooled by the temperature control heat medium cooled by the cold storage device 46. At this time, since the heater core 44 acts as an endothermic, the cooling operation using the cold storage energy can be performed.
Further, both the battery 45 and the heater core 44 are cooled by the temperature control heat medium cooled by the heat exchanger 47 when the reserved charging is being executed. At this time, since the heater core 44 acts as an endothermic device, both battery cooling and cooling operation using the refrigeration cycle circuit 12 can be performed.
 以上、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。 Although the above description has been made with reference to a limited number of embodiments, the scope of rights is not limited to them, and modifications of the embodiments based on the above disclosure are obvious to those skilled in the art.
 11…車両用空気調和装置、12…冷凍サイクル回路、13…HVACユニット、14…送風ファン、15…エアミックスダンパ、16…流路、17…流路、21…圧縮機、23…室外膨張弁、24…室外熱交換器、25…室内膨張弁、26…吸熱器、27…アキュムレータ、28…送風機、31b…配管、31c…配管、31f…配管、31g…配管、31h…配管、41…温調回路、42…メインポンプ、43…ヒータ、44…ヒータコア、45…バッテリ、46…蓄冷器材、47…熱交換器、47A…温調用熱媒体流路、47B…空調用熱媒体流路、51a…配管、51b…配管、51c…配管、51d…配管、51e…配管、51f…配管、51g…配管、51h…配管、51i…配管、51j…配管、51k…配管、52…三方弁、53…分岐点、54…分岐点、55…膨張弁、56…分岐点、57…分岐点、61…三方弁、62…分岐点、63…三方弁、66…分岐点、68…三方弁、71…コントローラ、72…情報取得部、73…充電予約部、81…サブポンプ、82…分岐点、83…三方弁、84…三方弁、85…分岐点、86…三方弁、87…分岐点 11 ... Vehicle air conditioner, 12 ... Refrigeration cycle circuit, 13 ... HVAC unit, 14 ... Blower fan, 15 ... Air mix damper, 16 ... Flow path, 17 ... Flow path, 21 ... Compressor, 23 ... Outdoor expansion valve , 24 ... outdoor heat exchanger, 25 ... indoor expansion valve, 26 ... heat absorber, 27 ... accumulator, 28 ... blower, 31b ... piping, 31c ... piping, 31f ... piping, 31g ... piping, 31h ... piping, 41 ... temperature Tuning circuit, 42 ... Main pump, 43 ... Heater, 44 ... Heater core, 45 ... Battery, 46 ... Cold storage material, 47 ... Heat exchanger, 47A ... Heat medium flow path for temperature control, 47B ... Heat medium flow path for air conditioning, 51a ... Piping, 51b ... Piping, 51c ... Piping, 51d ... Piping, 51e ... Piping, 51f ... Piping, 51g ... Piping, 51h ... Piping, 51i ... Piping, 51j ... Piping, 51k ... Piping, 52 ... Three-way valve, 53 ... Branch point, 54 ... Branch point, 55 ... Expansion valve, 56 ... Branch point, 57 ... Branch point, 61 ... Three-way valve, 62 ... Branch point, 63 ... Three-way valve, 66 ... Branch point, 68 ... Three-way valve, 71 ... Controller, 72 ... Information acquisition unit, 73 ... Charge reservation unit, 81 ... Sub pump, 82 ... Branch point, 83 ... Three-way valve, 84 ... Three-way valve, 85 ... Branch point, 86 ... Three-way valve, 87 ... Branch point

Claims (13)

  1.  電動モータに給電するバッテリを搭載した車両において、
     冷却用熱媒体を循環させる冷却回路と、
     車室内の空調を行うために空調用熱媒体を循環させる冷凍サイクル回路と、を備えた車両用空気調和装置であって、
     前記冷却回路は、
     冷却を必要とする前記バッテリと、
     蓄冷可能な蓄冷器材と、
     前記冷凍サイクル回路の前記空調用熱媒体との間で熱交換を行う第一の熱交換器と、を備え、
     前記バッテリの充電の状態に基づき回路を切り替える回路切替制御部を備え、
     前記回路切替制御部は、
     予約されていた前記バッテリの充電が実行される前に、前記第一の熱交換器で冷却された前記冷却用熱媒体によって前記蓄冷器材に蓄冷し、
     予約されていた前記バッテリの充電が実行されているときに、前記蓄冷器材で冷却された前記冷却用熱媒体よって前記バッテリを冷却することを特徴とする車両用空気調和装置。
    In a vehicle equipped with a battery that supplies power to an electric motor
    A cooling circuit that circulates a cooling heat medium and
    An air conditioner for vehicles equipped with a refrigeration cycle circuit that circulates a heat medium for air conditioning to air-condition the interior of the vehicle.
    The cooling circuit
    The battery that needs cooling and
    Cold storage equipment that can store cold,
    A first heat exchanger that exchanges heat with the air-conditioning heat medium of the refrigeration cycle circuit is provided.
    A circuit switching control unit that switches circuits based on the state of charge of the battery is provided.
    The circuit switching control unit
    Before the reserved charging of the battery is executed, the cold storage material is stored in the cold storage material by the cooling heat medium cooled by the first heat exchanger.
    An air conditioner for a vehicle, characterized in that the battery is cooled by the cooling heat medium cooled by the cold storage device when the reserved battery is being charged.
  2.  前記蓄冷器材は、
     前記バッテリよりも低温になることが許容される器材であることを特徴とする請求項1に記載の車両用空気調和装置。
    The cold storage device is
    The vehicle air conditioner according to claim 1, wherein the device is allowed to have a temperature lower than that of the battery.
  3.  前記蓄冷器材は、
     前記電動モータ、及び燃料タンクの少なくとも一つであることを特徴とする請求項1又は2に記載の車両用空気調和装置。
    The cold storage device is
    The vehicle air conditioner according to claim 1 or 2, wherein the electric motor and at least one of the fuel tanks are used.
  4.  前記冷却回路は、
     前記バッテリをバイパスするバッテリバイパス流路を備え、
     前記回路切替制御部は、
     前記冷却用熱媒体に前記バッテリバイパス流路を通過させるか、又は前記バッテリを通過させるかを選択的に切り替えることを特徴とする請求項1~3の何れか一項に記載の車両用空気調和装置。
    The cooling circuit
    A battery bypass flow path that bypasses the battery is provided.
    The circuit switching control unit
    The vehicle air conditioning according to any one of claims 1 to 3, wherein the cooling heat medium is selectively switched between passing through the battery bypass flow path and passing through the battery. Device.
  5.  前記回路切替制御部は、
     予約されていた前記バッテリの充電が実行される前に、前記冷却用熱媒体に前記バッテリバイパス流路を通過させ、
     予約されていた前記バッテリの充電が実行されているときに、前記冷却用熱媒体に前記バッテリを通過させることを特徴とする請求項4に記載の車両用空気調和装置。
    The circuit switching control unit
    Before the reserved charging of the battery is performed, the cooling heat medium is passed through the battery bypass flow path.
    The vehicle air conditioner according to claim 4, wherein the battery is passed through the cooling heat medium when the reserved battery is being charged.
  6.  前記回路切替制御部は、
     予約されていた充電拠点における充電時の予想外気温度が高いほど、前記蓄冷器材への蓄冷開始を早めることを特徴とする請求項1~5の何れか一項に記載の車両用空気調和装置。
    The circuit switching control unit
    The vehicle air conditioner according to any one of claims 1 to 5, wherein the higher the unexpected air temperature at the time of charging at the reserved charging base, the earlier the start of cold storage in the cold storage device.
  7.  前記回路切替制御部は、
     冷房運転の設定温度が低いほど、前記蓄冷器材への蓄冷開始を早めることを特徴とする請求項1~6の何れか一項に記載の車両用空気調和装置。
    The circuit switching control unit
    The vehicle air conditioner according to any one of claims 1 to 6, wherein the lower the set temperature of the cooling operation, the earlier the start of cold storage in the cold storage device.
  8.  前記回路切替制御部は、
     予約されていた前記バッテリの充電が実行されているときに、前記冷却用熱媒体に前記バッテリ、及び前記蓄冷器材を順に経由して循環させることを特徴とする請求項1~7の何れか一項に記載の車両用空気調和装置。
    The circuit switching control unit
    Any one of claims 1 to 7, wherein when the reserved charging of the battery is being executed, the battery and the cold storage device are circulated through the cooling heat medium in this order. Vehicle air conditioner according to section.
  9.  前記回路切替制御部は、
     予約されていた前記バッテリの充電が実行されている場合、前記蓄冷器材の温度が予め定めた閾値より高くなったときに、前記冷凍サイクル回路で冷却された前記空調用熱媒体によって前記バッテリを冷却することを特徴とする請求項1~8の何れか一項に記載の車両用空気調和装置。
    The circuit switching control unit
    When the reserved charge of the battery is being executed, the battery is cooled by the heat medium for air conditioning cooled by the refrigeration cycle circuit when the temperature of the cold storage device becomes higher than a predetermined threshold value. The vehicle air conditioner according to any one of claims 1 to 8, wherein the air conditioner is for a vehicle.
  10.  前記冷却回路は、
     車室内へ供給される空気との間で熱交換を行なう第二の熱交換器を備え、
     前記回路切替制御部は、
     予約されていた前記バッテリの充電が実行されているときに、前記蓄冷器材で冷却された前記冷却用熱媒体によって前記第二の熱交換器を冷却することを特徴とする請求項1~8の何れか一項に記載の車両用空気調和装置。
    The cooling circuit
    Equipped with a second heat exchanger that exchanges heat with the air supplied to the passenger compartment
    The circuit switching control unit
    The second heat exchanger is cooled by the cooling heat medium cooled by the regenerator material while the reserved battery charge is being executed. The vehicle air conditioner according to any one item.
  11.  前記回路切替制御部は、
     予約されていた前記バッテリの充電が実行されているときに、前記第一の熱交換器で冷却された前記冷却用熱媒体によって前記バッテリ及び前記第二の熱交換器を冷却することを特徴とする請求項10に記載の車両用空気調和装置。
    The circuit switching control unit
    It is characterized in that the battery and the second heat exchanger are cooled by the cooling heat medium cooled by the first heat exchanger when the reserved charging of the battery is being executed. The vehicle air conditioner according to claim 10.
  12.  前記冷却回路は、
     前記蓄冷器材をバイパスする蓄冷器材バイパス流路を備え、
     前記回路切替制御部は、
     前記冷却用熱媒体に前記蓄冷器材バイパス流路を通過させるか、又は前記蓄冷器材を通過させるかを選択的に切り替えることを特徴とする請求項1~11の何れか一項に記載の車両用空気調和装置。
    The cooling circuit
    A cold storage device bypass flow path that bypasses the cold storage device is provided.
    The circuit switching control unit
    The vehicle according to any one of claims 1 to 11, wherein the cooling heat medium is selectively switched between passing through the cold storage device bypass flow path and passing through the cold storage device. Air conditioner.
  13.  前記回路切替制御部は、
     予約されていた前記バッテリの充電が実行されている場合、前記蓄冷器材の温度が予め定めた閾値以下であるときに、前記冷却用熱媒体に前記蓄冷器材を通過させ、前記蓄冷器材の温度が予め定めた閾値より高いときに、前記冷却用熱媒体に前記蓄冷器材迂回流路を通過させることを特徴とする請求項12に記載の車両用空気調和装置。
    The circuit switching control unit
    When the reserved charging of the battery is being executed, when the temperature of the cold storage device is equal to or lower than a predetermined threshold value, the cold storage device is passed through the cooling heat medium, and the temperature of the cold storage device becomes high. The vehicle air conditioner according to claim 12, wherein the cooling heat medium is passed through the cold storage device bypass flow path when the threshold value is higher than a predetermined threshold value.
PCT/JP2021/006340 2020-03-27 2021-02-19 Vehicle air conditioning device WO2021192762A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180020905.3A CN115552187A (en) 2020-03-27 2021-02-19 Air conditioner for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020058007A JP2021154912A (en) 2020-03-27 2020-03-27 Vehicular air conditioning device
JP2020-058007 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021192762A1 true WO2021192762A1 (en) 2021-09-30

Family

ID=77891447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006340 WO2021192762A1 (en) 2020-03-27 2021-02-19 Vehicle air conditioning device

Country Status (3)

Country Link
JP (1) JP2021154912A (en)
CN (1) CN115552187A (en)
WO (1) WO2021192762A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023122096A (en) * 2022-02-22 2023-09-01 サンデン株式会社 Thermal management system
JP2023122101A (en) * 2022-02-22 2023-09-01 サンデン株式会社 heat management system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090721A (en) * 2007-10-04 2009-04-30 Calsonic Kansei Corp Vehicular air-conditioner
JP2010104108A (en) * 2008-10-22 2010-05-06 Mazda Motor Corp Method and device for controlling hybrid vehicle
JP2012232730A (en) * 2011-04-18 2012-11-29 Denso Corp Vehicle temperature adjusting apparatus, and vehicle-mounted thermal system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090721A (en) * 2007-10-04 2009-04-30 Calsonic Kansei Corp Vehicular air-conditioner
JP2010104108A (en) * 2008-10-22 2010-05-06 Mazda Motor Corp Method and device for controlling hybrid vehicle
JP2012232730A (en) * 2011-04-18 2012-11-29 Denso Corp Vehicle temperature adjusting apparatus, and vehicle-mounted thermal system

Also Published As

Publication number Publication date
JP2021154912A (en) 2021-10-07
CN115552187A (en) 2022-12-30

Similar Documents

Publication Publication Date Title
JP7095848B2 (en) Vehicle air conditioner
JP6997558B2 (en) Vehicle air conditioner
JP5860361B2 (en) Thermal management system for electric vehicles
JP7300264B2 (en) Vehicle air conditioner
EP2770275A1 (en) Cooling device and control method for cooling device
WO2021177057A1 (en) Vehicle air conditioner
CN112867616A (en) Air conditioner for vehicle
CN114144320A (en) Temperature adjusting device for vehicle equipped with heating equipment and vehicle air conditioning device comprising same
WO2021054041A1 (en) Vehicle air-conditioning device
WO2021192762A1 (en) Vehicle air conditioning device
JP2013184596A (en) Refrigerating cycle device for air-conditioning vehicle and for temperature-conditioning parts constituting vehicle
JP6997567B2 (en) Vehicle air conditioner
US20230382195A1 (en) Air conditioner
WO2021192761A1 (en) Vehicle air conditioner
WO2021187005A1 (en) Vehicle air conditioner
CN114269574A (en) Battery cooling device for vehicle and vehicle air conditioner comprising same
CN113811727A (en) Air conditioner for vehicle
CN113453926A (en) Air conditioner for vehicle
JP6712400B2 (en) Air conditioning system for vehicles
WO2022064944A1 (en) Air conditioner for vehicle
WO2021199776A1 (en) Air conditioner for vehicle
JP7280689B2 (en) Vehicle air conditioner
WO2021192760A1 (en) Vehicle air conditioner
WO2020100524A1 (en) Vehicle air-conditioning device
KR20230076417A (en) Integrated thermal management system for electric vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774909

Country of ref document: EP

Kind code of ref document: A1