WO2021186964A1 - スラグ製品の製造方法及びスラグ製品 - Google Patents

スラグ製品の製造方法及びスラグ製品 Download PDF

Info

Publication number
WO2021186964A1
WO2021186964A1 PCT/JP2021/005095 JP2021005095W WO2021186964A1 WO 2021186964 A1 WO2021186964 A1 WO 2021186964A1 JP 2021005095 W JP2021005095 W JP 2021005095W WO 2021186964 A1 WO2021186964 A1 WO 2021186964A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
steel slag
boron
mass
steel
Prior art date
Application number
PCT/JP2021/005095
Other languages
English (en)
French (fr)
Inventor
陽太郎 井上
恵太 田
勇輔 藤井
久宏 松永
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202180022152.XA priority Critical patent/CN115348955B/zh
Priority to KR1020227030407A priority patent/KR20220134634A/ko
Priority to JP2021523802A priority patent/JP6954500B1/ja
Publication of WO2021186964A1 publication Critical patent/WO2021186964A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for manufacturing a slag product and a slag product.
  • a steel slag hydrated solidified body which is a material mainly composed of steelmaking slag and blast furnace slag fine powder, can be produced by using a kneading facility in the same manner as concrete.
  • the steel slag hydrated solidified material may be used as an artificial stone material such as a harbor civil engineering material or a roadbed material. Civil engineering and construction materials and steel slag hydrated solidified products made from such slag are called slag products.
  • magnesium may be used. Further, in the steelmaking process, in order to prevent erosion and erosion of the refractory refractory, a required amount of magnesium oxide is usually added to the molten slag. Some of the MgO in the slag cooled from this state forms a composite oxide with CaO, Al 2 O 3 , SiO 2, and the like, but the others exist in the state of MgO as they are.
  • the composite oxide formed from CaO, Al 2 O 3 , SiO 2, etc. and MgO is a stable compound that hardly reacts at room temperature.
  • MgO hereinafter, also referred to as free MgO
  • slag containing a simple magnesium oxide phase may be pulverized due to volume expansion when used as a hydrated solidified steel slag, and cannot be effectively used.
  • CaO in the slag also causes volume expansion associated with the hydration reaction like MgO.
  • steam aging in which slag is steamed with steam at 100 ° C.
  • pressurized steam aging in which slag is steamed at 100 ° C. or higher (equivalent to 180 ° C. at 10 atm) in a high-pressure autoclave tank. .. All of these methods correspond to the accelerated aging described in JIS A 5015 “Road Steel Slag”.
  • the volume expansion associated with hydration in MgO and CaO is also referred to as "hydration expansion”.
  • Patent Document 1 proposes a method of suppressing pulverization due to ⁇ transformation of 2CaO ⁇ SiO 2 by setting the boron concentration to 0.010 to 0.050% by mass with respect to the molten slag. ing. This is a technique aimed at suppressing pulverization, and its upper limit corresponds to 0.16% when converted to boron oxide.
  • MgO has a lower hydration rate than CaO. Therefore, when trying to suppress the hydration expansion of MgO by using the above-mentioned steam aging or pressurized steam aging, a long-term aging treatment is required, which requires a large processing cost and time. Further, in the method of Patent Document 1, as a result of investigation by the present inventor, it was confirmed that the hydration and expansion of free MgO may not be sufficiently suppressed for slag containing free MgO.
  • an object of the present invention is to provide a method for producing a slag product and a slag product in which the hydration and expansion of slag containing free MgO is suppressed. ..
  • a method for producing a slag product using steel slag when the slag product is produced using the slag obtained by cooling and solidifying the molten steel slag as a raw material, the above. After adding boron corresponding to 30 parts by mass or more in terms of boron oxide to 100 parts by mass of free MgO contained in the steel slag to the molten steel slag and mixing the steel slag to which the boron is added. , A method for producing a slag product, which cools and solidifies the steel slag, is provided.
  • the present invention is a slag product manufactured by using steel slag, and the amount of boron contained is 30 parts by mass or more in terms of boron oxide with respect to 100 parts by mass of free MgO contained. Slag products are provided.
  • a method for producing a slag product and a slag product in which the hydration and expansion of slag containing free MgO is suppressed is provided.
  • the target slag in this embodiment is steel slag generated in various refining processes performed in refining equipment such as converters, electric furnaces, and melt reduction furnaces. Further, this steel slag contains free MgO. Free MgO is MgO that exists as a single magnesium oxide phase that does not form a composite oxide, that is, MgO that is a mineral phase at room temperature, and is also called free magnesium oxide. Further, the steel slag may contain free MgO, and may contain other components (for example, basicity, which is the ratio of CaO concentration to SiO 2 concentration, or free CaO (mineral phase CaO at room temperature, free calcium oxide). The content rate, etc.) is not particularly limited.
  • the steel slag targeted in the present embodiment is preferably steel slag generated in a refining process including reduction refining used in the production of stainless steel and the like.
  • Such steel slag has a higher content of MgO and free MgO and a lower content of free CaO than the steel slag generated in the refining process used in the production of general ordinary steel.
  • steel slag generated by refining processing including reduction refining has a lower effect of suppressing hydration expansion due to steam aging and pressurized steam aging than other steel slags, and is therefore particularly applicable to slag products. It was difficult.
  • boron is added to the molten steel slag and mixed (addition step).
  • boron is added according to the mass of free MgO of steel slag.
  • Boron added is boron oxide (B 2 O 3), boric acid (H 3 BO 3), boronic acid (H 3 BO 2), borinic acid (H 3 BO), metaboric acid (HBO 2), metaboric acid It is sodium (NaBO 2 ) or sodium tetraborate (Na 2 B 4 O 7 ).
  • boron corresponding to 30 parts by mass or more in terms of boron oxide is added to 100 parts by mass of free MgO. More preferably, boron corresponding to 45 parts by mass or more in terms of boron oxide is added to 100 parts by mass of free MgO.
  • the upper limit of the amount of boron added is not particularly limited, but it may be appropriately set according to the specifications and specifications of the target slag product.
  • the mass of free MgO in steel slag is determined based on the mass ratio (content rate) of free MgO in steel slag measured or estimated by the following method and the mass of steel slag.
  • the measurement is performed by the following method. In the measurement of the mass ratio of free MgO, a part of the molten steel slag is sampled and cooled to prepare a sample. Next, the mass ratio of free MgO in this sample is measured. At this time, the measurement method described in "Development of free-MgO analysis technology in slag" (Iron and Steel, The Iron and Steel Institute of Japan, 2016, Vol.102, No.1, p.24-28) is used.
  • the mass ratio of free MgO is calculated by combining the dissolution of slag using ethylene glycol and the quantification of Mg (OH) 2 by the thermal weight measurement method.
  • steel slag is collected at multiple points, and the steel slag is mixed and crushed to prepare a sample, thereby improving the reliability of measurement.
  • the estimation is performed by the following method. If the operating conditions are the same, it can be assumed that the steel slag has almost the same slag composition. Therefore, if a part of the sample is taken as needed and the mass ratio of free MgO is measured, the mass ratio of free MgO of steel slag generated under the same operating conditions can be estimated. Further, as the operating conditions used in estimating the mass ratio of free MgO, conditions that generally affect the slag composition can be used. For example, as operating conditions, conditions such as the type and amount of auxiliary raw materials (slag slag, etc.) used, the composition of components before and after the treatment of molten iron, and the mass of molten iron can be considered.
  • the mass of the steel slag can be obtained from the difference by measuring the mass of the slag pot before and after discharging the molten steel slag into the slag pot, which is a dedicated pot.
  • the mass of the generated steel slag may be obtained from the mass balance between the raw material to be added and the auxiliary raw material. .. Then, by multiplying the obtained mass of the steel slag by the measured or estimated mass ratio of the free MgO, the mass of the free MgO in the target steel slag can be obtained.
  • a method of adding boron to the molten steel slag in the addition step there are a method of adding it into the furnace of various smelting furnaces, a method of adding it to the steel slag transferred or stored in the smelting pot, and the like. ..
  • boron is added in the furnace at the final stage of refining in the smelting furnace.
  • the boron-added steel slag is mixed according to the refining process in the refining furnace.
  • the steel slag is cooled to solidify (cool and solidify) (cooling process).
  • the steel slag may be subjected to an aging treatment. For example, in the case of steel slag generated in a refining process including reduction refining used in the production of stainless steel, it is judged that the suppression of hydration expansion of free CaO is sufficient because the basicity of the steel slag is low. If so, the aging process may not be performed.
  • slag products are manufactured using the cooled and solidified steel slag as a raw material.
  • the cooled and solidified steel slag may be pulverized and, if necessary, magnetically separated and then processed to a predetermined particle size (for example, 40 mm or less or 25 mm or less) as a raw material for the slag product.
  • a method for producing slag products from cooled and solidified steel slag a well-known method for producing slag products such as civil engineering and construction materials and steel slag hydrated solidified products can be used. Since the hydration reaction of MgO is suppressed in the steel slag produced in this manner, it can be used as an aggregate for a steel slag hydrated solidified body having less volume expansion, for example.
  • the slag product manufactured by the above method for manufacturing the slag product has the following features.
  • the slag product according to the present embodiment is a slag product manufactured by using steel slag, and the amount of boron contained is 30 parts by mass or more in terms of boron oxide with respect to 100 parts by mass of free MgO contained. More preferably, the steel slag product contains 45 parts by mass or more of boron in terms of boron oxide with respect to 100 parts by mass of free MgO contained.
  • the measurement is performed by a method using ethylene glycol and a thermogravimetric analysis method, but the present invention is not limited to such an example.
  • a method for measuring free MgO a method of identifying a peak derived from free MgO from the X-ray peak of steel slag and quantifying the peak, or a method of embedding particulate steel slag in a resin or the like and polishing it is performed.
  • Other methods such as a method of identifying the MgO mineral phase with an electron probe microanalyzer (EPMA method) and calculating the weight ratio from the area ratio may be used.
  • EPMA method electron probe microanalyzer
  • the method for measuring the mass ratio of free MgO is preferably a measurement method using ethylene glycol and a thermogravimetric measurement method, as in the above embodiment.
  • the method for producing a slag product according to one aspect of the present invention is a method for producing a slag product using steel slag, wherein the slag product is made from slag obtained by cooling and solidifying molten steel slag.
  • boron corresponding to 30 parts by mass or more in terms of boron oxide with respect to 100 parts by mass of free MgO contained in the steel slag is added to the molten steel slag, and the steel slag to which boron is added is mixed. After that, the steel slag is cooled and solidified.
  • the added boron suppresses the hydration expansion of free MgO in the steel slag. This is because when the steel slag is exposed to an environment containing water, a layer containing boron is formed on the surface of the free MgO in the steel slag, and this layer suppresses the contact between the free MgO and water. Presumed. Further, in the configuration of (1) above, since it is only necessary to add boron to the molten steel slag and mix it, the hydration expansion of free MgO can be suppressed easily and in a short time.
  • the slag product according to one aspect of the present invention is a slag product manufactured using steel slag, and the amount of boron contained is 30 parts by mass in terms of boron oxide with respect to 100 parts by mass of free MgO contained. It is more than a part. According to the configuration of the above (2), the same effect as the above (1) can be obtained.
  • the mass ratio of free MgO of various steel slags generated in a steel mill was investigated. Further, the mass ratio of the free MgO was calculated by a method using ethylene glycol and a thermogravimetric analysis method. Table 1 shows the measurement results of the basicity (CaO / SiO 2 ), the mass ratio of MgO, and the mass ratio of free MgO of the six types of steel slags A to D investigated. Further, a predetermined amount of boron oxide B 2 O 3 was put into each steel slag into the refining furnace at the final stage of refining. Then, the obtained steel slag was cooled and solidified and crushed to have a size of 25 mm under. Then, the following expansion measurement was performed on the obtained steel slag.
  • the obtained steel slag was crushed and sieved to 2 mm and 1.2 mm.
  • 15 g of 2 to 1.2 mm steel slag and 15 g of 1.2 to 0 mm steel slag were mixed to prepare 3 samples per condition.
  • each sample was compression-molded into a cylinder having a diameter of 25 mm.
  • each compression-molded sample was immersed in water at 80 ° C., and the amount of expansion was measured for 10 days.
  • the expansion rate tended to decrease as the amount of boron added increased.
  • a steel slag hydrated solidified body was prepared using the same steel slag. After that, the obtained solidified body is immersed in water at 80 ° C., and the specimen is observed after 30 days, and the one that cracks is "bad” and the one that produces a very slight pop-out within 10 mm in diameter. Was evaluated as "good”, and a healthy one with no abnormality in appearance was evaluated as "excellent”. The results are shown in Table 2 and FIG. In FIG. 1, the evaluation results of bad, good, and excellent are indicated by ⁇ , ⁇ , and ⁇ , respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

フリーMgOを含有するスラグの水和膨張が抑制された、スラグ製品の製造方法及びスラグ製品を提供すること。鉄鋼スラグを用いたスラグ製品の製造方法であって、溶融状態の鉄鋼スラグを冷却して固化させたスラグを原料としてスラグ製品を製造する際に、鉄鋼スラグに含有されるフリーMgO100質量部に対して酸化ホウ素換算で30質量部以上に相当するホウ素を、溶融状態の鉄鋼スラグに添加し、ホウ素が添加された鉄鋼スラグを混合した後、鉄鋼スラグを冷却固化する。

Description

スラグ製品の製造方法及びスラグ製品
 本発明は、スラグ製品の製造方法及びスラグ製品に関する。
 工業の発展にともない、各種産業において生成される産業副産物も増加の一途を辿っている。最近では、地球環境保全という観点から、このような産業副産物を有効利用することが試みられるようになってきた。産業副産物の例として、例えば、製鉄所から発生する高炉スラグや製鋼スラグなどの鉄鋼スラグや、火力発電所から発生する石炭灰、廃棄物や下水汚泥の焼却灰等を高温で溶融し冷却、固化させたものであるスラグ等がある。これらのスラグは、適正な粒度調整を施されて、路盤材や地盤材などの土木建築用資材として再利用されている。他には、例えば、製鋼スラグと高炉スラグ微粉末を主体とした材料である鉄鋼スラグ水和固化体は、コンクリートと同様に混練設備を用いて製造することが可能である。また、鉄鋼スラグ水和固化体は、港湾土木材料や路盤材などの人工石材として使用されることもある。このようなスラグを材料とした土木建築用資材や鉄鋼スラグ水和固化体をスラグ製品と呼んでいる。
 製鉄所の製鋼工程等で用いられる精錬用耐火物には、耐熱性や耐浸蝕性が求められるため、マグネシウムを用いたものが使用されることがある。さらに、製鋼工程では、この精錬用耐火物の溶損・浸食を防ぐために、通常は溶融スラグ中に酸化マグネシウムを必要量添加する操業が行われている。この状態から冷却されたスラグ中のMgOは、一部はCaOやAlやSiO等と複合酸化物を形成するが、他はそのままMgOの状態で存在している。
 CaOやAlやSiO等とMgOとから形成される複合酸化物は、室温ではほとんど反応しない安定な化合物である。しかし、複合酸化物を形成しない単体の酸化マグネシウム相として存在するMgO(以下、フリーMgOともいう。)は、室温で水と反応してMg(OH)となることで約2倍の体積膨張を引き起こす。
 このため、単体の酸化マグネシウム相を含有するスラグは、鉄鋼スラグ水和固化体として使用する時に体積膨張により粉化することがあり、有効に使用することができない。
 また、スラグ中のCaOもMgOと同様に水和反応に伴う体積膨張を引き起こす。これを抑制する技術として、100℃の蒸気でスラグを蒸す蒸気エージングや高圧のオートクレープ槽の中で100℃以上(10気圧では180℃に相当)にてスラグを蒸す加圧蒸気エージングが存在する。これらの方法はいずれも、JIS A 5015「道路用鉄鋼スラグ」に記載の促進エージングに相当する。なお、以下では、MgOやCaOにおける、水和に伴う体積膨張を「水和膨張」ともいう。
 また、例えば、特許文献1には、溶融スラグに対してホウ素濃度を0.010~0.050質量%とすることで、2CaO・SiOのγ変態に伴う粉化を抑制する手法が提案されている。これは粉化抑制を目的とした技術であり、酸化ホウ素に換算するとその上限は0.16%に相当する。
特開2005-272275号公報
 ところで、MgOはCaOに比べて水和速度が小さい。このため、上記の蒸気エージングや加圧蒸気エージングを用いてMgOの水和膨張を抑制しようとする場合、長期間のエージング処理が必要となり、大幅な処理コストと時間が必要となってしまう。
 また、特許文献1の方法では、本発明者が調べたところ、フリーMgOを含有するスラグに対しては、フリーMgOの水和膨張が十分に抑制されない場合があることが確認された。
 そこで、本発明は、上記の課題に着目してなされたものであり、フリーMgOを含有するスラグの水和膨張が抑制された、スラグ製品の製造方法及びスラグ製品を提供することを目的としている。
 本発明の一態様によれば、鉄鋼スラグを用いたスラグ製品の製造方法であって、溶融状態の上記鉄鋼スラグを冷却して固化させたスラグを原料として上記スラグ製品を製造する際に、上記鉄鋼スラグに含有されるフリーMgO100質量部に対して酸化ホウ素換算で30質量部以上に相当するホウ素を、溶融状態の上記鉄鋼スラグに添加し、上記ホウ素が添加された上記鉄鋼スラグを混合した後、上記鉄鋼スラグを冷却固化する、スラグ製品の製造方法が提供される。
 本発明の一態様によれば、鉄鋼スラグを用いて製造されるスラグ製品であって、含有されるフリーMgO100質量部に対して、含有されるホウ素が酸化ホウ素換算で30質量部以上である、スラグ製品が提供される。
 本発明の一態様によれば、フリーMgOを含有するスラグの水和膨張が抑制された、スラグ製品の製造方法及びスラグ製品が提供される。
実施例における、鉄鋼スラグ中のフリーMgOの割合と鉄鋼スラグに対するBの添加割合との関係を示すグラフである。
 以下の詳細な説明では、図面を参照して、本発明の実施形態を説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。各図面は模式的なものであり、現実のものとは異なる場合が含まれる。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において種々の変更を加えることができる。
 <スラグ製品の製造方法>
 本実施形態において対象とするスラグは、転炉や電気炉、溶融還元炉などの精錬設備で行われる各種の精錬処理にて発生する鉄鋼スラグである。また、この鉄鋼スラグには、フリーMgOが含まれる。フリーMgOは、複合酸化物を形成しない単体の酸化マグネシウム相として存在するMgO、つまり常温で鉱物相のMgOであり、遊離酸化マグネシウムともいう。また、鉄鋼スラグは、フリーMgOを含んでいればよく、他の成分(例えば、SiO濃度に対するCaO濃度の比である塩基度や、フリーCaO(常温で鉱物相のCaO、遊離酸化カルシウム)の含有率等)については特に限定されない。
 なお、本実施形態において対象とする鉄鋼スラグは、ステンレス鋼等の製造に用いられる還元精錬を含む精錬処理にて発生する鉄鋼スラグであることが好ましい。このような鉄鋼スラグは、一般的な普通鋼の製造に用いられる精錬処理で発生する鉄鋼スラグに比べて、MgO及びフリーMgOの含有量が多く、フリーCaOの含有量が少ないものとなる。このため、還元精錬を含む精錬処理にて発生する鉄鋼スラグは、他の鉄鋼スラグに比べて、蒸気エージングや加圧蒸気エージングによる水和膨張の抑制効果が低いため、スラグ製品への適用が特に困難であった。
 本実施形態では、まず、溶融状態の鉄鋼スラグにホウ素を添加し、混合する(添加工程)。添加工程では、鉄鋼スラグのフリーMgOの質量に応じて、ホウ素が添加される。添加されるホウ素は、酸化ホウ素(B)、ホウ酸(HBO)、ボロン酸(HBO)、ボリン酸(HBO)、メタホウ酸(HBO)、メタホウ酸ナトリウム(NaBO)又は四ホウ酸ナトリウム(Na)である。これらのいずれかを添加することによりホウ素源を鉄鋼スラグに溶融させることが可能となる。である。この際、フリーMgO100質量部に対して、酸化ホウ素換算で30質量部以上に相当するホウ素が添加される。より好ましくは、フリーMgO100質量部に対して、酸化ホウ素換算で45質量部以上に相当するホウ素が添加される。上記の範囲のホウ素を添加することで、フリーMgOの水和を抑制することができる。なお、ホウ素の添加量の上限は特に限定されないが、対象とするスラグ製品の規格や仕様に応じて適宜設定してもよい。
 鉄鋼スラグ中のフリーMgOの質量は、以下の方法によって測定又は推定される鉄鋼スラグ中のフリーMgOの質量割合(含有率)と鉄鋼スラグの質量とに基づいて決定される。
 鉄鋼スラグ中のフリーMgOの質量割合を測定する場合、以下の方法によって測定が行われる。フリーMgOの質量割合の測定では、溶融状態の鉄鋼スラグの一部を採取し、冷却することでサンプルとする。次いで、このサンプル中のフリーMgOの質量割合を測定する。この際、「スラグ中free-MgO分析技術の開発」(鉄と鋼、日本鉄鋼協会、2016年、Vol.102、No.1、p.24-28)に記載の測定方法を用いる。この測定方法では、エチレングリコールを用いたスラグの溶解と、熱重量測定法によるMg(OH)の定量とを組み合わせることで、フリーMgOの質量割合が算出される。なお、この測定方法では、鉄鋼スラグの採取を多点で行い、それらの鉄鋼スラグを混合して破砕することで試料を作製することによって、測定の信頼性が向上する。
 また、鉄鋼スラグのフリーMgOの質量割合を推定する場合、以下の方法によって推定が行われる。鉄鋼スラグは、操業条件が同一であれば、ほぼ同一のスラグ組成であることが想定できる。このため、必要に応じて一部サンプルを採取し、フリーMgOの質量割合を測定すれば、同一の操業条件で発生した鉄鋼スラグのフリーMgOの質量割合を推定することができる。また、フリーMgOの質量割合の推定において、用いられる操業条件としては、一般的にスラグ組成に影響するとされる条件を用いることができる。例えば、操業条件として、使用する副原料(造滓剤等)の種類や添加量、溶鉄の処理前後の成分組成、溶鉄の質量等の条件を考慮することができる。
 鉄鋼スラグの質量は、溶融状態の鉄鋼スラグを専用の鍋である溶滓鍋に排滓する前後で溶滓鍋の質量を計測することで、その差分から求められることができる。あるいは、より簡易には、鉄鋼スラグを発生させる転炉や電気炉、溶融還元炉などの操業において、添加する原料と副原料等とのマスバランスから、発生する鉄鋼スラグの質量を求めてもよい。
 そして、求められた鉄鋼スラグの質量に、測定又は推定したフリーMgOの質量割合を掛けることで、対象とする鉄鋼スラグ中のフリーMgOの質量を求めることができる。
 また、添加工程においてホウ素を溶融状態の鉄鋼スラグに添加する方法としては、各種精錬炉の炉内に添加する方法や、溶滓鍋に移注又は収容される鉄鋼スラグに添加する方法等がある。炉内に添加する方法の場合、精錬炉での精錬末期に炉内にホウ素を添加する。ホウ素が添加された鉄鋼スラグは、精錬炉での精錬処理に応じて混合される。一方、溶滓鍋に移注される鉄鋼スラグに添加する方法の場合、鉄鋼スラグを精錬炉から溶滓鍋に移注する際に、精錬炉から排出されている鉄鋼スラグにホウ素が当たるように添加する。また、溶滓鍋に収容された鉄鋼スラグに添加する方法の場合、鉄鋼スラグを溶滓鍋に受けた後、その鉄鋼スラグに対して浸漬ノズルを介してホウ素を吹込むか、あるいは鉄鋼スラグの上方からホウ素を吹き付けることで、ホウ素の添加を行う。さらに、溶滓鍋に移注又は収容される鉄鋼スラグに添加する方法では、ホウ素を添加した後、溶滓鍋中の鉄鋼スラグを他の溶滓鍋を移し替える工程を繰り返す等の方法によって、鉄鋼スラグの混合を行う。ホウ素が添加された鉄鋼スラグは、混合されることで均質なスラグとなる。
 添加工程の後、鉄鋼スラグを冷却することで固化(冷却固化)させる(冷却工程)。なお、必要に応じて、鉄鋼スラグにエージング処理を施してもよい。例えば、ステンレス鋼の製造に用いられる還元精錬を含む精錬処理にて発生する鉄鋼スラグの場合には、鉄鋼スラグの塩基度が低いため、フリーCaOの水和膨張の抑制が十分であると判断される場合には、エージング処理が行われなくてもよい。
 冷却工程の後、冷却固化された鉄鋼スラグを原料として、スラグ製品を製造する。この際、冷却固化された鉄鋼スラグに、粉砕処理及び必要に応じて磁選処理を行った後、所定の粒度(例えば、40mm以下や25mm以下)に加工したものをスラグ製品の原料としてもよい。なお、冷却固化された鉄鋼スラグからスラグ製品を製造する方法としては、土木建築用資材や鉄鋼スラグ水和固化体等のスラグ製品を製造する周知の方法を用いることができる。このようにして製造される鉄鋼スラグは、MgOの水和反応が抑制されているため、例えば体積膨張の少ない鉄鋼スラグ水和固化体用骨材として利材化できるようになる。
 <スラグ製品>
 上記のスラグ製品の製造方法にて製造されるスラグ製品は、以下の特徴を有する。本実施形態に係るスラグ製品は、鉄鋼スラグを用いて製造されるスラグ製品であって、含有されるフリーMgO100質量部に対して、含有されるホウ素が酸化ホウ素換算で30質量部以上である。より好ましくは、鉄鋼スラグ製品は、含有されるフリーMgO100質量部に対して、含有されるホウ素が酸化ホウ素換算で45質量部以上である。
 <変形例>
 以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態とともに種々の変形例を含む本発明の別の実施形態も明らかである。従って、特許請求の範囲に記載された発明の実施形態には、本明細書に記載したこれらの変形例を単独または組み合わせて含む実施形態も網羅すると解すべきである。
 例えば、上記実施形態では、フリーMgOの質量割合を測定する際に、エチレングリコールと熱重量測定法とを用いた方法で測定を行うとしたが、本発明はかかる例に限定されない。フリーMgOの測定方法として、鉄鋼スラグのX線のピークからフリーMgOに由来するピークを同定して、その定量を行う方法や、粒子状の鉄鋼スラグを樹脂等に埋め込んだものを研磨した後、電子線マイクロアナライザ(EPMA法)でMgO鉱物相を同定し、その面積率から重量率を算出する方法等の他の方法を用いてもよい。X線のピークを用いる方法では、鉄鋼スラグの採取を多点で行い、それらの鉄鋼スラグを混合して破砕することで試料を作製することによって、測定の信頼性が向上する。また、EPMAを用いる方法では、同様に鉄鋼スラグの採取を多点で行い、スラグ粒子を数個~10数個測定しそれらのフリーMgO相面積率の平均値を求めれば、測定の信頼性が向上する。なお、フリーMgOの質量割合の測定方法としては、測定精度の観点から、上記実施形態と同様に、エチレングリコールと熱重量測定法とを用いた測定方法とすることが好ましい。
 <実施形態の効果>
 (1)本発明の一態様に係るスラグ製品の製造方法は、鉄鋼スラグを用いたスラグ製品の製造方法であって、溶融状態の鉄鋼スラグを冷却して固化させたスラグを原料としてスラグ製品を製造する際に、鉄鋼スラグに含有されるフリーMgO100質量部に対して酸化ホウ素換算で30質量部以上に相当するホウ素を、溶融状態の鉄鋼スラグに添加し、ホウ素が添加された鉄鋼スラグを混合した後、鉄鋼スラグを冷却固化する。
 上記(1)の構成によれば、添加されるホウ素によって、鉄鋼スラグ中のフリーMgOの水和膨張が抑制される。これは、鉄鋼スラグが水を含む環境に曝露されると、鉄鋼スラグ中のフリーMgOの表面にホウ素を含む層が形成され、この層によってフリーMgOと水との接触が抑制されたためであると推定される。また、上記(1)の構成は、溶融状態の鉄鋼スラグにホウ素を添加して混合するだけでよいため、簡易かつ短時間にフリーMgOの水和膨張を抑制することができる。
 (2)本発明の一態様に係るスラグ製品は、鉄鋼スラグを用いて製造されるスラグ製品であって、含有されるフリーMgO100質量部に対して、含有されるホウ素が酸化ホウ素換算で30質量部以上である。
 上記(2)の構成によれば、上記(1)と同様な効果が得られる。
 次に、本発明者らが行った実施例について説明する。実施例では、製鉄所において発生する種々の鉄鋼スラグのフリーMgOの質量割合を調査した。また、そのフリーMgOの質量割合をエチレングリコールと熱重量測定法とを用いた方法により算出した。表1に、調査した6種類の鉄鋼スラグA~Dの塩基度(CaO/SiO)、MgOの質量割合及びフリーMgOの質量割合の測定結果をそれぞれ示す。さらに、各々の鉄鋼スラグに所定量の酸化ホウ素Bを精錬末期の精錬炉の炉内に投入した。その後、得られた鉄鋼スラグを冷却固化させ、破砕して25mmアンダーの寸法とした。そして、得られた鉄鋼スラグに対して、以下の膨張測定を行った。
Figure JPOXMLDOC01-appb-T000001
 膨張測定では、まず、得られた鉄鋼スラグを破砕して2mm、1.2mmで篩った。次いで、15gの2~1.2mmの鉄鋼スラグと、15gの1.2~0mmの鉄鋼スラグとを混合して、それを1条件につき3検体作製した。さらに、各検体をそれぞれ直径25mmの円柱状に圧縮成型させた。その後、圧縮成型させた各検体を、80℃の水に浸漬させ、10日間の膨張量を測定した。膨張測定の結果、ホウ素添加量が高いほど膨張率は低くなる傾向を示した。
 さらに実施例では、同じ鉄鋼スラグを用いて鉄鋼スラグ水和固化体を作製した。その後、得られた固化体を80℃の水に浸漬させて、30日経過したときの供試体を観察し、割れが生じるものを「bad」、直径10mm以内のごく軽微なポップアウトを生じるものを「good」、健全なもので外観に全く異常がないものを「excellent」と評価した。その結果を表2及び図1に記載する。なお、図1において、bad, good, excellentとなる評価結果は、△,◇,○でそれぞれ示される。表2に示すように、フリーMgOの質量に対して酸化ホウ素換算で30質量%以上に相当するホウ素量を添加した実施例1~18では、供試体に割れが生じず、健全なままであった。
 なお、2CaO・SiOのγ変態に伴う粉化の抑制という観点から考えると、本実施例の割合で添加される酸化ホウ素は十分な量である。本実施例のスラグを25mmアンダーに破砕した段階でその外観を観察したところ、粉状のスラグは観察されなかった。またX線にて鉱物相を確認したところγ形態の2CaO・SiOはいずれも全く確認されなかった。
Figure JPOXMLDOC01-appb-T000002

Claims (2)

  1.  鉄鋼スラグを用いたスラグ製品の製造方法であって、
     溶融状態の前記鉄鋼スラグを冷却して固化させたスラグを原料として前記スラグ製品を製造する際に、
     前記鉄鋼スラグに含有されるフリーMgO100質量部に対して酸化ホウ素換算で30質量部以上に相当するホウ素を、溶融状態の前記鉄鋼スラグに添加し、
     前記ホウ素が添加された前記鉄鋼スラグを混合した後、前記鉄鋼スラグを冷却固化する、スラグ製品の製造方法。
  2.  鉄鋼スラグを用いて製造されるスラグ製品であって、
     含有されるフリーMgO100質量部に対して、含有されるホウ素が酸化ホウ素換算で30質量部以上である、スラグ製品。
PCT/JP2021/005095 2020-03-18 2021-02-10 スラグ製品の製造方法及びスラグ製品 WO2021186964A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180022152.XA CN115348955B (zh) 2020-03-18 2021-02-10 炉渣制品的制造方法及炉渣制品
KR1020227030407A KR20220134634A (ko) 2020-03-18 2021-02-10 슬래그 제품의 제조 방법 및 슬래그 제품
JP2021523802A JP6954500B1 (ja) 2020-03-18 2021-02-10 スラグ製品の製造方法及びスラグ製品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-047600 2020-03-18
JP2020047600 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021186964A1 true WO2021186964A1 (ja) 2021-09-23

Family

ID=77768067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005095 WO2021186964A1 (ja) 2020-03-18 2021-02-10 スラグ製品の製造方法及びスラグ製品

Country Status (4)

Country Link
JP (1) JP6954500B1 (ja)
KR (1) KR20220134634A (ja)
CN (1) CN115348955B (ja)
WO (1) WO2021186964A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808760B (zh) * 2022-05-16 2023-07-11 中國鋼鐵股份有限公司 電爐煉鋼的方法
TWI817604B (zh) * 2022-07-11 2023-10-01 中國鋼鐵股份有限公司 耐火材料調質轉爐石及其製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812385A (ja) * 1994-06-24 1996-01-16 Kawasaki Steel Corp 転炉スラグの改質方法
JP2002308662A (ja) * 2001-04-11 2002-10-23 Kawasaki Steel Corp スラグ硬化体の製造方法
JP2005272275A (ja) * 2004-03-26 2005-10-06 Jfe Steel Kk クロム鉱石溶融還元炉スラグの改質方法
JP2005336007A (ja) * 2004-05-26 2005-12-08 Kyushu Institute Of Technology 製鋼スラグの粉塵化抑制剤及びそれを用いた粉塵化抑制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413037A (zh) * 2008-11-28 2009-04-22 首钢总公司 一种钢渣余热回收与钢渣综合加工利用的方法
CN102586517B (zh) * 2012-04-05 2014-06-18 山西太钢不锈钢股份有限公司 一种不锈钢钢渣处理方法
CN105063362B (zh) * 2015-08-26 2017-03-22 西南科技大学 一种活性镍铁渣的制备方法
WO2018021019A1 (ja) * 2016-07-27 2018-02-01 新日鐵住金株式会社 溶鋼の製造方法
CN109851242B (zh) * 2019-03-29 2021-11-16 湖南省道同环保科技有限公司 一种钢渣改性方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812385A (ja) * 1994-06-24 1996-01-16 Kawasaki Steel Corp 転炉スラグの改質方法
JP2002308662A (ja) * 2001-04-11 2002-10-23 Kawasaki Steel Corp スラグ硬化体の製造方法
JP2005272275A (ja) * 2004-03-26 2005-10-06 Jfe Steel Kk クロム鉱石溶融還元炉スラグの改質方法
JP2005336007A (ja) * 2004-05-26 2005-12-08 Kyushu Institute Of Technology 製鋼スラグの粉塵化抑制剤及びそれを用いた粉塵化抑制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808760B (zh) * 2022-05-16 2023-07-11 中國鋼鐵股份有限公司 電爐煉鋼的方法
TWI817604B (zh) * 2022-07-11 2023-10-01 中國鋼鐵股份有限公司 耐火材料調質轉爐石及其製造方法

Also Published As

Publication number Publication date
CN115348955B (zh) 2023-10-13
CN115348955A (zh) 2022-11-15
KR20220134634A (ko) 2022-10-05
JPWO2021186964A1 (ja) 2021-09-23
JP6954500B1 (ja) 2021-10-27

Similar Documents

Publication Publication Date Title
Bodor et al. Laboratory investigation of carbonated BOF slag used as partial replacement of natural aggregate in cement mortars
WO2021186964A1 (ja) スラグ製品の製造方法及びスラグ製品
CN103764588B (zh) 中性化抑制型早强水泥组合物
Alanyali et al. Concrete produced by steel‐making slag (basic oxygen furnace) addition in portland cement
CN106045529A (zh) 一种含80%以上废旧耐材的铁沟浇注料
Dai Development of aluminum dross-based material for engineering application
CN102453778A (zh) 一种冶金辅料助熔剂及其制备方法
Andrews et al. Chemical and mineralogical characterization of ghanaian foundry slags
Moline et al. Ambient weathering of steelmaking ladle slags
JP7232403B2 (ja) ホウ素含有物質からのホウ素溶出判定方法、これを利用したホウ素含有物質からのホウ素溶出抑制方法及びこれらを利用した土木建築用資材の製造方法、並びにスラグ
Wu et al. Generation, utilization, and environmental impact of ladle furnace slag: A minor review
Sun et al. A novel route to enhance high-temperature mechanical property and thermal shock resistance of low-carbon MgO–C bricks by introducing ZrSiO4
Zhao et al. The Characteristics of the Phase Transition of Air-Quenched Ladle Furnace Slag
Eriksson et al. MgO modification of slag from stainless steelmaking
CN106977181A (zh) 一种转炉炉帽用镁铝钙钛碳砖及其制备方法
Yang et al. Treatments of AOD slag to produce aggregates for road construction
JP6719987B2 (ja) セメント混和材、セメント組成物及びセメント硬化体
KR20210073082A (ko) 시멘트용 중화석고 조성물, 시멘트용 중화석고 제조 방법 및 이에 의한 시멘트용 중화석고를 포함하는 시멘트
Faucher et al. Recent developments in dry slag granulation: a path to improving safety and sustainbility of the metallurgical sector
CN113683320B (zh) 一种胶凝材料
Dong et al. Recycling and applications of steel slag aggregates
Gumieri et al. Characteristics of steel slag granulated in a steel plant—Valuation of the microstructure through electron probe micro analysis
KR101591288B1 (ko) 전기로 산화 슬래그 및 환원 슬래그를 함유한 고로 슬래그 시멘트 조성물
JP7244803B2 (ja) ホウ素含有スラグの改質方法及びこれを利用した土木建築用資材の製造方法、並びに改質スラグ
JP6835117B2 (ja) 鉄鋼スラグの処理方法及び鉄鋼スラグの再利用品製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021523802

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227030407

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771274

Country of ref document: EP

Kind code of ref document: A1