WO2021185181A1 - 变焦镜头、摄像模组及终端设备 - Google Patents

变焦镜头、摄像模组及终端设备 Download PDF

Info

Publication number
WO2021185181A1
WO2021185181A1 PCT/CN2021/080554 CN2021080554W WO2021185181A1 WO 2021185181 A1 WO2021185181 A1 WO 2021185181A1 CN 2021080554 W CN2021080554 W CN 2021080554W WO 2021185181 A1 WO2021185181 A1 WO 2021185181A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
zoom lens
zoom
focal length
Prior art date
Application number
PCT/CN2021/080554
Other languages
English (en)
French (fr)
Inventor
姚秀文
周少攀
李战涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022556605A priority Critical patent/JP2023517388A/ja
Priority to KR1020227036133A priority patent/KR20220146685A/ko
Priority to EP21772221.4A priority patent/EP4113186A4/en
Publication of WO2021185181A1 publication Critical patent/WO2021185181A1/zh
Priority to US17/948,335 priority patent/US20230023354A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/15Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective compensation by means of only one movement or by means of only linearly related movements, e.g. optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+

Definitions

  • This application belongs to the technical field of optical equipment, and in particular relates to a zoom lens, a camera module and a terminal device.
  • zoom lenses have been widely used in terminal products such as mobile phones.
  • terminal products such as mobile phones are usually paired with two to three lenses with different focal lengths to form a hybrid optical zoom lens through algorithm-based digital zoom.
  • the hybrid optical zoom is essentially a kind of multiple lenses based on different focal lengths, which rely on algorithm processing to achieve continuous zooming, which is also known as "jump zoom", which also causes the focal length to be between the different focal lengths of each zoom lens.
  • the imaging definition that can be produced by the hybrid optical zoom lens is relatively limited, which results in poor imaging quality of the terminal equipment equipped with the hybrid optical zoom lens.
  • the purpose of the embodiments of the present application is to provide a zoom lens, a camera module, and a terminal device, aiming to solve the technical problem of poor imaging quality of a terminal device equipped with a hybrid optical zoom lens in the prior art.
  • a zoom lens including a first lens group, a second lens group, a third lens group, and a fourth lens group arranged in order from the object side to the image side along the optical axis; the first lens And the third lens group are fixedly arranged,
  • the second lens group is used as a focusing group to move along the optical axis
  • the fourth lens group is used as a compensation group to move along the optical axis along with the second lens group; or, the fourth lens group is used as a adjusting group.
  • the focal group moves along the optical axis
  • the second lens group moves along the optical axis with the fourth lens group as a compensation group
  • the first lens group and the third lens group are fixedly arranged to form a zoom lens
  • the fixed group, the second lens group and the fourth lens move along the optical axis, so that when zooming from the wide-angle end to the telephoto end, the second lens group and the fourth lens group move along the optical axis at the same time to achieve zoom and alignment
  • the aberrations generated during zooming are compensated, which not only meets the high zoom ratio of the zoom lens, but also keeps the imaging sharpness of the zoom lens at a better level at all times.
  • the first lens of the first lens group from the object side is a biconvex lens, which can improve the focusing performance of the first lens group while also extending the back focal length of the zoom lens, so that the zoom lens has a longer focal length. While good imaging effect, the thickness of the zoom lens is also reduced as much as possible.
  • at least two lenses of the first lens group from the object side are glass lenses, so that the two lenses close to the object side can be deeply processed, so that they can be thinner and have good optical path adjustment capabilities.
  • the maximum light aperture of the zoom lens of the first lens group satisfies the following relationship: 4mm ⁇ 12mm; where ⁇ is the maximum light aperture of the zoom lens.
  • the zoom lens satisfies the following relationship:
  • TTL is the total optical length of the zoom lens
  • ft is the effective focal length of the telephoto end of the zoom lens.
  • the zoom lens satisfies the following relationship:
  • IMH is the height distance from the imaging edge of the lens of the zoom lens to the center of the imaging surface
  • ft is the effective focal length of the telephoto end of the zoom lens.
  • the first lens group, the third lens group, and the fourth lens group all have positive refractive power, and the second lens group has negative refractive power.
  • the first lens group and the third lens group both have positive refractive power
  • the second lens group and the fourth lens group both have negative refractive power
  • the first lens group satisfies the following relationship:
  • f 1 is the focal length of the first lens group
  • ft is the effective focal length of the telephoto end of the zoom lens.
  • the second lens group satisfies the following relationship:
  • f 2 is the focal length of the second lens group
  • ft is the effective focal length of the telephoto end of the zoom lens.
  • the third lens group satisfies the following relationship:
  • f 3 is the focal length of the third lens group
  • ft is the effective focal length of the telephoto end of the zoom lens.
  • the fourth lens group satisfies the following relationship:
  • f 4 is the focal length of the fourth lens group
  • ft is the effective focal length of the telephoto end of the zoom lens. In this way, the fourth lens group can realize extensive compensation for the aberrations generated during the entire movement of the second lens group.
  • the ratio between the effective focal length ft at the telephoto end of the zoom lens and the effective focal length fw at the wide-angle end of the zoom lens satisfies the following relationship:
  • the ratio of the movement distance D1 of the second lens group along the optical axis to the total optical length TTL of the zoom lens satisfies the following relationship:
  • the ratio of the movement distance D2 of the fourth lens group along the optical axis to the total optical length TTL of the zoom lens satisfies the following relationship:
  • the total number N of lenses included in the first lens group, the second lens group, the third lens group, and the fourth lens group satisfies the following relationship:
  • the total number S of aspheric surfaces of the lenses included in the first lens group, the second lens group, the third lens group, and the fourth lens group satisfies the following relationship:
  • the lens is a special-shaped aperture lens.
  • the height H of the special-shaped aperture lens along its trimming direction satisfies the following relationship:
  • the zoom lens further includes a prism and/or a mirror.
  • the prism and/or a mirror are arranged on a side of the first lens group facing the object side and used to deflect light to the first lens group.
  • a camera module including the above-mentioned zoom lens.
  • the camera module provided by the embodiments of the present application includes the above-mentioned zoom lens, and the above-mentioned zoom lens can achieve continuous zooming while also improving the overall imaging quality and miniaturization potential of the focal lens, thus enabling the above-mentioned
  • the camera module of the zoom lens can achieve miniaturization while improving the image quality.
  • a terminal device which includes the aforementioned camera module.
  • the terminal device provided by the embodiment of the present application includes the above-mentioned camera module
  • the terminal device with the above-mentioned setting module realizes continuous zooming through one lens, which changes the previous "jumping zoom" of multiple lenses.
  • the mode on the one hand, significantly improves the imaging clarity during continuous zooming, on the other hand, it also saves the assembly space of the lens.
  • FIG. 1 is a schematic diagram of the movement state of the second lens group and the fourth lens group when the zoom lens provided in Embodiment 1 of the application is converted from a wide-angle state to a long-focus state;
  • FIG. 2 is a schematic diagram of the movement state of the second lens group and the fourth lens group when the zoom lens provided in Embodiment 2 of the application is converted from a wide-angle state to a long-focus state;
  • FIG. 3 is a schematic diagram of the movement state of the second lens group and the fourth lens group when the zoom lens provided in Embodiment 3 of the application is converted from a wide-angle state to a long-focus state;
  • FIG. 4 is a schematic diagram of the movement state of the second lens group and the fourth lens group when the zoom lens provided in Embodiment 4 of the application is converted from a wide-angle state to a long-focus state;
  • FIG. 5 is a schematic diagram of the movement state of the second lens group and the fourth lens group when the zoom lens provided in Embodiment 5 of the application is converted from a wide-angle state to a long-focus state;
  • FIG. 6 is a schematic diagram of the movement state of the second lens group and the fourth lens group when the zoom lens provided in Embodiment 6 of the application is converted from a wide-angle state to a long-focus state;
  • FIG. 7 is a schematic diagram of the movement state of the second lens group and the fourth lens group when the zoom lens provided in Embodiment 7 of the application is converted from a wide-angle state to a long-focus state;
  • FIG. 8 is a schematic diagram of the movement state of the second lens group and the fourth lens group when the zoom lens provided in Embodiment 8 of the application is converted from a wide-angle state to a long-focus state;
  • FIG. 9 is a schematic diagram of the movement state of the second lens group and the fourth lens group when the zoom lens provided in Embodiment 9 of the application is converted from a wide-angle state to a long-focus state;
  • FIG. 10 is a schematic diagram of the movement state of the second lens group and the fourth lens group when the zoom lens provided by Embodiment 10 of the application is converted from a wide-angle state to a long-focus state;
  • FIG. 11 is a schematic diagram of the movement state of the second lens group and the fourth lens group when the zoom lens provided in Embodiment 11 of the application is converted from a wide-angle state to a long-focus state;
  • FIG. 12 is a schematic diagram of the movement state of the second lens group and the fourth lens group when the zoom lens provided in Embodiment 12 of the application is converted from a wide-angle state to a long-focus state;
  • FIG. 13 is a schematic diagram of the movement state of the second lens group and the fourth lens group when the zoom lens provided by Embodiment 13 of the application is converted from a wide-angle state to a long-focus state;
  • FIG. 14 is a schematic diagram of the movement state of the second lens group and the fourth lens group when the zoom lens provided by Embodiment 14 of the application is converted from a wide-angle state to a long-focus state;
  • FIG. 15 is an axial chromatic aberration curve when the zoom lens provided in Embodiment 1 of the application is in a wide-angle state;
  • FIG. 16 is an axial chromatic aberration curve when the zoom lens provided in Embodiment 2 of the application is in a wide-angle state;
  • FIG. 17 is an axial chromatic aberration curve when the zoom lens provided in Embodiment 3 of the application is in a wide-angle state;
  • FIG. 18 is an axial chromatic aberration curve when the zoom lens provided in Embodiment 4 of the application is in a wide-angle state;
  • FIG. 19 is an axial chromatic aberration curve when the zoom lens provided in Embodiment 5 of the application is in a wide-angle state;
  • FIG. 20 is an axial chromatic aberration curve when the zoom lens provided in Embodiment 6 of the application is in a wide-angle state;
  • FIG. 21 is an axial chromatic aberration curve when the zoom lens provided in Embodiment 7 of the application is in a wide-angle state;
  • FIG. 22 is an axial chromatic aberration curve when the zoom lens provided in Embodiment 8 of the application is in a wide-angle state;
  • FIG. 23 is an axial chromatic aberration curve when the zoom lens provided in Embodiment 9 of the application is in a wide-angle state;
  • FIG. 24 is an axial chromatic aberration curve when the zoom lens provided in Embodiment 10 of the application is in a wide-angle state;
  • FIG. 25 is an axial chromatic aberration curve when the zoom lens provided in Embodiment 11 of the application is in a wide-angle state;
  • FIG. 26 is an axial chromatic aberration curve when the zoom lens provided in Embodiment 12 of the application is in a wide-angle state;
  • FIG. 27 is an axial chromatic aberration curve when the zoom lens provided in Embodiment 13 of the application is in a wide-angle state;
  • FIG. 28 is an axial chromatic aberration curve when the zoom lens provided in Embodiment 14 of the application is in a wide-angle state;
  • FIG. 29 is a lateral chromatic aberration curve when the zoom lens provided in Embodiment 1 of the application is in a wide-angle state;
  • FIG. 30 is a lateral chromatic aberration curve when the zoom lens provided in Embodiment 2 of the application is in a wide-angle state;
  • FIG. 31 is a lateral chromatic aberration curve when the zoom lens provided in Embodiment 3 of the application is in a wide-angle state;
  • FIG. 32 is a lateral chromatic aberration curve when the zoom lens provided in Embodiment 4 of the application is in a wide-angle state;
  • FIG. 33 is a lateral chromatic aberration curve when the zoom lens provided in Embodiment 5 of the application is in a wide-angle state;
  • FIG. 34 is a lateral chromatic aberration curve when the zoom lens provided in Embodiment 6 of the application is in a wide-angle state;
  • FIG. 35 is a lateral chromatic aberration curve when the zoom lens provided in Embodiment 7 of the application is in a wide-angle state;
  • FIG. 36 is a lateral chromatic aberration curve when the zoom lens provided in Embodiment 8 of the application is in a wide-angle state;
  • FIG. 37 is a lateral chromatic aberration curve when the zoom lens provided in Embodiment 9 of the application is in a wide-angle state;
  • FIG. 38 is a lateral chromatic aberration curve when the zoom lens provided in Embodiment 10 of the application is in a wide-angle state;
  • FIG. 39 is a lateral chromatic aberration curve when the zoom lens provided in Embodiment 11 of the application is in a wide-angle state;
  • FIG. 40 is a lateral chromatic aberration curve when the zoom lens provided in Embodiment 12 of the application is in a wide-angle state;
  • FIG. 41 is a lateral chromatic aberration curve when the zoom lens provided in Embodiment 13 of the application is in a wide-angle state;
  • FIG. 42 is a lateral chromatic aberration curve when the zoom lens provided in Embodiment 14 of the application is in a wide-angle state;
  • FIG. 43 is a distortion percentage curve when the zoom lens provided in Embodiment 1 of the application is in a wide-angle state
  • FIG. 44 is a distortion percentage curve when the zoom lens provided in Embodiment 2 of the application is in a wide-angle state
  • FIG. 45 is a distortion percentage curve when the zoom lens provided in Embodiment 3 of the application is in a wide-angle state
  • FIG. 46 is a distortion percentage curve when the zoom lens provided in Embodiment 4 of the application is in a wide-angle state
  • FIG. 47 is a distortion percentage curve when the zoom lens provided in Embodiment 5 of the application is in a wide-angle state
  • FIG. 48 is a distortion percentage curve when the zoom lens provided in Embodiment 6 of the application is in a wide-angle state
  • FIG. 49 is a distortion percentage curve when the zoom lens provided in Embodiment 7 of the application is in a wide-angle state
  • FIG. 50 is a distortion percentage curve when the zoom lens provided in Embodiment 8 of the application is in a wide-angle state
  • FIG. 51 is a distortion percentage curve when the zoom lens provided in Embodiment 9 of the application is in a wide-angle state
  • FIG. 52 is a distortion percentage curve when the zoom lens provided in Embodiment 10 of the application is in a wide-angle state
  • FIG. 53 is a distortion percentage curve when the zoom lens provided in Embodiment 11 of the application is in a wide-angle state
  • FIG. 54 is a distortion percentage curve when the zoom lens provided in Embodiment 12 of the application is in a wide-angle state
  • FIG. 55 is a distortion percentage curve when the zoom lens provided in Embodiment 13 of the application is in a wide-angle state
  • FIG. 56 is a distortion percentage curve when the zoom lens provided in Embodiment 14 of the application is in a wide-angle state.
  • the third lens 14 The fourth lens group.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, “multiple” means two or more than two, unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • Double convex lens It is a kind of lens with convex spherical surface on the object side and the image side. The middle part is thicker and the edge part is thinner. The double convex lens has the function of concentrating light.
  • Focus group refers to the lens group that moves along the optical axis of the zoom lens 10 in the zoom lens 10 and is responsible for adjusting the focal length of the zoom lens 10.
  • Compensation group refers to the lens group in the zoom lens 10 that moves along the optical axis of the zoom lens 10 along with the focus group, and is responsible for balancing and eliminating the influence of aberrations generated during the movement of the focus group.
  • Image height refers to the height distance from the imaging edge of the lens of the optical system to the center of the imaging surface.
  • F value the relative value derived from the focal length of the optical system/the lens diameter (the reciprocal of the relative aperture), the aperture F
  • EFL Effective Focal Length: effective focal length, for thick lenses (lenses whose thickness cannot be ignored), or optical systems with several lenses or mirrors (such as camera lenses, telescopes, or mobile terminals such as mobile phones) ,
  • the focal length is usually expressed by the effective focal length, which is different from the commonly used parameters.
  • Front focal length refers to the distance from the focal point in front of the optical system to the vertex of the first optical surface.
  • Back focal length refers to the length from the vertex of the last optical surface of the optical system to the back focal length.
  • the effective focal length is the distance from the front and back principal planes to the corresponding focal point. If the surrounding environment is not air, the distance must be multiplied by the refractive index of the substance. Some authors call this distance the front (rear) focal length to distinguish it from the front (rear) focal length defined above.
  • FOV Field of View
  • the lens of the optical system is the vertex, and the angle formed by the two edges of the maximum range where the object image of the measured target can pass through the lens , Called the angle of view.
  • the size of the field of view determines the field of view of the optical instrument. The larger the field of view, the larger the field of view and the smaller the optical magnification.
  • TTL refers to the total optical height or total length of the optical system, that is, the total length from the head of the optical system to the image;
  • TTL1 Total Track Length1: refers to the distance from the vertex of the first surface of the optical system to the vertex of the last surface of the optical system;
  • the telephoto end of the zoom lens 10 a numerical value segment representing the focal length of the zoom lens 10 when it is in a telephoto state.
  • the wide-angle end of the zoom lens 10 when the zoom lens 10 is in the wide-angle state, the captured image presents a large foreground and a small distant view, and the numerical range of the focal length at which it is located.
  • D1 Refers to the travel distance range of the second lens group 12 as a zoom group or a compensation group when moving along the optical axis.
  • D2 Refers to the travel distance range of the fourth lens group 14 as a zoom group or a compensation group when moving along the optical axis.
  • Imaging edge refers to the edge position of the lens of the zoom lens 10.
  • Imaging surface center refers to the center position of the lens of the zoom lens 10.
  • Zoom ratio refers to the ratio of the maximum focal length to the minimum focal length of the zoom lens 10.
  • Focal length also known as focal length, is a measure of the concentration or divergence of light in an optical system. It refers to the lens or lens group when a scene at infinity is formed into a clear image at the focal plane through the lens or lens group.
  • the vertical distance from the optical center to the focal plane From a practical point of view, it can be understood as the distance from the center of the lens to the plane. For a fixed focus lens, the position of its optical center is fixed; for a zoom lens, the change of the optical center of the lens brings about a change in the focal length of the lens.
  • Aperture is a device used to control the amount of light passing through the lens and entering the photosensitive surface of the body. It is usually inside the lens. Express the aperture size with F/number.
  • the F value is the relative value (the reciprocal of the relative aperture) derived from the focal length of the lens/the lens diameter.
  • the smaller the aperture F value the more light will enter in the same unit time.
  • the larger the aperture F value the smaller the depth of field, and the background content of the photo will be blurred, similar to the effect of a telephoto lens.
  • Positive refractive power also called positive refractive power, means that the lens has a positive focal length and has the effect of converging light.
  • Negative refractive power also called negative refractive power, means that the lens has a negative focal length and has the effect of diverging light.
  • the positive refractive power represents the refractive convergence ability of the zoom lens 10 for the incident light beam. The larger the positive refractive power value, the stronger the refractive convergence ability.
  • Negative refractive power represents the refractive divergence ability of the zoom lens 10 to the incident light beam. The larger the negative refractive power value, the stronger the refractive divergence ability.
  • the Abbe number is the difference ratio of the refractive index of an optical material at different wavelengths, and represents the degree of dispersion of the material.
  • the optical axis is a line of light that passes through the center of the ideal lens vertically.
  • the ideal convex lens should be a point where all the light rays converge behind the lens. This point where all the light rays converge is the focal point.
  • the lens On the object side, the lens is the boundary, and the space where the object is located is the object space.
  • the space where the light emitted by the subject passes through the lens and the image formed behind the lens is the image space.
  • Axial chromatic aberration also known as longitudinal chromatic aberration or positional chromatic aberration or axial aberration
  • a beam of light parallel to the optical axis will converge at different positions before and after passing through the lens.
  • This aberration is called positional chromatic aberration or axial chromatic aberration. . This is due to the different imaging positions of the lens for the light of each wavelength, so that the focal planes of the images of different colors of light cannot be overlapped in the final imaging, and the polychromatic light is scattered to form dispersion.
  • Lateral chromatic aberration is also called chromatic aberration of magnification, and the difference in the magnification of different colors of light by the optical system is called chromatic aberration of magnification.
  • the wavelength causes the change of the magnification of the optical system, and the size of the image changes accordingly.
  • Distortion also known as distortion
  • distortion is the degree of distortion of the image formed by the optical system on the object relative to the object itself. Distortion is due to the influence of the spherical aberration of the diaphragm.
  • the height of the intersection point between the chief rays of different fields of view and the Gaussian image plane after passing through the optical system is not equal to the ideal image height, and the difference between the two is distortion. Therefore, the distortion only changes the imaging position of the off-axis object point on the ideal surface, causing distortion of the shape of the image, but does not affect the sharpness of the image.
  • Optical distortion refers to the degree of distortion calculated in optical theory.
  • Diffraction limit refers to the imaging of an ideal object point through an optical system. Due to the limitation of diffraction, it is impossible to obtain an ideal image point, but a Fraunhofer diffraction image. Since the aperture of a general optical system is round, Fraunhofer diffraction image is the so-called Airy disk. In this way, the image of each object point is a diffusive spot, and it is difficult to distinguish between two diffusive spots when they are close, which limits the resolution of the system. The larger the spot, the lower the resolution.
  • Special-shaped aperture lens It is a lens whose edge contour is not a traditional round shape, but an irregular shape.
  • the cutting edge direction of the special-shaped aperture lens refers to the direction in which the cutter travels when the lens is cut, which usually includes the vertical cutting edge direction or the horizontal cutting edge direction.
  • an embodiment of the present application provides a zoom lens 10 which is used in a camera module, and the camera module with the above-mentioned zoom lens 10 can be used in terminal equipment.
  • the camera module can be composed of a zoom lens 10, a voice coil motor, an infrared filter, an image sensor, an A/D signal converter, and a processor assembly.
  • the terminal devices in the embodiments of this application include, but are not limited to, cameras, mobile phones, tablet computers, wearable devices, vehicle-mounted devices, augmented reality (AR)/virtual reality (VR) devices, laptop computers, and ultra-mobile personal Computers (ultra-mobile personal computers, UMPC), netbooks, or personal digital assistants (personal digital assistants, PDAs), etc., the embodiments of this application do not impose any restrictions on the specific types of terminal devices.
  • the terminal device in the embodiment of the present application is described by taking a mobile phone as an example. It should be understood that it cannot be construed as a limitation of the present application.
  • the zoom lens 10 includes a first lens group 11, a second lens group 12, a third lens group 13 and a fourth lens group 14 arranged in order from the object side to the image side along the optical axis; the first lens group 11 and the third lens group 13 are fixedly arranged, the second lens group 12 and the fourth lens group 14 move along the optical axis, and the first lens group 11 and the third lens group 13 are fixedly arranged to form a fixed group of the zoom lens 10.
  • the second lens group 12 and the fourth lens group 14 move along the optical axis to achieve zooming and compensate for aberrations generated during zooming.
  • the second lens group 12 may be a zoom group
  • the fourth lens group may be a compensation group.
  • the second lens group 12 can continuously enlarge the imaging size of the first lens group 11 during the movement along the optical axis.
  • the focal length of the zoom lens 10 is changed, so that the zoom lens 10 can achieve continuous zooming.
  • the fourth lens group 14 with optical power can move along the optical axis during the movement of the second lens group 12 to compensate for the displacement of the image surface generated by the second lens group 12 during the movement.
  • the second lens group 12 is a compensation group
  • the fourth lens group 14 is a zoom group. In this way, while satisfying the high zoom ratio of the zoom lens, the imaging clarity of the zoom lens can be kept at a better level at all times.
  • the first lens of the first lens group 11 from the object side is a biconvex lens, which can improve the focusing performance of the first lens group 11 while also extending the back focal length of the zoom lens 10, so that the zoom lens 10 is While having a good imaging effect, the thickness of the zoom lens 10 is also reduced as much as possible.
  • At least two lenses of the first lens group 11 are glass lenses from the object side, so that the two lenses close to the object side can be deeply processed, so that they can be thinner and have good optical path adjustment capabilities.
  • the maximum clear aperture of the zoom lens 10 satisfies the following relationship:
  • is the maximum clear aperture of the zoom lens.
  • setting the maximum aperture of the zoom lens in the range of 4mm to 12mm effectively increases the amount of light entering the zoom lens 10.
  • it also effectively controls the depth of field not to be too small, thereby avoiding the background part of the image. Blur.
  • it can effectively reduce the overall height of the zoom lens while also increasing the light transmission rate of the zoom lens.
  • the combination of the above factors improves the overall imaging quality of the focal lens and also enables the zoom lens to do more It is small and easy to use in thinner terminal equipment. In this way, the terminal device equipped with the above-mentioned zoom lens can continuously maintain its imaging definition at a better level during continuous zooming, thereby improving the overall imaging quality of the terminal device.
  • the zoom lens also reduces the structural complexity of the zoom lens 10.
  • the difficulty of engineering realization also enables the zoom lens 10 to be made smaller, so that it can be easily applied to mobile terminal devices such as mobile phones.
  • the maximum clear aperture of the zoom lens can also satisfy the following relationship:
  • the zoom lens 10 By specifically setting the maximum light aperture of the zoom lens in the range of 4mm to 6mm, the zoom lens 10 has sufficient light input, and the overall height of the zoom lens can be made smaller, thereby improving the zoom lens 10 The miniaturization potential enables it to be used in thinner terminal devices.
  • the zoom lens 10 provided in this embodiment further includes a diaphragm, and the diaphragm can be located on the object side of the third lens group 13 or in other positions.
  • the camera module provided by the embodiment of the present application includes the above-mentioned zoom lens 10, and the above-mentioned zoom lens 10 can achieve continuous zoom while also improving the overall imaging quality and miniaturization potential of the zoom lens 10, thus making The camera module with the aforementioned zoom lens 10 can improve the image quality while achieving miniaturization.
  • the terminal device provided by the embodiment of the present application includes the above-mentioned camera module
  • the terminal device with the above-mentioned setting module realizes continuous zooming through one lens, which changes the previous "jumping zoom" of multiple lenses. This mode, on the one hand, significantly improves the imaging clarity during continuous zooming, and on the other hand, it also saves the assembly space of the zoom lens 10.
  • the zoom lens 10 satisfies the following relationship:
  • TTL is the total optical length of the zoom lens 10
  • ft is the effective focal length of the telephoto end of the zoom lens 10.
  • the ratio of the total optical length of the zoom lens 10 to the effective focal length of the telephoto end is set in the range of 0.8 to 1.5, so that the zoom lens 10 can always maintain Good viewing angle width and zoom ratio, and can also take into account the correction of off-axis aberration.
  • the ratio of the total optical length of the zoom lens 10 to the effective focal length of the telephoto end is further set in the range of 0.8 to 1, so that the viewing angle width and the zoom ratio of the zoom lens 10 reach the best state.
  • the zoom lens 10 also satisfies the following relationship:
  • IMH is the height from the imaging edge of the zoom lens 10 to the center of the imaging surface, which is also called half image height, and ft is the effective focal length of the telephoto end of the zoom lens 10.
  • the zoom lens 10 by setting the ratio of the image height of the zoom lens 10 to the effective focal length of its telephoto end in the range of 0.02 to 0.2, while increasing the zoom ratio of the zoom lens 10, the total height of the zoom lens can also be improved.
  • the reduction enables the zoom lens 10 to have a smaller height dimension, and is easier to be installed in a thinner terminal device.
  • the first lens group 11, the third lens group 13 and the fourth lens group 14 may all have positive refractive power, and the second lens group 12 may have negative refractive power.
  • the first lens group 11 and the third lens group 13 both have positive refractive power
  • the second lens group 12 and the fourth lens group 14 both have negative refractive power.
  • the second lens group 11 and the third lens group 13 keep their positions unchanged.
  • the movement state of the fourth lens group 12 and the fourth lens group 14 may be: the second lens group 12 moves along the optical axis toward the image side, and the fourth lens group 14 moves along the optical axis first to the object side and then to the image side.
  • the second lens group 12 moves at a constant speed along the optical axis to achieve continuous adjustment of the focal length, while the fourth lens group 14 can move non-uniformly with respect to the second lens group 12 to realize the movement of the second lens group 12
  • the image plane displacement generated in the process is dynamically compensated in real time, so that the image captured by the zoom lens 10 during the continuous zooming process always maintains good clarity and high quality.
  • the second lens group 12 can also move along the optical axis toward the image side, and the fourth lens group 14 can move along the optical axis toward the object side, or both the second lens group 12 and the fourth lens group 14 can move toward the image side along the optical axis.
  • the image side moves, or the second lens group 12 moves along the optical axis toward the image side, and the fourth lens group 14 moves along the optical axis first to the image side and then to the object side.
  • the above-mentioned movement modes of the second lens group 12 and the fourth lens group 14 can both realize the transformation of the zoom lens 10 from the wide-angle end to the telephoto end.
  • the first lens group 11 satisfies the following relationship:
  • f 1 is the focal length of the first lens group 11
  • ft is the effective focal length of the telephoto end of the zoom lens 10.
  • the ratio of the focal length of the first lens group 11 to the focal length of the zoom lens 10 in the range of 0.2 to 2.3, the light-gathering ability of the first lens group 11 is effectively improved, and the axial chromatic aberration is also reduced.
  • the first lens group 11 may also satisfy the following relationship:
  • f 1 is the focal length of the first lens group 11
  • ft is the focal length of the zoom lens 10.
  • the ratio of the focal length of the first lens group 11 to the focal length of the zoom lens 10 in the range of 0.2 to 0.69, 0.75 to 1.3, or 1.95 to 2.15, the light-gathering ability of the first lens group 11 is improved. While reducing the axial chromatic aberration, it can also correct the off-axis aberration of field curvature and coma, so that the image definition and image quality can be maintained at an ideal level during continuous zooming.
  • the second lens group 12 satisfies the following relationship:
  • f 2 is the focal length of the second lens group 12
  • ft is the effective focal length of the telephoto end of the zoom lens 10.
  • the ratio of the focal length of the second lens group 12 to the focal length of the zoom lens 10 in the range of 0.02 to 0.09 or 0.13 to 0.54, it is beneficial to correct the aberrations generated by the second lens group 12 during the zooming process.
  • the second lens group 12 may also satisfy the following relationship:
  • f 2 is the focal length of the second lens group 12
  • ft is the focal length of the zoom lens 12.
  • the ratio of the focal length of the second lens group 12 to the focal length of the zoom lens 10 in the range of 0.02 to 0.09 or 0.13 to 0.54, it is beneficial to specifically correct the effects of the second lens group 12 during the zooming process.
  • System dispersion and system spherical aberration are beneficial to specifically correct the effects of the second lens group 12 during the zooming process.
  • the third lens group 13 satisfies the following relationship:
  • f 3 is the focal length of the third lens group 13
  • ft is the effective focal length of the telephoto end of the zoom lens 10.
  • the third lens group 13 may further satisfy the following relational expressions:
  • f 3 is the focal length of the third lens group 13
  • ft is the focal length of the zoom lens 10.
  • the condensing ability of the third lens group 13 can be improved At the same time, it can effectively correct the off-axis aberrations of curvature of field and coma.
  • the fourth lens group 14 satisfies the following relationship:
  • f 4 is the focal length of the fourth lens group 14, and ft is the effective focal length of the telephoto end of the zoom lens 10.
  • the fourth lens group 14 can be used for zooming when the second lens group 12 moves along the optical axis.
  • the aberrations generated during the entire movement of the second lens group 12 can be widely compensated.
  • the fourth lens group 14 may also satisfy the following relationship:
  • f 4 is the focal length of the fourth lens group 14, and ft is the focal length of the zoom lens 10.
  • the second lens group 12 moves the zoom lens along the optical axis.
  • the fourth lens group 14 can effectively compensate the aberrations generated during the movement of the second lens group 12, and can also effectively correct the off-axis aberrations of field curvature and coma.
  • the ratio of the effective focal length ft of the telephoto end of the zoom lens 10 to the effective focal length of the wide-angle end fw of the zoom lens 10 satisfies the following relationship:
  • the ratio of the movement distance D1 of the second lens group 12 along the optical axis to the total optical length TTL of the zoom lens 10 satisfies the following relationship:
  • the ratio of the movement distance D2 of the fourth lens group 14 along the optical axis to the total optical length TTL of the zoom lens 10 satisfies the following relationship:
  • the ratio of the movement distance D1 of the second lens group 12 along the optical axis to the total optical length TTL of the zoom lens 10 and the ratio of the movement distance D2 of the fourth lens group 14 along the optical axis to the total optical length TTL of the zoom lens 10 can be further Yes:
  • the separation distance between the first lens group 11 and the second lens group 12 satisfies the following relationship:
  • the separation distance between the second lens group 12 and the third lens group 13 satisfies the following relationship:
  • the separation distance between the third lens group 13 and the fourth lens group 14 satisfies the following relationship:
  • L 1 is the separation distance between the first lens group 11 and the second lens group 12
  • L 2 is the separation distance between the second lens group 12 and the third lens group 13
  • L 3 is the third lens group 13
  • the zoom lens 10 at the wide-angle end By making the zoom lens 10 at the wide-angle end, the first lens group 11, the second lens group 12, the third lens group 13, and the fourth lens group 14 meet the above-mentioned separation distance, which can improve the zoom lens 10 at the wide-angle end.
  • the sharpness of the imaging is also conducive to increasing the amount of system light and correcting distortion.
  • the separation distance between the first lens group 11 and the second lens group 12 satisfies the following relationship:
  • the separation distance between the second lens group 12 and the third lens group 13 satisfies the following relationship:
  • the separation distance between the third lens group 13 and the fourth lens group 14 satisfies the following relationship:
  • the separation distance between the first lens group 11 and the second lens group 12 satisfies the following relationship:
  • the separation distance between the second lens group 12 and the third lens group 13 satisfies the following relationship:
  • the separation distance between the third lens group 13 and the fourth lens group 14 satisfies the following relationship:
  • the zoom lens 10 When the zoom lens 10 is in the first intermediate focal length state and the second intermediate focal length state, the first lens group 11, the second lens group 12, the third lens group 13, and the fourth lens group 14 meet the above-mentioned separation distance, which can improve The imaging clarity of the zoom lens 10 in the first intermediate focal length state and the second intermediate focal length state.
  • the separation distance between the first lens group 11 and the second lens group 12 satisfies the following relationship:
  • the separation distance between the second lens group 12 and the third lens group 13 satisfies the following relationship:
  • the separation distance between the third lens group 13 and the fourth lens group 14 satisfies the following relationship:
  • the zoom lens 10 When the zoom lens 10 is in the first intermediate focal length state and the second intermediate focal length state, the first lens group 11, the second lens group 12, the third lens group 13, and the fourth lens group 14 meet the above-mentioned separation distance, so that the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 The distances of the lens group 11, the second lens group 12, the third lens group 13, and the fourth lens group 14 are matched to improve the imaging clarity of the zoom lens 10 at the telephoto end.
  • the total number N of lenses included in the first lens group 11, the second lens group 12, the third lens group 13, and the fourth lens group 14 satisfy the following relationship:
  • the total number S of aspheric surfaces of the lenses included in the first lens group 11, the second lens group 12, the third lens group 13, and the fourth lens group 14 satisfy the following relationship:
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 are arranged with three lenses along the optical axis from the object side to the image side, and the first lens group 11,
  • the second lens group 12, the third lens group 13 and the fourth lens group 14 include 12-24 aspherical surfaces in total.
  • the first lens group 11, the second lens group 12, and the third lens group 13 and from the object side to the image side are all arranged with two lenses along the optical axis, and the fourth lens group 14 is from the object side to the image side.
  • One lens is arranged, and the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 include a total of 7 to 14 aspherical surfaces.
  • the combination of the number of individual lenses and the aspherical surfaces of the lenses can achieve effective correction of aberrations on the one hand and avoid distortion of the field of view.
  • the total length of the optical path of the zoom lens 10 can be effectively shortened, so that the zoom lens 10 has a high zoom ratio and better overall imaging quality, while also shortening the total length of the zoom lens 10, making the zoom lens 10 easier Used in terminal equipment.
  • the first lens group 11 has a first lens, a second lens and a third lens arranged in sequence along the optical axis from the object side to the image side, and the first lens, the second lens and the third lens satisfy the following relationship :
  • the first lens group 11 has a first lens and a second lens arranged in sequence along the optical axis from the object side to the image side, and the first lens and the second lens satisfy the following relationship:
  • V1 is the Abbe coefficient of the first lens
  • V2 is the Abbe coefficient of the second lens
  • V3 is the Abbe coefficient of the third lens.
  • the cooperation of the lenses can effectively reduce the dispersion of the system, thereby improving the zoom
  • the imaging clarity of the lens makes the zoom lens present a good imaging effect.
  • the second lens group 12 has a first lens, a second lens, and a third lens arranged in order from the object side to the image side along the optical axis, and the first lens, the second lens and the third lens satisfy the following relationship :
  • the second lens group 12 has a first lens and a second lens arranged in sequence along the optical axis from the object side to the image side, and the first lens and the second lens satisfy the following relationship:
  • the third lens group 13 has a first lens, a second lens, and a third lens arranged in order from the object side to the image side along the optical axis, and the first lens, the second lens and the third lens satisfy the following relationship :
  • the third lens group 13 has a first lens and a second lens arranged in sequence along the optical axis from the object side to the image side, and the first lens and the second lens satisfy the following relationship:
  • the cooperation of the lenses can further effectively reduce the dispersion of the system and further improve it. Improve the imaging clarity of the zoom lens.
  • the third lens group 13 has a first lens, a second lens, and a third lens arranged in order from the object side to the image side along the optical axis, and the first lens, the second lens and the third lens satisfy the following relationship :
  • the third lens group has a first lens and a second lens arranged in sequence along the optical axis from the object side to the image side, and the first lens and the second lens satisfy the following relationship:
  • the cooperation of the lenses can effectively reduce the movement of the third lens group 13 along the optical axis.
  • the fourth lens group 14 has a first lens, a second lens and a third lens arranged in sequence along the optical axis from the object side to the image side.
  • the first lens, the second lens and the third lens satisfy the following relationship :
  • the fourth lens group 14 has one lens arranged along the optical axis from the object side to the image side, and the lens satisfies the following relationship:
  • the cooperation of the lenses can effectively control the movement of the second lens group 12 during the movement.
  • the generated image plane displacement is corrected, thereby improving the imaging clarity of the zoom lens during continuous zooming.
  • the lens can be processed into a special-shaped aperture lens according to actual conditions.
  • the zoom lens 10 can be more adapted to the assembly space in the terminal.
  • the processing technology of the special-shaped aperture lens can be I-CUT or D-CUT, etc.
  • the special-shaped aperture lens is along the cutting direction (the cutting direction refers to the direction in which the cutter travels when the lens is cut, which usually includes the vertical cutting direction or the transverse direction. The height of the trimming direction, etc.) satisfies the following relationship:
  • H is the height of the special-shaped aperture lens along the cutting edge direction. In this way, it is possible to increase the amount of light passing through the lens and reasonably reduce the size of the lens in the height direction.
  • the zoom lens 10 further includes a prism and/or a reflector (that is, the zoom lens 10 may also include a prism or a reflector, or it may include both a prism and a reflector), and the prism and/or reflector are arranged at
  • the first lens group 11 faces the object side and is used to deflect light to the first lens group 11.
  • the prism may be a corner cube prism.
  • the zoom lens 10 can be provided with a prism or a reflector alone, or can be provided with a prism and a reflector at the same time. By setting the prism and/or the reflector, the light emitted to the first lens group 11 can be reflected and split reasonably.
  • the zoom lens 10 can clearly image in an object distance range from infinity to about 40 mm from the zoom lens 10.
  • the ratios of the focal lengths of the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 to the focal length of the telephoto end of the zoom lens 10 are selected in sequence as 0.572 and 0.182, respectively. , 0.28 and 0.41;
  • the zoom lens 10 changes from the wide-angle end to the telephoto end, the first lens group 11 and the third lens 13 are set to be fixed, the second lens group 12 moves to the image side, and the fourth lens group 14 moves to the object side first, and then Move to the image side.
  • the maximum clear aperture of the zoom lens 10 is selected, that is, the maximum diameter of the lens in the zoom lens 10, which is 7.878 mm.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 are arranged with three lenses along the optical axis from the object side to the image side, and the first lens group 11 and the second lens group
  • the group 12, the third lens group 13 and the fourth lens group 14 include a total of 19 aspheric surfaces.
  • the lens of the first lens group 11 facing the object side is a double convex lens with positive refractive power.
  • the ratio of the total optical length of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.95, and the ratio of the image height of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.093;
  • the ratio of the movement distance of the second lens group 12 along the optical axis to the total optical length of the zoom lens is 0.1936
  • the movement distance of the fourth lens group 14 along the optical axis and zoom is 0.1329.
  • Table 1A shows the basic optical parameters of the zoom lens 10 at the wide-angle end, the first intermediate focal length, the second intermediate focal length, and the telephoto end when the wavelengths of the zoom lens 10 are 650 nm, 610 nm, 555 nm, 510 nm, and 470 nm, respectively.
  • W means the wide-angle end
  • M1 means the first intermediate focal length state
  • M2 means the second intermediate focal length state
  • T means the telephoto end
  • BFL means (zoom lens 10) back focal length
  • TTL means (lens) from the head of the lens barrel
  • FOV represents the angle of view
  • the F value represents the ratio of the focal length of the zoom lens 10 to its light diameter. It can be seen from Table 1A that when the image height and TTL remain unchanged, the focal length value and the F value both increase.
  • Table 1B shows the curvature, thickness, refractive index, and Abbe number of each lens from the object side to the image side when the zoom lens 10 is at the wide-angle end, where R1 to 26 represent the surfaces of each lens from the object side to the image side.
  • R represents curvature
  • Thickness represents thickness
  • nd represents refractive index
  • vd represents Abbe number.
  • R1 to R23 represent aspherical mirror surfaces
  • K is a quadric constant
  • A2, A3, A4, A5, A6, and A7 are aspheric coefficients, respectively. It can be seen from Table 1C that in Example 1, the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 of the zoom lens 10 include 19 aspherical surfaces in total.
  • z represents the vector height of the aspheric surface
  • r represents the radial coordinate of the aspheric surface
  • c is the spherical curvature of the aspheric surface.
  • Table 1D shows the distances between the first lens group 11 to the fourth lens group 14 when the zoom lens 10 is at the wide-angle end, the first intermediate focal length state, the second focal length state, and the telephoto end.
  • Fig. 29 shows the lateral chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 29 that in Embodiment 1, the lateral chromatic aberration of the zoom lens 10 using the above technical parameters can be controlled within the lateral diffraction limit.
  • FIG. 43 shows the distortion curve of the zoom lens 10 at different wavelengths at the wide-angle end.
  • the distortion curve represents the deviation between the imaging distortion and the ideal shape. It can be seen from the figure that, in Embodiment 1, the zoom lens adopts the above technical parameters 10 can effectively control the distortion rate below 4%.
  • the ratios of the focal lengths of the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 and the focal length of the zoom lens 10 at the telephoto end are selected in sequence to be 0.57 and 0.18, respectively. , 0.32 and 0.40;
  • the zoom lens 10 changes from the wide-angle end to the telephoto end, the first lens group 11 and the third lens 13 are set to be fixed, the second lens group 12 moves to the image side, and the fourth lens group 14 moves to the object side first, and then Move to the image side.
  • the maximum clear aperture of the zoom lens 10 is selected, that is, the maximum diameter of the lens in the zoom lens 10 is 7.8 mm.
  • the first lens group 11, the second lens group 12, and the third lens group 13 are arranged with two lenses along the optical axis from the object side to the image side, and the fourth lens group 14 is arranged with one lens.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 include a total of 14 aspheric surfaces.
  • the lens of the first lens group 11 facing the object side is a double convex lens with positive refractive power.
  • the ratio of the total optical length of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.95, and the ratio of the image height of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.093;
  • the ratio of the movement distance of the second lens group 12 along the optical axis to the total optical length of the zoom lens is 0.2036, and the movement distance of the fourth lens group 14 along the optical axis and zoom The ratio of the total optical length of the lens is 0.1385.
  • Table 2A shows the basic optical parameters of the zoom lens 10 at the wide-angle end, the first intermediate focal length, the second intermediate focal length, and the telephoto end. It can be seen from Table 2A that when the image height and TTL remain unchanged, the focal length value and the F value both increase, and the zoom lens 10 exhibits a typical feature of zooming from the wide-angle end to the telephoto end to realize the focal length change.
  • Table 2B shows the curvature, thickness, refractive index, and Abbe number of each lens from the object side to the image side when the zoom lens 10 is at the wide-angle end, where R1-16 represent the surfaces of each lens from the object side to the image side.
  • R represents curvature
  • Thickness represents thickness
  • nd represents refractive index
  • vd represents Abbe number.
  • R1 to R14 represent aspherical mirror surfaces
  • K is a quadric constant
  • A2, A3, A4, A5, A6, and A7 are aspherical coefficients, respectively. It can be seen from Table 2C that in Embodiment 2, the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 of the zoom lens 10 include a total of 14 aspheric surfaces.
  • Table 2D shows the distances between the first lens group 11 to the fourth lens group 14 when the zoom lens 10 is at the wide-angle end, the first intermediate focal length state, the second focal length state, and the telephoto end.
  • FIG. 16 shows the axial chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from FIG. 14 that in Embodiment 2, the axial chromatic aberration of the zoom lens 10 using the above technical parameters can always be controlled within 0.015 mm ⁇ Within the small change interval of 0.025mm.
  • Fig. 30 shows the lateral chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 26 that, in Embodiment 2, the lateral chromatic aberrations at different wavelengths of the zoom lens 10 using the above technical parameters are at the wide-angle end and the telephoto end. At the end, 650nm wavelength light and 470nm wavelength light will exceed the lateral diffraction limit.
  • Fig. 44 shows the distortion curve of the zoom lens 10 at different wavelengths at the wide-angle end.
  • the distortion curve represents the deviation between the imaging distortion and the ideal shape. It can be seen from Fig. 44 that in Embodiment 2, the zoom lens adopts the above technical parameters.
  • the lens 10 can effectively control the distortion rate below 3.8%.
  • the ratios of the focal lengths of the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 to the focal length of the telephoto end of the zoom lens 10 are selected in sequence as 2.09 and 0.33, respectively. , 0.33 and 0.75;
  • the zoom lens 10 When the zoom lens 10 is converted from the wide-angle end to the telephoto end, the first lens group 11 and the third lens group 13 are set to be fixed, the second lens group 12 moves to the image side, and the fourth lens group 14 moves to the object side.
  • the maximum clear aperture of the zoom lens 10 is selected, that is, the maximum diameter of the lens in the zoom lens 10 is 8.654 mm.
  • the ratio of the total optical length of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.95, and the ratio of the image height of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.093;
  • the ratio of the movement distance of the second lens group 12 along the optical axis to the total optical length of the zoom lens is 0.1960
  • the movement distance of the fourth lens group 14 along the optical axis and zoom is 0.1789.
  • Table 3A shows the basic optical parameters of the zoom lens 10 at the wide-angle end, the first intermediate focal length, the second intermediate focal length, and the telephoto end. It can be seen from Table 3A that when the image height and TTL remain unchanged, the focal length value and the F value both increase, and the zoom lens 10 exhibits a typical feature of zooming from the wide-angle end to the telephoto end to achieve focal length change.
  • Table 3B shows the curvature, thickness, refractive index, and Abbe number of each lens from the object side to the image side when the zoom lens 10 is at the wide-angle end, where R1 to 26 represent the surfaces of each lens from the object side to the image side.
  • R represents curvature
  • Thickness represents thickness
  • nd represents refractive index
  • vd represents Abbe number.
  • R1 to R24 represent aspherical mirror surfaces
  • K is a quadric constant
  • A2, A3, A4, A5, A6, and A7 are aspherical coefficients, respectively. It can be seen from Table 2C that in Embodiment 2, the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 of the zoom lens 10 include a total of 24 aspheric surfaces.
  • Table 3D shows the distances between the first lens group 11 to the fourth lens group 14 when the zoom lens 10 is at the wide-angle end, the first intermediate focal length state, the second focal length state, and the telephoto end.
  • Fig. 17 shows the axial chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 15 that in Embodiment 3, the axial chromatic aberration of the zoom lens 10 using the above technical parameters can be controlled within 0.014mm ⁇ 0.021 mm within this small change interval.
  • Fig. 31 shows the lateral chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 27 that, in Embodiment 3, the lateral chromatic aberration of the zoom lens 10 with different wavelengths at the wide-angle end and the first Both the intermediate focal length state and the second intermediate focal length state can be controlled near the lateral diffraction limit range.
  • FIG. 45 is the distortion curve of the zoom lens 10 at different wavelengths at the wide-angle end.
  • the distortion curve represents the deviation between the imaging deformation and the ideal shape. It can be seen from FIG. 45 that the zoom lens adopts the above-mentioned technical parameters in the third embodiment.
  • the lens 10 can effectively control the distortion rate below 4%.
  • the ratios of the focal lengths of the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 to the focal length of the telephoto end of the zoom lens 10 are selected in sequence as 0.26 and 0.085, respectively. , 0.26 and 0.25;
  • the zoom lens 10 When the zoom lens 10 is transformed from the wide-angle end to the telephoto end, the first lens group 11 and the third lens group 13 are set to be fixed, and the second lens group 12 and the fourth lens group 14 are both moved to the image side.
  • the maximum clear aperture of the zoom lens 10 is selected, that is, the maximum diameter of the lens in the zoom lens 10 is 7.8 mm.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 are arranged with three lenses along the optical axis from the object side to the image side.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 include a total of 24 aspheric surfaces.
  • the lens of the first lens group 11 facing the object side is a double convex lens with positive refractive power.
  • the ratio of the total optical length of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.95, and the ratio of the image height of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.093;
  • the ratio of the movement distance of the second lens group 12 along the optical axis to the total optical length of the zoom lens is 0.0516, and the movement distance of the fourth lens group 14 along the optical axis and zoom
  • the ratio of the total optical length of the lens is 0.2114.
  • Table 4A shows the basic optical parameters of the zoom lens 10 at the wide-angle end, the first intermediate focal length, the second intermediate focal length, and the telephoto end. It can be seen from Table 4A that when the image height and TTL remain unchanged, the focal length value and the F value both increase, and the zoom lens 10 exhibits a typical feature of zooming from the wide-angle end to the telephoto end to achieve a focal length change.
  • Table 4B shows the curvature, thickness, refractive index, and Abbe number of each lens from the object side to the image side when the zoom lens 10 is at the wide-angle end, where R1 to 26 represent the surfaces of each lens from the object side to the image side.
  • R represents curvature
  • Thickness represents thickness
  • nd represents refractive index
  • vd represents Abbe number.
  • R1 to R24 represent aspherical mirror surfaces
  • K is a quadric constant
  • A2, A3, A4, A5, A6, and A7 are aspheric coefficients, respectively. It can be seen from Table 2C that in Embodiment 2, the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 of the zoom lens 10 include a total of 24 aspheric surfaces.
  • Table 4D shows the distances between the first lens group 11 to the fourth lens group 14 when the zoom lens 10 is at the wide-angle end, the first intermediate focal length state, the second focal length state, and the telephoto end.
  • Fig. 18 shows the axial chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 18 that in Embodiment 3, the axial chromatic aberration of the zoom lens 10 using the above technical parameters can always be controlled within 0.010mm ⁇ Within a small change interval of 0.012mm.
  • Fig. 32 shows the lateral chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 32 that, in Embodiment 4, the lateral chromatic aberration of the zoom lens 10 with the above-mentioned technical parameters has different wavelengths at the wide-angle end and the first In the intermediate focal length state, it can be controlled near the lateral diffraction limit, and when the zoom enters the second intermediate focal length state, or even at the telephoto end, there is a phenomenon that light with a wavelength of 650nm and light with a wavelength of 470nm exceed the lateral diffraction limit. happen.
  • FIG. 46 shows the distortion curve of the zoom lens 10 at different wavelengths at the wide-angle end.
  • the distortion curve represents the deviation between the imaging distortion and the ideal shape. It can be seen from FIG. 46 that in Embodiment 4, the zoom lens adopts the above technical parameters.
  • the lens 10 can effectively control the distortion rate below 1.9%. It can be seen that the zoom lens 10 adopting the above technical parameters can achieve effective control of the distortion rate.
  • the ratios of the focal lengths of the first lens group 11, the second lens group 12, the third lens group 13, and the fourth lens group 14 to the focal length of the telephoto end of the zoom lens 10 are selected in sequence as 0.99 and 0.5, respectively. , 0.58 and 0.42;
  • the zoom lens 10 When the zoom lens 10 is transformed from the wide-angle end to the telephoto end, the first lens group 11 and the third lens group 13 are set to be fixed, and the second lens group 12 and the fourth lens group 14 are both moved to the image side.
  • the maximum clear aperture of the zoom lens 10 is selected, that is, the maximum diameter of the lens in the zoom lens 10 is 8.0 mm.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 are arranged with three lenses along the optical axis from the object side to the image side.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 include a total of 24 aspheric surfaces.
  • the lens of the first lens group 11 facing the object side is a double convex lens with positive refractive power.
  • the ratio of the total optical length of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 1.275, and the ratio of the image height of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.125;
  • the ratio of the movement distance of the second lens group 12 along the optical axis to the total optical length of the zoom lens is 0.2029
  • the movement distance of the fourth lens group 14 along the optical axis and zoom is 0.1249.
  • Table 5A shows the basic optical parameters of the zoom lens 10 at the wide-angle end, the first intermediate focal length, the second intermediate focal length, and the telephoto end. It can be seen from Table 5A that when the image height and TTL remain unchanged, the focal length value and the F value are both increased, and the zoom lens 10 exhibits a typical feature of zooming from the wide-angle end to the telephoto end to achieve a focal length change.
  • Table 5B shows the curvature, thickness, refractive index, and Abbe number of each lens from the object side to the image side when the zoom lens 10 is at the wide-angle end, where R1 to 26 represent the surfaces of each lens from the object side to the image side.
  • R represents curvature
  • Thickness represents thickness
  • nd represents refractive index
  • vd represents Abbe number.
  • R1 to R24 represent aspherical mirror surfaces
  • K is a quadric constant
  • A2, A3, A4, A5, A6, and A7 are aspherical coefficients, respectively. It can be seen from Table 5C that in Embodiment 5, the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 of the zoom lens 10 include a total of 24 aspheric surfaces.
  • Table 5D shows the distances between the first lens group 11 to the fourth lens group 14 when the zoom lens 10 is at the wide-angle end, the first intermediate focal length state, the second focal length state, and the telephoto end.
  • Fig. 19 shows the axial chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 19 that in Embodiment 5, the axial chromatic aberration of the zoom lens 10 using the above technical parameters can always be controlled within 0.13 mm ⁇ Within the small change interval of 0.03mm.
  • Fig. 33 shows the lateral chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 33 that in Embodiment 5, the lateral chromatic aberration of different wavelengths of the zoom lens 10 with the above technical parameters can be controlled to the lateral diffraction limit. Near the range.
  • FIG. 47 shows the distortion curve of the zoom lens 10 at different wavelengths at the wide-angle end.
  • the distortion curve represents the deviation between the imaging distortion and the ideal shape. It can be seen from FIG. 47 that in Embodiment 5, the zoom lens adopts the above technical parameters.
  • the lens 10 can effectively control the distortion rate below 1.9%.
  • the ratios of the focal lengths of the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 to the focal length of the telephoto end of the zoom lens 10 are selected in sequence as 0.55 and 0.148, respectively. , 0.13 and 0.16;
  • the zoom lens 10 changes from the wide-angle end to the telephoto end, the first lens group 11 and the third lens 13 are set to be fixed, the second lens group 12 moves to the image side, and the fourth lens group 14 moves to the object side first, and then Move to the image side.
  • the maximum clear aperture of the zoom lens 10 is selected, that is, the maximum diameter of the lens in the zoom lens 10 is 8.322 mm.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 are arranged with three lenses along the optical axis from the object side to the image side.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 include a total of 24 aspheric surfaces.
  • the lens of the first lens group 11 facing the object side is a double convex lens with positive refractive power.
  • the ratio of the total optical length of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.95, and the ratio of the image height of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.094;
  • the ratio of the movement distance of the second lens group 12 along the optical axis to the total optical length of the zoom lens is 0.1814, and the movement distance of the fourth lens group 14 along the optical axis and zoom The ratio of the total optical length of the lens is 0.065.
  • Table 6A shows the basic optical parameters of the zoom lens 10 at the wide-angle end, the first intermediate focal length, the second intermediate focal length, and the telephoto end. It can be seen from Table 6A that when the image height and TTL remain unchanged, the focal length value and the F value both increase, and the zoom lens 10 exhibits a typical feature of zooming from the wide-angle end to the telephoto end to achieve a focal length change.
  • Table 6B shows the curvature, thickness, refractive index, and Abbe number of each lens from the object side to the image side when the zoom lens 10 is at the wide-angle end, where R1 to 26 represent the surfaces of each lens from the object side to the image side.
  • R represents curvature
  • Thickness represents thickness
  • nd represents refractive index
  • vd represents Abbe number.
  • R1 to R24 represent aspherical mirror surfaces
  • K is a quadric constant
  • A2, A3, A4, A5, A6, and A7 are aspherical coefficients, respectively. It can be seen from Table 6C that in Example 6, the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 of the zoom lens 10 include a total of 24 aspherical surfaces.
  • Table 6D shows the distances between the first lens group 11 to the fourth lens group 14 when the zoom lens 10 is at the wide-angle end, the first intermediate focal length state, the second focal length state, and the telephoto end.
  • Fig. 20 shows the axial chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 20 that in Embodiment 6, the axial chromatic aberration of the zoom lens 10 using the above technical parameters can always be controlled within 0.03mm ⁇ Within the small change interval of 0.06mm.
  • Fig. 34 shows the lateral chromatic aberration curve at different wavelengths of the zoom lens 10 at the wide-angle end. It can be seen from Fig. 34 that, in Embodiment 6, the lateral diffraction limit of lateral chromatic aberration of different wavelengths of the zoom lens 10 with the above technical parameters is at the wide-angle end. The end and even the telephoto end are relatively narrow. Correspondingly, the light of 650nm wavelength and the light of 470nm wavelength have the phenomenon of exceeding the lateral diffraction limit at the wide-angle end and even the telephoto end. It can be controlled in the vicinity of the lateral diffraction limit.
  • FIG. 48 shows the distortion curves of the zoom lens 10 at different wavelengths at the wide-angle end.
  • the distortion curves indicate the deviation between the imaging distortion and the ideal shape. It can be seen from FIG. 48 that in Embodiment 6, the zoom lens adopts the above technical parameters.
  • the lens 10 can effectively control the distortion rate below 1.7%.
  • the ratios of the focal lengths of the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 and the focal length of the zoom lens 10 at the telephoto end are selected in sequence to be 0.62, 0.201, respectively. , 0.235 and 0.15;
  • the zoom lens 10 changes from the wide-angle end to the telephoto end, the first lens group 11 and the third lens 13 are set to be fixed, the second lens group 12 moves to the image side, and the fourth lens group 14 moves to the object side first, and then Move to the image side.
  • the maximum clear aperture of the zoom lens 10 is selected, that is, the maximum diameter of the lens in the zoom lens 10 is 8.144 mm.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 are arranged with three lenses along the optical axis from the object side to the image side.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 include a total of 24 aspheric surfaces.
  • the lens of the first lens group 11 facing the object side is a double convex lens with positive refractive power.
  • the ratio of the total optical length of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.95, and the ratio of the image height of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.093; the selected zoom lens 10 When changing from the wide-angle end to the telephoto end, the ratio of the movement distance of the second lens group 12 along the optical axis to the total optical length of the zoom lens is 0.1806, and the movement distance of the fourth lens group 14 along the optical axis and the total optical length of the zoom lens The ratio is 0.093.
  • Table 7A shows the basic optical parameters of the zoom lens 10 at the wide-angle end, the first intermediate focal length, the second intermediate focal length, and the telephoto end. It can be seen from Table 7A that when the image height and TTL remain unchanged, the focal length value and the F value both increase, and the zoom lens 10 exhibits a typical feature of zooming from the wide-angle end to the telephoto end to achieve a focal length change.
  • Table 7B shows the curvature, thickness, refractive index, and Abbe number of each lens from the object side to the image side when the zoom lens 10 is at the wide-angle end, where R1 to 26 represent the surfaces of each lens from the object side to the image side.
  • R represents curvature
  • Thickness represents thickness
  • nd represents refractive index
  • vd represents Abbe number.
  • R1 to R24 represent aspherical mirror surfaces
  • K is a quadric constant
  • A2, A3, A4, A5, A6, and A7 are aspherical coefficients, respectively. It can be seen from Table 7C that in Embodiment 7, the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 of the zoom lens 10 include a total of 24 aspheric surfaces.
  • Table 7D shows the distances between the first lens group 11 to the fourth lens group 14 when the zoom lens 10 is at the wide-angle end, the first intermediate focal length state, the second focal length state, and the telephoto end.
  • Fig. 21 shows the axial chromatic aberration curve of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 21 that in Embodiment 7, the axial chromatic aberration of the zoom lens 10 with the above technical parameters can be controlled within 0.017mm ⁇ 0.02 mm within this small change interval.
  • Fig. 35 shows the lateral chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 35 that in Embodiment 7, the lateral chromatic aberration of different wavelengths of the zoom lens 10 with the above technical parameters can be controlled to the lateral diffraction limit. Near the range.
  • FIG. 49 shows the distortion curve of the zoom lens 10 at different wavelengths at the wide-angle end.
  • the distortion curve represents the deviation between the imaging distortion and the ideal shape. It can be seen from FIG. 49 that the zoom lens adopts the above-mentioned technical parameters in the seventh embodiment.
  • the lens 10 can effectively control the distortion rate below 1.8%.
  • the ratios of the focal lengths of the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 to the focal length of the telephoto end of the zoom lens 10 are selected in sequence as 0.66 and 0.18, respectively. , 0.24 and 72.57;
  • the zoom lens 10 changes from the wide-angle end to the telephoto end, the first lens group 11 and the third lens 13 are set to be fixed, the second lens group 12 moves to the image side, and the fourth lens group 14 moves to the object side first, and then Move to the image side.
  • the maximum clear aperture of the zoom lens 10 is selected, that is, the maximum diameter of the lens in the zoom lens 10 is 8.032 mm.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 are arranged with three lenses along the optical axis from the object side to the image side.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 include a total of 24 aspheric surfaces.
  • the lens of the first lens group 11 facing the object side is a double convex lens with positive refractive power.
  • the ratio of the total optical length of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.95, and the ratio of the image height of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.093;
  • the ratio of the movement distance of the second lens group 12 along the optical axis to the total optical length of the zoom lens is 0.1934
  • the movement distance of the fourth lens group 14 along the optical axis and zoom is 0.1824.
  • Table 8A shows the basic optical parameters of the zoom lens 10 at the wide-angle end, the first intermediate focal length, the second intermediate focal length, and the telephoto end. It can be seen from Table 8A that when the image height and TTL remain unchanged, the focal length value and the F value are both increased, and the zoom lens 10 exhibits a typical feature of zooming from the wide-angle end to the telephoto end to achieve a focal length change.
  • Table 8B shows the curvature, thickness, refractive index, and Abbe number of each lens from the object side to the image side when the zoom lens 10 is at the wide-angle end, where R1 to 26 represent the surfaces of each lens from the object side to the image side.
  • R represents curvature
  • Thickness represents thickness
  • nd represents refractive index
  • vd represents Abbe number.
  • R1 to R24 represent aspherical mirror surfaces
  • K is a quadric constant
  • A2, A3, A4, A5, A6, and A7 are aspherical coefficients, respectively. It can be seen from Table 8C that in Example 8, the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 of the zoom lens 10 include a total of 24 aspherical surfaces.
  • Table 8D shows the distances between the first lens group 11 to the fourth lens group 14 when the zoom lens 10 is at the wide-angle end, the first intermediate focal length state, the second focal length state, and the telephoto end.
  • Fig. 22 shows the axial chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 22 that in Embodiment 8, the axial chromatic aberration of the zoom lens 10 with the above technical parameters can be controlled within 0.016mm ⁇ 0.04. mm within this small change interval.
  • Fig. 36 shows the lateral chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 36 that in Embodiment 8, the lateral chromatic aberration of different wavelengths of the zoom lens 10 with the above technical parameters can be controlled to the lateral diffraction limit. Near the range.
  • Figure 50 shows the distortion curves of the zoom lens 10 at different wavelengths at the wide-angle end.
  • the distortion curves indicate the deviation between the imaging distortion and the ideal shape. It can be seen from Figure 50 that in Embodiment 8, the zoom lens adopts the above technical parameters.
  • the lens 10 can effectively control the distortion rate below 4.1%.
  • the ratios of the focal lengths of the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 to the focal length of the telephoto end of the zoom lens 10 are selected in sequence as 0.83 and 0.24, respectively. , 4.104 and 0.188;
  • the zoom lens 10 When the zoom lens 10 is converted from the wide-angle end to the telephoto end, the first lens group 11 and the third lens group 13 are set to be fixed, the second lens group 12 moves to the image side, and the fourth lens group 14 moves to the object side.
  • the maximum clear aperture of the zoom lens 10 is selected, that is, the maximum diameter of the lens in the zoom lens 10 is 8.78 mm.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 are arranged with three lenses along the optical axis from the object side to the image side.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 include a total of 24 aspheric surfaces.
  • the lens of the first lens group 11 facing the object side is a double convex lens with positive refractive power.
  • the ratio of the total optical length of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.95, and the ratio of the image height of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.093;
  • the ratio of the movement distance of the second lens group 12 along the optical axis to the total optical length of the zoom lens is 0.1786
  • the movement distance of the fourth lens group 14 along the optical axis and zoom is 0.0698.
  • Table 9A shows the basic optical parameters of the zoom lens 10 at the wide-angle end, the first intermediate focal length, the second intermediate focal length, and the telephoto end. It can be seen from Table 9A that when the image height and TTL remain unchanged, the focal length value and the F value both increase, and the zoom lens 10 exhibits a typical feature of zooming from the wide-angle end to the telephoto end to achieve focal length change.
  • Table 9B shows the curvature, thickness, refractive index, and Abbe number of each lens from the object side to the image side when the zoom lens 10 is at the wide-angle end.
  • R1 to 26 represent the surfaces of each lens from the object side to the image side.
  • R1 to R24 represent aspherical mirror surfaces
  • K is a quadric constant
  • A2, A3, A4, A5, A6, and A7 are aspheric coefficients, respectively. It can be seen from Table 9C that in Example 9, the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 of the zoom lens 10 include a total of 24 aspheric surfaces.
  • Table 9D shows the distances between the first lens group 11 to the fourth lens group 14 when the zoom lens 10 is at the wide-angle end, the first intermediate focal length state, the second focal length state, and the telephoto end.
  • Fig. 23 shows the axial chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 23 that in Embodiment 9, the axial chromatic aberration of the zoom lens 10 using the above technical parameters can be controlled within 0.016mm ⁇ 0.03 mm within this small change interval.
  • FIG. 37 shows the lateral chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end, the first intermediate focal length state, the second focal length state, and the telephoto end. It can be seen from FIG. 37 that in Embodiment 9, the above technical parameters are used The lateral chromatic aberration of different wavelengths of the zoom lens 10 can be controlled in the vicinity of the lateral diffraction limit range.
  • Figure 51 is the distortion curve of the zoom lens 10 at different wavelengths at the wide-angle end.
  • the distortion curve represents the deviation between the imaging deformation and the ideal shape. It is known from Figure 51 that in Embodiment 9, the zoom lens adopts the above technical parameters. 10 can effectively control the distortion rate below 0.9%, significantly reducing the distortion rate of the zoom lens 10.
  • the ratios of the focal lengths of the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 and the focal length of the zoom lens 10 at the telephoto end are selected in sequence to be 0.32, 0.06, respectively. , 0.19 and 0.42;
  • the zoom lens 10 When the zoom lens 10 is converted from the wide-angle end to the telephoto end, the first lens group 11 and the third lens group 13 are set to be fixed, the second lens group 12 moves to the image side, and the fourth lens group 14 moves to the object side.
  • the maximum clear aperture of the zoom lens 10 is selected, that is, the maximum diameter of the lens in the zoom lens 10 is 9.458 mm.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 are arranged with three lenses along the optical axis from the object side to the image side.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 include a total of 24 aspheric surfaces.
  • the lens of the first lens group 11 facing the object side is a double convex lens with positive refractive power.
  • the ratio of the total optical length of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.95, and the ratio of the image height of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.093;
  • the ratio of the movement distance of the second lens group 12 along the optical axis to the total optical length of the zoom lens is 0.0676
  • the movement distance of the fourth lens group 14 along the optical axis and zoom is 0.0857.
  • Table 10A shows the basic optical parameters of the zoom lens 10 at the wide-angle end, the first intermediate focal length, the second intermediate focal length, and the telephoto end. It can be seen from Table 10A that when the image height and TTL remain unchanged, the focal length value and the F value both increase, and the zoom lens 10 exhibits a typical feature of zooming from the wide-angle end to the telephoto end to achieve a focal length change.
  • Table 10B shows the curvature, thickness, refractive index, and Abbe number of each lens from the object side to the image side when the zoom lens 10 is at the wide-angle end, where R1 to 26 represent the surfaces of each lens from the object side to the image side.
  • R represents curvature
  • Thickness represents thickness
  • nd represents refractive index
  • vd represents Abbe number.
  • R1 to R24 represent aspherical mirror surfaces
  • K is a quadric constant
  • A2, A3, A4, A5, A6, and A7 are aspherical coefficients, respectively. It can be seen from Table 10C that in Embodiment 10, the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 of the zoom lens 10 include a total of 24 aspherical surfaces.
  • Table 10D shows the distances between the first lens group 11 to the fourth lens group 14 when the zoom lens 10 is at the wide-angle end, the first intermediate focal length state, the second focal length state, and the telephoto end.
  • Fig. 24 shows the axial chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 24 that, in Embodiment 10, the axial chromatic aberration of the zoom lens 10 using the above technical parameters can be controlled within 0.016mm ⁇ 0.03 mm within this small change interval.
  • Fig. 38 shows the lateral chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 38 that in Embodiment 10, the lateral chromatic aberration of the zoom lens 10 with the above technical parameters can be controlled at the lateral diffraction limit. Near the range.
  • FIG. 52 shows the distortion curves of the zoom lens 10 at different wavelengths at the wide-angle end.
  • the distortion curves indicate the deviation between the imaging distortion and the ideal shape. It can be seen from FIG. 52 that, in Embodiment 10, the zoom lens adopts the above technical parameters.
  • the lens 10 can effectively control the distortion rate below 1.6%.
  • the ratios of the focal lengths of the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 to the focal length of the telephoto end of the zoom lens 10 are selected in sequence as 0.79 and 0.26, respectively. , 0.29 and 1.79;
  • the zoom lens 10 When the zoom lens 10 is transformed from the wide-angle end to the telephoto end, the first lens group 11 and the third lens 13 are set to be fixed, the second lens group 12 moves to the image side, and the fourth lens group 14 first moves to the image side, then Move to the side of the object.
  • the maximum clear aperture of the zoom lens 10 is selected, that is, the maximum diameter of the lens in the zoom lens 10 is 7.9 mm.
  • the first lens group 11 and the second lens group 12 are arranged with two lenses along the optical axis
  • the third lens group 13 is arranged with three lenses along the optical axis
  • the fourth lens group 14 is arranged with one lens along the optical axis.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 include a total of 14 aspheric surfaces.
  • the lens of the first lens group 11 facing the object side is a double convex lens with positive refractive power.
  • the ratio of the total optical length of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 1.05, and the ratio of the image height of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.12;
  • the ratio of the movement distance of the second lens group 12 along the optical axis to the total optical length of the zoom lens is 0.2123, and the movement distance of the fourth lens group 14 along the optical axis and zoom
  • the ratio of the total optical length of the lens is 0.1758.
  • the distance between the third lens group 13 and the diaphragm of the zoom lens 10 is 0.12 mm.
  • Table 11A shows the basic optical parameters of the zoom lens 10 at the wide-angle end, the first intermediate focal length, the second intermediate focal length, and the telephoto end. It can be seen from Table 11A that when the image height and TTL remain unchanged, the focal length value and the F value both increase, and the zoom lens 10 exhibits a typical feature of zooming from the wide-angle end to the telephoto end to achieve a focal length change.
  • Table 11B shows the curvature, thickness, refractive index, and Abbe number of each lens from the object side to the image side when the zoom lens 10 is at the wide-angle end, where R1-18 represent the surfaces of each lens from the object side to the image side.
  • R represents curvature
  • Thickness represents thickness
  • nd represents refractive index
  • vd represents Abbe number.
  • the diaphragm is disposed near the mirror surface of the third lens mirror toward the object side, and the distance from the mirror surface of the third lens mirror toward the object side is 0.12 mm.
  • R1 to R16 represent aspherical mirror surfaces
  • K is a quadric constant
  • A2, A3, A4, A5, A6, and A7 are aspherical coefficients, respectively. It can be seen from Table 11C that in Example 11, the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 of the zoom lens 10 include a total of 24 aspheric surfaces.
  • Table 11D shows the distances between the first lens group 11 to the fourth lens group 14 when the zoom lens 10 is at the wide-angle end, the first intermediate focal length state, the second focal length state, and the telephoto end.
  • FIG. 25 shows the axial chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end.
  • the axial chromatic aberration of the zoom lens 10 using the above technical parameters can be controlled within 0.016mm ⁇ 0.03 mm within this small change interval.
  • Fig. 39 shows the lateral chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 39 that in Embodiment 11, the lateral chromatic aberration of different wavelengths of the zoom lens 10 with the above technical parameters can be controlled to the lateral diffraction limit. Near the range.
  • FIG. 53 shows the distortion curve of the zoom lens 10 at different wavelengths at the wide-angle end.
  • the distortion curve represents the deviation between the imaging distortion and the ideal shape. It can be seen from FIG. 53 that, in Embodiment 11, the zoom lens adopts the above technical parameters.
  • the lens 10 can effectively control the distortion rate below 1.8%.
  • the ratios of the focal lengths of the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 to the focal length of the telephoto end of the zoom lens 10 are selected in sequence as 0.55 and 0.18, respectively. , 0.32 and 0.45;
  • the zoom lens 10 When the zoom lens 10 is converted from the wide-angle end to the telephoto end, the first lens group 11 and the third lens 13 are set to be fixed, the second lens group 12 moves to the image side, and the fourth lens group 14 moves to the object side first, and then Move to the image side.
  • the maximum clear aperture of the zoom lens 10 is selected, that is, the maximum diameter of the lens in the zoom lens 10 is 8.032 mm.
  • the first lens group 11, the second lens group 12 and the third lens group 13 are all arranged with three lenses along the optical axis, and the fourth lens group 14 is arranged with one lens along the optical axis.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 include a total of 16 aspheric surfaces.
  • the lens of the first lens group 11 facing the object side is a double convex lens with positive refractive power.
  • the ratio of the total optical length of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.95, and the ratio of the image height of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.095;
  • the ratio of the movement distance of the second lens group 12 along the optical axis to the total optical length of the zoom lens is 0.1845
  • the movement distance of the fourth lens group 14 along the optical axis and zoom is 0.1812.
  • Table 12A shows the basic optical parameters of the zoom lens 10 at the wide-angle end, the first intermediate focal length, the second intermediate focal length, and the telephoto end. It can be seen from Table 11A that when the image height and TTL remain unchanged, the focal length value and the F value both increase, and the zoom lens 10 exhibits a typical feature of zooming from the wide-angle end to the telephoto end to achieve a focal length change.
  • Table 12B shows the curvature, thickness, refractive index, and Abbe number of each lens from the object side to the image side when the zoom lens 10 is at the wide-angle end, where R1-22 represent the surfaces of each lens from the object side to the image side.
  • R represents curvature
  • Thickness represents thickness
  • nd represents refractive index
  • vd represents Abbe number.
  • R1 to R20 represent aspherical mirror surfaces
  • K is a quadric constant
  • A2, A3, A4, A5, A6, and A7 are aspherical coefficients, respectively. It can be seen from Table 11C that in Example 11, the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 of the zoom lens 10 include a total of 16 aspherical surfaces.
  • Table 12D shows the distances between the first lens group 11 to the fourth lens group 14 when the zoom lens 10 is at the wide-angle end, the first intermediate focal length state, the second focal length state, and the telephoto end.
  • FIG. 26 shows the axial chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from FIG. 26 that in Embodiment 12, the axial chromatic aberration of the zoom lens 10 using the above technical parameters can be controlled within 0.017mm ⁇ 0.04 mm within this small change interval.
  • FIG. 40 shows the lateral chromatic aberration curve at different wavelengths of the zoom lens 10 at the wide-angle end. It can be seen from FIG. 40 that in Embodiment 12, the lateral chromatic aberration of the zoom lens 10 with the above technical parameters can be controlled at the lateral diffraction limit. Near the range.
  • FIG. 54 shows the distortion curves of the zoom lens 10 at different wavelengths at the wide-angle end.
  • the distortion curves indicate the deviation between the imaging distortion and the ideal shape. It can be seen from FIG. 54 that, in Embodiment 12, the zoom lens adopts the above technical parameters.
  • the lens 10 can effectively control the distortion rate below 1.8%.
  • the ratios of the focal lengths of the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 to the focal length of the telephoto end of the zoom lens 10 are selected in sequence as 18.471 and 6.07, respectively , 7.38 and 59.53;
  • the zoom lens 10 When the zoom lens 10 is converted from the wide-angle end to the telephoto end, the first lens group 11 and the third lens 13 are set to be fixed, the second lens group 12 moves to the image side, and the fourth lens group 14 first moves to the image side, and then Move to the side of the object.
  • the maximum clear aperture of the zoom lens 10 is selected, that is, the maximum diameter of the lens in the zoom lens 10 is 8 mm.
  • the first lens group 11 and the third lens group 13 are arranged with two lenses along the optical axis from the object side to the image side, and the second lens group 12 is arranged with three lenses, and the fourth lens group 14 is arranged with One lens.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 include a total of 14 aspheric surfaces.
  • the lens of the first lens group 11 facing the object side is a double convex lens with positive refractive power.
  • the ratio of the total optical length of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 1.182, and the ratio of the image height of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.186;
  • the ratio of the movement distance of the second lens group 12 along the optical axis to the total optical length of the zoom lens is 0.1687, and the movement distance of the fourth lens group 14 along the optical axis and zoom The ratio of the total optical length of the lens is 0.1971.
  • Table 13A shows the basic optical parameters of the zoom lens 10 at the wide-angle end, the first intermediate focal length, the second intermediate focal length, and the telephoto end. It can be seen from Table 13A that when the image height and TTL remain unchanged, the focal length value and the F value both increase, and the zoom lens 10 exhibits a typical feature of zooming from the wide-angle end to the telephoto end to achieve a focal length change.
  • Table 13B shows the curvature, thickness, refractive index, and Abbe number of each lens from the object side to the image side when the zoom lens 10 is at the wide-angle end, where R1-16 represent the surfaces of each lens from the object side to the image side.
  • R1 to R16 represent aspherical mirror surfaces
  • K is a quadric constant
  • A2, A3, A4, A5, A6, and A7 are aspherical coefficients, respectively. It can be seen from Table 13C that in Example 13, the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 of the zoom lens 10 include a total of 14 aspheric surfaces.
  • Table 13D shows the distances between the first lens group 11 to the fourth lens group 14 when the zoom lens 10 is at the wide-angle end, the first intermediate focal length state, the second focal length state, and the telephoto end.
  • FIG. 27 shows the axial chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from FIG. 27 that in Embodiment 13, the axial chromatic aberration of the zoom lens 10 using the above technical parameters can always be controlled within 0.015mm ⁇ Within the small change interval of 0.025mm.
  • Fig. 41 shows the lateral chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 41 that, in Embodiment 13, the lateral chromatic aberrations of the zoom lens 10 with the above-mentioned technical parameters have different wavelengths at the wide-angle end and the telephoto end. At the end, 650nm wavelength light and 470nm wavelength light will exceed the lateral diffraction limit.
  • Figure 55 shows the distortion curves of the zoom lens 10 at different wavelengths at the wide-angle end.
  • the distortion curves indicate the deviation between the imaging distortion and the ideal shape. It can be seen from Figure 55 that in Embodiment 13, the above-mentioned technical parameters are used for the zoom The lens 10 can effectively control the distortion rate below 3.8%.
  • the ratios of the focal lengths of the first lens group 11, the second lens group 12, the third lens group 13, and the fourth lens group 14 to the focal length of the zoom lens 10 at the telephoto end are respectively selected as 19.17 and 6.30, respectively. , 9.26 and 14.16;
  • the zoom lens 10 When the zoom lens 10 is converted from the wide-angle end to the telephoto end, the first lens group 11 and the third lens 13 are set to be fixed, the second lens group 12 moves to the image side, and the fourth lens group 14 first moves to the image side, and then Move to the side of the object.
  • the maximum clear aperture of the zoom lens 10 is selected, that is, the maximum diameter of the lens in the zoom lens 10 is 8.4 mm.
  • the first lens group 11, the second lens group 12, and the fourth lens group 14 are arranged with two lenses along the optical axis from the object side to the image side, and the third lens group 13 is arranged with three lenses.
  • the first lens group 11, the second lens group 12, the third lens group 13 and the fourth lens group 14 include a total of 16 aspheric surfaces.
  • the lens of the first lens group 11 facing the object side is a double convex lens with positive refractive power.
  • the ratio of the total optical length of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 1.21, and the ratio of the image height of the selected zoom lens 10 to the effective focal length of the telephoto end of the zoom lens 10 is 0.16;
  • the ratio of the movement distance of the second lens group 12 along the optical axis to the total optical length of the zoom lens is 0.1645
  • the movement distance of the fourth lens group 14 along the optical axis and zoom is 0.0477.
  • Table 14A shows the basic optical parameters of the zoom lens 10 at the wide-angle end, the first intermediate focal length, the second intermediate focal length, and the telephoto end. It can be seen from Table 14A that when the image height and TTL remain unchanged, the focal length value and the F value are both increased, and the zoom lens 10 exhibits a typical feature of zooming from the wide-angle end to the telephoto end to achieve a focal length change.
  • Table 14B shows the curvature, thickness, refractive index, and Abbe number of each lens from the object side to the image side when the zoom lens 10 is at the wide-angle end, where R1-16 represent the surfaces of each lens from the object side to the image side.
  • R represents curvature
  • Thickness represents thickness
  • nd represents refractive index
  • vd represents Abbe number.
  • R1 to R18 represent aspherical mirror surfaces
  • K is a quadric constant
  • A2, A3, A4, A5, A6, and A7 are aspherical coefficients, respectively. It can be seen from Table 14C that in Embodiment 14, the first lens group 11, the second lens group 12, the third lens group 13, and the fourth lens group 14 of the zoom lens 10 include a total of 16 aspherical surfaces.
  • Table 14D shows the distances between the first lens group 11 to the fourth lens group 14 when the zoom lens 10 is at the wide-angle end, the first intermediate focal length state, the second focal length state, and the telephoto end.
  • Fig. 28 shows the axial chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 28 that, in Embodiment 2, the axial chromatic aberration of the zoom lens 10 using the above technical parameters can always be controlled within 0.015mm ⁇ Within the small change interval of 0.025mm.
  • Fig. 42 shows the lateral chromatic aberration curves of the zoom lens 10 at different wavelengths at the wide-angle end. It can be seen from Fig. 42 that, in Embodiment 2, the lateral chromatic aberrations of the zoom lens 10 with the above technical parameters at different wavelengths are at the wide-angle end and the telephoto end. At the end, 650nm wavelength light and 470nm wavelength light will exceed the lateral diffraction limit.
  • Fig. 56 shows the distortion curves of the zoom lens 10 at different wavelengths at the wide-angle end.
  • the distortion curves indicate the deviation between the imaging distortion and the ideal shape. It can be seen from Fig. 56 that in Embodiment 2, the zoom lens adopts the above technical parameters.
  • the lens 10 can effectively control the distortion rate below 3.8%.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

一种变焦镜头(10)、摄像模组及终端设备,变焦镜头(10)包括沿光轴从物侧至像侧依序排布的第一透镜组(11)、第二透镜组(12)、第三透镜组(13)和第四透镜组(14);第一透镜组(11)和第三透镜组(13)固定,第二透镜组(12)和第四透镜组(14)沿光轴移动;第一透镜组(11)从物侧起第一片镜片为双凸透镜,第一透镜组(11)从物侧起至少两片镜片为玻璃镜片;变焦镜头(10)的最大通光口径满足下列关系:4mm≤φ≤12mm;其中,φ为变焦镜头(10)的最大通光口径。光焦镜头的整体成像质量得到提升,同时也使得变焦镜头(10)能够做的更小,易于应用在厚度较薄的终端设备中,配备有变焦镜头(10)的终端设备能够在连续变焦时,成像清晰度能够持续保持在较佳水平,提升了终端设备的成像整体质量。

Description

变焦镜头、摄像模组及终端设备
本申请要求于2020年03月20日提交国家知识产权局、申请号为202020369892.3、申请名称为“变焦镜头、摄像模组及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于光学设备技术领域,尤其涉及一种变焦镜头、摄像模组及终端设备。
背景技术
近年来,随着技术的进步,变焦镜头已在手机等终端产品上得到了普及应用。目前,手机等终端产品为实现对广角变焦、标准变焦和长焦变焦三者的兼顾,通常是搭配两到三颗不同焦距的镜头,通过基于算法的数码变焦,形成混合式光学变焦镜头。
然而,混合式光学变焦本质上是一种基于不同焦距的多个镜头,依靠算法处理实现连续变焦,也即为“跳跃式变焦”,这也导致其焦距处于各个变焦镜头的不同焦距之间时,混合式光学变焦镜头所能够产生的成像清晰度较为有限,从而导致安装有混合式光学变焦镜头的终端设备的成像质量不佳。
发明内容
本申请实施例的目的在于提供一种变焦镜头、摄像模组及终端设备,旨在解决现有技术中的配置有混合式光学变焦镜头的终端设备成像质量不佳的技术问题。
为实现上述目的,本申请采用的技术方案是:
第一方面,提供一种变焦镜头,包括沿光轴从物侧至像侧依序排布的第一透镜组、第二透镜组、第三透镜组和第四透镜组;所述第一透镜组和所述第三透镜组固定设置,
所述第二透镜组作为调焦组沿所述光轴移动,所述第四透镜组作为补偿组随同所述第二透镜组沿所述光轴移动;或者,所述第四透镜组作为调焦组沿所述光轴移动,所述第二透镜组作为补偿组随同所述第四透镜组沿所述光轴移动,通过将第一透镜组和第三透镜组固定设置,以构成变焦镜头的固定组,第二透镜组和第四透镜沿光轴移动,这样从广角端至长焦端进行变焦时,第二透镜组和第四透镜组同时沿光轴移动,即可实现变焦和对变焦时产生的像差进行补偿,在满足变焦镜头的高变倍比的同时,也能够使得变焦镜头的成像清晰度时刻保持在较佳水平。
其中,第一透镜组从物侧起的第一片镜片为双凸透镜,这样能够在提升第一透镜组的聚光性能的同时,也能够延长变焦镜头的后焦长,使得变焦镜头在具有较好的成像效果的同时,也尽量减小了变焦镜头的厚度。同时,第一透镜组从物侧起至少两片镜片为玻璃镜片,这样则能够对靠近物侧的两镜片实现深度加工,使其能够较薄且具有良好的光路调整能力。
第一透镜组变焦镜头的最大通光口径满足下列关系:4mm≤φ≤12mm;其中,φ为所述变焦镜头的最大通光口径。通过将变焦镜头的最大通光口径设置4mm到12mm的范围内,在能够有效减小变焦镜头的整体高度的同时,也提升了变焦镜头的通光率,上述因素相结合,便提升了光焦镜头的整体成像质量,同时也使得变焦镜头能够做的更小,易于应用在厚度较薄的终端设备中,如此,配备有上述变焦镜头的终端设备便 能够在连续变焦时,其成像清晰度能够持续保持在较佳水平。
可选地,变焦镜头满足下列关系式:
0.8≤TTL/ft≤1.5;
其中,TTL为变焦镜头的光学总长,ft为变焦镜头的长焦端的有效焦距。通过将变焦镜头的光学总长和长焦端的有效焦距之比设置在0.8到1.5范围内,这样便使得变焦镜头能够始终保持有良好的视角宽度和变倍比,同时也能够兼顾对离轴像差的修正。
可选地,变焦镜头满足下列关系式:
0.02≤IMH/ft≤0.2;
其中,IMH为变焦镜头的镜片的成像边缘到成像面中心的高度距离,ft为变焦镜头的长焦端的有效焦距。通过将变焦镜头的像高和其长焦端的有效焦距之比设置在0.02到0.2的范围内,这样在提升变焦镜头的变倍比的同时,也能够实现对变焦镜头总高的缩减。
可选地,第一透镜组、第三透镜组和第四透镜组均具备正光焦度,第二透镜组具备负光焦度。
可选地,第一透镜组和第三透镜组均具备正光焦度,第二透镜组和第四透镜组均具备负光焦度。
可选地,第一透镜组满足下列关系式:
0.2≤f 1/ft≤2.3;
其中,f 1为第一透镜组的焦距,ft为变焦镜头的长焦端的有效焦距。通过将第一透镜组的焦距和变焦镜头的焦距的比值设定在0.2~2.3的范围内,这样便有效提升了第一透镜组的聚光能力,同时也有利于降低轴向色差。
可选地,第二透镜组满足下列关系式:
0.02≤f 2/ft≤0.6;
其中,f 2为第二透镜组的焦距,ft为变焦镜头的长焦端的有效焦距。
可选地,第三透镜组满足下列关系式:
0.1≤f 3/ft≤4.5;
其中,f 3为第三透镜组的焦距,ft为变焦镜头的长焦端的有效焦距。
可选地,第四透镜组满足下列关系式:
0.12≤f 4/ft≤200;
其中,f 4为第四透镜组的焦距,ft为变焦镜头的长焦端的有效焦距。如此第四透镜组便能够实现对第二透镜组在移动全过程中所产生的像差进行广泛地补偿。
可选地,变焦镜头的长焦端的有效焦距ft和变焦镜头的广角端的有效焦距fw之比满足下列关系:
1≤ft/fw≤3.7。
可选地,第二透镜组沿光轴的运动距离D1和变焦透镜的光学总长TTL之比满足下列关系:
0.02≤D1/TTL≤0.3。
第四透镜组沿光轴的运动距离D2和变焦透镜的光学总长TTL之比满足下列关系:
0.02≤D2/TTL≤0.35。
可选地,第一透镜组、第二透镜组、第三透镜组和第四透镜组所包括的镜片的总数量N满足下列关系:
7≤N≤12。
可选地,第一透镜组、第二透镜组、第三透镜组和第四透镜组所包括的镜片的非球面的总数量S满足下列关系:
N≤S≤2N。如此便进一步实现了变焦镜头的高变倍比和对变焦镜头的总长或总高的有效缩短。
可选地,镜片为异形孔径镜片。
可选地,异形孔径镜片沿其切边方向的高度H满足下列关系:
4mm≤H≤6mm。
可选地,变焦镜头还包括棱镜和/或反射镜,棱镜和/或反射镜设置于第一透镜组朝向物侧的一侧,并用于将光线偏转至第一透镜组。
第二方面,提供一种摄像模组,包括有上述的变焦镜头。
本申请实施例提供的摄像模组,由于包括有上述的变焦镜头,而上述变焦镜头能够在实现连续变焦的同时,也提升了光焦镜头的整体成像质量和小型化潜力,这样便使得具有上述变焦镜头的摄像模组能够在提升成像质量的同时,实现小型化。
第三方面,提供一种终端设备,包括有上述的摄像模组。
本申请实施例提供的终端设备,由于包括有上述的摄像模组,那么具有上述设置模组的终端设备便通过一个镜头便实现了连续变焦,从而改变了以往多个镜头进行“跳跃式变焦”的模式,一方面显著提升了连续变焦过程中的成像清晰度,另一方面也节省了镜头的装配空间。
附图说明
图1为本申请实施例1提供的变焦镜头由广角态向长焦态转换时,第二透镜组和第四透镜组的运动状态示意图;
图2为本申请实施例2提供的变焦镜头由广角态向长焦态转换时,第二透镜组和第四透镜组的运动状态示意图;
图3为本申请实施例3提供的变焦镜头由广角态向长焦态转换时,第二透镜组和第四透镜组的运动状态示意图;
图4为本申请实施例4提供的变焦镜头由广角态向长焦态转换时,第二透镜组和第四透镜组的运动状态示意图;
图5为本申请实施例5提供的变焦镜头由广角态向长焦态转换时,第二透镜组和第四透镜组的运动状态示意图;
图6为本申请实施例6提供的变焦镜头由广角态向长焦态转换时,第二透镜组和第四透镜组的运动状态示意图;
图7为本申请实施例7提供的变焦镜头由广角态向长焦态转换时,第二透镜组和第四透镜组的运动状态示意图;
图8为本申请实施例8提供的变焦镜头由广角态向长焦态转换时,第二透镜组和第四透镜组的运动状态示意图;
图9为本申请实施例9提供的变焦镜头由广角态向长焦态转换时,第二透镜组和第四透镜组的运动状态示意图;
图10为本申请实施例10提供的变焦镜头由广角态向长焦态转换时,第二透镜组和第四透镜组的运动状态示意图;
图11为本申请实施例11提供的变焦镜头由广角态向长焦态转换时,第二透镜组和第四透镜组的运动状态示意图;
图12为本申请实施例12提供的变焦镜头由广角态向长焦态转换时,第二透镜组和第四透镜组的运动状态示意图;
图13为本申请实施例13提供的变焦镜头由广角态向长焦态转换时,第二透镜组和第四透镜组的运动状态示意图;
图14为本申请实施例14提供的变焦镜头由广角态向长焦态转换时,第二透镜组和第四透镜组的运动状态示意图;
图15为本申请实施例1提供的变焦镜头处于广角态时的轴向色差曲线;
图16为本申请实施例2提供的变焦镜头处于广角态时的轴向色差曲线;
图17为本申请实施例3提供的变焦镜头处于广角态时的轴向色差曲线;
图18为本申请实施例4提供的变焦镜头处于广角态时的轴向色差曲线;
图19为本申请实施例5提供的变焦镜头处于广角态时的轴向色差曲线;
图20为本申请实施例6提供的变焦镜头处于广角态时的轴向色差曲线;
图21为本申请实施例7提供的变焦镜头处于广角态时的轴向色差曲线;
图22为本申请实施例8提供的变焦镜头处于广角态时的轴向色差曲线;
图23为本申请实施例9提供的变焦镜头处于广角态时的轴向色差曲线;
图24为本申请实施例10提供的变焦镜头处于广角态时的轴向色差曲线;
图25为本申请实施例11提供的变焦镜头处于广角态时的轴向色差曲线;
图26为本申请实施例12提供的变焦镜头处于广角态时的轴向色差曲线;
图27为本申请实施例13提供的变焦镜头处于广角态时的轴向色差曲线;
图28为本申请实施例14提供的变焦镜头处于广角态时的轴向色差曲线;
图29为本申请实施例1提供的变焦镜头处于广角态时的横向色差曲线;
图30为本申请实施例2提供的变焦镜头处于广角态时的横向色差曲线;
图31为本申请实施例3提供的变焦镜头处于广角态时的横向色差曲线;
图32为本申请实施例4提供的变焦镜头处于广角态时的横向色差曲线;
图33为本申请实施例5提供的变焦镜头处于广角态时的横向色差曲线;
图34为本申请实施例6提供的变焦镜头处于广角态时的横向色差曲线;
图35为本申请实施例7提供的变焦镜头处于广角态时的横向色差曲线;
图36为本申请实施例8提供的变焦镜头处于广角态时的横向色差曲线;
图37为本申请实施例9提供的变焦镜头处于广角态时的横向色差曲线;
图38为本申请实施例10提供的变焦镜头处于广角态时的横向色差曲线;
图39为本申请实施例11提供的变焦镜头处于广角态时的横向色差曲线;
图40为本申请实施例12提供的变焦镜头处于广角态时的横向色差曲线;
图41为本申请实施例13提供的变焦镜头处于广角态时的横向色差曲线;
图42为本申请实施例14提供的变焦镜头处于广角态时的横向色差曲线;
图43为本申请实施例1提供的变焦镜头处于广角态时的畸变百分比曲线;
图44为本申请实施例2提供的变焦镜头处于广角态时的畸变百分比曲线;
图45为本申请实施例3提供的变焦镜头处于广角态时的畸变百分比曲线;
图46为本申请实施例4提供的变焦镜头处于广角态时的畸变百分比曲线;
图47为本申请实施例5提供的变焦镜头处于广角态时的畸变百分比曲线;
图48为本申请实施例6提供的变焦镜头处于广角态时的畸变百分比曲线;
图49为本申请实施例7提供的变焦镜头处于广角态时的畸变百分比曲线;
图50为本申请实施例8提供的变焦镜头处于广角态时的畸变百分比曲线;
图51为本申请实施例9提供的变焦镜头处于广角态时的畸变百分比曲线;
图52为本申请实施例10提供的变焦镜头处于广角态时的畸变百分比曲线;
图53为本申请实施例11提供的变焦镜头处于广角态时的畸变百分比曲线;
图54为本申请实施例12提供的变焦镜头处于广角态时的畸变百分比曲线;
图55为本申请实施例13提供的变焦镜头处于广角态时的畸变百分比曲线;
图56为本申请实施例14提供的变焦镜头处于广角态时的畸变百分比曲线。
其中,图中各附图标记:
10—变焦镜头             11—第一透镜组            12—第二透镜组
13—第三透镜             14—第四透镜组。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图1~图56描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
以下对本文中出现的专有名词和英文缩写进行解释说明:
双凸透镜:是一种物侧面和像侧面均为凸球面的镜片,其中间部较厚,而边缘部较薄,双凸透镜具有聚光作用。
调焦组:是指在变焦镜头10中,沿变焦镜头10的光轴运动,负责调节变焦镜头10的焦距的透镜组。
补偿组:是指在变焦镜头10中,随同调焦组沿变焦镜头10的光轴运动,负责平衡和消除调焦组在移动过程中产生的像差影响的透镜组。
IMH(image hight):像高,指光学系统的镜片的成像边缘到成像面中心的高度距离。
F值:是光学系统的焦距/镜头通光直径得出的相对值(相对孔径的倒数),光圈F
值愈小,在同一单位时间内的进光量便愈多。光圈F值越大,景深越小,拍照的背景内容将会虚化。类似长焦镜头的效果。
EFL(Effective Focal Length):有效焦距,对厚透镜(厚度不能忽略的透镜),或是有好几片透镜或面镜的光学系统(像是照相机镜头、望远镜或手机等移动终端搭载的镜头等),焦距通常会以有效焦距来表示,以与一般常用的参数有所区别。
FFL(Front Focal Length):前焦长,是指光学系统前方的焦点至第一个光学表面顶点的距离。
BFL(Back Focal Length):后焦长,是指光学系统最后一个光学表面顶点至后焦长度。
在空气中的一个光学系统,有效焦距是由前面和后面的主平面至对应的焦点的距离。如果周围的环境不是空气,则距离要乘上该物质的折射系数。有些作者称这个距离为前(后)焦距,以与上面定义的前(后)焦点距离有所区别。
FOV(Field of View):指变焦镜头10的视场角,在光学系统中,以光学系统的镜头为顶点,以被测目标的物像可通过镜头的最大范围的两条边缘构成的夹角,称为视场角。视场角的大小决定了光学仪器的视野范围,视场角越大,视野就越大,光学倍率就越小。
TTL(Total Track Length):指光学系统的光学总高或光学总长,即为从光学系统的头部至成像的总长度;
TTL1(Total Track Length1):指光学系统的第一面的曲面顶点到光学系统最后一面的曲面顶点的距离;
变焦镜头10的长焦端:表示变焦镜头10处于望远状态时,其所处的焦距的数值段。
变焦镜头10的广角端:表示变焦镜头10处于广角状态时,所拍摄到的画面呈现出前景大,远景小时,其所处的焦距的数值段。
D1:是指第二透镜组12作为变焦组或补偿组,沿光轴运动时的行程距离范围。
D2:是指第四透镜组14作为变焦组或补偿组,沿光轴运动时的行程距离范围。
成像边缘:指变焦镜头10的镜片的边缘位置。
成像面中心:指变焦镜头10的镜片的中心位置。
变倍比:是指变焦镜头10的最大焦距和最小焦距的比值。
焦距(focal length),也称为焦长,是光学系统中衡量光的聚集或发散的度量方式,指无限远的景物通过镜片或镜片组在焦平面结成清晰影像时,镜片或镜片组的光学中心至焦平面的垂直距离。从实用的角度可以理解为镜头中心至平面的距离。对于定焦镜头来说,其光学中心的位置是固定不变的;对于变焦镜头来说,镜头的光学中心的变化带来镜头焦距的变化。
光圈,是用来控制光线透过镜头,进入机身内感光面光量的装置,它通常是在镜 头内。表达光圈大小用F/数值表示。
F值,是镜头的焦距/镜头通光直径得出的相对值(相对孔径的倒数)。光圈F值愈小,在同一单位时间内的进光量便愈多。光圈F值越大,景深越小,拍照的背景内容将会虚化,类似长焦镜头的效果。
正屈折力,也可以称为正折光力,表示镜片有正的焦距、有会聚光线的效果。
负屈折力,也可以称为负折光力,表示镜片有负的焦距、有发散光线的效果。
正光焦度,表征变焦镜头10对入射光束的屈折汇聚能力,正光焦度数值越大,表示屈折汇聚能力越强。
负光焦度,表征变焦镜头10对入射光束的屈折发散能力,负光焦度数值越大,表示屈折发散能力越强。
阿贝数,即色散系数,是光学材料在不同波长下的折射率的差值比,代表材料色散程度大小。
光轴,是一条垂直穿过理想镜片中心的光线。与光轴平行的光线射入凸镜片时,理想的凸镜应是所有的光线会聚在镜片后的一点,这个会聚所有光线的一点,即为焦点。
物侧,以镜片为界,被摄物体所在的空间为物方空间。
像侧,以镜片为界,被摄物体所发出的光穿越镜片在镜片后面形成的像所在的空间为像方空间。
轴向色差,也称为纵向色差或位置色差或轴向像差,一束平行于光轴的光线,在经过镜头后会聚于前后不同的位置,这种像差称为位置色差或轴向色差。这是由于镜头对各个波长的光所成像的位置不同,使得最后成像时不同色的光的像其焦平面不能重合,复色光散开形成色散。
横向色差,也称为倍率色差,光学系统对不同色光的放大率的差异称为倍率色差。波长引起光学系统的放大率的变化,像的大小随之变化。
畸变(distortion),也称为失真,光学系统对物体所成的像相对于物体本身而言的失真程度。畸变是由于光阑球差的影响,不同视场的主光线通过光学系统后与高斯像面的交点高度不等于理想像高,两者之差就是畸变。因此畸变只改变轴外物点在理想面上的成像位置,使像的形状产生失真,但不影响像的清晰度。
光学畸变(optical distortion)是指光学理论上计算所得到的变形度。
衍射极限(diffraction limit),是指一个理想物点经光学系统成像,由于衍射的限制,不可能得到理想像点,而是得到一个夫朗和费衍射像。由于一般光学系统的口径都是圆形,夫朗和费衍射像就是所谓的艾里斑。这样每个物点的像就是一个弥散斑,两个弥散斑靠近后就不好区分,这样就限制了系统的分辨率,这个斑越大,分辨率越低。
异形孔径镜片:为镜片边缘轮廓非传统圆形,而是呈不规则形状的镜片。
异形孔径镜片的切边方向:是指镜片在切割时,切刀行进的方向,其通常包括垂直切边方向或横向切边方向等。
如图1~图14所示,本申请实施例提供了一种变焦镜头10,该变焦镜头10应用于摄像模组中,具有上述变焦镜头10的摄像模组可应用于终端设备中。其中,摄像模组 可由变焦镜头10、音圈马达、红外滤光片、图像传感器、A/D信号转换器和处理器装配组成。
本申请实施例的终端设备包括但不限于摄像机、手机、平板电脑、可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、或个人数字助理(personal digital assistant,PDA)等,本申请实施例对终端设备的具体类型不作任何限制。为了方便描述,在本申请实施例中的终端设备以手机为例进行说明,应理解,不能解释为对本申请的限制。
具体地,变焦镜头10包括沿光轴从物侧至像侧依序排布的:第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14;第一透镜组11和第三透镜组13固定设置,第二透镜组12和第四透镜组14沿光轴移动,第一透镜组11和第三透镜13组固定设置,以构成变焦镜头10的固定组,第二透镜组12和第四透镜组14则通过沿光轴移动,实现变焦和对变焦时产生的像差进行补偿。
可选地,第二透镜组12可以是变焦组,而第四透镜组可以是补偿组,第二透镜组12即可在沿光轴移动的过程中,不断放大第一透镜组11的成像大小,进而改变变焦镜头10的焦距,使得变焦镜头10得以实现连续变焦。而具有光焦度的第四透镜组14则可在第二透镜组12移动过程中,沿光轴移动,为第二透镜组12在移动过程中所产生的像面位移进行补偿。
亦可以是第二透镜组12为补偿组,而第四透镜组14为变焦组。如此,在满足变焦镜头的高变倍比的同时,也能够使得变焦镜头的成像清晰度时刻保持在较佳水平。
第一透镜组11从物侧起的第一片镜片为双凸透镜,这样能够在提升第一透镜组11的聚光性能的同时,也能够延长变焦镜头10的后焦长,使得变焦镜头10在具有较好的成像效果的同时,也尽量减小了变焦镜头10的厚度。第一透镜组11从物侧起至少两片镜片为玻璃镜片,这样则能够对靠近物侧的两镜片实现深度加工,使其能够较薄且具有良好的光路调整能力。变焦镜头10的最大通光口径满足下列关系:
4mm≤φ≤12mm;
其中,φ为变焦镜头的最大通光口径。
同时,将变焦镜头的最大通光口径设置在4mm到12mm的范围内,便有效提升了变焦镜头10的进光量,另一方面也有效控制了景深不会过小,进而避免了成像的背景部分虚化。同时也能够在有效减小变焦镜头的整体高度的同时,也提升了变焦镜头的通光率,上述因素相结合,便提升了光焦镜头的整体成像质量,同时也使得变焦镜头能够做的更小,易于应用在厚度较薄的终端设备中。如此,配备有上述变焦镜头的终端设备便能够在连续变焦时,其成像清晰度能够持续保持在较佳水平,进而便提升了终端设备的成像整体质量。
而第一透镜组11和第三透镜13组固定,第二透镜组12和第四透镜组14运动的变焦实现方式,也在降低变焦镜头10的结构复杂度的同时,降低了变焦镜头10的工程实现难度,也使得变焦镜头10能够做的更小,从而易于应用在手机等移动终端设备中。
可选地,变焦镜头的最大通光口径还可满足下列关系:
4mm≤φ≤6mm;
通过将变焦镜头的最大通光口径具体设置在4mm到6mm的范围内,便在使得变焦镜头10具有足够的进光量的同时,也能够使得变焦镜头的整体高度更小,从而提升了变焦镜头10的小型化潜力,使其能够应用于更薄的终端设备中。同时,本实施例提供的变焦镜头10还包括光阑,光阑可位于第三透镜组13的物侧,亦可位于其他位置。
本申请实施例提供的摄像模组,由于包括有上述的变焦镜头10,而上述变焦镜头10能够在实现连续变焦的同时,也提升了变焦镜头10的整体成像质量和小型化潜力,这样便使得具有上述变焦镜头10的摄像模组能够在提升成像质量的同时,实现小型化。
本申请实施例提供的终端设备,由于包括有上述的摄像模组,那么具有上述设置模组的终端设备便通过一个镜头便实现了连续变焦,从而改变了以往多个镜头进行“跳跃式变焦”的模式,一方面显著提升了连续变焦过程中的成像清晰度,另一方面也节省了变焦镜头10的装配空间。
可选地,变焦镜头10满足下列关系式:
0.8≤TTL/ft≤1.5;
其中,TTL为变焦镜头10的光学总长,ft为变焦镜头10的长焦端的有效焦距。如此,变焦镜头10在由广角端转变为长焦端时,通过将变焦镜头10的光学总长和长焦端的有效焦距之比设置在0.8到1.5范围内,这样便使得变焦镜头10能够始终保持有良好的视角宽度和变倍比,同时也能够兼顾对离轴像差的修正。可选地,变焦镜头10的光学总长和长焦端的有效焦距之比进一步设置在0.8到1的范围内,以使得变焦镜头10的视角宽度和变倍比达到最佳状态。
可选地,变焦镜头10还满足下列关系式:
0.02≤IMH/ft≤0.2;
其中,IMH为变焦镜头10的的成像边缘到成像面中心的高度,也称为半像高,ft为变焦镜头10的长焦端的有效焦距。
如此,通过将变焦镜头10的像高和其长焦端的有效焦距之比设置在0.02到0.2的范围内,这样在提升变焦镜头10的变倍比的同时,也能够实现对变焦镜头总高的缩减,使得变焦镜头10拥有更小的高度尺寸,更易于被安装在较薄的终端设备中。
可选地,第一透镜组11、第三透镜13组和第四透镜组14可以是均具备正光焦度,第二透镜组12可以是具备负光焦度。同时,也可以是第一透镜组11和第三透镜13组均具备正光焦度,第二透镜组12和第四透镜组14均具备负光焦度。如此可实现多种正负光焦度的组合方式,进而使得本实施例的变焦镜头10具有多种不同的变焦方式,进而可根据成像质量、变焦效率和倍变比的实际需求,形成适合的正负光焦度的组合方式。
可选地,如图1~图12所示,变焦镜头10由广角端转变为长焦端时,在第一透镜组11和第三透镜13组保持位置不变的情况下,第二透镜组12和第四透镜组14的运动状态可以是:第二透镜组12沿光轴朝像侧移动,第四透镜组14沿光轴先向物侧移动,后向像侧移动。且第二透镜组12沿光轴匀速运动,以实现对焦距的连续调节,而第四透镜组14则可相对于第二透镜组12进行非匀速运动,以实现对第二透镜组12 在运动过程中所产生的像面位移进行实时动态补偿,进而使得变焦镜头10在连续变焦过程中,所采集到的画面始终保持良好的清晰度和高质量。
同时,第二透镜组12也可沿光轴朝像侧移动,而第四透镜组14则沿光轴向物侧移动,或者是第二透镜组12和第四透镜组14均沿光轴朝像侧移动,亦或是第二透镜组12沿光轴朝像侧移动,第四透镜组14沿光轴先向像侧移动,后向物侧移动。第二透镜组12和第四透镜组14的上述运动方式均可实现变焦镜头10由广角端至长焦端的转变。
可选地,第一透镜组11满足下列关系式:
0.2≤f 1/ft≤2.3;
其中,f 1为第一透镜组11的焦距,ft为变焦镜头10的长焦端的有效焦距。
通过将第一透镜组11的焦距和变焦镜头10的焦距的比值设定在0.2~2.3的范围内,这样便有效提升了第一透镜组11的聚光能力,同时也有利于降低轴向色差。
可选地,第一透镜组11还可满足下列关系式:
0.2≤f 1/ft≤0.69;
或者,0.75≤f 1/ft≤1.3;
或者,1.95≤f 1/ft≤2.15;
其中,f 1为第一透镜组11的焦距,ft为变焦镜头10的焦距。
通过将第一透镜组11的焦距和变焦镜头10的焦距的比值进一步设定在0.2~0.69、0.75~1.3或是1.95~2.15的范围内,这样便在提升第一透镜组11的聚光能力和降低轴向色差的同时,也能够对场曲和彗差的离轴像差进行修正,使得成像清晰度和成像质量在连续变焦过程中,保持在较为理想的水平。
可选地,第二透镜组12满足下列关系式:
0.02≤f 2/ft≤0.6;
其中,f 2为第二透镜组12的焦距,ft为变焦镜头10的长焦端的有效焦距。
通过将第二透镜组12的焦距和变焦镜头10的焦距的比值设定在0.02~0.09或是0.13~0.54的范围内,则有利于校正第二透镜组12在变焦过程中所产生的像差。
可选地,第二透镜组12还可满足下列关系式:
0.02≤f 2/ft≤0.09;
或者,0.13≤f 2/ft≤0.54;
其中,f 2为第二透镜组12的焦距,ft为变焦镜头12的焦距。
通过将第二透镜组12的焦距和变焦镜头10的焦距的比值进一步设定在0.02~0.09或是0.13~0.54的范围内,则有利于具体校正第二透镜组12在变焦过程中所产生的系统色散和系统球差。
可选地,第三透镜组13满足下列关系式:
0.1≤f 3/ft≤4.5;
其中,f 3为第三透镜组13的焦距,ft为变焦镜头10的长焦端的有效焦距。
而第三透镜组13还可进一步满足下列关系式:
0.12≤f 3/ft≤0.35;
或者,0.52≤f 3/ft≤0.61;
或者,3.85≤f 3/ft≤4.5;
其中,f 3为第三透镜组13的焦距,ft为变焦镜头10的焦距。
通过将第三透镜组13的焦距和变焦镜头10的焦距的比值设定在0.12~0.35、0.52~0.61或是3.85~4.5的范围内,这样一方面能够提升第三透镜组13的聚光能力,同时还能够对场曲和彗差的离轴像差进行有效修正。
可选地,第四透镜组14满足下列关系式:
0.12≤f 4/ft≤200;
其中,f 4为第四透镜组14的焦距,ft为变焦镜头10的长焦端的有效焦距。
通过将第四透镜组14的焦距和变焦镜头10的焦距的比值设定在0.12~200的范围内,这样在第二透镜组12沿光轴移动变焦的过程中,第四透镜组14便能够实现对第二透镜组12在移动全过程中所产生的像差进行广泛地补偿。
可选地,第四透镜组14还可满足下列关系式:
0.12≤f 4/ft≤0.43;
或者,0.65≤f 4/ft≤0.85;
或者,70≤f 4/ft≤200;
其中,f 4为第四透镜组14的焦距,ft为变焦镜头10的焦距。
通过将第四透镜组14的焦距和变焦镜头10的焦距的比值进一步设定在0.12~0.43、0.65~0.85或是70~200的范围内,这样在第二透镜组12沿光轴移动变焦的过程中,第四透镜组14便能够实现对第二透镜组12在移动过程中所产生的像差进行有效补偿,同时能够对场曲和彗差的离轴像差进行有效修正。
可选地,变焦镜头10的长焦端的有效焦距ft和变焦镜头10的广角端fw的有效焦距之比满足下列关系:
1≤ft/fw≤3.7。如此可提升变焦镜头10在由广角端至长焦端连续变焦时的变倍比。如此可进一步提升变焦镜头10的变倍比。
可选地,第二透镜组12沿光轴的运动距离D1和变焦透镜10的光学总长TTL之比满足下列关系:
0.02≤D1/TTL≤0.3。
第四透镜组14沿光轴的运动距离D2和变焦透镜10的光学总长TTL之比满足下列关系:
0.02≤D2/TTL≤0.35。
具体地,第二透镜组12沿光轴的运动距离D1和变焦透镜10的光学总长TTL之 比以及第四透镜组14沿光轴的运动距离D2和变焦透镜10的光学总长TTL之比可进一步是:
0.176≤D1/TTL≤0.215;且0.05≤D2/TTL≤0.09;
或者,0.049≤D1/TTL≤0.086;且0.21≤D2/TTL≤0.35。
如此,通过将第二透镜组12沿光轴的运动距离和变焦透镜10的光学总长之比和第四透镜组14沿光轴的运动距离和变焦透镜的光学总长之比设定为上述参数范围。上述参数结合第二透镜组12和第四透镜组14沿光轴的移动方向,便能够实现变焦镜头10由广角端至长焦端稳定连续的转变,同时能够对诸如场曲等各种像差的校正。
可选地,变焦镜头10处于广角端时,第一透镜组11和第二透镜组12之间的间隔距离满足下列关系式:
0.5mm≤L 1≤1.35mm;
第二透镜组12和第三透镜组13之间的间隔距离满足下列关系式:
1.8mm≤L 2≤6.0mm;
第三透镜组13和第四透镜组14之间的间隔距离满足下列关系式:
0.05mm≤L 3≤4.8mm;
其中,L 1为第一透镜组11和第二透镜组12之间的间隔距离,L 2为第二透镜组12和第三透镜组13之间的间隔距离,L 3为第三透镜组13和第四透镜组14之间的间隔距离。
通过使得变焦镜头10在处于广角端时,第一透镜组11、第二透镜组12、第三透镜组13和第四透镜组14满足上述的间隔距离,这样可提升变焦镜头10在广角端时的成像清晰度,同时也有利于加大系统通光量和矫正畸变。
可选地,变焦镜头10处于第一中间焦距状态时,第一透镜组11和第二透镜组12之间的间隔距离满足下列关系式:
1.05mm≤L 1≤2.95mm;
第二透镜组12和第三透镜组13之间的间隔距离满足下列关系式:
1.1mm≤L 2≤4.1mm;
第三透镜组13和第四透镜组14之间的间隔距离满足下列关系式:
而变焦镜头10处于第二中间焦距状态时,第一透镜组11和第二透镜组12之间的间隔距离满足下列关系式:
1.3mm≤L 1≤4.2mm;
第二透镜组12和第三透镜组13之间的间隔距离满足下列关系式:
0.9mm≤L 2≤3.4mm;
第三透镜组13和第四透镜组14之间的间隔距离满足下列关系式:
0.05mm≤L 3≤3.1mm。
当变焦镜头10处于第一中间焦距状态和第二中间焦距状态时,第一透镜组11、第二透镜组12、第三透镜组13和第四透镜组14满足上述的间隔距离,这样可提升变焦镜头10在第一中间焦距状态和第二中间焦距状态时的成像清晰度。
当变焦镜头10处于长焦端时,第一透镜组11和第二透镜组12之间的间隔距离满足下列关系式:
2mm≤L 1≤6.5mm;
第二透镜组12和第三透镜组13之间的间隔距离满足下列关系式:
0.5mm≤L 2≤0.9mm;
第三透镜组13和第四透镜组14之间的间隔距离满足下列关系式:
0.05mm≤L 3≤5.1mm。
当变焦镜头10处于第一中间焦距状态和第二中间焦距状态时,第一透镜组11、第二透镜组12、第三透镜组13和第四透镜组14满足上述的间隔距离,这样第一透镜组11、第二透镜组12、第三透镜组13和第四透镜组14的距离配合提升变焦镜头10在长焦端的成像清晰度。
可选地,第一透镜组11、第二透镜组12、第三透镜组13和第四透镜组14所包括的镜片的总数量N满足下列关系:
7≤N≤12。
同时,第一透镜组11、第二透镜组12、第三透镜组13和第四透镜组14所包括的镜片的非球面的总数量S满足下列关系:
N≤S≤2N。如此,非球面的数量相对于镜片的数量便能够形成较为合理的比例关系,如此便进一步实现了变焦镜头10的高变倍比和对变焦镜头10的总长或总高的有效缩短。
可选地,第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14自物侧至像侧均沿光轴排布有三个镜片,且第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括有12个~24个非球面。
亦或是,第一透镜组11、第二透镜组12和第三透镜13组和自物侧至像侧均沿光轴排布有两个镜片,第四透镜组14自物侧至像侧排布有一个镜片,且第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括有7个~14个非球面。
具体地,通过对透镜组的镜片的数量和非球面的总数量进行具体限定,这样通过各个镜片数量和镜片非球面的组合,一方面可实现对像差的有效修正,避免视界歪曲,另一方面可有效缩短变焦镜头10的光路总长,进而使得变焦镜头10在具有高变倍比和较佳的整体成像质量的同时,也缩短了变焦镜头10的总长,使得变焦镜头10能够更为容易地应用于终端设备中。
可选地,第一透镜组11沿光轴自物侧至像侧,依序排布有第一镜片、第二镜片和第三镜片,第一镜片、第二镜片和第三镜片满足下列关系:
20≤V1-V2≤55;
12≤V1-V3≤65;
或者,第一透镜组11沿光轴自物侧至像侧,依序排布有第一镜片和第二镜片,第一镜片和第二镜片满足下列关系:
25≤V1-V2≤45;
其中,V1为第一镜片的阿贝系数,V2为第二镜片的阿贝系数,V3为第三镜片的阿贝系数。
通过将第一透镜组11的第一镜片、第二镜片和第三镜片的阿贝系数之差限定为上述关系,这样通过各镜片的配合,可实现对系统色散的有效降低,进而提升了变焦镜头的成像清晰度,使得变焦镜头呈现出良好的成像效果。
可选地,第二透镜组12沿光轴自物侧至像侧,依序排布有第一镜片、第二镜片和第三镜片,第一镜片、第二镜片和第三镜片满足下列关系:
-20≤V1-V2≤35;
-18≤V1-V3≤62;
或者,第二透镜组12沿光轴自物侧至像侧,依序排布有第一镜片和第二镜片,第一镜片和第二镜片满足下列关系:
-18≤V1-V2≤47。
可选地,第三透镜组13沿光轴自物侧至像侧,依序排布有第一镜片、第二镜片和第三镜片,第一镜片、第二镜片和第三镜片满足下列关系:
-35≤V1-V2≤67;
-12≤V1-V3≤56;
或者,第三透镜组13沿光轴自物侧至像侧,依序排布有第一镜片和第二镜片,第一镜片和第二镜片满足下列关系:
-38≤V1-V2≤42。
通过将第二透镜组12的第一镜片、第二镜片和第三镜片的阿贝系数之差限定为上述关系,这样通过各镜片的配合,可进一步实现对系统色散的有效降低,进而进一步提升了变焦镜头的成像清晰度。
可选地,第三透镜组13沿光轴自物侧至像侧,依序排布有第一镜片、第二镜片和第三镜片,第一镜片、第二镜片和第三镜片满足下列关系:
5≤V1-V2≤34;
-26≤V1-V3≤27;
或者,第三透镜组沿光轴自物侧至像侧,依序排布有第一镜片和第二镜片,第一镜片和第二镜片满足下列关系:
13≤V1-V2≤32。
通过将第三透镜组13的第一镜片、第二镜片和第三镜片的阿贝系数之差限定为上述关系,这样通过各镜片的配合,可有效降低第三透镜组13在沿光轴移动时产生的像 差,进而进一步提升变焦镜头在连续变焦过程中的成像清晰度。
可选地,第四透镜组14沿光轴自物侧至像侧,依序排布有第一镜片、第二镜片和第三镜片,第一镜片、第二镜片和第三镜片满足下列关系:
-19≤V1-V2≤54;
-42≤V1-V3≤55;
或者,第四透镜组14沿光轴自物侧至像侧,排布有一个镜片,镜片满足下列关系:
35≤V1≤95。
通过将第四透镜组14的第一镜片、第二镜片和第三镜片的阿贝系数之差限定为上述关系,这样通过各镜片的配合,可有效对第二透镜组12在运动过程中所产生的像面位移进行矫正,从而提升变焦镜头在连续变焦过程中的成像清晰度。
可选地,镜片可根据实际情况被加工为异形孔径镜片,通过将镜片加工为异形孔径镜片,如此使得变焦镜头10能够更为适应终端内的装配空间。异形孔径镜片的加工工艺可以是I-CUT或D-CUT等,异形孔径镜片沿其切边方向(切边方向是指镜片在切割时切刀行进的方向,其通常包括垂直切边方向或横向切边方向等)的高度满足下列关系:
4mm≤H≤6mm;
其中,H为异形孔径镜片沿其切边方向的高度。如此可实现增大镜片的通光量和合理减小镜片高度方向尺寸。
可选地,变焦镜头10还包括棱镜和/或反射镜(即也就是变焦镜头10还可以包括棱镜或是反射镜,亦可以是同时包括棱镜和反射镜),棱镜和/或反射镜设置于第一透镜组11朝向物侧的一侧,并用于将光线偏转至第一透镜组11。其中,棱镜可以为角锥棱镜。变焦镜头10可以单独设置棱镜或反射镜、亦可以同时设置棱镜和反射镜,通过设置棱镜和/或反射镜,这样即可实现对射至第一透镜组11的光线进行合理的反射分光。
可选地,变焦镜头10可从无穷远到距离变焦镜头10约40mm的物距范围内清晰成像。
以下结合图15~图56,并根据上文所提到的各个技术参数,提供14个具体实施例,以更加详细地描述本申请实施例的一些具体的而非限制性的例子。
实施例1
在本实施例中,依次选定第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14的焦距和变焦镜头10的长焦端的焦距的比值分别为0.572、0.182、0.28和0.41;
变焦镜头10由广角端转变为长焦端时,设定第一透镜组11和第三透镜13组固定,第二透镜组12向像侧移动,第四透镜组14先向物侧移动,再向像侧移动。
选定变焦镜头10的最大通光口径,也即为变焦镜头10内镜片的最大直径,为7.878mm。
使得第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14自物侧至像侧均沿光轴排布有三个镜片,且第一透镜组11、第二透镜组12、第三透镜13组和第 四透镜组14共包括有19个非球面,第一透镜组11朝向物侧的镜片为具有正曲折力的双凸透镜。
选定变焦镜头10的光学总长和变焦镜头10的长焦端的有效焦距之比为0.95,选定变焦镜头10的像高和变焦镜头10的长焦端的有效焦距之比为0.093;
选定变焦镜头10由广角端转变为长焦端时,第二透镜组12沿光轴的运动距离和变焦透镜的光学总长之比为0.1936,第四透镜组14沿光轴的运动距离和变焦透镜的光学总长之比为0.1329。
在采用上述参数后,变焦镜头10所能够达到的技术效果如下表1A~1D所示:
Figure PCTCN2021080554-appb-000001
表1A
表1A表示变焦镜头10在波长分别为650nm、610nm、555nm、510nm和470nm时,变焦镜头处于广角端、第一中间焦距、第二中间焦距和长焦端的基本光学参数。其中,W表示广角端,M1表示第一中间焦距状态,M2表示第二中间焦距状态,T表示长焦端,BFL表示(变焦镜头10)后焦长度,TTL表示(镜头)从镜筒头部至成像面的总长度,FOV表示视场角,F值表示变焦镜头10的焦距和其通光直径之比。从表1A中可知,在像高和TTL保持不变时,焦距值和F值均有所增大。
Figure PCTCN2021080554-appb-000002
Figure PCTCN2021080554-appb-000003
表1B
表1B表示变焦镜头10在广角端时,自物侧到像侧,各个镜片的曲率、厚度、折射率和阿贝系数,其中,R1~26表示各个镜片自物侧到像侧的各个面,R表示曲率,Thickness表示厚度,nd表示折射率,vd表示阿贝系数。在本申请中,上述参数符号的意义均相同,在下文中不再做赘述。
Figure PCTCN2021080554-appb-000004
Figure PCTCN2021080554-appb-000005
表1C
在表1C中,R1~R23表示出现非球面的镜面,K为二次曲面常数,A2、A3、A4、A5、A6和A7分别为非球面系数。由表1C可知,在实施例1中,变焦镜头10的第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括19个非球面。
而得到上述非球面系数后,可代入下式求解:
Figure PCTCN2021080554-appb-000006
其中,式(1)中,z表示非球面的矢高,r表示非球面的径向坐标,c为非球面顶点球曲率。
  W M1 M2 T
a3 0.662mm 2.360mm 3.070mm 5.599mm
a6 5.436mm 3.739mm 3.029mm 0.500mm
a9 0.995mm 0.434mm 0.424mm 3.814mm
a12 3.332mm 3.893mm 3.903mm 0.513mm
表1D
表1D表示第一透镜组11至第四透镜组14在变焦镜头10处于广角端、第一中间焦距状态、第二焦距状态和长焦端时,彼此之间的间距。
图15为变焦镜头10在广角端时的不同波长(555nm、510nm、610nm、470nm和650nm,后文中出现的不同波长均为上述5个波长值)下的轴向色差曲线,由图13中可知,实施例1中,采用上述技术参数的变焦镜头10的轴向色差能够控制在0.01mm~0.02mm这一较小的变化区间内。
图29为变焦镜头10在广角端时的不同波长下的横向色差曲线,由图29中可知,实施例1中,采用上述技术参数的变焦镜头10的横向色差能够控制在横向衍射极限范围内。
图43为变焦镜头10在广角端时的不同波长下的畸变曲线,畸变曲线表示成像变形与理想形状之间存在的偏差情况,由图中可知,实施例1中,采用上述技术参数的变焦镜头10能够将畸变率有效控制在4%以下。
实施例2
在本实施例中,依次选定第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14的焦距和变焦镜头10的长焦端的焦距的比值分别为0.57、0.18、0.32和0.40;
变焦镜头10由广角端转变为长焦端时,设定第一透镜组11和第三透镜13组固定,第二透镜组12向像侧移动,第四透镜组14先向物侧移动,再向像侧移动。
选定变焦镜头10的最大通光口径,也即为变焦镜头10内镜片的最大直径为7.8mm。
使得第一透镜组11、第二透镜组12和第三透镜13组自物侧至像侧均沿光轴排布有两个镜片,且使得第四透镜组14排布有一个镜片。第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括有14个非球面,第一透镜组11朝向物侧的镜片为具有正曲折力的双凸透镜。
选定变焦镜头10的光学总长和变焦镜头10的长焦端的有效焦距之比为0.95,选定变焦镜头10的像高和变焦镜头10的长焦端的有效焦距之比为0.093;
选定变焦镜头10由广角端转变为长焦端时,第二透镜组12沿光轴的运动距离和变焦透镜的光学总长之比为0.2036,第四透镜组14沿光轴的运动距离和变焦透镜的光学总长之比为0.1385。
在采用上述参数后,变焦镜头10所能够达到的技术效果如下表2A~2D所示:
Figure PCTCN2021080554-appb-000007
Figure PCTCN2021080554-appb-000008
表2A
表2A表示变焦镜头10在广角端、第一中间焦距、第二中间焦距和长焦端的基本光学参数。从表2A中可知,在像高和TTL保持不变时,焦距值和F值均有所增大,变焦镜头10表现出典型的自广角端变焦至长焦端实现焦距变化的特征。
Figure PCTCN2021080554-appb-000009
表2B
表2B表示变焦镜头10在广角端时,自物侧到像侧,各个镜片的曲率、厚度、折射率和阿贝系数,其中,R1~16表示各个镜片自物侧到像侧的各个面,R表示曲率,Thickness表示厚度,nd表示折射率,vd表示阿贝系数。
Figure PCTCN2021080554-appb-000010
Figure PCTCN2021080554-appb-000011
表2C
在表2C中,R1~R14表示出现非球面的镜面,K为二次曲面常数,A2、A3、A4、A5、A6和A7分别为非球面系数。由表2C可知,在实施例2中,变焦镜头10的第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括14个非球面。
表2D表示第一透镜组11至第四透镜组14在变焦镜头10处于广角端、第一中间焦距状态、第二焦距状态和长焦端时,彼此之间的间距。
图16为变焦镜头10在广角端时的不同波长下的轴向色差曲线,由图14中可知,实施例2中,采用上述技术参数的变焦镜头10的轴向色差总能够控制在0.015mm~0.025mm这一较小的变化区间内。
图30为变焦镜头10在广角端时的不同波长下的横向色差曲线,由图26中可知, 实施例2中,采用上述技术参数的变焦镜头10的不同波长的横向色差在广角端和长焦端时,650nm波长的光线和470nm波长的光线会超出横向衍射极限。
  W M1 M2 T
a2 1.303mm 2.925mm 3.622mm 6.495mm
a4 5.692mm 4.071mm 3.373mm 0.500mm
a6 2.083mm 1.550mm 1.506mm 5.038mm
a7 6.711mm 7.244mm 7.288mm 3.756mm
表2D
图44为变焦镜头10在广角端时的不同波长下的畸变曲线,畸变曲线表示成像变形与理想形状之间存在的偏差情况,由图44中可知,实施例2中,采用上述技术参数的变焦镜头10能够将畸变率有效控制在3.8%以下。
实施例3
在本实施例中,依次选定第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14的焦距和变焦镜头10的长焦端的焦距的比值分别为2.09、0.33、0.33和0.75;
变焦镜头10由广角端转变为长焦端时,设定第一透镜组11和第三透镜13组固定,第二透镜组12向像侧移动,第四透镜组14向物侧移动。
选定变焦镜头10的最大通光口径,也即为变焦镜头10内镜片的最大直径为8.654mm。
使得第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14自物侧至像侧均沿光轴排布有三个镜片。第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括有24个非球面,第一透镜组11朝向物侧的镜片为具有正曲折力的双凸透镜。
选定变焦镜头10的光学总长和变焦镜头10的长焦端的有效焦距之比为0.95,选定变焦镜头10的像高和变焦镜头10的长焦端的有效焦距之比为0.093;
选定变焦镜头10由广角端转变为长焦端时,第二透镜组12沿光轴的运动距离和变焦透镜的光学总长之比为0.1960,第四透镜组14沿光轴的运动距离和变焦透镜的光学总长之比为0.1789。
在采用上述参数后,变焦镜头10所能够达到的技术效果如下表3A~3D所示:
  W M1 M2 T
焦距(mm) 9.300 13.000 15.041 26.797
F值 2.786 2.872 2.908 3.625
像高IMH(mm) 2.500 2.500 2.500 2.500
半FOV(°) 15.143 10.992 9.474 5.277
BFL(mm) 0.860 1.954 2.516 5.423
TTL(mm) 25.500 25.500 25.500 25.500
设计波长 650nm,610nm,555nm,510nm,470nm
表3A
表3A表示变焦镜头10在广角端、第一中间焦距、第二中间焦距和长焦端的基本光学参数。从表3A中可知,在像高和TTL保持不变时,焦距值和F值均有所增大,变焦镜头10表现出典型的自广角端变焦至长焦端实现焦距变化的特征。
Figure PCTCN2021080554-appb-000012
表3B
表3B表示变焦镜头10在广角端时,自物侧到像侧,各个镜片的曲率、厚度、折 射率和阿贝系数,其中,R1~26表示各个镜片自物侧到像侧的各个面,R表示曲率,Thickness表示厚度,nd表示折射率,vd表示阿贝系数。
Figure PCTCN2021080554-appb-000013
Figure PCTCN2021080554-appb-000014
表3C
在表3C中,R1~R24表示出现非球面的镜面,K为二次曲面常数,A2、A3、A4、A5、A6和A7分别为非球面系数。由表2C可知,在实施例2中,变焦镜头10的第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括24个非球面。
  W M1 M2 T
a3 0.500mm 2.556mm 3.301mm 5.499mm
a6 5.499mm 3.444mm 2.698mm 0.500mm
a9 4.613mm 3.519mm 2.956mm 0.050mm
a12 0.050mm 1.144mm 1.706mm 4.613mm
表3D
表3D表示第一透镜组11至第四透镜组14在变焦镜头10处于广角端、第一中间焦距状态、第二焦距状态和长焦端时,彼此之间的间距。
图17为变焦镜头10在广角端时的不同波长下的轴向色差曲线,由图15中可知,实施例3中,采用上述技术参数的变焦镜头10的轴向色差能够控制在0.014mm~0.021mm这一较小的变化区间内。
图31为变焦镜头10在广角端时的不同波长下的横向色差曲线,由图27中可知,实施例3中,采用上述技术参数的变焦镜头10的不同波长的横向色差在广角端、第一中间焦距状态和第二中间焦距状态均能够控制在横向衍射极限范围附近。
图45为变焦镜头10在广角端时的不同波长下的畸变曲线,畸变曲线表示成像变 形与理想形状之间存在的偏差情况,由图45中可知,实施例3中,采用上述技术参数的变焦镜头10能够将畸变率有效控制在4%以下。
实施例4
在本实施例中,依次选定第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14的焦距和变焦镜头10的长焦端的焦距的比值分别为0.26、0.085、0.26和0.25;
变焦镜头10由广角端转变为长焦端时,设定第一透镜组11和第三透镜13组固定,第二透镜组12和第四透镜组14均向像侧移动。
选定变焦镜头10的最大通光口径,也即为变焦镜头10内镜片的最大直径为7.8mm。
使得第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14自物侧至像侧均沿光轴排布有三个镜片。第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括有24个非球面,第一透镜组11朝向物侧的镜片为具有正曲折力的双凸透镜。
选定变焦镜头10的光学总长和变焦镜头10的长焦端的有效焦距之比为0.95,选定变焦镜头10的像高和变焦镜头10的长焦端的有效焦距之比为0.093;
选定变焦镜头10由广角端转变为长焦端时,第二透镜组12沿光轴的运动距离和变焦透镜的光学总长之比为0.0516,第四透镜组14沿光轴的运动距离和变焦透镜的光学总长之比为0.2114。
在采用上述参数后,变焦镜头10所能够达到的技术效果如下表4A~4D所示:
Figure PCTCN2021080554-appb-000015
表4A
表4A表示变焦镜头10在广角端、第一中间焦距、第二中间焦距和长焦端的基本光学参数。从表4A中可知,在像高和TTL保持不变时,焦距值和F值均有所增大,变焦镜头10表现出典型的自广角端变焦至长焦端实现焦距变化的特征。
Figure PCTCN2021080554-appb-000016
Figure PCTCN2021080554-appb-000017
表4B
表4B表示变焦镜头10在广角端时,自物侧到像侧,各个镜片的曲率、厚度、折射率和阿贝系数,其中,R1~26表示各个镜片自物侧到像侧的各个面,R表示曲率,Thickness表示厚度,nd表示折射率,vd表示阿贝系数。
Figure PCTCN2021080554-appb-000018
Figure PCTCN2021080554-appb-000019
Figure PCTCN2021080554-appb-000020
表4C
在表4C中,R1~R24表示出现非球面的镜面,K为二次曲面常数,A2、A3、A4、A5、A6和A7分别为非球面系数。由表2C可知,在实施例2中,变焦镜头10的第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括24个非球面。
  W M1 M2 T
a3 0.709mm 1.375mm 1.599mm 2.024mm
a6 1.815mm 1.148mm 0.924mm 0.500mm
a9 0.050mm 0.967mm 1.658mm 4.990mm
a12 5.440mm 4.523mm 3.832mm 0.500mm
表4D
表4D表示第一透镜组11至第四透镜组14在变焦镜头10处于广角端、第一中间焦距状态、第二焦距状态和长焦端时,彼此之间的间距。
图18为变焦镜头10在广角端时的不同波长下的轴向色差曲线,由图18中可知,实施例3中,采用上述技术参数的变焦镜头10的轴向色差总能够控制在0.010mm~0.012mm这一小段变化区间内。
图32为变焦镜头10在广角端时的不同波长下的横向色差曲线,由图32中可知,实施例4中,采用上述技术参数的变焦镜头10的不同波长的横向色差在广角端和第一中间焦距状态时,均能够控制在横向衍射极限范围附近,而当变焦进入到第二中间焦距状态,乃至于长焦端时,存在有650nm波长的光线和470nm波长的光线超出横向衍射极限的现象发生。
图46为变焦镜头10在广角端时的不同波长下的畸变曲线,畸变曲线表示成像变形与理想形状之间存在的偏差情况,由图46中可知,实施例4中,采用上述技术参数的变焦镜头10能够将畸变率有效控制在1.9%以下,由此可见,采用上述技术参数的变焦镜头10能够实现对于畸变率的有效控制。
实施例5
在本实施例中,依次选定第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14的焦距和变焦镜头10的长焦端的焦距的比值分别为0.99、0.5、0.58和0.42;
变焦镜头10由广角端转变为长焦端时,设定第一透镜组11和第三透镜13组固定,第二透镜组12和第四透镜组14均向像侧移动。
选定变焦镜头10的最大通光口径,也即为变焦镜头10内镜片的最大直径为8.0mm。
使得第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14自物侧至像侧均沿光轴排布有三个镜片。第一透镜组11、第二透镜组12、第三透镜13组和第四 透镜组14共包括有24个非球面,第一透镜组11朝向物侧的镜片为具有正曲折力的双凸透镜。
选定变焦镜头10的光学总长和变焦镜头10的长焦端的有效焦距之比为1.275,选定变焦镜头10的像高和变焦镜头10的长焦端的有效焦距之比为0.125;
选定变焦镜头10由广角端转变为长焦端时,第二透镜组12沿光轴的运动距离和变焦透镜的光学总长之比为0.2029,第四透镜组14沿光轴的运动距离和变焦透镜的光学总长之比为0.1249。
在采用上述参数后,变焦镜头10所能够达到的技术效果如下表5A~5D所示:
Figure PCTCN2021080554-appb-000021
表5A
表5A表示变焦镜头10在广角端、第一中间焦距、第二中间焦距和长焦端的基本光学参数。从表5A中可知,在像高和TTL保持不变时,焦距值和F值均有所增大,变焦镜头10表现出典型的自广角端变焦至长焦端实现焦距变化的特征。
Figure PCTCN2021080554-appb-000022
Figure PCTCN2021080554-appb-000023
表5B
表5B表示变焦镜头10在广角端时,自物侧到像侧,各个镜片的曲率、厚度、折射率和阿贝系数,其中,R1~26表示各个镜片自物侧到像侧的各个面,R表示曲率,Thickness表示厚度,nd表示折射率,vd表示阿贝系数。
Figure PCTCN2021080554-appb-000024
Figure PCTCN2021080554-appb-000025
表5C
在表5C中,R1~R24表示出现非球面的镜面,K为二次曲面常数,A2、A3、A4、A5、A6和A7分别为非球面系数。由表5C可知,在实施例5中,变焦镜头10的第一 透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括24个非球面。
  W M1 M2 T
a3 0.289mm 3.115mm 4.144mm 5.464mm
a6 5.981mm 3.155mm 2.127mm 0.806mm
a9 1.412mm 2.185mm 2.816mm 4.598mm
a12 5.172mm 4.399mm 3.768mm 1.986mm
表5D
表5D表示第一透镜组11至第四透镜组14在变焦镜头10处于广角端、第一中间焦距状态、第二焦距状态和长焦端时,彼此之间的间距。
图19为变焦镜头10在广角端时的不同波长下的轴向色差曲线,由图19中可知,实施例5中,采用上述技术参数的变焦镜头10的轴向色差总能够控制在0.13mm~0.03mm这一较小的变化区间内。
图33为变焦镜头10在广角端时的不同波长下的横向色差曲线,由图33中可知,实施例5中,采用上述技术参数的变焦镜头10的不同波长的横向色差能够控制在横向衍射极限范围附近。
图47为变焦镜头10在广角端时的不同波长下的畸变曲线,畸变曲线表示成像变形与理想形状之间存在的偏差情况,由图47中可知,实施例5中,采用上述技术参数的变焦镜头10能够将畸变率有效控制在1.9%以下。
实施例6
在本实施例中,依次选定第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14的焦距和变焦镜头10的长焦端的焦距的比值分别为0.55、0.148、0.13和0.16;
变焦镜头10由广角端转变为长焦端时,设定第一透镜组11和第三透镜13组固定,第二透镜组12向像侧移动,第四透镜组14先向物侧移动,再向像侧移动。
选定变焦镜头10的最大通光口径,也即为变焦镜头10内镜片的最大直径为8.322mm。
使得第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14自物侧至像侧均沿光轴排布有三个镜片。第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括有24个非球面,第一透镜组11朝向物侧的镜片为具有正曲折力的双凸透镜。
选定变焦镜头10的光学总长和变焦镜头10的长焦端的有效焦距之比为0.95,选定变焦镜头10的像高和变焦镜头10的长焦端的有效焦距之比为0.094;
选定变焦镜头10由广角端转变为长焦端时,第二透镜组12沿光轴的运动距离和变焦透镜的光学总长之比为0.1814,第四透镜组14沿光轴的运动距离和变焦透镜的光学总长之比为0.065。
在采用上述参数后,变焦镜头10所能够达到的技术效果如下表6A~6D所示:
Figure PCTCN2021080554-appb-000026
Figure PCTCN2021080554-appb-000027
表6A
表6A表示变焦镜头10在广角端、第一中间焦距、第二中间焦距和长焦端的基本光学参数。从表6A中可知,在像高和TTL保持不变时,焦距值和F值均有所增大,变焦镜头10表现出典型的自广角端变焦至长焦端实现焦距变化的特征。
Figure PCTCN2021080554-appb-000028
Figure PCTCN2021080554-appb-000029
表6B
表6B表示变焦镜头10在广角端时,自物侧到像侧,各个镜片的曲率、厚度、折射率和阿贝系数,其中,R1~26表示各个镜片自物侧到像侧的各个面,R表示曲率,Thickness表示厚度,nd表示折射率,vd表示阿贝系数。
Figure PCTCN2021080554-appb-000030
Figure PCTCN2021080554-appb-000031
表6C
在表6C中,R1~R24表示出现非球面的镜面,K为二次曲面常数,A2、A3、A4、A5、A6和A7分别为非球面系数。由表6C可知,在实施例6中,变焦镜头10的第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括24个非球面。
  W M1 M2 T
a3 0.865mm 2.663mm 3.206mm 5.464mm
a6 5.117mm 3.319mm 2.776mm 0.518mm
a9 1.773mm 0.357mm 0.114mm 1.188mm
a12 0.376mm 1.792mm 2.035mm 0.960mm
表6D
表6D表示第一透镜组11至第四透镜组14在变焦镜头10处于广角端、第一中间焦距状态、第二焦距状态和长焦端时,彼此之间的间距。
图20为变焦镜头10在广角端时的不同波长下的轴向色差曲线,由图20中可知,实施例6中,采用上述技术参数的变焦镜头10的轴向色差总能够控制在0.03mm~0.06mm这一较小的变化区间内。
图34为变焦镜头10在广角端时的不同波长下的横向色差曲线,由图34中可知,实施例6中,采用上述技术参数的变焦镜头10的不同波长的横向色差的横向衍射极限在广角端乃至长焦端都较为狭窄,相应地,650nm波长的光线和470nm波长的光线在广角端乃至长焦端都存在超出横向衍射极限的现象发生。能够控制在横向衍射极限范围附近。
图48为变焦镜头10在广角端时的不同波长下的畸变曲线,畸变曲线表示成像变形与理想形状之间存在的偏差情况,由图48中可知,实施例6中,采用上述技术参数的变焦镜头10能够将畸变率有效控制在1.7%以下。
实施例7
在本实施例中,依次选定第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14的焦距和变焦镜头10的长焦端的焦距的比值分别为0.62、0.201、0.235和0.15;
变焦镜头10由广角端转变为长焦端时,设定第一透镜组11和第三透镜13组固定,第二透镜组12向像侧移动,第四透镜组14先向物侧移动,再向像侧移动。
选定变焦镜头10的最大通光口径,也即为变焦镜头10内镜片的最大直径为8.144mm。
使得第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14自物侧至像侧均沿光轴排布有三个镜片。第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括有24个非球面,第一透镜组11朝向物侧的镜片为具有正曲折力的双凸透镜。
选定变焦镜头10的光学总长和变焦镜头10的长焦端的有效焦距之比为0.95,选定变焦镜头10的像高和变焦镜头10的长焦端的有效焦距之比为0.093;选定变焦镜头10由广角端转变为长焦端时,第二透镜组12沿光轴的运动距离和变焦透镜的光学总长之比为0.1806,第四透镜组14沿光轴的运动距离和变焦透镜的光学总长之比为0.093。
在采用上述参数后,变焦镜头10所能够达到的技术效果如下表7A~7D所示:
Figure PCTCN2021080554-appb-000032
表7A
表7A表示变焦镜头10在广角端、第一中间焦距、第二中间焦距和长焦端的基本光学参数。从表7A中可知,在像高和TTL保持不变时,焦距值和F值均有所增大,变焦镜头10表现出典型的自广角端变焦至长焦端实现焦距变化的特征。
Figure PCTCN2021080554-appb-000033
表7B
表7B表示变焦镜头10在广角端时,自物侧到像侧,各个镜片的曲率、厚度、折射率和阿贝系数,其中,R1~26表示各个镜片自物侧到像侧的各个面,R表示曲率,Thickness表示厚度,nd表示折射率,vd表示阿贝系数。
Figure PCTCN2021080554-appb-000034
Figure PCTCN2021080554-appb-000035
Figure PCTCN2021080554-appb-000036
表7C
在表7C中,R1~R24表示出现非球面的镜面,K为二次曲面常数,A2、A3、A4、A5、A6和A7分别为非球面系数。由表7C可知,在实施例7中,变焦镜头10的第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括24个非球面。
  W M1 M2 T
a3 0.865mm 2.663mm 3.206mm 5.464mm
a6 5.117mm 3.319mm 2.776mm 0.518mm
a9 1.773mm 0.357mm 0.114mm 1.188mm
a12 0.376mm 1.792mm 2.035mm 0.960mm
表7D
表7D表示第一透镜组11至第四透镜组14在变焦镜头10处于广角端、第一中间焦距状态、第二焦距状态和长焦端时,彼此之间的间距。
图21为变焦镜头10在广角端时的不同波长下的轴向色差曲线,由图21中可知,实施例7中,采用上述技术参数的变焦镜头10的轴向色差能够控制在0.017mm~0.02mm这一较小的变化区间内。
图35为变焦镜头10在广角端时的不同波长下的横向色差曲线,由图35中可知,实施例7中,采用上述技术参数的变焦镜头10的不同波长的横向色差能够控制在横向衍射极限范围附近。
图49为变焦镜头10在广角端时的不同波长下的畸变曲线,畸变曲线表示成像变形与理想形状之间存在的偏差情况,由图49中可知,实施例7中,采用上述技术参数的变焦镜头10能够将畸变率有效控制在1.8%以下。
实施例8
在本实施例中,依次选定第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14的焦距和变焦镜头10的长焦端的焦距的比值分别为0.66、0.18、0.24和72.57;
变焦镜头10由广角端转变为长焦端时,设定第一透镜组11和第三透镜13组固定,第二透镜组12向像侧移动,第四透镜组14先向物侧移动,再向像侧移动。
选定变焦镜头10的最大通光口径,也即为变焦镜头10内镜片的最大直径为8.032mm。
使得第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14自物侧至像侧均沿光轴排布有三个镜片。第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括有24个非球面,第一透镜组11朝向物侧的镜片为具有正曲折力的双凸透镜。
选定变焦镜头10的光学总长和变焦镜头10的长焦端的有效焦距之比为0.95,选定变焦镜头10的像高和变焦镜头10的长焦端的有效焦距之比为0.093;
选定变焦镜头10由广角端转变为长焦端时,第二透镜组12沿光轴的运动距离和变焦透镜的光学总长之比为0.1934,第四透镜组14沿光轴的运动距离和变焦透镜的光学总长之比为0.1824。
在采用上述参数后,变焦镜头10所能够达到的技术效果如下表8A~8D所示:
Figure PCTCN2021080554-appb-000037
表8A
表8A表示变焦镜头10在广角端、第一中间焦距、第二中间焦距和长焦端的基本光学参数。从表8A中可知,在像高和TTL保持不变时,焦距值和F值均有所增大,变焦镜头10表现出典型的自广角端变焦至长焦端实现焦距变化的特征。
Figure PCTCN2021080554-appb-000038
Figure PCTCN2021080554-appb-000039
表8B
表8B表示变焦镜头10在广角端时,自物侧到像侧,各个镜片的曲率、厚度、折射率和阿贝系数,其中,R1~26表示各个镜片自物侧到像侧的各个面,R表示曲率,Thickness表示厚度,nd表示折射率,vd表示阿贝系数。
Figure PCTCN2021080554-appb-000040
Figure PCTCN2021080554-appb-000041
Figure PCTCN2021080554-appb-000042
表8C
在表8C中,R1~R24表示出现非球面的镜面,K为二次曲面常数,A2、A3、A4、A5、A6和A7分别为非球面系数。由表8C可知,在实施例8中,变焦镜头10的第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括24个非球面。
  W M1 M2 T
a3 0.631mm 2.056mm 2.659mm 5.562mm
a6 5.431mm 4.007mm 3.403mm 0.500mm
a9 4.702mm 1.393mm 0.050mm 0.723mm
a12 0.518mm 3.828mm 5.170mm 4.497mm
表8D
表8D表示第一透镜组11至第四透镜组14在变焦镜头10处于广角端、第一中间焦距状态、第二焦距状态和长焦端时,彼此之间的间距。
图22为变焦镜头10在广角端时的不同波长下的轴向色差曲线,由图22中可知,实施例8中,采用上述技术参数的变焦镜头10的轴向色差能够控制在0.016mm~0.04mm这一较小的变化区间内。
图36为变焦镜头10在广角端时的不同波长下的横向色差曲线,由图36中可知,实施例8中,采用上述技术参数的变焦镜头10的不同波长的横向色差能够控制在横向衍射极限范围附近。
图50为变焦镜头10在广角端时的不同波长下的畸变曲线,畸变曲线表示成像变形与理想形状之间存在的偏差情况,由图50中可知,实施例8中,采用上述技术参数的变焦镜头10能够将畸变率有效控制在4.1%以下。
实施例9
在本实施例中,依次选定第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14的焦距和变焦镜头10的长焦端的焦距的比值分别为0.83、0.24、4.104和0.188;
变焦镜头10由广角端转变为长焦端时,设定第一透镜组11和第三透镜13组固定,第二透镜组12向像侧移动,第四透镜组14向物侧移动。
选定变焦镜头10的最大通光口径,也即为变焦镜头10内镜片的最大直径为8.78mm。
使得第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14自物侧至像侧均沿光轴排布有三个镜片。第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括有24个非球面,第一透镜组11朝向物侧的镜片为具有正曲折力的双凸透镜。
选定变焦镜头10的光学总长和变焦镜头10的长焦端的有效焦距之比为0.95,选 定变焦镜头10的像高和变焦镜头10的长焦端的有效焦距之比为0.093;
选定变焦镜头10由广角端转变为长焦端时,第二透镜组12沿光轴的运动距离和变焦透镜的光学总长之比为0.1786,第四透镜组14沿光轴的运动距离和变焦透镜的光学总长之比为0.0698。
在采用上述参数后,变焦镜头10所能够达到的技术效果如下表9A~9D所示:
Figure PCTCN2021080554-appb-000043
表9A
表9A表示变焦镜头10在广角端、第一中间焦距、第二中间焦距和长焦端的基本光学参数。从表9A中可知,在像高和TTL保持不变时,焦距值和F值均有所增大,变焦镜头10表现出典型的自广角端变焦至长焦端实现焦距变化的特征。
Figure PCTCN2021080554-appb-000044
Figure PCTCN2021080554-appb-000045
表9B
表9B表示变焦镜头10在广角端时,自物侧到像侧,各个镜片的曲率、厚度、折射率和阿贝系数,R1~26表示各个镜片自物侧到像侧的各面。
Figure PCTCN2021080554-appb-000046
Figure PCTCN2021080554-appb-000047
表9C
在表9C中,R1~R24表示出现非球面的镜面,K为二次曲面常数,A2、A3、A4、A5、A6和A7分别为非球面系数。由表9C可知,在实施例9中,变焦镜头10的第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括24个非球面。
  W M1 M2 T
a3 0.500mm 1.815mm 2.263mm 5.055mm
a6 5.055mm 3.740mm 3.292mm 0.500mm
a9 1.831mm 1.121mm 0.740mm 0.050mm
a12 0.869mm 1.580mm 1.961mm 2.650mm
表9D
表9D表示第一透镜组11至第四透镜组14在变焦镜头10处于广角端、第一中间焦距状态、第二焦距状态和长焦端时,彼此之间的间距。
图23为变焦镜头10在广角端时的不同波长下的轴向色差曲线,由图23中可知,实施例9中,采用上述技术参数的变焦镜头10的轴向色差能够控制在0.016mm~0.03mm这一较小的变化区间内。
图37为变焦镜头10在广角端、第一中间焦距状态、第二焦距状态和长焦端时的不同波长下的横向色差曲线,由图37中可知,实施例9中,采用上述技术参数的变焦镜头10的不同波长的横向色差能够控制在横向衍射极限范围附近。
图51为变焦镜头10在广角端时的不同波长下的畸变曲线,畸变曲线表示成像变形与理想形状之间存在的偏差情况,由图51知,实施例9中,采用上述技术参数的变焦镜头10能够将畸变率有效控制在0.9%以下,显著降低了变焦镜头10的畸变率。
实施例10
在本实施例中,依次选定第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14的焦距和变焦镜头10的长焦端的焦距的比值分别为0.32、0.06、0.19和0.42;
变焦镜头10由广角端转变为长焦端时,设定第一透镜组11和第三透镜13组固定,第二透镜组12向像侧移动,第四透镜组14向物侧移动。
选定变焦镜头10的最大通光口径,也即为变焦镜头10内镜片的最大直径为9.458mm。
使得第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14自物侧至像侧均沿光轴排布有三个镜片。第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括有24个非球面,第一透镜组11朝向物侧的镜片为具有正曲折力的双凸透镜。
选定变焦镜头10的光学总长和变焦镜头10的长焦端的有效焦距之比为0.95,选定变焦镜头10的像高和变焦镜头10的长焦端的有效焦距之比为0.093;
选定变焦镜头10由广角端转变为长焦端时,第二透镜组12沿光轴的运动距离和变焦透镜的光学总长之比为0.0676,第四透镜组14沿光轴的运动距离和变焦透镜的光学总长之比为0.0857。
在采用上述参数后,变焦镜头10所能够达到的技术效果如下表10A~10D所示:
Figure PCTCN2021080554-appb-000048
Figure PCTCN2021080554-appb-000049
表10A
表10A表示变焦镜头10在广角端、第一中间焦距、第二中间焦距和长焦端的基本光学参数。从表10A中可知,在像高和TTL保持不变时,焦距值和F值均有所增大,变焦镜头10表现出典型的自广角端变焦至长焦端实现焦距变化的特征。
Figure PCTCN2021080554-appb-000050
表10B
表10B表示变焦镜头10在广角端时,自物侧到像侧,各个镜片的曲率、厚度、折射率和阿贝系数,其中,R1~26表示各个镜片自物侧到像侧的各个面,R表示曲率,Thickness表示厚度,nd表示折射率,vd表示阿贝系数。
Figure PCTCN2021080554-appb-000051
Figure PCTCN2021080554-appb-000052
表10C
在表10C中,R1~R24表示出现非球面的镜面,K为二次曲面常数,A2、A3、A4、A5、A6和A7分别为非球面系数。由表10C可知,在实施例10中,变焦镜头10的第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括24个非球面。
  W M1 M2 T
a3 0.500mm 1.069mm 1.288mm 2.225mm
a6 2.225mm 1.656mm 1.437mm 0.500mm
a9 2.236mm 0.621mm 0.056mm 0.050mm
a12 0.050mm 1.665mm 2.230mm 2.236mm
表10D
表10D表示第一透镜组11至第四透镜组14在变焦镜头10处于广角端、第一中间焦距状态、第二焦距状态和长焦端时,彼此之间的间距。
图24为变焦镜头10在广角端时的不同波长下的轴向色差曲线,由图24中可知,实施例10中,采用上述技术参数的变焦镜头10的轴向色差能够控制在0.016mm~0.03mm这一较小的变化区间内。
图38为变焦镜头10在广角端时的不同波长下的横向色差曲线,由图38中可知,实施例10中,采用上述技术参数的变焦镜头10的不同波长的横向色差能够控制在横 向衍射极限范围附近。
图52为变焦镜头10在广角端时的不同波长下的畸变曲线,畸变曲线表示成像变形与理想形状之间存在的偏差情况,由图52中可知,实施例10中,采用上述技术参数的变焦镜头10能够将畸变率有效控制在1.6%以下。
实施例11
在本实施例中,依次选定第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14的焦距和变焦镜头10的长焦端的焦距的比值分别为0.79、0.26、0.29和1.79;
变焦镜头10由广角端转变为长焦端时,设定第一透镜组11和第三透镜13组固定,第二透镜组12向像侧移动,第四透镜组14先向像侧移动,后向物侧移动。
选定变焦镜头10的最大通光口径,也即为变焦镜头10内镜片的最大直径为7.9mm。
使得第一透镜组11和第二透镜组12沿光轴排布有两个镜片,第三透镜13组沿光轴排布有三个镜片,第四透镜组14沿光轴排布有一个镜片。第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括有14个非球面,第一透镜组11朝向物侧的镜片为具有正曲折力的双凸透镜。
选定变焦镜头10的光学总长和变焦镜头10的长焦端的有效焦距之比为1.05,选定变焦镜头10的像高和变焦镜头10的长焦端的有效焦距之比为0.12;
选定变焦镜头10由广角端转变为长焦端时,第二透镜组12沿光轴的运动距离和变焦透镜的光学总长之比为0.2123,第四透镜组14沿光轴的运动距离和变焦透镜的光学总长之比为0.1758。
第七,第三透镜13组和变焦镜头10的光阑的间距为0.12mm。
在采用上述参数后,变焦镜头10所能够达到的技术效果如下表11A~11D所示:
Figure PCTCN2021080554-appb-000053
表11A
表11A表示变焦镜头10在广角端、第一中间焦距、第二中间焦距和长焦端的基本光学参数。从表11A中可知,在像高和TTL保持不变时,焦距值和F值均有所增大,变焦镜头10表现出典型的自广角端变焦至长焦端实现焦距变化的特征。
Figure PCTCN2021080554-appb-000054
Figure PCTCN2021080554-appb-000055
表11B
表11B表示变焦镜头10在广角端时,自物侧到像侧,各个镜片的曲率、厚度、折射率和阿贝系数,其中,R1~18表示各个镜片自物侧到像侧的各个面,R表示曲率,Thickness表示厚度,nd表示折射率,vd表示阿贝系数。需要说明的是,在该实施例中,光阑设置于第三透镜镜朝向物侧的镜面附近,且距离第三透镜镜朝向物侧的镜面为0.12mm。
Figure PCTCN2021080554-appb-000056
Figure PCTCN2021080554-appb-000057
表11C
在表11C中,R1~R16表示出现非球面的镜面,K为二次曲面常数,A2、A3、A4、A5、A6和A7分别为非球面系数。由表11C可知,在实施例11中,变焦镜头10的第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括24个非球面。
  W M1 M2 T
a3 0.500mm 3.112mm 4.258mm 5.383mm
a6 5.383mm 2.770mm 1.624mm 0.500mm
a9 2.262mm 4.744mm 3.521mm 0.700mm
a12 3.722mm 1.241mm 2.463mm 5.285mm
表11D
表11D表示第一透镜组11至第四透镜组14在变焦镜头10处于广角端、第一中间焦距状态、第二焦距状态和长焦端时,彼此之间的间距。
图25为变焦镜头10在广角端时的不同波长下的轴向色差曲线,由图25中可知,实施例11中,采用上述技术参数的变焦镜头10的轴向色差能够控制在0.016mm~0.03mm这一较小的变化区间内。
图39为变焦镜头10在广角端时的不同波长下的横向色差曲线,由图39中可知,实施例11中,采用上述技术参数的变焦镜头10的不同波长的横向色差能够控制在横向衍射极限范围附近。
图53为变焦镜头10在广角端时的不同波长下的畸变曲线,畸变曲线表示成像变形与理想形状之间存在的偏差情况,由图53中可知,实施例11中,采用上述技术参数的变焦镜头10能够将畸变率有效控制在1.8%以下。
实施例12
在本实施例中,依次选定第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14的焦距和变焦镜头10的长焦端的焦距的比值分别为0.55、0.18、0.32和0.45;
变焦镜头10由广角端转变为长焦端时,设定第一透镜组11和第三透镜13组固定,第二透镜组12向像侧移动,第四透镜组14先向物侧移动,后向像侧移动。
选定变焦镜头10的最大通光口径,也即为变焦镜头10内镜片的最大直径为8.032mm。
使得第一透镜组11、第二透镜组12和第三透镜13组均沿光轴排布有三个镜片,第四透镜组14沿光轴排布有一个镜片。第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括有16个非球面,第一透镜组11朝向物侧的镜片为具有正曲折力的双凸透镜。
选定变焦镜头10的光学总长和变焦镜头10的长焦端的有效焦距之比为0.95,选定变焦镜头10的像高和变焦镜头10的长焦端的有效焦距之比为0.095;
选定变焦镜头10由广角端转变为长焦端时,第二透镜组12沿光轴的运动距离和变焦透镜的光学总长之比为0.1845,第四透镜组14沿光轴的运动距离和变焦透镜的光学总长之比为0.1812。
在采用上述参数后,变焦镜头10所能够达到的技术效果如下表12A~12D所示:
Figure PCTCN2021080554-appb-000058
表12A
表12A表示变焦镜头10在广角端、第一中间焦距、第二中间焦距和长焦端的基本光学参数。从表11A中可知,在像高和TTL保持不变时,焦距值和F值均有所增大,变焦镜头10表现出典型的自广角端变焦至长焦端实现焦距变化的特征。
Figure PCTCN2021080554-appb-000059
Figure PCTCN2021080554-appb-000060
表12B
表12B表示变焦镜头10在广角端时,自物侧到像侧,各个镜片的曲率、厚度、折射率和阿贝系数,其中,R1~22表示各个镜片自物侧到像侧的各个面,R表示曲率,Thickness表示厚度,nd表示折射率,vd表示阿贝系数。
Figure PCTCN2021080554-appb-000061
Figure PCTCN2021080554-appb-000062
表12C
在表12C中,R1~R20表示出现非球面的镜面,K为二次曲面常数,A2、A3、A4、A5、A6和A7分别为非球面系数。由表11C可知,在实施例11中,变焦镜头10的第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括16个非球面。
  W M1 M2 T
a3 0.669mm 2.344mm 3.058mm 5.374mm
a6 5.205mm 3.529mm 2.815mm 0.500mm
a9 0.347mm 0.148mm 0.347mm 4.768mm
a12 6.450mm 6.650mm 6.450mm 2.030mm
表12D
表12D表示第一透镜组11至第四透镜组14在变焦镜头10处于广角端、第一中间焦距状态、第二焦距状态和长焦端时,彼此之间的间距。
图26为变焦镜头10在广角端时的不同波长下的轴向色差曲线,由图26中可知,实施例12中,采用上述技术参数的变焦镜头10的轴向色差能够控制在0.017mm~0.04mm这一较小的变化区间内。
图40为变焦镜头10在广角端时的不同波长下的横向色差曲线,由图40中可知,实施例12中,采用上述技术参数的变焦镜头10的不同波长的横向色差能够控制在横向衍射极限范围附近。
图54为变焦镜头10在广角端时的不同波长下的畸变曲线,畸变曲线表示成像变形与理想形状之间存在的偏差情况,由图54中可知,实施例12中,采用上述技术参数的变焦镜头10能够将畸变率有效控制在1.8%以下。
实施例13
在本实施例中,依次选定第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14的焦距和变焦镜头10的长焦端的焦距的比值分别为18.471、6.07、7.38和59.53;
变焦镜头10由广角端转变为长焦端时,设定第一透镜组11和第三透镜13组固定,第二透镜组12向像侧移动,第四透镜组14先向像侧移动,再向物侧移动。
选定变焦镜头10的最大通光口径,也即为变焦镜头10内镜片的最大直径为8mm。
使得第一透镜组11和第三透镜13组自物侧至像侧均沿光轴排布有两个镜片,且使得第二透镜组12排布有三个镜片,第四透镜组14排布有一个镜片。第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括有14个非球面,第一透镜组11朝向物侧的镜片为具有正曲折力的双凸透镜。
选定变焦镜头10的光学总长和变焦镜头10的长焦端的有效焦距之比为1.182,选定变焦镜头10的像高和变焦镜头10的长焦端的有效焦距之比为0.186;
选定变焦镜头10由广角端转变为长焦端时,第二透镜组12沿光轴的运动距离和变焦透镜的光学总长之比为0.1687,第四透镜组14沿光轴的运动距离和变焦透镜的光学总长之比为0.1971。
在采用上述参数后,变焦镜头10所能够达到的技术效果如下表13A~13D所示:
Figure PCTCN2021080554-appb-000063
表13A
表13A表示变焦镜头10在广角端、第一中间焦距、第二中间焦距和长焦端的基本光学参数。从表13A中可知,在像高和TTL保持不变时,焦距值和F值均有所增大, 变焦镜头10表现出典型的自广角端变焦至长焦端实现焦距变化的特征。
Figure PCTCN2021080554-appb-000064
表13B
表13B表示变焦镜头10在广角端时,自物侧到像侧,各个镜片的曲率、厚度、折射率和阿贝系数,其中,R1~16表示各个镜片自物侧到像侧的各个面。
Figure PCTCN2021080554-appb-000065
Figure PCTCN2021080554-appb-000066
表13C
在表13C中,R1~R16表示出现非球面的镜面,K为二次曲面常数,A2、A3、A4、A5、A6和A7分别为非球面系数。由表13C可知,在实施例13中,变焦镜头10的第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括14个非球面。
  W M1 M2 T
a2 0.516mm 2.214mm 3.888mm 4.903mm
a5 5.127mm 3.430mm 1.756mm 0.741mm
a7 0.688mm 4.016mm 5.812mm 2.575mm
a8 9.269mm 5.941mm 4.145mm 7.383mm
表13D
表13D表示第一透镜组11至第四透镜组14在变焦镜头10处于广角端、第一中间焦距状态、第二焦距状态和长焦端时,彼此之间的间距。
图27为变焦镜头10在广角端时的不同波长下的轴向色差曲线,由图27中可知,实施例13中,采用上述技术参数的变焦镜头10的轴向色差总能够控制在0.015mm~0.025mm这一较小的变化区间内。
图41为变焦镜头10在广角端时的不同波长下的横向色差曲线,由图41中可知,实施例13中,采用上述技术参数的变焦镜头10的不同波长的横向色差在广角端和长 焦端时,650nm波长的光线和470nm波长的光线会超出横向衍射极限。
图55为变焦镜头10在广角端时的不同波长下的畸变曲线,畸变曲线表示成像变形与理想形状之间存在的偏差情况,由图55中可知,实施例13中,采用上述技术参数的变焦镜头10能够将畸变率有效控制在3.8%以下。
实施例14
在本实施例中,依次选定第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14的焦距和变焦镜头10的长焦端的焦距的比值分别为19.17、6.30、9.26和14.16;
变焦镜头10由广角端转变为长焦端时,设定第一透镜组11和第三透镜13组固定,第二透镜组12向像侧移动,第四透镜组14先向像侧移动,再向物侧移动。
选定变焦镜头10的最大通光口径,也即为变焦镜头10内镜片的最大直径为8.4mm。
使得第一透镜组11、第二透镜组12和第四透镜组14自物侧至像侧均沿光轴排布有两个镜片,且使得第三透镜组13排布有三个镜片。第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括有16个非球面,第一透镜组11朝向物侧的镜片为具有正曲折力的双凸透镜。
选定变焦镜头10的光学总长和变焦镜头10的长焦端的有效焦距之比为1.21,选定变焦镜头10的像高和变焦镜头10的长焦端的有效焦距之比为0.16;
选定变焦镜头10由广角端转变为长焦端时,第二透镜组12沿光轴的运动距离和变焦透镜的光学总长之比为0.1645,第四透镜组14沿光轴的运动距离和变焦透镜的光学总长之比为0.0477。
在采用上述参数后,变焦镜头10所能够达到的技术效果如下表14A~14D所示:
Figure PCTCN2021080554-appb-000067
表14A
表14A表示变焦镜头10在广角端、第一中间焦距、第二中间焦距和长焦端的基本光学参数。从表14A中可知,在像高和TTL保持不变时,焦距值和F值均有所增大,变焦镜头10表现出典型的自广角端变焦至长焦端实现焦距变化的特征。
Figure PCTCN2021080554-appb-000068
Figure PCTCN2021080554-appb-000069
表14B
表14B表示变焦镜头10在广角端时,自物侧到像侧,各个镜片的曲率、厚度、折射率和阿贝系数,其中,R1~16表示各个镜片自物侧到像侧的各个面,R表示曲率,Thickness表示厚度,nd表示折射率,vd表示阿贝系数。
Figure PCTCN2021080554-appb-000070
Figure PCTCN2021080554-appb-000071
表14C
在表14C中,R1~R18表示出现非球面的镜面,K为二次曲面常数,A2、A3、A4、A5、A6和A7分别为非球面系数。由表14C可知,在实施例14中,变焦镜头10的第一透镜组11、第二透镜组12、第三透镜13组和第四透镜组14共包括16个非球面。
  W M1 M2 T
a2 1.293mm 2.855mm 4.401mm 5.677mm
a4 4.884mm 3.322mm 1.775mm 0.500mm
a6 1.851mm 1.031mm 0.514mm 0.579mm
a7 5.657mm 6.477mm 6.994mm 6.929mm
表14D
表14D表示第一透镜组11至第四透镜组14在变焦镜头10处于广角端、第一中间焦距状态、第二焦距状态和长焦端时,彼此之间的间距。
图28为变焦镜头10在广角端时的不同波长下的轴向色差曲线,由图28中可知,实施例2中,采用上述技术参数的变焦镜头10的轴向色差总能够控制在0.015mm~0.025mm这一较小的变化区间内。
图42为变焦镜头10在广角端时的不同波长下的横向色差曲线,由图42中可知,实施例2中,采用上述技术参数的变焦镜头10的不同波长的横向色差在广角端和长焦端时,650nm波长的光线和470nm波长的光线会超出横向衍射极限。
图56为变焦镜头10在广角端时的不同波长下的畸变曲线,畸变曲线表示成像变形与理想形状之间存在的偏差情况,由图56中可知,实施例2中,采用上述技术参数的变焦镜头10能够将畸变率有效控制在3.8%以下。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种变焦镜头,其特征在于:包括沿光轴从物侧至像侧依序排布的第一透镜组、第二透镜组、第三透镜组和第四透镜组;
    所述第一透镜组和所述第三透镜组固定设置;
    所述第二透镜组作为调焦组沿所述光轴移动,所述第四透镜组作为补偿组随同所述第二透镜组沿所述光轴移动;
    或者,所述第四透镜组作为调焦组沿所述光轴移动,所述第二透镜组作为补偿组随同所述第四透镜组沿所述光轴移动;
    所述第一透镜组从物侧起的第一片镜片为双凸透镜,所述第一透镜组从物侧起至少两片镜片为玻璃镜片;
    所述变焦镜头的最大通光口径满足下列关系:
    4mm≤φ≤12mm;
    其中,φ为所述变焦镜头的最大通光口径。
  2. 根据权利要求1所述的变焦镜头,其特征在于:所述变焦镜头满足下列关系式:
    0.8≤TTL/ft≤1.5;
    其中,TTL为所述变焦镜头的光学总长,ft为所述变焦镜头的长焦端的有效焦距。
  3. 根据权利要求1所述的变焦镜头,其特征在于:所述变焦镜头满足下列关系式:
    0.02≤IMH/ft≤0.2;
    其中,IMH为所述变焦镜头的镜片的成像边缘到成像面中心的高度距离,ft为所述变焦镜头的长焦端的有效焦距。
  4. 根据权利要求1所述的变焦镜头,其特征在于:所述第一透镜组、所述第三透镜组和所述第四透镜组均具备正光焦度,所述第二透镜组具备负光焦度。
  5. 根据权利要求1所述的变焦镜头,其特征在于:所述第一透镜组和所述第三透镜组均具备正光焦度,所述第二透镜组和所述第四透镜组均具备负光焦度。
  6. 根据权利要求4或5任一项所述的变焦镜头,其特征在于:所述第一透镜组满足下列关系式:
    0.2≤f 1/ft≤2.3;
    其中,f 1为所述第一透镜组的焦距,ft为所述变焦镜头的长焦端的有效焦距。
  7. 根据权利要求4或5任一项所述的变焦镜头,其特征在于:所述第二透镜组满足下列关系式:
    0.02≤f 2/ft≤0.6;
    其中,f 2为所述第二透镜组的焦距,ft为所述变焦镜头的长焦端的有效焦距。
  8. 根据权利要求4或5任一项所述的变焦镜头,其特征在于:所述第三透镜组满足下列关系式:
    0.1≤f 3/ft≤4.5;
    其中,f 3为所述第三透镜组的焦距,ft为所述变焦镜头的长焦端的有效焦距。
  9. 根据权利要求4或5任一项所述的变焦镜头,其特征在于:所述第四透镜组满足下列关系式:
    0.12≤f 4/ft≤200;
    其中,f 4为所述第四透镜组的焦距,ft为所述变焦镜头的长焦端的有效焦距。
  10. 根据权利要求4或5任一项所述的变焦镜头,其特征在于:所述变焦镜头的长焦端的有效焦距ft和所述变焦镜头的广角端的有效焦距fw之比满足下列关系:
    1≤ft/fw≤3.7。
  11. 根据权利要求4或5任一项所述的变焦镜头,其特征在于:所述第二透镜组沿光轴的运动距离D1和所述变焦透镜的光学总长TTL之比满足下列关系:
    0.02≤D1/TTL≤0.3;
    所述第四透镜组沿光轴的运动距离D2和所述变焦透镜的光学总长TTL之比满足下列关系:
    0.02≤D2/TTL≤0.35。
  12. 根据权利要求4或5任一项所述的变焦镜头,其特征在于:所述第一透镜组、所述第二透镜组、所述第三透镜组和所述第四透镜组所包括的镜片的总数量N满足下列关系:
    7≤N≤12。
  13. 根据权利要求12所述的变焦镜头,其特征在于:所述第一透镜组、所述第二透镜组、所述第三透镜组和所述第四透镜组所包括的镜片的非球面的总数量S满足下列关系:
    N≤S≤2N。
  14. 根据权利要求1~5任一项所述的变焦镜头,其特征在于:所述镜片为异形孔径镜片。
  15. 根据权利要求14所述的变焦镜头,其特征在于:所述异形孔径镜片沿其切边 方向的高度H满足下列关系:
    4mm≤H≤6mm。
  16. 根据权利要求1~5任一项所述的变焦镜头,其特征在于:所述变焦镜头还包括棱镜和/或反射镜,所述棱镜和/或所述反射镜设置于所述第一透镜组朝向物侧的一侧,并用于将光线偏转至所述第一透镜组。
  17. 一种摄像模组,其特征在于:包括有权利要求1~16任一项所述的变焦镜头。
  18. 一种终端设备,其特征在于:包括有权利要求17所述的摄像模组。
PCT/CN2021/080554 2020-03-20 2021-03-12 变焦镜头、摄像模组及终端设备 WO2021185181A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022556605A JP2023517388A (ja) 2020-03-20 2021-03-12 ズームレンズ、カメラモジュール、及び端末デバイス
KR1020227036133A KR20220146685A (ko) 2020-03-20 2021-03-12 줌 렌즈, 카메라 모듈 및 단말 장치
EP21772221.4A EP4113186A4 (en) 2020-03-20 2021-03-12 VARIABLE FOCAL LENS, CAMERA MODULE AND TERMINAL EQUIPMENT
US17/948,335 US20230023354A1 (en) 2020-03-20 2022-09-20 Zoom Lens, Camera Module, and Terminal Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020369892.3U CN212111958U (zh) 2020-03-20 2020-03-20 变焦镜头、摄像模组及终端设备
CN202020369892.3 2020-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/948,335 Continuation US20230023354A1 (en) 2020-03-20 2022-09-20 Zoom Lens, Camera Module, and Terminal Device

Publications (1)

Publication Number Publication Date
WO2021185181A1 true WO2021185181A1 (zh) 2021-09-23

Family

ID=73638724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080554 WO2021185181A1 (zh) 2020-03-20 2021-03-12 变焦镜头、摄像模组及终端设备

Country Status (6)

Country Link
US (1) US20230023354A1 (zh)
EP (1) EP4113186A4 (zh)
JP (1) JP2023517388A (zh)
KR (1) KR20220146685A (zh)
CN (1) CN212111958U (zh)
WO (1) WO2021185181A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644651B2 (en) 2020-07-31 2023-05-09 Largan Precision Co., Ltd. Image capturing lens system, image capturing unit and electronic device including eight lenses of +−+−++−+, +−+−+−+ or +−−+−−+− refractive powers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212111958U (zh) * 2020-03-20 2020-12-08 华为技术有限公司 变焦镜头、摄像模组及终端设备
TWI770808B (zh) * 2021-02-05 2022-07-11 大陸商信泰光學(深圳)有限公司 鏡頭模組(四)
CN112995474A (zh) * 2021-02-09 2021-06-18 维沃移动通信有限公司 摄像模组及电子设备
CN115561881A (zh) * 2022-08-29 2023-01-03 华为技术有限公司 摄像头模组和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070229985A1 (en) * 2006-03-28 2007-10-04 Konica Minolta Opto, Inc. Image pickup optical system and image pickup apparatus
CN102789044A (zh) * 2012-08-08 2012-11-21 中国科学院长春光学精密机械与物理研究所 一种非球面变焦距光刻物镜系统
CN102998779A (zh) * 2012-08-08 2013-03-27 中国科学院长春光学精密机械与物理研究所 一种变焦距光刻物镜系统
CN107193117A (zh) * 2017-07-12 2017-09-22 福建福光股份有限公司 紧凑型高分辨率变焦镜头
CN110673315A (zh) * 2019-10-15 2020-01-10 浙江大华技术股份有限公司 一种镜头
CN110749987A (zh) * 2019-10-23 2020-02-04 浙江大华技术股份有限公司 一种镜头
CN212111958U (zh) * 2020-03-20 2020-12-08 华为技术有限公司 变焦镜头、摄像模组及终端设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617884B2 (ja) * 2012-09-11 2014-11-05 リコーイメージング株式会社 ズームレンズ系及びこれを備えた電子撮像装置
CN110764237B (zh) * 2019-11-27 2021-12-14 浙江大华技术股份有限公司 一种镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070229985A1 (en) * 2006-03-28 2007-10-04 Konica Minolta Opto, Inc. Image pickup optical system and image pickup apparatus
CN102789044A (zh) * 2012-08-08 2012-11-21 中国科学院长春光学精密机械与物理研究所 一种非球面变焦距光刻物镜系统
CN102998779A (zh) * 2012-08-08 2013-03-27 中国科学院长春光学精密机械与物理研究所 一种变焦距光刻物镜系统
CN107193117A (zh) * 2017-07-12 2017-09-22 福建福光股份有限公司 紧凑型高分辨率变焦镜头
CN110673315A (zh) * 2019-10-15 2020-01-10 浙江大华技术股份有限公司 一种镜头
CN110749987A (zh) * 2019-10-23 2020-02-04 浙江大华技术股份有限公司 一种镜头
CN212111958U (zh) * 2020-03-20 2020-12-08 华为技术有限公司 变焦镜头、摄像模组及终端设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644651B2 (en) 2020-07-31 2023-05-09 Largan Precision Co., Ltd. Image capturing lens system, image capturing unit and electronic device including eight lenses of +−+−++−+, +−+−+−+ or +−−+−−+− refractive powers

Also Published As

Publication number Publication date
JP2023517388A (ja) 2023-04-25
CN212111958U (zh) 2020-12-08
KR20220146685A (ko) 2022-11-01
US20230023354A1 (en) 2023-01-26
EP4113186A1 (en) 2023-01-04
EP4113186A4 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2021185181A1 (zh) 变焦镜头、摄像模组及终端设备
JP4813670B2 (ja) ズームレンズ及びそれを用いたビデオカメラ
CN111897115B (zh) 一种具有消热和宽压适应能力的连续变焦光学系统
JP2007272216A (ja) ズームレンズ系、撮像装置及びカメラ
JP5065515B2 (ja) ズームレンズ及びそれを用いたビデオカメラ
CN111443470A (zh) 内合焦式成像镜头
JP2004264786A (ja) ズームレンズ
WO2024046456A1 (zh) 光学镜头
WO2021169557A1 (zh) 一种变焦镜头、摄像头模组及移动终端
JP2000292699A (ja) ズームレンズ及びそれを用いたビデオカメラ
JP5397063B2 (ja) 撮像光学系およびカメラ装置および携帯情報端末装置
JP2007179015A (ja) ズームレンズ系、撮像装置及びカメラ
CN216956501U (zh) 光学摄像系统及电子设备
CN215813674U (zh) 一种成像镜头
CN211955966U (zh) 内合焦式成像镜头
CN116088154A (zh) 变焦镜头、镜头模组及电子设备
CN209961998U (zh) 广角光学系统及光学设备
JP2003121736A (ja) 投写レンズ
CN113325560A (zh) 伸缩式三群连续变焦镜头及手机
CN111427138A (zh) 内合焦式成像镜头
CN112904537A (zh) 一种光学摄像镜头
CN112987237A (zh) 广角透镜
JP2007272215A (ja) ズームレンズ系、撮像装置及びカメラ
CN220171328U (zh) 一种内对焦的广角成像镜头
CN114609754B (zh) 光学成像系统及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772221

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556605

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021772221

Country of ref document: EP

Effective date: 20220928

ENP Entry into the national phase

Ref document number: 20227036133

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE