WO2021185167A1 - 一种利用太阳能为电动车充电的系统、相关装置及方法 - Google Patents

一种利用太阳能为电动车充电的系统、相关装置及方法 Download PDF

Info

Publication number
WO2021185167A1
WO2021185167A1 PCT/CN2021/080407 CN2021080407W WO2021185167A1 WO 2021185167 A1 WO2021185167 A1 WO 2021185167A1 CN 2021080407 W CN2021080407 W CN 2021080407W WO 2021185167 A1 WO2021185167 A1 WO 2021185167A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
electric vehicle
portable battery
power
charging
Prior art date
Application number
PCT/CN2021/080407
Other languages
English (en)
French (fr)
Inventor
张东才
Original Assignee
张东才
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张东才 filed Critical 张东才
Publication of WO2021185167A1 publication Critical patent/WO2021185167A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the embodiments of the present application relate to the field of electric energy storage systems, and in particular, to a system, related devices, and methods for charging electric vehicles using solar energy.
  • Electric vehicles have become the development trend of future vehicles due to their energy-saving, environmentally-friendly and economical advantages.
  • the electric energy obtained by photovoltaic power generation is the cleanest green energy source. More use of green energy such as solar energy to replace fossil fuels to charge electric vehicles can truly achieve energy conservation and environmental protection.
  • This application provides a system for charging electric vehicles using solar energy, including solar power generation equipment (1), DC/DC power transmission device (2) (DC stands for Direct Current, short for direct current), and portable battery pack (3), And an electric vehicle (4) supplied with energy by the portable battery pack (3);
  • the solar power generation equipment (1) is connected to the portable battery pack (3) through the DC/DC power transmission device (2), thereby using photovoltaic power to charge the portable battery pack (3);
  • These charged portable battery packs (3) can be inserted into the electric vehicle (4) to supply power; the portable battery packs (3) are of a portable design, which can be easily carried by users, and It is inserted into the electric vehicle (4) by hand without tools.
  • the portable battery pack (3) in the system device for charging electric vehicles using solar energy can be used as a fixed battery or super battery of the electric vehicle through the control system in the electric vehicle or another DC/DC power transmission device (2).
  • the capacitor is charged, and it can also directly supply power to the electric motor of the electric vehicle.
  • the solar power generation equipment (1) in this system device for charging electric vehicles using solar energy may be centralized or distributed; the solar cells include: monocrystalline silicon cells, polycrystalline silicon cells or thin film cells (thin -film solar cell).
  • the electric vehicle (3) installed with this kind of solar energy as the electric vehicle charging system device includes a passenger electric vehicle or a commercial electric vehicle, including a taxi, a small passenger car, a bus, and a truck; the electric vehicle (3) is Pure electric vehicles or hybrid energy vehicles.
  • This application also provides a DC/DC power transmission device suitable for the system device for charging electric vehicles using solar energy, which is used to connect two different DC power sources.
  • the device adopts an intelligent design and is equipped with multiple sensors to Detect the voltage and temperature of the input power supply and the output power supply, as well as the size of the transmission current, and control the output current and voltage through a central processing unit, namely the Central Processing Unit, referred to as CPU (23), so that the power transmission process can be Optimize and ensure its safety.
  • CPU Central Processing Unit
  • the DC/DC power transmission device uses a pulse method to transmit current and adds an inductor (24), so that even when there is a large difference between the input and output voltages, the current flow can still be ensured in a safe way. Range.
  • the DC/DC power transmission device further includes a DC/DC transformer (26); the DC/DC transformer (26) can increase the voltage to 1.2 to 8 times the input voltage, or reduce the voltage To 0.2 to 0.8 times the input voltage; the selection of the voltage rise and fall times is controlled by the CPU (23); this device ensures that even if the input power supply voltage and the output power supply voltage are greatly different, the current can be unidirectionally changed from The input power flows to the output power; in addition, the design of the DC/DC transformer (26) also ensures that during the charging process, when the voltage difference between the input power and the output power changes, the input power can continue to be Supply power to the output power supply. During the charging process, the voltage of the input power supply will gradually decrease, and the voltage of the output power supply will continue to rise, which leads to a decrease in the charging efficiency. The design of the DC/DC transformer (26) can overcome this difficulty.
  • the input power supply of the DC/DC power transmission device can have multiple types, including: photovoltaic power, chargers that use household power, charging piles for electric vehicles, and portable battery packs; the output power of the device can also be There are many types, including: portable battery packs, fixed batteries in electric vehicles, or super capacitors.
  • the DC/DC power transmission device has a working voltage of 40-600V, a current of 0.2-200A, and a power of 0.01-120kW.
  • This application also provides a portable battery pack suitable for the system device for charging electric vehicles using solar energy, which is composed of multiple lithium batteries in parallel or in series; the voltage is 40-600V and the energy is 0.2-20kWh; the battery pack
  • the DC/DC power transmission device can be easily connected for charging.
  • the portable battery pack has a weight of 0.3-40 kg and a volume of 0.001-0.5 cubic meters; it is provided with a handle that is convenient to carry, and can be easily inserted into an electric vehicle without other tools. Take it out of the electric car.
  • the portable battery pack has one or more interfaces so that it can be connected to a variety of different power supply systems, including: connecting photovoltaic power sources, household charging piles, and electric vehicles through the DC/DC power transmission device Charging piles can be used for charging; it can also be connected to the battery system of an electric vehicle or the electric motor of an electric vehicle to supply power to it.
  • the application also provides an electric vehicle suitable for the system device for charging the electric vehicle by using solar energy.
  • the portable battery pack (3) is installed in the vehicle, which can directly supply power to the electric motor of the electric vehicle.
  • the electric vehicle is equipped with a fixed battery in addition to the direct energy provided by the portable battery pack (3); the portable battery pack (3) can charge the fixed battery, which is required when the electric vehicle is running Energy can be provided by fixed batteries.
  • one or more connectors connected to the portable battery pack (3) are installed in the electric vehicle, and one or more portable battery packs (3) can be installed in the electric vehicle through the connectors. Electric vehicles supply power.
  • the electric vehicle is also equipped with an internal combustion engine and a generator, and the electric energy generated by the internal combustion engine through the generator can be transmitted to different power supply systems in the electric vehicle, including: the portable battery pack (3), the electric vehicle Fixed battery or super capacitor; the internal combustion engine includes: petrol engine, diesel engine, etc.
  • This application also provides a solar charging station suitable for charging electric vehicles with the system device for charging electric vehicles using solar energy, including: the solar power generation equipment (1), one or more of the DC/DC Electric energy transmission device (2); the solar power generation equipment is a high-power power generation equipment that can charge multiple portable battery packs (3) at the same time.
  • the solar charging station adopts a grid structure to provide multiple charging ports, and each grid can be inserted into a portable battery pack (3) connected to the charging port for charging.
  • This application also provides a method for charging electric vehicles using solar energy, using the system device suitable for charging electric vehicles using solar energy to use solar energy to charge electric vehicles; the method includes:
  • the charged portable battery pack (3) can be inserted into the electric vehicle (4) by manual operation,
  • the electric energy stored in the portable battery pack (3) is used to supply power to the electric vehicle.
  • the aforementioned portable battery pack (3) is used as a charging method for fast charging of electric vehicles; when the stored electric energy in the electric vehicle (4) is insufficient, the portable battery pack (3) that consumes photovoltaic energy can be removed from Take it out of the car and replace it with a charged portable battery pack (3).
  • the charged battery pack can directly power the electric motor of the electric vehicle or charge the fixed battery of the electric vehicle.
  • This application also provides a method for applying the portable battery pack to provide photovoltaic power, using the solar power generation equipment (1) to charge one or more of the portable battery packs (3), and the charged battery
  • the package (3) can be used not only to provide electrical energy for electric vehicles, but also to provide electrical energy for household appliances by connecting an inverter or as backup electrical energy for emergency use.
  • the present application provides a new method and system device to solve the limitations of these current solar charging technologies.
  • This charging process is simple and easy to implement.
  • the utilization rate of solar energy is improved; the process of receiving solar energy has nothing to do with whether the electric vehicle is in the sun, and the charging process of using solar energy to charge does not require the electric vehicle to be parked at a fixed charging position.
  • This kind of charging method is relatively unaffected by the weather, and can avoid the inconvenience of long waiting time for charging with solar charging piles.
  • the charging process is convenient and fast, and the charging procedure can be completed in a short time.
  • the charging process is easy to operate, and ordinary drivers can complete it without tools and special skills.
  • the use of solar energy to charge electric vehicles is fully in line with the purpose of clean and environmental protection.
  • electric vehicles are driven by photovoltaic power generation, which basically does not need to consume any fuel, and the cost is very low.
  • FIG. 1A is a schematic diagram of an embodiment of a system for charging electric vehicles using solar energy in this application;
  • FIG. 1B is a schematic diagram of the circuit connection of a portable battery pack for supplying power to an electric vehicle in an embodiment of a system device for charging an electric vehicle using solar energy in this application;
  • Figure 2 is a schematic structural diagram of an embodiment of a DC/DC power transmission device of this application.
  • FIG. 3 is a schematic diagram of a pulse signal for controlling a DC/DC power transmission device provided by an embodiment of the application;
  • PBP portable battery pack
  • PBP portable battery pack
  • FIG. 6 is a schematic structural diagram of an embodiment of an electric vehicle applicable to a system for charging electric vehicles using solar energy in this application;
  • FIG. 7 is a schematic structural diagram of an embodiment of an oil-electric hybrid electric vehicle applicable to a system for charging electric vehicles using solar energy according to the present application;
  • FIG. 8 is a schematic structural diagram of an embodiment of a solar charging station applying a system for charging electric vehicles using solar energy in this application;
  • FIG. 9 is a schematic structural diagram of an embodiment of a charging grid structure of a solar charging station according to the present application.
  • FIG. 10 is a schematic flowchart of an embodiment of a method for charging an electric vehicle using solar energy according to this application;
  • FIG. 11 is a schematic flowchart of an embodiment of a method for applying a portable battery pack to provide photovoltaic power according to this application.
  • Figure 1 includes: solar power generation equipment (1), DC/DC power transmission device (2), portable battery pack (3), and electric vehicle (4) supplied with energy by the portable battery pack (3)
  • Figure 2 includes: DC current controller (21), pulse generator (22), central information processor CPU (23), inductor (24), capacitor (25), DC/DC transformer (26).
  • the meanings of the reference signs appearing in FIGS. 6 to 9 and 11 are the same as the meanings of the reference signs included in the above-mentioned FIG. 1.
  • the core of this application is to provide a system for charging electric vehicles using solar energy, related devices, and methods for using the system and devices, which are used in the field of electrical energy storage systems.
  • Example 1 The structure and application of the system of the present application
  • a system for charging electric vehicles using solar energy includes:
  • the function of solar power generation equipment is to use sunlight to generate electricity.
  • centralized solar power generation equipment can be selected to achieve high-power power generation, and can charge a large number of the portable battery packs (3).
  • the extra electric energy can also be used in other places by connecting to the grid.
  • the system device that uses solar energy to charge electric vehicles is used as a household, its solar power generation equipment will choose distributed solar power generation equipment (1);
  • the board is connected to the controller and performs further power transmission.
  • the type and number of solar cells in solar panels are also not limited; it can be: monocrystalline silicon cells, polycrystalline silicon cells, or various thin-film solar cells, such as binary compound thin-film cells (tellurium). Cadmium, gallium arsenide), ternary compound copper indium selenide thin film battery (Copper Indium Selenide, CIS), quaternary compound copper indium gallium selenide thin film battery (Copper Indium Gallium Selenide CIGS).
  • the function of the DC/DC power transmission device is to realize the power transmission between the two power supply systems, and can intelligently control the current, voltage, etc. in the transmission, so as to realize the high efficiency and safety of the energy transmission process.
  • the solar power generation equipment (1) is connected to the DC/DC power transmission device (2) and the power generated by solar power is safely, quickly and stably transmitted to the portable Battery pack (3).
  • the DC/DC power transmission device 2 can be connected to one or more of the portable battery packs (3) to charge it.
  • the portable battery pack (3) is used as an energy carrier to use photovoltaic power to drive an electric vehicle.
  • These charged portable battery packs (3) can be inserted into the electric vehicle (4) to supply power;
  • the portable battery packs (3) are portable (portable) design, and its weight and size are all that an ordinary person can It is very convenient to carry, and can be inserted into the electric vehicle (4) by hand without tools. That is to say, the process of installing the portable battery pack (3) in the electric vehicle (4) does not require additional machinery and equipment.
  • Electric vehicles (4) powered by portable battery packs (3)
  • the most important feature of the electric vehicle (4) is that the portable battery pack (3) in the system equipment can be used to provide energy. Since the charged portable battery pack (3) can be inserted into the electric vehicle (4) by hand without tools, so as to provide electric energy for the electric vehicle, the charging process of the electric vehicle (4) is actually to pack the portable battery (3) The process of installing in the electric vehicle (4), so the charging can be completed quickly. Since the electric energy stored in the portable battery pack (3) is converted from solar energy, and this process does not need to consume any fuel, the electric energy used by the electric vehicle is very green, environmentally friendly, and economical and energy-saving.
  • the portable battery pack (3) can be directly connected to the electric motor of the electric vehicle (4) to supply power to it.
  • the portable battery pack (3) can also charge the fixed battery or super capacitor of the electric vehicle (4) first, and then the fixed battery or super capacitor provides power to the motor.
  • the electric vehicle (4) in this system device for charging electric vehicles using solar energy is also equipped with another DC/DC power transmission device (2); the portable battery
  • the package (3) can charge the fixed battery (or super capacitor) of the electric vehicle through the DC/DC power transmission device (2) in the electric vehicle, and the fixed battery (or super capacitor) of the electric vehicle is connected to an electric vehicle controller To power the motor.
  • the portable battery pack (3) can also be directly connected to the electric vehicle controller to supply power to the electric motor of the electric vehicle.
  • the electric vehicle (4) in the system device for charging an electric vehicle by using solar energy can be not only a passenger car, but also a commercial electric vehicle, such as a taxi, a small bus, or a bus. ,truck.
  • a commercial electric vehicle such as a taxi, a small bus, or a bus. ,truck.
  • more energy is often required than private cars, and it is designed to install more portable battery packs (3) to power the electric vehicle (4).
  • the electric vehicle (4) may be a pure electric vehicle or a hybrid electric vehicle.
  • the main difference between hybrid energy vehicles is that they are equipped with internal combustion engines and generators.
  • the internal combustion engines include: petrol engine, diesel engine, etc.; and the generator can power the electric motor or the electric vehicle ( 4)
  • the portable battery pack (3) inside is charged. This design is mainly used for long-distance driving. If there are insufficient charging equipment such as charging stations along the way, the use of the hybrid energy vehicle can avoid the embarrassment of running out of power halfway.
  • specific steps and implementation methods can be adjusted according to specific conditions to meet actual requirements, and the specifics are not limited here.
  • Embodiment 2 The structure and principle of DC/DC power transmission device
  • the DC/DC power transmission device is used to connect two different DC power sources and control the voltage and current to ensure the safety, stability and speed of power transmission.
  • the device can be intelligently designed, equipped with multiple sensors to detect the voltage and temperature of the input power supply and output power, as well as the size of the transmission current, and a CPU (23) to control the output current and voltage to make electrical energy
  • the transmission process can be optimized and ensure its safety.
  • Fig. 2 is a structural diagram of a DC/DC power transmission device provided by the present application.
  • the DC/DC power transmission device mainly includes the following components:
  • the core component of the device is a DC current controller (21), which is a current switch controlled by a pulse signal, which can let DC current pass or block the DC current in an instant.
  • the pulse generator (22) sends out a pulse signal to command the DC current controller (21); the pulse signal controls the opening and closing of the DC current controller (21); the length of the opening and closing time is determined by the pulse signal.
  • the pulse form of the pulse signal of the pulse generator (22) is programmed and controlled by the central processing unit CPU (23); the CPU (23) receives various signals inside and outside the device, including voltage, current, temperature, etc., According to these signals, instructions are issued to instruct the pulse generator (22) to output what kind of pulse signal form.
  • the power transmission device further includes: an inductor (24) connecting the DC current controller (21) and the output terminal; a capacitor (25) at the output terminal; connecting the DC current controller (21) with The DC/DC transformer (26) at the input; and the controllable smart switches S1, S2 and S3 on the three DC current channels; these switches are controlled by the CPU (23).
  • the DC/DC transformer (26) can increase the voltage to 1.2 to 8 times the input voltage, or reduce the voltage to 0.2 to 0.8 times the input voltage; the selection of the voltage rise and fall times is controlled by the CPU (23)
  • the device guarantees that regardless of the difference between the input power supply voltage and the output power supply voltage, the current can flow unidirectionally from the input power supply to the output power supply, and ensures that the input power supply can continuously supply the output power supply during the charging process.
  • the DC current controller (21) in the device receives the pulse signal from the pulse generator (22), and according to the signal to turn on and off in the sub-microsecond time range, thereby controlling the current through the switch, so that the current is used in a series It is transmitted by pulse train. In this way, it is possible to flexibly adjust the average current through the device and avoid excessive transient current.
  • the pulse form of the pulse signal is programmed and controlled by the CPU (23).
  • the CPU (23) in the device will continuously receive the current, voltage, and temperature information of the electrical power supply at both ends of the input, output, and everywhere in the device; it will constantly adjust the form of its pulse signal based on this information to adapt to Energy transmission under different conditions. In this way, intelligent control can be realized.
  • the device uses an inductor (24) to prevent the instantaneous current from being too high and generating an effective potential difference.
  • the inductor (24) has two functions. The first is to prevent instantaneous current from being too large, and the second is to generate a potential difference to reduce the potential difference between two high-power power supplies.
  • the potential difference generated by the inductor can be adjusted by changing the switching frequency in the DC current controller (21). Since this potential difference is different from the phase of the circuit, it will not lose power like a resistor. In this way, there is no energy loss when controlling the current.
  • the specific form of the pulse signal is an important parameter for regulating the voltage and current in the electric energy transmission. Therefore, it needs specific explanation. Because the CPU (23) in the device will give different forms of pulse signals according to the detected current and voltage signals.
  • the form of the pulse signal is sent to the pulse generator (22). According to the different forms of the pulse signal, the pulse generator (22) will issue different pulse signal commands to the DC current controller (21).
  • the DC current controller (21) is an intelligent switch that can be controlled by the pulse generator (22). It can quickly turn on (ON) and turn off (OFF), and its switching time (opening time ⁇ t and closing time t 1 ) can be at a sub-mini-second speed.
  • the pulse generator (22) generates pulses to command the on/off (ON/OFF) of the DC current controller (21), thereby generating a series of pulse trains. When a current flows through the DC current controller (21), a pulse current is generated.
  • the various time parameters of the pulse wave include:
  • Figure 3 is an example of a pulse wave signal; as a reference schematic diagram of the physical quantities represented by the above parameters.
  • I max is the maximum current passed
  • V A is the voltage at the input end of the device
  • V B is the voltage at the output end of the device. Therefore, by changing the ON time and OFF time ( ⁇ t, t 1 ) of a pulse in each pulse wave, the frequency can be changed to adjust the voltage to avoid safety problems when the power supply voltage difference is too large. Simply put, it is to control the voltage difference by controlling the frequency ( ⁇ ) of the pulse.
  • I peak is the maximum value of the current passed when the DC current controller (21) is not directly connected.
  • the duration of each pulse wave is t 2 , and only during the time t 2 , the DC current controller (21) may be in an ON state. Therefore, the average output current (I average ) through the DC current controller (21) is the sum of the currents when all the switches are ON divided by the time of a series of pulse waves. So its average output current is:
  • the average output current of the pulsed power transmission device provided by the present application can be changed so that the average output current is maintained At a stable and safe level.
  • the DC/DC transformer (26) in the device can be boosted to ensure that the electric energy can be effectively transferred from the power source A to the power source B.
  • the CPU (23) detects that the voltage A is less than the voltage B
  • the third smart switch S3 of the device is turned on, and the first smart switch S1 is turned off.
  • the current flows through the DC/DC transformer (26) to reduce the voltage.
  • the DC/DC transformer (26) in the device can also reduce the voltage to ensure that the electric energy can be safely and effectively transferred from the power source A to the power source B.
  • the DC/DC transformer (26) can increase the voltage to 1.2 to 8 times the input voltage, or reduce the voltage to 0.2 to 0.8 times the input voltage. The selection of the voltage rise and fall times is controlled by the CPU (23).
  • the inductor (24) in the device can also solve the problem of reducing energy consumption.
  • the CPU (23) in the device will detect the voltage V A of the power source A at the input end and the voltage V B of the power source B at the output end.
  • the CPU (23) When V A > V B , and V A -V B is higher than the requirement for effective charging of power supply B, the CPU (23) will direct the first smart switch S1 to open, the second smart switch S2 and the third smart switch S2. Switch S3 remains closed.
  • the first smart switch S1 When the first smart switch S1 is turned on, the power source A can charge the capacitor (25) through the DC current controller 21.
  • the voltage of the capacitor (25) is V C.
  • the second smart switch S2 When the voltage V C rises to be the same as the voltage V B of the output power B, the second smart switch S2 is turned on. In this way, when there is a voltage difference between the two power supplies, excessive instantaneous current is avoided when the two power supplies are connected, and the safety when the two power supplies are connected is ensured.
  • the CPU (23) instructs the pulse generator (22) to send a pulse signal to the DC current controller (21) to control the passing current.
  • the DC current controller (21) allows the electric energy to be transferred from the power source A to the power source B safely and efficiently.
  • the CPU (23) When the CPU (23) detects that V A -V B is lower than the requirement for effective charging of the power supply B, the CPU (23) will instruct the first smart switch S1 to close and open the third smart switch S3. In this way, when the power supply A is charging the power supply B, the input terminal voltage V D of the DC current controller (21) will be increased through the DC/DC transformer (26), so that V D -V B can meet the requirements for effective charging of the power supply B. According to demand, the DC/DC transformer (26) can boost the voltage to 1.2 to 8 times the input voltage. In this way, the device can continue to use the DC current controller (21) to control the safe and effective transfer of electric energy to the power source B.
  • the CPU (23) will direct the third smart switch S3 to open, and the third smart switch S3 is turned on.
  • One smart switch S1 and the second smart switch S2 remain closed.
  • the DC/DC transformer (26) will reduce the input voltage VD of the DC current controller (21) to 0.2 to 0.8 times the input voltage through the DC/DC transformer (26) when the power supply A is charging the power supply B.
  • V D -V B meets the requirements for safe charging of power supply B. According to requirements, the DC/DC transformer (26) can charge the capacitor (25) through the voltage power supply A through the DC current controller (21).
  • the voltage across the capacitor (25) is V C.
  • the second smart switch S2 is turned on.
  • the capacitor (25) at the output end acts as a buffer in the pulse-type power transmission device to ensure the safety when the two power sources are connected.
  • the CPU (23) detects that the charging is complete, it will turn off all the smart switches (S1, S2, S3).
  • the operation method described above is a general charging situation in which the device uses the power supply A to charge the power supply B.
  • Other charging conditions can be easily derived by analogy based on the above description. For example, when power supply A originally stores less energy and has a lower voltage than power supply B; then when the device is connected to two power sources, the first smart switch S1 will remain closed, the third smart switch S3 and the second smart switch S3 will remain closed. The switch S2 will be opened, and the current of the power supply A will be boosted by the DC/DC transformer (26), and then the power supply B will be charged by the DC current controller (21).
  • Table 1 lists the names and functions of the main components of the smart pulse-type power transmission device in detail.
  • the input power supply of the DC/DC power transmission device can be multiple, including: photovoltaic power, chargers using household power, charging piles for electric vehicles, and portable battery packs; the device There are also many types of output power sources, including: portable battery packs, fixed batteries or super capacitors in electric vehicles.
  • the DC/DC power transmission device is connected to two portable battery packs for charging and discharging.
  • two portable battery packs for example, composed of lithium battery packs
  • battery pack A made up of 48 Panasonic NCR18650B lithium batteries in series
  • battery pack B another identical battery pack
  • the total voltage of such a battery pack is approximately 180V.
  • battery pack A is almost fully charged and battery pack B is almost empty, its charging current is kept constant at 1 ampere (this is the middle value of a test current).
  • the voltage of each NCR18650B lithium battery in battery pack A will drop from 4V to about 3.8V; the voltage of NCR18650B lithium battery in battery pack B will rise from about 3.5V to about 3.5V.
  • 3.6V that is:
  • the intelligent pulsed DC/DC power transmission device is equipped with a DC/DC transformer (26) , Provide boost function when the voltage difference is too small.
  • a DC/DC transformer (26) Provide boost function when the voltage difference is too small.
  • the CPU (23) detects When it is lower than the requirement for effective charging of the battery pack B, the CPU (23) will direct the first smart switch S1 to close and open the third smart switch S3.
  • the DC/DC transformer (26) will increase the input voltage VD of the DC current controller (21), so that Meet the requirements for effective charging of power source B. In this way, it can be ensured that the battery pack A can efficiently charge the battery pack B until the end of charging.
  • the voltage is increased to 1.5 times the original voltage through the DC/DC transformer (26), namely:
  • the intelligent pulsed DC/DC power transmission device designed in this application will set the voltage difference Keep it in a reasonable range, for example, about 0.1-0.4.
  • the DC/DC power transmission device (2) in this application can have a variety of designs, including intelligent and non-intelligent designs.
  • the DC/DC power transmission device (2) can consist of a DC/AC inverter and a AC/DC chargers are composed together.
  • the device structure can be adjusted according to specific conditions to meet actual requirements, and the specifics are not limited here.
  • a portable battery pack suitable for a system device that uses solar energy to charge electric vehicles.
  • the portable battery pack is composed of multiple lithium batteries in parallel or in series.
  • the portable battery pack may be composed of 48 battery packs in series, and each battery pack is composed of 6 lithium batteries (Panasonic 21700) in parallel.
  • the voltage of this battery pack is 180V, and its stored energy is 6kWh.
  • This portable battery pack can drive a light electric vehicle for approximately 50 kilometers. Therefore, as long as the electric vehicle is plugged into four charged battery packs, it can travel about two hundred kilometers. This has reached the endurance of current general electric vehicles.
  • the voltage and stored energy of the portable battery pack can have a large elastic range.
  • the voltage of the portable battery pack can be between 40-600V, and the stored energy can be between 0.2-20 kWh.
  • the portable battery pack PBP is composed of 48 battery packs in series, and each battery pack is composed of 5 lithium batteries in parallel.
  • These lithium batteries can be Panasonic 21700 lithium batteries.
  • the single weight of this lithium battery is about 60 grams, the voltage is 3.0-4.2V, the maximum output current is 20A, and the energy storage capacity after charging is 4800mAh. Therefore, for a single said battery pack:
  • the entire portable battery pack PBP is composed of 48 battery packs connected in series. Therefore, for a single PBP,
  • Such a portable battery pack is light enough to be easily inserted into and taken out of an electric vehicle without the help of other tools or machinery. After the portable battery pack is charged outside the vehicle, it can be inserted into the electric vehicle to supply power to the electric vehicle. For a high-performance light-weight electric vehicle, the charged PBP has enough electric energy to support it to travel dozens of kilometers.
  • the lithium battery and battery pack are equipped with detectors for detecting the voltage, current and temperature of the battery.
  • these detectors will continuously transmit the voltage, current, and temperature information of the battery to the battery management system (Battery Management System, referred to as BMS) in the battery pack.
  • BMS Battery Management System
  • the BMS controls the charging and discharging of the lithium battery pack based on this information to adjust the charging or discharging current. For example, if the charging current is too high and the temperature of the battery pack is too high, the BMS will reduce the charging current so that the battery pack can operate safely.
  • the BMS can also control the cooling device to cool the battery pack.
  • the BMS when the portable battery pack is charged using a high-flux current power supply, the BMS will turn on the fan to draw air, and use an air-cooling method to cool the portable battery pack.
  • the portable battery pack can also be cooled by liquid cooling.
  • Fig. 5 is a schematic diagram of the external front and back sides of a portable battery pack suitable for a system device for charging electric vehicles using solar energy.
  • the portable battery pack As a portable energy carrier, the portable battery pack must be designed to be easily lifted or carried by an ordinary person; in addition, in order for the portable battery pack to be conveniently used for charging electric vehicles, the battery pack should not be too large. It is heavy; but its stored energy cannot be too small, otherwise a large number of battery packs must be installed to have enough electrical energy to support the driving of an electric vehicle (4). Therefore, the weight of the portable battery pack should not be too light or too heavy, preferably about 20 kg, and the volume is about the size of a hand luggage, that is, the weight of the portable battery pack is 0.3-40 kg and the volume is 0.001-0.5 cubic.
  • the front is equipped with a convenient handle, which can be easily inserted into or taken out of the electric car without other tools.
  • the back of the portable battery pack is provided with a direct current interface (for example, GB/T 20234.3-2015), which is used to connect to the electric energy system of the electric vehicle (4), and directly provide energy for the electric motor or for the electric vehicle. Charge other energy storage devices.
  • the portable battery pack (3) has one or more interfaces, and the position of the interfaces is not limited.
  • This design mainly makes the charging and discharging of the portable battery pack (3) more flexible.
  • different interfaces can connect the portable battery pack (3) to a variety of different power supply systems, including: photovoltaic power sources connected with the DC/DC power transmission device, household charging piles, charging piles for electric vehicles, etc., for Its charging.
  • photovoltaic power sources connected with the DC/DC power transmission device
  • household charging piles household charging piles
  • charging piles for electric vehicles, etc. for Its charging.
  • users can choose the most suitable power source to charge the portable battery pack according to specific conditions.
  • some users have installed the solar power generation equipment (1) in the system device of this application in their homes, and he can easily connect the portable battery pack to the DC/DC power transmission at home.
  • the device is connected to photovoltaic power generation to use solar energy. Charge it.
  • Another user does not have any solar-powered equipment installed in his home, and can charge his portable battery pack (3) with an ordinary household power source.
  • the interface on the back of the portable battery pack can be connected to the power supply system in the electric vehicle to supply power to the electric motor of the electric vehicle or to charge the fixed battery of the electric vehicle.
  • the device structure can be adjusted according to specific conditions to meet actual requirements, and the specifics are not limited here.
  • Embodiment 4 An electric vehicle suitable for the system device for charging electric vehicles using solar energy
  • An electric vehicle suitable for the system device that uses solar energy to charge an electric vehicle As shown in FIG. 6, a portable battery pack (3 ) (PBP), these charged portable battery packs can be inserted into a car to power electric vehicles.
  • PBP portable battery pack
  • One of the simplest electric vehicles requires only a portable battery pack as the only electric energy storage system, and the battery pack can directly power the electric motor of the electric vehicle.
  • Other electric vehicles can be equipped with fixed batteries (as shown in Figure 6).
  • the portable battery pack (3) can also choose to charge the fixed battery, and the energy required by the electric vehicle during driving can be provided by the fixed battery.
  • the power transmission between the two can be through a DC/DC
  • the power transmission device (2) is completed.
  • a connection interface of the portable battery pack such as the back interface shown in Figure 5, to connect the DC/DC power transmission device (2), and then use the DC/DC power transmission device to charge the fixed battery with direct current.
  • a super capacitor is also installed in the electric vehicle (4), and the portable battery pack (3) can also be selected to charge the super capacitor. The super capacitor can directly power the motor.
  • the electric vehicle (4) One or more connectors connected to the portable battery pack (3) are installed in the (4).
  • the connectors in these electric vehicles should correspond to/match with the ports on the portable battery pack (3).
  • Each connector can be connected to a portable battery pack (3). In this way, the driver can choose to install one or more of the portable battery packs (3) to supply power to the electric vehicle according to the required conditions.
  • the installation position can be at the rear end or the front end of the vehicle.
  • the portable battery pack in Figure 6 is installed at the rear of the electric vehicle (4).
  • the driver can easily insert or remove the battery pack into or out of the electric vehicle without using any tools.
  • the portable battery pack when installed, it can be locked.
  • the lock cannot be opened when the car is not turned off or when the electric car is being charged.
  • the above-mentioned electric vehicle applicable to the system device for charging electric vehicles using solar energy can not only be powered or charged by the portable battery pack (3) charged by solar energy, but also can be charged by using a charging pile like a traditional charging method. In this way, car owners can choose different power systems to charge electric vehicles more flexibly according to the situation.
  • the electric vehicle (4) may be a hybrid electric vehicle.
  • the energy system of the electric vehicle is also equipped with an internal combustion engine and a generator connected to it (as shown in Figure 7). Specifically, the chemical energy generated by the combustion of fossil fuels in an internal combustion engine can provide energy for a generator.
  • the internal combustion engine can include: a petrol engine, a diesel engine, etc., which are not limited here;
  • the chemical energy is converted into electrical energy;
  • the generator is connected to a fixed battery or super capacitor through a DC/DC power transmission device to charge it.
  • the fixed battery or super capacitor is connected to the motor to supply power.
  • the generator can also charge the portable battery pack (3), and the portable battery pack charges the super capacitor or the fixed battery through a DC/DC power transmission device.
  • the electric vehicle can also use a fuel cell instead of the above-mentioned internal combustion engine and generator to generate electric energy to power the electric vehicle (4) or to charge a portable battery pack, a fixed battery or a super capacitor.
  • the portable battery pack can also be used as an emergency power storage device for the electric vehicle.
  • an electric vehicle (4) runs out of electricity and needs help, the driver only needs to find a charged portable battery pack and replace a depleted battery pack in the vehicle to make Electric cars are back on the road.
  • This portable battery pack for emergency use can be charged with the solar system described in this application. If this emergency situation occurs in a place where there is no charging station, the emergency battery pack can also be provided by another hybrid electric vehicle described in this application.
  • This hybrid electric vehicle can use its generator to charge the connected portable battery pack (3).
  • the charged portable battery pack (3) can be taken out of the vehicle, and then installed on an electric vehicle (4) that does not have electricity and needs rescue to provide electricity for it.
  • the energy to drive the electric vehicle can be supplied in multiple ways: (a) One of the most environmentally friendly and energy-saving charging methods is to use the solar energy charging system provided in this application, first using solar energy as The portable battery pack (3) is charged separately, and then the portable battery pack is installed on the electric vehicle to supply power. (b) In order to provide various charging options more flexibly, the portable battery pack (3) can also be charged with other power sources, such as a household power source; the portable battery pack is charged separately and then put back into the electric vehicle to supply power. (c) Like the current plug-in hybrid electric vehicle (plug-in hybrid EV), the charging pile is used to charge the energy storage system in the electric vehicle.
  • plug-in hybrid EV the charging pile is used to charge the energy storage system in the electric vehicle.
  • the above-mentioned power supply methods (a) directly use solar energy to drive electric vehicles, which is the most energy-saving and environmentally friendly; (b) and (c) use electric power from the grid to drive electric vehicles, which are also more environmentally friendly and energy-saving; methods (d) and (e) use fossil fuels It is not environmentally friendly to generate electricity to drive electric vehicles.
  • the above-mentioned hybrid electric vehicle (4) provided by this application can be At the same time, it meets the requirements of energy saving, environmental protection and endurance.
  • the device structure can be adjusted according to specific conditions to meet actual requirements, and the specifics are not limited here.
  • Example 5 Implementation of a home system device:
  • the distributed solar power generation equipment (1) is connected to a DC/DC power transmission device (2), and one or several portable battery packs (3) connected to it are charged through the DC/DC power transmission device (2) .
  • the charged portable battery pack (3) can be installed in the electric vehicle (4) to supply energy for the electric vehicle.
  • the electric vehicle (4) can be basically driven by solar energy.
  • the driver only needs to take out the portable battery pack (3) that consumes photovoltaic energy or is about to run out of electricity from the electric vehicle, and install the charged portable battery pack (3) into the electric vehicle (4)
  • the charging process can be completed within.
  • each portable battery pack (3) may allow the vehicle to travel about 50 kilometers. Only 1-2 rechargeable portable battery packs (3) are needed to power the electric vehicle, which is enough for an ordinary person to use the vehicle for more than a day. In this way, the use of the household system device can completely achieve that the daily power supply of the electric vehicle is completely powered by solar energy, which is very environmentally friendly and economical.
  • the charging process is not only very simple and fast, but also has no restrictions on the use of the electric vehicle or the parking position.
  • the portable battery pack (3) In an emergency situation, such as when there is no sun and solar power generation equipment (1) cannot be used to charge the portable battery pack (3), the portable battery pack (3) also has an interface that can be used for household use by connecting a charger Power charging.
  • specific steps and implementation methods can be adjusted according to specific conditions to meet actual requirements, and the specifics are not limited here.
  • Example 6 Implementation of a commercial system device:
  • This business model uses solar energy to charge an electric vehicle system device, which can quickly charge multiple portable battery packs at the same time.
  • the charging station includes: high-power solar power generation equipment (1), a plurality of said DC/DC power transmission devices (2); it can charge a plurality of said portable battery packs (3) at the same time .
  • the solar charging station since the charging station may need to charge a large number of portable battery packs, in a specific example, the solar charging station adopts a lattice structure to provide multiple charging ports, and each lattice One of the portable battery packs (3) can be inserted and connected to the charging interface in the grid for charging. After the charging is completed, the portable battery packs (3) can be taken out.
  • a DC/DC power transmission device (2) can be connected to a charging grid, or a DC/DC power transmission device can be connected to multiple charging grids. Based on the foregoing description of the characteristics of the portable battery pack, the process of inserting and removing the portable battery pack (3) into and out of the charging grid does not require other tools and can be completed by an ordinary person.
  • the basic charging method is the same whether you use a household system device or a commercial system device to charge an electric vehicle. As shown in Figure 10, this method of using solar energy to charge electric vehicles is applicable to all of the system devices that use solar energy to charge electric vehicles to use solar energy to charge electric vehicles; the method includes:
  • the solar power generation equipment (1) is used to generate electricity, and the generated electrical energy is used to charge a plurality of portable battery packs (3) through the DC/DC power transmission device (2),
  • the charged portable battery pack (3) can be inserted into the electric vehicle (4) by manual operation,
  • the electric energy stored in the portable battery pack (3) is used to supply power to the electric vehicle.
  • the charging method uses the portable battery pack (3) to quickly charge an electric vehicle; when the stored electric energy in the electric vehicle (4) is insufficient, the portable battery that consumes photovoltaic energy or is about to be exhausted
  • the battery pack (3) is taken out of the car and replaced with a charged portable battery pack (3).
  • the charged battery pack can directly power the electric motor of electric vehicles; for some electric vehicles with fixed battery packs or super capacitors, these charged portable battery packs (3) can also charge the fixed batteries or super capacitors of electric vehicles .
  • the charging station can also use solar power generation equipment (1) to first charge many rentable portable battery packs (3).
  • the electric vehicle (4) needs to be charged, just go to the charging station and rent one or more charged portable battery packs (3) to install on the electric vehicle.
  • These charged portable battery packs can directly power the electric vehicle , Or charge the stationary battery of an electric vehicle.
  • This charging method of replacing the portable battery pack is more convenient and faster.
  • the owner of the electric vehicle (4) can choose not to purchase the portable battery pack (3) when buying the car, but only use the rentable portable battery pack (3) to power the electric vehicle (4) .
  • Example 7 Application of portable battery pack (3) (PBP) as a multi-purpose photovoltaic energy carrier
  • the fully charged portable battery pack (3) may not only charge or power the electric vehicle (4), Excess power.
  • the portable battery pack (3) can also be used as a multi-purpose photovoltaic energy carrier to provide electrical energy for other electrical equipment. As shown in Figure 11, a method of applying the portable battery pack (3) to provide photovoltaic power is:
  • some battery packs (3) can be installed in electric vehicles (4) to provide electrical energy for electric vehicles; other charged battery packs can also be connected to an inverter to provide electrical energy for household appliances or as an emergency The backup power used is used for emergency.
  • the portable battery pack (3) installed in the electric vehicle (4) can be used as Emergency power supply for households.
  • the portable battery pack (3) can be taken out of the electric vehicle and supplied with electrical energy for its home appliances (including lighting, refrigerator, computer, etc.) through an inverter.
  • the specific steps and implementation methods can be adjusted according to the specific conditions to meet the actual requirements, and the specifics are not limited here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种利用太阳能为电动车充电的系统、装置和将其用于电动车充电的方法。所述系统、装置及方法包括:太阳能发电设备(1)、DC/DC电能传输装置(2)、手提电池包(3)及由所述手提电池包(3)供应能量的电动车(4);所述太阳能发电设备(1)通过所述DC/DC电能传输装置(2)与所述手提电池包(3)连接,从而利用光伏电能为所述手提电池包(3)充电;所述手提电池包(3)可插入到所述电动车(4)内为所述电动车供电;所述手提电池包(3)为便携式设计,可以让使用者在无需工具的情形下单靠人手将其插入电动车(4)中。所述DC/DC电能传输装置(2)采用智能化设计,从而保证手提电池包(3)的充电放电过程灵活、安全和高效。

Description

一种利用太阳能为电动车充电的系统、相关装置及方法
本申请要求于2020年3月20日提交中国专利局、申请号为202010203417.3、发明名称为“一种利用太阳能为电动车充电的系统、相关装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电能存储系统领域,尤其涉及一种利用太阳能为电动车充电的系统、相关装置及方法。
背景技术
电动汽车(下文均简称电动车)以其节能、环保、经济的优点成为未来汽车的发展趋势。另一方面,光伏发电(或者称为太阳能发电)得到的电能是最清洁的绿色能源。更多地利用太阳能这样的绿色能源来取代石化燃料为电动车充电才能够真正实现节能环保。
目前主要有两种太阳能为电动车充电的方法:一种是把太阳能板嵌在电动车顶上直接为电动车充电;另一方做法是设立固定的太阳能充电桩,先利用太阳能发电储存在一个储能设备里,当电动车需要充电时,再用这个储能设备连接充电桩为电动车充电。
如果用第一种方法为电动车充电的话,电动车必须处于有阳光的地方,这对电动车所处位置有很大的局限。用第二种方法充电则面临与使用普通充电桩相同的问题,需要将电动车长时间停在固定的充电位置等候充电。
发明内容
本申请提供一种利用太阳能为电动车充电的系统,包括,太阳能发电设备(1),DC/DC电能传输装置(2)(DC为Direct Current,直流的简称),手提电池包(3),及由所述手提电池包(3)供应能量的电动车(4);
所述太阳能发电设备(1)通过所述DC/DC电能传输装置(2)与所述手提电池包(3)连接,从而利用光伏电能为所述手提电池包(3)充电;
这些已充电的手提电池包(3)可以插入到所述电动车(4)内为其供电;所述手提电池包(3)是便携式(portable)设计,可以让使用者很方便的携带,并在无需工具的情形下单靠人手将其插入电动车(4)中。
优选地,这种利用太阳能为电动车充电的系统装置中的手提电池包(3)可以通过电动车内的控制系统或者另一个DC/DC电能传输装置(2)为电动车的固定电池或超级电容器充电,也可以直接为电动车的电动机供电。
优选地,这种利用太阳能为电动车充电的系统装置中的所述太阳能发电设备(1)可以是集中式或者分布式;其中的太阳能电池包括:单晶硅电池、多晶硅电池或薄膜电池(thin-film solar cell)。
优选地,安装这种利用太阳能为电动车充电系统装置的电动车(3)包括乘用电动车或商用电动车,包括出租车、小客车、大客车、货车;所述电动车(3)为纯电动车或油电混合能源车。
本申请还提供一种适用于所述利用太阳能为电动车充电的系统装置的DC/DC电能传输装置,用于连接两个不同的DC电源,该装置采用智能化设计,装有多个传感器以侦测输入电源和输出电源的电压和温度、以及传输电流的大小,通过一个中央信息处理器,即Central Processing Unit,简称CPU(23)来控制输出的电流和电压,以使得电能的传输过程能够优化并保证其安全。
优选地,所述的DC/DC电能传输装置用脉冲方式来传输电流并加入一个电感器(24),以使得即使在输入和输出电压有较大落差时,仍可保障电流的流通在一个安全的范围。
优选地,所述的DC/DC电能传输装置还包括有一个DC/DC变压器(26);所述DC/DC变压器(26)可以将电压升至输入电压的1.2至8倍,或将电压降至输入电压的0.2至0.8倍;对电压的升降倍数的选择由所述CPU(23)控制;该装置保证了即使输入电源电压和输出电源电压的差异较大,均可以让电流单向地从输入电源向输出电源流通;另外,所述DC/DC变压器(26)的设计也保证了在充电的过程中,当输入电源和输出电源之间的电压差发生改变 时,输入电源还能够持续地为输出电源供电。由于在充电的过程中,输入电源的电压会逐渐下降,而输出电源的电压会不断上升,这就导致充电的效率下降,利用所述DC/DC变压器(26)的设计就可以克服这个困难。
优选地,所述的DC/DC电能传输装置的输入电源可有多种,包括:光伏电源、使用家用电源的充电器、电动车用的充电桩、手提电池包;该装置的输出电源也可有多种,包括:手提电池包、电动车内的固定电池或超级电容器。
优选的,所述的DC/DC电能传输装置工作电压为40-600V,电流为0.2-200A,功率为0.01-120kW。
本申请还提供一种适用于所述利用太阳能为电动车充电的系统装置的手提电池包,由多个锂电池并联或串联组成;其电压为40-600V,能量为0.2-20kWh;该电池包可以很方便地连接所述DC/DC电能传输装置以进行充电。
优选地,所述的手提电池包重量为0.3-40千克,体积为0.001-0.5立方米;设有方便携带的把手,并在无需其他工具的情况下,可以很容易地插入到电动车内或从电动车中取出。
优选的,所述的手提电池包有一个或多个接口,使其能连接多种不同的电源系统,包括:通过所述的DC/DC电能传输装置连接光伏电源、家用充电桩、电动车用充电桩,为其充电;也可以连接电动车的电池系统或者电动车的电动机从而为其供电。
本申请还提供一种适用于所述利用太阳能为电动车充电的系统装置的电动车,车内装有所述的手提电池包(3),它可以直接为电动车的电动机供电。
优选地,该电动车除了由所述手提电池包(3)直接提供能量以外,还安装有一个固定电池;所述手提电池包(3)可以为所述固定电池充电,电动车行驶时需要的能量可以由固定电池提供。
优选的,所述的电动车内安装有一个或多个连接所述手提电池包(3)的接头,通过所述接头所述电动车可以安装一个或多个所述手提电池包(3)为电动车供电。
优选地,所述的电动车还安装有内燃机和发电机,内燃机通过发电机产生 的电能可以传输给电动车内的不同电源系统,包括:所述手提电池包(3)、电动车的所述固定电池或超级电容器;所述内燃机包括:汽油发动机(petrol engine)、柴油发动机(diesel engine)等。
本申请还提供一种适用于所述利用太阳能为电动车充电的系统装置为电动汽车充电的太阳能充电站,包括:所述的太阳能发电设备(1),一个或多个所述的DC/DC电能传输装置(2);所述太阳能发电设备为大功率的发电设备,可以同时为多个所述手提电池包(3)充电。
优选的,所述太阳能充电站,采用一种格子式的结构来提供多个充电接口,每一个格子可以插入一个所述手提电池包(3)连接所述充电接口来进行充电。
本申请还提供一种利用太阳能为电动车充电的方法,使用适用于所述利用太阳能为电动车充电的系统装置来利用太阳能为电动车充电;该方法包括,
利用所述太阳能发电设备(1)进行发电,产生的电能通过所述DC/DC电能传输装置(2)为一个或多个手提电池包(3)充电,
充电后的所述手提电池包(3)可以通过人手的操作插入到所述的电动车(4)中,
从而使用所述手提电池包(3)内存储的电能为所述电动车供电。
上述利用所述的手提电池包(3)为电动车快速充电的充电方法;当所述电动车(4)内的储存电能不足时,可以把耗光电能的所述手提电池包(3)从车内取出,换上已充电的手提电池包(3),该已充电电池包可以为电动车的电动机直接供电,或者为电动车的固定电池充电。
本申请还提供一种应用所述的手提电池包来提供光伏电能的方法,利用所述太阳能发电设备(1)为一个或多个所述手提电池包(3)充电,充电后的所述电池包(3)不仅可以用于为电动车提供电能,还可以通过连接一个逆变器为家用电器提供电能或者作为应急用的后备电能。
从以上技术方案可以看出,本申请实施例具有以下优点:本申请提供一种新的方法和系统装置来解决目前这些太阳能充电技术的局限。使用本申请的技术方案,可以使得车主能够利用太阳能发电为电动车很方便和快捷地充电。这个充电过程简单而且容易实施。提高了太阳能的利用率;接收太阳能的过程与 电动车是否处于阳光下无关,其利用太阳能为充电的充电过程也不需要电动车停在某个固定充电位置。这种充电办法比较不受天气影响,而且可以免除目前利用太阳能充电桩充电的等待时间过长的不便。充电过程方便、快捷,充电的程序可以在很短的时间内完成。充电过程容易操作,不需要工具和特殊技能,普通驾驶员就可以完成。利用太阳能为电动车充电,充分符合清洁环保的目的,同时电动车使用光伏发电来驱动,基本上不需要损耗任何燃料,成本非常低。
附图说明
图1A为本申请利用太阳能为电动车充电的系统实施例的一个示意图;
图1B为本申请利用太阳能为电动车充电的系统装置实施例中,一种利用手提电池包为电动车供电的电路连接示意图;
图2为本申请DC/DC电能传输装置实施例的一个结构示意图;
图3为本申请实施例提供的一种控制DC/DC电能传输装置的脉冲信号的示意图;
图4为本申请实施例提供的一种适用于利用太阳能为电动车充电的系统的手提电池包(Portable Battery Pack,简称PBP)的内部结构示意图;
图5为本申请实施例提供的一种适用于利用太阳能为电动车充电的系统的手提电池包(PBP)的外部结构示意图;
图6为本申请适用于利用太阳能为电动车充电的系统的电动车实施例的一个结构示意图;
图7为本申请适用于利用太阳能为电动车充电的系统的油电混合动力电动车实施例的一个结构示意图;
图8为本申请应用利用太阳能为电动车充电的系统的太阳能充电站实施例的一个结构示意图;
图9为本申请太阳能充电站的充电格子式结构实施例的一个结构示意图;
图10为本申请应用太阳能为电动车充电的方法实施例的一个流程示意图;
图11为本申请应用手提电池包来提供光伏电能的方法实施例的一个流程示意图。
附图标记如下:图1包括:太阳能发电设备(1),DC/DC电能传输装置(2),手提电池包(3),由所述手提电池包(3)供应能量的电动车(4),图2包括:DC电流控制器(21),脉冲发生器(22),中央信息处理器CPU(23),电感器(24),电容器(25),DC/DC变压器(26)。图6至图9和图11中出现附图标记含义与上述图1中所包括的附图标记含义相同。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下,所获得的所有其他实施例,都属于本申请保护范围。
本申请的核心是提供一种利用太阳能为电动车充电的系统、相关装置及使用该系统及装置的方法,用于电能存储系统领域。
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。
实施例1:本申请的系统的构造和应用
如图1A所示的一种利用太阳能为电动车充电的系统,包括:
太阳能发电设备(1),
DC/DC电能传输装置(2),
手提电池包(3),
及由所述手提电池包(3)供应能量的电动车(4),
下面逐一具体说明。
太阳能发电设备(1)
太阳能发电设备的功能在于利用太阳光来进行发电,对其的具体种类不做限制,可以根据具体的条件和需要进行选择。例如,当所述系统装置是用于建立大型太阳能充电站,可以选择集中式的太阳能发电设备从而实现大功率的发电,并可以为大量的所述手提电池包(3)进行充电。额外的电能还可以通过联入电网用于其它的地方。当所述利用太阳能为电动车充电的系统装置是作为家用,则其太阳能发电设备会选择分布式的太阳能发电设备(1);比如在房屋建筑的屋顶或外墙安装太阳能发电板,将太阳能发电板连接至控制器并进行 进一步的电能传输。
太阳能板中的太阳能电池(solar cell)的种类和数量也不作限制;可以是:单晶硅电池、多晶硅电池或各种的薄膜电池(thin-film solar cell),例如二元化合物薄膜电池(碲化镉、砷化镓)、三元化合物铜铟硒化物薄膜电池(Copper Indium Selenide,CIS),四元化合物铜铟镓硒化物薄膜电池(Copper Indium Gallium Selenide CIGS)。
DC/DC电能传输装置(2)
DC/DC电能传输装置的功能在于实现两个电源系统之间电能传输,可以智能控制传输中的电流、电压等,以实现能量传输过程的高效和安全。
具体而言,在本申请的系统装置中,所述太阳能发电设备(1)连接所述DC/DC电能传输装置(2)并将利用太阳能发电的电能安全、快速、稳定地传输给所述手提电池包(3)。所述DC/DC电能传输装置2可以连接一个或多个所述手提电池包(3)来为其充电。
手提电池包(3)
在本申请的系统装置中,手提电池包(3)是作为一种能源的载体来利用光伏发的电去驱动电动车。这些已充电的手提电池包(3)可以插入到所述电动车(4)内为其供电;所述手提电池包(3)是便携式(portable)设计,其重量和大小都是一个普通人可以很方便的携带的,并且在无需工具的情形下可以用人手将其插入电动车(4)中。也就是说这个将手提电池包(3)安装在电动车(4)内的过程无需另外的机器设备。
由手提电池包(3)供应能量的电动车(4)
所述电动车(4)最重要的特征在于可以利用所述系统设备中的手提电池包(3)来提供能量。由于已充电的手提电池包(3)可以在无需工具的情形下用人手将其插入电动车(4)中,从而为电动车提供电能,电动车(4)的充电过程其实就是将手提电池包(3)安装在电动车(4)的过程,因此可以很快地完成充电。由于手提电池包(3)中储存的电能是通过太阳能转换而来,而且这个过程也无需消耗任何的燃料,因此电动车使用的电能是非常绿色环保而且经济节能的。
在一个具体的实施例中,手提电池包(3)可以直接连接电动车(4)的电动机为其供电。对于有固定电池或者超级电容器的电动车(4),手提电池包 (3)也可以先为电动车(4)的固定电池或者超级电容器充电,再由固定电池或者超级电容器为电动机供电。
如图1B所示,在一个具体实施例中,这种利用太阳能为电动车充电的系统装置中的电动车(4)还安装有另一个DC/DC电能传输装置(2);所述手提电池包(3)可以通过这一个电动车内的DC/DC电能传输装置(2)为电动车的固定电池(或超级电容器)充电,电动车的固定电池(或超级电容器)连接一个电动车控制器来为电动机供电。所述手提电池包(3)也可以直接连接电动车控制器为电动车的电动机供电。
在一个具体实施例中,这种利用太阳能为电动车充电的系统装置中的所述电动车(4)不仅可以是乘用车,还可以是商用电动车,例如出租车、小客车、大客车、货车。对于客车或者货车而言,往往需要比私家车更多的能量,其设计可以安装更多的手提电池包(3)来为该电动车(4)供电。
在一个具体实施例中,所述电动车(4)可以为纯电动车或油电混合能源车。油电混合能源车主要的区别在于安装有内燃机和发电机,所述内燃机包括:汽油发动机(petrol engine)、柴油发动机(diesel engine)等;并且发电机可以为电动机供电,也可以为电动车(4)内的所述手提电池包(3)充电。这样的设计主要用于长途行驶。如果沿途的充电站等充电设备有不足的情况,使用所述混合能源车就可以避免在半路没电的尴尬。在本方案实际实施过程中,可依据具体情况对具体步骤及实施方式进行调整,以符合实际情况要求,具体此处不做限定。
实施例2:DC/DC电能传输装置的构造和原理
DC/DC电能传输装置用于连接两个不同的DC电源,控制电压和电流来保证电能传输的安全、稳定和快速。该装置可以采用智能化设计,装有多个传感器以侦测输入电源和输出电源的电压和温度、以及传输电流的大小,并通过一个CPU(23)来控制输出的电流和电压,以使得电能的传输过程能够优化并保证其安全。
图2是本申请提供的一种DC/DC电能传输装置的构造图。该DC/DC电能传输装置主要包括以下组成部件:
本装置的核心部件是一个DC电流控制器(21),它是一个由脉冲信号控制的电流开关,可以在瞬时间让DC电流通过或者阻断DC电流的通过。脉冲 发生器(22)发出脉冲信号来指挥DC电流控制器(21);脉冲信号控制DC电流控制器(21)的打开和关闭;其打开和关闭的时间长度由脉冲信号决定。
所述脉冲发生器(22)的脉冲信号的脉冲形式由中央处理器CPU(23)编程控制;所述CPU(23)接收装置内部和外部的多种信号,包括电压、电流和温度等等,并根据这些信号来发出指令,指挥所述脉冲发生器(22)输出何种脉冲信号的形式。
在一个具体实施例中,该电能传输装置还包括:连接所述DC电流控制器(21)与输出端的电感器(24);位于输出端的电容器(25);连接DC电流控制器(21)与输入端的DC/DC变压器(26);以及三个DC电流通道上的可控智能开关S1,S2和S3;这些开关由CPU(23)控制。
电能传输中,输入电源的电压与输出电源的电压经常是不同的,有时甚至有较大的差异。这时就容易出现安全问题。用脉冲信号控制传输电流和利用电感器确保即使在输入电压和输出电压即便有较大落差时,仍可保障电流的流通在一个安全的范围。所述DC/DC变压器(26)可以将电压升至输入电压的1.2至8倍,或将电压降至输入电压的0.2至0.8倍;对电压的升降倍数的选择由所述CPU(23)控制;该装置保证了不论输入电源电压和输出电源电压的差异为何,均可以让电流单向地从输入电源向输出电源流通,并保证了在充电的过程中输入电源能够持续地为输出电源供电。
脉冲式DC/DC电能传输装置的工作原理
在本申请的系统装置中,涉及到多个大功率的电源系统,包括太阳能发电设备(1)、手提电池包(3),电动车(4)内的各种电源系统,包括安装在车内的手提电池包(3)、固定电池、超级电容器、发电机等等。如何控制大功率的电流在不同电源系统之间的流动,是一个非常重要的安全课题。本申请提供的脉冲式DC/DC电能传输装置是专门针对解决以下技术问题来设计的:
当电源A向电源B充电时,这两者的电压并不相等。在连接这两个电源时,如何控制其电压差,使得电能传输过程能够安全地进行?
如何避免瞬时电流过高造成安全问题?
当电源A的电压低于电源B的电压时,如何能让电源A继续为电源B充电?
如何控制平均电流,使其保持在合适与安全的范围?
在实现上述电能转移时,如何把传输中的能量损耗降到最低?
以下对于装置运作原理的介绍,其重点就是说明该装置如何解决以上的技术问题。
如图2所示,首先,当利用该电能传输装置时,电流是以脉冲形式通过的。装置中的DC电流控制器(21)接收来自脉冲发生器(22)的脉冲信号,并根据该信号实现在亚微秒的时间范围打开和关闭,从而控制通过开关的电流,让电流用一串脉冲波(pulse train)的方式传递。这样就能灵活调整通过装置的平均电流并避免瞬时电流过高。
脉冲信号的脉冲形式由CPU(23)编程控制。装置内的CPU(23)会持续不断接收输入端、输出端和装置内各处的电流、电压和两端电气电源的温度信息;它会根据这些信息不停调整其脉冲信号的形式,以适应不同状况下的能量传输。这样就可以实现智能控制。
另外,该装置利用电感器(24)来防止瞬时电流过高并产生一个有效的电位差。具体而言,电感器(24)有两个作用,第一个是防范瞬时的电流过大,第二个是可以产生一个电位差,来降低两个大功率的电源之间的电位差别。这个由电感器产生的电位差,可以通过改变DC电流控制器(21)内的开关的频率来调整。由于这个电位差与电路的相位不同,不会像电阻那样损耗电能。这样就可以在控制电流时,不会产生能量的损耗。
脉冲信号的具体形式是调控电能传输中的电压、电流的一个重要参数。因此特别需要具体说明。由于装置内的CPU(23)会根据侦测到的电流电压等信号给出不同形式的脉冲信号形式。该脉冲信号的形式会发送给脉冲发生器(22)。根据该脉冲信号的不同形式,脉冲发生器(22)会对DC电流控制器(21)发出不同脉冲信号的指令。DC电流控制器(21)是一个可以被脉冲发生器(22)控制的智能开关。它可以快速进行开(ON)和关(OFF),其开关时间(打开时间Δt与关闭时间t 1)可以在亚毫秒(sub-mini-second)的速度。脉冲发生器(22)产生脉冲来指挥DC电流控制器(21)的开/关(ON/OFF),从而产生一串脉冲波(pulse train)。当有电流通过该DC电流控制器(21)时,就会产生脉冲电流。
该脉冲波的各项时间参数包括:
(a)每个脉冲波内的一个脉冲的ON的时间Δt,
(b)每个脉冲波内的一个脉冲的OFF的时间t 1
(c)每个脉冲波持续的时间t 2
(d)每个脉冲波之间间隔的时间t 3
(e)图3是一个脉冲波信号的例子;作为以上这些参数所代表的物理量的参考示意图。
(f)结合图3的例子可以具体说明本装置如何调整这些脉冲信号以保证电能传输的安全,包括避免电源电压差过大时造成的安全问题,保证传输的电流在一个安全及合适的范围。
(g)在图3的具体例子里,每个脉冲波内的一个脉冲ON和OFF的时间是相同的Δt=t 1,如图2所示的脉冲式电能传输装置中通过电感器(inductor)(24)的瞬时电流为:
Figure PCTCN2021080407-appb-000001
其中ΔV是电压差,电感器(24)的阻抗(impedance)Z为
Z=ωL,
其中ω是频率,L是电感,
Figure PCTCN2021080407-appb-000002
因此:通过装置的瞬时电流为
Figure PCTCN2021080407-appb-000003
由于ΔV=V A-V B,可以得到:
V B≈V A-I maxωL,
其中I max为通过的最大电流,V A为装置输入端的电压,V B为装置输出端的电压。因此,通过改变每个脉冲波内的一个脉冲的ON的时间与OFF的时间(Δt,t 1)就可以改变频率,从而调节电压,避免电源电压差过大时造成安全问题。简单来说就是通过控制脉冲的频率(ω)来控制电压差。
至于其最大电流
Figure PCTCN2021080407-appb-000004
其中I peak为不通过DC电流控制器(21)直接连接时所通过电流的最大值。
在这个具体例子里,每个脉冲波持续的时间为t 2,只有在t 2的时间里,DC电流控制器(21)是可能处于打开(ON)的状况。因此,通过DC电流控制器(21)的平均输出电流(I average)是所有该开关在ON的时候的电流的总和除以一串脉冲波的时间。因此其平均输出电流为:
Figure PCTCN2021080407-appb-000005
因此,通过改变每个脉冲波的持续时间(t 2)和脉冲波的间隔时间(t 3),就可以改变通过本申请提供的脉冲式电能传输装置的平均输出电流,使得其平均输出电流保持于一个稳定安全的水平。
在另外一个例子里,每个脉冲波内的一个脉冲的ON的时间为OFF的时间的两倍,即Δt=2t 1。此时,通过装置的平均电流
Figure PCTCN2021080407-appb-000006
显然这是一个需要的平均电流大于上述的Δt=t 1的例子。
如果当电源A的电压小于电源B的电压时,通过本装置内的DC/DC变压器(26)就可以通过升压保证电能可以有效地从电源A转移至电源B。如图2所示,当CPU(23)侦测到电压A小于电压B时,装置的第三个智能开关S3打开,第一个智能开关S1关闭,电流通过DC/DC变压器(26)将电压升高,例如升为原本电压的1.5倍后(即V D=1.5V A),再通过DC控制器1以脉冲电流的形式将电流稳定传输给电源B。
另外,如果电源A的电压远远大于电源B的电压时,通过本装置内的DC/DC变压器(26)也可以通过降压保证电能可以安全有效地从电源A转移至电源B。根据不同的情况,该DC/DC变压器(26)可以将电压升至输入电压的1.2至8倍,或将电压降至输入电压的0.2至0.8倍。对电压的升降倍数的选择由所述CPU(23)控制。
最后,装置内的电感器(24)还能解决降低能耗的问题。本实施例中的脉 冲式电能传输装置中的电感器(24)有一个自带的功能,即让通过的电流I与电压V之间有一个90度的相位差,也就是θ=90°,即cosθ=0。因此电流通过电感器(24)消耗的能量为
W=IVcosθ→0
因此本申请所提供的电流控制器会将能量的消耗最小化。
脉冲式DC/DC电能传输装置的运作方法
脉冲式电能传输装置在没有使用时,其各个智能开关(S1,S2,S3)都是处于关闭状态。
如图2所示,当该装置的两端连接两个电源A和电源B时,装置内的CPU(23)会侦测输入端电源A的电压V A和输出端电源B的电压V B
当V A>V B,而且V A-V B高于对电源B进行有效充电的要求时,CPU(23)会指挥第一个智能开关S1打开,第二个智能开关S2与第三个智能开关S3保持关闭。当第一个智能开关S1打开后,电源A可以通过DC电流控制器21来为电容器(25)充电。电容器(25)的电压为V C。当该电压V C升高到与输出端电源B的电压V B相同时,第二个智能开关S2打开。这样,当两个电源间有电压差时,避免了两个电源在连接时产生过大的瞬时电流,保证两个电源连接时的安全。
第二个智能开关S2打开后,CPU(23)指挥脉冲发生器(22)发给DC电流控制器(21)脉冲信号来控制通过的电流。通过调节脉冲信号,DC电流控制器(21)会让电能安全及高效地由电源A转移至电源B。
当CPU(23)侦测到V A-V B低于对电源B进行有效充电的要求时,CPU(23)会指挥第一个智能开关S1关闭,并打开第三个智能开关S3。这样电源A为电源B充电时会经过DC/DC变压器(26)将DC电流控制器(21)的输入端电压V D提升,让V D-V B达到对电源B进行有效充电的要求。根据需求,DC/DC变压器(26)可以将电压升至输入电压的1.2至8倍。这样装置就可以继续利用DC电流控制器(21)来控制电能安全及有效地转移至电源B。
在另一种情形中,当V A>>V B,而且V A-V B远远高于对电源B进行有效充电的要求时,CPU(23)会指挥第三个智能开关S3打开,第一个智能开关S1与第二个智能开关S2保持关闭。当第三个智能开关S3打开后,电源A为电 源B充电时会经过DC/DC变压器(26)将DC电流控制器(21)的输入端电压VD降至输入电压的0.2至0.8倍,让V D-V B达到对电源B进行安全充电的要求。根据需求,DC/DC变压器(26)可以将电压电源A通过DC电流控制器(21)来为电容器(25)充电。电容器(25)两端的电压为V C。当该电压V C升高到与输出端电源B的电压V B相同时,第二个智能开关S2打开。这样,当两个电源间有电压差时,输出端的电容器(25)在脉冲式电能传输装置中起缓冲作用,保证两个电源连接时的安全。当CPU(23)检测到充电完成后,会关闭所有智能开关(S1,S2,S3)。
以上描述的运作方法是本装置使用电源A为电源B充电的一般的充电情况。其他的充电情况可以根据上述描述很容易地类推得出。例如,当电源A原本储存的能量就比较少,电压比电源B小;那么当本装置连接两个电源时,第一个智能开关S1会保持关闭,第三个智能开关S3和第二个智能开关S2会打开,电源A的电流会在经过DC/DC变压器(26)升压以后,通过DC电流控制器(21)为电源B进行充电。
为了更清楚地说明本实施例提供的一种智能脉冲式电能传输装置的具体构造和每个部分的功能,表1详细列出了智能脉冲式电能传输装置主要组成部分的名称和功能。
Figure PCTCN2021080407-appb-000007
Figure PCTCN2021080407-appb-000008
表1
在一个具体的实施例中,所述的DC/DC电能传输装置的输入电源可有多种,包括:光伏电源、使用家用电源的充电器、电动车用的充电桩、手提电池包;该装置的输出电源也可有多种,包括:手提电池包、电动车内的固定电池或超级电容器。
所述的DC/DC电能传输装置为了配合不同的功率的输入电源(例如不同功率的太阳能发电设备1)或者不同的输出电源,DC/DC电能传输装置的工作电压范围为40-600V,电流为0.2-200A,功率为0.01-120kW。
使用DC/DC电能传输装置为两个电池包进行充放电的例子
在一个具体的例子中,所述DC/DC电能传输装置连接两个手提电池包进行充放电。当两个手提电池包(例如由锂电池组组成)互相进行充电和放电的时候,除了安全的考虑以外,还有如何高效地传输能量。
举例而言,当一个由48个松下NCR18650B锂电池串联而成的电池组(电池组A)为另一个相同的电池组(电池组B)进行充电。这样一个电池组的总电压约为180V。假设电池组A几乎是充满电的,而电池组B几乎是空的,其充电电流为保持恒定的1安培(这是一个测试电流的中间值)。在充电约20%以后,对于每一个电池组A里的NCR18650B锂电池而言,其电压就由4V降到了3.8V左右;电池组B的NCR18650B锂电池电压就会由原本的3.5V左右升至3.6V左右,即:
在t=0时,对每个单个的NCR18650B锂电池,
Figure PCTCN2021080407-appb-000009
因此,电池组A与电池组B之间的电压差在此时为:
Figure PCTCN2021080407-appb-000010
此时两个电池组之间的电压差比较大,充电可以高效进行。
当充电至20%时,对每个单个的NCR18650B锂电池,
Figure PCTCN2021080407-appb-000011
因此,电池组A与电池组B之间的电压差在此时为:
Figure PCTCN2021080407-appb-000012
此时两个电池组之间的电压差已经很小,充电很难继续进行。
按照NCR18650B锂电池的数据单显示,当充电至50%时,其电压差为0,电池组A早已经不可能为电池组B充电。要克服这个由于充电电源A的电压下降和被充电电池组B的电压上升而造成的难以有效继续充电的困难,智能化的脉冲式DC/DC电能传输装置里安装有DC/DC变压器(26),在电压差过小时,提供升压的功能。如图2所示,在上述电池组A对电池组B开始充电时,智能开关S1打开,S3关闭,V D=V A。当CPU(23)侦测到
Figure PCTCN2021080407-appb-000013
低于对电池组B进行有效充电的要求时,CPU(23)会指挥第一个智能开关S1关闭,并打开第三个智能开关S3。这样电池组A为电池组B充电时会经过DC/DC变压器(26)将DC电流控制器(21)的输入端电压VD提升,让
Figure PCTCN2021080407-appb-000014
达到对电源B进行有效充电的要求。这样就可以保证一直充电到最后,电池组A都可以高效地为电池组B进行充电。
假设当电池组A为电池组B充电完成80%时,
Figure PCTCN2021080407-appb-000015
通过DC/DC变压器(26)将电压升为原本电压的1.5倍,即:
V D=1.5V A=4.8V
因此,
Figure PCTCN2021080407-appb-000016
此时的电压差足够大,充电依然可以高效进行。
总结而言,为了保持足够大的电压差来进行高效充放电,本申请设计的智 能化的脉冲式DC/DC电能传输装置会设定将电压差
Figure PCTCN2021080407-appb-000017
保持在一个合理范围内,例如约0.1-0.4的范围内。
需要指出的是,本申请中的DC/DC电能传输装置(2)可以有多种设计,包括智能化与非智能化的设计。例如,在技术要求比较简单的情况下,也就是说,当输入电源与输出电源的电压都是固定的,所述DC/DC电能传输装置(2)可以由一个DC/AC逆变器和一个AC/DC充电器共同组成。在本方案实际实施过程中,可依据具体情况对该设备结构进行调整,以符合实际情况要求,具体此处不做限定。
实施例3:手提电池包的设计
一种适用于利用太阳能为电动车充电的系统装置的手提电池包(Portable Battery Pack,简称PBP)。该手提电池包由多个锂电池并联或串联组成。在一个实施例里,所述手提电池包可以由48个电池组串联组成,而每一个电池组是由6个锂电池(松下21700)并联组成。这个电池包的电压是180V,它存储的能量为6kWh。这个手提电池包可以驱动一部轻型电动车行驶约50公里。因此,只要这部电动车插入四个已充电的电池包,它就可以行驶约两百公里。这已经达到了目前一般电动车行驶的续航力。
当然,在实施这种由手提电池包驱动电动车的技术的时候,根据不同的情形,手提电池包的电压和存储的能量可以有一个很大的弹性范围。例如,根据电动车设计的不同,手提电池包的电压可以在40-600V之间,所储存的能量在0.2-20千瓦时之间。
如图4所示,在另一个具体的实施例中,所述手提电池包PBP由48个电池组串联组成,每个电池组由5个锂电池并联组成。这些锂电池可以采用松下21700锂电池。这种锂电池的单个重量约为60克,电压为3.0-4.2V,最大输出电流为20A,充电后的储能容量为4800mAh。因此,对于单个所述电池组:
平均输出电压V=3.75V
输出电流I=5x20A=100A
输出功率P=100A x 3.75V=375W
充电后的电能E=5x 4.8Ah x 3.75V=90Wh
如图4所示,整个手提电池包PBP是由48个所述电池组串联组成。因此, 对于单个PBP而言,
平均输出电压V PBP=48x 3.75V=180V
输出电流I PBP=100A
输出功率P PBP=18kW
充电后的电能E PBP=4.32kWh
采用这个设计,所述手提电池包的锂电池部分的总质量约为48x 5x 60g=14.4kg,加上BMS和PBP的外壳,所述PBP的总重量可以小于20公斤。这样的一个手提电池包足够轻便,可以很容易地插入电动车内,也可以很容易地从电动车内取出,而不需要其它的工具或机械的帮助。所述手提电池包在车外充电后,就可以插入电动车里为电动车供电。对于一部高效能的轻便电动车来说,充电后的所述PBP就有足够的电能可以支持它行驶几十公里。
为了确保所述手提电池包的安全运作,所述锂电池和电池组中安装有探测电池的电压、电流和温度的探测器。当所述手提电池包运作时,这些探测器会持续将其电池的电压、电流和温度信息传递给电池包内的电池管理系统(Battery Management System,简称BMS)。BMS根据这些信息控制锂电池组的充电和放电情况来调整充电或放电的电流。例如,如果充电的电流过大引致电池组的温度过高,BMS就会降低充电电流以使得电池组能够安全地操作。另外,BMS也可以控制冷却装置为电池组进行降温。例如当手提电池包在使用高通量电流电源进行充电时,BMS会打开风扇抽风,使用风冷的方法为所述手提电池包进行降温。在其他一些实施例里面,所述手提电池包也可以使用液冷的方式降温。
图5为一种适用于利用太阳能为电动车充电的系统装置的手提电池包外部的正面和背面的结构示意图。手提电池包作为一种便携式的能量载体,其设计必须是一个普通人可以方便提起或搬运的;另外,为了使所述手提电池包能方便地应用于为电动车充电,电池包不能太大太重;但其存储的能量也不能太少,否则就要安装大量的电池包才能有足够的电能来支持一辆电动车(4)的行驶。因此所述的手提电池包重量既不能太轻也不能太重,最好在20公斤左右,体积约为一个手提行李箱的大小即手提电池包重量为0.3-40千克,体积为0.001-0.5立方米;并如图5所示,正面设有方便携带的把手,可以在无需其他工具的情况下,很容易地插入到电动车内或从电动车中取出。如图5所示,手 提电池包背面设有一个直流电接口(例如GB/T 20234.3-2015),用于连接所述电动车(4)的电能系统,直接为电动机提供能量或者为电动车内的其他储能装置充电。
在一个具体实施例中,所述的手提电池包(3)有一个或多个接口,接口的位置不做限定。这个设计主要是使得手提电池包(3)的充电和放电都能够更加灵活。例如不同的接口可以使手提电池包(3)连接多种不同的电源系统,包括:用所述的DC/DC电能传输装置连接的光伏电源、家用充电桩、电动车用充电桩等电源,为其充电。这样用户可以根据具体条件,选择最合适的电源来为手提电池包充电。例如在有的用户家中安装有本申请的系统装置中的太阳能发电设备(1),他可以很方便地在家中把手提电池包连接至DC/DC电能传输(2)装置连接光伏发电来使用太阳能为其充电。另一位用户家里没有安装任何太阳能发电的的设备,可以用普通的家用电源为其手提电池包(3)充电。所述手提电池包背面的接口可以连接电动车内的供电系统,为电动车的电动机供电或者为电动车的固定电池充电。在本方案实际实施过程中,可依据具体情况对该设备结构进行调整,以符合实际情况要求,具体此处不做限定。
实施例4:一种适用于所述利用太阳能为电动车充电的系统装置的电动车
一种适用于所述利用太阳能为电动车充电的系统装置的电动车,如图6所示,车内可以安装有利用所述系统装置进行太阳能发电并储存所发电的电能的手提电池包(3)(PBP),这些充电后的手提电池包可以插入到一部车里,为电动车供电。一种最简单的电动车是只需要手提电池包作为唯一的电能储备系统,电池包可以直接为电动车的电动机供电。另外一些电动车可以装有固定电池(如图6所示)。在这种情况下,所述手提电池包(3)除了可以直接提供能量驱动电动车以外,还可以选择为所述固定电池充电,电动车行驶时需要的能量可以由固定电池提供。由于手提电池包(3)与固定电池之间的可能会有较大的电压差,为了保证所述的充电过程能安全有效进行,两者之间的电能传输可以通过一个所述的DC/DC电能传输装置(2)来完成。使用所述手提电池包的一个连接接口,例如如图5的背面接口,连接DC/DC电能传输装置(2),再通过DC/DC电能传输装置为所述固定电池进行直流电充电。在另一种情形中,电动车(4)内还安装有超级电容器,所述手提电池包(3)也可以选择为超级电容器充电。所述超级电容器可以直接为电动机供电。
由于不同种类的电动车(4)的行驶单位距离的能耗不同,每次需要行驶 的旅程长短也不一定一样,为了满足对电动车(4)所需电能的不同需要,所述的电动车(4)内安装有一个或多个连接所述手提电池包(3)的接头。这些电动车内的接头要与所述手提电池包(3)上的接口相对应/匹配。每个接头可以连接一个手提电池包(3)。这样驾驶员可以根据所需情况选择安装一个或多个所述手提电池包(3)为电动车供电。
为了方便驾驶员把所述手提电池包(3)安装到电动车上,其安装的位置可以是在车子的尾端或前端。例如图6中的手提电池包就安装在电动车(4)的尾部。这样驾驶员就可以不需要应用任何工具,可以很轻松地把电池包插入或取出电动车。为了安全的理由,当把手提电池包安装好以后,可以进行上锁。另外,为了避免意外,当车子未熄火时或是正在为电动车充电时,锁不能打开。
上述适用于所述利用太阳能为电动车充电的系统装置的电动车除了可以利用太阳能充电的手提电池包(3)供电或充电外,也可以像传统充电方法一样使用充电桩进行充电。这样车主就可以根据情况,更灵活地选择不同的电源系统为电动车充电。
对于某些需要开长途的电动车而言,沿途充电是一个很大的困难。如果沿途还没有建立所述利用太阳能为电动车充电的系统装置的充电站,无法进行快速充电,就算找到传统的充电桩,等待充电也是一件很麻烦的事情。因此,在一个具体的实施例中,所述的电动车(4)可以是一部混能电动车。所述电动车的能量系统除安装有所述的手提电池包(3)之外,还安装有内燃机以及与其连接的发电机(如图7所示)。具体而言,内燃机通过化石燃料燃烧产生的化学能可以为发电机提供能量,所述内燃机可以包括:汽油发动机(petrol engine)、柴油发动机(diesel engine)等,在此不做限定;发电机把这些化学能转化为电能;发电机通过一个DC/DC电能传输装置连接到一个固定电池或者超级电容器,为其充电。所述固定电池或者超级电容器则连接电动机为其供电。所述发电机也可以为手提电池包(3)充电,手提电池包再通过一个DC/DC电能传输装置为超级电容器或者固定电池充电。在另外一个例子中,所述电动车也可以使用燃料电池来代替上述内燃机和发电机来产生电能为电动车(4)供电或为手提电池包、固定电池或超级电容器充电。
所述的手提电池包还可以作为所述电动车的救急电能储备装置。例如,当一辆所述电动车(4)用光了电能需要救助时,驾驶员只需要找一个已充电的手提电池包,替换掉车中的一个已耗尽电的电池包,就可以让电动车重新上路。 这个救急用的手提电池包,可以用本申请描述的太阳能系统充电。如果这种救急情况发生在缺乏充电站的地方时,这个救急用的电池包也可以由另一部本申请所述的混能电动车提供。这部混能电动车可以用它的发电机为所连接的手提电池包(3)充电。充电后的手提电池包(3)可以从该车取出,然后安装到没有电需要救助的电动车(4)上为它提供电能。
在这个实施例中,驱动电动车的能源可以有多种办法供应:(a)一种最环保节能的充电方法就是利用本申请所提供的利用太阳能为电动车充电的系统装置,先用太阳能为手提电池包(3)单独充电,再将手提电池包安装到电动车上为其供电。(b)为了更加灵活地提供各种充电选择,所述手提电池包(3)也可以用其他电源来充电,例如家用电源;手提电池包单独充电完成后再放回电动车中为其供电。(c)像目前插电式混能电动车(plug-in hybrid EV)那样使用充电桩为电动车内的储能系统充电。(d)使用车内的内燃机来驱动发电机,为超级电容器或者固定电池供电。(e)内燃机燃烧化石燃料驱动发电机,发电机为手提电池包(3)进行充电;已充电的电池包再通过超级电容器或者固定电池为电动机间接供电。
上述供电途径(a)直接使用太阳能驱动电动车,最为节能环保;(b)和(c)使用电网的电能来驱动电动车,也较为环保节能;途径(d)和途径(e)使用化石燃料发电来驱动电动车,比较不环保。但为了增加电动车(4)充电的灵活性,以及在还没有建立利用太阳能为电动车充电的充电站前保证长途行车的续航力,本申请提供的上述油电混合能源的电动车(4)可以同时满足节能环保和续航力上的要求。在本方案实际实施过程中,可依据具体情况对该设备结构进行调整,以符合实际情况要求,具体此处不做限定。
实施例5:家用系统装置的实施方式:
随着人们环保节能意识的提高,很多家庭会选用分布式的太阳能发电设备(1),把光伏发电板安装在其房屋的屋顶、外墙、阳台、窗户等有阳光的地方,利用本申请提供的系统装置为电动车(4)充电。所述分布式的太阳能发电设备(1)连接一个DC/DC电能传输装置(2),通过所述DC/DC电能传输装置(2)为其连接的一个或几个手提电池包(3)充电。充好电后的手提电池包(3)可以安装在电动车(4)内为电动车供能。
这样,利用本申请系统装置,只需备有几个手提电池包(3)就可以方便地基本利用太阳能驱动电动车(4)。例如,白天出门前,将其中一个或多个 利用本系统装置充好电的手提电池包安装在电动车(4)内驱动电动车;再将另外的一个或多个需要充电的手提电池包(3)放在家里连接所述DC/DC电能传输装置(2)用太阳能充电。晚上驾驶员在开车回家后,只需将耗光电能的或者将要耗尽电能的手提电池包(3)从电动车内取出,把已经充好电的手提电池包(3)安装到电动车(4)内就可以完成充电过程。在一种具体实施方式中,每个所述手提电池包(3)的电能容量(例如6kWh)大概可以让车行驶50公里。只需要1-2个充电的手提电池包(3)来为电动车供电就足够一个普通人多于一天的用车需求。这样使用家用系统装置可以完全做到日常电动车的供电完全是使用太阳能,非常环保经济,其充电过程不仅非常简单快捷,而且对电动车的使用或是停放位置都没有任何限制。
当车主需要驾驶长一点的距离,担心中途没有电时,还可以利用这个家用系统装置准备更多的备用手提电池包(3)。启程时,不仅将充好电的手提电池包(3)安装在电动车(4)上为电动车(4)供电,还把充好电的备用电池包(3)也放在车子的后备箱里。当途中电动车没电时,可以用这些备用电池包(3)替代那些耗光电的手提电池包(3)。由于所述手提电池包(3)的设计是可以不需要其他工具,很容易地取出或插入安装,普通人也可以方便地完成这个替换过程。
在一种应急的情况下,例如没有太阳,无法使用太阳能发电设备(1)为手提电池包(3)充电的情况下,所述手提电池包(3)也有接口可以通过连接一个充电器利用家用电源充电。在本方案实际实施过程中,可依据具体情况对具体步骤及实施方式进行调整,以符合实际情况要求,具体此处不做限定。
实施例6:商用系统装置的实施方式:
有的车主没有建立利用太阳能为电动车充电的家用系统装置的条件;而且,在长途行车时,也需要有能够快速充电的地方。因此,这就有需要建立一套基于本发利用太阳能为电动车充电的系统装置的商业模式,以解决上述的问题。
这种商业模式的利用太阳能为电动车充电的系统装置,可以同时为多个手提电池包快速地充电。事实上就是一种大规模的为电动汽车充电的太阳能充电站。如图8所示,该充电站包括:大功率的太阳能发电设备(1),多个所述的DC/DC电能传输装置(2);可以同时为多个所述手提电池包(3)充电。
就像现在的燃油汽车去加油站加油一样,电动车就可以开到所述充电站内 的停车场(也可以是在附近的一个停车场内)停放。然后把电动车(4)里需充电的手提电池包(3)取出,连接到充电站内的所述DC/DC电能传输装置(2)并为其进行快速充电。充电站内的这些DC/DC电能传输装置把大功率太阳能发电设备(1)发的电转移到手提电池包。由于每个手提电池包(3)的储能相对整个电动车(4)的储能系统而言只是其中一小部分,加上是利用直流快速充电,每个手提电池包(3)充电的时间可以很短(比整车充电的时间为短)。当这些手提电池包(3)充满电后,司机可以把这些已充电的电池包安装回电动车(4)里,电动车的充电即告完成。
如图9所示,由于所述充电站可能需要为大量的手提电池包充电,在一个具体的例子里,所述太阳能充电站采用一种格子式的结构来提供多个充电接口,每一个格子可以插入一个所述手提电池包(3)并连接格子里的充电接口来进行充电,充电完毕后,手提电池包(3)可以取出。所述系统装置中,可以是一个DC/DC电能传输装置(2)连接一个充电的格子,也可以是一个DC/DC电能传输装置连接多个充电的格子。基于前面对手提电池包的特征的描述,所述手提电池包(3)插入和取出所述充电的格子的过程不需要其他工具,一个普通人就可以完成。
作为一种商业运行模式,驾驶员利用太阳能充电站来为他的电池包充电时,需要付出一定的费用。这种收费过程可以利用现有的网络付款形式来进行。
无论是使用家用系统装置还是商业系统装置来为电动车充电,其基本的充电方法是一样的。如图10所示,这一种利用太阳能为电动车充电的方法,适用于各种所述利用太阳能为电动车充电的系统装置来利用太阳能为电动车充电;该方法包括,
利用所述太阳能发电设备(1)进行发电,产生的电能通过所述DC/DC电能传输装置(2)为多个手提电池包(3)充电,
充电后的所述手提电池包(3)可以通过人手的操作插入到所述的电动车(4)中,
从而使用所述手提电池包(3)内存储的电能为所述电动车供电。
该充电方法,利用所述的手提电池包(3)为电动车快速充电;当所述电动车(4)内的储存电能不足时,可以把耗光电能的或者将要耗尽电能的所述手提电池包(3)从车内取出,换上已充电的手提电池包(3)。该已充电电池 包可以为电动车的电动机直接供电;对于有些有固定电池包或是超级电容器的电动车,这些已充电的手提电池包(3)也可以为电动车的固定电池或超级电容器充电。
作为商用系统装置的实施方式的一种具体实施方式,所述充电站也可以利用太阳能发电设备(1)先为许多可出租手提电池包(3)充电。当电动车(4)需要充电时,只需去到充电站,租借一个或多个已充电的手提电池包(3)安装在电动车上,这些已充电的手提电池包可以直接为电动车供电,或者为电动车的固定电池充电。这种用替换手提电池包的充电方式,更加方便快捷。当这样充电站普及后,所述电动车(4)的车主可以选择在买车时无需购买手提电池包(3),只是使用可出租手提电池包(3)为电动车(4)供电即可。
利用所述商用系统装置,就可以使没有安装家用系统装置或是需要长途行车的车主也可以很方便地使用太阳能为电动车供电,从而更加环保经济。其充电方法也非常简单快捷,普通人都可以容易地完成。在本方案实际实施过程中,可依据具体情况对具体步骤及实施方式进行调整,以符合实际情况要求,具体此处不做限定。
实施例7:手提电池包(3)(PBP)作为多用途的光伏能源载体的应用
无论是使用上述哪一种的利用太阳能为电动车充电的系统装置,当太阳能特别充足时,充满电的手提电池包(3)除了为所述电动车(4)充电或供电以外,可能会有多余的电能。为了优化系统装置对太阳能的利用,还可以把手提电池包(3)(PBP)作为多用途的光伏能源载体,来为其他用电设备提供电能。如图11所示,一种应用所述的手提电池包(3)来提供光伏电能的方法是:
利用所述太阳能发电设备(1)为一个或多个所述手提电池包(3)充电;
充电后,有的电池包(3)可以安装在电动车(4)内用于为电动车提供电能;另外一些充电后的电池包还可以通过连接一个逆变器为家用电器提供电能或者作为应急用的后备电能用来应急。
在另一种情形下,当车主的家里遇到紧急断电的情况,例如在台风吹袭时或者供电电网发生意外时,可以利用安装在电动车(4)内的手提电池包(3)作为家用的应急电源。在这个时候,就可以把手提电池包(3)从电动车中取出,通过一个逆变器为其家里的电器(包括照明,电冰箱,电脑等等)供应电能。在本方案实际实施过程中,可依据具体情况对具体步骤及实施方式进行调 整,以符合实际情况要求,具体此处不做限定。
以上对本申请所提供的一种利用太阳能为电动车充电的系统、相关装置及方法进行了详细介绍。说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法而言,由于其与实施例公开的系统和其相关装置相对应,所以描述的比较简单,相关之处参见方法部分说明即可。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请所提供的技术方案原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。可以理解的是在本领域技术人员不付出创造性劳动的情况下,所获得的其他实施方式,都属于本申请所包括的权利要求范围。

Claims (21)

  1. 一种利用太阳能为电动车充电的系统,其特征在于,包括:太阳能发电设备(1)、DC/DC电能传输装置(2)、手提电池包(3)及由所述手提电池包(3)供应能量的电动车(4);
    所述太阳能发电设备(1)通过所述DC/DC电能传输装置(2)与所述手提电池包(3)连接,从而利用光伏电能为所述手提电池包(3)充电;
    所述手提电池包(3)可插入到所述电动车(4)内为所述电动车(4)供电;所述手提电池包(3)为便携式设计,可以让使用者很方便的携带,并在无需工具的情形下单靠人手将其插入电动车(4)中。
  2. 如权利要求1所述的一种利用太阳能为电动车充电的系统,其特征在于,所述手提电池包(3)可插入到所述电动车(4)内为所述电动车(4)供电,其供电方式包括:
    所述手提电池包(3)可以通过另一个DC/DC电能传输装置(2)为所述电动车(4)的固定电池或超级电容器充电,也可以直接为所述电动车(4)的电动机供电。
  3. 如权利要求1所述的一种利用太阳能为电动车充电的系统,其特征在于,所述太阳能发电设备(1)为集中式或者分布式;所述太阳能发电设备(1)中的太阳能电池为:单晶硅电池、多晶硅电池或薄膜电池。
  4. 如权利要求1所述的一种利用太阳能为电动车充电的系统,其特征在于,所述电动车(3)为乘用电动车或商用电动车;所述电动车(3)为纯电动车或油电混合能源车。
  5. 一种DC/DC电能传输装置,其特征在于,适用于如权利要求1-4任意一项所述的系统,所述DC/DC电能传输装置用于连接两个不同的DC电源,所述DC/DC电能传输装置采用智能化设计,所述DC/DC电能传输装置装有多个传感器,所述传感器用于获取输入电源和输出电源的电压和温度、以及传输电流的大小,所述DC/DC电能传输装置包括中央信息处理器(23);所述中央信息处理器(23)用于控制所述DC/DC电能传输装置输出的电流和电压,以优化电能的传输过程并提高安全性。
  6. 根据权利要求5所述的DC/DC电能传输装置,其特征在于,所述DC/DC电能传输装置用脉冲方式来传输电流;
    所述DC/DC电能传输装置还包括电感器(24),所述电感器(24)用于在输入和输出电压有较大落差时,保障电流的流通在一个安全的范围。
  7. 根据权利要求5所述的DC/DC电能传输装置,其特征在于,所述DC/DC电能传输装置还包括DC/DC变压器(26);所述DC/DC变压器(26)可以将电压升至输入电压的1.2至8倍,或将电压降至输入电压的0.2至0.8倍;对电压的升降倍数的选择由所述中央信息处理器(23)控制;所述DC/DC变压器(26)保证了即使输入电源电压和输出电源电压有较大差异,均可以让电流单向地从输入电源向输出电源流通,并保证了在充电的过程中,当输入电源和输出电源之间的电压差发生改变时,输入电源还能够持续地为输出电源供电。
  8. 根据权利要求5所述的DC/DC电能传输装置,其特征在于,所述DC/DC电能传输装置的输入电源可有多种,包括:光伏电源、使用家用电源的充电器、电动车用的充电桩或手提电池包;所述DC/DC电能传输装置的输出电源也可有多种,包括:手提电池包、电动车内的固定电池或超级电容器。
  9. 根据权利要求5所述的DC/DC电能传输装置,其特征在于,所述DC/DC电能传输装置的工作电压为40-600伏特,工作电流为0.2-200安培,额定功率为0.01-120千瓦。
  10. 一种手提电池包,其特征在于,适用于如权利要求1-4任意一项所述的系统,所述手提电池包由多个锂电池并联或串联组成;所述手提电池包工作电压为40-600伏特,能量为0.2-20千瓦时,所述手提电池包可以很方便地连接如权利要求5所述的DC/DC电能传输装置以进行充电。
  11. 如权利要求10所述的手提电池包,其特征在于,所述手提电池包重量为0.3-40千克,体积为0.001-0.5立方米;所述手提电池包设有方便携带的把手,并在无需其他工具的情况下,可以很容易地插入到电动车内或从电动车中取出。
  12. 如权利要求10所述的手提电池包,其特征在于,所述手提电池包具有一个或多个接口,以使得所述手提电池包能连接多种不同的电力系统进行充 电或供电,所述电力系统包括:通过如权利要求5所述的DC/DC电能传输装置连接光伏电源、家用充电桩、电动车用充电桩、电动车内的固定电池或者电动车的电动机。
  13. 一种电动车,其特征在于,适用于如权利要求1-4任意一项所述的系统,所述电动汽车可装载如权利要求10所述的手提电池包(3),所述手提电池包可以直接为所述电动车的电动机供电。
  14. 如权利要求13所述的电动车,其特征在于,所述电动车除了由所述手提电池包(3)直接提供能量以外,还安装有一个固定电池;所述手提电池包(3)可以为所述固定电池充电,电动车行驶时需要的能量可以由固定电池提供。
  15. 根据权利要求13所述的电动车,其特征在于,所述电动车内安装有一个或多个连接所述手提电池包(3)的接头,通过所述接头所述电动车可以安装一个或多个所述手提电池包(3)为电动车供电。
  16. 根据权利要求13所述的电动车,其特征在于,所述电动车还安装有内燃机和发电机,所述内燃机与所述发电机共同工作所产生的电能可传输给所述电动车的电源系统,所述电源系统包括:所述手提电池包(3)、电动车的所述固定电池或超级电容器。
  17. 一种为电动车充电的太阳能充电站,其特征在于,包括:如权利要求1所述的太阳能发电设备(1),一个或多个如权利要求5所述的DC/DC电能传输装置(2);所述太阳能发电设备可以同时为多个如权利要求10所述的手提电池包(3)充电。
  18. 根据权利要求17所述的太阳能充电站,其特征在于,所述太阳能充电站包括一种格子式的结构,所述结构的格子内包括充电接口,一个如权利要求10所述的手提电池包(3)可以插入一个所述格子并连接所述充电接口来进行充电。
  19. 一种利用太阳能为电动车充电的方法,其特征在于,使用如权利要求1-4任意一项所述的系统来利用太阳能为电动车充电;该方法包括:
    利用所述太阳能发电设备(1)进行发电以产生电能;
    使用所述电能通过所述DC/DC电能传输装置(2)为一个或多个手提电池包(3)充电;
    充电后的所述手提电池包(3)可以通过人手的操作插入到所述的电动车(4)中,从而使用所述手提电池包(3)内存储的电能为所述电动车供电。
  20. 根据权利要求19的充电方法,其特征在于,利用所述的手提电池包(3)为电动车快速充电;当所述电动车(4)需要充电时,可以把电能耗尽或者将要耗尽的所述手提电池包(3)从车内取出,换上已充电的手提电池包(3),所述已充电电池包可以为电动车的电动机直接供电,或者为电动车的固定电池充电。
  21. 一种用手提电池包来提供光伏电能的方法,其特征在于,应用如权利要求10-12任意一项所述的手提电池包,利用所述的太阳能发电设备(1)为一个或多个所述手提电池包(3)充电,充电后的所述电池包(3)不仅可以用于为电动车提供电能,还可以通过连接一个逆变器为家用电器提供电能或者作为应急用的后备电能。
PCT/CN2021/080407 2020-03-20 2021-03-12 一种利用太阳能为电动车充电的系统、相关装置及方法 WO2021185167A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010203417.3A CN111231690A (zh) 2020-03-20 2020-03-20 一种利用太阳能为电动车充电的系统、相关装置及方法
CN202010203417.3 2020-03-20

Publications (1)

Publication Number Publication Date
WO2021185167A1 true WO2021185167A1 (zh) 2021-09-23

Family

ID=70877310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080407 WO2021185167A1 (zh) 2020-03-20 2021-03-12 一种利用太阳能为电动车充电的系统、相关装置及方法

Country Status (2)

Country Link
CN (1) CN111231690A (zh)
WO (1) WO2021185167A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110994729A (zh) * 2019-12-18 2020-04-10 国网山东省电力公司长岛县供电公司 一种分布式港口岸充电装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111231690A (zh) * 2020-03-20 2020-06-05 张东才 一种利用太阳能为电动车充电的系统、相关装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180079319A1 (en) * 2016-09-21 2018-03-22 Urban626, Llc Portable and Convertible Rechargeable Battery Power Supply
CN109649171A (zh) * 2011-07-26 2019-04-19 睿能创意公司 用于在预订电能存储设备的收集、充电及分配机处预订电能存储设备的装置、方法及物品
CN110474415A (zh) * 2019-09-26 2019-11-19 张东才 一种结合超级电容器与可交换电池包的储能装置及用其驱动的电动车
CN111231690A (zh) * 2020-03-20 2020-06-05 张东才 一种利用太阳能为电动车充电的系统、相关装置及方法
CN211556955U (zh) * 2019-09-26 2020-09-22 张东才 一种结合超级电容器与电池包的储能装置及相关电动车
CN212373170U (zh) * 2020-03-20 2021-01-19 张东才 利用太阳能为电动车充电的系统、dc/dc电能传输装置、手提电池包、电动车及太阳能充电站

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10075002B2 (en) * 2012-04-26 2018-09-11 Sekisui Chemical Co., Ltd. Electricity storage system and cartridge
CN203537020U (zh) * 2013-10-31 2014-04-09 衢州职业技术学院 一种多功能太阳能充电器
CN204605555U (zh) * 2015-05-05 2015-09-02 南京金塔新能源科技有限公司 一种电动车的备用电源装置及其电动车
US10293698B2 (en) * 2015-08-10 2019-05-21 Ford Global Technologies, Llc System and method for powering electrified vehicle with modular battery
CN107539159B (zh) * 2017-09-18 2018-06-08 爱驰汽车有限公司 双源电池包、管理方法和系统以及电动汽车
CN109823210A (zh) * 2018-12-25 2019-05-31 中博联智库(北京)科技有限公司 用于共享新能源电池的智能充电设备
CN209870141U (zh) * 2019-04-12 2019-12-31 厦门深蓝动力科技有限公司 一种移动充电站

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109649171A (zh) * 2011-07-26 2019-04-19 睿能创意公司 用于在预订电能存储设备的收集、充电及分配机处预订电能存储设备的装置、方法及物品
US20180079319A1 (en) * 2016-09-21 2018-03-22 Urban626, Llc Portable and Convertible Rechargeable Battery Power Supply
CN110474415A (zh) * 2019-09-26 2019-11-19 张东才 一种结合超级电容器与可交换电池包的储能装置及用其驱动的电动车
CN211556955U (zh) * 2019-09-26 2020-09-22 张东才 一种结合超级电容器与电池包的储能装置及相关电动车
CN111231690A (zh) * 2020-03-20 2020-06-05 张东才 一种利用太阳能为电动车充电的系统、相关装置及方法
CN212373170U (zh) * 2020-03-20 2021-01-19 张东才 利用太阳能为电动车充电的系统、dc/dc电能传输装置、手提电池包、电动车及太阳能充电站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110994729A (zh) * 2019-12-18 2020-04-10 国网山东省电力公司长岛县供电公司 一种分布式港口岸充电装置
CN110994729B (zh) * 2019-12-18 2023-07-21 国网山东省电力公司长岛县供电公司 一种分布式港口岸充电装置

Also Published As

Publication number Publication date
CN111231690A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
EP2113410B1 (en) Vehicle charge system
WO2018026495A1 (en) Energy generation and storage system with electric vehicle charging capability
CN102653240B (zh) 电动汽车混合电池驱动系统
WO2021185167A1 (zh) 一种利用太阳能为电动车充电的系统、相关装置及方法
CN213383888U (zh) 一种靠太阳能发电的电动汽车充电系统
CN205395805U (zh) 移动充电栓
CN104242382A (zh) 车用复合电池系统及电能管理方法
CN104901389A (zh) 一种有效延长光伏发电配套蓄电池寿命的智能控制系统
CN201318040Y (zh) 多功能太阳能电站车棚
CN212373170U (zh) 利用太阳能为电动车充电的系统、dc/dc电能传输装置、手提电池包、电动车及太阳能充电站
CN115352311A (zh) 一种光储充放换电系统能源管理方法
CN202806412U (zh) 电动汽车混合电池驱动系统
CN211556955U (zh) 一种结合超级电容器与电池包的储能装置及相关电动车
JP2004221521A (ja) 電動車両の充電システム
CN109606394B (zh) 一种电力机车控制系统
CN203911569U (zh) 一种电动车电源装置
CN204669047U (zh) 一种有效延长光伏发电配套蓄电池寿命的智能控制系统
CN107248778B (zh) 分立式太阳能充放电系统、方法及电动车
CN113752885B (zh) 一种可支持直流充电国标的电动汽车充电宝
CN110138069A (zh) 一种超级电池组件及其应用
CN110474415A (zh) 一种结合超级电容器与可交换电池包的储能装置及用其驱动的电动车
Akhmedov et al. Using solar panels to recharge car battery
CN205319783U (zh) 用于电动汽车充电的太阳能高压直流储能装置
CN204236256U (zh) 新能源汽车的电源系统
CN104527441A (zh) 一种可自行充电的太阳能混合动力汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21771027

Country of ref document: EP

Kind code of ref document: A1