WO2021184938A1 - 像素排布优化方法、透光显示面板和显示面板 - Google Patents

像素排布优化方法、透光显示面板和显示面板 Download PDF

Info

Publication number
WO2021184938A1
WO2021184938A1 PCT/CN2021/071414 CN2021071414W WO2021184938A1 WO 2021184938 A1 WO2021184938 A1 WO 2021184938A1 CN 2021071414 W CN2021071414 W CN 2021071414W WO 2021184938 A1 WO2021184938 A1 WO 2021184938A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
color sub
light
display panel
electrode
Prior art date
Application number
PCT/CN2021/071414
Other languages
English (en)
French (fr)
Inventor
赵改娜
刘如胜
邢汝博
殷汉权
蔡俊飞
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Priority to KR1020227012124A priority Critical patent/KR20220053677A/ko
Priority to JP2022521690A priority patent/JP7422868B2/ja
Priority to EP21771919.4A priority patent/EP4123714A4/en
Publication of WO2021184938A1 publication Critical patent/WO2021184938A1/zh
Priority to US17/685,598 priority patent/US20220310712A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape

Definitions

  • This application relates to the field of display technology, and in particular to a pixel arrangement optimization method, a pixel arrangement optimization device, a light-transmitting display panel, and a display panel.
  • a notch or hole can be provided on the display screen, so that external light can enter the photosensitive element located under the screen through the notch or hole on the screen.
  • a display screen is not a full screen in the true sense, and cannot be displayed in all areas of the entire screen. For example, the corresponding area of the front camera cannot display pictures.
  • the present application provides a method for optimizing pixel arrangement.
  • the method includes:
  • the ratio of the light transmission energy of the arrangement structure model is greater than or equal to 85%.
  • the method further includes:
  • the graphic parameters and position parameters corresponding to the first electrodes of the optimized pixel arrangement structure model are set.
  • constructing an initial pixel arrangement structure model includes:
  • an initial pixel arrangement structure model is constructed.
  • At least one of the initial pattern parameters and initial position parameters of at least part of the first electrode in the initial pixel arrangement structure model is adjusted to obtain an optimized pixel arrangement structure model, and the pixel arrangement is optimized.
  • the ratio of the zero-order diffraction spot energy of the pattern structure model to the light transmission energy of the optimized pixel arrangement structure model is greater than or equal to 85%, including:
  • the ratio of the zero-order diffraction spot energy of the optimized pixel arrangement structure model to the light transmission energy of the optimized pixel arrangement structure model is greater than or equal to 85%.
  • the embodiment of the present application provides a light-transmitting display panel, including:
  • the light-emitting layer is located on the array substrate.
  • the light-emitting layer includes a repeating unit.
  • the first electrode of each sub-pixel in the repeating unit is arranged in a pattern, and the combination of the pattern parameter and the position parameter of the patterned arrangement of the first electrode makes the light transparent
  • the zero-order diffraction spot energy of the display panel and the light transmission energy of the transparent display panel satisfy the following relationship:
  • I 0 is the zero-order diffraction spot energy of the light-transmitting display panel
  • I x is the light transmission energy of the light-transmitting display panel
  • an initial pixel arrangement structure model is constructed, and at least one of the initial pattern parameters and initial position parameters of the first electrode is obtained by adjusting at least some of the sub-pixels in the initial pixel arrangement structure model. Therefore, the ratio of the zero-order diffraction spot energy of the optimized pixel arrangement structure model to the light transmission energy of the optimized pixel arrangement structure model is greater than or equal to 85%, that is, the proportion of the zero-order diffraction spot energy is increased, and the non-zero order is reduced The energy of the diffracted spot is accounted for, thereby obtaining the pattern parameters and position parameters of the first electrode that can reduce the diffraction phenomenon.
  • the combination of the pattern parameter and the position parameter of the first electrode in the light-transmitting display panel makes the ratio of the zero-order diffraction spot energy of the light-transmitting display panel to the light transmission energy of the light-transmitting display panel Greater than or equal to 85%, that is, it can increase the energy ratio of the zero-order diffraction spot of the light-transmitting display panel, and reduce the energy ratio of the non-zero-order diffraction spot, thereby reducing the diffraction phenomenon of the light-transmitting display panel, and improving the integration of the camera under the screen.
  • the photosensitive quality of the photosensitive component is the ratio of the zero-order diffraction spot energy of the light-transmitting display panel to the light transmission energy of the light-transmitting display panel.
  • FIG. 1 shows a schematic flowchart of a method for optimizing pixel arrangement according to an embodiment of the present application
  • Fig. 2 shows a schematic structural diagram of a pixel arrangement optimization device according to an embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of a light-transmitting display panel according to an embodiment of the present application
  • FIG. 4 shows a partial enlarged schematic top view of the first example of the Q area in FIG. 3;
  • FIG. 5 shows a schematic partial enlarged top view of the second example of the Q area in FIG. 3;
  • FIG. 6 shows a schematic partial enlarged top view of a third example of the Q area in FIG. 3;
  • FIG. 7 shows a schematic partial enlarged top view of a fourth example of the Q area in FIG. 3;
  • FIG. 8 shows a schematic top view of a display panel according to an embodiment of the present application.
  • a light-transmitting display area may be provided on the above-mentioned electronic device, and the photosensitive component may be arranged on the back of the light-transmitting display area, and a full-screen display of the electronic device can be realized under the condition of ensuring the normal operation of the photosensitive component.
  • the embodiments of the present application provide a pixel arrangement optimization method, a pixel arrangement optimization device, a light-transmitting display panel, and a display panel.
  • the pixel arrangement optimization method and the pixel arrangement optimization device will be described below in conjunction with the drawings.
  • the embodiments of the light-transmitting display panel and the display panel will be described.
  • FIG. 1 shows a schematic flowchart of a method for optimizing pixel arrangement according to an embodiment of the present application.
  • the pixel arrangement optimization method includes step 10 and step 20.
  • Step 10 Construct an initial pixel arrangement structure model.
  • the first electrode of each sub-pixel in the initial pixel arrangement structure model has initial pattern parameters and initial position parameters.
  • any pixel arrangement structure can be selected, and the initial pattern parameters and initial position parameters of the first electrode of each sub-pixel in the pixel arrangement structure can be set, and then the initial pixel arrangement can be constructed in the simulation software. Structural model.
  • the pixel arrangement structure of the target light-transmitting display panel and the pattern parameters and position parameters of the first electrodes of each sub-pixel of the target light-transmitting display panel can also be acquired; according to the pixel arrangement of the target light-transmitting display panel
  • the layout structure and the pattern parameters and position parameters of the first electrode of each sub-pixel are used to construct an initial pixel layout structure model.
  • the target light-transmitting display panel can be an actual light-transmitting display panel produced according to a predetermined process, and the graphic parameters and position parameters of each first electrode of the target light-transmitting display panel can be imported into the simulation software, and the simulation software is used to construct the target light-transmitting display
  • the digital model of the panel, the simulation software can be comsol, fdtd, rsoft and other software.
  • the target light-transmitting display panel includes the first electrode, and also includes an array substrate, various wiring structures, light-emitting structures, and second electrodes.
  • the constructed initial pixel arrangement structure model may include the film layer parameters of the target light-transmitting display panel.
  • Step 20 Adjust at least one of the initial pattern parameters and initial position parameters of at least part of the first electrode in the initial pixel arrangement structure model to obtain an optimized pixel arrangement structure model, and optimize the zero-order diffraction spot energy of the pixel arrangement structure model
  • the ratio of the light transmission energy to the optimized pixel arrangement structure model is greater than or equal to 85%.
  • step 20 may specifically include:
  • the ratio of the zero-order diffraction spot energy of the optimized pixel arrangement structure model to the light transmission energy of the optimized pixel arrangement structure model is greater than or equal to 85%.
  • the wavelength range of the irradiation wavelength may be 400 nanometers to 800 nanometers.
  • the field of view is the field of view of the photosensitive component under the screen, such as the field of view of a camera.
  • a virtual object model can be constructed, and various distances between the virtual object model and the initial pixel arrangement structure model can be set.
  • the light transmission energy is the energy of light that can be transmitted through the pixel arrangement structure model.
  • the ratio of the zero-order diffraction spot energy of the initial pixel arrangement structure model to the light transmission energy of the initial pixel arrangement structure model is greater than or equal to the conditions of different irradiation wavelength, field of view and object distance. 85%. If the initial pixel arrangement structure model meets the above conditions, the initial pattern parameters and initial position parameters of the first electrode of the initial pixel arrangement structure model are the optimal parameters. If the initial pixel arrangement structure model does not If the above conditions are met, at least one of the initial pattern parameters and the initial position parameters of the first electrode is continuously adjusted, and it is determined whether the pixel arrangement structure model after each adjustment meets the above conditions, until an optimized pixel arrangement structure model is obtained.
  • the optimized pixel arrangement structure model finally obtained under different irradiation wavelength, field of view and object distance conditions, the ratio of the zero-order diffraction spot energy to the light transmission energy is greater than or equal to 85%, so that the The pattern parameters and position parameters of the first electrode that can reduce the diffraction phenomenon under various conditions.
  • the method further includes: setting the pattern of the corresponding first electrode in the target light-transmitting display panel according to the pattern parameter and position parameter corresponding to each first electrode of the optimized pixel arrangement structure model Parameters and positional parameters.
  • the actual target light-transmitting display panel is produced according to the optimized graphic parameters and position parameters of the first electrode, so that the zero-order diffraction spot energy and light transmission of the target light-transmitting display panel
  • the ratio of excess energy is greater than or equal to 85%, which can increase the energy ratio of the zero-order diffraction spot of the target light-transmitting display panel, and reduce the energy ratio of the non-zero-order diffraction spot of the target light-transmitting display panel, thereby reducing the energy of the target light-transmitting display panel.
  • the diffraction phenomenon improves the photosensitive quality of the photosensitive component integrated on the non-light-emitting side of the target light-transmitting display panel.
  • the initial pattern parameter may be the shape parameter and size parameter of the first electrode
  • the initial position parameter may be the coordinate parameter of the first electrode or the relative position parameter between the first electrodes.
  • the periodically arranged anodes in the display panel have a greater impact on the diffraction of the light-transmitting area.
  • the energy of the non-zero order diffraction spot can be reduced.
  • an initial pixel arrangement structure model is constructed, and at least some of the sub-pixels in the initial pixel arrangement structure model are adjusted to obtain the initial pattern parameters and initial position parameters of the first electrode. At least one, so that the ratio of the zero-order diffraction spot energy of the optimized pixel arrangement structure model to the light transmission energy of the optimized pixel arrangement structure model is greater than or equal to 85%, that is, the proportion of the zero-order diffraction spot energy is increased, and the non-irradiation is reduced. The energy of the zero-order diffraction spot is accounted for, thereby obtaining the pattern parameters and position parameters of the first electrode that can reduce the diffraction phenomenon.
  • Fig. 2 shows a schematic structural diagram of a pixel arrangement optimization device according to an embodiment of the present application.
  • the pixel arrangement optimization device provided by the embodiment of the present application includes the following modules:
  • the model construction module 201 is used to construct an initial pixel arrangement structure model.
  • the first electrodes of each sub-pixel in the initial pixel arrangement structure model jointly form an initial first electrode matrix, and each first electrode has an initial pattern parameter and an initial position parameter;
  • the parameter adjustment module 202 is used to adjust at least one of the initial pattern parameters and initial position parameters of at least part of the first electrode in the initial pixel arrangement structure model to obtain an optimized pixel arrangement structure model, and optimize the zero of the pixel arrangement structure model
  • the ratio of the energy of the first-order diffraction spot to the light transmission energy of the optimized pixel arrangement structure model is greater than or equal to 85%.
  • the pixel arrangement optimization structure further includes a parameter setting module for setting the corresponding first electrode in the target light-transmitting display panel according to the graphic parameters and position parameters corresponding to each first electrode of the optimized pixel arrangement structure model.
  • Figure parameters and position parameters of an electrode
  • the model building module 201 is specifically used to:
  • an initial pixel arrangement structure model is constructed.
  • the parameter adjustment module 202 is specifically configured to:
  • the ratio of the zero-order diffraction spot energy of the optimized pixel arrangement structure model to the light transmission energy of the optimized pixel arrangement structure model is greater than or equal to 85%.
  • an initial pixel arrangement structure model is constructed, and at least one of the initial pattern parameters and initial position parameters of the first electrode is adjusted for at least some of the sub-pixels in the initial pixel arrangement structure model. Therefore, the ratio of the zero-order diffraction spot energy of the optimized pixel arrangement structure model to the light transmission energy of the optimized pixel arrangement structure model is greater than or equal to 85%, that is, the proportion of the zero-order diffraction spot energy is increased, and the non-zero order is reduced The energy of the diffracted spot is accounted for, thereby obtaining the pattern parameters and position parameters of the first electrode that can reduce the diffraction phenomenon.
  • FIG. 3 shows a schematic structural diagram of a light-transmitting display panel according to an embodiment of the present application
  • FIG. 4 to FIG. 7 show partial enlarged views of four examples of the Q area in FIG. 3.
  • FIGS. 4 to 7 show other structures of the light-transmitting display panel 100 in order to clearly show the structure of the first electrode, other structures of the light-transmitting display panel 100 are hidden and drawn in FIGS. 4 to 7.
  • the light-transmitting display panel 100 includes an array substrate 30 and a light-emitting layer 40.
  • the light emitting layer 40 is located on the array substrate 30.
  • the light-emitting layer 40 includes a repeating unit 410.
  • the first electrodes of each sub-pixel in the repeating unit 410 are arranged in a pattern, and the combination of the pattern parameters and position parameters of the patterned first electrodes makes the transparent display panel 100 zero.
  • the energy of the first-order diffraction spot and the light transmission energy of the light-transmitting display panel satisfy the relationship (1):
  • I 0 is the zero-order diffraction spot energy of the light-transmitting display panel
  • I x is the light transmission energy of the light-transmitting display panel
  • the light-transmitting display panel 100 may be an Organic Light Emitting Diode (OLED) display panel.
  • OLED Organic Light Emitting Diode
  • the array substrate 30 may include pixel circuits, wiring structures, etc., in order to improve the light transmittance of the light-transmitting display panel 100, the pixel circuits in the array substrate 30 may be arranged in front of each sub-pixel as far as possible.
  • the wiring structure can be bent and arranged to minimize the area between the sub-pixels.
  • the luminescent material of the sub-pixel is vapor-deposited on the anode with low light transmittance, and the cathode of the sub-pixel is a whole surface material. Furthermore, the applicant found that the periodically arranged anodes in the display panel have a greater impact on the diffraction of the light-transmitting area.
  • the non-zero order diffraction spot can be reduced.
  • Energy increase the energy of the zero-order diffraction spot, so that the energy is more concentrated on the geometric image point, reduce the diffraction effect, and improve the imaging quality of the camera under the screen. Therefore, the first electrode may be the anode of the sub-pixel.
  • the pattern parameters and position parameters of each first electrode in the light-transmitting display panel may be optimized parameters obtained according to the above pixel arrangement optimization method.
  • the combination of the pattern parameter and the position parameter of the first electrode in the light-transmitting display panel makes the ratio of the zero-order diffraction spot energy of the light-transmitting display panel to the light transmission energy of the light-transmitting display panel Greater than or equal to 85%, that is, it can increase the energy ratio of the zero-order diffraction spot of the light-transmitting display panel, and reduce the energy ratio of the non-zero-order diffraction spot, thereby reducing the diffraction phenomenon of the light-transmitting display panel, and improving the integration of the camera under the screen.
  • the photosensitive quality of the photosensitive component is the ratio of the zero-order diffraction spot energy of the light-transmitting display panel to the light transmission energy of the light-transmitting display panel.
  • each color sub-pixel includes a first electrode, a light emitting structure, and a second electrode that are stacked in sequence.
  • One of the first electrode and the second electrode is an anode, and the other is a cathode.
  • the first electrode is an anode and the second electrode is a cathode as an example for description.
  • the light-emitting structure may include an OLED light-emitting layer.
  • the OLED light-emitting layer may also include at least one of a hole injection layer, a hole transport layer, an electron injection layer, or an electron transport layer.
  • the first electrode includes an indium tin oxide (Indium Tin Oxide, ITO) layer or an indium zinc oxide layer.
  • the first electrode is a reflective electrode, and includes a first light-transmitting conductive layer, a reflective layer on the first light-transmitting conductive layer, and a second light-transmitting conductive layer on the reflective layer.
  • the first light-transmitting conductive layer and the second light-transmitting conductive layer can be ITO, indium zinc oxide, etc.
  • the reflective layer can be a metal layer, for example, made of silver.
  • the second electrode includes a magnesium-silver alloy layer. In some embodiments, the second electrode may be interconnected as a common electrode.
  • the repeating unit 410 includes a first pixel group 01 and a second pixel group 02 distributed in a first direction X
  • the first pixel group 01 includes a first pixel group 01 distributed in a second direction Y.
  • the second pixel group 02 includes third-color sub-pixels, first-color sub-pixels, and second-color sub-pixels distributed in the second direction.
  • the direction X intersects the second direction Y.
  • the orthographic projection of the first electrodes 411 and 413 of the first color sub-pixel and the third color sub-pixel on the array substrate is a circle
  • the orthographic projection of the first electrode 412 of the second color sub-pixel on the array substrate is an ellipse shape.
  • the diameter range of the first electrode 411 of the first color sub-pixel is 5 ⁇ m-25 ⁇ m
  • the diameter of the first electrode 413 of the third color sub-pixel is 8 ⁇ m-30 ⁇ m
  • the diameter of the first electrode 412 of the second color sub-pixel is The long axis range is 10 ⁇ m-30 ⁇ m
  • the short axis range is 8 ⁇ m-20 ⁇ m.
  • the orthographic projections of the first electrodes of the three-color sub-pixels of the original light-transmitting display panel on the array substrate are all elliptical.
  • the energy of the non-zero-order diffraction spot of the light-transmitting display panel accounts for the comparison.
  • the first electrode of the original light-transmitting display panel is optimized in this application, and the shape and size of the first electrode of some color sub-pixels are adjusted to further disrupt the periodic structure of the first electrode.
  • the energy ratio of the zero-order diffraction spot of the light-transmitting display panel is increased, and the diffraction phenomenon of the light-transmitting display panel is reduced.
  • the coordinates of the center point O of each repeating unit 410 may be set first. Further, the first electrode 411 of the first color sub-pixel of the first pixel group 01 and the center point O of the repeating unit 410 are in the first direction.
  • the distance on X is in the range of 10 ⁇ m-30 ⁇ m, and the distance in the second direction Y is in the range of 45 ⁇ m-65 ⁇ m.
  • the center point of the first electrode 411 of the second color sub-pixel in the first pixel group 01 and the center point of the repeating unit 410 The distance range of O in the first direction X is 25 ⁇ m-40 ⁇ m, and the distance in the second direction Y ranges from 20 ⁇ m-40 ⁇ m.
  • the center point of the first electrode 413 of the third color sub-pixel in the first pixel group 01 is repeated
  • the distance of the center point O of the unit 410 in the first direction X is in the range of 10 ⁇ m-30 ⁇ m
  • the distance in the second direction Y is in the range of 15 ⁇ m-30 ⁇ m.
  • the distance between the first electrode 411 of the first color sub-pixel in the second pixel group 02 and the center point O of the repeating unit 410 in the first direction X ranges from 10 ⁇ m to 25 ⁇ m, and the distance in the second direction Y The range is 0 ⁇ m-20 ⁇ m.
  • the distance between the center point of the first electrode 412 of the second color sub-pixel in the second pixel group 02 and the center point O of the repeating unit 410 in the first direction X ranges from 25 ⁇ m-40 ⁇ m.
  • the distance in the direction Y ranges from 30 ⁇ m to 50 ⁇ m, and the distance between the center point of the first electrode 413 of the third color sub-pixel in the second pixel group 02 and the center point O of the repeating unit 410 in the first direction X is 25 ⁇ m- 40 ⁇ m, the distance in the second direction Y ranges from 40 ⁇ m to 55 ⁇ m.
  • This arrangement further disrupts the periodic structure of the first electrode, so that the energy ratio of the zero-order diffraction spot of the light-transmitting display panel is increased, and the diffraction phenomenon of the light-transmitting display panel is reduced.
  • the repeating unit 410 includes two pixel groups distributed along the second direction Y, which are the first pixel group 01 and the second pixel group 02 respectively.
  • Each pixel group includes a first-color sub-pixel, a second-color sub-pixel, and a third-color sub-pixel.
  • the center points of the first electrodes of the three sub-pixels in each pixel group are connected to form a triangle.
  • the arrangement structure after the first direction X is reversed by 180 degrees is the same as the arrangement structure of another pixel group in the repeating unit 410, and the first direction X and the second direction Y intersect.
  • the orthographic projections of the first electrodes 411, 412, and 413 of each sub-pixel on the array substrate are all circular; further, the diameter of the first electrode 411 of the first color sub-pixel ranges from 5 ⁇ m to 25 ⁇ m, and the second color
  • the diameter of the first electrode 412 of the sub-pixel is in the range of 10 ⁇ m-30 ⁇ m, and the diameter of the first electrode 413 of the third-color sub-pixel is in the range of 10 ⁇ m-30 ⁇ m.
  • the distance between the center points of the first electrodes 411, 412, and 413 of the three-color sub-pixels in each pixel group is 15 ⁇ m-50 ⁇ m, and/or, the first electrodes of the three-color sub-pixels in each pixel group
  • the central points of 411, 412, and 413 are connected to form an isosceles triangle or an equilateral triangle.
  • the orthographic projections of the first electrodes of the three-color sub-pixels of the original light-transmitting display panel on the array substrate are all rhombuses.
  • the non-zero-order diffraction spot energy of the light-transmitting display panel is relatively high.
  • This application optimizes the arrangement of the first electrode of the original light-transmitting display panel, adjusts the shape and size of the first electrode, and further disrupts the periodic structure of the first electrode, so that the light-transmitting display panel has zero
  • the energy ratio of the first-order diffraction spot is increased, and the diffraction phenomenon of the light-transmitting display panel is reduced.
  • the repeating unit 410 includes two pixel groups distributed along the second direction Y, which are the first pixel group 01 and the second pixel group 02 respectively.
  • Each pixel group includes a first-color sub-pixel, a second-color sub-pixel, and a third-color sub-pixel.
  • the center points of the first electrodes 411, 412, and 413 of the three sub-pixels in each pixel group are connected to form a triangle
  • the arrangement structure of one pixel group after being turned 180 degrees along the first direction X is the same as the arrangement structure of another pixel group in the repeating unit 410, and the first direction X and the second direction Y intersect.
  • the orthographic projections of the first electrodes 411 and 413 of the first color sub-pixels and the third color sub-pixels on the array substrate are circular, and the orthographic projections of the first electrodes 412 of the second color sub-pixels on the array substrate are octagonal. , And the virtual extension lines of the four sides of the octagon form a rectangle.
  • the diameter range of the first electrode 411 of the first color sub-pixel is 5 ⁇ m-25 ⁇ m
  • the diameter of the first electrode 413 of the third color sub-pixel is 10 ⁇ m-30 ⁇ m
  • the first electrode 412 of the second color sub-pixel corresponds to The long side of the rectangle ranges from 10 ⁇ m-30 ⁇ m
  • the short side ranges from 5 ⁇ m-25 ⁇ m.
  • the distance between the center points of the first electrodes 411 of the two first-color sub-pixels is 30 ⁇ m-90 ⁇ m
  • the distance between the center points of the first electrodes 412 of the two second-color sub-pixels is 25 ⁇ m-60 ⁇ m
  • the two third-color sub-pixels have a distance of 25 ⁇ m-60 ⁇ m.
  • the distance between the center points of the first electrodes 413 of the color sub-pixels is 25 ⁇ m-60 ⁇ m; and/or the center points of the first electrodes 411 of the two first-color sub-pixels and the center points of the first electrodes 413 of the two third-color sub-pixels
  • the lines form a parallelogram.
  • the orthographic projection of the first electrode of the first color sub-pixel of the original light-transmitting display panel on the array substrate is a rhombus, and the first electrode of the second color sub-pixel and the first electrode of the third color sub-pixel are in the array
  • the orthographic projections on the substrate are all octagonal.
  • the non-zero-order diffraction spot energy of the light-transmitting display panel is relatively high, and there is obvious diffraction phenomenon.
  • This application optimizes the first electrode of the original light-transmitting display panel.
  • the repeating unit 410 includes a first pixel group 01 and a second pixel group 02 distributed along the second direction Y
  • the first pixel group 01 includes a first pixel group 01 distributed in the first direction X.
  • the second pixel group 02 includes one third-color sub-pixel, one first-color sub-pixel, and two sub-pixels distributed in the first direction X.
  • the second color sub-pixels, and the two second-color sub-pixels in the first pixel group 01 and the second pixel group 02 are distributed along the second direction Y, and the first direction X and the second direction Y intersect.
  • the orthographic projections of the first electrodes 411, 412, and 413 of each color sub-pixel on the array substrate are all circular.
  • the diameter range of the first electrode 411 of the first color sub-pixel is 5 ⁇ m-30 ⁇ m
  • the diameter of the first electrode 412 of the second color sub-pixel is 5 ⁇ m-30 ⁇ m
  • the diameter of the first electrode 413 of the third color sub-pixel is The diameter range is 10 ⁇ m-40 ⁇ m; and/or, the distance between the center points of the first electrodes 411 of the two first color sub-pixels is 50 ⁇ m-250 ⁇ m, and the centers of the first electrodes 412 of the two second color sub-pixels in each pixel group
  • the distance between the dots is 10 ⁇ m-30 ⁇ m
  • the distance between the center points of the first electrodes 413 of the two third color sub-pixels is 10 ⁇ m-60 ⁇ m; and/or, the repeating unit 410 forms a parallelogram as a whole.
  • the orthographic projection of the first electrode of the first color sub-pixel and the first electrode of the third color sub-pixel of the original light-transmitting display panel on the array substrate are all hexagons, and the first color sub-pixel of the second color
  • the orthographic projections of the electrodes on the array substrate are all pentagons.
  • the non-zero-order diffraction spot energy of the light-transmitting display panel is relatively high, and there is obvious diffraction phenomenon.
  • This application performs the first electrode of the original light-transmitting display panel.
  • the distribution density of the repeating unit 410 can be set larger to reduce the diffraction phenomenon of the light-transmitting display panel.
  • the first color subpixel may be a red subpixel
  • the second color subpixel may be a green subpixel
  • the third color subpixel may be a blue subpixel
  • FIG. 8 shows a schematic top view of a display panel provided according to an embodiment of the present application.
  • the display panel 200 has a first display area AA1, a second display area AA2, and a non-display area NA surrounding the first display area AA1 and the second display area AA2.
  • the light transmittance of the first display area AA1 is greater than The light transmittance of the second display area AA2.
  • the light transmittance of the first display area AA1 is greater than or equal to 15%.
  • the light transmittance of at least part of the functional film layers of the display panel 100 in this embodiment is greater than 80%. Even at least part of the functional film has a light transmittance greater than 85%.
  • the display panel 200 includes a first surface and a second surface opposite to each other, wherein the first surface is a display surface.
  • the photosensitive element may be disposed on the second surface side of the display panel 200, and the photosensitive element corresponds to the position of the first display area AA1.
  • the photosensitive component may be an image acquisition device for acquiring external image information.
  • the photosensitive component is a Complementary Metal Oxide Semiconductor (CMOS) image acquisition device.
  • the photosensitive component may also be a Charge-coupled Device (CCD) image acquisition device. Device and other forms of image acquisition devices. It is understandable that the photosensitive component may not be limited to an image acquisition device.
  • the photosensitive component may also be an infrared sensor, a proximity sensor, an infrared lens, a flood light sensor, an ambient light sensor, a dot matrix projector, etc. Light sensor.
  • other components may be integrated on the second surface of the display panel 200, such as a receiver, a speaker, and the like.
  • the light transmittance of the first display area AA1 is greater than the light transmittance of the second display area AA2, so that the display panel 200 can integrate photosensitive components on the back of the first display area AA1 to realize, for example, image capture
  • the light-sensitive components of the device are integrated under the screen, and the first display area AA1 can display pictures, which increases the display area of the display panel 200 and realizes a full-screen design of the display device.
  • the combination of the graphic parameters and position parameters of the first electrode in the first display area AA1 makes the ratio of the zero-order diffraction spot energy of the display panel to the light transmission energy of the display panel greater than or equal to 85%, which can increase the zero-order diffraction spot of the display panel
  • the energy ratio reduces the energy ratio of the non-zero-order diffraction spot, thereby reducing the diffraction phenomenon in the light-transmitting display area, and improving the photosensitive quality of the light-sensitive components integrated under the screen, such as a camera.
  • the display panel 200 may further include an encapsulation layer and a polarizer and a cover plate located above the encapsulation layer, or a cover plate may be directly disposed above the encapsulation layer without a polarizer, or at least in the first display area AA1
  • a cover plate is directly arranged above the encapsulation layer, and no polarizer is required to prevent the polarizer from affecting the light collection amount of the photosensitive element disposed under the first display area AA1.
  • a polarizer can also be disposed above the encapsulation layer of the first display area AA1.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种像素排布优化方法、透光显示面板和显示面板。通过构建初始像素排布结构模型,初始像素排布结构模型中各子像素的第一电极具有初始图形参数和初始位置参数(10);调整初始像素排布结构模型中至少部分第一电极的初始图形参数和初始位置参数中的至少一者,得到优化像素排布结构模型,优化像素排布结构模型的零级衍射光斑能量与优化像素排布结构模型的光透过能量之比大于等于85%(20)。像素排布优化方法、显示面板,能够降低显示面板的衍射现象。

Description

像素排布优化方法、透光显示面板和显示面板
相关申请的交叉引用
本申请要求享有于2020年03月17日提交的名称为“像素排布优化方法、装置、透光显示面板和显示面板”的中国专利申请第202010184309.6号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及显示技术领域,具体涉及一种像素排布优化方法、像素排布优化装置、透光显示面板和显示面板。
背景技术
随着电子设备的快速发展,用户对屏占比的要求越来越高,使得电子设备的全面屏显示受到业界越来越多的关注。
电子设备如手机、平板电脑等,由于需要集成诸如前置摄像头、听筒以及红外感应元件等。现有技术中,可在显示屏上开槽(Notch)或开孔,使得外界光线可通过屏幕上的开槽或开孔进入位于屏幕下方的感光元件。但是,这样的显示屏均不是真正意义上的全面屏,并不能在整个屏幕的各个区域均进行显示,例如其前置摄像头对应区域不能显示画面。
发明内容
本申请提供一种像素排布优化方法,该方法包括:
构建初始像素排布结构模型,初始像素排布结构模型中各子像素的第一电极具有初始图形参数和初始位置参数;
调整初始像素排布结构模型中至少部分第一电极的初始图形参数和初始位置参数中的至少一者,得到优化像素排布结构模型,优化像素排布结构模型的零级衍射光斑能量与优化像素排布结构模型的光透过能量之比大于等于85%。
在第一方面一种可能得实施方式中,在得到优化像素排布结构模型之后,方法还包括:
按照优化像素排布结构模型的各第一电极对应的图形参数和位置参数,设置目标透光显示面板中对应的第一电极的图形参数和位置参数。
在第一方面一种可能得实施方式中,构建初始像素排布结构模型,包括:
获取目标透光显示面板的像素排布结构及目标透光显示面板的各子像素的第一电极的初始图形参数和初始位置参数;
按照目标透光显示面板的像素排布结构及各子像素的第一电极的初始图形参数和初始位置参数,构建初始像素排布结构模型。
在第一方面一种可能得实施方式中,调整初始像素排布结构模型中至少部分第一电极的初始图形参数和初始位置参数中的至少一者,得到优化像素排布结构模型,优化像素排布结构模型的零级衍射光斑能量与优化像素排布结构模型的光透过能量之比大于等于85%,包括:
判断在不同的照射波长、视场及物距条件下,初始像素排布结构模型的零级衍射光斑能量与初始像素排布结构模型的光透过能量之比是否均大于等于85%;
若否,则不断调整初始像素排布结构模型中至少部分第一电极的初始图形参数和初始位置参数中的至少一者,直至得到优化像素排布结构模型,使得在不同的照射波长、视场及物距条件下,优化像素排布结构模型的零级衍射光斑能量与优化像素排布结构模型的光透过能量之比大于等于85%。
本申请实施例提供一种透光显示面板,包括:
阵列基板,
发光层,位于阵列基板上,发光层包括重复单元,重复单元中各子像素的第一电极呈图案化排布,且图案化排布的第一电极的图形参数和位置参数的组合使得透光显示面板的零级衍射光斑能量与透光显示面板的光透过能量满足以下关系式:
Figure PCTCN2021071414-appb-000001
其中,I 0为透光显示面板的零级衍射光斑能量,I x为透光显示面板的光透过能量。
根据本申请实施例的像素排布优化方法,通过构建初始像素排布结构模型,并调整初始像素排布结构模型中至少部分子像素得第一电极的初始图形参数和初始位置参数中的至少一者,以使得到得优化像素排布结构模型零级衍射光斑能量与优化像素排布结构模型的光透过能量之比大于等于85%,即增加零级衍射光斑能量占比,降低非零级衍射光斑能量占比,从而得到能够降低衍射现象的第一电极的图形参数和位置参数。
根据本申请实施例的透光显示面板,透光显示面板中第一电极的图形参数和位置参数的组合使得透光显示面板的零级衍射光斑能量与透光显示面板的光透过能量之比大于等于85%,即能够增加透光显示面板零级衍射光斑能量占比,降低其非零级衍射光斑能量占比,从而能够降低透光显示面板的衍射现象,提高屏下集成的例如摄像头的感光组件的感光质量。
附图说明
通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征,附图并未按照实际的比例绘制。
图1示出根据本申请一种实施例的像素排布优化方法的流程示意图;
图2示出根据本申请一种实施例的像素排布优化装置的结构示意图;
图3示出根据本申请一种实施例的透光显示面板的结构示意图;
图4示出图3中Q区域的第一种示例的局部放大俯视示意图;
图5示出图3中Q区域的第二种示例的局部放大俯视示意图;
图6示出图3中Q区域的第三种示例的局部放大俯视示意图;
图7示出图3中Q区域的第四种示例的局部放大俯视示意图;
图8示出根据本申请一种实施例的显示面板的俯视示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
在诸如手机和平板电脑等电子设备上,需要在设置显示面板的一侧集成诸如前置摄像头、红外光传感器、接近光传感器等感光组件。在一些实施例中,可以在上述电子设备上设置透光显示区,将感光组件设置在透光显示区背面,在保证感光组件正常工作的情况下,实现电子设备的全面屏显示。
目前显示面板的透光显示区域中,仍然存在较严重的衍射现象,影响屏下感光组件的感光质量。
为解决上述问题,本申请实施例提供了一种像素排布优化方法、像素排布优化装置、透光显示面板和显示面板,以下将结合附图对像素排布优化方法、像素排布优化装置、透光显示面板和显示面板的各实施例进行说明。
图1示出根据本申请一种实施例的像素排布优化方法的流程示意图。如图1所示,该像素排布优化方法包括步骤10及步骤20。
步骤10,构建初始像素排布结构模型,初始像素排布结构模型中各子像素的第一电极具有初始图形参数和初始位置参数。
在一些实施例中,可以选择任意一种像素排布结构,并设置该像素排布结构中各子像素的第一电极的初始图形参数和初始位置参数,进而在仿真软件中构建初始像素排布结构模型。
在另一些实施例中,也可以获取目标透光显示面板的像素排布结构及目标透光显示面板的各子像素的第一电极的图形参数和位置参数;按照目标透光显示面板的像素排布结构及各子像素的第一电极的图形参数和位置参数,构建初始像素排布结构模型。目标透光显示面板可以是按照既定工艺生产的实际的透光显示面板,可以将目标透光显示面板的各第一电极的 图形参数和位置参数导入到仿真软件,利用仿真软件构建目标透光显示面板的数字化模型,仿真软件可以是comsol,fdtd,rsoft等软件。目标透光显示面板包括第一电极,还包括阵列基板、各种走线结构、发光结构、第二电极等,构建的初始像素排布结构模型可以包括目标透光显示面板的各膜层参数。
构建目标透光显示面板对应的初始像素排布结构模型,进而利用该初始像素排布结构模型得到目标透光显示面板对应的优化参数,相比较于实际成产出各种参数下的目标透光显示面板以得到优化参数,能够节约成本,提高效率。
步骤20,调整初始像素排布结构模型中至少部分第一电极的初始图形参数和初始位置参数中的至少一者,得到优化像素排布结构模型,优化像素排布结构模型的零级衍射光斑能量与优化像素排布结构模型的光透过能量之比大于等于85%。
示例性的,优化像素排布结构模型的零级衍射光斑能量与优化像素排布结构模型的光透过能量之比越大,会更好的降低采用该优化像素排布结构的显示面板的衍射效应,进而会更好的提升位于显示面板非出光侧的感光组件的感光质量。
在一些实施例中,步骤20具体可以包括:
判断在不同的照射波长、视场及物距条件下,初始像素排布结构模型的零级衍射光斑能量与初始像素排布结构模型的光透过能量之比是否均大于等于85%;
若否,则不断调整初始像素排布结构模型中至少部分第一电极的初始图形参数和初始位置参数中的至少一者,直至得到优化像素排布结构模型,使得在不同的照射波长、视场及物距条件下,优化像素排布结构模型的零级衍射光斑能量与优化像素排布结构模型的光透过能量之比大于等于85%。
照射波长的波长范围可以是400纳米至800纳米。视场为屏下感光组件的感光视场,例如摄像头的视场。可以构建虚拟物体模型,并设置该虚拟物体模型与初始像素排布结构模型的各种距离。光透过能量为像素排布结构模型能够透过的光的能量。
示例性的,首先判断在不同的照射波长、视场及物距条件下,初始像素排布结构模型的零级衍射光斑能量与初始像素排布结构模型的光透过能量之比是否均大于等于85%,若该初始像素排布结构模型符合上述条件,则该初始像素排布结构模型的第一电极的初始图形参数和初始位置参数即为最优参数,若该初始像素排布结构模型不符合上述条件,则不断调整第一电极的初始图形参数和初始位置参数的至少一者,并判断每次调整之后的像素排布结构模型是否符合上述条件,直至得到优化像素排布结构模型。
根据本申请实施例,最终得到的优化像素排布结构模型在不同的照射波长、视场及物距条件下,其零级衍射光斑能量与光透过能量之比大于等于85%,从而得到在各种条件下均能够降低衍射现象的第一电极的图形参数和位置参数。
在一些实施例中,在步骤20之后,该方法还包括:按照优化像素排布结构模型的各第一电极对应的图形参数和位置参数,设置目标透光显示面板中对应的第一电极的图形参数和位置参数。
得到优化后第一电极的图形参数和位置参数之后,按照优化的第一电极的图形参数和位置参数生产实际的目标透光显示面板,使得目标透光显示面板的零级衍射光斑能量与光透过能量之比大于等于85%,能够增加目标透光显示面板的零级衍射光斑能量占比,降低目标透光显示面板的非零级衍射光斑能量占比,从而能够降低目标透光显示面板的衍射现象,使得集成在目标透光显示面板非出光侧的感光组件的感光质量得到提高。
在上述实施例中,初始图形参数可以是第一电极的形状参数及尺寸参数,初始位置参数可以是第一电极的坐标参数或者第一电极之间的相对位置参数。
另外,申请人发现,显示面板中周期性排布的阳极对透光区的衍射影响较大,通过调整各子像素对应的阳极的形状、大小和排布,可以降低非零级衍射光斑的能量,提高零级衍射光斑的能量,从而使能量更多地集中在几何像点,降低衍射效应,提高屏下摄像头的成像质量。因此,在上述实施例中,第一电极可以是阳极。
至此,根据本申请实施例的像素排布优化方法,通过构建初始像素排 布结构模型,并调整初始像素排布结构模型中至少部分子像素得第一电极的初始图形参数和初始位置参数中的至少一者,以使得到得优化像素排布结构模型零级衍射光斑能量与优化像素排布结构模型的光透过能量之比大于等于85%,即增加零级衍射光斑能量占比,降低非零级衍射光斑能量占比,从而得到能够降低衍射现象的第一电极的图形参数和位置参数。
图2示出根据本申请一种实施例的像素排布优化装置的结构示意图。如图2所示,本申请实施例提供的像素排布优化装置包括以下模块:
模型构建模块201,用于构建初始像素排布结构模型,初始像素排布结构模型中各子像素的第一电极共同形成初始第一电极矩阵,各第一电极具有初始图形参数和初始位置参数;
参数调整模块202,用于调整初始像素排布结构模型中至少部分第一电极的初始图形参数和初始位置参数中的至少一者,得到优化像素排布结构模型,优化像素排布结构模型的零级衍射光斑能量与优化像素排布结构模型的光透过能量之比大于等于85%。
在一些实施例中,该像素排布优化结构还包括参数设置模块,用于按照优化像素排布结构模型的各第一电极对应的图形参数和位置参数,设置目标透光显示面板中对应的第一电极的图形参数和位置参数。
在一些实施例中,模型构建模块201具体用于:
获取目标透光显示面板的像素排布结构及目标透光显示面板的各子像素的第一电极的图形参数和位置参数;
按照目标透光显示面板的像素排布结构及各子像素的第一电极的图形参数和位置参数,构建初始像素排布结构模型。
在一些实施例中,参数调整模块202具体用于:
判断在不同的照射波长、视场及物距条件下,初始像素排布结构模型的零级衍射光斑能量与初始像素排布结构模型的光透过能量之比是否均大于等于85%;
若否,则不断调整初始像素排布结构模型中至少部分第一电极的初始图形参数和初始位置参数中的至少一者,直至得到优化像素排布结构模型,使得在不同的照射波长、视场及物距条件下,优化像素排布结构模型的零 级衍射光斑能量与优化像素排布结构模型的光透过能量之比大于等于85%。
根据本申请实施例的像素排布优化装置,通过构建初始像素排布结构模型,并调整初始像素排布结构模型中至少部分子像素得第一电极的初始图形参数和初始位置参数中的至少一者,以使得到得优化像素排布结构模型零级衍射光斑能量与优化像素排布结构模型的光透过能量之比大于等于85%,即增加零级衍射光斑能量占比,降低非零级衍射光斑能量占比,从而得到能够降低衍射现象的第一电极的图形参数和位置参数。
图3示出根据本申请一种实施例的透光显示面板的结构示意图,图4至图7示出图3中Q区域的四种示例的局部放大图。为了清楚的示出第一电极的结构,图4至图7对透光显示面板100的其他结构进行隐藏绘示。
如图3及图4至图7所示,透光显示面板100包括阵列基板30及发光层40。发光层40位于阵列基板30上。发光层40包括重复单元410,重复单元410中各子像素的第一电极呈图案化排布,且图案化排布的第一电极的图形参数和位置参数的组合使得透光显示面板100的零级衍射光斑能量与透光显示面板的光透过能量满足关系式(1):
Figure PCTCN2021071414-appb-000002
在上式(1)中,I 0为透光显示面板的零级衍射光斑能量,I x为透光显示面板的光透过能量。
该透光显示面板100可以是有机发光二极管(Organic Light Emitting Diode,OLED)显示面板。
在一些实施例中,阵列基板30可以包括像素电路、走线结构等,为了提高透光显示面板100的透光率,阵列基板30中的像素电路可以尽量设置在各子像素的正下发,走线结构可以弯曲布置,尽量少占用子像素之间的区域。子像素的发光材料蒸镀在透光率低的阳极上,子像素的阴极为一整面材料。进一步的,申请人发现,显示面板中周期性排布的阳极对透光区的衍射影响较大,通过设置各子像素对应的阳极的形状、大小和排布,可以降低非零级衍射光斑的能量,提高零级衍射光斑的能量,从而使能量更多地集中在几何像点,降低衍射效应,提高屏下摄像头的成像质量。因此, 第一电极可以是子像素的阳极。
示例性的,该透光显示面板中各第一电极的图形参数和位置参数可以是根据上述像素排布优化方法得到的优化参数。
根据本申请实施例的透光显示面板,透光显示面板中第一电极的图形参数和位置参数的组合使得透光显示面板的零级衍射光斑能量与透光显示面板的光透过能量之比大于等于85%,即能够增加透光显示面板零级衍射光斑能量占比,降低其非零级衍射光斑能量占比,从而能够降低透光显示面板的衍射现象,提高屏下集成的例如摄像头的感光组件的感光质量。
在一些实施例中,各颜色子像素包括依次层叠设置的第一电极、发光结构及第二电极。第一电极、第二电极中的一个为阳极、另一个为阴极。本实施例中,以第一电极是阳极、第二电极是阴极为例进行说明。
发光结构可以包括OLED发光层,根据发光结构的设计需要,OLED发光层还可以包括空穴注入层、空穴传输层、电子注入层或电子传输层中的至少一种。
在一些实施例中,第一电极包括氧化铟锡(Indium Tin Oxide,ITO)层或氧化铟锌层。在一些实施例中,第一电极为反射电极,包括第一透光导电层、位于第一透光导电层上的反射层以及位于反射层上的第二透光导电层。其中第一透光导电层、第二透光导电层可以是ITO、氧化铟锌等,反射层可以是金属层,例如是银材质制成。
在一些实施例中,第二电极包括镁银合金层。在一些实施例中,第二电极可以互连为公共电极。
在一些实施例中,请继续参考图4,重复单元410包括沿第一方向X分布的第一像素组01及第二像素组02,第一像素组01包括在第二方向Y上分布的第一颜色子像素、第二颜色子像素、第三颜色子像素,第二像素组02包括在第二方向上分布的第三颜色子像素、第一颜色子像素、第二颜色子像素,第一方向X与第二方向Y相交。其中,第一颜色子像素及第三颜色子像素的第一电极411、413在阵列基板上的正投影为圆形,第二颜色子像素的第一电极412在阵列基板上的正投影为椭圆形。进一步的,第一颜色子像素的第一电极411的直径范围为5μm-25μm,第三颜色子像素的 第一电极413的直径范围为8μm-30μm,第二颜色子像素的第一电极412的长轴范围为10μm-30μm、短轴范围为8μm-20μm。
示例性的,在优化之前,原始透光显示面板的三种颜色子像素的第一电极在阵列基板上的正投影均为椭圆形,此时透光显示面板的非零级衍射光斑能量占比较高,存在明显的衍射现象,本申请对原始透光显示面板的第一电极进行优化设置,调整部分颜色子像素的第一电极的形状及尺寸,进一步打乱第一电极的周期性结构,使得透光显示面板的零级衍射光斑的能量占比得到提高,降低透光显示面板的衍射现象。
在一些实施例中,可以先设置各重复单元410的中心点O的坐标,进一步的,第一像素组01第一颜色子像素的第一电极411与重复单元410的中心点O在第一方向X上的距离范围为10μm-30μm、在第二方向Y上的距离范围为45μm-65μm,第一像素组01中第二颜色子像素的第一电极411的中心点与重复单元410的中心点O在第一方向X上的距离范围为25μm-40μm、在第二方向Y上的距离范围为20μm-40μm,第一像素组01中第三颜色子像素的第一电极413的中心点与重复单元410的中心点O在第一方向X上的距离范围为10μm-30μm、在第二方向Y上的距离范围为15μm-30μm。
和/或,第二像素组02中第一颜色子像素的第一电极411与重复单元410的中心点O在第一方向X上的距离范围为10μm-25μm、在第二方向Y上的距离范围为0μm-20μm,第二像素组02中第二颜色子像素的第一电极412的中心点与重复单元410的中心点O在第一方向X上的距离范围为25μm-40μm、在第二方向Y上的距离范围为30μm-50μm,第二像素组02中第三颜色子像素的第一电极413的中心点与重复单元410的中心点O在第一方向X上的距离范围为25μm-40μm、在第二方向Y上的距离范围为40μm-55μm。
如此设置,进一步打乱第一电极的周期性结构,使得透光显示面板的零级衍射光斑的能量占比得到提高,降低透光显示面板的衍射现象。
在一些实施例中,请参考图5,重复单元410包括沿第二方向Y分布的两个像素组,分别为第一像素组01及第二像素组02。各像素组包括一 个第一颜色子像素、一个第二颜色子像素及一个第三颜色子像素,每一像素组中的三个子像素的第一电极的中心点连线形成三角形,一个像素组沿第一方向X翻转180度后的排布结构与重复单元410中另一个像素组的排布结构相同,第一方向X与第二方向Y相交。其中,各子像素的第一电极411、412、413在阵列基板上的正投影均为圆形;进一步的,第一颜色子像素的第一电极411的直径范围为5μm-25μm,第二颜色子像素的第一电极412的直径范围为10μm-30μm,第三颜色子像素的第一电极413的直径范围为10μm-30μm。
和/或,各像素组中三种颜色的子像素的第一电极411、412、413中心点的距离为15μm-50μm,和/或,各像素组中三种颜色的子像素的第一电极411、412、413中心点连线构成等腰三角形或者等边三角形。
示例性的,在优化之前,原始透光显示面板的三种颜色子像素的第一电极在阵列基板上的正投影均为菱形,此时透光显示面板的非零级衍射光斑能量占比较高,存在明显的衍射现象,本申请对原始透光显示面板的第一电极进行优化设置,调整第一电极的形状及尺寸,进一步打乱第一电极的周期性结构,使得透光显示面板的零级衍射光斑的能量占比得到提高,降低透光显示面板的衍射现象。
在又一些实施例中,请参考图6,重复单元410包括沿第二方向Y分布的两个像素组,分别为第一像素组01及第二像素组02。各像素组包括一个第一颜色子像素、一个第二颜色子像素及一个第三颜色子像素,每一像素组中的三个子像素的第一电极411、412、413的中心点连线形成三角形,一个像素组沿第一方向X翻转180度后的排布结构与重复单元410中另一个像素组的排布结构相同,第一方向X与第二方向Y相交。第一颜色子像素及第三颜色子像素的第一电极411、413在阵列基板上的正投影为圆形,第二颜色子像素的第一电极412在阵列基板上的正投影为八边形,且八边形的其中四条边的虚拟延伸线构成矩形。
进一步的,第一颜色子像素的第一电极411的直径范围为5μm-25μm,第三颜色子像素的第一电极413的直径范围为10μm-30μm,第二颜色子像素的第一电极412对应的矩形长边范围为10μm-30μm、短边范围为5μm- 25μm。和/或,两个第一颜色子像素的第一电极411中心点的距离为30μm-90μm,两个第二颜色子像素的第一电极412中心点的距离为25μm-60μm,两个第三颜色子像素的第一电极413中心点的距离为25μm-60μm;和/或,两个第一颜色子像素的第一电极411中心点及两个第三颜色子像素的第一电极413中心点连线构成平行四边形。
示例性的,在优化之前,原始透光显示面板的第一颜色子像素的第一电极在阵列基板上的正投影为菱形,第二颜色子像素及第三颜色子像素的第一电极在阵列基板上的正投影均为八边形,此时透光显示面板的非零级衍射光斑能量占比较高,存在明显的衍射现象,本申请对原始透光显示面板的第一电极进行优化设置,调整部分颜色子像素的第一电极的形状及尺寸,进一步打乱第一电极的周期性结构,使得透光显示面板的零级衍射光斑的能量占比得到提高,降低透光显示面板的衍射现象。
在一些实施例中,请参考图7,重复单元410包括沿第二方向Y分布的第一像素组01及第二像素组02,第一像素组01包括在第一方向X上分布的一个第一颜色子像素、两个第二颜色子像素及一个第三颜色子像素,第二像素组02包括在第一方向X上分布的一个第三颜色子像素、一个第一颜色子像素及两个第二颜色子像素,且第一像素组01及第二像素组02中的两个第二颜色子像素沿第二方向Y分布,第一方向X与第二方向Y相交。其中,各颜色子像素的第一电极411、412、413在阵列基板上的正投影均为圆形。
进一步的,第一颜色子像素的第一电极411的直径范围为5μm-30μm,第二颜色子像素的第一电极412的直径范围为5μm-30μm,第三颜色子像素的第一电极413的直径范围为10μm-40μm;和/或,两个第一颜色子像素的第一电极411中心点的距离为50μm-250μm,各像素组中的两个第二颜色子像素的第一电极412中心点的距离为10μm-30μm,两个第三颜色子像素的第一电极413中心点的距离为10μm-60μm;和/或,重复单元410整体构成平行四边形。
示例性的,在优化之前,原始透光显示面板的第一颜色子像素及第三颜色子像素的第一电极在阵列基板上的正投影均为六边形,第二颜色子像 素的第一电极在阵列基板上的正投影均为五边形,此时透光显示面板的非零级衍射光斑能量占比较高,存在明显的衍射现象,本申请对原始透光显示面板的第一电极进行优化设置,调整各子像素的第一电极的形状及尺寸,进一步打乱第一电极的周期性结构,使得透光显示面板的零级衍射光斑的能量占比得到提高,降低透光显示面板的衍射现象。
进一步的,如图7所示,可以将重复单元410的分布密度设置的更大,以降低透光显示面板的衍射现象。
在上述示例中,第一颜色子像素可以为红色子像素,第二颜色子像素可以为绿色子像素,第三颜色子像素可以为蓝色子像素。
图8示出根据本申请一种实施例提供的显示面板的俯视示意图。如图8所示,显示面板200具有第一显示区AA1、第二显示区AA2以及围绕第一显示区AA1、第二显示区AA2的非显示区NA,第一显示区AA1的透光率大于第二显示区AA2的透光率。
本文中,优选第一显示区AA1的透光率大于等于15%。为确保第一显示区AA1的透光率大于15%,甚至大于40%,甚至具有更高的透光率,本实施例中显示面板100的至少部分功能膜层的透光率大于80%,甚至至少部分功能膜层的透光率大于85%。
显示面板200包括相对的第一表面和第二表面,其中第一表面为显示面。可以将感光组件设置于显示面板200的第二表面侧,且感光组件与第一显示区AA1位置对应。
感光组件可以是图像采集装置,用于采集外部图像信息。本实施例中,感光组件为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)图像采集装置,在其它一些实施例中,感光组件也可以是电荷耦合器件(Charge-coupled Device,CCD)图像采集装置等其它形式的图像采集装置。可以理解的是,感光组件可以不限于是图像采集装置,例如在一些实施例中,感光组件也可以是红外传感器、接近传感器、红外镜头、泛光感应元件、环境光传感器以及点阵投影器等光传感器。此外,在显示面板200的第二表面还可以集成其它部件,例如是听筒、扬声器等。
根据本申请实施例的显示面板,第一显示区AA1的透光率大于第二显示区AA2的透光率,使得显示面板200在第一显示区AA1的背面可以集成感光组件,实现例如图像采集装置的感光组件的屏下集成,同时第一显示区AA1能够显示画面,提高显示面板200的显示面积,实现显示装置的全面屏设计。
第一显示区AA1中第一电极的图形参数和位置参数的组合使得显示面板的零级衍射光斑能量与显示面板的光透过能量之比大于等于85%,即能够增加显示面板零级衍射光斑能量占比,降低其非零级衍射光斑能量占比,从而能够降低透光显示区的衍射现象,提高屏下集成的例如摄像头的感光组件的感光质量。
示例性地,显示面板200还可以包括封装层和位于封装层上方的偏光片和盖板,也可以直接在封装层上方直接设置盖板,无需设置偏光片,或者至少在第一显示区AA1的封装层上方直接设置盖板,无需设置偏光片,避免偏光片影响对应第一显示区AA1下方设置的感光元件的光线采集量,当然,第一显示区AA1的封装层上方也可以设置偏光片。
本申请如上文所述的实施例并没有详尽叙述所有的细节,也不限制本申请的范围。显然,根据以上描述,本领域普通技术人员可作很多的修改和变化。本说明书具体描述这些实施例,是为了更好地解释本申请的原理和实际应用,从而使所属技术领域技术人员能很好地利用本申请以及在本申请基础上的修改使用。本申请的范围仅由所附权利要求书限定。

Claims (19)

  1. 一种透光显示面板,包括:
    阵列基板,
    发光层,位于所述阵列基板上,所述发光层包括重复单元,所述重复单元中各子像素的第一电极呈图案化排布,且图案化排布的所述第一电极的图形参数和位置参数的组合使得所述透光显示面板的零级衍射光斑能量与所述透光显示面板的光透过能量满足以下关系式:
    Figure PCTCN2021071414-appb-100001
    其中,I 0为所述透光显示面板的零级衍射光斑能量,I x为所述透光显示面板的光透过能量。
  2. 根据权利要求1所述的透光显示面板,其中,所述重复单元包括沿第一方向分布的第一像素组及第二像素组,所述第一像素组包括在第二方向上分布的第一颜色子像素、第二颜色子像素、第三颜色子像素,所述第二像素组包括在所述第二方向上分布的第三颜色子像素、第一颜色子像素、第二颜色子像素,所述第一方向与所述第二方向相交;
    其中,所述第一颜色子像素及所述第三颜色子像素的第一电极在所述阵列基板上的正投影为圆形,所述第二颜色子像素的第一电极在所述阵列基板上的正投影为椭圆形。
  3. 根据权利要求2所述的透光显示面板,其中,所述第一颜色子像素的第一电极的直径范围为5μm-25μm,所述第三颜色子像素的第一电极的直径范围为8μm-30μm,所述第二颜色子像素的第一电极的长轴范围为10μm-30μm、短轴范围为8μm-20μm。
  4. 根据权利要求2所述的透光显示面板,其中,所述第一像素组中第一颜色子像素的第一电极的中心点与所述重复单元的中心点在所述第一方向上的距离范围为10μm-30μm、在所述第二方向上的距离范围为45μm-65μm,所述第一像素组中第二颜色子像素的第一电极的中心点与所述重复单元的中心点在所述第一方向上的距离范围为25μm-40μm、在所述第二方向上的距离范围为20μm-40μm,所述第一像素组中第三颜色子像素的第一 电极的中心点与所述重复单元的中心点在所述第一方向上的距离范围为10μm-30μm、在所述第二方向上的距离范围为15μm-30μm。
  5. 根据权利要求2所述的透光显示面板,其中,所述第二像素组中第一颜色子像素的第一电极的中心点与所述重复单元的中心点在所述第一方向上的距离范围为10μm-25μm、在所述第二方向上的距离范围为0μm-20μm,所述第二像素组中第二颜色子像素的第一电极的中心点与所述重复单元的中心点在所述第一方向上的距离范围为25μm-40μm、在所述第二方向上的距离范围为30μm-50μm,所述第二像素组中第三颜色子像素的第一电极的中心点与所述重复单元的中心点在所述第一方向上的距离范围为25μm-40μm、在所述第二方向上的距离范围为40μm-55μm。
  6. 根据权利要求1所述的透光显示面板,其中,所述重复单元包括沿第二方向分布的两个像素组,各所述像素组包括一个第一颜色子像素、一个第二颜色子像素及一个第三颜色子像素,每一所述像素组中的三个子像素的第一电极的中心点连线形成三角形,一个所述像素组沿第一方向翻转180度后的排布结构与所述重复单元中另一个像素组的排布结构相同,所述第一方向与所述第二方向相交;
    其中,各子像素的第一电极在所述阵列基板上的正投影均为圆形。
  7. 根据权利要求6所述的透光显示面板,其中,所述第一颜色子像素的第一电极的直径范围为5μm-25μm,所述第二颜色子像素的第一电极的直径范围为10μm-30μm,所述第三颜色子像素的第一电极的直径范围为10μm-30μm。
  8. 根据权利要求6所述的透光显示面板,其中,各所述像素组中三种颜色的子像素的第一电极中心点的距离为15μm-50μm,和/或,各所述像素组中三种颜色的子像素的第一电极中心点连线构成等腰三角形或者等边三角形。
  9. 根据权利要求1所述的透光显示面板,其中,所述重复单元包括沿第二方向分布的两个像素组,各所述像素组包括一个第一颜色子像素、一个第二颜色子像素及一个第三颜色子像素,每一所述像素组中的三个子像素的第一电极的中心点连线形成三角形,一个所述像素组沿第一方向翻转 180度后的排布结构与所述重复单元中另一个像素组的排布结构相同,所述第一方向与所述第二方向相交;
    所述第一颜色子像素及所述第三颜色子像素的第一电极在所述阵列基板上的正投影为圆形,所述第二颜色子像素的第一电极在所述阵列基板上的正投影为八边形,且所述八边形的其中四条边的虚拟延伸线构成矩形。
  10. 根据权利要求9所述的透光显示面板,其中,所述第一颜色子像素的第一电极的直径范围为5μm-25μm,所述第三颜色子像素的第一电极的直径范围为10μm-30μm,所述第二颜色子像素的第一电极对应的矩形长边范围为10μm-30μm、短边范围为5μm-25μm。
  11. 根据权利要求9所述的透光显示面板,其中,两个所述第一颜色子像素的第一电极中心点的距离为30μm-90μm,两个所述第二颜色子像素的第一电极中心点的距离为25μm-60μm,两个所述第三颜色子像素的第一电极中心点的距离为25μm-60μm;和/或,两个所述第一颜色子像素的第一电极中心点及两个所述第三颜色子像素的第一电极中心点连线构成平行四边形。
  12. 根据权利要求1所述的透光显示面板,其中,所述重复单元包括沿第二方向分布的第一像素组及第二像素组,所述第一像素组包括在第一方向上分布的一个第一颜色子像素、两个第二颜色子像素及一个第三颜色子像素,所述第二像素组包括在所述第一方向上分布的一个第三颜色子像素、一个第一颜色子像素及两个第二颜色子像素,且所述第一像素组及所述第二像素组中的两个第二颜色子像素沿所述第二方向分布,所述第一方向与所述第二方向相交,
    其中,各子像素的第一电极在所述阵列基板上的正投影均为圆形。
  13. 根据权利要求12所述的透光显示面板,其中,所述第一颜色子像素的第一电极的直径范围为5μm-30μm,所述第二颜色子像素的第一电极的直径范围为5μm-30μm,所述第三颜色子像素的第一电极的直径范围为10μm-40μm。
  14. 根据权利要求13所述的透光显示面板,其中,两个所述第一颜色子像素的第一电极中心点的距离为50μm-250μm,各所述像素中的两个所 述第二颜色子像素的第一电极中心点的距离为10μm-30μm,两个所述第三颜色子像素的第一电极中心点的距离为10μm-60μm;和/或,所述重复单元整体构成平行四边形。
  15. 一种显示面板,具有相互邻接的第一显示区和第二显示区,所述第一显示区的透光率大于所述第二显示区的透光率,其中,所述显示面板的所述第一显示区配置为根据权利要求1所述的透光显示面板。
  16. 一种像素排布优化方法,包括:
    构建初始像素排布结构模型,所述初始像素排布结构模型中各子像素的第一电极具有初始图形参数和初始位置参数;
    调整所述初始像素排布结构模型中至少部分所述第一电极的初始图形参数和初始位置参数中的至少一者,得到如权1所述的透光显示面板的优化像素排布结构模型,所述优化像素排布结构模型的零级衍射光斑能量与所述优化像素排布结构模型的光透过能量之比大于等于85%。
  17. 根据权利要求16所述的方法,其中,在所述得到优化像素排布结构模型之后,所述方法还包括:
    按照所述优化像素排布结构模型的各第一电极对应的图形参数和位置参数,设置目标透光显示面板中对应的第一电极的图形参数和位置参数。
  18. 根据权利要求16所述的方法,其中,所述构建初始像素排布结构模型,包括:
    获取目标透光显示面板的像素排布结构及所述目标透光显示面板的各子像素的第一电极的初始图形参数和初始位置参数;
    按照所述目标透光显示面板的像素排布结构及各子像素的第一电极的初始图形参数和初始位置参数,构建所述初始像素排布结构模型。
  19. 根据权利要求16所述的方法,其中,所述调整所述初始像素排布结构模型中至少部分所述第一电极的初始图形参数和初始位置参数中的至少一者,得到优化像素排布结构模型,所述优化像素排布结构模型的零级衍射光斑能量与所述优化像素排布结构模型的光透过能量之比大于等于85%,包括:
    判断在不同的照射波长、视场及物距条件下,所述初始像素排布结构 模型的零级衍射光斑能量与所述初始像素排布结构模型的光透过能量之比是否均大于等于85%;
    若否,则不断调整所述初始像素排布结构模型中至少部分第一电极的初始图形参数和初始位置参数中的至少一者,直至得到所述优化像素排布结构模型,使得在所述不同的照射波长、视场及物距条件下,所述优化像素排布结构模型的零级衍射光斑能量与所述优化像素排布结构模型的光透过能量之比大于等于85%。
PCT/CN2021/071414 2020-03-17 2021-01-13 像素排布优化方法、透光显示面板和显示面板 WO2021184938A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227012124A KR20220053677A (ko) 2020-03-17 2021-01-13 화소 배열 최적화 방법, 투광 표시 패널 및 표시 패널
JP2022521690A JP7422868B2 (ja) 2020-03-17 2021-01-13 画素配列最適化方法、透光表示パネル及び表示パネル
EP21771919.4A EP4123714A4 (en) 2020-03-17 2021-01-13 METHOD OF OPTIMIZING PIXEL ARRANGEMENT, TRANSLUCENT DISPLAYBOARD AND DISPLAYBOARD
US17/685,598 US20220310712A1 (en) 2020-03-17 2022-02-02 Method for optimizing pixel arrangement, light-transmitting display panel and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010184309.6A CN111046599B (zh) 2020-03-17 2020-03-17 像素排布优化方法、装置、透光显示面板和显示面板
CN202010184309.6 2020-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/685,598 Continuation US20220310712A1 (en) 2020-03-17 2022-02-02 Method for optimizing pixel arrangement, light-transmitting display panel and display panel

Publications (1)

Publication Number Publication Date
WO2021184938A1 true WO2021184938A1 (zh) 2021-09-23

Family

ID=70231064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071414 WO2021184938A1 (zh) 2020-03-17 2021-01-13 像素排布优化方法、透光显示面板和显示面板

Country Status (6)

Country Link
US (1) US20220310712A1 (zh)
EP (1) EP4123714A4 (zh)
JP (1) JP7422868B2 (zh)
KR (1) KR20220053677A (zh)
CN (1) CN111046599B (zh)
WO (1) WO2021184938A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4068382A4 (en) * 2019-12-03 2023-02-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DISPLAY SCREEN ASSEMBLY AND ELECTRONIC DEVICE

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017072678A1 (en) 2015-10-26 2017-05-04 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
CN110785867B (zh) 2017-04-26 2023-05-02 Oti照明公司 用于图案化表面上覆层的方法和包括图案化覆层的装置
JP7264488B2 (ja) 2017-05-17 2023-04-25 オーティーアイ ルミオニクス インコーポレーテッド パターン化コーティングにわたって伝導性コーティングを選択的に堆積させるための方法および伝導性コーティングを含むデバイス
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
JP7390739B2 (ja) 2019-03-07 2023-12-04 オーティーアイ ルミオニクス インコーポレーテッド 核生成抑制コーティングを形成するための材料およびそれを組み込んだデバイス
KR20220046551A (ko) 2019-06-26 2022-04-14 오티아이 루미오닉스 인크. 광 회절 특성을 갖는 광 투과 영역을 포함하는 광전자 디바이스
US11832473B2 (en) 2019-06-26 2023-11-28 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
KR20220045202A (ko) 2019-08-09 2022-04-12 오티아이 루미오닉스 인크. 보조 전극 및 파티션을 포함하는 광전자 디바이스
CN111046599B (zh) * 2020-03-17 2020-06-23 昆山国显光电有限公司 像素排布优化方法、装置、透光显示面板和显示面板
KR20210146499A (ko) * 2020-05-26 2021-12-06 삼성디스플레이 주식회사 표시 장치
CN113823756B (zh) * 2020-06-19 2024-05-07 北京小米移动软件有限公司 显示模组、显示面板及电子设备
CN114373784A (zh) * 2020-10-14 2022-04-19 Oppo广东移动通信有限公司 显示装置及电子设备
CN112289276B (zh) * 2020-11-04 2022-02-22 武汉华星光电技术有限公司 液晶显示面板的穿透率优化方法、装置及电子设备
US11985841B2 (en) 2020-12-07 2024-05-14 Oti Lumionics Inc. Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating
CN112687193B (zh) * 2020-12-28 2022-09-16 合肥维信诺科技有限公司 显示面板
CN113809139A (zh) * 2021-09-16 2021-12-17 合肥维信诺科技有限公司 像素排布结构及显示面板

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312312B1 (en) * 2014-12-30 2016-04-12 Industrial Technology Research Institute Display
CN109448575A (zh) * 2018-12-29 2019-03-08 上海天马微电子有限公司 一种透明显示面板和透明显示装置
CN110323259A (zh) * 2019-06-28 2019-10-11 云谷(固安)科技有限公司 像素结构、掩膜板及显示面板
CN110767692A (zh) * 2018-12-14 2020-02-07 昆山国显光电有限公司 显示面板、显示屏及显示终端
CN110767672A (zh) * 2018-08-06 2020-02-07 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
CN110767694A (zh) * 2018-12-28 2020-02-07 云谷(固安)科技有限公司 阵列基板、显示面板及显示装置
CN110782807A (zh) * 2019-10-30 2020-02-11 昆山国显光电有限公司 显示面板及显示装置
CN110783390A (zh) * 2019-10-31 2020-02-11 武汉天马微电子有限公司 一种显示面板及显示装置
CN110808263A (zh) * 2018-08-06 2020-02-18 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
CN111046599A (zh) * 2020-03-17 2020-04-21 昆山国显光电有限公司 像素排布优化方法、装置、透光显示面板和显示面板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5959704A (en) * 1996-02-08 1999-09-28 Fujitsu Limited Display device having diffraction grating
KR102030799B1 (ko) * 2013-03-11 2019-10-11 삼성디스플레이 주식회사 유기발광표시장치
KR101815495B1 (ko) * 2016-03-04 2018-01-09 주식회사 완성 엘시디/오엘이디 디스플레이 패널 검사 시스템 및 검사 방법
KR20180038112A (ko) * 2016-10-05 2018-04-16 삼성디스플레이 주식회사 헤드 마운티드 디스플레이 장치
KR102433274B1 (ko) * 2017-11-28 2022-08-18 삼성디스플레이 주식회사 유기 발광 표시 장치
CN110767715B (zh) * 2019-03-29 2022-03-01 昆山国显光电有限公司 显示装置及其oled透光基板、oled基板
CN110017969B (zh) * 2019-05-05 2020-04-10 清华大学 透明oled的参数确定方法和装置
CN110808267B (zh) * 2019-11-07 2022-10-04 昆山国显光电有限公司 显示基板、显示面板及显示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312312B1 (en) * 2014-12-30 2016-04-12 Industrial Technology Research Institute Display
CN110767672A (zh) * 2018-08-06 2020-02-07 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
CN110808263A (zh) * 2018-08-06 2020-02-18 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
CN110767692A (zh) * 2018-12-14 2020-02-07 昆山国显光电有限公司 显示面板、显示屏及显示终端
CN110767694A (zh) * 2018-12-28 2020-02-07 云谷(固安)科技有限公司 阵列基板、显示面板及显示装置
CN109448575A (zh) * 2018-12-29 2019-03-08 上海天马微电子有限公司 一种透明显示面板和透明显示装置
CN110323259A (zh) * 2019-06-28 2019-10-11 云谷(固安)科技有限公司 像素结构、掩膜板及显示面板
CN110782807A (zh) * 2019-10-30 2020-02-11 昆山国显光电有限公司 显示面板及显示装置
CN110783390A (zh) * 2019-10-31 2020-02-11 武汉天马微电子有限公司 一种显示面板及显示装置
CN111046599A (zh) * 2020-03-17 2020-04-21 昆山国显光电有限公司 像素排布优化方法、装置、透光显示面板和显示面板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4123714A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4068382A4 (en) * 2019-12-03 2023-02-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DISPLAY SCREEN ASSEMBLY AND ELECTRONIC DEVICE

Also Published As

Publication number Publication date
JP7422868B2 (ja) 2024-01-26
CN111046599A (zh) 2020-04-21
JP2022553513A (ja) 2022-12-23
CN111046599B (zh) 2020-06-23
US20220310712A1 (en) 2022-09-29
EP4123714A1 (en) 2023-01-25
KR20220053677A (ko) 2022-04-29
EP4123714A4 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2021184938A1 (zh) 像素排布优化方法、透光显示面板和显示面板
TWI723799B (zh) 顯示基板、顯示面板及顯示裝置
WO2021190178A1 (zh) 显示面板及显示装置
WO2021057012A1 (zh) 透光显示面板、显示面板、制作方法、显示装置
WO2021120761A1 (zh) 显示面板及其驱动方法、显示装置
US11645966B2 (en) Display panel and display device
CN111430436B (zh) 显示面板及显示装置
WO2022057331A1 (zh) 透光显示模组、显示面板及其制备方法
WO2022057436A1 (zh) 显示面板、显示面板的制备方法及显示装置
WO2021103654A1 (zh) 显示面板及显示装置
WO2021103667A1 (zh) 透光显示面板及其制作方法、显示面板
TWI690066B (zh) 陣列基板、顯示面板和顯示裝置
WO2021134985A1 (zh) 显示面板以及显示装置
WO2022222480A1 (zh) 显示面板
CN111261677B (zh) 显示面板以及显示装置
US20220190073A1 (en) Display panel and display apparatus
US20240016015A1 (en) Display panel and display apparatus
US20240023398A1 (en) Display panel and display apparatus
US20230413605A1 (en) Display panel and display apparatus
WO2022206053A1 (zh) 显示面板及显示装置
CN218158982U (zh) 触控结构、触控显示面板以及显示装置
WO2023231802A1 (zh) 触控结构、触控显示面板以及显示装置
CN117135959A (zh) 显示面板及显示装置
CN115942834A (zh) 一种电致发光二极管显示基板、显示装置和制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521690

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227012124

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021771919

Country of ref document: EP

Effective date: 20221017