WO2021184770A1 - 一种多维度阻水阻氢海底光缆及其成型工艺 - Google Patents

一种多维度阻水阻氢海底光缆及其成型工艺 Download PDF

Info

Publication number
WO2021184770A1
WO2021184770A1 PCT/CN2020/125740 CN2020125740W WO2021184770A1 WO 2021184770 A1 WO2021184770 A1 WO 2021184770A1 CN 2020125740 W CN2020125740 W CN 2020125740W WO 2021184770 A1 WO2021184770 A1 WO 2021184770A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
water
blocking
stainless steel
tube
Prior art date
Application number
PCT/CN2020/125740
Other languages
English (en)
French (fr)
Inventor
许人东
胥国祥
刘斌
张超
范明海
李涛
王畅
于文慧
Original Assignee
江苏亨通海洋光网系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通海洋光网系统有限公司 filed Critical 江苏亨通海洋光网系统有限公司
Publication of WO2021184770A1 publication Critical patent/WO2021184770A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/44384Means specially adapted for strengthening or protecting the cables the means comprising water blocking or hydrophobic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/44382Means specially adapted for strengthening or protecting the cables the means comprising hydrogen absorbing materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables

Definitions

  • the invention relates to the technical field of submarine optical cables, in particular to a multi-dimensional water and hydrogen resistance submarine optical cable and its forming process.
  • the submarine optical cable transmits signals through the central optical fiber, and the optical fiber attenuation is extremely sensitive to hydrogen.
  • the relay submarine optical cable needs to run high-voltage direct current.
  • the submarine optical cable In order to ensure the reliability of the submarine cable, the submarine optical cable is required to have radial water and hydrogen resistance. On the other hand, the submarine optical cable may be broken due to man-made or natural factors during long-term operation. In order to prevent seawater from penetrating the entire submarine cable, and to minimize the length of the submarine cable scrapped for submarine cable maintenance, the submarine cable is required to be below the specified water depth. It has the ability to withstand longitudinal seawater infiltration.
  • CN110426798A discloses a large-capacity and low-resistance trans-oceanic relay submarine optical cable, which includes a cable core, an armor layer and a sheath that are arranged correspondingly from the inside to the outside.
  • the cable core includes an inner optical fiber and an outer stainless steel steel tube optical unit.
  • the optical fiber is provided with a plurality of optical fibers and is filled in the tube of the stainless steel tube optical unit through fiber paste.
  • the armor layer is composed of a first metal wire unit and a second The metal wire unit and the third metal wire unit are twisted, and the twisted gap of the armor layer is filled with water blocking glue.
  • the above design can only ensure the laying and recovery of the submarine optical cable at a maximum water depth of 8000m, and cannot achieve hydrogen barrier.
  • the purpose of the present invention is to provide a submarine optical cable with multiple radial water blocking and hydrogen blocking and full-section longitudinal water blocking and its forming process.
  • a multi-dimensional water- and hydrogen-blocking submarine optical fiber cable comprising an optical fiber, a stainless steel tube wrapped outside the optical fiber, a steel wire layer wrapped outside the stainless steel tube, and The copper tube outside the steel wire layer, the insulating layer covering the copper tube, the stainless steel tube is a laser welded seamless stainless steel tube, the copper tube is a three-gun argon arc welding seamless copper tube, the stainless steel The tube is filled with hydrogen-absorbing fiber paste, the steel wire layer is formed by twisting steel wires distributed in a circular array around the axis of the stainless steel tube, the gaps between the steel wires are coated with water blocking glue, and the copper tube is connected to the insulating layer There is a bonding layer between.
  • hydrogen-absorbing fiber paste seamless stainless steel tube, seamless copper tube, and insulating layer are used to achieve multiple radial water and hydrogen blocking.
  • the bonding layer is set between the submarine optical cable to realize the full-section longitudinal water and hydrogen resistance of the submarine optical cable.
  • the filling rate of the hydrogen-absorbing fiber paste in the stainless steel tube is more than 95%. Effectively ensure that the full section of the optical unit longitudinally blocks water and hydrogen.
  • the adhesive layer is an ethylene acrylic acid copolymer adhesive, which has superior adhesive performance, significantly enhances the adhesive force between the copper tube and the insulation, and realizes longitudinal water blocking at the interface between the copper tube and the insulation.
  • the steel wires of the steel wire layer include multiple outer diameter steel wires. Reduce the gap between the wires.
  • the hydrogen-absorbing fiber paste is a hydrophobic gel with alkane oil and polymer as the main components, which effectively blocks water and hydrogen.
  • the water blocking glue is a two-component elastomer non-water swellable water blocking material composed of isocyanate and polyol, which can realize high water pressure and water blocking.
  • the insulating layer is a high-density polyethylene layer, and the water-permeability resistance of the high-density polyethylene is significantly better than that of the medium-density and low-density polyethylene.
  • the technical scheme of the present invention also provides a multi-dimensional water- and hydrogen-blocking submarine optical fiber cable forming process, which includes the following steps:
  • the present invention realizes multiple radial water and hydrogen blocking through hydrogen absorbing fiber paste, seamless stainless steel tube, seamless copper tube, and insulating layer, and is integrated with steel wire through hydrogen absorbing fiber paste and water blocking glue coating.
  • a bonding layer is arranged between the molding, the copper pipe and the insulating layer to realize the full-section longitudinal water and hydrogen resistance of the submarine optical cable.
  • Figure 1 is a schematic cross-sectional view of the present invention.
  • Embodiment A multi-dimensional water and hydrogen resistance submarine optical cable, comprising an optical fiber 1, a stainless steel tube 8 wrapped around the optical fiber 1, a steel wire layer 7 wrapped around the stainless steel tube 8, and a steel wire layer 7
  • the outer copper tube 5, the insulating layer 4 wrapped around the copper tube 5, the stainless steel tube 8 is a laser welded seamless stainless steel tube 8, and the copper tube 5 is a three-gun argon arc welded seamless copper tube 5,
  • the stainless steel tube 8 is filled with hydrogen-absorbing fiber paste 2
  • the steel wire layer 7 is formed by twisting steel wires distributed in a circular array around the axis of the stainless steel tube 8, and the gaps between the steel wires are coated with water blocking glue 6, and
  • a bonding layer 3 is provided between the outside of the copper tube 5 and the insulating layer 4.
  • the hydrogen absorbing fiber paste 2, the seamless stainless steel tube 8, the seamless copper tube 5, and the insulating layer 4 are used to achieve multiple radial water blocking and hydrogen blocking.
  • the hydrogen absorbing fiber paste 2, the water blocking glue 6 is coated and the steel wire is integrated.
  • the bonding layer 3 is arranged between the copper tube 5 and the insulating layer 4 to realize the full-section longitudinal water and hydrogen resistance of the submarine optical cable.
  • the filling rate of the hydrogen-absorbing fiber paste 2 in the stainless steel tube 8 is more than 95%. Effectively ensure that the full section of the optical unit longitudinally blocks water and hydrogen.
  • the adhesive layer 3 is an ethylene acrylic acid copolymer adhesive, which has superior adhesive performance and significantly enhances the bonding force between the copper tube 5 and the insulation, and realizes the longitudinal direction of the interface between the copper tube 5 and the insulation. Water blocking.
  • the steel wires of the steel wire layer 7 include multiple outer diameter steel wires. Reduce the gap between the wires.
  • the hydrogen-absorbing fiber paste 2 is a hydrophobic gel with alkane oil and polymer as the main components, which effectively blocks water and hydrogen.
  • the water blocking glue 6 is a two-component elastomer non-water swellable water blocking material composed of isocyanate and polyol, which can realize high water pressure water blocking.
  • the insulating layer 4 is a high-density polyethylene layer, and the water-permeability resistance of the high-density polyethylene is significantly better than that of the medium-density and low-density polyethylene.
  • the technical scheme of the present invention also provides a multi-dimensional water- and hydrogen-blocking submarine optical fiber cable forming process, which includes the following steps:
  • the submarine optical cable passed the 100MPa hydrostatic pressure test.
  • the attenuation of optical fiber 1 was monitored by OTDR, and there was no significant change in the attenuation of optical fiber 1.
  • use a water qualitative test paper to check the light unit, and no water has penetrated.
  • the submarine optical cable was subjected to a hydrostatic pressure of 83MPa for 14 days of water seepage test. After the test was completed, the longitudinal water seepage length of the submarine cable was 286 meters, which ensures the maintainability of the submarine cable when the cable is broken.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Communication Cables (AREA)
  • Insulated Conductors (AREA)

Abstract

一种多维度阻水阻氢海底光缆及其成型工艺,包括光纤(1)、包在光纤(1)外的不锈钢管(8)、包在不锈钢管(8)外的钢丝层(7)、包在钢丝层(7)外的铜管(5)、包在铜管(5)外的绝缘层(4),不锈钢管(8)为激光焊无缝不锈钢管(8),铜管(5)为三枪氩弧焊无缝铜管(5),不锈钢管(8)中填充吸氢纤膏(2),钢丝层(7)有绕不锈钢管(8)轴线环形阵列分布的钢丝绞合而成,钢丝上涂覆有阻水胶(6),铜管(5)外与绝缘层(4)之间设有粘结层(3)。通过吸氢纤膏(2)、无缝不锈钢管(8)、无缝铜管(5)、绝缘层(4)实现多重径向阻水阻氢,通过吸氢纤膏(2)、阻水胶(6)涂覆与钢丝一体成型、铜管(5)与绝缘层(4)之间设置粘结层(3)实现海底光缆全截面纵向阻水。

Description

一种多维度阻水阻氢海底光缆及其成型工艺 技术领域
本发明涉及海底光缆技术领域,特别涉及一种多维度阻水阻氢海底光缆及其成型工艺。
背景技术
海底光缆通过中心光纤进行信号传输,光纤衰减对氢气极为敏感,同时,有中继海底光缆需运行高电压等级直流电,为保障海缆可靠性,要求海底光缆具有径向阻水阻氢能力。另一方面,海底光缆在长期运行过程中可能会因人为或自然因素断裂,为避免海水贯通整根海缆,并尽可能减少海缆维修所报废的海缆长度,要求海缆在规定水深下具有耐纵向海水渗入的能力。随着海底光缆应用水深不断加大,尤其是在跨太平洋海底光缆系统中,典型应用水深已达8000米,极端水深超过10000米,对海底光缆的径向及纵向阻水阻氢性能提出了极为苛刻的要求。传统海底光缆径向及纵向阻水阻氢性能受到限制,很难应用到8000米甚至10000米水深。
现也有高阻水的海底光缆如中国专利公开CN110426798A,公开了一种大容量低电阻跨洋有中继海底光缆,包括自内而外依次对应设置的缆芯、铠装层以及护套,所述缆芯包括内部的光纤和外部的不锈钢钢管光单元,所述光纤设置有多根并通过纤膏填充设置于不锈钢管光单元的管内,所述铠装层由第一金属丝单元、第二金属丝单元和第三金属丝单元绞合而成,所述铠装层的绞合缝隙内填充设置有阻水胶。
但是上述设计只能确保海底光缆在最大8000m水深的铺设与回收,无法实现阻氢。
发明内容
针对现有技术的不足,本发明的目的是提供一种多重径向阻水阻氢及全截面纵向阻水海底光缆及其成型工艺。
本发明解决其技术问题所采用的技术方案是:一种多维度阻水阻氢海底光缆,包括光纤、包在所述光纤外的不锈钢管、包在所述不锈钢管外的钢丝层、包在所述钢丝层外的铜管、包在所述铜管外的绝缘层,所述不锈钢管为激光焊无缝不锈钢管,所述铜管为三枪氩弧焊无缝铜管,所述不锈钢管中填充吸氢纤膏,所述钢丝层由绕所述不锈钢管轴线环形阵列分布的钢丝绞合而成,所述钢丝间隙涂覆有阻水胶,所述铜管外与所述绝缘层之间设有粘结层。
上述设计中通过吸氢纤膏、无缝不锈钢管、无缝铜管、绝缘层实现多重径向阻水阻氢,吸氢纤膏、阻水胶涂覆与钢丝一体成型、铜管与绝缘层之间设置粘结层实现海底光缆全截面纵向阻水阻氢。
作为本设计的进一步改进,所述不锈钢管中的吸氢纤膏填充率达95%以上。有效保证光单元全截面纵向阻水阻氢。
作为本设计的进一步改进,所述粘结层为乙烯丙烯酸共聚物粘结剂,粘合性能优越,显著增强铜管与绝缘之间的粘结力,实现铜管与绝缘交界面纵向阻水。
作为本设计的进一步改进,所述钢丝层的钢丝包括多种外径钢丝。降低钢丝间的间隙。
作为本设计的进一步改进,所述吸氢纤膏为烷烃油和聚合物为主要成分的疏水凝胶,有效阻水阻氢。
作为本设计的进一步改进,所述阻水胶是由异氰酸酯和多元醇组成的双组分弹性体非吸水膨胀型阻水材料,可实现高水压阻水。
作为本设计的进一步改进,所述绝缘层为高密度聚乙烯层,高密度聚乙烯抗透水性能显著优于中密度和低密度聚乙烯。
本发明的技术方案还提供一种多维度阻水阻氢海底光缆成型工艺,包括如下步骤:
S1:通过激光焊,精确控制激光功率、离焦量、焊接速度,实现连续无缝焊接不锈钢管,通过二级压力泵和填充针管在不锈钢管内填充吸氢纤膏,精确设计针管尺寸,控制针管位置,纤膏温度,实现吸氢纤膏填充率在95%以上;
S2:通过三种不等径内铠钢丝绞合,钢丝绞合成型时添加阻水胶,实现一体成型;
S3:钢丝层外将铜带通过三枪氩弧焊后拉拔成型,拉拔是保证铜管内壁嵌入到所述钢丝层的钢丝间隙之间;
S4:在铜管外通过双螺杆长时串行挤出工艺挤出粘结层和绝缘层,挤出成型后通过分段式水槽冷却对线缆冷却。
本发明的有益效果是:本发明通过吸氢纤膏、无缝不锈钢管、无缝铜管、绝缘层实现多重径向阻水阻氢,通过吸氢纤膏、阻水胶涂覆与钢丝一体成型、铜管与绝缘层之间设置粘结层实现海底光缆全截面纵向阻水阻氢。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的横向截面示意图。
在图中1.光纤,2.吸氢纤膏,3.粘结层,4.绝缘层,5.铜管,6.阻水胶,7.钢丝层,8.不锈钢管。
具体实施方式
下面将结合附图以及具体实施例来详细说明本发明,其中的示意性实施例以及说明仅用来解释本发明,但并不作为对本发明的限定。
实施例:一种多维度阻水阻氢海底光缆,包括光纤1、包在所述光纤1外的不锈钢管8、包在所述不锈钢管8外的钢丝层7、包在所述钢丝层7外的铜管5、包在所述铜管5外的绝缘层4,所述不锈钢管8为激光焊无缝不锈钢管8,所述铜管5为三枪氩弧焊无缝铜管5,所述不锈钢管8中填充吸氢 纤膏2,所述钢丝层7由绕所述不锈钢管8轴线环形阵列分布的钢丝绞合而成,所述钢丝间隙涂覆有阻水胶6,所述铜管5外与所述绝缘层4之间设有粘结层3。
上述设计中通过吸氢纤膏2、无缝不锈钢管8、无缝铜管5、绝缘层4实现多重径向阻水阻氢,吸氢纤膏2、阻水胶6涂覆与钢丝一体成型、铜管5与绝缘层4之间设置粘结层3实现海底光缆全截面纵向阻水阻氢。
作为本设计的进一步改进,所述不锈钢管8中的吸氢纤膏2填充率达95%以上。有效保证光单元全截面纵向阻水阻氢。
作为本设计的进一步改进,所述粘结层3为乙烯丙烯酸共聚物粘结剂,粘合性能优越,显著增强铜管5与绝缘之间的粘结力,实现铜管5与绝缘交界面纵向阻水。
作为本设计的进一步改进,所述钢丝层7的钢丝包括多种外径钢丝。降低钢丝间的间隙。
作为本设计的进一步改进,所述吸氢纤膏2为烷烃油和聚合物为主要成分的疏水凝胶,有效阻水阻氢。
作为本设计的进一步改进,所述阻水胶6是由异氰酸酯和多元醇组成的双组分弹性体非吸水膨胀型阻水材料,可实现高水压阻水。
作为本设计的进一步改进,所述绝缘层4为高密度聚乙烯层,高密度聚乙烯抗透水性能显著优于中密度和低密度聚乙烯。
本发明的技术方案还提供一种多维度阻水阻氢海底光缆成型工艺,包括如下步骤:
S1:通过激光焊,精确控制激光功率、离焦量、焊接速度,实现连续无缝焊接不锈钢管8,通过二级压力泵和填充针管在不锈钢管8内填充吸氢纤膏2,精确设计针管尺寸,控制针管位置,纤膏温度,实现吸氢纤膏2填充率在95%以上;
S2:通过三种不等径内铠钢丝绞合,钢丝绞合成型时添加阻水胶6,实现一体成型;
S3:钢丝层7外将铜带通过三枪氩弧焊后拉拔成型,拉拔是保证铜管5内壁嵌入到所述钢丝层7的钢丝间隙之间;
S4:在铜管5外通过双螺杆长时串行挤出工艺挤出粘结层3和绝缘层4,挤出成型后通过分段式水槽冷却对线缆冷却。
测试时,海底光缆通过100MPa静水压测试,测试过程中,采用OTDR监测光纤1衰减,光纤1衰减无明显变化。测试完成后采用水定性试纸检查光单元,无水渗入。
海底光缆进行83MPa静水压,持续14天渗水测试,测试完成后海缆纵向渗水长度为286米,保证了海缆出现断缆时的可维修性。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发 明的专利保护范围内。

Claims (8)

  1. 一种多维度阻水阻氢海底光缆,包括光纤、包在所述光纤外的不锈钢管、包在所述不锈钢管外的钢丝层、包在所述钢丝层外的铜管、包在所述铜管外的绝缘层,其特征在于,所述不锈钢管为激光焊无缝不锈钢管,所述铜管为三枪氩弧焊无缝铜管,所述不锈钢管中填充吸氢纤膏,所述钢丝层由绕所述不锈钢管轴线环形阵列分布的钢丝绞合而成,所述钢丝间隙涂覆有阻水胶,所述铜管外与所述绝缘层之间设有粘结层。
  2. 根据权利要求1所述的一种多维度阻水阻氢海底光缆,其特征是,所述不锈钢管中的吸氢纤膏填充率达95%以上。
  3. 根据权利要求1所述的一种多维度阻水阻氢海底光缆,其特征是,所述粘结层为乙烯丙烯酸共聚物粘结剂。
  4. 根据权利要求1所述的一种多维度阻水阻氢海底光缆,其特征是,所述钢丝层的钢丝包括多种外径钢丝。
  5. 根据权利要求1所述的一种多维度阻水阻氢海底光缆,其特征是,所述吸氢纤膏为烷烃油和聚合物为主要成分的疏水凝胶。
  6. 根据权利要求1所述的一种多维度阻水阻氢海底光缆,其特征是,所述阻水胶是由异氰酸酯和多元醇组成的双组分弹性体非吸水膨胀型阻水材料。
  7. 根据权利要求1所述的一种多维度阻水阻氢海底光缆,其特征是,所述绝缘层为高密度聚乙烯层。
  8. 一种多维度阻水阻氢海底光缆成型工艺,其特征在于,包括如下步骤:
    S1:通过激光焊,精确控制激光功率、离焦量、焊接速度,实现连续无缝焊接不锈钢管,通过二级压力泵和填充针管在不锈钢管内填充吸氢纤膏,精确设计针管尺寸,控制针管位置,纤膏温度,实现吸氢纤膏填充率在95%以上;
    S2:通过三种不等径内铠钢丝绞合,钢丝绞合成型时添加阻水胶,实现一体成型;
    S3:钢丝层外将铜带通过三枪氩弧焊后拉拔成型,拉拔是保证铜管内壁嵌入到所述钢丝层的钢丝间隙之间;
    S4:在铜管外通过双螺杆长时串行挤出工艺挤出粘结层和绝缘层,挤出成型后通过分段式水槽冷却对线缆冷却。
PCT/CN2020/125740 2020-03-18 2020-11-02 一种多维度阻水阻氢海底光缆及其成型工艺 WO2021184770A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010193096.3 2020-03-18
CN202010193096.3A CN111443443A (zh) 2020-03-18 2020-03-18 一种多维度阻水阻氢海底光缆及其成型工艺

Publications (1)

Publication Number Publication Date
WO2021184770A1 true WO2021184770A1 (zh) 2021-09-23

Family

ID=71629291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125740 WO2021184770A1 (zh) 2020-03-18 2020-11-02 一种多维度阻水阻氢海底光缆及其成型工艺

Country Status (2)

Country Link
CN (1) CN111443443A (zh)
WO (1) WO2021184770A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128748A (zh) * 2022-03-25 2022-09-30 远东通讯有限公司 一种防声呐海底光缆及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111443443A (zh) * 2020-03-18 2020-07-24 江苏亨通海洋光网系统有限公司 一种多维度阻水阻氢海底光缆及其成型工艺
CN111897070B (zh) * 2020-08-26 2022-09-06 江苏亨通海洋光网系统有限公司 一种降低直流电阻的有中继海底光缆结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255812A (ja) * 1988-04-06 1989-10-12 Nippon Telegr & Teleph Corp <Ntt> 海底光ファイバケーブル
CN2762158Y (zh) * 2004-12-09 2006-03-01 江苏通光信息有限公司 高效阻水的海底光缆
CN101241213A (zh) * 2008-02-13 2008-08-13 中天科技海缆有限公司 深海光缆及其制作方法
CN102012285A (zh) * 2010-11-16 2011-04-13 江苏通光光电子有限公司 微形传感光单元及其嵌入式应用
CN203456124U (zh) * 2013-08-19 2014-02-26 河南华泰特种电缆有限公司 水下生产系统中心大孔径脐带缆
CN111443443A (zh) * 2020-03-18 2020-07-24 江苏亨通海洋光网系统有限公司 一种多维度阻水阻氢海底光缆及其成型工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1272844B (it) * 1994-11-24 1997-06-30 Pirelli Cavi Spa Cavo ottico protetto contro l'umidita'
JP4699511B2 (ja) * 2005-03-29 2011-06-15 プリスミアン・カビ・エ・システミ・エネルジア・ソチエタ・ア・レスポンサビリタ・リミタータ 光ケーブルを製造する方法及び装置並びに製造されたケーブル
CN105866914B (zh) * 2016-05-31 2018-11-20 江苏亨通海洋光网系统有限公司 提升海缆绝缘层与铜管粘结力的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255812A (ja) * 1988-04-06 1989-10-12 Nippon Telegr & Teleph Corp <Ntt> 海底光ファイバケーブル
CN2762158Y (zh) * 2004-12-09 2006-03-01 江苏通光信息有限公司 高效阻水的海底光缆
CN101241213A (zh) * 2008-02-13 2008-08-13 中天科技海缆有限公司 深海光缆及其制作方法
CN102012285A (zh) * 2010-11-16 2011-04-13 江苏通光光电子有限公司 微形传感光单元及其嵌入式应用
CN203456124U (zh) * 2013-08-19 2014-02-26 河南华泰特种电缆有限公司 水下生产系统中心大孔径脐带缆
CN111443443A (zh) * 2020-03-18 2020-07-24 江苏亨通海洋光网系统有限公司 一种多维度阻水阻氢海底光缆及其成型工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128748A (zh) * 2022-03-25 2022-09-30 远东通讯有限公司 一种防声呐海底光缆及其制备方法
CN115128748B (zh) * 2022-03-25 2024-03-08 远东通讯有限公司 一种防声呐海底光缆及其制备方法

Also Published As

Publication number Publication date
CN111443443A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2021184770A1 (zh) 一种多维度阻水阻氢海底光缆及其成型工艺
EP0417784B1 (en) Optical-fiber incorporated unterwater cable
US9543059B2 (en) Subsea umbilical
CN104297875A (zh) 一种高压光电复合缆用等电位光纤单元及其制备方法
US10345544B1 (en) Composite optoelectronic HDMI cable
US10606005B1 (en) Optical cables having an inner sheath attached to a metal tube
CN103744151B (zh) 光单元及使用该光单元的光电缆
AU5957999A (en) Submarine optical cable, optical fiber unit employed in the submarine optical cable, and method of making optical fiber unit
WO2019169859A1 (zh) 海底光缆
CN201732191U (zh) 一种柔软型全铠装防水尾缆
WO2021003805A1 (zh) 一种大容量低电阻跨洋有中继海底光缆
CN107219597A (zh) 一种馈电深海光缆
CN102760534A (zh) 一种光电复合海底电缆的制备方法
US20130220665A1 (en) Multicore electrical cable and method of manufacture
CN101533136A (zh) 防雷击层绞式光缆
CN103052903B (zh) 光纤架空地线线缆及其制造方法
CN111474651A (zh) 一种500芯及以上芯数层绞式无中继海底光缆
CN107179586A (zh) 大芯数馈电海底光缆
CN107358997A (zh) 深海系统用多芯光电复合水密电缆
CN211528777U (zh) 一种直接表面敷设铠装光缆
CN105845243B (zh) 一种阻水型铁路数字信号电缆
WO2013033305A1 (en) Cable and umbilical
CN203503365U (zh) 水密拖曳光电复合缆
CN207052322U (zh) 深海系统用多芯光电复合水密电缆
CN113053587B (zh) 一种防火电缆的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925039

Country of ref document: EP

Kind code of ref document: A1