WO2021003805A1 - 一种大容量低电阻跨洋有中继海底光缆 - Google Patents

一种大容量低电阻跨洋有中继海底光缆 Download PDF

Info

Publication number
WO2021003805A1
WO2021003805A1 PCT/CN2019/101554 CN2019101554W WO2021003805A1 WO 2021003805 A1 WO2021003805 A1 WO 2021003805A1 CN 2019101554 W CN2019101554 W CN 2019101554W WO 2021003805 A1 WO2021003805 A1 WO 2021003805A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
metal wire
wire unit
capacity
unit
Prior art date
Application number
PCT/CN2019/101554
Other languages
English (en)
French (fr)
Inventor
沈韦韦
许人东
范明海
Original Assignee
江苏亨通海洋光网系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通海洋光网系统有限公司 filed Critical 江苏亨通海洋光网系统有限公司
Publication of WO2021003805A1 publication Critical patent/WO2021003805A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/44384Means specially adapted for strengthening or protecting the cables the means comprising water blocking or hydrophobic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables

Definitions

  • the invention relates to a large-capacity low-resistance trans-oceanic relay submarine optical cable.
  • the relay submarine optical cable plays the most important role in the submarine cable family.
  • the total global demand exceeds 50,000 kilometers per year.
  • the design requirements of submarine optical cable systems are becoming more and more large-capacity, large core count, longer relay distance, low latency, high security, and intelligence.
  • the conventional submarine optical cable design and manufacture are divided into the structural design of the optical unit outer longitudinal copper tape and outer sheath, the optical unit outer armored high-strength phosphating steel wire and then the argon arc welding copper tape and extruded insulation design, but the biggest The fiber capacity is only 16 cores, and the DC resistance is ⁇ 1.0 ⁇ /km.
  • the submarine optical cables in service at this stage cannot meet future development needs.
  • the main shortcomings are:
  • Relay distance Limited by the current submarine optical cable fiber attenuation ( ⁇ 0.180dB/km), DC resistance (1.0 ⁇ /km) and working voltage (10kV) design, currently there are relay submarine optical cables that need to be repeated every 100km , The future development direction is to increase the relay distance and reduce the number of system repeaters.
  • the purpose of the present invention is to provide a way to ensure high-capacity transmission requirements, to ensure that the product obtains a minimum DC resistance requirement of 0.6 ⁇ /km@20°C, excellent insulation performance, ensure the feasibility of long-length relays, and optimize the breaking load of the product.
  • the short-term tensile load ensures the laying and recovery of the submarine optical cable at a maximum water depth of 8000m; ensuring the water blocking performance of the submarine optical cable, reducing the difficulty and cost of maintenance; having excellent impact resistance and flattening resistance, large capacity and low resistance across oceans Following the submarine optical cable.
  • the technical solution of the present invention is to provide a large-capacity low-resistance trans-oceanic relay submarine optical cable, comprising a cable core, an armor layer and a sheath, the cable core, the armor layer and the sheath correspond in turn from the inside to the outside
  • the cable core includes an inner optical fiber and an outer stainless steel steel tube optical unit.
  • the optical fiber is provided with a plurality of fibers and filled with fiber paste in the tube of the stainless steel tube optical unit.
  • the armor layer is composed of a first metal wire unit. , The second metal wire unit and the third metal wire unit are twisted, and the twisted gap of the armor layer is filled with water blocking glue.
  • the first metal wire unit, the second metal wire unit and the third metal wire unit are high-strength phosphating steel wires or copper wires.
  • the armor layer is twisted by the first metal wire unit, the second metal wire unit, and the third metal wire unit to form a double-layer armor, and then the longitudinally-clad copper tube is fixed by argon arc welding. .
  • the copper pipe is externally extruded with a high-performance polyethylene insulating layer to form a sheath.
  • the cable core can accommodate a maximum of 96 G654 optical fibers with a large effective cross-section.
  • the armor layer has a minimum DC resistance of 0.6 ⁇ /km@20°C.
  • the water blocking glue adopts a two-component material of isocyanate and polyol.
  • the technical scheme of the present invention also provides a process for forming a large-capacity low-resistance transoceanic relay submarine optical cable, which includes the following steps:
  • the fiber pay-off tension is controlled to 50-100g
  • the fiber paste filling rate is controlled above 80%
  • the fiber excess length is controlled within 0.5-4 ⁇ .
  • the excess fiber length and filling In the case of rate control and additional attenuation control, it can realize multi-core number G654 fiber and large length ( ⁇ 100km section length) pipe making;
  • the overall structure is improved.
  • the duty cycle of the wire unit during the manufacturing process, control the pay-off tension of the metal wire to 5-20kg, and control the armored stranding pitch to be 10-30 times the outer diameter of the armor;
  • the insulation extrusion is made to extrude the bonding material and the insulation material in turn.
  • the thickness of the bonding material is controlled to be 0.05-0.4mm, the insulation wall thickness is ⁇ 3.0mm, and the extrusion speed is controlled at 5-50m/min, while maintaining the stability of insulation extrusion, realize long-length ( ⁇ 100km section length), large-capacity and low-resistance trans-oceanic relay submarine cable;
  • the additional attenuation control of the cable is less than or equal to 0.05dB/km@1550nm.
  • the present invention is a large-capacity and low-resistance trans-oceanic relay submarine optical cable.
  • the present invention guarantees large-capacity transmission requirements, guarantees products to obtain a minimum DC resistance requirement of 0.6 ⁇ /km@20°C, excellent insulation performance, and guarantees large length
  • FIG. 1 is a schematic cross-sectional view of a preferred embodiment of a large-capacity low-resistance transoceanic relay submarine optical cable according to the present invention.
  • the present invention is a large-capacity low-resistance trans-oceanic relay submarine optical cable, as shown in Fig. 1, including a cable core, a stainless steel tube optical unit 1, an armor layer and a sheath 2 correspondingly arranged from the inside to the outside.
  • a plurality of optical fibers 3 are provided and filled with fiber paste 4 and arranged in the tube of the stainless steel tube light unit 1 to form a cable core.
  • the diameter of the stainless steel tube light unit 1 is designed from 3.0mm to 5.0mm, and the wall thickness is designed from 0.2mm to 0.3mm to ensure
  • the cable core can hold up to 96 cores of G654 fiber with a large effective cross-section (compatible with conventional G652D and other fiber types); at the same time, control the filling rate of fiber paste 4 ⁇ 90% to ensure that the stainless steel tube optical unit 1 can meet the water blocking performance under the condition of 83Mpa.
  • the armor layer is formed by twisting the first metal wire unit 5, the second metal wire unit 6 and the third metal wire unit 7.
  • the first metal wire unit 5, the second metal wire unit 6 and the third metal wire unit 7 are Performance requirements can be selected as high-strength phosphating steel wire or copper wire.
  • the armor layer includes a first high-strength phosphating steel wire 5 stranded on the inner side and a second high-strength phosphating steel wire 6 and copper wire 7 stranded on the outer side, and a copper tube 8 is longitudinally clad on the outer side. Welding and welding ensure the stability of the product structure.
  • the copper wire 7 is used to form a composite conductor to obtain the DC resistance required by the design. The minimum DC resistance of 0.6 ⁇ /km can be met.
  • the first high-strength phosphating steel wire 5, Two high-strength phosphating steel wires 6 and copper wires 7 are filled with water blocking glue 9 in the twisted gaps.
  • the water blocking glue 9 uses a two-component material of isocyanate and polyol to ensure the water blocking performance of the armored gap and high strength Phosphating steel wire as the reinforced steel wire of the armor layer can ensure that the breaking load value of the product is ⁇ 80kN, and the product can meet the laying and recycling of 8000m water depth.
  • the sheath 2 uses a polyethylene insulating layer with properties such as UV resistance, abrasion resistance, and environmental cracking resistance.
  • the wall thickness of the insulation layer is controlled to be ⁇ 3mm to ensure that the product can meet the 25-year service life under the maximum operating voltage of 20kV.
  • the fiber pay-off tension is controlled to 50-100g
  • the fiber paste filling rate is controlled above 80%
  • the fiber excess length is controlled at 0.5-4 ⁇
  • the fiber excess length and filling rate control are guaranteed.
  • it can realize multi-core number G654 fiber, long length ( ⁇ 100km section length) pipe making;
  • the stainless steel tube light unit armor layer is formed by double-layer twisting of three unequal diameter stranded metal wires (the first metal wire unit, the second metal wire unit and the third metal wire unit), which improves the overall structure of the metal wire unit
  • the pay-off tension of the metal wire is controlled to be 5-20kg
  • the stranding pitch of the armor is controlled to be 10-30 times the outer diameter of the armor;
  • the armored structure choose a copper strip with a thickness of 0.2-0.8mm, and form a composite of stainless steel tube light unit/armor layer/copper tube structure by drawing and forming after argon arc welding Conductor, in the argon arc welding and drawing process, control the drawing amount of the copper tube between 10-30% to ensure that the copper tube can be embedded in the metal armor layer and increase the bond between the copper tube and the armor layer
  • a large length ( ⁇ 100km section length), large capacity and low resistance trans-oceanic relay submarine cable can be realized;
  • the bonding material and the insulating material are extruded separately on the outside of the copper tube, the thickness of the bonding material is controlled to be 0.05-0.4mm, the thickness of the insulation wall is ⁇ 3.0mm, and the extrusion speed is controlled to be 5-50m/min.
  • the thickness of the bonding material is controlled to be 0.05-0.4mm
  • the thickness of the insulation wall is ⁇ 3.0mm
  • the extrusion speed is controlled to be 5-50m/min.
  • the additional attenuation control of the cable is less than or equal to 0.05dB/km@1550nm.
  • This structure ensures the compactness and stability of the product structure to meet the impact and flattening resistance requirements of the submarine optical cable.
  • the present invention is a large-capacity low-resistance trans-oceanic relay submarine optical cable.
  • the present invention has the following advantages:
  • Low-resistance structure design The design adopts the structure of argon arc welding of the longitudinal clad copper pipe after the combined armoring of the high-strength phosphating steel wire and the third metal wire unit to ensure that the product obtains the minimum DC resistance requirement of 0.6 ⁇ /km@20°C. Ensure the feasibility of long-length relay;
  • Insulation design Design and select a polyethylene insulating layer with properties such as UV resistance, abrasion resistance, and environmental cracking resistance to increase the insulation resistance of the product to more than 100G ⁇ km, and the long-term working voltage to 20kV;

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Conductors (AREA)
  • Communication Cables (AREA)

Abstract

一种大容量低电阻跨洋中继海底光缆包括自内而外依次对应设置的缆芯、铠装层以及护套(2)。缆芯包括内部的光纤(3)和外部的不锈钢钢管光单元(1),光纤(3)设置有多根并通过纤膏(4)填充设置于不锈钢管光单元(1)的管内。铠装层由第一金属丝单元(5)、第二金属丝单元(6)和第三金属丝单元(7)绞合而成,铠装层的绞合缝隙内填充设置有阻水胶(9)。光缆能保证大容量传输需求,保证产品获得最低0.6Ω/km@20℃的直流电阻需求,绝缘性能优异,保证大长度中继的可行性,优化该产品的断裂负荷、短暂拉伸负荷,确保海底光缆在最大8000m水深的铺设与回收;确保海底光缆的阻水性能,降低维修难度和成本;具有优良的抗冲击和抗压扁性能。

Description

一种大容量低电阻跨洋有中继海底光缆 技术领域
本发明涉及一种大容量低电阻跨洋有中继海底光缆。
背景技术
全球90%以上的国际数据通过海底光缆传输系统进行传输,海底光缆系统也因此成为当代全球信息通信最重要的信息载体。
另一方面,随着目前云计算、物联网、大数据、移动互联等ICT产业的快速发展,全球各方对连接的需求不断提升。在走向更美好的全联接过程中,海底光缆传输系统所扮演的角色越来越重要,成为国家经济发展的基石,得到政府以及投资方的重视。
作为跨洋通信的主要载体,有中继海底光缆在海缆家族中扮演着最重要的角色。现阶段,全球总需求量超5万公里/年。而随着通信需求的激增,海底光缆系统的设计需求越来越趋于大容量、大芯数、更长中继距离、低延迟、高安全、智能化等。
目前常规的海底光缆设计制造分为光单元外纵包铜带加外护套的结构设计、光单元外铠装高强度磷化钢丝后氩弧焊焊接铜带并挤塑绝缘的设计,但最大光纤容量仅为16芯,直流电阻≤1.0Ω/km。
现阶段服役的海底光缆满足不了未来的发展需求,主要不足在于:
1、通信容量:目前有中继海底光缆的光纤容量常在16芯以下,满足不了未来大芯数有中继海底光缆的需求;
2、中继距离:受限于目前海底光缆光纤衰减(≤0.180dB/km)、直流电阻(1.0Ω/km)和工作电压(10kV)设计,目前有中继海底光缆需要每100km中继一次, 未来发展的方向则是增大中继距离,减少系统中继器的数量。
发明内容
本发明的目的在于提供一种保证大容量传输需求,保证产品获得最低0.6Ω/km@20℃的直流电阻需求,绝缘性能优异,保证大长度中继的可行性,优化该产品的断裂负荷、短暂拉伸负荷,确保海底光缆在最大8000m水深的铺设与回收;确保海底光缆的阻水性能,降低维修难度和成本;具有优良的抗冲击和抗压扁性能的大容量低电阻跨洋有中继海底光缆。
本发明的技术方案是,提供一种大容量低电阻跨洋有中继海底光缆,包括缆芯、铠装层以及护套,所述缆芯、铠装层以及护套自内而外依次对应设置,所述缆芯包括内部的光纤和外部的不锈钢钢管光单元,所述光纤设置有多根并通过纤膏填充设置于不锈钢管光单元的管内,所述铠装层由第一金属丝单元、第二金属丝单元和第三金属丝单元绞合而成,所述铠装层的绞合缝隙内填充设置有阻水胶。
在本发明一个较佳实施例中,所述第一金属丝单元、第二金属丝单元和第三金属丝单元为高强度磷化钢丝或铜丝。
在本发明一个较佳实施例中,所述铠装层由第一金属丝单元、第二金属丝单元以及第三金属丝单元绞合形成双层铠装后纵包铜管氩弧焊焊接固定。
在本发明一个较佳实施例中,所述铜管外部挤塑高性能聚乙烯绝缘层形成护套。
在本发明一个较佳实施例中,所述缆芯最大可容纳96芯大有效截面G654光纤。
在本发明一个较佳实施例中,所述铠装层具有最低0.6Ω/km@20℃的直流电阻。
在本发明一个较佳实施例中,所述阻水胶采用异氰酸酯和多元醇的双组分材料。
本发明的技术方案还提供一种大容量低电阻跨洋有中继海底光缆的成型工艺,包括如下步骤:
1)通过激光焊接不锈钢管光单元工艺方式,控制光纤放线张力为50-100g,纤膏填充率控制在80%以上,光纤余长控制在0.5-4‰,最终在保证光纤余长、填充率控制及附加衰减控制的情况下,实现多芯数G654光纤、大长度(≥100km段长)造管;
2)通过三种不等径绞合金属丝(第一金属丝单元、第二金属丝单元及第三金属丝单元)双层绞合形成不锈钢管光单元铠装层,提升整体结构中,金属丝单元的占空比,在制成过程中,控制金属丝的放线张力在5-20kg,控制铠装绞合节距为铠装外径的10-30倍;
3)在铠装结构外,选择厚度0.2-0.8mm厚的铜带,通过氩弧焊接后拉拔成型的方式形成不锈钢管光单元/铠装层/铜管结构的复合导体,在氩弧焊焊接拉拔成型过程中,控制铜管拉拔量在10-30%之间,确保铜管能嵌入金属铠装层中,增加铜管与铠装层之间的粘结力,最终在保持铜管焊接稳定的情况下,实现大长度(≥100km段长)大容量低电阻跨洋有中继海缆;
4)通过共挤工艺,在铜管外侧,绝缘挤塑制造依次分别挤塑粘结材料和绝缘材料,控制粘结材料厚度在0.05-0.4mm,绝缘壁厚≥3.0mm,控制挤塑速度在5-50m/min,在保持绝缘挤塑稳定的情况下,实现大长度(≥100km段长)大容量低电阻跨洋有中继海缆;
成缆附加衰减控制≤0.05dB/km@1550nm。
本发明所述为一种大容量低电阻跨洋有中继海底光缆,本发明保证大容量传 输需求,保证产品获得最低0.6Ω/km@20℃的直流电阻需求,绝缘性能优异,保证大长度中继的可行性,优化该产品的断裂负荷、短暂拉伸负荷,确保海底光缆在最大8000m水深的铺设与回收;确保海底光缆的阻水性能,降低维修难度和成本;具有优良的抗冲击和抗压扁性能。
附图说明
图1是本发明一种大容量低电阻跨洋有中继海底光缆一较佳实施例中的截面示意图。
具体实施方式
下面对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
本发明所述为一种大容量低电阻跨洋有中继海底光缆,如图1所示,包括自内而外依次对应设置缆芯、不锈钢管光单元1、铠装层以及护套2。
光纤3设置有多根并通过纤膏4填充设置于不锈钢管光单元1的管内形成缆芯,不锈钢管光单元1直径设计从3.0mm至5.0mm,壁厚设计从0.2mm至0.3mm,保证缆芯最大可容纳96芯大有效截面G654光纤(兼容常规G652D等光纤类型);同时控制纤膏4填充率≥90%,以保证不锈钢管光单元1可满足83Mpa条件下阻水性能。
铠装层由第一金属丝单元5、第二金属丝单元6及第三金属丝单元7绞合而成,第一金属丝单元5、第二金属丝单元6和第三金属丝单元7根据性能需求,可分别选择为高强度磷化钢丝或铜丝。
在本实施例中,铠装层包括内侧绞合的第一高强度磷化钢丝5及外侧绞合的第二高强度磷化钢丝6和铜丝7,并在外侧纵包铜管8氩弧焊焊接固定,保 证产品结构稳定性,铜丝7的使用为形成复合导体,以获得设计需求的直流电阻需求,最低可满足0.6Ω/km的直流电阻,第一高强度磷化钢丝5、第二高强度磷化钢丝6及铜丝7的绞合缝隙内填充设置有阻水胶9,阻水胶9采用异氰酸酯和多元醇的双组分材料,以保证铠装间隙阻水性能,高强度磷化钢丝作为铠装层的增强钢丝,可确保该产品的断裂负荷力值≥80kN,保证产品可满足8000m水深的敷设与回收。
护套2选用抗UV、耐磨损、耐环境开裂等性能的聚乙烯绝缘层,控制绝缘层壁厚≥3mm,保证该产品在最大20kV工作电压条件下,满足25年使用寿命。
加工工艺:
通过激光焊接不锈钢管光单元工艺方式,控制光纤放线张力为50-100g,纤膏填充率控制在80%以上,光纤余长控制在0.5-4‰,最终在保证光纤余长、填充率控制及附加衰减控制的情况下,实现多芯数G654光纤、大长度(≥100km段长)造管;
通过三种不等径绞合金属丝(第一金属丝单元、第二金属丝单元及第三金属丝单元)双层绞合形成不锈钢管光单元铠装层,提升整体结构中,金属丝单元的占空比,在制成过程中,控制金属丝的放线张力在5-20kg,控制铠装绞合节距为铠装外径的10-30倍;
根据结构设计,选型需求,在铠装结构外,选择厚度0.2-0.8mm厚的铜带,通过氩弧焊接后拉拔成型的方式形成不锈钢管光单元/铠装层/铜管结构的复合导体,在氩弧焊焊接拉拔成型过程中,控制铜管拉拔量在10-30%之间,确保铜管能嵌入金属铠装层中,增加铜管与铠装层之间的粘结力,最终在保持铜管焊接稳定的情况下,实现大长度(≥100km段长)大容量低电阻跨洋有中继海缆;
通过共挤工艺,在铜管外侧,依次分别挤塑粘结材料和绝缘材料,控制粘结 材料厚度在0.05-0.4mm,绝缘壁厚≥3.0mm,控制挤塑速度在5-50m/min,在保持绝缘挤塑稳定的情况下,实现大长度(≥100km段长)大容量低电阻跨洋有中继海缆,绝缘挤塑制造;
成缆附加衰减控制≤0.05dB/km@1550nm。
本结构确保该产品结构紧致稳定性,以满足海底光缆对抗冲击和抗压扁的需求。
本发明所述为一种大容量低电阻跨洋有中继海底光缆,本发明具备如下优点:
1、选择中心管式有中继海底光缆结构设计,最大可容纳96芯大有效截面G654光纤(兼容常规G652D等光纤类型),保证大容量传输需求;
2、低电阻结构设计:设计选用高强度磷化钢丝和第三金属丝单元联合铠装后纵包铜管氩弧焊的结构,保证产品获得最低0.6Ω/km@20℃的直流电阻需求,保证大长度中继的可行性;
3、机械性能&应用回收水深设计:通过高强度磷化钢丝的结构设计,优化该产品的断裂负荷、短暂拉伸负荷,同时填充高性能阻水材料的设计,保证在保证产品最大应用水深8000m的同时,确保海底光缆的阻水性能;保证海底光缆在使用过程中因断裂尽可能缩短海水渗入的长度,降低维修难度和成本;
4、绝缘设计:设计选用抗UV、耐磨损、耐环境开裂等性能的聚乙烯绝缘层,提升产品的绝缘电阻大于100GΩ·km,长期工作电压至20kV;
5、机械结构稳定性和耐水压结构设计:通过不锈钢管光单元外铠装高强度磷化钢丝&第三金属丝单元后焊接铜带并挤塑高性能聚乙烯的结构设计,保证该产品的结构稳定性,确保该产品具有优良的抗冲击和抗压扁性能,同时可满足8000m海水深条件下承受最大83Mpa的静水压;
6、工艺实现稳定性:在保证光纤余长、填充率控制及附加衰减控制的情况下,实现多芯数G654光纤、大长度(≥100km段长)造管;在保持铜管焊接稳定的情况下,实现大长度(≥100km段长)大容量低电阻跨洋有中继海缆,铠装氩弧焊制造;在保持绝缘挤塑稳定的情况下,实现大长度(≥100km段长)大容量低电阻跨洋有中继海缆,绝缘挤塑。
以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明所揭露的技术范围内,可不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (8)

  1. 一种大容量低电阻跨洋有中继海底光缆,包括缆芯、铠装层以及护套,其特征在于:所述缆芯、铠装层以及护套自内而外依次对应设置,所述缆芯包括内部的光纤和外部的不锈钢钢管光单元,所述光纤设置有多根并通过纤膏填充设置于不锈钢管光单元的管内,所述铠装层由第一金属丝单元、第二金属丝单元和第三金属丝单元绞合而成,所述铠装层的绞合缝隙内填充设置有阻水胶。
  2. 根据权利要求1所述的大容量低电阻跨洋有中继海底光缆,其特征在于:所述第一金属丝单元、第二金属丝单元和第三金属丝单元为高强度磷化钢丝或铜丝。
  3. 根据权利要求1所述的大容量低电阻跨洋有中继海底光缆,其特征在于:所述铠装层由第一金属丝单元、第二金属丝单元以及第三金属丝单元绞合形成双层铠装后纵包铜管氩弧焊焊接固定。
  4. 根据权利要求1所述的大容量低电阻跨洋有中继海底光缆,其特征在于:所述铜管外部挤塑高性能聚乙烯绝缘层形成护套。
  5. 根据权利要求1所述的大容量低电阻跨洋有中继海底光缆,其特征在于:所述缆芯最大可容纳96芯大有效截面G654光纤。
  6. 根据权利要求1所述的大容量低电阻跨洋有中继海底光缆,其特征在于:所述铠装层具有最低0.6Ω/km@20℃的直流电阻。
  7. 根据权利要求1所述的大容量低电阻跨洋有中继海底光缆,其特征在于:所述阻水胶采用异氰酸酯和多元醇的双组分材料。
  8. 一种应用于权利要去1-7的大容量低电阻跨洋有中继海底光缆的成型工艺,其特征在于:包括如下步骤:
    1)通过激光焊接不锈钢管光单元工艺方式,控制光纤放线张力为50-100g, 纤膏填充率控制在80%以上,光纤余长控制在0.5-4‰,最终在保证光纤余长、填充率控制及附加衰减控制的情况下,实现多芯数G654光纤、大长度(≥100km段长)造管;
    2)通过三种不等径绞合金属丝(第一金属丝单元、第二金属丝单元及第三金属丝单元)双层绞合形成不锈钢管光单元铠装层,提升整体结构中,金属丝单元的占空比,在制成过程中,控制金属丝的放线张力在5-20kg,控制铠装绞合节距为铠装外径的10-30倍;
    3)在铠装结构外,选择厚度0.2-0.8mm厚的铜带,通过氩弧焊接后拉拔成型的方式形成不锈钢管光单元/铠装层/铜管结构的复合导体,在氩弧焊焊接拉拔成型过程中,控制铜管拉拔量在10-30%之间,确保铜管能嵌入金属铠装层中,增加铜管与铠装层之间的粘结力,最终在保持铜管焊接稳定的情况下,实现大长度(≥100km段长)大容量低电阻跨洋有中继海缆;
    4)通过共挤工艺,在铜管外侧,绝缘挤塑制造依次分别挤塑粘结材料和绝缘材料,控制粘结材料厚度在0.05-0.4mm,绝缘壁厚≥3.0mm,控制挤塑速度在5-50m/min,在保持绝缘挤塑稳定的情况下,实现大长度(≥100km段长)大容量低电阻跨洋有中继海缆;
    成缆附加衰减控制≤0.05dB/km@1550nm。
PCT/CN2019/101554 2019-07-08 2019-08-20 一种大容量低电阻跨洋有中继海底光缆 WO2021003805A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910609071.4 2019-07-08
CN201910609071.4A CN110426798A (zh) 2019-07-08 2019-07-08 一种大容量低电阻跨洋有中继海底光缆

Publications (1)

Publication Number Publication Date
WO2021003805A1 true WO2021003805A1 (zh) 2021-01-14

Family

ID=68410340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101554 WO2021003805A1 (zh) 2019-07-08 2019-08-20 一种大容量低电阻跨洋有中继海底光缆

Country Status (2)

Country Link
CN (1) CN110426798A (zh)
WO (1) WO2021003805A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4053611A1 (en) * 2021-03-05 2022-09-07 SubCom, LLC High fiber count undersea cable

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111427124A (zh) * 2020-03-18 2020-07-17 江苏亨通海洋光网系统有限公司 海底光缆奇数不等径钢丝复合铜管一体化拱形内铠结构
CN111679383A (zh) * 2020-05-20 2020-09-18 中航宝胜海洋工程电缆有限公司 一种高强度耐侧压、耐冲击的海底光缆缆芯及其制备方法
CN111816361A (zh) * 2020-07-17 2020-10-23 东莞市民兴电缆有限公司 一种深度防水多芯电力输配电缆
CN111913261A (zh) * 2020-08-26 2020-11-10 江苏亨通海洋光网系统有限公司 一种光单元纵包铜带结构的海光缆及其制备方法
CN111897070B (zh) * 2020-08-26 2022-09-06 江苏亨通海洋光网系统有限公司 一种降低直流电阻的有中继海底光缆结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201156097Y (zh) * 2008-02-13 2008-11-26 中天科技海缆有限公司 深海光缆
US7822306B2 (en) * 2007-01-08 2010-10-26 Commscope, Inc. Of North Carolina Buoyancy neutral fiber optic cable
CN102914841A (zh) * 2012-11-14 2013-02-06 中天日立光缆有限公司 海洋光缆专用光纤单元及其制造方法
CN104297875A (zh) * 2014-10-13 2015-01-21 中天科技海缆有限公司 一种高压光电复合缆用等电位光纤单元及其制备方法
CN107219597A (zh) * 2017-06-08 2017-09-29 江苏亨通海洋光网系统有限公司 一种馈电深海光缆
CN208014406U (zh) * 2017-12-15 2018-10-26 中天科技海缆有限公司 海底光缆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201477261U (zh) * 2009-07-14 2010-05-19 江苏通光光电子有限公司 含铜线双内铠海底光缆缆芯
CN107819510B (zh) * 2017-09-29 2018-09-18 黄玉宇 基于蜂窝组网技术的海底科学观测网络系统
CN210270296U (zh) * 2019-07-08 2020-04-07 江苏亨通海洋光网系统有限公司 一种大容量低电阻跨洋有中继海底光缆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7822306B2 (en) * 2007-01-08 2010-10-26 Commscope, Inc. Of North Carolina Buoyancy neutral fiber optic cable
CN201156097Y (zh) * 2008-02-13 2008-11-26 中天科技海缆有限公司 深海光缆
CN102914841A (zh) * 2012-11-14 2013-02-06 中天日立光缆有限公司 海洋光缆专用光纤单元及其制造方法
CN104297875A (zh) * 2014-10-13 2015-01-21 中天科技海缆有限公司 一种高压光电复合缆用等电位光纤单元及其制备方法
CN107219597A (zh) * 2017-06-08 2017-09-29 江苏亨通海洋光网系统有限公司 一种馈电深海光缆
CN208014406U (zh) * 2017-12-15 2018-10-26 中天科技海缆有限公司 海底光缆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4053611A1 (en) * 2021-03-05 2022-09-07 SubCom, LLC High fiber count undersea cable
US11977267B2 (en) 2021-03-05 2024-05-07 Subcom, Llc High fiber count undersea cable

Also Published As

Publication number Publication date
CN110426798A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
WO2021003805A1 (zh) 一种大容量低电阻跨洋有中继海底光缆
CN210270296U (zh) 一种大容量低电阻跨洋有中继海底光缆
WO2016058421A1 (zh) 一种高压光电复合缆用等电位光纤单元及其制备方法
CN204614536U (zh) 轻型水下动态光电复合缆
WO2019114375A1 (zh) 海底光缆及其制作方法
CN102222550B (zh) 抗蠕变铝合金导体联锁铠装光纤复合低压电缆制作方法
CN105139952A (zh) 一种舰船用光纤控制复合岸电电缆
CN104900330A (zh) 海上石油平台用无卤耐泥浆中压电力电缆及其制造方法
CN107179586B (zh) 大芯数馈电海底光缆
CN104143388A (zh) 水密拖曳承重控制电缆
CN102654625A (zh) 水底光缆
CN114188073A (zh) 一种零浮力水密光电复合缆及其制作方法
CN101819833A (zh) 一种ftth接入用光电复合缆
CN2916864Y (zh) 光电复合缆
CN103400656B (zh) 一种采煤机综合扁电缆生产方法
CN210325251U (zh) 一种扫雷探测用光电传输拖曳电缆
CN104091643A (zh) 一种带光纤及电信号的复合型采煤机电缆
CN104200899A (zh) 一种小弯曲半径抗冲击轻型光纤电力电缆及其工艺流程
CN203733518U (zh) 碳纤维铜包铝芯自锁钢带铠装电力电缆
CN2528033Y (zh) 浅海光缆
EP4174879A1 (en) Submarine cable
CN102592746B (zh) 一种具有橡胶护套的光电复合缆
CN204463850U (zh) 一种水上承载综合数字电缆
CN212989723U (zh) 一种自带导引缆式气吹型288芯opgw光缆
CN209102970U (zh) 一种铜包钢管光电复合光缆缆芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936880

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19936880

Country of ref document: EP

Kind code of ref document: A1