WO2021184417A1 - 一种数据传输方法及相关产品 - Google Patents

一种数据传输方法及相关产品 Download PDF

Info

Publication number
WO2021184417A1
WO2021184417A1 PCT/CN2020/082302 CN2020082302W WO2021184417A1 WO 2021184417 A1 WO2021184417 A1 WO 2021184417A1 CN 2020082302 W CN2020082302 W CN 2020082302W WO 2021184417 A1 WO2021184417 A1 WO 2021184417A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
data
condition
inactive state
base station
Prior art date
Application number
PCT/CN2020/082302
Other languages
English (en)
French (fr)
Inventor
夏欣
Original Assignee
深圳传音控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音控股股份有限公司 filed Critical 深圳传音控股股份有限公司
Priority to CN202080098659.9A priority Critical patent/CN115298993A/zh
Publication of WO2021184417A1 publication Critical patent/WO2021184417A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method and related products.
  • the 5G system newly introduces the inactive state/inactive state of the terminal.
  • the advantage of this is that compared to the original idle state to the connected state , The state transition time from the inactive state to the connected state will be greatly reduced, and the signaling burden on the air interface and network interface can be reduced, so that the terminal maintains the power consumption similar to that in the idle state, and at the same time reduces the delay of terminal access.
  • RRC radio resource control
  • the embodiment of the application discloses a data transmission method and related products.
  • the terminal according to the technical characteristics and data transmission characteristics of the terminal in the inactive state, the terminal selects different inactive methods to transmit data in different scenarios, which greatly reduces the signaling burden of transmission and improves the transmission. efficient.
  • an embodiment of the present application provides a data transmission method, which includes:
  • the terminal When the terminal is in an inactive state and/or there is data to be transmitted, if the terminal meets the first condition, the terminal uses the uplink resource configured by the base station to transmit data, and the first condition is that the base station is all The terminal configures the uplink resource in an inactive state.
  • the first condition includes:
  • the base station configures the uplink resource in the inactive state for the terminal, and the uplink timing advance configuration of the terminal is currently in a valid state.
  • the uplink resource configured by the base station for the terminal is the resource configured by the base station in configuring uplink grant type 1.
  • the uplink timing advance configuration of the terminal is currently in a valid state, that is, the uplink timing advance timer of the terminal has not expired, and the terminal is in the uplink Synchronization status.
  • the above first condition may also include that the current service type of the terminal belongs to the service type set configured by the base station.
  • the service type may be determined by the access stratum (AS) of the terminal.
  • the terminal Obtained through service parameters passed by the non-access stratum (NAS), or determined by the terminal according to the QoS class identifier (QCI) attribute of the data service, or it may depend on the terminal implementation.
  • the terminal transmits data by using the uplink resources configured by the base station, which can reduce unnecessary system signaling burden and improve transmission efficiency.
  • the method further includes:
  • the terminal selects the inactive state method to transmit the data.
  • the terminal after the terminal consumes the uplink resources, it selects the inactive state method to transmit data, which can minimize the signaling burden and improve the transmission efficiency.
  • the method further includes:
  • the terminal When the terminal is in an inactive state and/or there is data to be transmitted, if the terminal does not meet the first condition, the terminal selects the inactive state method to transmit data.
  • the terminal selects the inactive state method to transmit data.
  • the method in which the terminal selects the inactive state to transmit data includes:
  • the terminal uses two-step random access or four-step random access in an inactive state to transmit data.
  • that the terminal uses two-step random access or four-step random access in an inactive state to transmit data includes:
  • the terminal uses the two-step random access in the inactive state to transmit data.
  • the second condition contains one or more conditions.
  • the terminal needs to meet the base station to support the terminal to adopt two-step random access conditions, and the terminal needs to meet at least any one of the second conditions. Multiple combination conditions in the second condition can be met. In the case where the above conditions are met, the terminal chooses to use two-step random access to transmit data.
  • that the terminal uses two-step random access or four-step random access in an inactive state to transmit data includes:
  • the terminal adopts non- The four-step random access transmission data in the active state.
  • the third condition is that the base station supports the terminal to transmit data using four-step random access in an inactive state.
  • the second condition includes at least one of the following:
  • the current signal strength of the terminal is higher than the target signal threshold, the amount of data that the terminal currently needs to transmit is less than or equal to the first target data amount threshold, and the amount of data transmitted by the terminal within the target time is less than Or equal to the second target data volume threshold, the data service type currently required to be transmitted by the terminal belongs to the service type set configured by the base station, and the data service type currently required to be transmitted by the terminal does not belong to the service type configured by the base station Set, the random number selected by the terminal is less than or equal to the third target threshold.
  • the third condition is that the base station supports the terminal to use four-step random access to transmit data. If the third condition is met, the terminal can use four-step random access to transmit data.
  • the third condition may also include other One or more combination conditions, such as the current signal strength of the terminal is higher than the target signal threshold, the amount of data that the terminal currently needs to send is less than or equal to a certain target data threshold, etc., and the above target signal threshold and target data threshold are both It can be transmitted to the terminal through broadcast messages and/or RRC signaling.
  • the method further includes: when the terminal does not meet the fourth condition, the terminal enters a connected state to transmit data.
  • the fourth condition is that the base station supports at least one of two-step random access and four-step random access in an inactive state for the terminal.
  • the method further includes: when the terminal does not meet the second condition and the third condition, the terminal enters a connected state to transmit data.
  • the first condition includes at least one of the following:
  • the current service type of the terminal belongs to a service type set configured by the base station;
  • the current service type of the terminal does not belong to the service type set configured by the base station.
  • the third condition includes at least one of the following:
  • the current signal strength of the terminal is higher than the target signal threshold, the amount of data that the terminal currently needs to transmit is less than or equal to the first target data amount threshold, and the amount of data transmitted by the terminal within the target time is less than or equal to The second target data volume threshold, the data service type currently required to be transmitted by the terminal belongs to the service type set configured by the base station, and the data service type currently required to be transmitted by the terminal does not belong to the service type set configured by the base station,
  • the random number selected by the terminal is less than or equal to the third target threshold.
  • the method further includes: when the terminal does not meet the fourth condition and does not meet the fifth condition, the terminal enters a connected state to transmit data.
  • the fifth condition includes at least one of the following:
  • the amount of data that the terminal currently needs to transmit is less than or equal to the first target data amount threshold, the amount of data that the terminal transmits within the target time is less than or equal to the second target data amount threshold, and the type of data service that the terminal currently needs to transmit It belongs to the service type set configured by the base station, and the data service type that the terminal currently needs to transmit does not belong to the service type set configured by the base station.
  • the target signal threshold, the first target data volume threshold, the second target data volume threshold, the third target threshold, and the set of service types configured by the base station At least one is transmitted to the terminal through a broadcast message and/or radio resource management layer RRC signaling.
  • the terminal in view of the technical characteristics and data transmission characteristics of the terminal in the inactive state, the terminal can select different inactive methods to transmit data in different scenarios, which greatly reduces the signaling burden of transmission and improves The transmission efficiency.
  • an embodiment of the present application provides a data transmission device, which includes:
  • the transmission unit is configured to use the uplink resource configured by the base station to transmit data when the terminal is in an inactive state and/or there is data to be transmitted, if the terminal meets the first condition, the first condition is that the base station Configuring the uplink resource in an inactive state for the terminal.
  • the device further includes:
  • the selection unit is used to select the inactive state method to transmit data when there is still data to be transmitted after the uplink resource is consumed.
  • the selection unit is further configured to select if the terminal does not meet the first condition when the terminal is in an inactive state and/or there is data to be transmitted
  • the inactive method transmits data.
  • the selection unit is specifically configured to use two-step random access or four-step random access in an inactive state to transmit data.
  • the selection unit is specifically configured to: in the case that the base station supports the two-step random access of the terminal in the inactive state, if the terminal meets the second condition, then Data is transmitted using two-step random access in an inactive state;
  • the second condition includes at least one of the following: the current signal strength of the terminal is higher than the target signal threshold, and the amount of data that the terminal currently needs to transmit is less than or equal to The first target data volume threshold, the data volume transmitted by the terminal within the target time is less than or equal to the second target data volume threshold, the data service type that the terminal currently needs to transmit belongs to the service type set configured by the base station, and The data service type that the terminal currently needs to transmit does not belong to the service type set configured by the base station, and the random number selected by the terminal is less than or equal to the third target threshold.
  • the selection unit is specifically further configured to: when the base station does not support the two-step random access of the terminal in the inactive state or the terminal does not meet the second condition In this case, if the terminal meets the third condition, the four-step random access in the inactive state is used to transmit data, and the third condition is that the base station supports the terminal to use the four-step random access in the inactive state.
  • the second condition includes at least one of the following: the current signal strength of the terminal is higher than the target signal threshold, and/or the amount of data that the terminal currently needs to transmit is less than or equal to the first A target data volume threshold, the data volume transmitted by the terminal within the target time is less than or equal to the second target data volume threshold, and the data service type that the terminal currently needs to transmit belongs to the service type set configured by the base station, The data service type that the terminal currently needs to transmit does not belong to the service type set configured by the base station, and the random number selected by the terminal is less than or equal to the third target threshold.
  • the selection unit is specifically further configured to select to enter the connected state to transmit data when the terminal does not meet a fourth condition, and the fourth condition is that the base station supports the The terminal adopts at least one of two-step random access and four-step random access in an inactive state.
  • the selection unit is specifically further configured to select to enter the connected state to transmit data when the terminal does not meet the second condition and the third condition.
  • the selection unit is specifically further configured to select to enter the connected state to transmit data when the terminal does not meet the fourth condition and does not meet the fifth condition.
  • an embodiment of the present application provides a data transmission device, including a processor and a memory; the processor is configured to support the data transmission device to perform the foregoing first aspect and optional implementations in the foregoing first aspect The corresponding function in the method of the method.
  • the memory stores programs (instructions) and data necessary for the data transmission device.
  • the data transmission device may further include an input/output interface for supporting communication between the data transmission device and other devices.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores one or more instructions, and the one or more instructions are suitable for being loaded and executed by the processor Such as the foregoing first aspect and the optional implementation method in the foregoing first aspect.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the above-mentioned first aspect and any of its optional implementation methods.
  • the terminal selects different inactive methods to transmit data in different scenarios, which reduces the complexity of terminal mobility management to a certain extent. And the signaling burden and the signaling burden of transmitting data, which improves the transmission efficiency.
  • Figure 1a is a schematic diagram of the state transition process of the terminal
  • Figure 1b is a schematic diagram of the flow of the terminal from the inactive state to the connected state
  • Figure 2a is a schematic diagram of a four-step random access flow based on a control plane scheme
  • Figure 2b is a schematic diagram of a four-step random access process based on a user plane scheme
  • Figure 2c is a schematic diagram of a two-step random access flow based on contention access
  • FIG. 3 is a schematic flowchart of a data transmission method provided by an embodiment of this application.
  • FIG. 5a is a schematic flowchart of another data transmission method provided by an embodiment of this application.
  • FIG. 5b is a schematic flowchart of another data transmission method provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of another data transmission method provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a data transmission device provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a terminal provided by an embodiment of the application.
  • Figure 1a is a schematic diagram of the state transition process of the terminal.
  • the 5G system newly references the inactive state of the UE, which is used for user terminals that periodically or irregularly send a small amount of data.
  • the main feature of the inactive state includes that the UE context information is stored on the radio access network (Radio Access Network, RAN) side.
  • Radio Access Network Radio Access Network
  • the UE context information stores the UE’s wireless configuration and 5GC core network information, thereby allowing The state transition of the UE between the inactive state and the connected state is realized without the intervention of the core network; the main feature of the inactive state also includes the autonomous mobility of the UE, such as the cell selection and cell reselection process in the inactive state
  • the main features of the inactive state also include the state between the inactive state and the connected state, mobility management, and the UE in the inactive state are all transparent to the core network.
  • the general flow of the UE state transition can be seen from Figure 1. First, in the idle state, the UE initiates a radio resource control (Radio Resource Control, RRC) request to enter the connected state to transmit data.
  • RRC Radio Resource Control
  • the RRC connection request is released. Return to the idle state.
  • the advantage of this is that compared to the original state from the idle state to the connected state, the state transition time from the inactive state to the connected state will be greatly reduced, and the signaling burden on the air interface and network interface can be reduced, so that the UE stays similar to the idle state. At the same time, the delay of UE access is reduced, and the transmission efficiency is improved.
  • FIG. 1b is a schematic diagram of the flow of the terminal entering the connected state from the inactive state.
  • the terminal when the terminal is in the inactive state, it needs to obtain the I-RNTI allocated by the previous serving base station gNB, so it initiates an RRC connection request to the current gNB. If the current gNB can resolve the gNB identity contained in the I-RNTI, it will The last serving gNB is requested to provide UE context data, and then the last serving gNB provides specific information about the UE context data. So far, the current gNB and UE have completed the restoration of the RRC connection.
  • the current gNB needs to provide a forwarding address. Specifically, the current gNB can send a path switch request to the access management function (AMF) to obtain the path switch of the AMF After the request is answered, the gNB performs path switching. After the path switching is completed, the gNB triggers the release of the UE resources when it last served the gNB.
  • AMF access management function
  • the four-step random access data transmission in the present invention refers to a method of directly transmitting data based on the four-step random access process.
  • Figure 2a is a schematic diagram of a four-step random access process based on a control plane solution.
  • This method is based on the early data transmission (EDT) scheme in the long term evolution (LTE), and sends the early data of the radio resource management layer through the message 3 (MSG3) in the four-step random access process
  • EDT early data transmission
  • MSG3 message 3
  • the Request (RRC Early Data Request) message contains a small amount of data.
  • Step 2a When the upper layer sends a mobile data connection establishment request, the UE starts the early data transmission process and selects the random access preamble configured for the EDT; Step 1 is that the UE sends the early data request message of the radio resource management layer to connect user data to the common control channel (CCCH); Step 2 is that the base station eNB initiates the S1-AP initial UE message process to forward non-access Layer (non-access stratum, NAS) message and establish an S1 connection, the eNB can indicate that this connection is triggered by EDT in the process; step 3 is the mobile management entity (mobile management entity, MME) requesting the serving-gateway, S-GW) reactivates the evolved packet system (evolved packet system, EPS) bearer for the UE; step 4 is that the MME sends uplink data to the S-GW; step 5 is that if the downlink data is available, the S-GW sends the downlink data to the MME Step 6 is that if downlink
  • MME mobile management entity
  • FIG. 2b is a schematic diagram of a four-step random access flow based on a user plane scheme.
  • This method uses MSG3 in the four-step random access process to send a small amount of data in the connection recovery request message of the radio resource management layer.
  • This method will restore the data and signaling bearer of the UE.
  • the data is in the dedicated traffic channel , DTCH), the flow example is shown in Figure 2b:
  • the UE starts the early data transmission process and selects the random access preamble configured for the EDT; step 1 is for the UE to send a message to the eNB
  • the connection recovery request of the radio resource management layer includes its recovery ID, establishment reason, and an authentication token.
  • the UE restores all srb and drb, and uses the next opchainingcount provided in the connection release message of the previously connected radio resource management layer to derive a new one.
  • the security key of the eNB, and the AS security is re-established, the user data is encrypted and transmitted on the DTCH multiplexing, and the connection recovery request message of the radio resource management layer is used on the CCCH;
  • step 2 is for the eNB to start the S1-AP context recovery process to recover S1 connects and reactivates the S1-U bearer;
  • step 3 is the MME requests the S-GW to reactivate the S1-U bearer for the UE;
  • step 4 is the MME confirms that the UE context is restored to the eNB;
  • step 5 is the uplink data is transmitted to the S-GW
  • Step 6 is that if the downlink data is available, the S-GW sends the downlink data to the eNB;
  • Step 7 is that if no further
  • the message includes the releaseCause set to rrc-Suspend, resumeID, the next opchainingcount and drb-ContinueROHC, which are stored by the UE. If the downlink data is in Received in step 6, they will be encrypted and sent on the DTCH multiplexing, and the connection release message of the radio resource management layer will be sent on the DCCH.
  • this embodiment also provides a method for configuring uplink authorization type 1 (Configured Grant Type 1, CG Type 1)/non-scheduled transmission type 1 (Transmission Without Grant Type 1, TWG Type 1), which is referred to in the present invention
  • the "uplink resource transmission data configured by the base station” refers to this method.
  • This method is introduced in the NR new air interface. This method is very similar to semi-persistent scheduling in LTE.
  • the network periodically allocates fixed transmission/scheduling resources for the UE and indicates it through an RRC message. After configuration, the UE no longer needs to determine the uplink transmission resource according to the downlink control indicator (DCI) in the PDCCH, but can directly transmit data according to the resource indicated in the RRC message.
  • DCI downlink control indicator
  • This configuration does not need to be activated/deactivated through physical layer signaling.
  • This scheduling method is very suitable for low-latency and high-reliability services with fixed transmission cycles/patterns, such as VoIP, etc., or periodic "heartbeat", "location report”, "sensor data” and other feedback information.
  • the two-step random access transmission data in the present invention refers to a method of directly transmitting data based on the two-step random access process.
  • Figure 2c is a schematic diagram of a two-step random access flow based on contention access. This method is a two-step random access method obtained by improving the original four-step random access method. As shown in Figure 2c, while MSGA sends a random access preamble, a small amount of data can be sent on the uplink shared data access channel PUSCH at the same time. When the UE receives the confirmation from the network, it is considered as competing for access and Data transmission is successful, thereby realizing contention-based data access, and reducing unnecessary signaling burden.
  • FIG. 3 is a schematic flowchart of a data transmission method according to an embodiment of the application.
  • the terminal uses the uplink resources configured by the base station to transmit data.
  • the first condition is that the base station configures the terminal in an inactive state Uplink resources.
  • the UE in the inactive state keeping the inactive state and directly transmitting the uplink data can greatly reduce the signaling burden in a specific scenario and improve the transmission efficiency.
  • it includes instant message data (QQ, WeChat, etc.), heart-beat/keep-alive data from instant messaging and email software, and push notifications for multiple applications;
  • wearable device data periodical positioning information, etc.
  • sensors industrial wireless sensor networks, periodic or event-based transmission of temperature, pressure, etc.
  • smart meters and smart meter networks periodically sending meter readings
  • the specific process is that the UE receives the data transmission configuration information issued by the base station.
  • the UE determines whether the first condition is met. If the above-mentioned first condition is met, the UE remains in the non-active state.
  • the uplink resource block configured by the base station in the configured uplink grant type 1 (Configured Grant Type 1, CG1) is used to transmit the corresponding uplink data.
  • the above-mentioned first condition is that the base station configures the UE with the CG1 resource in the inactive state and the UE's uplink timing advance configuration is currently in a valid state, which means that the UE uplink timing advance timer has not expired and the UE is in an uplink synchronization state.
  • the above-mentioned first condition may also include one or more other combined conditions, for example, whether the current service type of the UE belongs to the service type set configured by the base station, and the service type may be transmitted by the AS layer of the UE through the NAS layer.
  • the service parameter acquisition may also be determined by the UE according to the QCI attribute of the data service, or it may depend on the UE implementation.
  • the service type set is based on the configuration of the base station, and the configuration information can be sent through system broadcast messages, RRC signaling, etc.
  • FIG. 4 is a schematic flowchart of another data transmission method according to an embodiment of the application.
  • the terminal receives a data transmission configuration from a base station.
  • step 403 If the terminal is in the inactive state and/or there is uplink data transmission, the following step 403 is executed, and if the terminal is not in the inactive state and/or there is uplink data transmission, the following step 404 is executed.
  • the terminal When the terminal is in an inactive state and/or there is uplink data transmission, it is determined whether the terminal meets the first condition. If the terminal meets the first condition, the following step 405 is performed, and if the terminal does not meet the above first condition, the following step 407 is performed.
  • the above first condition is that the base station configures the UE with the CG1 resource in the inactive state and the UE's uplink timing advance configuration is currently in a valid state, which means that the UE uplink timing advance timer has not expired and the UE is in an uplink synchronization state. .
  • the above-mentioned first condition may also include one or more other combined conditions, for example, whether the current service type of the UE belongs to the service type set configured by the base station, and the service type may be transmitted by the AS layer of the UE through the NAS layer.
  • the service parameter acquisition may also be determined by the UE according to the QCI attribute of the data service, or it may depend on the UE implementation.
  • the service type set is based on the configuration of the base station, and the configuration information can be sent through system broadcast messages, RRC signaling, etc.
  • the terminal enters the connected state to transmit data.
  • the terminal When the terminal is not in the inactive state and/or there is uplink data transmission, the terminal enters the connected state to transmit data.
  • the terminal uses the uplink resource configured by the base station to transmit data.
  • the terminal When the terminal is in an inactive state and/or has uplink data transmission, and meets one or more of the combined conditions of the first condition, the terminal uses the uplink resources configured by the base station to transmit data, which can reduce unnecessary system information. Make the burden and improve the transmission efficiency.
  • step 407 is executed.
  • the terminal selects the method in the inactive state to transmit data.
  • the terminal selects the method in the inactive state to transmit the data.
  • the transmission method in the inactive state contains multiple possibilities, such as two-step random access, four-step random access and other transmission methods. Under different conditions, they can be applied to corresponding scenarios to achieve data transmission.
  • FIG. 5a is a schematic flowchart of another data transmission method according to an embodiment of the application.
  • the terminal selects a method in an inactive state to transmit data.
  • the terminal uses the two-step random access in the inactive state to transmit data; if the base station does not support the terminal to use the inactive state Two-step random access or the terminal does not meet the above-mentioned second condition, then continue to determine whether the terminal meets the third condition to make a corresponding selection of the transmission method in the inactive state.
  • the above-mentioned second condition has many possibilities, including at least one of the following conditions or multiple combined conditions, specifically: the current signal strength of the UE is higher than the target signal threshold, and the amount of data that the UE currently needs to transmit is less than or equal to the first The target data volume threshold, the data volume transmitted by the UE within the target time is less than or equal to the second target data volume threshold, the data service type that the UE currently needs to transmit belongs to the service type set configured by the base station, and the data service type that the UE currently needs to transmit does not belong to The set of service types configured by the base station, and the random number selected by the terminal is less than or equal to the third target threshold.
  • the UE judges whether the current signal strength is higher than the target signal threshold.
  • the current signal strength can be obtained from the base station downlink reference signal received power (reference signal received power, RSRP) and reference signal received quality (reference signal received quality, RSRQ) measured by the UE.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the above-mentioned target signal threshold is configured by the base station.
  • the target signal threshold is different in different application scenarios. It can be sent through system broadcast messages, RRC signaling, etc. This method can ensure that the small data transmission in the inactive state only occurs when the signal is relatively low. Performed on a good UE to ensure the success rate and quality of data transmission.
  • the amount of data that the UE currently needs to transmit is less than or equal to the first target data amount threshold.
  • the first target data amount threshold comes from network configuration and can be sent through a system broadcast message, RRC signaling, or the like.
  • the amount of data transmitted by the UE within the target time is less than or equal to the second target data amount threshold.
  • the target time and the second target data amount threshold are both derived from network configuration and can be sent through system broadcast messages, RRC signaling, and the like.
  • the data service type that the UE currently needs to transmit belongs to the service type set configured by the base station.
  • the service type can be obtained by the service parameters passed by the AS layer of the UE through the NAS layer, or it can be judged by the UE according to the QCI attribute of the data service, or Depending on the implementation of the UE, this service type set is based on the base station configuration.
  • the configuration information can be sent through system broadcast messages, RRC signaling, etc.
  • This method controls the data transmission in the inactive state to only specific service types (such as The occasional small amount of "heartbeat messages") can better balance the burden of the system and improve the efficiency of data transmission.
  • the foregoing second condition may also be that the UE arbitrarily selects a random number and determines whether the random value exceeds a third target threshold, that is, a preset threshold K.
  • the preset threshold K is configured by the base station, and the configuration information may be By sending system broadcast messages, RRC signaling, etc., this method can control the data transmission scale of the entire cell in the inactive state with a certain probability, and avoid the randomness caused by a large number of terminals transmitting data in the inactive state at the same time. Access collision and transmission failure.
  • the terminal uses two-step random access to transmit data.
  • the terminal uses the two-step random access in the inactive state to transmit data.
  • the base station does not support the terminal's two-step random access in the inactive state or the terminal does not meet one or more of the above-mentioned second conditions, it is determined whether the terminal meets the third condition. If the terminal meets the above third condition, the terminal adopts four-step random access in the inactive state to transmit data, and if the terminal does not meet the above third condition, the terminal enters the connected state to transmit data.
  • the above third condition is that the base station supports the terminal to use the four-step random access in the inactive state to transmit data, which can be expressed in that the base station configures the four-step random access configuration for the UE or the base station allows the UE to use the four-step random access configuration .
  • the above third condition may also include the UE determining that the current signal strength is higher than the target signal threshold.
  • the signal strength can be measured according to the downlink RSRP, RSRQ, etc. of the base station measured by the UE; the target signal threshold is configured by the base station and can be set by the system Broadcast messages, RRC signaling and other methods are sent. This method ensures that small data transmission in the inactive state is only performed on UEs with better signals, ensuring the success rate and quality of data transmission. It should be noted that the above condition is only a non-essential optional condition of the third condition.
  • the above third condition may also include that the amount of data that the UE currently needs to transmit is less than or equal to a third target data amount threshold.
  • the third target data amount threshold comes from network configuration and can be through system broadcast messages, RRC signaling, etc. Way to send. It should be noted that the above condition is only a non-essential optional condition of the third condition.
  • the terminal uses four-step random access to transmit data.
  • the terminal adopts non- The four-step random access transmission data in the active state.
  • the terminal enters the connected state to transmit data.
  • the terminal In the case that the base station does not support the terminal's two-step random access in the inactive state or the terminal does not meet one or more of the above-mentioned second conditions, if the terminal does not meet the above-mentioned third conditions, the terminal enters Data is transferred in the connected state.
  • FIG. 5b is a schematic flowchart of another data transmission method provided by an embodiment of the application, which is also based on a reasonable modification of FIG. 5a.
  • the second condition in the embodiment provided in Fig. 5a is set as the base station configured a two-step random access configuration for the terminal and the current signal strength of the terminal is higher than the target signal threshold, and the third condition is set as The terminal is configured with a four-step random access configuration.
  • the terminal when the terminal chooses to transmit data in the inactive state, if it is satisfied that the base station has configured a two-step random access configuration for the terminal and the current signal strength of the terminal is higher than the target signal threshold, the terminal uses two-step random access to transmit data; if If the base station has configured a two-step random access configuration for the terminal and the current signal strength of the terminal is higher than the target signal threshold, but the base station has configured a four-step random access configuration for the terminal, the terminal uses four-step random access to transmit data ; If the condition that the base station has configured a two-step random access configuration for the terminal and the current signal strength of the terminal is higher than the target signal threshold is not met, and the base station has configured a four-step random access configuration for the terminal, the terminal will enter the connected state for transmission data.
  • FIG. 6 is a schematic flowchart of another data transmission method provided by an embodiment of the application.
  • the terminal selects a method in an inactive state to transmit data.
  • the terminal selects the method in the inactive state to transmit data.
  • the preset condition 1 includes that the base station configures the configured Grant Type 1/TWG Type 1 resource in the inactive state for the UE, and the uplink timing advance configuration of the UE is currently in a valid state, and the effective state refers to the UE uplink timing advance The timer has not expired and the UE is in the uplink synchronization state.
  • the above-mentioned preset condition 1 can also include the remaining one or more combination conditions, that is, the rest are optional conditions.
  • the current service type of the UE meets a specific type category, and the “service type” can be determined by the UE’s AS
  • the layer is obtained through the service parameters passed by the NAS layer. It can also be judged by the UE according to the QCI attributes of the data service, or it can be determined by the UE.
  • the service type category is based on the configuration of the base station.
  • the configuration information can be obtained through system broadcast messages and RRC information. Send by order and so on.
  • the preset condition 1 in the embodiment of this application is the "first condition" in this application document, and the conditions that the two need to meet for the terminal are essentially the same.
  • the terminal selects the method in the inactive state to transmit data, which method is used to transmit the data in the inactive state, the terminal needs to be judged to determine whether the terminal meets the preset condition 2.
  • the preset condition 2 includes that the base station configures/allows the UE to use at least one of the two-step random access scheme or the four-step random access scheme for the UE. This condition is the "fourth condition" in this application. The conditions that need to be met for the terminal are essentially the same.
  • the above-mentioned preset condition 2 can also include the remaining one or more combination conditions, that is, the rest are optional conditions, for example: the amount of data the UE currently needs to send is less than or equal to the data amount threshold D1, which is derived from The network configuration can be sent through system broadcast messages, RRC signaling, etc.; the amount of data sent by the UE in the most recent period of time T1 is less than or equal to the data volume threshold D2, the time interval T1, the data volume threshold D2 comes from the network configuration, It can be sent through system broadcast messages, RRC signaling, etc.; the current service type of the UE belongs to or does not belong to the pre-configured service type category.
  • the rest are optional conditions, for example: the amount of data the UE currently needs to send is less than or equal to the data amount threshold D1, which is derived from The network configuration can be sent through system broadcast messages, RRC signaling, etc.; the amount of data sent by the UE in the most recent period of time T1 is less than or equal to the data volume
  • This "service type” can be obtained by the UE's AS layer through the service parameters passed by the NAS layer.
  • the UE can judge according to the QCI attribute of the data service, or it can depend on the UE implementation.
  • the service type category is based on the configuration of the base station, and the configuration information can be sent by means of system broadcast messages, RRC signaling, etc.
  • the optional conditions included in the foregoing preset condition 2 are the "fifth conditions” in this application, and the conditions that the two need to meet for the terminal are essentially the same. It should be noted that the preset condition 2 in the embodiment of the present application is a combination of the “fourth condition” and the “fifth condition” in this application document, and the conditions that need to be met by the terminal are essentially the same.
  • the preset condition 3 includes whether the base station configures the UE or permits the UE to use the two-step random access configuration.
  • the foregoing preset condition 3 also includes one or more of the following combined conditions, for example: the UE determines that the current signal strength meets the preset threshold P1, and the signal strength can be measured according to the downlink RSRP, RSRQ, etc. of the base station measured by the UE;
  • the threshold P1 is configured by the base station and can be sent through system broadcast messages, RRC signaling, etc.
  • This method ensures that small data transmission in the inactive state is only performed on UEs with better signals, ensuring the success rate of data transmission and Quality; the amount of data the UE currently needs to send is less than or equal to the data amount threshold D3, which comes from the network configuration and can be sent through system broadcast messages, RRC signaling, etc.; the amount of data sent by the UE in the most recent period of time T2 Less than or equal to the data volume threshold D4.
  • the time interval T2 and the data volume threshold D4 come from the network configuration and can be sent through system broadcast messages, RRC signaling, etc.; the data service type that the UE currently needs to send belongs to or does not belong to the pre-configured The category of service type.
  • the “service type” can be obtained by the service parameters passed by the AS layer of the UE through the NAS layer, or it can be judged by the UE based on the QCI attributes of the data service, or it can depend on the implementation of the UE.
  • the service type category is based on Base station configuration.
  • the configuration information can be sent through system broadcast messages, RRC signaling, etc.
  • This method controls the inactive data transmission to only "specific" service types, such as a small number of occasional "heartbeat messages", and more A good balance between system burden and data transmission efficiency; UE randomly selects a random number and judges whether its value exceeds a preset threshold K, which is configured by the base station, and the configuration information can be transmitted through system broadcast messages and RRC signaling
  • This method can control the inactive state data transmission scale of the entire cell with a certain probability, and avoid random access collisions and transmission failures caused by a large number of terminals sending data in the inactive state at the same time.
  • the preset condition 3 in the embodiment of this application is the "second condition" in this application, and the conditions that the two need to meet for the terminal are essentially the same.
  • the preset condition 4 includes whether the base station has configured the UE or allowed the UE to use the four-step random access configuration.
  • the above-mentioned preset condition 4 can also include the remaining one or more combination conditions, that is, the rest are optional conditions, for example: the UE judges whether the current signal strength meets the preset threshold P2, and the signal strength can be based on the UE
  • the threshold is configured by the base station and can be sent through system broadcast messages, RRC signaling, etc.
  • This method ensures that small data transmission in the inactive state is only performed on UEs with better signals.
  • the above is performed to ensure the success rate and quality of data transmission; whether the amount of data the UE currently needs to send is less than or equal to the data amount threshold D5, which comes from the network configuration and can be sent through system broadcast messages, RRC signaling, etc.
  • D5 data amount threshold
  • the preset condition 4 in the embodiment of this application is the "third condition" in this application, and the conditions that the two need to meet for the terminal are essentially the same.
  • the terminal uses two-step random access to transmit data.
  • the terminal Based on the foregoing judgment of which conditions the terminal meets, it can be obtained that, in the case that the terminal meets the preset condition 2 and the preset condition 3, the terminal adopts two-step random access to transmit data.
  • the terminal uses four-step random access to transmit data.
  • the terminal Based on the foregoing judgment of which conditions the terminal meets, it can be obtained that when the terminal meets the preset condition 2 but does not meet the preset condition 3, and also meets the preset condition 4, the terminal adopts four-step random access to transmit data.
  • the terminal enters the connected state to transmit data.
  • the terminal Based on the above judgment of what conditions the terminal meets, it can be obtained that when the terminal does not meet the preset condition 2, the terminal enters the connected state to transmit data; the terminal meets the preset condition 2 but does not meet the preset condition 3, and at the same time does not When the preset condition 4 is met, the terminal also uses four-step random access to transmit data.
  • FIG. 7 is a schematic structural diagram of a data transmission device according to an embodiment of the application.
  • the device includes: a transmission unit 71. in:
  • the transmission unit 71 is configured to: when the terminal is in an inactive state and/or there is data to be transmitted, if the terminal meets the first condition, the terminal uses the uplink resource configured by the base station to transmit data, and the first condition is that the base station Configure the above-mentioned uplink resource in the inactive state for the above-mentioned terminal.
  • the above-mentioned device further includes:
  • the selecting unit 72 is configured to select an inactive state method to transmit data when there is still data to be transmitted after the uplink resource is consumed.
  • the selection unit 72 is further configured to select the inactive state method to transmit data if the terminal does not meet the first condition when the terminal is in an inactive state and/or there is data to be transmitted.
  • the aforementioned selection unit 72 is specifically configured to use two-step random access or four-step random access in an inactive state to transmit data.
  • the selection unit 72 is specifically configured to use the two-step random access in the inactive state when the base station supports the two-step random access in the inactive state if the terminal meets the second condition.
  • Access transmission data includes at least one of the following: the current signal strength of the terminal is higher than the target signal threshold, the amount of data that the terminal currently needs to transmit is less than or equal to the first target data amount threshold, and the terminal is at the target time
  • the amount of internally transmitted data is less than or equal to the second target data amount threshold
  • the data service type currently required to be transmitted by the above-mentioned terminal belongs to the service type set configured by the above-mentioned base station, and the data service type currently required to be transmitted by the above-mentioned terminal does not belong to the service type configured by the above-mentioned base station Set
  • the random number selected by the terminal is less than or equal to the third target threshold.
  • the aforementioned selection unit 72 is specifically further configured to: in the case that the aforementioned base station does not support the aforementioned terminal's two-step random access in an inactive state or the aforementioned terminal does not meet the aforementioned second condition, if the aforementioned terminal satisfies the third condition , The four-step random access in the inactive state is used to transmit data, and the above third condition is that the base station supports the terminal to use the four-step random access in the inactive state to transmit data; the above second condition includes at least one of the following: The current signal strength of the terminal is higher than the target signal threshold, the amount of data that the terminal currently needs to transmit is less than or equal to the first target data amount threshold, and the amount of data transmitted by the terminal within the target time is less than or equal to the second target The data volume threshold.
  • the data service type currently required to be transmitted by the terminal belongs to the service type set configured by the base station, the data service type currently required to be transmitted by the terminal does not belong to the service type set configured by the base station, and the random number selected by the terminal is less than or Equal to the third target threshold.
  • the selection unit 72 is specifically further configured to enter the connected state to transmit data when the terminal does not meet the fourth condition, and the fourth condition is that the base station supports the two-step operation of the terminal in the inactive state. At least one of random access and four-step random access.
  • the selection unit 72 is specifically further configured to enter the connected state to transmit data when the terminal does not meet the second condition and the third condition.
  • the aforementioned selection unit 72 is specifically further configured to select to enter the connected state to transmit data when the terminal does not meet the fourth condition and does not meet the fifth condition.
  • the steps involved in the method executed by the terminal in FIG. 3, FIG. 4, FIG. 5a, FIG. 5b, and FIG. 6 may be executed by each unit in the apparatus shown in FIG. 7.
  • 301 shown in FIG. 3 is executed by 71 shown in FIG. 7; for another example, 407 shown in FIG. 4 is executed by 72 shown in FIG.
  • the units in the device shown in FIG. 7 can be combined separately or all into one or several other units to form, or some of the units can be further divided into functionally more functional units. It is composed of multiple small units, which can achieve the same operation without affecting the realization of the technical effects of the embodiments of the present application.
  • the above-mentioned units are divided based on logical functions. In practical applications, the function of one unit can also be realized by multiple units, or the function of multiple units can be realized by one unit. In other embodiments of the present application, the terminal-based may also include other units. In practical applications, these functions may also be implemented with the assistance of other units, and may be implemented by multiple units in cooperation.
  • an embodiment of the present application also provides a schematic structural diagram of a terminal.
  • the terminal 800 corresponds to the terminal in the foregoing embodiment.
  • the terminal 800 may include: at least one processor 801, such as a CPU, at least one network interface 804, a user interface 803, a memory 805, and at least one communication bus 802.
  • the communication bus 802 is used to implement connection and communication between these components.
  • the user interface 803 may include a display and an input device, and the optional user interface 803 may also include a standard wired interface and a wireless interface.
  • the network interface 804 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 805 may be a high-speed RAM memory, or a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the memory 805 may also be at least one storage device located far away from the aforementioned processor 801.
  • the memory 805 as a computer storage medium may include an operating system, a network communication module, a user interface module, and a device control application program.
  • the network interface 804 is mainly used to connect to other terminal devices; and the user interface 803 is mainly used to provide an input interface for the user; and the processor 801 can be used to call the device control stored in the memory 805.
  • the terminal 800 may perform operations performed by the terminal in the foregoing embodiments, for example, operations performed by the terminal in FIG. 3.
  • the embodiment of the present application also provides a computer-readable storage medium, and the computer-readable storage medium stores the aforementioned computer program executed by the terminal, and the computer program Including program instructions.
  • the processor executes the program instructions, it can execute the description of the data transmission method in the foregoing embodiment corresponding to FIG. 3 or FIG. 4 or FIG. 5a or FIG. 5b or FIG. Let me repeat it again.
  • the description of the beneficial effects of using the same method will not be repeated.
  • the description of the method embodiment of this application please refer to the description of the method embodiment of this application.
  • the program can be stored in a computer readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (ROM) or a random access memory (RAM), etc.

Abstract

本申请实施例公开了一种数据传输方法及相关产品。该方法包括:在终端处于非激活态和/或有数据需要传输的情况下,若所述终端满足第一条件,则所述终端采用基站配置的上行资源传输数据,所述第一条件为所述基站为所述终端配置非激活态下的所述上行资源。本申请实施例还公开了多种非激活态下的数据传输方法。在本申请实施例中,针对终端在非激活态下的技术特点和数据传输特征,使终端在不同场景下选择不同的非激活态的方法传输数据,大大减小了传输的信令负担,提高了传输效率。

Description

一种数据传输方法及相关产品
本申请要求于2020年3月18日提交中国国家知识产权局、申请号为202010191718.9、申请名称为“一种数据传输方法及相关产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及相关产品。
背景技术
针对需要周期或者不定期传输数据的终端(User Equipment,UE),5G系统新引用了终端的非激活态/非活跃态(Inactive State),这样做的好处在于相比原来从空闲态到连接态,非激活态到连接态的状态转换时间将大幅减少,并且可以减少空口和网络接口上的信令负担,使终端在保持和空闲态类似的功耗下,同时减少终端接入的延时。但是,终端如果要在非激活态下传输数据,依然需要通过无线资源管理层(radio resource control,RRC)信令进入连接态,然后再传输数据,这对于一些频发的周期性或非周期性的数据传输,特别是数据量较小的传输来说,信令负担较大,数据传输效率低。
在减小数据传输信令负担、提高数据传输效率方面,现有研究提出了多种可能的方案,如二步随机接入方案、四步随机接入方案等。但是,在如何选择传输方案上,也就是终端在何时、何种情况下该选择如何的方案,缺乏有效的应对措施。
发明内容
本申请实施例公开了一种数据传输方法及相关产品。在本方法中,针对终端在非激活态下的技术特点和数据传输特征,使终端在不同场景下选择不同的非激活态的方法传输数据,大大减小了传输的信令负担,提高了传输效率。
第一方面,本申请实施例提供了一种数据传输方法,该方法包括:
在终端处于非激活态和/或有数据需要传输的情况下,若所述终端满足第一条件,则所述终端采用基站配置的上行资源传输数据,所述第一条件为所述基站为所述终端配置非激活态下的所述上行资源。
在一个可选的实现方式中,所述第一条件包括:
所述基站为所述终端配置非激活态下的所述上行资源且所述终端的上行定时提前配置当前处于有效状态。
在该实现方式中,基站为终端配置的上行资源为基站在配置上行授权类型一中配置的资源,终端的上行定时提前配置当前处于有效状态即终端上行定时提前计时器未超时,且终端处于上行同步状态。上述的第一条件除了包括配置的上行资源和终端的有效状态之外,还可以包括终端的当前业务类型属于基站配置的业务类型集合,该业务类型可以由终端的接入层(access stratum,AS)通过非接入层(non access stratum,NAS)传递的业务参数获取,也可以由终端根据该数据业务的服务质量等级标识(QoS class identifier,QCI)属性来判断,也可以取决于终端实现。终端通过采用基站配置的上行资源传输数据,可以降低不 必要的系统信令负担,提升传输效率。在一个可选的实现方式中,所述终端采用基站配置的上行资源传输数据之后,还包括:
在所述上行资源消耗完毕后还存在数据需要传输的情况下,所述终端选择非激活态的方法传输数据。
在该实现方式中,终端在消耗完上行资源后,再选择非激活态的方法传输数据,可以最大限度的减小信令负担,提升传输效率。
在一个可选的实现方式中,所述方法还包括:
在所述终端处于非激活态和/或有数据需要传输的情况下,若所述终端不满足所述第一条件,则所述终端选择非激活态的方法传输数据。
在该实现方式中,若基站未为终端配置上行资源或终端的上行定时提前配置当前不处于有效状态,则终端选择非激活态的方法传输数据。
在一个可选的实现方式中,所述终端选择非激活态的方法传输数据包括:
所述终端采用非激活态下的二步随机接入或四步随机接入传输数据。
在该实现方式中,非激活态的方法传输数据可以有多种可能的方案,如二步随机接入方案、四步随机接入方案等,在不同的应用场景下可选择不同的传输方法。
在一个可选的实现方式中,所述终端采用非激活态下的二步随机接入或四步随机接入传输数据包括:
在所述基站支持所述终端采用非激活态下的二步随机接入的情况下,若所述终端满足第二条件,则所述终端采用非激活态下的二步随机接入传输数据。
在该实现方式中,第二条件中包含了一项或多项条件,终端需要满足基站支持终端采用二步随机接入条件,且终端还需至少满足第二条件中的任意一项条件,也可以满足第二条件中的多项组合条件,在上述满足条件的情况下,终端选择采用二步随机接入传输数据。
在一个可选的实现方式中,所述终端采用非激活态下的二步随机接入或四步随机接入传输数据包括:
在所述基站不支持所述终端采用非激活态下的二步随机接入或所述终端不满足所述第二条件的情况下,若所述终端满足第三条件,则所述终端采用非激活态下的四步随机接入传输数据。
在一个可选的实现方式中,所述第三条件为所述基站支持所述终端采用非激活态下的四步随机接入传输数据。
在一个可选的实现方式中,所述第二条件包括以下至少一种:
所述终端的当前信号强度高于所述目标信号阈值,所述终端当前需要传输的数据量小于或等于所述第一目标数据量阈值,所述终端在所述目标时间内传输的数据量小于或等于所述第二目标数据量阈值,所述终端当前需要传输的数据业务类型属于所述基站配置的业务类型集合,所述终端当前需要传输的数据业务类型不属于所述基站配置的业务类型集合,所述终端选择的随机数小于或等于第三目标阈值。
在该实现方式中,第三条件为基站支持终端采用四步随机接入传输数据,终端在满足第三条件的情况下可以采用四步随机接入传输数据,其中,第三条件还可以包括其余的一项或多项组合条件,如终端的当前信号强度高于目标信号阈值,终端当前需要发送的数据 量小于或等于某个目标数据量阈值等,且上述目标信号阈值和目标数据量阈值均可通过广播消息和/或RRC信令传输至终端。
在一个可选的实现方式中,所述方法还包括:在所述终端不满足第四条件的情况下,所述终端进入连接态传输数据。
在一个可选的实现方式中,所述第四条件为所述基站支持所述终端采用非激活态下的二步随机接入和四步随机接入中的至少一种。
在一个可选的实现方式中,所述方法还包括:在所述终端不满足所述第二条件和所述第三条件的情况下,所述终端进入连接态传输数据。
在一个可选的实现方式中,所述第一条件包括以下至少一种:
所述终端的当前业务类型属于所述基站配置的业务类型集合;
所述终端的当前业务类型不属于所述基站配置的业务类型集合。
在一个可选的实现方式中,所述第三条件包括以下至少一种:
所述终端的当前信号强度高于所述目标信号阈值,所述终端当前需要传输的数据量小于或等于所述第一目标数据量阈值,所述终端在目标时间内传输的数据量小于或等于所述第二目标数据量阈值,所述终端当前需要传输的数据业务类型属于所述基站配置的业务类型集合,所述终端当前需要传输的数据业务类型不属于所述基站配置的业务类型集合,所述终端选择的随机数小于或等于所述第三目标阈值。
在一个可选的实现方式中,所述方法还包括:在所述终端不满足所述第四条件且不满足第五条件的情况下,所述终端进入连接态传输数据。
在一个可选的实现方式中,所述第五条件包括以下至少一种:
所述终端当前需要传输的数据量小于或等于第一目标数据量阈值,所述终端在目标时间内传输的数据量小于或等于第二目标数据量阈值,所述终端当前需要传输的数据业务类型属于基站配置的业务类型集合,所述终端当前需要传输的数据业务类型不属于基站配置的业务类型集合。
在一个可选的实现方式中,所述目标信号阈值、所述第一目标数据量阈值、所述第二目标数据量阈值、所述第三目标阈值以及所述基站配置的业务类型集合中的至少一个通过广播消息和/或无线资源管理层RRC信令传输至所述终端。
在本申请实施例中,针对终端在非激活态下的技术特点和数据传输特征,使终端在不同场景下选择不同的非激活态的方法传输数据,大大减小了传输的信令负担,提高了传输效率。
第二方面,本申请实施例提供了一种数据传输装置,该装置包括:
传输单元,用于在终端处于非激活态和/或有数据需要传输的情况下,若所述终端满足第一条件,则采用基站配置的上行资源传输数据,所述第一条件为所述基站为所述终端配置非激活态下的所述上行资源。
在一个可选的实现方式中,所述装置还包括:
选择单元,用于上行资源消耗完毕后还存在数据需要传输的情况下,选择非激活态的方法传输数据。
在一个可选的实现方式中,所述选择单元,还用于在所述终端处于非激活态和/或有数 据需要传输的情况下,若所述终端不满足所述第一条件,则选择非激活态的方法传输数据。
在一个可选的实现方式中,所述选择单元,具体用于采用非激活态下的二步随机接入或四步随机接入传输数据。
在一个可选的实现方式中,所述选择单元,具体用于在所述基站支持所述终端采用非激活态下的二步随机接入的情况下,若所述终端满足第二条件,则采用非激活态下的二步随机接入传输数据;所述第二条件包括以下至少一种:所述终端的当前信号强度高于目标信号阈值,所述终端当前需要传输的数据量小于或等于第一目标数据量阈值,所述终端在目标时间内传输的数据量小于或等于第二目标数据量阈值,所述终端当前需要传输的数据业务类型属于所述基站配置的业务类型集合,所述终端当前需要传输的数据业务类型不属于所述基站配置的业务类型集合,所述终端选择的随机数小于或等于第三目标阈值。
在一个可选的实现方式中,所述选择单元,具体还用于在所述基站不支持所述终端采用非激活态下的二步随机接入或所述终端不满足所述第二条件的情况下,若所述终端满足第三条件,则采用非激活态下的四步随机接入传输数据,所述第三条件为所述基站支持所述终端采用非激活态下的四步随机接入传输数据;所述第二条件包括以下至少一种:所述终端的当前信号强度高于所述目标信号阈值,和/或,所述终端当前需要传输的数据量小于或等于所述第一目标数据量阈值,所述终端在所述目标时间内传输的数据量小于或等于所述第二目标数据量阈值,所述终端当前需要传输的数据业务类型属于所述基站配置的业务类型集合,所述终端当前需要传输的数据业务类型不属于所述基站配置的业务类型集合,所述终端选择的随机数小于或等于第三目标阈值。
在一个可选的实现方式中,所述选择单元,具体还用于在所述终端不满足第四条件的情况下,选择进入连接态传输数据,所述第四条件为所述基站支持所述终端采用非激活态下的二步随机接入和四步随机接入中的至少一种。
在一个可选的实现方式中,所述选择单元,具体还用于在所述终端不满足所述第二条件和所述第三条件的情况下,选择进入连接态传输数据。
在一个可选的实现方式中,所述选择单元,具体还用于在所述终端不满足所述第四条件且不满足第五条件的情况下,选择进入连接态传输数据。
第三方面,本申请实施例提供了一种数据传输设备,包括处理器、存储器;所述处理器被配置为支持所述数据传输设备执行上述第一方面以及上述第一方面中可选的实现方式的方法中相应的功能。所述存储器保存所述数据传输设备必要的程序(指令)和数据。可选的,所述数据传输设备还可以包括输入/输出接口,用于支持所述数据传输设备与其他设备之间的通信。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一条或多条指令,所述一条或多条指令适于由所述处理器加载并执行如上述第一方面以及上述第一方面中可选的实现方式的方法。
第五方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面及其任一种可选的实现方式的方法。
在本申请中,针对终端在非激活态下的技术特点和数据传输特征,使终端在不同场景下选择不同的非激活态的方法传输数据,在一定程度上降低了终端的移动性管理复杂度和 信令负担以及传输数据的信令负担,提高了传输效率。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为终端的状态转换流程示意图;
图1b为终端由非激活态进入连接态的流程示意图;
图2a为基于控制面方案的四步随机接入流程示意图;
图2b为基于用户面方案的四步随机接入流程示意图;
图2c为基于竞争接入的二步随机接入流程示意图;
图3为本申请实施例提供的一种数据传输方法的流程示意图;
图4为本申请实施例提供的另一种数据传输方法的流程示意图;
图5a为本申请实施例提供的又一种数据传输方法的流程示意图;
图5b为本申请实施例提供的又一种数据传输方法的流程示意图;
图6为本申请实施例提供的又一种数据传输方法的流程示意图;
图7为本申请实施例提供的一种数据传输装置的结构示意图;
图8为本申请实施例提供的一种终端的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请实施例方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。
本申请的说明书实施例和权利要求书及上述附图中的术语“第一”、“第二”和“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或优先级。本申请的说明书实施例和权利要求书中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
为了更清楚地描述本申请的方案,下面结合本申请实施例中的附图对本申请实施例进行描述。
请参阅图1a,图1a为终端的状态转换流程示意图。如图1a所示,5G系统新引用了UE的非激活态,用于针对周期或者不定期发送少量数据的用户终端。其中,非激活态的主 要特征包括UE上下文信息存储在无线接入网络(Radio Access Network,RAN)侧,具体的,UE上下文信息存贮了UE的无线配置和5GC的核心网信息,从而允许在没有核心网介入的情况下实现UE在非激活态和连接态之间的状态转换;非激活态的主要特征还包括UE自主的移动性,例如在非激活态下的小区选择、小区重选过程;非激活态的主要特征还包括非激活态和连接态之间的状态、移动性管理以及UE处于非激活态均对核心网透明。此外,由图1还可知UE状态转换的大致流程,首先在空闲态下UE发起无线资源控制(Radio Resource Control,RRC)请求,从而进入连接态传输数据,传输数据完毕后释放RRC连接请求,UE重回空闲态。还有一种可选的方式为UE在非激活态下发起RRC连接请求,以进入连接态进行数据传输,再延时释放RRC连接请求以重新回到非激活态,若非激活态拒绝该延时释放RRC连接请求,则通过释放RRC连接请求回到空闲态。这样做的优势在于相比原来从空闲态到连接态,非激活态到连接态的状态转换时间将大幅减少,且可以减少空口和网络接口上的信令负担,使UE在保持和空闲态类似的功耗下,同时减少UE接入的延时,提高传输效率。
具体的非激活态下的UE进入连接态以传输数据的流程可参阅图1b,图1b为终端由非激活态进入连接态的流程示意图。如图1b所示,终端处于非激活态下需要获取上一个服务基站gNB分配的I-RNTI,故向当前gNB发起RRC连接请求,如果当前gNB能够解析I-RNTI中包含的gNB标识,它将请求上一个服务gNB提供UE上下文数据,然后由上一个服务gNB提供UE上下文数据的具体信息,到此当前gNB和UE已完成了RRC连接的恢复。但是如果要防止上一个服务gNB中的用户数据丢失,则当前gNB需提供转发地址,具体的可以由当前gNB向接入管理功能(access management function,AMF)发送路径切换请求,得到AMF的路径切换请求回复后,gNB执行路径切换,路径切换完成后由gNB在上一个服务gNB时触发UE资源的释放。
本发明中所述的四步随机接入传输数据是指基于四步的随机接入过程而直接传输数据的方法。请参阅图2a,图2a为基于控制面方案的四步随机接入流程示意图。本方法是基于长期演进(long term evolution,LTE)中的早期数据传输(early data transmission,EDT)方案,通过在四步随机接入过程中的消息3(MSG3)发送无线资源管理层的早期数据请求(RRC Early Data Request)消息中夹带少量数据,流程示例如图2a所示:当上层发出移动数据的连接建立请求时,UE启动早期的数据传输过程,并选择为EDT配置的随机访问序言;步骤1为UE发送无线资源管理层的早期数据请求消息,将用户数据连接到公共控制信道(common control channel,CCCH)上;步骤2为基站eNB启动S1-AP初始UE消息过程来转发非接入层(non access stratum,NAS)消息并建立S1连接,eNB可以在此过程中指出此连接是为EDT触发的;步骤3为移动管理实体(mobile management entity,MME)请求服务网关(serving-gateway,S-GW)为UE重新激活演进分组系统(evolved packet system,EPS)承载;步骤4为MME将上行数据发送给S-GW;步骤5为如果下行数据可用,S-GW将下行数据发送给MME;步骤6为如果从S-GW接收到下行数据,MME通过下行链路(down link,DL)非接入层NAS传输过程将数据转发给eNB,并可能指示是否需要进一步的数据,否则,MME可能触发连接建立指示程序,并指示是否需要进一步的数据;步骤7为如果没有更多的数据,eNB可以在CCCH上发送无线资源管理层的早期数据请求消息, 以将UE保存在RRC_IDLE中,如果下行数据是在步骤6中接收到的,则将它们连接到无线资源管理层的早期数据完成消息中;步骤8为S1连接被释放,EPS承载停用。
请参阅图2b,图2b为基于用户面方案的四步随机接入流程示意图。本方法是通过在四步随机接入过程中的MSG3发送无线资源管理层的连接恢复请求消息中夹带少量数据,该方法将恢复UE的数据和信令承载,数据在专用业务信道(dedicated traffic channel,DTCH)上传输,流程示例如图2b所示:当上层发出移动数据的连接恢复请求时,UE启动早期数据传输过程,并选择为EDT配置的随机访问序言;步骤1为UE向eNB发送一个无线资源管理层的连接恢复请求,包括它的恢复ID、建立原因和一个认证令牌,UE恢复所有srb和drb,使用之前连接的无线资源管理层的连接释放消息中提供的下一个opchainingcount派生新的安全密钥,并重新建立AS安全性,用户数据在DTCH复用上加密并传输,在CCCH上使用无线资源管理层的连接恢复请求消息;步骤2为eNB启动S1-AP上下文恢复过程以恢复S1连接并重新激活S1-U承载器;步骤3为MME请求S-GW为UE重新激活S1-U承载;步骤4为MME确认UE上下文恢复到eNB;步骤5为上行数据被传送到S-GW;步骤6为如果下行数据可用,S-GW将下行数据发送给eNB;步骤7为如果预计从S-GW没有进一步的数据,eNB可以启动S1连接的暂停和S1-U承载的停用;步骤8为eNB发送无线资源管理层的连接释放消息以将UE保存在RRC_IDLE中,该消息包括设置为rrc-Suspend的releaseCause、resumeID、下一个opchainingcount和drb-ContinueROHC,它们由UE存储,如果下行数据在步骤6中接收到,它们将在DTCH复用上加密发送,并在DCCH上发送无线资源管理层的连接释放消息。
可选的,本实施例还提供了配置上行授权类型一(Configured Grant Type 1,CG Type 1)/非调度传输类型一(Transmission Without Grant Type 1,TWG Type 1)方法,本发明中所指的“基站配置的上行资源传输数据”即指此种方法。该种方法在NR新空口中引入,此种方法非常类似LTE中的半持续调度,网络为UE周期性的分配固定传输/调度资源,并通过RRC消息指示。配置后,UE无需再根据PDCCH中的下行控制指示(downlink control indicator,DCI)确定上行传输资源,而可以直接根据RRC消息中指示的资源传输数据。与Configured Grant Type 2不同,该配置也无需通过物理层信令激活/去激活。此种调度方法非常适合具有固定传输周期/模式的低延时高可靠业务,比如VoIP等,或周期性的“心跳”、“位置报告”、“传感器数据”等反馈信息。
本发明中所述的二步随机接入传输数据是指基于二步的随机接入过程而直接传输数据的方法。请参阅图2c,图2c为基于竞争接入的二步随机接入流程示意图。本方法是对原有四步随机接入方法进行改进,得到的二步随机接入方法。如图2c所示,该方法过程在MSGA发送随机接入前导信号的同时,在上行共享数据接入信道PUSCH上可以一并发送少量数据,当UE收到网络的确认,则认为竞争接入及数据发送成功,从而实现基于竞争的数据接入,而减少了不必要的信令负担。
上述图2a、图2b以及图2c中的几种方法,使UE在保持非激活态下而直接发送少量上行数据成为可能。但是,在如何选择传输方法上,也就是UE在何时、何种情况下该选择如何的方法,并没有相应的讨论和方法。
请参阅图3,图3为本申请实施例提供的一种数据传输方法的流程示意图。
301、在终端处于非激活态和/或有数据需要传输的情况下,若终端满足第一条件,则终端采用基站配置的上行资源传输数据,该第一条件为基站为终端配置非激活态下的上行资源。
针对非激活态下的UE,保持非激活态而直接传输上行数据可以极大的减少在特定场景下的信令负担,提高传输效率。例如在智能手机应用方面包括了及时消息数据(QQ、微信等),及时通讯、电子邮件软件的Heart-beat/keep-alive数据,以及多种应用的推送通知;在非智能手机应用方面包括了可穿戴设备的数据(周期性的定位信息等),传感器(工业无线传感器网络,周期性或者事件触法性的传输温度、压力等),以及智能仪表和智能仪表网络(周期性的发送仪表读数)。本实施例提供的数据传输方法可以有效减少在上述场景下的信令负担。具体流程为UE接收基站下发的数据传输配置信息,当上述终端处于非激活态,且有上行数据需要传输时,UE判断是否满足第一条件,若满足上述第一条件,则UE保持在非激活态,并采用基站在配置上行授权类型1(Configured Grant Type 1,CG1)中配置的上行资源块传输相应的上行数据。其中,上述的第一条件为基站为UE配置了非激活态下的CG1资源且UE的上行定时提前配置当前处于有效状态,该有效状态即UE上行定时提前计时器未超时且UE处于上行同步状态。可选的,上述第一条件还可以包含其余的一项或多项组合条件,例如UE的当前业务类型是否属于基站配置的业务类型集合,该业务类型可以由UE的AS层通过NAS层传递的业务参数获取,也可以由UE根据该数据业务的QCI属性来判断,也可以取决于UE实现。该业务类型集合基于基站配置,该配置信息可以通过系统广播消息、RRC信令等方式发送。
请参阅图4,图4为本申请实施例提供的另一种数据传输方法的流程示意图。
401、终端接收来自基站的数据传输配置。
402、判断终端是否处于非激活态和/或有上行数据传输。
若终端处于非激活态和/或有上行数据传输,执行下述步骤403,若终端不处于非激活态和/或有上行数据传输,执行下述步骤404。
403、判断终端是否满足第一条件。
在终端处于非激活态和/或有上行数据传输的情况下,判断终端是否满足第一条件。若终端满足第一条件,则执行下述步骤405,若终端不满足上述第一条件,则执行下述步骤407。具体的,上述第一条件为基站为UE配置了非激活态下的CG1资源且UE的上行定时提前配置当前处于有效状态,该有效状态即UE上行定时提前计时器未超时且UE处于上行同步状态。可选的,上述第一条件还可以包含其余的一项或多项组合条件,例如UE的当前业务类型是否属于基站配置的业务类型集合,该业务类型可以由UE的AS层通过NAS层传递的业务参数获取,也可以由UE根据该数据业务的QCI属性来判断,也可以取决于UE实现。该业务类型集合基于基站配置,该配置信息可以通过系统广播消息、RRC信令等方式发送。
404、终端进入连接态传输数据。
在终端不处于非激活态和/或有上行数据传输的情况下,终端进入连接态传输数据。
405、终端采用基站配置的上行资源传输数据。
在终端处于非激活态和/或有上行数据传输、且满足第一条件中的一项或多项组合条件的情况下,终端采用基站配置的上行资源传输数据,如此可以降低不必要的系统信令负担,提升传输效率。
406、判断上行资源用完后是否还有剩余数据未传输。
若上述上行资源用完后没有剩余数据需要传输,则表示此次数据传输已完成,若上述上行资源用完后还有剩余数据需要传输,则执行步骤407。
407、终端选择非激活态下的方法传输数据。
在上述上行资源用完后还有剩余数据需要传输的情况下,终端选择非激活态下的方法传输数据。具体的,非激活态下的传输方法又包含了多种可能,如二步随机接入、四步随机接入等传输方法,在满足不同的条件下,可以应用到相应的场景中以实现数据传输。
408、完成数据传输。
请参阅图5a,图5a为本申请实施例提供的又一种数据传输方法的流程示意图。
501、终端选择非激活态下的方法传输数据。
同上述步骤407。
502、判断基站是否支持终端采用二步随机接入且该终端满足第二条件。
若基站支持终端采用非激活态下的二步随机接入且该终端满足第二条件,则终端采用非激活态下的二步随机接入传输数据;若基站不支持终端采用非激活态下的二步随机接入或该终端不满足上述第二条件,则继续判断终端是否满足第三条件以做出相应的非激活态下的传输方法选择。其中,上述第二条件有多种可能,包含了以下至少一项条件或多项组合条件,具体的:UE的当前信号强度高于目标信号阈值,UE当前需要传输的数据量小于或等于第一目标数据量阈值,UE在目标时间内传输的数据量小于或等于第二目标数据量阈值,UE当前需要传输的数据业务类型属于基站配置的业务类型集合,UE当前需要传输的数据业务类型不属于基站配置的业务类型集合,终端选择的随机数小于或等于第三目标阈值。
UE判断当前信号强度是否高于目标信号阈值,当前信号强度可依据UE测量的基站下行参考信号接收功率(reference signal received power,RSRP)、参考信号接收质量(reference signal received quality,RSRQ)等测量得到,上述目标信号阈值由基站配置,不同应用场景下的目标信号阈值不同,其可以通过系统广播消息、RRC信令等方式发送,此种方法,可以保证非激活态的小数据传输仅在信号较好的UE上进行,保证数据传输成功率和质量。UE当前需要传输的数据量小于或等于第一目标数据量阈值,该第一目标数据量阈值来自于网络配置,可以通过系统广播消息、RRC信令等方式发送。UE在目标时间内传输的数据量小于或等于第二目标数据量阈值,该目标时间和第二目标数据量阈值均来自于网络配置,可以通过系统广播消息、RRC信令等方式发送。UE当前需要传输的数据业务类型属于基站配置的业务类型集合,该业务类型可以由UE的AS层通过NAS层传递的业务参数获取,也可以由UE根据该数据业务的QCI属性来判断,也可以取决于UE实现,该业务类型集合基于基站配置,该配置信息可以通过系统广播消息、RRC信令等方式发送,此种方法,将非激活态下的数据传输仅控制在特定的业务类型(比如偶发的少量的“心跳消息”),可以更好的平衡系统负担和提高数据传输效率。
可选的,上述第二条件还可以是UE任意选择一个随机数,并判断该随机数值是否超过第三目标阈值,即预设门限K,该预设门限K值由基站配置,该配置信息可以通过系统广播消息、RRC信令等方式发送,此种方法可以在一定概率上,控制整个小区的非激活态下的数据传输规模,避免在大量终端同时在非激活态下传输数据带来的随机接入碰撞及传输失败。
503、终端采用二步随机接入传输数据。
在基站支持终端采用非激活态下的二步随机接入且该终端满足第二条件中的一项或多项组合条件的情况下,终端采用非激活态下的二步随机接入传输数据。
504、判断终端是否满足第三条件。
在基站不支持终端采用非激活态下的二步随机接入或该终端不满足上述第二条件中的一项或多项组合条件的情况下,判断终端是否满足第三条件。若终端满足上述第三条件,则终端采用非激活态下的四步随机接入传输数据,若终端不满足上述第三条件,则终端进入连接态传输数据。其中,上述第三条件为基站支持终端采用非激活态下的四步随机接入传输数据,具体可表现为基站为UE配置了四步随机接入配置或基站允许UE使用四步随机接入配置。
可选的,上述第三条件还可以包含UE判断当前信号强度高于目标信号阈值,该信号强度可依据UE测量的基站下行RSRP、RSRQ等测量得到;该目标信号阈值由基站配置,可以通过系统广播消息、RRC信令等方式发送,此种方法,保证非激活态下的小数据传输仅在信号较好的UE上进行,保证数据传输成功率和质量。需要注意的是,上述条件仅为第三条件的一个非必须的可选项条件。
可选的,上述第三条件还可以包含UE当前需要传输的数据量小于或等于第三目标数据量阈值,该第三目标数据量阈值来自于网络配置,可以通过系统广播消息、RRC信令等方式发送。需要注意的是,上述条件仅为第三条件的一个非必须的可选项条件。
505、终端采用四步随机接入传输数据。
在基站不支持终端采用非激活态下的二步随机接入或该终端不满足上述第二条件中的一项或多项组合条件的情况下,若终端满足上述第三条件,则终端采用非激活态下的四步随机接入传输数据。
506、终端进入连接态传输数据。
在基站不支持终端采用非激活态下的二步随机接入或该终端不满足上述第二条件中的一项或多项组合条件的情况下,若终端不满足上述第三条件,则终端进入连接态传输数据。
特别的,通过对图5a提供的实施例中的条件进行修改,可以延伸出其他数据传输方法,此种方法应当视为图5a中的实施例的一种合理变形,亦属于本实施例的覆盖范畴。请参阅图5b,图5b为本申请实施例提供的又一种数据传输方法的流程示意图,也是基于图5a的合理变形。如图5b所示,将图5a提供的实施例中的第二条件设为基站为终端配置了二步随机接入配置且终端当前信号强度高于目标信号阈值,将第三条件设为基站为终端配置了四步随机接入配置。故在终端选择非激活态下传输数据的情况下,若满足基站为终端配置了二步随机接入配置且终端当前信号强度高于目标信号阈值,则终端采用二步随机接入传输数据;若不满足基站为终端配置了二步随机接入配置且终端当前信号强度高于目标信号 阈值的条件,但满足基站为终端配置了四步随机接入配置,则终端采用四步随机接入传输数据;若不满足基站为终端配置了二步随机接入配置且终端当前信号强度高于目标信号阈值的条件,同时也不满足基站为终端配置了四步随机接入配置,则终端进入连接态传输数据。
请参阅图6,图6为本申请实施例提供的又一种数据传输方法的流程示意图。
601、终端选择非激活态下的方法传输数据。
在终端不满足预设条件1的情况下,终端选择非激活态下的方法传输数据。其中,预设条件1包括了基站为UE配置了非激活态下的Configured Grant Type 1/TWG Type 1资源,且UE的上行定时提前配置当前处于有效状态,该有效状态指的是UE上行定时提前计时器未超时且UE处于上行同步状态。同时,上述预设条件1还可以包含其余的一项或多项组合条件,即其余均为可选项条件,例如,UE的当前业务类型满足特定类型范畴,该“业务类型”可以由UE的AS层通过NAS层传递的业务参数获取,也可以由UE根据该数据业务的QCI属性来判断,也可以取决于UE实现,该业务类型范畴基于基站配置,该配置信息可以通过系统广播消息、RRC信令等方式发送。需要注意的是,本申请实施例中的预设条件1即为本申请文件中的“第一条件”,二者对终端所需满足的条件本质是相同的。
602、判断终端是否满足预设条件2。
在终端选择非激活态下的方法传输数据的情况下,具体采用何种非激活态下的方法传输数据还需要对终端进行判断,判断终端是否满足预设条件2。其中,预设条件2包括基站为UE配置了/准许UE使用二步随机接入方案或者四步随机接入方案的至少一种,该条件即为本申请中的“第四条件”,二者对终端所需满足的条件本质是相同的。同时,上述预设条件2还可以包含其余的一项或多项组合条件,即其余均为可选项条件,例如:UE当前需要发送的数据量小于或等于数据量门限D1,该门限D1来自于网络配置,可以通过系统广播消息、RRC信令等方式发送;UE在最近一段时间T1内的已发送数据量小于或等于数据量门限D2,该时间间隔T1,数据量门限D2来自于网络配置,可以通过系统广播消息、RRC信令等方式发送;UE的当前业务类型属于或不属于预先配置的业务类型范畴,该“业务类型”可以由UE的AS层通过NAS层传递的业务参数获取,也可以由UE根据该数据业务的QCI属性来判断,也可以取决于UE实现,该业务类型范畴基于基站配置,该配置信息可以通过系统广播消息、RRC信令等方式发送。上述预设条件2包含的可选项条件即为本申请中的“第五条件”,二者对终端所需满足的条件本质是相同的。需要注意的是,本申请实施例中的预设条件2即为本申请文件中的“第四条件”和“第五条件”的结合,其对终端所需满足的条件本质是相同的。
603、判断终端是否满足预设条件3。
在终端满足预设条件2的情况下,继续判断终端是否满足预设条件3。其中,预设条件3包括基站是否为UE配置了或者准许UE使用二步随机接入配置。同时,上述预设条件3还包含下列的一项或多项组合条件,例如:UE判断当前信号强度满足预设门限值P1,该信号强度可依据UE测量的基站下行RSRP,RSRQ等测量;该门限值P1由基站配置,可以通过系统广播消息、RRC信令等方式发送,此种方法,保证非激活态的小数据传输仅在信号较好的UE上进行,保证数据传输成功率和质量;UE当前需要发送的数据量小于或等 于数据量门限D3,该门限D3来自于网络配置,可以通过系统广播消息、RRC信令等方式发送;UE在最近一段时间T2内的已发送数据量小于或等于数据量门限D4,该时间间隔T2、数据量门限D4来自于网络配置,可以通过系统广播消息、RRC信令等方式发送;UE当前需要发送的数据业务类型属于或不属于预先配置的业务类型范畴,该“业务类型”可以由UE的AS层通过NAS层传递的业务参数获取,也可以由UE根据该数据业务的QCI属性来判断,也可以取决于UE实现,该业务类型范畴基于基站配置,该配置信息可以通过系统广播消息、RRC信令等方式发送,此种方法,将非激活态数据传输仅控制在“特定”的业务类型,比如偶发的少量的“心跳消息”,更好的平衡了系统负担和数据传输效率;UE随机选择一个随机数,并判断其值是否超过预设门限K,该门限值K由基站配置,该配置信息可以通过系统广播消息、RRC信令等方式发送,此种方法可以在一定概率上,控制整个小区的非激活态数据传输规模,避免在大量终端同时在非激活态发送数据带来的随机接入碰撞及发送失败。需要注意的是,本申请实施例中的预设条件3即为本申请中的“第二条件”,二者对终端所需满足的条件本质是相同的。
604、判断终端是否满足预设条件4。
在终端满足预设条件2但不满足预设条件3的情况下,继续判断终端是否满足预设条件4。其中,预设条件4包括基站是否为UE配置了或者准许UE使用四步随机接入配置。同时,上述预设条件4还可以包含其余的一项或多项组合条件,即其余均为可选项条件,例如:UE判断当前信号强度是否满足预设门限值P2,该信号强度可依据UE测量的基站下行RSRP,RSRQ等测量,该门限值由基站配置,可以通过系统广播消息、RRC信令等方式发送,此种方法,保证非激活态的小数据传输仅在信号较好的UE上进行,保证数据传输成功率和质量;UE当前需要发送的数据量是否小于或等于数据量门限D5,该门限D5来自于网络配置,可以通过系统广播消息、RRC信令等方式发送。需要注意的是,本申请实施例中的预设条件4即为本申请中的“第三条件”,二者对终端所需满足的条件本质是相同的。
605、终端采用二步随机接入传输数据。
基于上述对终端满足何种条件的判断可以得到,在终端满足预设条件2和预设条件3的情况下,终端采用二步随机接入传输数据。
606、终端采用四步随机接入传输数据。
基于上述对终端满足何种条件的判断可以得到,在终端满足预设条件2但不满足预设条件3,且同时满足预设条件4的情况下,终端采用四步随机接入传输数据。
607、终端进入连接态传输数据。
基于上述对终端满足何种条件的判断可以得到,在终端不满足预设条件2的情况下,终端进入连接态传输数据;在终端满足预设条件2但不满足预设条件3,且同时不满足预设条件4的情况下,终端也采用四步随机接入传输数据。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参阅图7,图7为本申请实施例提供的一种数据传输装置的结构示意图。该装置包括:传输单元71。其中:
传输单元71,用于在终端处于非激活态和/或有数据需要传输的情况下,若上述终端满 足第一条件,则上述终端采用基站配置的上行资源传输数据,上述第一条件为上述基站为上述终端配置非激活态下的上述上行资源。
进一步地,上述装置还包括:
选择单元72,用于上行资源消耗完毕后还存在数据需要传输的情况下,选择非激活态的方法传输数据。
进一步的,上述选择单元72,还用于在上述终端处于非激活态和/或有数据需要传输的情况下,若上述终端不满足上述第一条件,则选择非激活态的方法传输数据。
进一步的,上述选择单元72,具体用于采用非激活态下的二步随机接入或四步随机接入传输数据。
进一步的,上述选择单元72,具体用于在上述基站支持上述终端采用非激活态下的二步随机接入的情况下,若上述终端满足第二条件,则采用非激活态下的二步随机接入传输数据;上述第二条件包括以下至少一种:上述终端的当前信号强度高于目标信号阈值,上述终端当前需要传输的数据量小于或等于第一目标数据量阈值,上述终端在目标时间内传输的数据量小于或等于第二目标数据量阈值,上述终端当前需要传输的数据业务类型属于上述基站配置的业务类型集合,上述终端当前需要传输的数据业务类型不属于上述基站配置的业务类型集合,所述终端选择的随机数小于或等于第三目标阈值。
进一步的,上述选择单元72,具体还用于在上述基站不支持上述终端采用非激活态下的二步随机接入或上述终端不满足上述第二条件的情况下,若上述终端满足第三条件,则采用非激活态下的四步随机接入传输数据,上述第三条件为上述基站支持上述终端采用非激活态下的四步随机接入传输数据;上述第二条件包括以下至少一种:上述终端的当前信号强度高于上述目标信号阈值,上述终端当前需要传输的数据量小于或等于上述第一目标数据量阈值,上述终端在上述目标时间内传输的数据量小于或等于上述第二目标数据量阈值,上述终端当前需要传输的数据业务类型属于上述基站配置的业务类型集合,上述终端当前需要传输的数据业务类型不属于上述基站配置的业务类型集合,所述终端选择的随机数小于或等于第三目标阈值。
进一步的,上述选择单元72,具体还用于在上述终端不满足第四条件的情况下,上述终端进入连接态传输数据,上述第四条件为上述基站支持上述终端采用非激活态下的二步随机接入和四步随机接入中的至少一种。
进一步的,上述选择单元72,具体还用于在上述终端不满足上述第二条件和上述第三条件的情况下,上述终端进入连接态传输数据。
进一步的,上述选择单元72,具体还用于在所述终端不满足所述第四条件且不满足第五条件的情况下,选择进入连接态传输数据。
根据本申请实施例,图3、图4、图5a、图5b以及图6中终端执行的方法所涉及的各个步骤均可以是由图7所示的装置中的各个单元来执行。例如,图3中所示的301由图7中所示的71来执行;又如,图4中所示的407由图7中所示的72来执行。
根据本申请实施例,图7所示的装置中的各个单元可以分别或全部合并为一个或若干个另外的单元来构成,或者其中的某个(些)单元还可以再拆分为功能上更小的多个单元来构成,这可以实现同样的操作,而不影响本申请的实施例的技术效果的实现。上述单元 是基于逻辑功能划分的,在实际应用中,一个单元的功能也可以由多个单元来实现,或者多个单元的功能由一个单元实现。在本申请的其它实施例中,基于终端也可以包括其它单元,在实际应用中,这些功能也可以由其它单元协助实现,并且可以由多个单元协作实现。
基于上述方法实施例以及装置实施例的描述,本申请实施例还提供了一种终端的结构示意图。如图8所示,该终端800对应于上述实施例中的终端,该终端800可以包括:至少一个处理器801,例如CPU,至少一个网络接口804,用户接口803,存储器805,至少一个通信总线802。其中,通信总线802用于实现这些组件之间的连接通信。其中,用户接口803可以包括显示屏(display)、输入设备,可选用户接口803还可以包括标准的有线接口、无线接口。网络接口804可选地可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器805可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器805可选地还可以是至少一个位于远离前述处理器801的存储装置。如图8所示,作为一种计算机存储介质的存储器805中可以包括操作系统、网络通信模块、用户接口模块以及设备控制应用程序。
在图8所示的终端800中,网络接口804主要用于连接其他终端设备;而用户接口803主要用于为用户提供输入的接口;而处理器801可以用于调用存储器805中存储的设备控制应用程序,以实现:在终端处于非激活态和/或有数据需要传输的情况下,若所述终端满足第一条件,则所述终端采用基站配置的上行资源传输数据,所述第一条件为所述基站为所述终端配置非激活态下的所述上行资源。应当理解,终端800可以执行前述实施例中终端执行的操作,例如图3中终端执行的操作。
此外,这里需要指出的是:本申请实施例还提供了一种计算机可读存储介质,且所述计算机可读存储介质中存储有前文提及的终端所执行的计算机程序,且所述计算机程序包括程序指令,当所述处理器执行所述程序指令时,能够执行前文图3或图4或图5a或图5b或图6所对应实施例中对数据传输方法的描述,因此,这里将不再进行赘述。另外,对采用相同方法的有益效果描述,也不再进行赘述。对于本申请所涉及的计算机可读存储介质实施例中未披露的技术细节,请参照本申请方法实施例的描述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(read-only memory,ROM)或随机存储记忆体(random access memory,RAM)等。
以上所揭露的仅为本申请提供的实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (28)

  1. 一种数据传输方法,其特征在于,包括:
    在终端处于非激活态和/或有数据需要传输的情况下,若所述终端满足第一条件,则所述终端采用基站配置的上行资源传输数据,所述第一条件为所述基站为所述终端配置非激活态下的所述上行资源。
  2. 根据权利要求1所述的方法,其特征在于,所述第一条件包括:
    所述基站为所述终端配置非激活态下的所述上行资源且所述终端的上行定时提前配置当前处于有效状态。
  3. 根据权利要求1所述的方法,其特征在于,所述终端采用基站配置的上行资源传输数据之后,还包括:
    在所述上行资源消耗完毕后还存在数据需要传输的情况下,所述终端选择非激活态的方法传输数据。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述终端处于非激活态和/或有数据需要传输的情况下,若所述终端不满足所述第一条件,则所述终端选择非激活态的方法传输数据。
  5. 根据权利要求3或4所述的方法,其特征在于,所述终端选择非激活态的方法传输数据包括:
    所述终端采用非激活态下的二步随机接入或四步随机接入传输数据。
  6. 根据权利要求5所述的方法,其特征在于,所述终端采用非激活态下的二步随机接入或四步随机接入传输数据包括:
    在所述基站支持所述终端采用非激活态下的二步随机接入的情况下,若所述终端满足第二条件,则所述终端采用非激活态下的二步随机接入传输数据。
  7. 根据权利要求5所述的方法,其特征在于,所述终端采用非激活态下的二步随机接入或四步随机接入传输数据包括:
    在所述基站不支持所述终端采用非激活态下的二步随机接入或所述终端不满足所述第二条件的情况下,若所述终端满足第三条件,则所述终端采用非激活态下的四步随机接入传输数据。
  8. 根据权利要求7所述的方法,其特征在于,所述第三条件为所述基站支持所述终端采用非激活态下的四步随机接入传输数据。
  9. 根据权利要求6或7所述的方法,其特征在于,所述第二条件包括以下至少一种: 所述终端的当前信号强度高于所述目标信号阈值,所述终端当前需要传输的数据量小于或等于所述第一目标数据量阈值,所述终端在所述目标时间内传输的数据量小于或等于所述第二目标数据量阈值,所述终端当前需要传输的数据业务类型属于所述基站配置的业务类型集合,所述终端当前需要传输的数据业务类型不属于所述基站配置的业务类型集合,所述终端选择的随机数小于或等于第三目标阈值。
  10. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    在所述终端不满足第四条件的情况下,所述终端进入连接态传输数据。
  11. 根据权利要求10所述的方法,其特征在于,所述第四条件为所述基站支持所述终端采用非激活态下的二步随机接入和四步随机接入中的至少一种。
  12. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    在所述终端不满足所述第二条件和所述第三条件的情况下,所述终端进入连接态传输数据。
  13. 根据权利要求1所述的方法,其特征在于,所述第一条件包括以下至少一种:
    所述终端的当前业务类型属于所述基站配置的业务类型集合;
    所述终端的当前业务类型不属于所述基站配置的业务类型集合。
  14. 根据权利要求7所述的方法,其特征在于,所述第三条件包括以下至少一种:
    所述终端的当前信号强度高于所述目标信号阈值,所述终端当前需要传输的数据量小于或等于所述第一目标数据量阈值,所述终端在目标时间内传输的数据量小于或等于所述第二目标数据量阈值,所述终端当前需要传输的数据业务类型属于所述基站配置的业务类型集合,所述终端当前需要传输的数据业务类型不属于所述基站配置的业务类型集合,所述终端选择的随机数小于或等于所述第三目标阈值。
  15. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    在所述终端不满足所述第四条件且不满足第五条件的情况下,所述终端进入连接态传输数据。
  16. 根据权利要求15所述的方法,其特征在于,所述第五条件包括以下至少一种:
    所述终端当前需要传输的数据量小于或等于第一目标数据量阈值,所述终端在目标时间内传输的数据量小于或等于第二目标数据量阈值,所述终端当前需要传输的数据业务类型属于基站配置的业务类型集合,所述终端当前需要传输的数据业务类型不属于基站配置的业务类型集合。
  17. 根据权利要求9或14或16所述的方法,其特征在于,所述目标信号阈值、所述 第一目标数据量阈值、所述第二目标数据量阈值、所述第三目标阈值以及所述基站配置的业务类型集合中的至少一个通过广播消息和/或无线资源管理层RRC信令传输至所述终端。
  18. 一种数据传输装置,其特征在于,包括:
    传输单元,用于在终端处于非激活态和/或有数据需要传输的情况下,若所述终端满足第一条件,则采用基站配置的上行资源传输数据,所述第一条件为所述基站为所述终端配置非激活态下的所述上行资源。
  19. 根据权利要求18所述的装置,其特征在于,所述装置还包括:
    选择单元,用于在所述上行资源消耗完毕后还存在数据需要传输的情况下,选择非激活态的方法传输数据。
  20. 根据权利要求19所述的装置,其特征在于,所述选择单元,还用于在所述终端处于非激活态和/或有数据需要传输的情况下,若所述终端不满足所述第一条件,则选择非激活态的方法传输数据。
  21. 根据权利要求20所述的装置,其特征在于,所述选择单元,具体用于采用非激活态下的二步随机接入或四步随机接入传输数据。
  22. 根据权利要求21所述的装置,其特征在于,所述选择单元,具体还用于在所述基站支持所述终端采用非激活态下的二步随机接入的情况下,若所述终端满足第二条件,则采用非激活态下的二步随机接入传输数据。
  23. 根据权利要求22所述的装置,其特征在于,所述选择单元,具体还用于在所述基站不支持所述终端采用非激活态下的二步随机接入或所述终端不满足所述第二条件的情况下,若所述终端满足第三条件,则采用非激活态下的四步随机接入传输数据。
  24. 根据权利要求23所述的装置,其特征在于,所述选择单元,还用于在所述终端不满足第四条件的情况下,选择进入连接态传输数据。
  25. 根据权利要求24所述的装置,其特征在于,所述选择单元,还用于在所述终端不满足所述第二条件和所述第三条件的情况下,选择进入连接态传输数据。
  26. 根据权利要求25所述的装置,其特征在于,所述选择单元,还用于在所述终端不满足所述第四条件且不满足第五条件的情况下,选择进入连接态传输数据。
  27. 一种电子设备,其特征在于,包括:处理器和存储器,其中,所述存储器存储有程序指令,所述程序指令被所述处理器执行时,使所述处理器执行权利要求1至17任一项 所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有一条或多条指令,所述一条或多条指令适于由所述处理器加载并执行如权利要求1至17任一项所述的方法。
PCT/CN2020/082302 2020-03-18 2020-03-31 一种数据传输方法及相关产品 WO2021184417A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080098659.9A CN115298993A (zh) 2020-03-18 2020-03-31 一种数据传输方法及相关产品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010191718.9 2020-03-18
CN202010191718.9A CN113497685A (zh) 2020-03-18 2020-03-18 一种数据传输方法及相关产品

Publications (1)

Publication Number Publication Date
WO2021184417A1 true WO2021184417A1 (zh) 2021-09-23

Family

ID=77771509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082302 WO2021184417A1 (zh) 2020-03-18 2020-03-31 一种数据传输方法及相关产品

Country Status (2)

Country Link
CN (2) CN113497685A (zh)
WO (1) WO2021184417A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117527139A (zh) * 2022-07-28 2024-02-06 展讯通信(上海)有限公司 数据传输方法及装置、计算机可读存储介质、终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150358102A1 (en) * 2013-01-22 2015-12-10 Lg Electronics Inc. Method for transmitting and receiving signal in multi-cell cooperative communication system and apparatus therefor
CN107371264A (zh) * 2016-05-12 2017-11-21 电信科学技术研究院 一种上行数据传输的方法及设备
CN108696340A (zh) * 2017-04-05 2018-10-23 中兴通讯股份有限公司 反馈信息的发送、接收方法及装置
CN108834090A (zh) * 2017-05-05 2018-11-16 电信科学技术研究院 一种辅助信息传输方法及装置
CN108924963A (zh) * 2017-03-23 2018-11-30 中兴通讯股份有限公司 一种保持空口状态同步的方法、终端及基站
CN110139365A (zh) * 2018-02-08 2019-08-16 展讯通信(上海)有限公司 在非激活状态下传输数据的方法、装置及用户设备
CN110536385A (zh) * 2019-07-31 2019-12-03 中兴通讯股份有限公司 数据发送、接收方法、装置、第一节点及第二节点

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536471B (zh) * 2019-03-28 2023-02-17 中兴通讯股份有限公司 传输控制方法、装置、终端、基站、通信系统及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150358102A1 (en) * 2013-01-22 2015-12-10 Lg Electronics Inc. Method for transmitting and receiving signal in multi-cell cooperative communication system and apparatus therefor
CN107371264A (zh) * 2016-05-12 2017-11-21 电信科学技术研究院 一种上行数据传输的方法及设备
CN108924963A (zh) * 2017-03-23 2018-11-30 中兴通讯股份有限公司 一种保持空口状态同步的方法、终端及基站
CN108696340A (zh) * 2017-04-05 2018-10-23 中兴通讯股份有限公司 反馈信息的发送、接收方法及装置
CN108834090A (zh) * 2017-05-05 2018-11-16 电信科学技术研究院 一种辅助信息传输方法及装置
CN110139365A (zh) * 2018-02-08 2019-08-16 展讯通信(上海)有限公司 在非激活状态下传输数据的方法、装置及用户设备
CN110536385A (zh) * 2019-07-31 2019-12-03 中兴通讯股份有限公司 数据发送、接收方法、装置、第一节点及第二节点

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, CHINA TELECOM: "General consideration on light connection", 3GPP DRAFT; R3-160655 GENERAL CONSIDERATION ON LIGHT CONNECTION, vol. RAN WG3, 14 April 2016 (2016-04-14), Bangalore, India, pages 1 - 3, XP051082859 *

Also Published As

Publication number Publication date
CN113497685A (zh) 2021-10-12
CN115298993A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
TWI711331B (zh) 用於物聯網之使用者設備自動釋放之方法及其裝置
KR101299277B1 (ko) 롱 텀 이볼루션에서 데이터 전송의 종료를 표시함으로써 배터리에 대해 효과적인 상태 또는 구성으로 전환하는 방법 및 장치
US10645652B2 (en) Communications device and methods for controlling stasis state transition for a mobile terminal
EP3570628B1 (en) Handling a connection in a wireless communication system
KR102200982B1 (ko) Ue의 상태 전환 방법 및 장치
US10383052B2 (en) Infrastructure equipment, mobile communications network and method for reducing overhead of signaling transmissions and processing
US20160021646A1 (en) Method for controlling uplink grant resource request, user equipment, and base station
KR20180109986A (ko) 정보 보고 방법과 디바이스, 및 불연속 전송 방법
JP2019515601A (ja) Rrc状態制御のための方法及び装置
US9456466B2 (en) Method, device and system for controlling auxiliary information about user equipment
EP2645806B1 (en) User Equipment preference indicator for suspension of radio communications
KR20230038657A (ko) 스몰 데이터 송신을 위한 응답 타이머 및 셀 재선택 처리 방법 및 장치
JP2023519587A (ja) 端末装置及び基地局
WO2013020402A1 (zh) 资源调度的方法及网元
WO2021184417A1 (zh) 一种数据传输方法及相关产品
US20240114585A1 (en) Early State Handling Assistance for Efficient RRC State Change
WO2022152129A1 (zh) 上行数据发送增强流程的触发方法、装置及终端
WO2022152119A1 (zh) 返回网络的通知方法、装置及终端
US20230397045A1 (en) Method and device for wireless communication
WO2024067502A1 (zh) 一种数据传输方法及装置
WO2023066129A1 (zh) 信息上报方法、设备及可读存储介质
CN111372310B (zh) 一种寻呼管理方法及相关产品
US20230156814A1 (en) Method for setting data transmission type and terminal
JPWO2021189462A5 (zh)
CN115623561A (zh) 一种调度方法、装置、设备、介质和芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20925478

Country of ref document: EP

Kind code of ref document: A1