WO2021184298A1 - 阳极靶的制作方法、阳极靶、x射线源及x射线成像系统 - Google Patents

阳极靶的制作方法、阳极靶、x射线源及x射线成像系统 Download PDF

Info

Publication number
WO2021184298A1
WO2021184298A1 PCT/CN2020/080214 CN2020080214W WO2021184298A1 WO 2021184298 A1 WO2021184298 A1 WO 2021184298A1 CN 2020080214 W CN2020080214 W CN 2020080214W WO 2021184298 A1 WO2021184298 A1 WO 2021184298A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
anode target
grooves
groove
manufacturing
Prior art date
Application number
PCT/CN2020/080214
Other languages
English (en)
French (fr)
Inventor
宗方轲
郭金川
杨君
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2020/080214 priority Critical patent/WO2021184298A1/zh
Publication of WO2021184298A1 publication Critical patent/WO2021184298A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems

Definitions

  • the embodiments of the present application relate to X-ray technology, such as a method for manufacturing an anode target, an anode target, an X-ray source, and an X-ray imaging system.
  • X-ray grating imaging technology can simultaneously obtain X-ray absorption images, scatter images, and phase contrast images of the target object. It has very important applications in the fields of medicine, life sciences, materials science, and industrial non-destructive detection.
  • the X-ray source with periodic structure anode can generate periodic structure X-ray. This kind of light source plays an important role in X-ray grating imaging systems such as X-ray grating interference imaging and X-ray grating non-interference imaging.
  • a reflective X-ray tube is usually used as the X-ray source of the X-ray imaging system.
  • the anode target with periodic microstructure is the core of the X-ray source, that is, the periodic microstructure is made on the surface of the anode target.
  • DRIE deep plasma etching
  • Lift-Off photolithography lift-off
  • the line width of the pattern produced by the first mechanical precision processing method can only reach 10 microns, and the processing accuracy is not high, and it is only suitable for making large-period array X-ray light sources that do not require high coherence; the second method mentioned above
  • the line width of the method can reach 1 micron, but the processing technology is complicated, the technical difficulty is high, the production cycle is long, the cost is relatively large, the line edge neatness needs to be improved, and it is not suitable for mass production.
  • the embodiments of the present application provide a method for manufacturing an anode target, an anode target, an X-ray source, and an X-ray imaging system, so as to reduce the difficulty of manufacturing the X-ray source to be suitable for mass production.
  • the embodiment of the present application provides a method for manufacturing an anode target, and the method for manufacturing the anode target includes:
  • a metal tungsten wire matching the opening of the first trench is fixed in the first trench to form an anode target corresponding to the trench pattern.
  • the method includes:
  • the metal cover plate is press-fitted on the metal tungsten wire for clamping and fixing the metal tungsten wire together with the substrate.
  • the anode target for fixing a metal tungsten wire matching the opening of the first trench in the first trench to form a corresponding trench pattern includes:
  • a metal tungsten wire matching the opening of the first groove is fixed in the first groove by brazing to form an anode target corresponding to the groove pattern.
  • the first grooves arranged periodically include: grooves arranged in a circle, zigzag, or S-shape; or a plurality of grooves arranged in parallel and spaced apart.
  • the grooves arranged in a round shape, a zigzag shape, or an S shape include:
  • a plurality of first sub-grooves arranged in parallel along a first direction, a second sub-groove and a third sub-groove arranged in a second direction, the second sub-groove connecting the plurality of first sub-grooves
  • the third sub-groove connects the other ends of the plurality of first sub-grooves.
  • the processing method for forming a plurality of first grooves arranged periodically on the substrate includes one of plasma etching technology, precision mechanical cutting technology or femtosecond laser processing technology.
  • the cross section of the first groove is one of V-shaped, square, trapezoidal, arc, semicircular, or semi-elliptical.
  • an embodiment of the present application also provides an anode target, which is made by using the manufacturing method provided in any embodiment of the present application.
  • the embodiment of the present application also provides an X-ray source, and the X-ray source includes the anode target provided in the embodiment of the present application.
  • an embodiment of the present application also provides an X-ray imaging system, and the X-ray imaging system includes the X-ray source provided in the embodiment of the present application.
  • first trenches arranged periodically are formed on a substrate; a metal tungsten wire matching the opening of the first trench is fixed in the first trench to form a corresponding trench pattern
  • the anode target solves the problem of the difficulty in manufacturing the X-ray source of the array structure, and realizes the effect of reducing the difficulty of manufacturing the X-ray source to be suitable for mass production.
  • Fig. 1 is a schematic flow chart of a method for manufacturing an anode target provided in Example 1 of the present application;
  • FIG. 2 is a schematic diagram of the structure of the substrate of the anode target provided in the first embodiment of the present application;
  • FIG. 3 is a schematic diagram of the structure of the substrate of the anode target provided in the first embodiment of the present application;
  • FIG. 4 is a schematic diagram of the structure of the substrate of the anode target provided in the first embodiment of the present application.
  • FIG. 5 is a schematic diagram of the structure of the metal tungsten wire of the anode target provided in the first embodiment of the present application;
  • FIG. 6 is a schematic diagram of the structure of the metal tungsten wire of the anode target provided in the first embodiment of the present application;
  • FIG. 7 is a schematic diagram of the structure of the metal tungsten wire of the anode target provided in the first embodiment of the present application.
  • FIG. 8 is a schematic diagram of the structure of the anode target provided in the first embodiment of the present application and the second embodiment of the present application;
  • FIG. 9 is a schematic diagram of the structure of the X-ray source provided in the third embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an X-ray imaging system provided by Embodiment 4 of the present application.
  • Some exemplary embodiments are described as processes or methods depicted as flowcharts. Although the flowchart describes the steps as sequential processing, many of the steps can be implemented in parallel, concurrently, or simultaneously. In addition, the order of the steps can be rearranged. The processing may be terminated when its operations are completed, but may also have additional steps not included in the drawings. Processing can correspond to methods, functions, procedures, subroutines, subroutines, and so on.
  • first”, “second”, etc. may be used herein to describe various directions, actions, steps or elements, etc., but these directions, actions, steps or elements are not limited by these terms. These terms are only used to distinguish a first direction, action, step or element from another direction, action, step or element.
  • the first sub-groove may be referred to as the second sub-groove, and similarly, the second sub-groove may be referred to as the first sub-groove.
  • Both the first sub-groove and the second sub-groove are sub-grooves, but they are not the same sub-groove.
  • first first
  • second etc.
  • the first embodiment of the present application provides a method for manufacturing an anode target, and the method for manufacturing the anode target includes:
  • the material of the substrate may be a material with high hardness, such as diamond.
  • the processing method for forming a plurality of first grooves arranged periodically on the substrate includes using plasma etching technology and precision mechanical cutting. One of technology or femtosecond laser processing technology.
  • the first grooves arranged periodically include: grooves arranged in a circle, zigzag, or S-shape; or a plurality of grooves arranged in parallel and spaced apart.
  • the grooves arranged in a round shape, a zigzag shape or an S shape include: a plurality of first sub-grooves arranged in parallel along a first direction, a plurality of second sub-grooves arranged in a second direction, and the plurality of second sub-grooves arranged in a second direction; Two sub-grooves connect the ends of the plurality of first sub-grooves according to a preset rule; or a plurality of first sub-grooves arranged in parallel along the first direction, and second sub-grooves arranged in the second direction and A third sub-groove, where the second sub-groove connects one end of the plurality of first sub-grooves, and the third sub-groove connects the other end of the
  • the first grooves 202 arranged periodically on the substrate 201 are a plurality of grooves arranged in parallel and spaced apart.
  • the arrangement interval can be set as required, and the cross section 203 of the first groove 202 is square.
  • the first grooves 302 that are periodically arranged on the substrate 301 are S-shaped grooves, and the S-shaped grooves include the grooves arranged in parallel along the first direction.
  • the plurality of first sub-grooves 303, the plurality of second sub-grooves 304 arranged along the second direction, the plurality of second sub-grooves 304 divide the plurality of first sub-grooves 303 according to a preset rule The end of the connection.
  • the cross section 305 of the first groove is semi-elliptical.
  • the first sub-groove 303 and the second sub-groove 304 may be formed on the same surface, or may be formed on two intersecting surfaces.
  • the first sub-groove 303 It is formed on the upper surface 306 of the substrate 301, and the second sub-groove 304 is formed on the side surface 307 adjacent to the upper surface of the substrate 301.
  • the first grooves 402 that are periodically arranged on the substrate 401 are grooves arranged in a circular arrangement, wherein the grooves arranged in a circular arrangement include parallel arrangement along the first direction.
  • the cross section 406 of the first groove 402 is square.
  • the second sub groove 404 and the third sub groove 405 are parallel to each other and perpendicular to the first sub groove 403.
  • the angle between the third sub-groove 405 and the first sub-groove 403 may not be a right angle.
  • S120 Fix a metal tungsten wire matching the opening of the first groove in the first groove by brazing to form an anode target corresponding to the groove pattern.
  • the structure of the metal tungsten wire matches the opening of the first trench.
  • the metal tungsten wire 501 matches the opening of the first trench 202 in FIG. 2, that is, the metal tungsten wire 501 is a plurality of metal tungsten wires arranged in parallel and spaced apart.
  • the metal tungsten wire 601 matches the opening of the first trench 302 in FIG. 3, that is, the metal tungsten wire 601 is an S-shaped metal tungsten wire formed by bending according to a preset rule.
  • the metal tungsten wire 701 matches the opening of the first trench 402 in FIG.
  • the solder and the diamond substrate that are lower than the melting point of the diamond substrate and the metal tungsten wire can be heated to the solder melting temperature at the same time, and then the liquid solder is used to fill the first groove of the diamond substrate to make the metal tungsten wire
  • the wire is fixedly connected to the diamond substrate. After the metal tungsten wire is fixed in the first groove to form an anode target corresponding to the groove pattern, the periodic microstructure anode target has been completed and can be used in an X-ray tube.
  • the metal tungsten wire can also be directly embedded in the first groove in a semi-inlaid or full-inlaid manner, so that the metal tungsten wire and the diamond substrate are detachable, which is convenient for replacement and prolongs the service life of the X-ray source.
  • a metal cover plate 804 in the anode target manufactured in step S120, can also be selected, a notch is cut in the center of the metal cover plate 804 according to your needs, and then The metal cover plate 804 is pressed onto the metal tungsten wire 803 in the anode target for clamping and fixing the metal tungsten wire 803 together with the substrate 801.
  • the structure of the metal tungsten wire 803 can be fixed, especially for the metal tungsten wire 803 embedded in the first trench 802 by half damascene.
  • the pressing method of the metal cover plate 804 and the metal tungsten wire 803 can be adhesive fixing or other detachable fixing methods, or brazing or other more stable fixing methods.
  • a metal cover plate 804 is provided on the metal tungsten wire 803, and the metal cover plate 804 can also be used as a conductor, so that the potential of the structure surface of the anode target is consistent with that of the anode, and the electrons that bombard the anode target can be conducted away.
  • the metal cover plate 804 and the diamond substrate 801 can also serve as a heat conductor to conduct the heat generated on the anode target in time.
  • the metal cover plate 804 may further include hooks arranged at four corners for fixing on the opposite surface of the metal tungsten wire 803, so as to better clamp the metal tungsten wire 803.
  • a through hole may also be provided on the substrate for passing through bolts to clamp and fix the metal cover plate 804 above the metal tungsten wire 803.
  • first trenches arranged periodically are formed on a substrate; a metal tungsten wire matching the opening of the first trench is fixed in the first trench to form a corresponding trench pattern
  • the anode target solves the problem of the difficulty of producing the X-ray source, and realizes the effect of reducing the difficulty of producing the X-ray source to be suitable for mass production.
  • the second embodiment of the present application provides an anode target, which is manufactured by using the anode target manufacturing method provided in the first embodiment of the present application.
  • the anode target includes a substrate 801, a first trench 802, and a metal tungsten wire 803.
  • the material of the substrate 801 may be a material with high hardness, such as diamond.
  • a processing method for forming a plurality of first grooves 802 arranged periodically on the substrate 801 includes using plasma etching technology. , One of precision mechanical cutting technology or femtosecond laser processing technology.
  • the first grooves 802 arranged periodically include: grooves arranged in a circle, zigzag or S-shape, as shown in FIGS. 3 and 4; or a plurality of grooves arranged in parallel and spaced apart, as shown in picture 2.
  • the grooves arranged in a circle, zigzag or S-shape include: a plurality of first sub-grooves 303 arranged in parallel along a first direction, and a plurality of second sub-grooves 304 arranged in a second direction.
  • the second sub-grooves 304 connect the ends of the first sub-grooves 303 according to a preset rule; or the first sub-grooves 403 arranged in parallel along the first direction, and the first sub-grooves 403 arranged in the second direction
  • the other end of a sub-groove 403 is connected.
  • the cross section of the first groove 802 is one of V-shaped, square, trapezoidal, arc, semi-circular, or semi-elliptical.
  • the structure of the metal tungsten wire 803 matches the opening of the first trench 802.
  • the brazing material lower than the melting point of the diamond substrate 801 and the metal tungsten wire 803 and the diamond substrate 801 can be heated to the melting temperature of the solder at the same time, and then the first groove 802 of the diamond substrate 801 can be filled with liquid brazing material to make the metal tungsten wire 803 is fixedly connected to the diamond substrate 801.
  • the periodic microstructure anode target has been completed and can be used in an X-ray tube.
  • the metal tungsten wire 803 can also be directly embedded in the first groove in a semi-inlaid or full-inlaid manner, so that the metal tungsten wire 803 and the diamond substrate 801 are detachable, which is convenient for replacement and prolongs the service life of the X-ray source. .
  • the anode target further includes a metal cover plate 804.
  • the structure of the metal tungsten wire 803 can be fixed, especially for the metal tungsten wire 803 embedded in the first trench 802 by half damascene.
  • the pressing method of the metal cover plate 804 and the metal tungsten wire 803 can be adhesive fixing or other detachable fixing methods, or brazing or other more stable fixing methods.
  • a metal cover plate 804 is provided on the metal tungsten wire 803, and the metal cover plate 804 can also be used as a conductor, so that the potential of the structure surface of the anode target is consistent with that of the anode, and the electrons that bombard the anode target can be conducted away.
  • the metal cover plate 804 and the diamond substrate 801 can also serve as a heat conductor to conduct the heat generated on the anode target in time.
  • the third embodiment of the present application provides an X-ray source.
  • the X-ray source includes a cathode 905, a high-voltage power supply 906, a tube case 907, an anode 908, and a transmission window 910.
  • the anode 908 includes an anode substrate 901, an anode target 902, and an anode cap 909.
  • the anode target 902 adopts the anode target provided in the second embodiment of the present application.
  • the cathode 905 includes a cathode cover 911, a cathode filament lead 903, and a cathode filament 912.
  • the high-voltage power supply 906 is electrically connected to the cathode 905 and the anode target 902 respectively.
  • the cathode 905 and the anode 908 are sealed in the high-vacuum tube shell 907, and the transmission window 910 is arranged outside the anode 908.
  • the cathode filament 912 of the cathode 905 emits electrons through the cathode filament lead 903, and an electron cloud is generated by thermal emission or field emission.
  • the cathode 905 and the anode 908 will jointly generate a high-voltage focusing electric field.
  • the electron beam is radially focused and axially accelerated to produce a high-energy electron beam 904.
  • the high-energy electron beam 904 continues to enter the anode target 902 through the gap in the anode cap 909. After the anode target 902 receives the electron bombardment, the high-energy electron beam 904 and the anode target 902 The interaction of the upper metal tungsten wires radiates X-rays and exits through the transmission window 910.
  • the fourth embodiment of the present application provides an X-ray imaging system.
  • the X-ray imaging system includes an X-ray source 1001, a phase grating 1002, an analysis grating 1003, and a detector 1004.
  • the X-ray source 1001 adopts the X-ray source provided in the third embodiment of the application, and the analysis grating 1003 can adopt deep reactive ion etching, photolithography electroforming and injection molding technology, or photo-assisted electrochemical etching technology.
  • the analysis grating 1003 can adopt deep reactive ion etching, photolithography electroforming and injection molding technology, or photo-assisted electrochemical etching technology.
  • the X-ray source 1001 can generate X-rays 1005 in a line array structure. After the X-rays 1005 are emitted, they radiate on the object to be measured 1006, interact with the object to be measured 1006, and then pass through the phase grating 1002.
  • the self-imaging is generated at a certain distance behind the phase grating 1002, and the self-imaging is projected on the detector 1004, and the movement of the analysis grating 1003 is used to extract and observe the image phase information, and complete the X-ray differential interference imaging.
  • phase grating 1002 and the analysis grating 1003 can be removed, and a large period absorption grating is placed at the position of the phase grating 1002, that is, X-ray incoherent system imaging can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • X-Ray Techniques (AREA)

Abstract

一种阳极靶的制作方法、阳极靶、X射线源及X射线成像系统。阳极靶的制作方法包括:在基底(201,301,401,801)上形成呈周期性排列的第一沟槽(202,302,402,802);将与第一沟槽(202,302,402,802)开口相匹配的金属钨线(501,601,701,803)固定在第一沟槽(202,302,402,802)内以形成对应沟槽图形的阳极靶。

Description

阳极靶的制作方法、阳极靶、X射线源及X射线成像系统 技术领域
本申请实施例涉及X射线技术,例如涉及一种阳极靶的制作方法、阳极靶、X射线源及X射线成像系统。
背景技术
X射线光栅成像技术能够同时获取目标物体的X射线吸收图像、散射图像以及相位衬度图像,其在医学、生命科学、材料科学及工业无损探测等领域有着非常重要的应用。具有周期性结构阳极的X射线源可以产生周期性结构X光,这种光源在X射线光栅干涉成像、X射线光栅非干涉成像等X射线光栅成像系统中具有举足轻重的重要作用。
通常采用反射式X射线管作为X射线成像系统的X射线源,其中具有周期性微结构的阳极靶是X射线源的核心,即在阳极靶表面上制作具有周期性微结构,国际上有报道的制作方法有两种,一是通过慢走丝线切割、激光雕刻等机械精密加工的办法;二是利用深度等离子体刻蚀(DRIE)、磁控溅射、光刻剥离(Lift-Off)等半导体微结构制作工艺。
但是,上述第一种机械精密加工的方法制作图案的线宽最低只能达到10微米,加工精度不高,只适合制作对相干性要求不太高的大周期阵列X射线光源;上述第二种方法线条宽度可以达到1微米,但是其加工工艺复杂,技术难度较高,制作周期较长,成本较大,线条边缘整齐度还待提高,且不适合批量生产制作。
发明内容
本申请实施例提供一种阳极靶的制作方法、阳极靶、X射线源及X射线成像系统,以实现降低X射线源的制作难度以适合批量生产。
本申请实施例提供了一种阳极靶的制作方法,该阳极靶的制作方法包括:
在基底上形成呈周期性排列的第一沟槽;
将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶。
在一实施例中,所述将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶之后包括:
在金属盖板中心切割出预设缺口;
将所述金属盖板压合在所述金属钨线上方以用于与所述基底一起夹持固定所述金属钨线。
在一实施例中,所述将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶包括:
通过钎焊将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶。
在一实施例中,所述呈周期性排列的第一沟槽包括:回形、之字形或S型排列的沟槽;或平行间隔排列的多个沟槽。
在一实施例中,所述回形、之字形或S型排列的沟槽包括:
沿第一方向平行排列的多个第一子沟槽,沿第二方向排列的多个第二子沟槽,所述多个第二子沟槽按预设规则将所述多个第一子沟槽的末端连接;或
沿第一方向平行排列的多个第一子沟槽,沿第二方向排列的第二子沟槽和第三子沟槽,所述第二子沟槽将所述多个第一子沟槽的一端连接,所述第三子沟槽将所述多个第一子沟槽的另一端连接。
在一实施例中,所述在基底上形成呈周期性排列的多个第一沟槽的加工方法包括采用等离子体刻蚀技术、精密机械切削技术或飞秒激光加工技术中的一种。
在一实施例中,所述第一沟槽的截面为V型、方形、梯形、弧形、半圆形或半椭圆形中的一种。
一方面,本申请实施例还提供了一种阳极靶,所述阳极靶采用如本申请任一实施例提供的制作方法制成。
另一方面,本申请实施例还提供了一种X射线源,该X射线源包括本申请实施例提供的阳极靶。
又一方面,本申请实施例还提供了一种X射线成像系统,该X射线成像系统包括本申请实施例提供的X射线源。
本申请实施例通过在基底上形成呈周期性排列的第一沟槽;将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶,解决了阵列结构X射线源制作困难的问题,实现了降低X射线源的制作难度以适合批量生产的效果。
附图说明
图1是本申请实施例一提供的阳极靶的制作方法的流程示意图;
图2是本申请实施例一提供的阳极靶的基底的结构示意图;
图3是本申请实施例一提供的阳极靶的基底的结构示意图;
图4是本申请实施例一提供的阳极靶的基底的结构示意图;
图5是本申请实施例一提供的阳极靶的金属钨线的结构示意图;
图6是本申请实施例一提供的阳极靶的金属钨线的结构示意图;
图7是本申请实施例一提供的阳极靶的金属钨线的结构示意图;
图8是本申请实施例一和本申请实施例二提供的阳极靶的结构示意图;
图9是本申请实施例三提供的X射线源的结构示意图;
图10是本申请实施例四提供的X射线成像系统的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的实施例用于解释本申请,而非对本申请的限定。为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,各步骤的顺序可以被重新安排。当其操作完成时处理可以被终止,但是还可以具有未包括在附图中的附加步骤。处理可以对应于方法、函数、规程、子例程、子程序等等。
此外,术语“第一”、“第二”等可在本文中用于描述各种方向、动作、步骤或元件等,但这些方向、动作、步骤或元件不受这些术语限制。这些术语仅用于将第一个方向、动作、步骤或元件与另一个方向、动作、步骤或元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一子沟槽称为第二子沟槽,且类似地,可将第二子沟槽称为第一子沟槽。第一子沟槽和第二子沟槽两者都是子沟槽,但其不是同一子沟槽。术语“第一”、“第二”等不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请实施例的描述中,“多个”的含义是至少两个,例如两个,三 个等,除非另有限定。
实施例一
如图1所示,本申请实施例一提供了一种阳极靶的制作方法,该阳极靶的制作方法包括:
S110、在基底上形成呈周期性排列的第一沟槽。
本实施例中,基底的材质可以采用高硬度的材料例如金刚石,可选的,在基底上形成呈周期性排列的多个第一沟槽的加工方法包括采用等离子体刻蚀技术、精密机械切削技术或飞秒激光加工技术中的一种。
在一实施例中,呈周期性排列的第一沟槽包括:回形、之字形或S型排列的沟槽;或平行间隔排列的多个沟槽。其中,回形、之字形或S型排列的沟槽包括:沿第一方向平行排列的多个第一子沟槽,沿第二方向排列的多个第二子沟槽,所述多个第二子沟槽按预设规则将所述多个第一子沟槽的末端连接;或沿第一方向平行排列的多个第一子沟槽,沿第二方向排列的第二子沟槽和第三子沟槽,所述第二子沟槽将所述多个第一子沟槽的一端连接,所述第三子沟槽将所述多个第一子沟槽的另一端连接。所述第一沟槽的截面为V型、方形、梯形、弧形、半圆形或半椭圆形中的一种。
一实施例中,如图2所示,在基底201上加工形成的呈周期性排列的第一沟槽202为平行间隔排列的多个沟槽,其中,多个第一沟槽202之间的排列间隔可以按需求设置,第一沟槽202的截面203为方形。
一实施例中,如图3所示,在基底301上加工形成的呈周期性排列的第一沟槽302为S型排列的沟槽,其中S型排列的沟槽包括沿第一方向平行排列的多个第一子沟槽303,沿第二方向排列的多个第二子沟槽304,所述多个第二子沟槽304按预设规则将所述多个第一子沟槽303的末端连接。其中,第一沟槽的截面305为半椭圆形。在一实施例中,所述第一子沟槽303和第二子沟槽304可以形成在相同的表面,也可以形成在相交的两个表面,本实施例中所述第一子沟槽303形成在基底301的上表面306,所述第二子沟槽304形成在所述基底301相邻上表面的侧面307。
一实施例中,如图4所示,在基底401上加工形成的呈周期性排列的第一沟槽402为回形排列的沟槽,其中回形排列的沟槽包括沿第一方向平行排列的多个第一子沟槽403,沿第二方向排列的第二子沟槽404和第三子沟槽405,所述第二子沟槽404将所述多个第一子沟槽403的一端连接,所述第三子沟槽405将所述多个第一子沟槽403的另一端连接。第一沟槽402的截面406为方形。 本实施例中所述第二子沟槽404和第三子沟槽405相互平行并和第一子沟槽403相互垂直。其他实施例第三子沟槽405和第一子沟槽403之间的夹角也可以不是直角。
S120、通过钎焊将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶。
本实施例中,金属钨线的结构与第一沟槽开口相匹配。
一实施例中,如图5所示,该金属钨线501与图2中的第一沟槽202开口相匹配,即金属钨线501为平行间隔排列的多个金属钨线。
一实施例中,如图6所示,该金属钨线601与图3中的第一沟槽302开口相匹配即金属钨线601为按预设规则弯曲形成的S型金属钨线。
一实施例中,如图7所示,该金属钨线701与图4中的第一沟槽402开口相匹配即金属钨线701为平行间隔排列的且两末端连接的多个金属钨线。
在一实施例中,可以先将低于金刚石基底和金属钨线的熔点的钎料和金刚石基底同时加热到钎料熔化温度后,利用液态钎料填充金刚石基底的第一沟槽,使金属钨线与金刚石基底固定连接。在金属钨线固定在第一沟槽内形成了对应沟槽图形的阳极靶后,该周期性微结构阳极靶已制作完成,可以用于X射线管中。
一替代实施例中,也可以直接将金属钨线以半镶嵌或全镶嵌式嵌入第一沟槽内,使金属钨线与金刚石基底可拆卸,方便更换,延长X射线源的使用寿命。
S130、在金属盖板中心切割出预设缺口。
S140、将所述金属盖板压合在所述金属钨线上方以用于与所述基底一起夹持固定所述金属钨线。
在一实施例中,如图8所示,在步骤S120中制作完成的阳极靶中,还可以选取一金属盖板804,按照自己的需求在金属盖板804的中心切割出缺口,然后将该金属盖板804压合在阳极靶中的金属钨线803上方,以用于与基底801一起夹持固定所述金属钨线803。如此可以对金属钨线803的结构进行固定,尤其是对于半镶嵌嵌入第一沟槽802的金属钨线803。相应的,金属盖板804与金属钨线803的压合方式可以为粘合固定或其他可拆卸的固定方法,也可以为钎焊或其他更加稳定的固定方法。此外,在金属钨线803上设置金属盖板804,还可以让金属盖板804作为导电体,使得阳极靶的结构表面的电势与阳极保持一致,且可以导走轰击阳极靶的电子,在一实施例中,金属盖板804还可以和金刚石基底801共同作为导热体,及时导走阳极靶上产生的热量。替代实施例中,金属盖板804还可以包括设置在四个角落的钩部,用于和设置金属钨线803的表 面相反另一面固定,以对金属钨线803进行更好的夹持。其他实施例中,还可以在基板上设置通孔,用于穿过螺栓,以将金属盖板804夹持固定在设置金属钨线803的上方。
本申请实施例通过在基底上形成呈周期性排列的第一沟槽;将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶,解决了X射线源制作困难的问题,实现了降低X射线源的制作难度以适合批量生产的效果。
实施例二
如图8所示,本申请实施例二提供了一种阳极靶,该阳极靶使用如本申请实施例一提供的阳极靶的制作方法制作。
一实施例中,该阳极靶包括基底801、第一沟槽802、金属钨线803。
在一实施例中,基底801的材质可以采用高硬度的材料例如金刚石,可选的,在基底801上形成呈周期性排列的多个第一沟槽802的加工方法包括采用等离子体刻蚀技术、精密机械切削技术或飞秒激光加工技术中的一种。
在一实施例中,呈周期性排列的第一沟槽802包括:回形、之字形或S型排列的沟槽,如图3和图4所示;或平行间隔排列的多个沟槽,如图2所示。其中,回形、之字形或S型排列的沟槽包括:沿第一方向平行排列的多个第一子沟槽303,沿第二方向排列的多个第二子沟槽304,所述多个第二子沟槽304按预设规则将所述多个第一子沟槽303的末端连接;或沿第一方向平行排列的多个第一子沟槽403,沿第二方向排列的第二子沟槽404和第三子沟槽405,所述第二子沟槽404将所述多个第一子沟槽405的一端连接,所述第三子沟槽405将所述多个第一子沟槽403的另一端连接。
在一实施例中,第一沟槽802的截面为V型、方形、梯形、弧形、半圆形或半椭圆形中的一种。金属钨线803的结构与第一沟槽802开口相匹配。可以先将低于金刚石基底801和金属钨线803的熔点的钎料和金刚石基底801同时加热到钎料熔化温度后,利用液态钎料填充金刚石基底801的第一沟槽802,使金属钨线803与金刚石基底801固定连接。在金属钨线803固定在第一沟槽802内形成了对应沟槽图形的阳极靶后,该周期性微结构阳极靶已制作完成,可以用于X射线管中。
一替代实施例中,也可以直接将金属钨线803以半镶嵌或全镶嵌式嵌入第一沟槽内,使金属钨线803与金刚石基底801可拆卸,方便更换,延长X射线源的使用寿命。
可选的,该阳极靶还包括金属盖板804。可以按照自己的需求在金属盖板804的中心切割出缺口,然后将该金属盖板804压合在阳极靶中的金属钨线803上方,以用于与基底801一起夹持固定所述金属钨线803。如此可以对金属钨线803的结构进行固定,尤其是对于半镶嵌嵌入第一沟槽802的金属钨线803。相应的,金属盖板804与金属钨线803的压合方式可以为粘合固定或其他可拆卸的固定方法,也可以为钎焊或其他更加稳定的固定方法。此外,在金属钨线803上设置金属盖板804,还可以让金属盖板804作为导电体,使得阳极靶的结构表面的电势与阳极保持一致,且可以导走轰击阳极靶的电子,在一实施例中,金属盖板804还可以和金刚石基底801共同作为导热体,及时导走阳极靶上产生的热量。
实施例三
如图9所示,本申请实施例三提供了一种X射线源,该X射线源包括阴极905、高压电源906、管壳907、阳极908和透射窗口910。
本实施例中,阳极908包括阳极衬底901、阳极靶902和阳极帽909,阳极靶902采用本申请实施例二提供的阳极靶,阴极905包括阴极罩911、阴极灯丝引线903和阴极灯丝912,高压电源906分别与阴极905和阳极靶902电连接,阴极905和阳极908密封在高真空的管壳907内,透射窗口910设置在阳极908的外侧。
在使用该X射线源时,打开高压电源906,通过阴极灯丝引线903使阴极905的阴极灯丝912发射电子,通过热发射或场致发射产生电子云,阴极905和阳极908将共同产生高压聚焦电场对电子束进行径向聚焦和轴向加速产生高能电子束904,高能电子束904继续经过阳极帽909中的缺口入射阳极靶902,阳极靶902接收电子轰击后,高能电子束904与阳极靶902上的金属钨丝的相互作用辐射出X射线,并从透射窗口910中出射。
实施例四
如图10所示,本申请实施例四提供了一种X射线成像系统,该X射线成像系统包括X射线源1001、相位光栅1002、分析光栅1003和探测器1004。
本实施例中,X射线源1001采用本申请实施例三提供的X射线源,其中分析光栅1003可以采用深反应离子刻蚀法、光刻电铸成型和注塑技术或光助电化学刻蚀技术中的一种方法制作。
当使用该X射线成像系统时,可以通过X射线源1001产生线阵列结构X 射线1005,X射线1005出射后辐射在待测物体1006上,与待测物体1006产生相互作用后经过相位光栅1002,在相位光栅1002后的一定距离处产生自成像,将其自成像投影在探测器1004上,利用分析光栅1003的移动实现图像相位信息的提取观测,完成X射线微分干涉的成像。
在一替代实施例中,可以移除相位光栅1002和分析光栅1003,在相位光栅1002的位置上放置一个大周期的吸收光栅,即可以实现X射线非相干系统成像。

Claims (10)

  1. 一种阳极靶的制作方法,包括:
    在基底上形成呈周期性排列的第一沟槽;
    将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶。
  2. 根据权利要求1所述的制作方法,其中,所述将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶之后包括:
    在金属盖板中心切割出预设缺口;
    将所述金属盖板压合在所述金属钨线上方以用于与所述基底一起夹持固定所述金属钨线。
  3. 根据权利要求1所述的制作方法,其中,所述将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶包括:
    通过钎焊将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶。
  4. 根据权利要求1所述的制作方法,其中,所述呈周期性排列的第一沟槽包括:回形、之字形或S型排列的沟槽;或平行间隔排列的多个沟槽。
  5. 根据权利要求4所述的制作方法,其中,所述回形、之字形或S型排列的沟槽包括:
    沿第一方向平行排列的多个第一子沟槽,沿第二方向排列的多个第二子沟槽,所述多个第二子沟槽按预设规则将所述多个第一子沟槽的末端连接;或
    沿第一方向平行排列的多个第一子沟槽,沿第二方向排列的第二子沟槽和第三子沟槽,所述第二子沟槽将所述多个第一子沟槽的一端连接,所述第三子沟槽将所述多个第一子沟槽的另一端连接。
  6. 根据权利要求1所述的制作方法,其中,所述在基底上形成呈周期性排列的多个第一沟槽的加工方法包括采用等离子体刻蚀技术、精密机械切削技术或飞秒激光加工技术中的一种。
  7. 根据权利要求1-6任一所述的制作方法,其中,所述第一沟槽的截面为V型、方形、梯形、弧形、半圆形或半椭圆形中的一种。
  8. 一种阳极靶,所述阳极靶采用如权利要求1-7任一所述的制作方法制成。
  9. 一种X射线源,包括如权利要求8所述的阳极靶。
  10. 一种X射线成像系统,包括如权利要求9所述的X射线源。
PCT/CN2020/080214 2020-03-19 2020-03-19 阳极靶的制作方法、阳极靶、x射线源及x射线成像系统 WO2021184298A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080214 WO2021184298A1 (zh) 2020-03-19 2020-03-19 阳极靶的制作方法、阳极靶、x射线源及x射线成像系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080214 WO2021184298A1 (zh) 2020-03-19 2020-03-19 阳极靶的制作方法、阳极靶、x射线源及x射线成像系统

Publications (1)

Publication Number Publication Date
WO2021184298A1 true WO2021184298A1 (zh) 2021-09-23

Family

ID=77768365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080214 WO2021184298A1 (zh) 2020-03-19 2020-03-19 阳极靶的制作方法、阳极靶、x射线源及x射线成像系统

Country Status (1)

Country Link
WO (1) WO2021184298A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148462A (en) * 1991-04-08 1992-09-15 Moltech Corporation High efficiency X-ray anode sources
CN104034741A (zh) * 2014-06-10 2014-09-10 深圳大学 用于x射线光栅微分相衬成像的x射线源
US20140369471A1 (en) * 2013-06-14 2014-12-18 Canon Kabushiki Kaisha Transmissive target, x-ray generating tube including transmissive target, x-ray generating apparatus, and radiography system
CN107076682A (zh) * 2014-05-15 2017-08-18 斯格瑞公司 用于测量、表征和分析周期性结构的x射线方法
CN107887243A (zh) * 2017-09-19 2018-04-06 中国电子科技集团公司第三十八研究所 一种用于电子束扫描ct的x射线源的阵列靶及制作方法
CN109473329A (zh) * 2018-12-25 2019-03-15 深圳大学 一种面发射透射式阵列结构的空间相干x射线源
US20190302042A1 (en) * 2018-04-03 2019-10-03 Sigray, Inc. X-ray emission spectrometer system
CN110808112A (zh) * 2018-08-06 2020-02-18 斯格瑞公司 Talbot-lau x射线源和干涉测量系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148462A (en) * 1991-04-08 1992-09-15 Moltech Corporation High efficiency X-ray anode sources
US20140369471A1 (en) * 2013-06-14 2014-12-18 Canon Kabushiki Kaisha Transmissive target, x-ray generating tube including transmissive target, x-ray generating apparatus, and radiography system
CN107076682A (zh) * 2014-05-15 2017-08-18 斯格瑞公司 用于测量、表征和分析周期性结构的x射线方法
CN104034741A (zh) * 2014-06-10 2014-09-10 深圳大学 用于x射线光栅微分相衬成像的x射线源
CN107887243A (zh) * 2017-09-19 2018-04-06 中国电子科技集团公司第三十八研究所 一种用于电子束扫描ct的x射线源的阵列靶及制作方法
US20190302042A1 (en) * 2018-04-03 2019-10-03 Sigray, Inc. X-ray emission spectrometer system
CN110808112A (zh) * 2018-08-06 2020-02-18 斯格瑞公司 Talbot-lau x射线源和干涉测量系统
CN109473329A (zh) * 2018-12-25 2019-03-15 深圳大学 一种面发射透射式阵列结构的空间相干x射线源

Similar Documents

Publication Publication Date Title
US8644451B2 (en) X-ray generating apparatus and inspection apparatus using the same therein
US8208603B2 (en) X-ray generating device
JP5153388B2 (ja) X線発生装置ならびにx線分析装置、x線透過像計測装置及びx線干渉計
JP6316019B2 (ja) X線発生管、該x線発生管を備えたx線発生装置及びx線撮影システム
WO2000003412A1 (fr) Tube a rayons x
JP6116274B2 (ja) 放射線発生装置および該放射線発生装置を備える放射線撮影装置
KR20140103865A (ko) 방사선관 및 그것을 사용한 방사선 촬영 시스템
CN109473329A (zh) 一种面发射透射式阵列结构的空间相干x射线源
WO2021184298A1 (zh) 阳极靶的制作方法、阳极靶、x射线源及x射线成像系统
CN111370277B (zh) 阳极靶的制作方法、阳极靶、x射线源及x射线成像系统
JP2009087633A (ja) X線源およびx線源の製造方法
KR100201248B1 (ko) 개선된 전계 방출 냉음극의 2차원 어레이를 갖는 전자총
WO2021184573A1 (zh) 复合结构的x射线阳极靶
CN209232723U (zh) 一种面发射透射式阵列结构的空间相干x射线源
EP4231326A1 (en) X-ray generation device and x-ray imaging system
US20230413410A1 (en) X-ray generation target, x-ray generator, and x-ray imaging system
US20160372295A1 (en) Emitter
CN212209415U (zh) 一种复合结构的x射线阳极靶
CN117476420A (zh) 一种线焦斑x射线源及x射线光栅成像系统
US9865423B2 (en) X-ray tube cathode with shaped emitter
JP2000048746A (ja) X線管
JP2008027769A (ja) 電子顕微鏡用試料保持部材
JPH0732847U (ja) スポット型カソード装置
JP2001229863A (ja) マイクロフォーカス型x線管装置
JP2015079569A (ja) 放射線管及び放射線撮影システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.01.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20926123

Country of ref document: EP

Kind code of ref document: A1