CN111370277B - 阳极靶的制作方法、阳极靶、x射线源及x射线成像系统 - Google Patents

阳极靶的制作方法、阳极靶、x射线源及x射线成像系统 Download PDF

Info

Publication number
CN111370277B
CN111370277B CN202010195244.5A CN202010195244A CN111370277B CN 111370277 B CN111370277 B CN 111370277B CN 202010195244 A CN202010195244 A CN 202010195244A CN 111370277 B CN111370277 B CN 111370277B
Authority
CN
China
Prior art keywords
sub
groove
anode target
grooves
tungsten wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010195244.5A
Other languages
English (en)
Other versions
CN111370277A (zh
Inventor
宗方轲
郭金川
杨君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN202010195244.5A priority Critical patent/CN111370277B/zh
Publication of CN111370277A publication Critical patent/CN111370277A/zh
Application granted granted Critical
Publication of CN111370277B publication Critical patent/CN111370277B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Toxicology (AREA)
  • X-Ray Techniques (AREA)

Abstract

本发明实施例公开了一种阳极靶的制作方法、阳极靶、X射线源及X射线成像系统。该阳极靶的制作方法包括:在基底上形成呈周期性排列的第一沟槽;将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶。本发明实施例实现了降低X射线源的制作难度以适合批量生产。

Description

阳极靶的制作方法、阳极靶、X射线源及X射线成像系统
技术领域
本发明实施例涉及X射线技术,尤其涉及一种阳极靶的制作方法、阳极靶、X射线源及X射线成像系统。
背景技术
X射线光栅成像技术能够同时获取目标物体的X射线吸收图像、散射图像以及相位衬度图像,其在医学、生命科学、材料科学及工业无损探测等领域有着非常重要的应用。具有周期性结构阳极的X射线源可以产生周期性结构X光,这种光源在X射线光栅干涉成像、X射线光栅非干涉成像等X射线光栅成像系统中具有举足轻重的重要作用。
通常采用反射式X射线管作为X射线成像系统的X射线源,其中具有周期性微结构的阳极靶是X射线源的核心,即在阳极靶表面上制作具有周期性微结构,目前国际上有报道的制作方法有两种,一是通过慢走丝线切割、激光雕刻等机械精密加工的办法;二是利用深度等离子体刻蚀(DRIE)、磁控溅射、光刻剥离(Lift-Off)等半导体微结构制作工艺。
但是,上述第一种机械精密加工的方法制作图案的线宽最低只能达到10微米,加工精度不高,只适合制作对相干性要求不太高的大周期阵列X射线光源;上述第二种方法线条宽度可以达到1微米,但是其加工工艺复杂,技术难度较高,制作周期较长,成本较大,线条边缘整齐度还待提高,且不适合批量生产制作。
发明内容
本发明实施例提供一种阳极靶的制作方法、阳极靶、X射线源及X射线成像系统,以实现降低X射线源的制作难度以适合批量生产。
为达此目的,本发明实施例提供了一种阳极靶的制作方法,该阳极靶的制作方法包括:
在基底上形成呈周期性排列的第一沟槽;
将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶。
进一步的,所述将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶之后包括:
在金属盖板中心切割出预设缺口;
将所述金属盖板压合在所述金属钨线上方以用于与所述基底一起夹持固定所述金属钨线。
进一步的,所述将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶包括:
通过钎焊将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶。
进一步的,所述呈周期性排列的第一沟槽包括:回形、之字形或S型排列的沟槽;或平行间隔排列的多个沟槽。
进一步的,所述回形、之字形或S型排列的沟槽包括:
沿第一方向平行排列的多个第一子沟槽,沿第二方向排列的多个第二子沟槽,所述多个第二子沟槽按预设规则将所述多个第一子沟槽的末端连接;或
沿第一方向平行排列的多个第一子沟槽,沿第二方向排列的第二子沟槽和第三子沟槽,所述第二子沟槽将所述多个第一子沟槽的一端连接,所述第三子沟槽将所述多个第一子沟槽的另一端连接。
进一步的,所述在基底上形成呈周期性排列的多个第一沟槽的加工方法包括采用等离子体刻蚀技术、精密机械切削技术或飞秒激光加工技术中的一种。
进一步的,所述第一沟槽的截面为V型、方形、梯形、弧形、半圆形或半椭圆形中的一种。
一方面,本发明实施例还提供了一种阳极靶,所述阳极靶采用如本发明任一实施例提供的制作方法制成。
另一方面,本发明实施例还提供了一种X射线源,该X射线源包括本发明实施例提供的阳极靶。
又一方面,本发明实施例还提供了一种X射线成像系统,该X射线成像系统包括本发明实施例提供的X射线源。
本发明实施例通过在基底上形成呈周期性排列的第一沟槽;将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶,解决了阵列结构X射线源制作困难的问题,实现了降低X射线源的制作难度以适合批量生产的效果。
附图说明
图1是本发明实施例一提供的阳极靶的制作方法的流程示意图;
图2是本发明实施例一提供的阳极靶的基底的结构示意图;
图3是本发明实施例一提供的阳极靶的基底的结构示意图;
图4是本发明实施例一提供的阳极靶的基底的结构示意图;
图5是本发明实施例一提供的阳极靶的金属钨线的结构示意图;
图6是本发明实施例一提供的阳极靶的金属钨线的结构示意图;
图7是本发明实施例一提供的阳极靶的金属钨线的结构示意图;
图8是本发明实施例一和本发明实施例二提供的阳极靶的结构示意图;
图9是本发明实施例三提供的X射线源的结构示意图;
图10是本发明实施例四提供的X射线成像系统的结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,各步骤的顺序可以被重新安排。当其操作完成时处理可以被终止,但是还可以具有未包括在附图中的附加步骤。处理可以对应于方法、函数、规程、子例程、子程序等等。
此外,术语“第一”、“第二”等可在本文中用于描述各种方向、动作、步骤或元件等,但这些方向、动作、步骤或元件不受这些术语限制。这些术语仅用于将第一个方向、动作、步骤或元件与另一个方向、动作、步骤或元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一子沟槽称为第二子沟槽,且类似地,可将第二子沟槽称为第一子沟槽。第一子沟槽和第二子沟槽两者都是子沟槽,但其不是同一子沟槽。术语“第一”、“第二”等不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明实施例的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
实施例一
如图1所示,本发明实施例一提供了一种阳极靶的制作方法,该阳极靶的制作方法包括:
S110、在基底上形成呈周期性排列的第一沟槽。
本实施例中,基底的材质可以采用高硬度的材料例如金刚石,作为优选的,在基底上形成呈周期性排列的多个第一沟槽的加工方法包括采用等离子体刻蚀技术、精密机械切削技术或飞秒激光加工技术中的一种。
具体的,呈周期性排列的第一沟槽包括:回形、之字形或S型排列的沟槽;或平行间隔排列的多个沟槽。其中,回形、之字形或S型排列的沟槽包括:沿第一方向平行排列的多个第一子沟槽,沿第二方向排列的多个第二子沟槽,所述多个第二子沟槽按预设规则将所述多个第一子沟槽的末端连接;或沿第一方向平行排列的多个第一子沟槽,沿第二方向排列的第二子沟槽和第三子沟槽,所述第二子沟槽将所述多个第一子沟槽的一端连接,所述第三子沟槽将所述多个第一子沟槽的另一端连接。所述第一沟槽的截面为V型、方形、梯形、弧形、半圆形或半椭圆形中的一种。
一实施例中,如图2所示,在基底201上加工形成的呈周期性排列的第一沟槽202为平行间隔排列的多个沟槽,其中,多个第一沟槽202之间的排列间隔可以按需求设置,第一沟槽202的截面203为方形。
一实施例中,如图3所示,在基底301上加工形成的呈周期性排列的第一沟槽302为S型排列的沟槽,其中S型排列的沟槽具体包括沿第一方向平行排列的多个第一子沟槽303,沿第二方向排列的多个第二子沟槽304,所述多个第二子沟槽304按预设规则将所述多个第一子沟槽303的末端连接。其中,第一沟槽的截面305为半椭圆形。具体地,所述第一子沟槽303和第二子沟槽304可以形成在相同的表面,也可以形成在相交的两个表面,本实施例中所述第一子沟槽303形成在基底301的上表面306,所述第二子沟槽304形成在所述基底301相邻上表面的侧面307。
一实施例中,如图4所示,在基底401上加工形成的呈周期性排列的第一沟槽402为回形排列的沟槽,其中回形排列的沟槽具体包括沿第一方向平行排列的多个第一子沟槽403,沿第二方向排列的第二子沟槽404和第三子沟槽405,所述第二子沟槽404将所述多个第一子沟槽403的一端连接,所述第三子沟槽405将所述多个第一子沟槽403的另一端连接。第一沟槽402的截面406为方形。本实施例中所述第二子沟槽404和第三子沟槽405相互平行并和第一子沟槽403相互垂直。其他实施例第三子沟槽405和第一子沟槽403之间的夹角也可以不是直角。
S120、通过钎焊将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶。
本实施例中,金属钨线的结构与第一沟槽开口相匹配。
一实施例中,如图5所示,该金属钨线501与图2中的第一沟槽202开口相匹配,即金属钨线501为平行间隔排列的多个金属钨线。
一实施例中,如图6所示,该金属钨线601与图3中的第一沟槽302开口相匹配即金属钨线601为按预设规则弯曲形成的S型金属钨线。
一实施例中,如图7所示,该金属钨线701与图4中的第一沟槽402开口相匹配即金属钨线701为平行间隔排列的且两末端连接的多个金属钨线。
具体的,可以先将低于金刚石基底和金属钨线的熔点的钎料和金刚石基底同时加热到钎料熔化温度后,利用液态钎料填充金刚石基底的第一沟槽,使金属钨线与金刚石基底固定连接。在金属钨线固定在第一沟槽内形成了对应沟槽图形的阳极靶后,该周期性微结构阳极靶已制作完成,可以用于X射线管中。
一替代实施例中,也可以直接将金属钨线以半镶嵌或全镶嵌式嵌入第一沟槽内,使金属钨线与金刚石基底可拆卸,方便更换,延长X射线源的使用寿命。
S130、在金属盖板中心切割出预设缺口。
S140、将所述金属盖板压合在所述金属钨线上方以用于与所述基底一起夹持固定所述金属钨线。
进一步的,如图8所示,在步骤S120中制作完成的阳极靶中,还可以选取一金属盖板804,按照自己的需求在金属盖板804的中心切割出缺口,然后将该金属盖板804压合在阳极靶中的金属钨线803上方,以用于与基底801一起夹持固定所述金属钨线803。如此可以对金属钨线803的结构作进一步的固定,尤其是对于半镶嵌嵌入第一沟槽802的金属钨线803。相应的,金属盖板804与金属钨线803的压合方式可以为粘合固定或其他可拆卸的固定方法,也可以为钎焊或其他更加稳定的固定方法。此外,在金属钨线803上设置金属盖板804,还可以让金属盖板804作为导电体,使得阳极靶的结构表面的电势与阳极保持一致,且可以导走轰击阳极靶的电子,进一步的,金属盖板804还可以和金刚石基底801共同作为导热体,及时导走阳极靶上产生的热量。替代实施例中,金属盖板804还可以包括设置在四个角落的钩部,用于和设置金属钨线803的表面相反另一面固定,以对金属钨线803进行更好的夹持。其他实施例中,还可以在基板上设置通孔,用于穿过螺栓,以将金属盖板804夹持固定在设置金属钨线803的上方。
本发明实施例通过在基底上形成呈周期性排列的第一沟槽;将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶,解决了X射线源制作困难的问题,实现了降低X射线源的制作难度以适合批量生产的效果。
实施例二
如图8所示,本发明实施例二提供了一种阳极靶,该阳极靶使用如本发明实施例一提供的阳极靶的制作方法制作。
一实施例中,该阳极靶包括基底801、第一沟槽802、金属钨线803。
具体的,基底801的材质可以采用高硬度的材料例如金刚石,作为优选的,在基底801上形成呈周期性排列的多个第一沟槽802的加工方法包括采用等离子体刻蚀技术、精密机械切削技术或飞秒激光加工技术中的一种。
具体的,呈周期性排列的第一沟槽802包括:回形、之字形或S型排列的沟槽,如图3和图4所示;或平行间隔排列的多个沟槽,如图2所示。其中,回形、之字形或S型排列的沟槽包括:沿第一方向平行排列的多个第一子沟槽303,沿第二方向排列的多个第二子沟槽304,所述多个第二子沟槽304按预设规则将所述多个第一子沟槽303的末端连接;或沿第一方向平行排列的多个第一子沟槽403,沿第二方向排列的第二子沟槽404和第三子沟槽405,所述第二子沟槽404将所述多个第一子沟槽405的一端连接,所述第三子沟槽405将所述多个第一子沟槽403的另一端连接。
进一步的,第一沟槽802的截面为V型、方形、梯形、弧形、半圆形或半椭圆形中的一种。金属钨线803的结构与第一沟槽802开口相匹配。可以先将低于金刚石基底801和金属钨线803的熔点的钎料和金刚石基底801同时加热到钎料熔化温度后,利用液态钎料填充金刚石基底801的第一沟槽802,使金属钨线803与金刚石基底801固定连接。在金属钨线803固定在第一沟槽802内形成了对应沟槽图形的阳极靶后,该周期性微结构阳极靶已制作完成,可以用于X射线管中。
一替代实施例中,也可以直接将金属钨线803以半镶嵌或全镶嵌式嵌入第一沟槽内,使金属钨线803与金刚石基底801可拆卸,方便更换,延长X射线源的使用寿命。
作为优选的,该阳极靶还包括金属盖板804。可以按照自己的需求在金属盖板804的中心切割出缺口,然后将该金属盖板804压合在阳极靶中的金属钨线803上方,以用于与基底801一起夹持固定所述金属钨线803。如此可以对金属钨线803的结构作进一步的固定,尤其是对于半镶嵌嵌入第一沟槽802的金属钨线803。相应的,金属盖板804与金属钨线803的压合方式可以为粘合固定或其他可拆卸的固定方法,也可以为钎焊或其他更加稳定的固定方法。此外,在金属钨线803上设置金属盖板804,还可以让金属盖板804作为导电体,使得阳极靶的结构表面的电势与阳极保持一致,且可以导走轰击阳极靶的电子,进一步的,金属盖板804还可以和金刚石基底801共同作为导热体,及时导走阳极靶上产生的热量。
实施例三
如图9所示,本发明实施例三提供可一种X射线源,该X射线源包括阴极905、高压电源906、管壳907、阳极908和透射窗口910。
本实施例中,阳极908包括阳极衬底901、阳极靶902和阳极帽909,阳极靶902采用本发明实施例二提供的阳极靶,阴极905包括阴极罩911、阴极灯丝引线903和阴极灯丝912,高压电源906分别与阴极905和阳极靶902电连接,阴极905和阳极908密封在高真空的管壳907内,透射窗口910设置在阳极908的外侧。
在使用该X射线源时,打开高压电源906,通过阴极灯丝引线903使阴极905的阴极灯丝912发射电子,通过热发射或场致发射产生电子云,阴极905和阳极908将共同产生高压聚焦电场对电子束进行径向聚焦和轴向加速产生高能电子束904,高能电子束904继续经过阳极帽909中的缺口入射阳极靶902,阳极靶902接收电子轰击后,高能电子束904与阳极靶902上的金属钨丝的相互作用辐射出X射线,并从透射窗口910中出射。
实施例四
如图10所示,本发明实施例四提供了一种X射线成像系统,该X射线成像系统包括X射线源1001、相位光栅1002、分析光栅1003和探测器1004。
本实施例中,X射线源1001采用本发明实施例三提供的X射线源,其中分析光栅1003可以采用深反应离子刻蚀法、光刻电铸成型和注塑技术或光助电化学刻蚀技术中的一种方法制作。
当使用该X射线成像系统时,可以通过X射线源1001产生线阵列结构X射线1005,X射线1005出射后辐射在待测物体1006上,与待测物体1006产生相互作用后经过相位光栅1002,在相位光栅1002后的一定距离处产生自成像,将其自成像投影在探测器1004上,利用分析光栅1003的移动实现图像相位信息的提取观测,完成X射线微分干涉的成像。
在一替代实施例中,可以移除相位光栅1002和分析光栅1003,在相位光栅1002的位置上放置一个大周期的吸收光栅,即可以实现X射线非相干系统成像。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (9)

1.一种阳极靶的制作方法,其特征在于,包括:
采用等离子体刻蚀技术、精密机械切削技术或飞秒激光加工技术中的至少一种在基底上形成呈周期性排列的第一沟槽;
将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶;
所述将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶之后包括:
在金属盖板中心切割出预设缺口;
将所述金属盖板压合在所述金属钨线上方以用于与所述基底一起夹持固定所述金属钨线;
所述金属盖板作为导电体和/或导热体。
2.根据权利要求1所述的制作方法,其特征在于,所述将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶包括:
通过钎焊将与所述第一沟槽开口相匹配的金属钨线固定在所述第一沟槽内以形成对应沟槽图形的阳极靶。
3.根据权利要求1所述的制作方法,其特征在于,所述呈周期性排列的第一沟槽包括:回形、之字形或S型排列的沟槽;或平行间隔排列的多个沟槽。
4.根据权利要求3所述的制作方法,其特征在于,所述回形、之字形或S型排列的沟槽包括:
沿第一方向平行排列的多个第一子沟槽,沿第二方向排列的多个第二子沟槽,所述多个第二子沟槽按预设规则将所述多个第一子沟槽的末端连接;或
沿第一方向平行排列的多个第一子沟槽,沿第二方向排列的第二子沟槽和第三子沟槽,所述第二子沟槽将所述多个第一子沟槽的一端连接,所述第三子沟槽将所述多个第一子沟槽的另一端连接。
5.根据权利要求1所述的制作方法,其特征在于,所述在基底上形成呈周期性排列的多个第一沟槽的加工方法包括采用等离子体刻蚀技术、精密机械切削技术或飞秒激光加工技术中的一种。
6.根据权利要求1-5任一所述的制作方法,其特征在于,所述第一沟槽的截面为V型、方形、梯形、弧形、半圆形或半椭圆形中的一种。
7.一种阳极靶,其特征在于,所述阳极靶采用如权利要求1-6任一所述的制作方法制成。
8.一种X射线源,其特征在于,包括如权利要求7所述的阳极靶。
9.一种X射线成像系统,其特征在于,包括如权利要求8所述的X射线源。
CN202010195244.5A 2020-03-19 2020-03-19 阳极靶的制作方法、阳极靶、x射线源及x射线成像系统 Active CN111370277B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010195244.5A CN111370277B (zh) 2020-03-19 2020-03-19 阳极靶的制作方法、阳极靶、x射线源及x射线成像系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010195244.5A CN111370277B (zh) 2020-03-19 2020-03-19 阳极靶的制作方法、阳极靶、x射线源及x射线成像系统

Publications (2)

Publication Number Publication Date
CN111370277A CN111370277A (zh) 2020-07-03
CN111370277B true CN111370277B (zh) 2023-02-17

Family

ID=71210736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010195244.5A Active CN111370277B (zh) 2020-03-19 2020-03-19 阳极靶的制作方法、阳极靶、x射线源及x射线成像系统

Country Status (1)

Country Link
CN (1) CN111370277B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690120A (zh) * 2021-07-05 2021-11-23 中山大学 一种图案化透射阳极平板x射线源器件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148462A (en) * 1991-04-08 1992-09-15 Moltech Corporation High efficiency X-ray anode sources
CN104034741A (zh) * 2014-06-10 2014-09-10 深圳大学 用于x射线光栅微分相衬成像的x射线源
CN107076682A (zh) * 2014-05-15 2017-08-18 斯格瑞公司 用于测量、表征和分析周期性结构的x射线方法
CN107887243A (zh) * 2017-09-19 2018-04-06 中国电子科技集团公司第三十八研究所 一种用于电子束扫描ct的x射线源的阵列靶及制作方法
CN110808112A (zh) * 2018-08-06 2020-02-18 斯格瑞公司 Talbot-lau x射线源和干涉测量系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010002512B4 (de) * 2009-03-27 2024-03-14 Rigaku Corp. Röntgenstrahlerzeugungsvorrichtung und Untersuchungsvorrichtung, die diese verwendet
JP6207246B2 (ja) * 2013-06-14 2017-10-04 キヤノン株式会社 透過型ターゲットおよび該透過型ターゲットを備える放射線発生管、放射線発生装置、及び、放射線撮影装置
US20150092924A1 (en) * 2013-09-04 2015-04-02 Wenbing Yun Structured targets for x-ray generation
US10578566B2 (en) * 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148462A (en) * 1991-04-08 1992-09-15 Moltech Corporation High efficiency X-ray anode sources
CN107076682A (zh) * 2014-05-15 2017-08-18 斯格瑞公司 用于测量、表征和分析周期性结构的x射线方法
CN104034741A (zh) * 2014-06-10 2014-09-10 深圳大学 用于x射线光栅微分相衬成像的x射线源
CN107887243A (zh) * 2017-09-19 2018-04-06 中国电子科技集团公司第三十八研究所 一种用于电子束扫描ct的x射线源的阵列靶及制作方法
CN110808112A (zh) * 2018-08-06 2020-02-18 斯格瑞公司 Talbot-lau x射线源和干涉测量系统

Also Published As

Publication number Publication date
CN111370277A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
EP1096543B1 (en) X-ray tube
US10115557B2 (en) X-ray generation device having multiple metal target members
US8644451B2 (en) X-ray generating apparatus and inspection apparatus using the same therein
US7333592B2 (en) X-ray tube
CN111370277B (zh) 阳极靶的制作方法、阳极靶、x射线源及x射线成像系统
JP2009212058A (ja) X線発生装置ならびにx線分析装置、x線透過像計測装置及びx線干渉計
CN103996592A (zh) 放射线管和使用该放射线管的放射线成像系统
JP6214880B2 (ja) レーザイオン源及び重粒子線治療装置
EP2775508A2 (en) X-ray generation tube, X-ray generation device including the X-ray generation tube, and X-ray imaging system
JP2014154499A (ja) 放射線発生装置および該放射線発生装置を備える放射線撮影装置
US5031200A (en) Cathode for an X-ray tube and a tube including such a cathode
US20220341802A1 (en) Vacuum-tight electrical feedthrough
EP1455380B1 (en) Charged particle beam device with cleaning unit and method of operation thereof
JP2013206633A (ja) 電子銃、x線発生装置及びx線測定装置
EP3474306B1 (en) X-ray tube
WO2021184298A1 (zh) 阳极靶的制作方法、阳极靶、x射线源及x射线成像系统
JP2020517058A (ja) 荷電粒子源モジュール、荷電粒子源モジュールを備えた露光システム、荷電粒子源配置、半導体デバイスを製造する方法、及びターゲットを検査する方法
JP2009087633A (ja) X線源およびx線源の製造方法
EP3794626A1 (en) Cathode assembly for electron gun
KR20180046958A (ko) 가변형 타겟을 구비하는 엑스선관
CN111243923A (zh) 一种复合结构的x射线阳极靶
WO2000049637A1 (fr) Source de rayons x ponctuelle et de grande intensite
EP4227975A1 (en) X-ray generation target, x-ray generator, and x-ray imaging system
US9824843B2 (en) Emitter with deep structuring on front and rear surfaces
JP2018137180A (ja) 走査電子顕微鏡

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Zong Fangke

Inventor after: Guo Jinchuan

Inventor after: Yang Jun

Inventor before: Zong Fangke

Inventor before: Jin Chuan

Inventor before: Yang Jun

GR01 Patent grant
GR01 Patent grant