WO2021184163A1 - 激光测量装置 - Google Patents

激光测量装置 Download PDF

Info

Publication number
WO2021184163A1
WO2021184163A1 PCT/CN2020/079509 CN2020079509W WO2021184163A1 WO 2021184163 A1 WO2021184163 A1 WO 2021184163A1 CN 2020079509 W CN2020079509 W CN 2020079509W WO 2021184163 A1 WO2021184163 A1 WO 2021184163A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
circuit board
measuring device
image acquisition
optical lens
Prior art date
Application number
PCT/CN2020/079509
Other languages
English (en)
French (fr)
Inventor
刘建
周春东
Original Assignee
上海芯歌智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海芯歌智能科技有限公司 filed Critical 上海芯歌智能科技有限公司
Priority to PCT/CN2020/079509 priority Critical patent/WO2021184163A1/zh
Publication of WO2021184163A1 publication Critical patent/WO2021184163A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument

Definitions

  • the invention belongs to the mechanical field, and particularly relates to a laser measuring device.
  • This structure includes point or line laser transmitters and industrial cameras.
  • the industrial camera includes a lens and corresponding image acquisition components.
  • the line laser transmitter emits laser light to an external object, and the laser is reflected by the external object and then irradiated on the image collection element through a lens.
  • the image collection element calculates the distance or movement parameters of the object based on the collected image.
  • the existing laser measurement devices are all suitable for the measurement of small objects. When encountering a wide object, the overall image of the longer element can only be sampled by adjusting the focal length of the lens. This will undoubtedly reduce the measurement. Accuracy.
  • the purpose of the present invention is to provide a laser measuring device, which is used to solve the problem that the laser measuring device in the prior art cannot guarantee the accuracy when measuring large-sized objects.
  • a laser measuring device implementing the present invention includes at least a laser transmitter, an image capture element, and an optical lens matched with the laser transmitter and the image capture element, and is characterized in that: the image capture element is provided with a plurality of , And the corresponding optical lens is also provided with multiple.
  • the laser transmitter is a line laser transmitter.
  • the plurality of optical lenses and the plurality of image capturing elements are arranged side by side.
  • the laser measuring device further includes an auxiliary circuit board, the image acquisition element is arranged on the auxiliary circuit board, and the laser measuring device is also provided with a fixing seat between the auxiliary circuit board and the optical lens, the The surface of the fixing seat is arranged obliquely, and the optical lens is positioned by the fixing seat.
  • the laser measuring device further includes a main circuit board and a cover plate, and the main circuit board is fixed on the cover plate and assembled to the housing.
  • the present invention sets multiple image capture elements, and at the same time sets multiple corresponding optical lenses, so that each optical lens and the corresponding image capture element can capture part of the object under test.
  • Image, and finally the images of multiple image acquisition elements are integrated to form the overall image of the object to be measured, so that the detection of larger objects can be achieved while maintaining high detection accuracy.
  • Fig. 1 is a schematic diagram of a three-dimensional structure of a laser measuring device implementing the present invention.
  • Fig. 2 is a three-dimensional exploded schematic diagram of the laser measuring device implementing the present invention.
  • Fig. 3 is a three-dimensional exploded schematic view of a part of the structure of the laser measuring device implementing the present invention.
  • the laser measuring device implementing the present invention includes a housing 1, a laser transmitter 2, an optical lens 3, and an image acquisition element 40 arranged inside the housing 1, wherein the image acquisition element 40 is provided On the auxiliary circuit board 4.
  • the laser light emitted by the laser transmitter 2 is reflected by the object to be measured, it is irradiated on the image pickup element 40 through the optical lens 3, thus forming an image of the object to be measured.
  • the images of the multiple image acquisition elements 40 are integrated to form an overall image of the object to be measured, so that the detection of larger-sized objects can be achieved while maintaining high detection accuracy.
  • a fixing seat 41 is also provided between the above-mentioned auxiliary circuit board 4 and the optical lens 3, the surface of the fixing seat 41 is arranged obliquely, the optical lens 3 is positioned by the fixing seat 41, and the other end of the optical lens 3 is It is housed in the opening 10 of the housing 1.
  • the laser transmitter 2 is arranged on the other side of the housing 1, and the axis of the optical lens 3 and the laser light emitted by the laser transmitter 2 are arranged at an angle.
  • the laser measuring device further includes a main circuit board 5 and a cover plate 6, the main circuit board 5 is fixed on the cover plate 6 and assembled to the housing 1, and the laser transmitter 2, the optical lens 3 and The auxiliary circuit board 4 is fixed in the housing 1.
  • the positioning of the laser transmitter 2 and the optical lens 3 is very important, otherwise the measurement accuracy will be affected.
  • the present invention fixes the laser transmitter 2 and the optical lens 3 In the housing 1, this can achieve better positioning, and for the main circuit board 5 that does not require too high positioning accuracy, it is fixed on the cover 6, so that the main circuit board can be directly connected when the cover 6 is opened.
  • the circuit board 5 is removed, and there is no need to provide a fixing structure for fixing the main circuit board 5 on the housing 1.
  • the laser transmitter 2 is a line laser transmitter, and in the above-mentioned embodiment, the optical lens 3 and the corresponding image capturing element 40 are provided with two and arranged side by side.
  • the optical lens 3 and the corresponding image capturing element 40 can be set to multiple according to actual needs.
  • the present invention sets multiple image capture elements, and at the same time sets multiple corresponding optical lenses, so that each optical lens and the corresponding image capture element can capture part of the object under test.
  • Image and finally integrate the images of multiple image acquisition elements to form the overall image of the object to be measured (this function can be realized by the control element of the laser measurement device, such as DSP or MCU), so that the premise of maintaining high detection accuracy Realize the detection of larger objects.

Abstract

一种激光测量装置,该激光测量装置至少包括激光发射器(2)、图像采集元件(40)及与激光发射器(2)和图像采集元件(40)配合的光学透镜(3),其中图像采集元件(40)设有多个,而相对应的光学透镜(3)也设有多个,如此可利用激光测量装置检测宽度较大的物体,并且可以保持宽度方向的精度。

Description

激光测量装置 【技术领域】
本发明属于机械领域,特别涉及一种激光测量装置。
【背景技术】
利用点或线激光进行测量的方式已在工业领域存在多种应用,此种结构均包括点或线激光发射器及工业相机,其中工业相机包括透镜及相应的图像采集元件,在工作时,点或线激光发射器发射激光至外部物体,该激光经外部物体反射后通过透镜照射在图像采集元件上,该图像采集元件根据采集的图像而计算得到物体的距离或运动参数等。然而,现有的激光测量装置均是适用于尺寸较小的物体的测量,如遇到较宽物体时则只能通过调整透镜的焦距实现将较长元件的整体图像采样,此无疑会降低测量的精度。
【发明内容】
本发明的目的在于提供一种激光测量装置,用以解决现有技术中激光测量装置在测量尺寸较大物体时无法保证精度的问题。
为实现上述目的,实施本发明的一种激光测量装置,至少包括激光发射器、图像采集元件及与激光发射器和图像采集元件配合的光学透镜,其特征在于:上述图像采集元件设有多个,而相对应的光学透镜也设有多个。
依据上述主要特征,其中所述激光发射器为线激光发射器。
依据上述主要特征,所述多个光学透镜及多个图像采集元件并排设置。
依据上述主要特征,该激光测量装置还包括一辅助电路板,所述图像采集元件设于该辅助电路板上,并且该激光测量装置在辅助电路板与光学透镜之间还设有一固定座,该固定座表面呈倾斜设置,光学透镜通过该固定座定位。
依据上述主要特征,该激光测量装置还包括一主电路板及一盖板,该主电路板固定在该盖板上并组装至壳体上。
与现有技术相比较,本发明通过将图像采集元件设为多个,同时相对应的光学透镜也设为多个,如此利用每个光学透镜与对应的图像采集元件可采集被测物体的部分图像,最后将多个图像采集元件的图像整合而形成被测物体的整体图像,如此可在保持较高检测精度的前提下实现对尺寸较大物体的检测。
【附图说明】
图1为实施本发明的激光测量装置的立体结构示意图。
图2为实施本发明的激光测量装置的立体分解示意图。
图3为实施本发明的激光测量装置的部分结构的立体分解示意图。
【具体实施方式】
请参阅图1至图3所示,实施本发明的激光测量装置包括壳体1、设于壳体1内部的激光发射器2、光学透镜3及图像采集元件40,其中图像采集元件40是设置在辅助电路板4上。激光发射器2发射的激光通过被测物体反射后,经过光学透镜3而照射在图像采集元件40上,如此形成被测物 体的图像。再者,上述图像采集元件40设有多个,而相对应的光学透镜3也设有多个,如此可利用每个光学透镜3与对应的图像采集元件40可采集被测物体的部分图像,最后将多个图像采集元件40的图像整合而形成被测物体的整体图像,如此可在保持较高检测精度的前提下实现对尺寸较大物体的检测。
在具体实施时,上述辅助电路板4与光学透镜3之间还设有一固定座41,该固定座41表面呈倾斜设置,光学透镜3通过该固定座41定位,而光学透镜3的另一端则收容于壳体1的开口10中。而激光发射器2设于壳体1的另一侧,光学透镜3的轴线与激光发射器2所发射的激光呈一夹角设置。
再者,该激光测量装置还包括一主电路板5及一盖板6,该主电路板5固定在该盖板6上并组装至壳体1上,而激光发射器2、光学透镜3及辅助电路板4是固定在壳体1内,对于激光测量装置,激光发射器2与光学透镜3的定位至关重要,否则会影响测量的精度,本发明将激光发射器2与光学透镜3固定在壳体1内,如此可以更好的实现定位,而对于对定位精度要求并不太高的主电路板5,则固定在盖板6上,如此在打开盖板6时便可直接将主电路板5取下,并且也不必在壳体1上设置固定主电路板5的固定结构。
另外,所述的激光发射器2为线激光发射器,并且在上述的实施例中,光学透镜3与对应的图像采集元件40设有二个并且并排设置。当然,光学 透镜3与对应的图像采集元件40可依实际需要设为多个。
与现有技术相比较,本发明通过将图像采集元件设为多个,同时相对应的光学透镜也设为多个,如此利用每个光学透镜与对应的图像采集元件可采集被测物体的部分图像,最后将多个图像采集元件的图像整合而形成被测物体的整体图像(此功能可由该激光测量装置的控制元件,如DSP或MCU,实现),如此可在保持较高检测精度的前提下实现对尺寸较大物体的检测。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (5)

  1. 一种激光测量装置,至少包括激光发射器、图像采集元件及与激光发射器和图像采集元件配合的光学透镜,其特征在于:上述图像采集元件设有多个,而相对应的光学透镜也设有多个。
  2. 如权利要求1所述的激光测量装置,其特征在于:所述激光发射器为线激光发射器。
  3. 如权利要求1所述的激光测量装置,其特征在于:所述多个光学透镜及多个图像采集元件并排设置。
  4. 如权利要求3所述的激光测量装置,其特征在于:该激光测量装置还包括一辅助电路板,所述图像采集元件设于该辅助电路板上,并且该激光测量装置在辅助电路板与光学透镜之间还设有一固定座,该固定座表面呈倾斜设置,光学透镜通过该固定座定位。
  5. 如权利要求3所述的激光测量装置,其特征在于:该激光测量装置还包括一主电路板及一盖板,该主电路板固定在该盖板上并组装至壳体上。
PCT/CN2020/079509 2020-03-16 2020-03-16 激光测量装置 WO2021184163A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079509 WO2021184163A1 (zh) 2020-03-16 2020-03-16 激光测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079509 WO2021184163A1 (zh) 2020-03-16 2020-03-16 激光测量装置

Publications (1)

Publication Number Publication Date
WO2021184163A1 true WO2021184163A1 (zh) 2021-09-23

Family

ID=77769954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079509 WO2021184163A1 (zh) 2020-03-16 2020-03-16 激光测量装置

Country Status (1)

Country Link
WO (1) WO2021184163A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091445A (ja) * 2008-10-09 2010-04-22 Topcon Corp レーザ測量装置及び距離測定方法
CN102001025A (zh) * 2010-10-22 2011-04-06 西安交通大学 一种超重型车床加工精度特性在机测量装置及方法
CN105051488A (zh) * 2013-03-15 2015-11-11 法罗技术股份有限公司 通过受引导的探测来在3d扫描仪中诊断多路径干扰并且消除多路径干扰
CN107436439A (zh) * 2016-05-27 2017-12-05 科沃斯机器人股份有限公司 激光测距装置及其感光芯片的安装方法
CN108489453A (zh) * 2018-02-11 2018-09-04 上海芯歌智能科技有限公司 线激光测距装置及方法
CN208110631U (zh) * 2018-05-20 2018-11-16 蔡畅 一种人脸3d图像采集装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091445A (ja) * 2008-10-09 2010-04-22 Topcon Corp レーザ測量装置及び距離測定方法
CN102001025A (zh) * 2010-10-22 2011-04-06 西安交通大学 一种超重型车床加工精度特性在机测量装置及方法
CN105051488A (zh) * 2013-03-15 2015-11-11 法罗技术股份有限公司 通过受引导的探测来在3d扫描仪中诊断多路径干扰并且消除多路径干扰
CN107436439A (zh) * 2016-05-27 2017-12-05 科沃斯机器人股份有限公司 激光测距装置及其感光芯片的安装方法
CN108489453A (zh) * 2018-02-11 2018-09-04 上海芯歌智能科技有限公司 线激光测距装置及方法
CN208110631U (zh) * 2018-05-20 2018-11-16 蔡畅 一种人脸3d图像采集装置

Similar Documents

Publication Publication Date Title
US10578724B2 (en) LIDAR optics alignment systems and methods
CN101609250B (zh) 相机摆镜摆角扫描特性测试装置
WO2016116036A1 (zh) 消杂光双光路光学定中仪
CN103063415A (zh) 一种基于莫尔条纹匹配的长焦距透镜焦距测量方法
CN110823527A (zh) 一种含有激光的多传感器光轴的校准方法
CN201983921U (zh) 一种透镜焦距及波前畸变测量装置
JPWO2019159427A1 (ja) カメラモジュール調整装置及びカメラモジュール調整方法
CN209147932U (zh) 一种激光成像测距系统
KR101416860B1 (ko) 카메라 렌즈 모듈 이물 검사 시스템
JPWO2016157291A1 (ja) 測定ヘッド及びそれを備えた偏心測定装置
CN204578635U (zh) 一种红外相机及其焦面配准设备
WO2021184163A1 (zh) 激光测量装置
KR20150114199A (ko) 자동초점거리 조절 기능을 갖는 렌즈 검사장치
KR101447857B1 (ko) 렌즈 모듈 이물 검사 시스템
CN101354308B (zh) 数字视差测量仪及测量方法
CN108168469A (zh) 一种光轴平行性检测系统及方法
CN112903248A (zh) 可实现激光远近场同时测量的单光路光学系统及方法
KR101478572B1 (ko) 줌 대물렌즈를 이용한 자동초점 시스템
CN201255687Y (zh) 数字视差测量装置
CN208537140U (zh) 一种测量远场光斑装置
CN209230530U (zh) 一种位移测量传感器
CN212111793U (zh) 激光测量装置
RU106399U1 (ru) Оптико-электронная система
CN207991482U (zh) 一种光轴平行性检测系统
CN112858226A (zh) 一种动态可视的分光计表面等离子体共振测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926195

Country of ref document: EP

Kind code of ref document: A1