WO2021182537A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2021182537A1
WO2021182537A1 PCT/JP2021/009647 JP2021009647W WO2021182537A1 WO 2021182537 A1 WO2021182537 A1 WO 2021182537A1 JP 2021009647 W JP2021009647 W JP 2021009647W WO 2021182537 A1 WO2021182537 A1 WO 2021182537A1
Authority
WO
WIPO (PCT)
Prior art keywords
pneumatic tire
rubber
tire according
compound
carbon black
Prior art date
Application number
PCT/JP2021/009647
Other languages
English (en)
French (fr)
Inventor
智江 ▲高▼田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2022507261A priority Critical patent/JPWO2021182537A1/ja
Publication of WO2021182537A1 publication Critical patent/WO2021182537A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/14Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/395Isocyanates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/41Phenol-aldehyde or phenol-ketone resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/693Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural or synthetic rubber, or derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Abstract

有機繊維コードにコーティングされる接着剤組成物に、レゾルシンが含まれず、環境への負荷が少ないことに加えて、優れた耐久性及び転がり抵抗性を有する、空気入りタイヤを提供することを目的とする。 上記課題を解決するため、本発明は、空気入りタイヤは、ポリフェノール類及びアルデヒド類を含む接着剤組成物がコーティングされた、有機繊維コードを有し、前記サイド補強ゴム及び前記ビードフィラーのうちの少なくとも1つは、ゴム成分と、充填材とを含み、動歪1%、25℃における動的貯蔵弾性率(E')が10MPa以下で且つ損失正接tanδの28℃~150℃におけるΣ値が5.5以下であることを特徴とする。

Description

空気入りタイヤ
 本発明は、空気入りタイヤに関するものである。
 従来、ポリエステル繊維等の有機繊維は、高い初期弾性率や、優れた熱時寸法安定性を有しているため、フィラメント、コード、ケーブル、コード織物、帆布等の形態で、タイヤ等のゴム物品の補強材として極めて有用であり、これらの繊維とゴムとの接着性を改良させるため、種々の接着剤組成物が提案されている。接着剤組成物として、例えば、レゾルシンや、ホルマリン、ゴムラテックス等を含むRFL(レゾルシン・ホルマリン・ラテックス)接着剤を用い、該RFL接着剤を熱硬化させることにより接着力を確保する技術が、知られている(例えば、特許文献1~3等を参照。)。
 また、接着剤組成物については、レゾルシンとホルマリンを初期縮合させたレゾルシンホルマリン樹脂を用いる技術(特許文献4、5参照)や、エポキシ樹脂でポリエステル繊維等からなるタイヤコードを前処理することにより、接着力の向上を図る技術が知られている。
 ただし、上述した接着剤組成物に一般的用いられているレゾルシンは、近年、作業環境を考慮して、使用量の削減が求められている。
 そのため、レゾルシンを含まず、環境への配慮がされた接着剤組成物や、接着方法がいくつか提案されている(例えば、特許文献6を参照。)。
 しかしながら、レゾルシンを含有しない接着剤組成物は、硬化に時間を要するため、生産性や、接着性の点でさらなる改善が求められている。
 また、接着対象の有機繊維としてポリエチレンテレフタラート(PET)繊維を用いる場合、レゾルシンを含有しない接着剤組成物の、接着性能が十分に得られないことが多く、特に改善が望まれていた。これは、熱的寸法性の良いポリエチレンテレフタレートを代表とする主鎖中にエステル結合を有する線状高分子であるポリエステル繊維材料をゴム製品の補強材として使用すると、構造的に緻密であり、また、官能基が少ないポリエステル繊維材料はこのRFL等のラテックスと水溶性フェノールを架橋する原材料を混合させて得られる接着剤組成物では、殆ど接着が得られないためである。
 また、上述した環境へ配慮した接着剤組成物の要求に加えて、タイヤの寿命を延ばす観点から、タイヤの耐久性や、転がり抵抗性に優れたタイヤの開発も望まれている。
特開昭58-2370号公報 特開昭60-92371号公報 特開昭60-96674号公報 特開昭63-249784号公報 特公昭63-61433号公報 特開2010-255153号公報
 そのため、本発明の目的は、有機繊維コードにコーティングされる接着剤組成物に、レゾルシンが含まれず、環境への負荷が少ないことに加えて、優れた耐久性及び転がり抵抗性を有する、空気入りタイヤを提供することにある。
 本発明者らは、一対のビード部からサイドウォール部を経てトレッド部に至る一枚以上のカーカスプライからなるカーカスと、前記サイドウォール部において前記カーカスのタイヤ幅方向内側に配設された一対の断面三日月状のサイド補強ゴムと、前記サイドウォール部のビードコアのタイヤ径方向外側に配設されたビードフィラーと、を具える、空気入りタイヤについて、上記目的を達成するべく検討を行った。
 その結果、有機繊維コードをコーティングする接着剤組成物中に、特定のポリフェノール類及びアルデヒド類を含有させることによって、レゾルシンを用いない場合でも高い接着力を実現できること、さらに、サイド補強ゴムやビードフィラーについて、動的貯蔵弾性率(E’)がある値以下であり且つ損失正接tanδの28℃~150℃におけるΣ値がある値以下のゴムを用いることによって、高いレベルで耐久性及び転がり抵抗性を両立できることを見出した。
 すなわち、本発明の空気入りタイヤは、一対のビード部からサイドウォール部を経てトレッド部に至る一枚以上のカーカスプライからなるカーカスと、前記サイドウォール部において前記カーカスのタイヤ幅方向内側に配設された一対の断面三日月状のサイド補強ゴムと、前記サイドウォール部のビードコアのタイヤ径方向外側に配設されたビードフィラーと、を具える、空気入りタイヤであって、
 前記空気入りタイヤは、ポリフェノール類及びアルデヒド類を含む接着剤組成物がコーティングされた、有機繊維コードを有し、
 前記サイド補強ゴム及び前記ビードフィラーのうちの少なくとも1つは、ゴム成分と、充填材とを含み、動歪1%、25℃における動的貯蔵弾性率(E’)が10MPa以下で且つ損失正接tanδの28℃~150℃におけるΣ値が5.5以下であることを特徴とする。
 上記構成により、有機繊維コードにコーティングされる接着剤組成物に、レゾルシンが含まれず、環境への負荷が少ないことに加えて、優れた耐久性及び転がり抵抗性を実現できる。
 また、本発明の空気入りタイヤでは、前記サイド補強ゴム及び前記ビードフィラーのうちの少なくとも1つが、前記ゴム成分100質量部に対して、前記充填材を55質量部以下含むことが好ましい。転がり抵抗性をより改善できるためである。
 さらに、本発明の空気入りタイヤでは、前記充填材は、カーボンブラック、シリカ及び一般式(I)
  nM・xSiO・zHO・・・・・・・・(I)
[式中,Mは、アルミニウム、マグネシウム、チタン、カルシウム及びジルコニウムから選ばれる金属、これらの金属の酸化物または水酸化物、それらの水和物、及び前記金属の炭酸塩の中から選ばれる少なくとも一種であり、n、x、y、及びzは、それぞれ1~5の整数、0~10の整数、2~5の整数、及び0~10の整数である。]で表される無機充填材、の中から選ばれる少なくとも一種であることが好ましい。耐久性をより改善できるためである。
 さらにまた、本発明の空気入りタイヤでは、前記充填材が、カーボンブラックを少なくとも含むことが好ましく、前記カーボンブラックは、窒素吸着比表面積が15~39m/gであるカーボンブラックであることがより好ましく、前記カーボンブラックは、DBP吸油量が120~180mL/100gであるカーボンブラックであることがより好ましい。耐久性及び転がり抵抗性をより高いレベルで両立できるためである。
 さらに、本発明の空気入りタイヤでは、前記ゴム成分は、変性共役ジエン系重合体を含有することが好ましい。転がり抵抗性をより改善できるためである。
 また、本発明の空気入りタイヤでは、前記接着剤組成物が、さらにゴムラテックスを含むことが好ましい。有機繊維とゴム部材とのより優れた接着性が得られるためである。
 さらにまた、本発明の空気入りタイヤでは、前記接着剤組成物が、さらにイソシアネート化合物を含むことが好ましく、該イソシアネート化合物が、(ブロックド)イソシアネート基含有芳香族化合物であることがより好ましい。有機繊維とゴム部材とのより優れた接着性が得られるためである。
 また、本発明の空気入りタイヤでは、前記ポリフェノール類は、3つ以上の水酸基を有することが好ましい。有機繊維とゴム部材とのより優れた接着性が得られるためである。
 さらに、本発明の空気入りタイヤでは前記アルデヒド類は、2つ以上のアルデヒド基を有することが好ましい。有機繊維とゴム部材とのより優れた接着性が得られるためである。
 また、本発明の空気入りタイヤでは、前記有機繊維コードが、少なくともカーカスプライ及び/又はベルト補強層に用いられることが好ましい。環境への負荷が少ないことに加えて、優れた耐久性を実現できるためである。
 さらにまた、本発明の空気入りタイヤでは、前記有機繊維コードが、2種の有機繊維からなるフィラメントを撚り合わせてなるハイブリッドコードであることが好ましく、該ハイブリッドコードを構成する2種の有機繊維が、レーヨン、リヨセル、ポリエステル、ナイロン及びポリケントンからなる群より選択されることをことがより好ましい。低速及び高温時の操縦安定性と、高速耐久性とを高いレベルで両立できるためである。
 本発明によれば、有機繊維コードにコーティングされる接着剤組成物に、レゾルシンが含まれず、環境への負荷が少ないことに加えて、優れた耐久性及び転がり抵抗性を有する、空気入りタイヤを提供することができる。
本発明の空気入りタイヤの一実施形態のタイヤ半部について、タイヤ軸方向に沿った断面である。 ゴム組成物の加硫ゴム物性におけるΣtanδ(28~150℃)を求めるための説明図である。
 以下、必要に応じて図面を参照しながら、本発明の空気入りタイヤの実施形態について説明する。
 本発明の空気入りタイヤは、図1に示すように、トレッド部1、そのトレッド部1のそれぞれの側部からタイヤ半径方向内側に延びる一対のサイドウォール部2(片側のみ図示)、及び、各サイドウォール部2のタイヤ半径方向内側に連なる一対のビード部3(片側のみ図示)からなる。
 また、図1に示す空気入りタイヤでは、一対のビード部3に埋設したビードコア6と、一対のビード部3からサイドウォール部2を経てトレッド部1に至る一枚以上のカーカスプライからなるカーカス4と、ビードコア6のタイヤ径方向外側にされたビードフィラー7と、カーカス4のクラウン域のタイヤ半径方向外側に配設したベルト5と、ベルト5のタイヤ半径方向外側に配設されて、トレッド路面を形成するトレッドゴム11とを具える。
 なお、有機繊維コードをラジアル方向に延在させてなるラジアル構造とすることができるカーカス4は、図1に示す空気入りタイヤでは、ビード部3からサイドウォール部2を経てトレッド部1までトロイド状に延びる本体部分4aに連なって、ビードコア6の周りに折り返した折り返し部分4bにより、該本体部分4aをビード部3に係留してなるものである。
 またここで、前記カーカス4のタイヤ半径方向外側に位置するベルト5は、例えば、図1に示すように、有機繊維等からなるコードを、タイヤ周方向に対して傾斜する向きに延在させてなる内側ベルト層及びその内側ベルト層のコードと交差する向きにコードを延在させてなる外側ベルト層のそれぞれをタイヤ半径方向の外側に向けて順次に配置してなるベルト層50を設けるとともに、ベルト層50のタイヤ半径方向外側に、実質的にタイヤ周方向に延びるコードからなるベルト補強層51を配置して構成することができるが、ベルト層等の構成、配設域、及び層数等は、必要に応じて適宜変更することができる。
 さらに、図1の空気入りタイヤは、カーカス4の内面に沿って配置されて、空気不透過性に優れるゴム材料等からなるインナーライナー8と、前記サイドウォール部2において、前記カーカス4のタイヤ幅方向内側に配設された一対のサイド補強ゴム9(片側のみ図示)とを具える。
 図1の示すところでは、前記サイド補強ゴム9は、タイヤ軸方向に沿う図示の断面で、タイヤ半径方向の内側及び外側のそれぞれに向けて厚みを漸減させるとともに、タイヤ軸方向の外側に向けて凸状に湾曲させてなる三日月状をなしている。
 このようなサイド補強ゴム9の配設により、パンク等によってタイヤの内圧が低下した状態でも、サイド補強ゴム9が車体重量の支持に寄与することで、ある程度の距離を安全に走行することが可能になる。
<接着剤組成物がコーティングされた有機繊維コード>
 そして、本発明の空気入りタイヤでは、ポリフェノール類及びアルデヒド類を含む接着剤組成物がコーティングされた、有機繊維コードを有する。
 カーカスプライや、ベルト等に用いられる有機繊維コードをコーティングする接着剤組成物が、特定のポリフェノール類及びアルデヒド類を含有するものから構成することで、環境への負荷を考慮してレゾルシンを用いない場合であっても、良好な接着性を実現できる。
(ポリフェノール類)
 前記接着剤組成物は、樹脂成分としてポリフェノール類を含む。接着剤組成物中にポリフェノール類を含むことで、樹脂組成物の接着性を高めることができる。
 ここで、前記ポリフェノール類については、水溶性のポリフェノール類であり、レゾルシン(レゾルシノール)以外のポリフェノールであれば限定はされず、芳香族環の数や、水酸基の数についても、適宜選択することができる。
 また、前記ポリフェノール類は、より優れた接着性を実現する観点からは、2個以上の水酸基を有することが好ましく、3つ以上の水酸基を有することがより好ましい。3つ以上の水酸基を含むことにより水分を含む接着剤組成物液により前記ポリフェノールあるいは前記ポリフェノールの縮合物は水溶することで接着剤組成物内に均一して分布できるので、より優れた接着性を実現できる。
 さらに、前記ポリフェノール類が、複数個(2個以上)の芳香環を含むポリフェノールの場合、それらの芳香環では、各々、2個又は3個の水酸基がオルト、メタ又はパラ位に存在する。
 上述した3つ以上の水酸基を有するポリフェノール類としては、例えば以下に示すポリフェノール類が挙げられる。
フロログルシノール:
Figure JPOXMLDOC01-appb-C000001
モリン(2’,4’,3,5,7-ペンタヒドロキシフラボン):
Figure JPOXMLDOC01-appb-C000002
フロログルシド(2,4,6,3,’5’-ビフェニルペントール):
Figure JPOXMLDOC01-appb-C000003
(アルデヒド類)
 前記接着剤組成物は、上述したポリフェノール類に加えて、樹脂成分としてアルデヒド類を含む。接着剤組成物中にアルデヒド類を含有することで、上述したポリフェノール類と共に高い接着性を実現できる。
 ここで、前記アルデヒド類については、特に限定はされず、要求される性能に応じて、適宜選択することができる。なお、本発明では、前記アルデヒド類が発生源であるルデヒド類の誘導体も、アルデヒド類の範囲に含まれる。
 前記アルデヒド類としては、例えば、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、アクロレイン、プロピオンアルデヒド、クロラール、ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド等のモノアルデヒドや、グリオキザール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、アジポアルデヒド等の脂肪族ジアルデヒド類、芳香族環を有するアルデヒド、ジアルデヒドデンプンなどが挙げられる。これらのアルデヒド類は、一種類を用いても、複数種を混合して用いてもよい。
 これらの中でも、前記アルデヒド類は、芳香族環を有するアルデヒド類を含有することが好ましい。より優れた接着性を得ることができるためである。
 なお、前記アルデヒド類については、ホルムアルデヒドを含まないことが好ましい。なお、本発明において「ホルムアルデヒドを含まない」とは、アルデヒド類の総質量に基づくホルムアルデヒドの質量含有量が0.5質量%未満であることを意味する。
 また、前記芳香環を有するアルデヒド類は、1分子内に、少なくとも1つの芳香環を含み、少なくとも 1つのアルデヒド基を有する芳香族アルデヒドである。前記芳香環を有するアルデヒド類は、環境への負荷が少なく、また、優れた機械的強度、電気絶縁性、耐酸性、耐水性、耐熱性等を備えた、比較的安価な樹脂を形成することができる。
 また、前記芳香族環を有するアルデヒド類は、より優れた接着性を実現する観点からは、2つ以上のアルデヒド基を有することが好ましい。前記アルデヒド類が、複数のアルデヒド基により架橋し、縮合することによって、熱硬化性樹脂の架橋度を高くすることができるため、接着性をより高めることができる。
 さらに、前記アルデヒド類が、2つ以上のアルデヒド基を有する場合、1つの芳香族環において、2つ以上のアルデヒド基が存在することがより好ましい。なお、各アルデヒド基は、1つの芳香族環において、オルト、メタ又はパラの位置に存在することができる。
 このようなアルデヒド類としては、例えば、1,2-ベンゼンジカルボキサルデヒド、1,3-ベンゼンジカルボキサルデヒド、1,4-ベンゼンジカルボアルデヒド1,4-ベンゼンジカルボアルデヒド、2-ヒドロキシベンゼン-1,3,5-トリカルボアルデヒド、これらの化合物の混合物等が挙げられる。
 これらの中でも、より優れた接着性を実現できる観点から、前記芳香族環を有するアルデヒド類として、1,4-ベンゼンジカルボアルデヒドを少なくとも用いることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 また、前記芳香族環を有するアルデヒド類については、ベンゼン環を有するものだけでなく、複素芳香族化合物も含まれる。
 前記複素芳香族化合物であるアルデヒド類としては、例えば、以下に示すようなフラン環を有するアルデヒド類が挙げられる。
Figure JPOXMLDOC01-appb-C000005
(式中、Xは、Oを含み;Rは、-Hまたは-CHOを示す。)
 上記のフラン環を有するアルデヒド類として、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000006
(記式中、Rは、-Hまたは-CHO;R1、R2及びR3は、それぞれ、アルキル、アリール、アリールアルキル、アルキルアリール又はシクロアルキル基を示す。)
 なお、前記接着剤組成物では、前記ポリフェノール類及び前記アルデヒド類が縮合された状態であり、前記ポリフェノール類と前記芳香環を有するアルデヒド類との質量比(芳香環を有するアルデヒド類の含有量/ポリフェノール類の含有量)は、0.1以上、3以下であることが好ましく、0.25以上、2.5以下であることがより好ましい。前記ポリフェノール類と前記芳香環を有するアルデヒド類との間では、縮合反応が起こるが、その生成物である樹脂の硬度、接着性がより適したものになるからである。 
 また、前記接着剤組成物中の、前記ポリフェノール類及び前記芳香族環を有するアルデヒド類の合計含有量は、3~30質量%であることが好ましく、5~25質量%であることがより好ましい。作業性等を悪化させることなく、より優れた接着性を確保できるためである。
 なお、前記ポリフェノール類及び前記芳香族環を有するアルデヒド類の質量比並びに合計含有量は、乾燥物の質量(固形分比)である。
(イソシアネート化合物)
 前記接着剤組成物は、上述したポリフェノール類及びアルデヒド類に加えて、イソシアネート化合物をさらに含むことが好ましい。ポリフェノール類及びアルデヒド類との相乗効果によって、接着剤組成物の接着性を大きく高めることができる。
 ここで、前記イソシアネート化合物は、接着剤組成物の被着体である樹脂材料(例えば、ポリフェノール類及びアルデヒド類を縮合させたフェノール/アルデヒド樹脂) への接着を促進させる作用を有する化合物であって、極性官能基としてイソシアネート基を有する化合物である。
 前記イソシアネート化合物の種類については、特に限定はされないが、接着性をより向上できる観点から、(ブロックド)イソシアネート基含有芳香族化合物であることが好ましい。本発明の接着剤組成物中に、前記イソシアネート化合物を含ませると、被着体繊維と接着剤組成物の界面近傍の位置にブロックド)イソシアネート基含有芳香族が分布し、接着促進効果が得られる作用が得られ、この作用効果により、有機コードとの接着をより高度化することができる。
 前記(ブロックド)イソシアネート基含有芳香族化合物は、(ブロックド)イソシアネート基を有する芳香族化合物である。また、「(ブロックド)イソシアネート基」とは、ブロックドイソシアネート基又はイソシアネート基を意味し、イソシアネート基の他、イソシアネート基に対するブロック化剤と反応して生じたブロックドイソシアネート基、イソシアネート基に対するブロック化剤と未反応のイソシアネート基、又はブロックドイソシアネート基のブロック化剤が解離して生じたイソシアネート基等を含む。
 さらに、前記(ブロックド)イソシアネート基含有芳香族化合物は、芳香族類がアルキレン鎖で結合された分子構造を含むのが好ましく、芳香族類がメチレン結合した分子構造を含むことがより好ましい。芳香族類がアルキレン鎖で結合された分子構造としては、例えば、ジフェニルメタンジイソシアネート、ポリフェニレンポリメチレンポリイソシアネート、又はフェノール類とホルムアルデヒドとの縮合物等にみられる分子構造が挙げられる。
 なお、前記(ブロックド)イソシアネート基含有芳香族化合物としては、例えば、芳香族ポリイソシアネートと熱解離性ブロック化剤を含む化合物、ジフェニルメタンジイソシアネート又は芳香族ポリイソシアネートを熱解離性ブロック化剤でブロック化した成分を含む水分散性化合物、水性ウレタン化合物等が挙げられる。
 前記芳香族ポリイソシアネートと熱解離性ブロック化剤とを含む化合物としては、ジフェニルメタンジイソシアネートと公知のイソシアネートブロック化剤を含むブロックドイソシアネート化合物等が好適に挙げられる。上記ジフェニルメタンジイソシアネート又は芳香族ポリイソシアネートを熱解離性ブロック化剤でブロック化した成分を含む水分散性化合物としては、ジフェニルメタンジイソシアネート又はポリメチレンポリフェニルポリイソシアネートを、イソシアネート基をブロックする公知のブロック化剤でブロックした反応生成物が挙げられる。具体的には、エラストロンBN69(第一工業製薬(株)製)、エラストロンBN77(第一工業製薬(株)製)やメイカネートTP-10(明成化学工業(株)製)等の市販のブロックドポリイソシアネート化合物を用いることができる。
 前記水性ウレタン化合物は、芳香族類がアルキレン鎖で結合された分子構造、好ましくは芳香族類がメチレン結合した分子構造を含有する有機ポリイソシアネート化合物(α)と、複数の活性水素を有する化合物(β)と、イソシアネート基に対する熱解離性ブロック化剤(γ)とを反応させて得られる。また、水性ウレタン化合物(F)は、その可撓性のある分子構造から、接着改良剤としての作用のみならず、可撓性のある架橋剤として接着剤の高温時流動化を抑止する作用も有する。
 なお、「水性」とは、水溶性または水分散性であることを示し、「水溶性」とは必ずしも完全な水溶性を意味するのではなく、部分的に水溶性のもの、あるいは接着剤組成物の水溶液中で相分離しないものを意味する。
 ここで、前記水性ウレタン化合物(F)としては、例えば、下記一般式(I):
Figure JPOXMLDOC01-appb-C000007
(式中、Aは芳香族類がアルキレン鎖で結合された分子構造を含有する有機ポリイソシアネート化合物(α)の活性水素が脱離した残基を示し、Yはイソシアネート基に対する熱解離性ブロック化剤(γ)の活性水素が脱離した残基を示し、Zは化合物(δ)の活性水素が脱離した残基を示し、Xは複数の活性水素を有する化合物(β)の活性水素が脱離した残基であり、nは2~4の整数であり、p+mは2~4の整数(m≧0.25)である。)で表される水性ウレタン化合物が好ましい。
 なお、前記芳香族類がアルキレン鎖で結合された分子構造を含有する有機ポリイソシアネート化合物(α)としては、メチレンジフェニルポリイソシアネート、ポリメチレンポリフェニルポリイソシアネート等が挙げられる。
 また、前記複数の活性水素を有する化合物(β)は、好ましくは2~4個の活性水素を有し、平均分子量が5,000以下の化合物である。かかる化合物(β)としては、(i)2~4個の水酸基を有する多価アルコール類、(ii)2~4個の第一級及び/又は第二級アミノ基を有する多価アミン類、(iii)2~4個の第一級及び/又は第二級アミノ基と水酸基を有するアミノアルコール類、(iv)2~4個の水酸基を有するポリエステルポリオール類、(v)2~4個の水酸基を有するポリブタジエンポリオール類及びそれらと他のビニルモノマーとの共重合体、(vi)2~4個の水酸基を有するポリクロロプレンポリオール類及びそれらと他のビニルモノマーとの共重合体、(vii)2~4個の水酸基を有するポリエーテルポリオール類であって、多価アミン、多価フェノール及びアミノアルコール類のC2~C4のアルキレンオキサイド重付加物、C3以上の多価アルコール類のC2~C4のアルキレンオキサイド重付加物、C2~C4のアルキレンオキサイド共重合物、又はC3~C4のアルキレンオキサイド重合物等が挙げられる。
 さらに、前記イソシアネート基に対する熱解離性ブロック化剤(γ)は、熱処理によりイソシアネート基を遊離することが可能な化合物であり、公知のイソシアネートブロック化剤が挙げられる。
 さらにまた、前記化合物(δ)は、少なくとも1つの活性水素とアニオン性及び/又は非イオン性の親水性基を有する化合物である。少なくとも1つの活性水素とアニオン性の親水基を有する化合物としては、例えば、タウリン、N-メチルタウリン、N-ブチルタウリン、スルファニル酸等のアミノスルホン酸類、グリシン、アラニン等のアミノカルボン酸類等が挙げられる。一方、少なくとも1つの活性水素と非イオン性の親水基を有する化合物としては、例えば、親水性ポリエーテル鎖を有する化合物類が挙げられる。
 また、前記接着剤組成物における、前記イソシアネート化合物の含有量は、特に限定はされないが、より確実に優れた接着性を確保する観点から、5~65質量%の範囲であることが好ましく、10~45質量%であることがより好ましい。
 なお、前記イソシアネート化合物の含有量は、乾燥物の質量(固形分比)である。
(ゴムラテックス)
 前記接着剤組成物は、上述したポリフェノール類、アルデヒド類及びイソシアネート化合物に加えて、実質的にはゴムラテックスをさらに含むことができる。ゴム部材との接着性をより高めることができるためである。
 ここで、前記ゴムラテックスについては、特に限定はされず、天然ゴム(NR)の他、ポリイソプレンゴム(IR)、スチレン-ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、エチレン-プロピレン-ジエンゴム(EPDM)、クロロプレンゴム(CR)、ハロゲン化ブチルゴム、アクリロニリトル-ブタジエンゴム(NBR)、ビニルピリジン-スチレン-ブタジエン共重合体ゴム(Vp)等の合成ゴムを用いることができる。これらのゴム成分は、一種単独で用いてもよいし、二種以上をブレンドして用いてもよい。
 また、前記ゴムラテックスについては、前記イソシアネート化合物を配合する前に、前記フェノール類及び前記アルデヒド類と混合させることが好ましい。
 さらに、前記接着剤組成物中の前記ゴムラテックスの含有量は、20~70質量%であることが好ましく、25~60質量%であることがより好ましい。なお、前記ゴムラテックスの含有量は、乾燥物の質量(固形分比)である。
 なお、前記有機繊維コード用接着剤組成物の製造方法は、特に限定はされないが、例えば、前記ポリフェノール類、前記アルデヒド類、前記ゴムラテックス等の原材料を混合し、熟成する方法、又は、前記ポリフェノール類と前記アルデヒド類とを混合して熟成した後に、前記ゴムラテックスをさらに加えて熟成する方法、等が挙げられる。また、前記イソシアネート化合物を含む場合には、前記ゴムラテックスを加え、熟成した後に、イソシアネート化合物を加えることができる。
 なお、前記多環芳香族炭化水素、前記アルデヒド類、前記ゴムラテックス及び前記イソシアネート化合物の構成や含有量等については、上述した前記接着剤組成物の中で説明した内容と同様である。
(ゴム-有機繊維コード複合体)
 ここで、本発明の空気入りタイヤでは、前記接着剤組成物がコーティングされた有機繊維コードを有しており、前記接着剤組成物がコーティングされた有機繊維コードは、コーティングゴム等のゴム部材と接着し、ゴム-有機繊維コード複合体を形成している。
 得られたゴム-有機繊維コード複合体は、前記接着剤組成物を用いているため、環境への負荷が小さい。
 ここで、本発明の空気入りタイヤにおいて、前記ゴム-有機繊維コード複合体は、例えば、図1に示すように、前記カーカスプライ4、前記ベルト層50、前記ベルト補強層51、フリッパー等のベルト周り補強層(図示せず)等として用いることが可能である。
 これらの中でも、前記ゴム-有機繊維コード複合体は、カーカスプライ及び/又はベルト補強層に用いられることが好ましい。前記接着剤組成物がコーティングされた有機繊維コードの環境への負荷低減や、有機繊維とゴム部材との優れた接着性等を、より効果的に発揮できるためである。
 なお、前記ゴム-有機繊維コード複合体において、前記接着剤組成物は、前記有機繊維コードの少なくとも一部を覆っていればよいが、ゴムと有機繊維コードとの接着性をより向上できる点からは、前記接着剤組成物が前記有機繊維コードの全面にコーティングされていることが好ましい。
 また、前記有機繊維コードの材料については、特に限定はされず、用途によって適宜選択することができる。例えば、ポリエステル、6-ナイロン、6,6-ナイロン、4,6-ナイロン等の脂肪族ポリアミド繊維コード、ポリケトン繊維コード、パラフェニレンテレフタルアミドに代表される芳香族ポリアミド繊維コードに代表される合成樹脂繊維材料に使用することができる。
 また、前記有機繊維コードについては、特に限定されず、モノフィラメント、又は、複数の単繊維フィラメントを撚り合わせてなる有機繊維コードを用いることができる。なお、低速及び高温時の操縦安定性と、高速耐久性とを高いレベルで両立する観点から、2種の有機繊維からなるフィラメントを撚り合わせてなるハイブリッドコードであることが好ましい。
 さらに、高速耐久性をより向上させる観点からは、前記ハイブリッドコードは、177℃における熱収縮応力(cN/dtex)が0.20cN/dtex以上であることが好ましく、0.25~0.40cN/dtexの範囲内であることがより好ましい。
 さらにまた、低速及び高温時の操縦安定性をより向上させる観点からは、前記ハイブリッドコードは、25℃における1%歪時の引張弾性率が60cN/dtex以下、特には35~50cN/dtexであることが好ましく、25℃における3%歪時の引張弾性率が30cN/dtex以上、特には45~70cN/dtexであることが好ましい。 
 前記ハイブリッドコードに用いる2種の有機繊維としては、特に制限されるものではないが、剛性の高い有機繊維として、レーヨン、リヨセルなどを挙げることができ、熱収縮率の高い有機繊維として、ポリエステル、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリトリメチレンテレフタレート(PTT)等、ナイロン、ポリケトン(PK)等を挙げることができる。より好適には、レーヨン又はリヨセルと、ナイロンとの組み合わせを用いることができる。
 なお、これら有機繊維を用いたハイブリッドコードの熱収縮応力及び引張弾性率を調整する方法としては、ディップ処理時におけるテンションを制御する方法が挙げられ、例えば、高いテンションを掛けながらディップ処理を行うことで、コードの熱収縮応力の値を大きくすることができる。すなわち、各有機繊維において固有の物性値範囲はあるものの、ディップ処理条件を制御することにより、その範囲内で物性値を調整して、所望の物性を有するハイブリッドコードを得ることができる。
<サイド補強ゴム、ビードフィラー>
 本発明の空気入りタイヤでは、前記サイド補強ゴム9及び前記ビードフィラー7のうちの少なくとも1つは、ゴム成分と、充填材とを含み、動歪1%、25℃における動的貯蔵弾性率(E’)が10MPa以下で且つ損失正接tanδの28℃~150℃におけるΣ値が5.5以下である。
 サイド補強ゴム9やビードフィラー7について、動的貯蔵弾性率(E’)がある値以下であり且つ損失正接tanδの28℃~150℃におけるΣ値がある値以下のゴムを用いることによって、高いレベルで耐久性及び転がり抵抗性を両立できる。
 なお、前記サイド補強ゴム9及び前記ビードフィラー7のうちの少なくとも1つが、ゴム成分及び充填材とを含み、動歪1%、25℃における動的貯蔵弾性率(E’)が10MPa以下で且つ損失正接tanδの28℃~150℃におけるΣ値が5.5以下となればよいが、より高いレベルで耐久性及び転がり抵抗性を両立できる観点からは、前記サイド補強ゴム9及び前記ビードフィラー7のいずれもが、上述の条件を満たすことが好ましい。
(ゴム成分)
 前記サイド補強ゴム9及び/又は前記ビードフィラー7に含まれるゴム成分としては、特に限定はされないが、共役ジエン系重合体を変性した変性共役ジエン系重合体を含有することが好ましく、アミン変性したアミン変性共役ジエン系重合体を含有することがより好ましい。
 また、前記ゴム成分は、このような変性共役ジエン系重合体を30質量%以上、好ましくは50質量%以上の割合で含むものを用いることができる。前記ゴム成分が前記変性共役ジエン系重合体を30質量%以上含むことにより、得られたゴムは低発熱化し、補強ゴムのゲージを薄くすることができランフラット走行耐久性を損なうことなく、転がり抵抗性を改善できる。
 前記変性共役ジエン系重合体としては、分子内に、変性用官能基として、スズ原子、窒素原子及び珪素原子の少なくとも1つを含んでいる。
 前記分子中にスズ原子の少なくともひとつを含む化合物が、四塩化スズ、トリブチルスズクロリド、ジオクチルスズジクロリド、ジブチルスズジクロリド及び塩化トリフェニルスズが好ましく挙げられる。
 前記分子中に窒素原子の少なくともひとつを含む化合物が、イソシアネート系化合物、アミノベンゾフェノン化合物、尿素誘導体、4-ジメチルアミノベンジリデンアニリン、ジメチルイミダゾリジノン及びN-メチルピロリドン等が挙げられる。
 変性共役ジエン系化合物としては、アミン変性共役ジエン系重合体が好ましく、分子内に、変性用官能基として、アミン系官能基であるプロトン性アミノ基及び/又は脱離可能基で保護されたアミノ基を導入したものが好ましく、さらにケイ素原子を含む官能基を導入したものが好ましく挙げられる。
 前記ケイ素原子を含む官能基としては、ケイ素原子にヒドロカルビルオキシ基及び/又はヒドロキシ基が結合してなるシラン基を挙げることができる。
 このような変性用官能基は、共役ジエン系重合体の重合開始末端、側鎖及び重合活性末端のいずれかに存在すればよいが、好ましくは重合末端、より好ましくは同一重合活性末端に、プロトン性アミノ基及び/又は脱離可能基で保護されたアミノ基と、ヒドロカルビルオキシ基及び/又はヒドロキシ基が結合したケイ素原子、特に好ましくは、1又は2個のヒドロカルビルオキシ基及び/又はヒドロキシ基が結合したケイ素原子とを有するものである。
 前記プロトン性アミノ基としては、一級アミノ基、二級アミノ基及びそれらの塩の中か
ら選ばれる少なくとも1種を挙げることができる。
 一方、脱離可能基で保護されたアミノ基としては、例えばN,N-ビス(トリヒドロカルビルシリル)アミノ基及びN-(トリヒドロカルビルシリル)イミノ基を挙げることができ、好ましくはヒドロカルビル基が炭素数1~10のアルキル基であるトリアルキルシリル基を挙げることができ、特に好ましくはトリメチルシリル基を挙げることができる。 脱離可能基で保護された一級アミノ基(保護化一級アミノ基ともいう。)の例としては、N,N-ビス(トリメチルシリル)アミノ基を挙げることができ、脱離可能基で保護された二級アミノ基の例としてはN-(トリメチルシリル)イミノ基を挙げることができる。このN-(トリメチルシリル)イミノ基含有基としては、非環状イミン残基、及び環状イミン残基のいずれであってもよい。
 前記したアミン変性共役ジエン系重合体のうち、一級アミノ基で変性された一級アミン
変性共役ジエン系重合体としては、共役ジエン系重合体の活性末端に、保護化一級アミン
化合物を反応させて得られた、保護化一級アミノ基で変性された一級アミン変性共役ジエ
ン系重合体が好適である。
 変性に用いる共役ジエン系重合体は、共役ジエン化合物単独重合体であってもよく、共役ジエン化合物と芳香族ビニル化合物との共重合体であってもよい。
 前記共役ジエン化合物としては、例えば1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1,3-ヘキサジエン等が挙げられる。これらは単独で用いてもよく、二種以上組み合わせて用いてもよいが、これらの中で、1,3-ブタジエンが特に好ましい。
 また、共役ジエン化合物との共重合に用いられる芳香族ビニル化合物としては、例えばスチレン、α-メチルスチレン、1-ビニルナフタレン、3-ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4-シクロへキシルスチレン、2,4,6-トリメチルスチレン等が挙げられる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよいが、これらの中で、スチレンが特に好ましい。
 また、共役ジエン化合物と非共役オレフィン化合物の共重合体や、共役ジエン化合物と非共役オレフィン化合物と芳香族ビニル化合物との共重合体であってもよく、具体的には、エチレン-ブタジエン共重合体や、エチレン-スチレン-ブタジエン共重合体等であってもよい。
 前記共役ジエン系重合体としては、ポリブタジエン又はスチレン-ブタジエン共重合体が好ましく、ポリブタジエンが特に好ましい。
 前記共役ジエン系重合体の活性末端に、保護化一級アミンを反応させて変性させるには、該共役ジエン系重合体は、少なくとも10%のポリマー鎖がリビング性又は擬似リビング性を有するものが好ましい。このようなリビング性を有する重合反応としては、有機アルカリ金属化合物を開始剤とし、有機溶媒中で共役ジエン化合物単独、又は共役ジエン化合物と芳香族ビニル化合物とをアニオン重合させる反応か、あるいは有機溶媒中でランタン系列希土類元素化合物を含む触媒による共役ジエン化合物単独、又は共役ジエン化合物と芳香族ビニル化合物とを配位アニオン重合させる反応が挙げられる。前者は、後者に比較して共役ジエン部のビニル結合含有量の高いものを得ることができるので好ましい。ビニル結合量を高くすることによって耐熱性を向上させることができる。
 上述のアニオン重合の開始剤として用いられる有機アルカリ金属化合物としては、有機リチウム化合物が好ましい。有機リチウム化合物としては、特に制限はないが、ヒドロカルビルリチウム及びリチウムアミド化合物が好ましく用いられ、前者のヒドロカルビルリチウムを用いる場合には、重合開始末端にヒドロカルビル基を有し、かつ他方の末端が重合活性部位である共役ジエン系重合体が得られる。また、後者のリチウムアミド化合物を用いる場合には、重合開始末端に窒素含有基を有し、他方の末端が重合活性部位である共役ジエン系重合体が得られる。
 前記ヒドロカルビルリチウムとしては、炭素数2~20のヒドロカルビル基を有するものが好ましく、例えばエチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチルフェニルリチウム、4-フェニルブチルリチウム、シクロへキシルリチウム、シクロベンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物等が挙げられるが、これらの中で、特にn-ブチルリチウムが好適である。
  一方、リチウムアミド化合物としては、例えばリチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジへプチルアミド、リチウムジへキシルアミド、リチウムジオクチルアミド、リチウムジ-2-エチルへキシルアミド、リチウムジデシルアミド、リチウム-N-メチルピベラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミド等が挙げられる。これらの中で、カーボンブラックに対する相互作用効果及び重合開始能の点から、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド等の環状リチウムアミドが好ましく、特にリチウムヘキサメチレンイミド及びリチウムピロリジドが好適である。
 これらのリチウムアミド化合物は、一般に、二級アミンとリチウム化合物とから、予め調製したものを重合に使用することができるが、重合系中(in-Situ)で調製することもできる。また、この重合開始剤の使用量は、好ましくは単量体100g当たり、0.2~20ミリモルの範囲で選定される。
 前記有機リチウム化合物を重合開始剤として用い、アニオン重合によって共役ジエン系重合体を製造する方法としては、特に制限はなく、従来公知の方法を用いることができる。
 具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物等の炭化水素系溶剤中において、共役ジエン化合物又は共役ジエン化合物と芳香族ビニル化合物を、前記リチウム化合物を重合開始剤として、所望により、用いられるランダマイザーの存在下にアニオン重合させることにより、目的の活性末端を有する共役ジエン系重合体が得られる。
 また、有機リチウム化合物を重合開始剤として用いた場合には、前述のランタン系列希土類元素化合物を含む触媒を用いた場合に比べ、活性末端を有する共役ジエン系重合体のみならず、活性末端を有する共役ジエン化合物と芳香族ビニル化合物の共重合体も効率よく得ることができる。
 前記炭化水素系溶剤としては、炭素数3~8のものが好ましく、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-ヘキサン、シクロヘキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、2-ペンテン、1-へキセン、2-へキセン、ベンゼン、トルエン、キシレン、エチルベンゼン等を挙げることができる。これらは単独で用いてもよく、二種以上を混合して用いてもよい。
 また、溶媒中の単量体濃度は、好ましくは5~50質量%、より好ましくは10~30質量%である。尚、共役ジエン化合物と芳香族ビニル化合物を用いて共重合を行う場合、仕込み単量体混合物中の芳香族ビニル化合物の含量は55質量%以下の範囲が好ましい。
 また、所望により用いられるランダマイザーとは、共役ジエン系重合体のミクロ構造の制御、例えばブタジエン-スチレン共重合体におけるブタジエン部分の1,2結合、イソプレン重合体における3,4結合の増加等、あるいは共役ジエン化合物一芳香族ビニル化合物共重合体における単量体単位の組成分布の制御、例えばブタジエンースチレン共重合体におけるブタジエン単位、スチレン単位のランダム化等の作用を有する化合物のことである。このランダマイザーとしては、特に制限はなく、従来ランダマイザーとして一般に使用されている公知の化合物の中から任意のものを適宜選択して用いることができる。具体的には、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、オキソラニルプロパンオリゴマー類[特に2,2-ビス(2-テトラヒドロフリル)-プロパンを含む物等]、トリエチルアミン、ピリジン、N-メチルモルホリン、N,N,N’,N’-テトラメチルエチレンジアミン、1,2-ジピぺリジノエタン等のエーテル類及び三級アミン類等を挙げることができる。また、カリウムtert-アミレート、カリウムtert-ブトキシド等のカリウム塩類、ナトリウムtert-アミレート等のナトリウム塩類も用いることができる。
 これらのランダマイザーは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、その使用量は、リチウム化合物1モル当たり、好ましくは0.01~1000モル当量の範囲で選択される。
 この重合反応における温度は、好ましくは0~150℃、より好ましくは20~130℃の範囲で選定される。重合反応は、発生圧力下で行うことができるが、通常は単量体を実質的に液相に保つに十分な圧力で操作することが望ましい。すなわち、圧力は重合される個々の物質や、用いる重合媒体及び重合温度にもよるが、所望ならばより高い圧力を用いることができ、このような圧力は重合反応に関して不活性なガスで反応器を加圧する等の適当な方法で得られる。
 上述のように得られた活性末端を有する共役ジエン系重合体の活性末端に、変性剤として、例えば、スズ原子は、四塩化スズ、トリブチルスズクロリド、ジオクチルスズジクロリド、ジブチルスズジクロリド、塩化トリフェニルスズなどのスズ化合物によって導入できる。 窒素原子は、2,4-トリレンジイソシアナート、ジイソシアナートジフェニルメタンなどのイソシアネート系化合物;4,4'ビス(ジエチルアミノ)-ベンゾフェノン、4-(ジメチルアミノ)ベンゾフェノンなどのアミノベンゾフェノン化合物、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロピリミジンなどの尿素誘導体、その他、4-ジメチルアミノベンジリデンアニリン、ジメチルイミダゾリジノン、N-メチルピロリドンなどの窒素含有化合物によって導入することができる。 
 珪素原子は、アルコキシシランやアミノアルコキシシランなどの末端変性剤によって導入することができる。 具体的には、エポキシ基含有アルコキシシラン化合物としては、例えば2-グリシドキシエチルトリメトキシシラン、2-グリシドキシエチルトリエトキリシシラン、(2-グリシドキシエチル)メチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、(3-グリシドキシプロピル)メチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチル(メチル)ジメトキシシランなどが挙げられる。
 好ましい変性剤として、保護化一級アミン化合物を反応させることにより、一級アミン変性共役ジエン系重合体を製造することができる。上記保護化一級アミン化合物としては、保護化一級アミノ基を有するアルコキシシラン化合物が好適である。
 当該変性剤として用いられる保護化一級アミノ基を有するアルコキシシラン化合物としては、例えばN,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、1-トリメチルシリル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン、N,N-ビス(トリメチルシリル)アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルメチルジメトキシシラン及びN,N-ビス(トリメチルシリル)アミノエチルメチルジエトキシシラン等を挙げることができ、好ましくは、N,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン又は1-トリメチルシリル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタンである。
 また、変性剤としては、N-メチル-N-トリメチルシリルアミノプロピル(メチル)ジメトキシシラン、N-メチル-N-トリメチルシリルアミノプロピル(メチル)ジエトキシシラン、N-トリメチルシリル(ヘキサメチレンイミン-2-イル)プロピル(メチル)ジメトキシシラン、N-トリメチルシリル(ヘキサメチレンイミン-2-イル)プロピル(メチル)ジエトキシシラン、N-トリメチルシリル(ピロリジン-2-イル)プロピル(メチル)ジメトキシシラン、N-トリメチルシリル(ピロリジン-2-イル)プロピル(メチル)ジエトキシシラン、N-トリメチルシリル(ピペリジン-2-イル)プロピル(メチル)ジメトキシシラン、N-トリメチルシリル(ピペリジン-2-イル)プロピル(メチル)ジエトキシシラン、N-トリメチルシリル(イミダゾール-2-イル)プロピル(メチル)ジメトキシシラン、N-トリメチルシリル(イミダゾール-2-イル)プロピル(メチル)ジエトキシシラン、N-トリメチルシリル(4,5-ジヒドロイミダゾール-5-イル)プロピル(メチル)ジメトキシシラン、N-トリメチルシリル(4,5-ジヒドロイミダゾール-5-イル)プロピル(メチル)ジエトキシシランなどの保護化二級アミノ基を有するアルコキシシラン化合物;N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1-メチルエチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-エチリデン-3-(トリエトキシシリル)-1-プロパンアミン、N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(4-N,N-ジメチルアミノベンジリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(シクロヘキシリデン)-3-(トリエトキシシリル)-1-プロパンアミンなどのイミノ基を有するアルコキシシラン化合物;3-ジメチルアミノプロピル(トリエトキシ)シラン、3-ジメチルアミノプロピル(トリメトキシ)シラン、3-ジエチルアミノプロピル(トリエトキシ)シラン、3-ジエチルアミノプロピル(トリメトキシ)シラン、2-ジメチルアミノエチル(トリエトキシ)シラン、2-ジメチルアミノエチル(トリメトキシ)シラン、3-ジメチルアミノプロピル(ジエトキシ)メチルシラン、3-ジブチルアミノプロピル(トリエトキシ)シランなどのアミノ基を有するアルコキシシラン化合物なども挙げられる。
 これらの変性剤は、一種単独で用いてもよく、二種以上組み合わせて用いてもよい。またこの変性剤は部分縮合物であってもよい。
 ここで、部分縮合物とは、変性剤のSiORの一部(全部ではない)が縮合によりSiOSi結合したものをいう。
 前記変性剤による変性反応において、該変性剤の使用量は、好ましくは0.5~200mmol/kg・共役ジエン系重合体である。同使用量は、さらに好ましくは1~100mmol/kg・共役ジエン系重合体であり、特に好ましくは2~50mmol/kg・共役ジエン系重合体である。ここで、共役ジエン系重合体とは、製造時又は製造後、添加される老化防止剤等の添加剤を含まないポリマーのみの質量を意味する。変性剤の使用量を前記範囲にすることによって、充填材、特にカーボンブラックの分散性に優れ、加硫後の耐破壊特性、低発熱性が改良される。
 なお、前記変性剤の添加方法は、特に制限されず、一括して添加する方法、分割して添加する方法、あるいは、連続的に添加する方法等が挙げられるが、一括して添加する方法が好ましい。
 また、変性剤は、重合開始末端や重合終了末端以外に重合体主鎖や側鎖のいずれに結合させることもできるが、重合体末端からエネルギー消失を抑制して低発熱性を改良しうる点から、重合開始末端あるいは重合終了末端に導入されていることが好ましい。
 また、前記変性剤として用いる保護化一級アミノ基を有するアルコキシシラン化合物が関与する縮合反応を促進するために、縮合促進剤を用いることが好ましい。
 このような縮合促進剤としては、三級アミノ基を含有する化合物、又は周期律表(長周期型)の3族、4族、5族、12族、13族、14族及び15族のうちのいずれかの属する元素を一種以上含有する有機化合物を用いることができる。さらに縮合促進剤として、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、アルミニウム(Al)及びスズ(Sn)からなる群から選択される少なくとも一種以上の金属を含有する、アルコキシド、カルボン酸塩、又はアセチルアセトナート錯塩であることが好ましい。
 ここで用いる縮合促進剤は、前記変性反応前に添加することもできるが、変性反応の途中及び又は終了後に変性反応系に添加することが好ましい。変性反応前に添加した場合、活性末端との直接反応が起こり、活性末端に保護された一級アミノ基を有するヒドロカルビロキシ基が導入されない場合がある。
 縮合促進剤の添加時期としては、通常、変性反応開始5分~5時間後、好ましくは変性反応開始15分~1時間後である。
 前記縮合促進剤としては、具体的には、テトラメトキシチタニウム、テトラエトキシチタニウム、テトラ-n-プロポキシチタニウム、テトライソプロポキシチタニウム、テトラ-n-ブトキシチタニウム、テトラ-n-ブトキシチタニウムオリゴマー、テトラ-sec-ブトキシチタニウム、テトラ-tert-ブトキシチタニウム、テトラ(2-エチルヘキシル)チタニウム、ビス(オクタンジオレート)ビス(2-エチルヘキシル)チタニウム、テトラ(オクタンジオレート)チタニウム、チタニウムラクテート、チタニウムジプロポキシビス(トリエタノールアミネート)、チタニウムジブトキシビス(トリエタノールアミネート)、チタニウムトリブトキシステアレート、チタニウムトリプロポキシステアレート、チタニウムエチルヘキシルジオレート、チタニウムトリプロポキシアセチルアセトネート、チタニウムジプロポキシビス(アセチルアセトネート)、チタニウムトリプロポキシエチルアセトアセテート、チタニウムプロポキシアセチルアセトネートビス(エチルアセトアセテート)、チタニウムトリブトキシアセチルアセトネート、チタニウムジブトキシビス(アセチルアセトネート)、チタニウムトリブトキシエチルアセトアセテート、チタニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、チタニウムテトラキス(アセチルアセトネート)、チタニウムジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2-エチルヘキサノエート)チタニウムオキサイド、ビス(ラウレート)チタニウムオキサイド、ビス(ナフテネート)チタニウムオキサイド、ビス(ステアレート)チタニウムオキサイド、ビス(オレエート)チタニウムオキサイド、ビス(リノレート)チタニウムオキサイド、テトラキス(2-エチルヘキサノエート)チタニウム、テトラキス(ラウレート)チタニウム、テトラキス(ナフテネート)チタニウム、テトラキス(ステアレート)チタニウム、テトラキス(オレエート)チタニウム、テトラキス(リノレート)チタニウム等のチタニウムを含む化合物を挙げることができる。
 また、前記縮合促進剤としては、例えば、トリス(2-エチルヘキサノエート)ビスマス、トリス(ラウレート)ビスマス、トリス(ナフテネート)ビスマス、トリス(ステアレート)ビスマス、トリス(オレエート)ビスマス、トリス(リノレート)ビスマス、テトラエトキシジルコニウム、テトラ-n-プロポキシジルコニウム、テトライソプロポキシジルコニウム、テトラ-n-ブトキシジルコニウム、テトラ-sec-ブトキシジルコニウム、テトラ-tert-ブトキシジルコニウム、テトラ(2-エチルヘキシル)ジルコニウム、ジルコニウムトリブトキシステアレート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2-エチルヘキサノエート)ジルコニウムオキサイド、ビス(ラウレート)ジルコニウムオキサイド、ビス(ナフテネート)ジルコニウムオキサイド、ビス(ステアレート)ジルコニウムオキサイド、ビス(オレエート)ジルコニウムオキサイド、ビス(リノレート)ジルコニウムオキサイド、テトラキス(2-エチルヘキサノエート)ジルコニウム、テトラキス(ラウレート)ジルコニウム、テトラキス(ナフテネート)ジルコニウム、テトラキス(ステアレート)ジルコニウム、テトラキス(オレエート)ジルコニウム、テトラキス(リノレート)ジルコニウム等を挙げることができる。
 また、トリエトキシアルミニウム、トリ-n-プロポキシアルミニウム、トリイソプロポキシアルミニウム、トリ-n-ブトキシアルミニウム、トリ-sec-ブトキシアルミニウム、トリ-tert-ブトキシアルミニウム、トリ(2-1エチルヘキシル)アルミニウム、アルミニウムジブトキシステアレート、アルミニウムジブトキシアセチルアセトネート、アルミニウムブトキシビス(アセチルアセトネート)、アルミニウムジブトキシエチルアセトアセテート、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、トリス(2-エチルヘキサノエート)アルミニウム、トリス(ラウレート)アルミニウム、トリス(ナフテネート)アルミニウム、トリス(ステアレート)アルミニウム、トリス(オレエート)アルミニウム、トリス(リノレート)アルミニウム等を挙げることができる。
 上述の縮合促進剤の内、チタン化合物が好ましく、チタン金属のアルコキシド、チタン金属のカルボン酸塩、又はチタン金属のアセチルアセトナート錯塩が特に好ましい。
 この縮合促進剤の使用量としては、前記化合物のモル数が、反応系内に存在するヒドロカルビロキシ基総量に対するモル比として、0.1~10となることが好まく、0.5~5が特に好ましい。縮合促進剤の使用量を前記範囲にすることによって縮合反応が効率よく進行する。
 前記縮合反応は、上述の縮合促進剤と、水蒸気又は水の存在下で進行する。水蒸気の存在下の場合として、スチームストリッピングによる脱溶媒処理が挙げられ、スチームストリッピング中に縮合反応が進行する。
 また、縮合反応を水溶液中で行ってもよく、縮合反応温度は85~180℃が好ましく、さらに好ましくは100~170℃、特に好ましくは110~150℃である。
 縮合反応時の温度を前記範囲にすることによって、縮合反応を効率よく進行完結することができ、得られる変性共役ジエン系重合体の経時変化によるポリマーの老化反応等による品質の低下等を抑えることができる。
 なお、縮合反応時間は、通常、5分~10時間、好ましくは15分~5時間程度である。縮合反応時間を前記範囲にすることによって縮合反応を円滑に完結することができる。
 また、縮合反応時の反応系の圧力は、通常、0.01~20MPa、好ましくは0.05~10MPaである。
 縮合反応を水溶液中で行う場合の形式については特に制限はなく、バッチ式反応器を用いても、多段連続式反応器等の装置を用いて連続式で行ってもよい。また、この縮合反応と脱溶媒を同時に行っても良い。
 前記変性共役ジエン系重合体の変性剤由来の一級アミノ基は、上述のように脱保護処理を行うことによって生成する。上述したスチームストリッピング等の水蒸気を用いる脱溶媒処理以外の脱保護処理の好適な具体例を以下に詳述する。
 すなわち、一級アミノ基上の保護基を加水分解することによって遊離した一級アミノ基に変換する。これを脱溶媒処理することにより、一級アミノ基を有する変性共役ジエン系重合体を得ることができる。なお、該縮合処理を含む段階から、脱溶媒して乾燥ポリマーまでのいずれかの段階において必要に応じて変性剤由来の保護された一級アミノ基の脱保護処理を行うことができる。
 このようにして得られた変性共役ジエン系重合体はムーニー粘度(ML1+4,100℃)が、好ましくは10~150、より好ましくは15~100である。ムーニー粘度が10未満の場合は耐破壊特性を始めとするゴム物性が十分に得られず、150を超える場合は作業性が悪く配合剤とともに混練りすることが困難である。
 また、前記変性共役ジエン系重合体を配合した未加硫ゴム組成物のムーニ-粘度(ML1+4,130℃)は、好ましくは10~150、より好ましくは30~100である。
 前記変性共役ジエン系重合体は、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)、即ち分子量分布(Mw/Mn)が1~3であることが好ましく、1.1~2.7であることがより好ましい。
 変性共役ジエン系重合体の分子量分布(Mw/Mn)を前記範囲内にすることで該変性共役ジエン系重量体をゴム組成物に配合しても、ゴム組成物の作業性を低下させることがなく、混練りが容易で、ゴム組成物の物性を十分に向上させることができる。
 また、前記変性共役ジエン系重合体は、その数平均分子量(Mn)が100,000~500,000であることが好ましく、150,000~300,000であることがさらに好ましい。変性共役ジエン系重合体の数平均分子量を前記範囲内にすることによって加硫物の弾性率の低下、ヒステリシスロスの上昇を抑えて優れた耐破壊特性を得るとともに、該変性共役ジエン系重合体を含むゴム組成物の優れた混練作業性が得られる。
 なお、前記変性共役ジエン系重合体は一種用いてもよく、二種以上を組み合わせて用いてもよい。
 前記ゴム成分において、上述した変性共役ジエン系重合体と併用されるゴム成分としては、天然ゴム及び他のジエン系合成ゴムが挙げられ、他のジエン系合成ゴムとしては、例えばスチレン-ブタジエン共重合体(SBR)、ポリブタジエン(BR)、ポリイソプレン(IR)、スチレン-イソプレン共重合体(SIR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム、エチレン-プロピレン-ジエン三元共重合体(EPDM)、エチレン-ブタジエン共重合体、エチレン-スチレン-ブタジエン共重合体及びこれらの混合物が挙げられる。また、他のジエン系合成ゴムの一部又は全てが多官能型変性剤、例えば四塩化スズのような変性剤を用いることにより分岐構造を有しているジエン系変性ゴムであることがより好ましい。
(充填材)
 前記サイド補強ゴム9及び/又は前記ビードフィラー7を構成するゴムにおいては、充填材を含む。前記充填材の含有量は、前記ゴム成分100質量部に対して、55質量部以下であることが好ましい。
 前記充填材の含有量が55質量部を超えると、充分な低発熱性、及び低弾性等の効果が発揮されず、得られるゴム組成物の加硫ゴム物性において、後で説明する動歪1%、25℃における動的貯蔵弾性率(E’)が10MPa以下にならず、所望の転がり抵抗性が得られないおそれがある。
 一方、前記充填材の量が多すぎると、得られたゴムの物性について、損失正接tanδの28℃~150℃におけるΣ値が5.5以下にならない場合がある。したがって、当該充填材の好ましい量は50~30質量部であり、より好ましくは45~40質量部である。充填材の量が30重量部以下になるとゴムの破壊強度が低下し、耐久性が悪化するおそれがある。
 また、前記充填材は、カーボンブラック、シリカ及び一般式(I)
  nM・xSiO・zHO・・・・・・・・(I)
[式中,Mは、アルミニウム、マグネシウム、チタン、カルシウム及びジルコニウムから選ばれる金属、これらの金属の酸化物または水酸化物、それらの水和物、及び前記金属の炭酸塩の中から選ばれる少なくとも一種であり、n、x、y、及びzは、それぞれ1~5の整数、0~10の整数、2~5の整数、及び0~10の整数である。]で表される無機充填材の中から選ばれる少なくとも一種であることが好ましい。タイヤの耐久性をより改善できるためである。
 同様の観点から、前記充填材は、少なくとも前記カーボンブラック及び/又は前記シリカを含むことが好ましく、前記カーボンブラックを少なくとも含むことがより好ましい。
 ここで、前記カーボンブラックとしては、得られる加硫ゴムの物性が、上述した範囲を満たすためには、例えば、SAF、HAF、ISAF、FEF、GPFなど種々のグレードのカーボンブラックを単独に又は混合して使用することができる。これらの中でも、加硫ゴムの低発熱性をより向上する観点から、前記カーボンブラックは、窒素吸着比表面積(NSA)が15~39m/gであることが好ましい。なお、窒素吸着比表面積が39m/g以下であるカーボンブラックを、大粒径のカーボンブラックと称する。
 前記カーボンブラックの窒素吸着比表面積が39m/g以下であることで、カーボンブラックに起因する発熱を抑制して、加硫ゴムの発熱を抑制することができ、窒素吸着比表面積が15m/g以上であることで、加硫ゴムの補強性を向上することができる。低発熱性と耐久性を向上させ、タイヤの寿命を延ばす観点から、前記カーボンブラックの窒素吸着比表面積は、18~37m/gであることがより好ましく、21~35m/gであることがさらに好ましい。
 また、前記カーボンブラックは、DBP吸油量(ジブチルフタレート吸油量)が120~180mL/100gであることが好ましい。
 DBP吸油量は、カーボンブラックの凝集体構造の発達度合(「ストラクチャー」と称することがある)を表す指標として用いられ、DBP吸油量が大きいほど凝集体が大きくなる傾向にある。本明細書においては、DBP吸油量が120mL/100g以上であるカーボンブラックを、高ストラクチャーのカーボンブラックと称する。
 DBP吸油量が120mL/100g以上であることで、加硫ゴムの引張強度及び耐圧縮性を向上し、タイヤの高温軟化抑制性を向上することができ、DBP吸油量が180mL/100g以下であることで、発熱を抑制することができ、高温軟化抑制性を向上することができる。
 同様の観点から、前記カーボンブラックのDBP吸油量は、122~170mL/100gであることがより好ましく、125~165mL/100gであることがさらに好ましい。
 さらに、前記カーボンブラックは、大粒径かつ高ストラクチャーのカーボンブラックを含むことが好ましい。一般に、カーボンブラックは、粒径が大きくなるほどストラクチャーが低くなるものであるが、大粒径であっても高ストラクチャーのカーボンブラックを用いることで、発熱性をより抑制し、かつ引張強度及び圧縮強度をより向上することができるので、ランフラットタイヤの高温での耐軟化性をより向上することができる。
 具体的には、前記カーボンブラックの窒素吸着比表面積が15~39m/gであり、かつ、DBP吸油量が120~180mL/100gであることが好ましい。
 なお、シリカの種類は、特に限定されないが、湿式シリカ、乾式シリカ、コロイダルシリカ等を用いることが好ましい。これらのシリカは、単独に用いてもよいし、複数を混合して使用することができる。
 前記一般式(I)で表わされる無機充填材は、具体的には、γ-アルミナ、α-アルミナ等のアルミナ(Al)、ベーマイト、ダイアスポア等のアルミナ一水和物(Al・HO)、ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)]、炭酸アルミニウム[Al(CO]、水酸化マグネシウム[Mg(OH)]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO)、タルク(3MgO・4SiO・HO)、アタパルジャイト(5MgO・8SiO・9HO)、チタン白(TiO
、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH
)2]、酸化アルミニウムマグネシウム(MgO・Al)、クレー(Al・2S
iO)、カオリン(Al・2SiO・2HO)、パイロフィライト(Al
4SiO・2HO)、ベントナイト(Al・4SiO・2HO)、ケイ酸アルミニウム(AlSiO 、Al・3SiO・5HO等)、ケイ酸マグネシウム(MgSiO、MgSiO等)、ケイ酸カルシウム(Ca・SiO等)、ケイ酸アルミニウムカルシウム(Al・CaO・2SiO等)、ケイ酸マグネシウムカルシウム(CaMgSiO)、炭酸カルシウム(CaCO)、酸化ジルコニウム(ZrO)、水酸化ジルコニウム[ZrO(OH)・nHO]、炭酸ジルコニウム[Zr(CO]、各種ゼオライトのように電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩などが使用できる。
 また、一般式(I)で表される無機充填材としては、Mがアルミニウム金属、アルミニウムの酸化物又は水酸化物、それらの水和物、及びアルミニウムの炭酸塩から選ばれる少なくとも一種のものが好ましい。
 なお、前記サイド補強ゴム9及び/又は前記ビードフィラー7を構成するゴムについては、本発明の効果が損なわれない範囲で、要求に応じて、通常ゴム工業界で用いられる各種薬品、例えば加硫剤、加硫促進剤、プロセス油、老化防止剤、スコーチ防止剤、亜鉛華、ステアリン酸などを含有することができる。
 前記加硫剤としては、硫黄等が挙げられ、その使用量は、前記ゴム成分100質量部に対し、硫黄分として0.1~10.0質量部が好ましく、さらに好ましくは1.0~5.0質量部である。0.1質量部未満では加硫ゴムの破壊強度、耐摩耗性、低発熱性が低下するおそれがあり、10.0質量部を超えるとゴム弾性が失われる原因となる。
 前記加硫促進剤は、特に限定されるものではないが、例えば、M(2-メルカプトベンゾチアゾール)、DM(ジベンゾチアジルジスルフィド)、CZ(N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド)等のチアゾール系、DPG(ジフェニルグアニジン)等のグアニジン系、あるいはTOT(テトラキス(2-エチルへキシル)チウラムジスルフィド)等のチウラム系の加硫促進剤等を挙げることができ、その使用量は、前記ゴム成分100質量部に対し、0.1~5.0質量部が好ましく、さらに好ましくは0.2~3.0質量部である。
 また、前記軟化剤として用いるプロセス油としては、例えば、パラフィン系、ナフテン系、アロマチック系等を挙げることができる。引張強度、耐摩耗性を重視する用途にはアロマチック系が、ヒステリシスロス、低温特性を重視する用途にはナフテン系又はパラフィン系が用いられる。その使用量は、前記ゴム成分100質量部に対して、0~100質量部が好ましく、100質量部以下であれば、加硫ゴムの引張強度、低発熱性(低燃費性)が悪化するのを抑制することができる。
 さらに、前記老化防止剤としては、例えば3C(N-イソプロピル-N’-フェニル-p-フェニレンジアミン、6C[N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン]、AW(6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン)、ジフェニルアミンとアセトンの高温縮合物等を挙げることができる。その使用量は、(A)ゴム成分100質量部に対して、0.1~5.0質量部が好ましく、さらに好ましくは0.3~3.0質量部である。
(動的貯蔵弾性率(E’)、tanδのΣ値)
 そして、前記サイド補強ゴム9及び前記ビードフィラー7のうちの少なくとも1つは、動歪1%、25℃における動的貯蔵弾性率(E’)が10MPa以下であることを要する。この動歪1%、25℃における動的貯蔵弾性率(E’)が10MPaを超えると、通常走行時におけるタイヤが撓みにくくなり、乗り心地性が低下する。好ましい動的貯蔵弾性率(E’)は1~10MPa、より好ましくは3~10MPaであり、3~8MPaが特に好ましい。
 なお、上記動的貯蔵弾性率(E’)は、下記の方法で測定した値である。
●動的貯蔵弾性率(E’)の測定方法
 サイド補強ゴム及びビードフィラーのうちの少なくとも1つから、幅5mm及び長さ40mmのシートを切り出したものを試料とし、この試料について、上島製作所(株)製スペクトロメーターを用い、チャック間距離10mm、初期歪200μm、動的歪1%、周波数52Hz、測定温度25℃の条件で測定する。
 また、前記サイド補強ゴム9及び前記ビードフィラー7のうちの少なくとも1つは、失正接tanδの28℃~150℃におけるΣ値[Σtanδ(28~150℃)]が5.5以下であることを要し、5.4以下であることが好ましく、5.3以下であることがより好ましく、5.2以下であることが更に好ましい。このtanδのΣ値が5.5を超えると、走行時のタイヤの発熱が大きく、空気入りタイヤの転がり抵抗性や走行耐久性が低下する。
 同様の観点から、前記Σtanδ(28~150℃)の値は1.0~5.4の範囲がさらに好ましく、2.0~5.3の範囲が特に好ましく、2.5~5.2であることが更に好ましい。
 なお、上記Σtanδ(28~150℃)は、下記の方法で測定した値である。
●Σtanδ(28~150℃)の測定方法
 サイド補強ゴム及びビードフィラーのうちの少なくとも1つから、幅5mm及び長さ40mmのシートを切り出したものを試料とし、この試料について、上島製作所社製スペクトロメーターを用い、チャック間距離10mm、初期歪200μm、動的歪1%、周波数52Hz、測定開始温度25~200℃の測定条件において28℃、29℃、30℃、・・・・・150℃の温度範囲について図2に示すように、1℃ごとに、損失正接tanδを測定し、その総和として温度とtanδとの関係をグラフ化し、斜線部分の面積を求め、その値をΣtanδ(28~150℃)とする。
 なお、本発明の空気入りタイヤ、上述した有機繊維コード、並びに、サイド補強ゴム及びビードフィラーのうちの少なくとも1つ以外の条件については、特に限定はされず、常法に従って製造することができる。また、該タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
 また、本発明の空気入りタイヤがランフラットタイヤである場合には、通常のランフラットタイヤの製造方法に従って製造できる。
 以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
 なお、本発明の各実施例及び比較例のサンプルは、過去に測定したデータから予測して算出している。
なお、諸特性は下記の方法に従って測定する。
(1)ミクロ構造
 未変性又は変性共役ジエン系重合体のミクロ構造は、赤外法(モレロ法)により、ビニル結合含有量(%)を測定する。
(2)数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)
 未変性又は変性共役ジエン系重合体のMn、Mw、Mw/Mnは、GPC[東ソー製、HLC-8020]により検出器として屈折計を用いて測定し、単分散ポリスチレンを標準としたポリスチレン換算で示す。なお、カラムはGMHXL[東ソー製]で、溶離液はテトラヒドロフランである。
(3)一級アミノ基含有量(mmol/kg)の測定
 未変性又は変性共役ジエン系重合体の一級アミノ基含有量は、重合体をトルエンに溶解した後、大量のメタノール中で沈殿させることにより重合体に結合していないアミノ基含有化合物をゴムから分離した後、乾燥する。本処理を施した重合体を試料として、JISK7237に記載された「全アミン価試験方法」により全アミノ基含有量を定量する。続けて、前記処理を施した重合体を試料として「アセチルアセトンブロックド法」により二級アミノ基及び三級アミノ基の含有量を定量する。試料を溶解させる溶媒には、o-ニトロトルエンを使用、アセチルアセトンを添加し、過塩素酢酸溶液で電位差滴定を行う。全アミノ基含有量から二級アミノ基及び三級アミノ基の含有量を引いて一級アミノ基含有量(mmol)を求め、分析に使用したポリマー質量で割ることにより重合体に結合した一級アミノ基含有量(mmol/kg)を求める。
(4)E’、Σ値
 なお、後述する実施例及び比較例の各空気入りタイヤの、サイド補強ゴム及びビードフィラーの動的貯蔵弾性率(E’)及び損失正接tanδの28℃~150℃におけるΣ値[Σtanδ(28~150℃)]については、明細書本文に記載した方法に従って測定する。
(製造例1)一級アミン変性ポリブタジエン
 窒素置換された5Lオートクレーブに、窒素下、シクロヘキサン1.4kg、1,3-ブタジエン250g、2,2-ジテトラヒドロフリルプロパン(0.0285mmol)シクロヘキサン溶液として注入し、これに2.85mmolのn-ブチルリチウム(BuLi)を加えた後、攪拌装置を備えた50℃温水浴中で4.5時間重合を行なう。1,3-ブタジエンの反応転化率は、ほぼ100%である。この重合体溶液を、2,6-ジ-tert-ブチル-p-クレゾール1.3gを含むメタノール溶液に抜き取り重合を停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥して、ポリブタジエンを得る。得られたポリブタジエンについてミクロ構造(ビニル結合量)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を測定する。その結果、ビニル結合量は14%、Mwは150、000、Mw/Mnは1.1である。
 上記のように得られた重合体溶液を、重合触媒を失活させることなく、温度50℃に保ち、一級アミノ基が保護されたN,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン1129mg(3.364mmol)を加えて、変性反応を15分間行う。最後に反応後の重合体溶液に、2,6-ジ-tert-ブチル-p-クレゾールを添加する。次いで、スチームストリッピングにより脱溶媒及び保護された一級アミノ基の脱保護を行い、110℃に調温された熟ロールによりゴムを乾燥し、一級アミン変性ポリブタジエンを得た。得られた変性ポリブタジエンについてミクロ構造(ビニル結合量)、重量平均分子量(Mw)、分子量分布(Mw/Mn)及び一級アミノ基含有量を測定する。
 その結果、ビニル結合量は14%、Mwは150、000、Mw/Mnは1、2、一級アミノ基含有量は4.0mmol/kgである。
(製造例2)接着剤組成物1~4
 まず、フロログルシノールを、100℃の水に溶解させ、濃度10wt%のフロログルシノール含有溶液を得る。
 その後、10wt%フロログルシノール溶液33.5gを、高温下で維持して攪拌しながら、4%水酸化ナトリウム18.2gを加えた後、水206gで希釈し、25%アンモニア水を7.5g加えた。上記溶液に、1,4-ベンゼンジカルボアルデヒド6.4gを漸次的に加え、フロログルシノール・1,4-ベンゼンジカルボアルデヒド含有溶液を得た後、表3に示す温度及び時間で熟成を行い、フェノール/アルデヒド樹脂を得る。
 上記フロログルシノール・1,4-ベンゼンジカルボアルデヒド含有溶液の熟成により得たフェノール/アルデヒド樹脂に、ビニルピリジン-スチレン-ブタジエン共重合体ゴム(Vp)を加え、27℃で24時間ゴムの熟成を行う。さらに上記フェノール/アルデヒド樹脂およびVpの混合液に、表2の配合比となるよう、特定のイソシアネート化合物を加える。
 接着剤組成物1~4の配合成分については、配合Aとして表1及び2に示す。なお、表1は、固形成分としての配合量(質量%)、表2は、溶液状態での配合量(質量%)を示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
*1: 富士フィルム和光純薬(株)製、10%水溶液として使用
*2: 東京化成工業(株)製、純度98%
*3: 関東化学(株)製、1N NaOH水溶液
*4: 関東化学(株)製、25%アンモニア水溶液
*5: Sime Darby社製、HYTEX HA
*6: JSR(株)製、SBR ラテックス 2108
*7: 日本A&L(株)製、PYRATEX
*8: 第一工業製薬(株)製、BN77、固形分濃度18%となるように希釈して使用
<接着性評価>
 天然ゴム、スチレン-ブタジエン共重合体からなるゴム成分、カーボンブラック、架橋剤を含む未加硫状態のゴム組成物に、各サンプルの接着剤組成物をコーティングしたタイヤ用ポリエステルコードを埋め込み、これを試験片として、160℃で20分間、20kgf/cmの加圧下で加硫した。
 得られた加硫物を室温まで冷却し、該加硫物からコードを掘り起こし、30cm/分の速度でコードを加硫物から剥離する時の抗力(N/cord)を25±1℃の室温雰囲気温度にて測定した。なお、このときの抗力を接着性評価の指標とした。
 測定によって得られた接着剤組成物1~4を用いた際の試験片の剥離時の抗力を表3に示す。
Figure JPOXMLDOC01-appb-T000010
[実施例1、比較例1]
 第4に示す配合組成を有する2種のゴム組成物を調製し、これらのゴム組成物を、図1に示すサイド補強ゴム9及びビードフィラー7に配設し、さらに、カーカス4のプライ及びベルト補強層51には、表3に示す接着剤組成物4が表面にコーティングされた有機繊維コードを用い、タイヤサイズ215/45ZR17の乗用車用ラジアルタイヤを定法に従って製造する。
 製造したタイヤについて、ビードフィラーから加硫ゴムを切り出し、動的貯蔵弾性率(E’)及びΣtanδ(28~150℃)を評価する。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000011
*1: 天然ゴム:TSR20
*2: 製造例1の中で得られたポリブタジエン
*3: 製造例1の中で得られた一級アミン変性ポリブタジエン
*4: FEF級カーボンブラック(N550)、旭カーボン社製「旭#60」
*5: アロマティックオイル、富士興産社製「アロマックス#3」
*6: N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、大内新興化学工業社製「ノクラック6C」
*7: N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、大内新興化学工業社製「ノクセラーCZ」
*8: テトラキス(2-エチルへキシル)チウラムジスルフィド、大内新興化学工業社製「ノクセラーTOT-N」
 表3の結果から、本発例となる接着剤組成物1~4を用いた際の接着性は、環境に配慮してレゾルシン及びホルマリンを含んでいない場合であっても、良好な接着性が得られていることがわかる。
 また、表4の結果から、サイド補強ゴム及びビードフィラーの適正化を図った実施例1の空気入りタイヤは、耐久性を損なうことなく通常走行時の転がり抵抗性が改善していることが予想できる。
 本発明によれば、有機繊維コードにコーティングされる接着剤組成物に、レゾルシンが含まれず、環境への負荷が少ないことに加えて、優れた耐久性及び転がり抵抗性を有する、空気入りタイヤを提供することができる。
1  トレッド部
2  サイドウォール部
3  ビード部
4  カーカス
4a カーカスの本体部分
4b カーカスの折り返し部分
5  ベルト
6  ビードコア
7  ビードフィラー
8  インナーライナー
9  サイド補強ゴム
11 トレッドゴム
50 ベルト層
51 ベルト補強層
 

Claims (15)

  1.  一対のビード部からサイドウォール部を経てトレッド部に至る一枚以上のカーカスプライからなるカーカスと、前記サイドウォール部において前記カーカスのタイヤ幅方向内側に配設された一対の断面三日月状のサイド補強ゴムと、前記サイドウォール部のビードコアのタイヤ径方向外側に配設されたビードフィラーと、を具える、空気入りタイヤであって、
     前記空気入りタイヤは、ポリフェノール類及びアルデヒド類を含む接着剤組成物がコーティングされた、有機繊維コードを有し、
     前記サイド補強ゴム及び前記ビードフィラーのうちの少なくとも1つは、ゴム成分と、充填材とを含み、動歪1%、25℃における動的貯蔵弾性率(E’)が10MPa以下で且つ損失正接tanδの28℃~150℃におけるΣ値が5.5以下であることを特徴とする、空気入りタイヤ。
  2.  前記サイド補強ゴム及び前記ビードフィラーのうちの少なくとも1つは、前記ゴム成分100質量部に対して、前記充填材を55質量部以下含むことを特徴とする、請求項1に記載の空気入りタイヤ。
  3.  前記充填材は、カーボンブラック、シリカ及び一般式(I)
      nM・xSiO・zHO・・・・・・・・(I)
    [式中,Mは、アルミニウム、マグネシウム、チタン、カルシウム及びジルコニウムから選ばれる金属、これらの金属の酸化物または水酸化物、それらの水和物、及び前記金属の炭酸塩の中から選ばれる少なくとも一種であり、n、x、y、及びzは、それぞれ1~5の整数、0~10の整数、2~5の整数、及び0~10の整数である。]で表される無機充填材、の中から選ばれる少なくとも一種であることを特徴とする、請求項1又は2に記載の空気入りタイヤ。
  4.  前記充填材は、カーボンブラックを少なくとも含むことを特徴とする、請求項3に記載の空気入りタイヤ。
  5.  前記カーボンブラックは、窒素吸着比表面積が15~39m/gであるカーボンブラックであることを特徴とする、請求項4に記載の空気入りタイヤ。
  6.  前記カーボンブラックは、DBP吸油量が120~180mL/100gであるカーボンブラックであることを特徴とする、請求項4又は5に記載の空気入りタイヤ。
  7.  前記ゴム成分は、変性共役ジエン系重合体を含有することを特徴とする、請求項1~6のいずれか1項に記載の空気入りタイヤ。
  8.  前記接着剤組成物が、さらにゴムラテックスを含むことを特徴とする、請求項1~7のいずれか1項に記載の空気入りタイヤ。
  9.  前記接着剤組成物が、さらにイソシアネート化合物を含むことを特徴とする、請求項1~8のいずれか1項に記載の空気入りタイヤ。
  10.  前記ポリフェノール類は、3つ以上の水酸基を有することを特徴とする、請求項1~9のいずれか1項に記載の空気入りタイヤ。
  11.  前記アルデヒド類は、2つ以上のアルデヒド基を有することを特徴とする、請求項1~10のいずれか1項に記載の空気入りタイヤ。
  12.  前記イソシアネート化合物が、(ブロックド)イソシアネート基含有芳香族化合物であることを特徴とする、請求項9に記載の空気入りタイヤ。
  13.  前記有機繊維コードが、カーカスプライ及び/又はベルト補強層に用いられることを特徴とする、請求項1~12のいずれか1項に記載の空気入りタイヤ。
  14.  前記有機繊維コードが、2種の有機繊維からなるフィラメントを撚り合わせてなるハイブリッドコードであることを特徴とする、請求項1~13のいずれか1項に記載の空気入りタイヤ。
  15.  前記ハイブリッドコードを構成する2種の有機繊維が、レーヨン、リヨセル、ポリエステル、ナイロン及びポリケントンからなる群より選択されることを特徴とする、請求項14に記載の空気入りタイヤ。
PCT/JP2021/009647 2020-03-11 2021-03-10 空気入りタイヤ WO2021182537A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022507261A JPWO2021182537A1 (ja) 2020-03-11 2021-03-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-042211 2020-03-11
JP2020042211 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021182537A1 true WO2021182537A1 (ja) 2021-09-16

Family

ID=77670645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009647 WO2021182537A1 (ja) 2020-03-11 2021-03-10 空気入りタイヤ

Country Status (2)

Country Link
JP (1) JPWO2021182537A1 (ja)
WO (1) WO2021182537A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174105A (ja) * 2007-12-25 2009-08-06 Bridgestone Corp 有機繊維コード用接着剤組成物の製造方法、有機繊維コード用接着剤組成物及びゴム製品の製造方法
JP2010189492A (ja) * 2009-02-17 2010-09-02 Bridgestone Corp 有機繊維コード用接着剤組成物、並びにそれを用いたゴム補強材、タイヤおよび接着方法
JP2012214928A (ja) * 2011-03-31 2012-11-08 Bridgestone Corp ランフラットタイヤ
JP2013226983A (ja) * 2012-04-26 2013-11-07 Bridgestone Corp ランフラットタイヤ
JP2014525973A (ja) * 2011-08-04 2014-10-02 コンパニー ゼネラール デ エタブリッスマン ミシュラン ポリアルデヒドとポリフェノールをベースとする水性接着剤組成物
JP2014528970A (ja) * 2011-08-04 2014-10-30 コンパニー ゼネラール デ エタブリッスマン ミシュラン ポリアルデヒドとフロログルシノールをベースとする水性接着剤組成物
WO2016143756A1 (ja) * 2015-03-06 2016-09-15 株式会社ブリヂストン ゴム組成物及びそれを用いたタイヤ
JP2016528337A (ja) * 2013-07-16 2016-09-15 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン バイオ系由来のアルデヒドとポリフェノールの主成分を含む水性接着剤組成物
WO2016143757A1 (ja) * 2015-03-06 2016-09-15 株式会社ブリヂストン タイヤ
WO2016143755A1 (ja) * 2015-03-06 2016-09-15 株式会社ブリヂストン タイヤ
JP2017512262A (ja) * 2014-02-06 2017-05-18 コンパニー ゼネラール デ エタブリッスマン ミシュラン 芳香族アルデヒドとポリフェノールを含有する接着組成物によって接着性を付与した少なくとも1本の鋼補強要素で補強したゴム複合体
WO2018230464A1 (ja) * 2017-06-16 2018-12-20 株式会社ブリヂストン ランフラットタイヤ用サイド補強ゴム及びランフラットタイヤ
WO2018230463A1 (ja) * 2017-06-16 2018-12-20 株式会社ブリヂストン 加硫ゴム、タイヤ、及びランフラットタイヤ
JP2019518087A (ja) * 2016-04-01 2019-06-27 コンパニー ゼネラール デ エタブリッスマン ミシュラン 熱硬化性樹脂及びラテックスを含む水性接着剤組成物

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174105A (ja) * 2007-12-25 2009-08-06 Bridgestone Corp 有機繊維コード用接着剤組成物の製造方法、有機繊維コード用接着剤組成物及びゴム製品の製造方法
JP2010189492A (ja) * 2009-02-17 2010-09-02 Bridgestone Corp 有機繊維コード用接着剤組成物、並びにそれを用いたゴム補強材、タイヤおよび接着方法
JP2012214928A (ja) * 2011-03-31 2012-11-08 Bridgestone Corp ランフラットタイヤ
JP2014525973A (ja) * 2011-08-04 2014-10-02 コンパニー ゼネラール デ エタブリッスマン ミシュラン ポリアルデヒドとポリフェノールをベースとする水性接着剤組成物
JP2014528970A (ja) * 2011-08-04 2014-10-30 コンパニー ゼネラール デ エタブリッスマン ミシュラン ポリアルデヒドとフロログルシノールをベースとする水性接着剤組成物
JP2013226983A (ja) * 2012-04-26 2013-11-07 Bridgestone Corp ランフラットタイヤ
JP2016528337A (ja) * 2013-07-16 2016-09-15 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン バイオ系由来のアルデヒドとポリフェノールの主成分を含む水性接着剤組成物
JP2017512262A (ja) * 2014-02-06 2017-05-18 コンパニー ゼネラール デ エタブリッスマン ミシュラン 芳香族アルデヒドとポリフェノールを含有する接着組成物によって接着性を付与した少なくとも1本の鋼補強要素で補強したゴム複合体
WO2016143756A1 (ja) * 2015-03-06 2016-09-15 株式会社ブリヂストン ゴム組成物及びそれを用いたタイヤ
WO2016143755A1 (ja) * 2015-03-06 2016-09-15 株式会社ブリヂストン タイヤ
WO2016143757A1 (ja) * 2015-03-06 2016-09-15 株式会社ブリヂストン タイヤ
JP2019518087A (ja) * 2016-04-01 2019-06-27 コンパニー ゼネラール デ エタブリッスマン ミシュラン 熱硬化性樹脂及びラテックスを含む水性接着剤組成物
WO2018230464A1 (ja) * 2017-06-16 2018-12-20 株式会社ブリヂストン ランフラットタイヤ用サイド補強ゴム及びランフラットタイヤ
WO2018230463A1 (ja) * 2017-06-16 2018-12-20 株式会社ブリヂストン 加硫ゴム、タイヤ、及びランフラットタイヤ

Also Published As

Publication number Publication date
JPWO2021182537A1 (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
JP5603253B2 (ja) 空気入りタイヤ
JP5567937B2 (ja) ランフラットタイヤ
JP5448445B2 (ja) 空気入りタイヤ
EP3266820B1 (en) Rubber composition and tire using same
JP5683067B2 (ja) 空気入りタイヤ
JP2009029404A (ja) 空気入りタイヤ
CN110730801B (zh) 用于跑气保用轮胎的胎侧补强橡胶和跑气保用轮胎
JP6998951B2 (ja) 加硫ゴム、タイヤ、及びランフラットタイヤ
JP2010132168A (ja) 空気入りタイヤ
JP5570888B2 (ja) 空気入りタイヤ
JP2010070119A (ja) 空気入りタイヤ
JP5363803B2 (ja) 空気入りタイヤ
JP5498800B2 (ja) 空気入りタイヤ
JP2010116027A (ja) 空気入りタイヤ
JP5396230B2 (ja) 空気入りタイヤ
JP7444647B2 (ja) 空気入りタイヤ
WO2021182537A1 (ja) 空気入りタイヤ
JP5657933B2 (ja) 空気入りタイヤ
WO2021066099A1 (ja) ランフラットタイヤ
JP2011255881A (ja) 空気入りタイヤ
JP5334520B2 (ja) 空気入りタイヤ
WO2021182535A1 (ja) ランフラットタイヤ
JP2011016417A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507261

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767571

Country of ref document: EP

Kind code of ref document: A1