WO2021182458A1 - Cutting tool with coolant bore and tool body of cutting tool with coolant bore - Google Patents

Cutting tool with coolant bore and tool body of cutting tool with coolant bore Download PDF

Info

Publication number
WO2021182458A1
WO2021182458A1 PCT/JP2021/009242 JP2021009242W WO2021182458A1 WO 2021182458 A1 WO2021182458 A1 WO 2021182458A1 JP 2021009242 W JP2021009242 W JP 2021009242W WO 2021182458 A1 WO2021182458 A1 WO 2021182458A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool body
tool
coolant hole
coolant
cutting
Prior art date
Application number
PCT/JP2021/009242
Other languages
French (fr)
Japanese (ja)
Inventor
北嶋 純
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2021182458A1 publication Critical patent/WO2021182458A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/28Features relating to lubricating or cooling

Definitions

  • the present invention relates to a tool body of a cutting tool with a coolant hole and a cutting tool with a coolant hole.
  • a chip discharge groove is formed on the outer periphery of the tip of the tool body that is rotated in the tool rotation direction around the axis, and the tip of the tool body is formed on the outer periphery of the tip of the wall surface of the chip discharge groove that faces the tool rotation direction.
  • a cutting tool having a coolant hole is provided on the tool body so as to project from the surface toward the tip end side in the axial direction, and a coolant hole is formed in the tool body to supply the coolant by ejecting the coolant to the cutting tool, and such a coolant. It relates to the tool body of a cutting tool with holes.
  • the present application claims priority based on Japanese Patent Application No. 2020-041282 filed in Japan on March 10, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a rotary cutting tool composed of a tool body having a columnar straight shank portion and a cutting edge portion having a cutting edge. ing. Inside the tool body, a supply hole (coolant hole) extending in the longitudinal direction and a chip discharge groove of the cutting edge are opened to communicate with the supply hole, and compressed air (coolant) is ejected to the cutting edge. An injection hole for the purpose is provided, and the opening direction of the injection hole is provided so as to be inclined upward on the rear end side of the cutting edge with respect to the direction orthogonal to the axis (axis) of the tool body.
  • Patent Document 2 discloses an arbor including an arbor body and a fixing member for fixing the rotary tool to the arbor body.
  • This arbor body has a shank portion gripped by the spindle of the machine tool at one end, a mounting protrusion that fits into a rotary tool at the other end, and an engaging portion formed at the mounting protrusion. It is provided with an inner diameter portion.
  • the fixing member engages with the engaging portion of the arbor body and fixes the rotary tool to the arbor body.
  • the arbor body is provided with a fluid supply hole (coolant hole) that communicates the end face of the shank portion with the inner diameter portion, and at least one groove is provided on the wall surface of the inner diameter portion along the longitudinal direction of the inner diameter portion. ..
  • a mounting hole for fitting into the mounting protrusion of the arbor body is provided in the central portion of the rotary tool along the axial direction, and the rotary tool rotates.
  • At least one cutting edge (cutting edge) protruding from the outer peripheral surface is provided on the outer peripheral portion of the tip of the tool.
  • a fluid injection hole (coolant hole) that opens in the mounting hole and is close to the cutting edge and opens in the cutting edge direction is provided.
  • Patent Document 3 discloses a milling tool (cutting tool with a coolant hole) in which a cutting edge is provided on the tip surface of a tool body having a coolant flow hole (coolant hole) and a tip pocket (chip discharge groove). There is.
  • the flow hole is arranged so as to be opened at the outer peripheral portion of the tip of the facing surface facing the cutting edge of the tip pocket.
  • the chips generated by the bottom blade which is a cutting blade protruding from the tip surface of the tool body toward the tip side in the axial direction
  • the chips generated by the outer peripheral blade which is the cutting blade protruding toward the outer peripheral side of the tool body. Since the coolant is blocked, there is a concern that it will be difficult to remove chips efficiently.
  • the present invention has been made under such a background to prevent chip clogging due to chip catching on the opening of the coolant hole and damage to the tool body due to concentration of stress on the opening of the coolant hole.
  • the cutting tool with a coolant hole of the present invention is formed on a tool body that is rotated in the tool rotation direction around the axis and on the outer periphery of the tip portion of the tool body. Coolant is ejected and supplied to the chip discharge groove, the cutting edge provided on the outer peripheral portion of the tip of the wall surface of the chip discharge groove facing the tool rotation direction, and the cutting edge provided on the tool body. It has a coolant hole, and the cutting edge projects from the tip surface of the tool body toward the tip side of the tool body along the axis, and the opening of the coolant hole is the tip of the tool body.
  • openings are scattered on the inner peripheral side of the cutting edge in the circumferential direction, and the ejection portion of the coolant hole leading to the opening of the tool body is directed toward the tip end side of the tool body. It is characterized in that it extends toward the outer peripheral side.
  • the tool body of the cutting tool with a coolant hole of the present invention is the tool body of the cutting tool with a coolant hole, and an insert mounting seat is formed on the outer peripheral portion of the tip of the wall surface of the chip discharge groove facing the tool rotation direction.
  • the cutting insert on which the cutting edge is formed is detachably attached to the insert attachment seat. That is, the tool body of the present invention is a tool body of a cutting tool with a coolant hole having a replaceable cutting edge.
  • the opening of the coolant hole is first opened on the tip surface of the tool body, so that the chips generated by the cutting edge are discharged into the chip discharge groove. However, it does not get caught in the opening of the coolant hole and cause chip clogging, and the tool body is not damaged by stress concentration due to the cutting load.
  • the ejection portion of the coolant hole leading to the opening of the coolant hole extends toward the outer peripheral side toward the tip end side of the tool body, so that the coolant ejected from the opening of the coolant hole is the tool body. It hits the machined surface of the work material facing the tip surface of the tool and bounces off and flows into the chip discharge groove from the tip side of the tool body. Thereby, the chips can be efficiently discharged to the rear end side of the tool body together with the coolant and removed, or the chips can be blown off to the outer peripheral side of the tool body along the machined surface and removed.
  • the opening of the coolant hole on the tip surface of the tool body is formed in an elongated hole shape flattened in the direction toward the axis when viewed from the outer peripheral side in the radial direction with respect to the axis.
  • the coolant can be evenly ejected toward the cutting edge, so that the openings of the coolant holes are scattered in the circumferential direction on the inner peripheral side of the cutting edge and open on the tip surface of the tool body.
  • the ejection portion extends toward the outer peripheral side toward the tip end side of the tool body, which makes it possible to remove chips more efficiently.
  • a groove extending toward the cutting edge on the outer peripheral side in the radial direction with respect to the axis By forming the coolant in the above direction, the coolant can be reliably supplied to the cutting edge without being scattered more than necessary by the groove-shaped opening.
  • the coolant hole is formed from the opening in the ejection portion reaching the opening on the tip surface of the tool body so that the cross-sectional area in the cross section perpendicular to the center line of the ejection portion becomes small. It is possible to increase the ejection speed of the coolant and to remove chips more efficiently.
  • the coolant hole is formed in a convex curve shape in which the center line of the ejection portion reaches the inner peripheral side of the tip of the tool body in the ejection portion reaching the opening on the tip surface of the tool body.
  • the tool body is integrally molded by, for example, laminating with a 3D printer. You may.
  • chips are efficiently removed while preventing chips from being caught in the openings of the coolant holes and causing chip clogging or damage to the tool body due to stress concentration due to a cutting load. Can be removed.
  • FIG. 1 shows one Embodiment of the cutting tool of the cutting edge exchange type of this invention. It is a bottom view of the embodiment shown in FIG. It is a top view of the embodiment shown in FIG. 1 (however, only one ejection portion of the coolant hole and one cutting insert are drawn). It is a perspective side view of the arrow line Y direction view in FIG. It is a cross-sectional view of ZO in FIG. 2 (however, only one ejection portion of a coolant hole and one cutting insert are drawn).
  • the tool body 1 in the present embodiment is formed of a metal material such as a steel material in a columnar shape centered on the axis O, and its rear end portion (upper right portion in FIG. 1; upper portion in FIGS. 4 and 5) is formed.
  • the shank portion 2 remains cylindrical, and the tip portion (lower left portion in FIG. 1; lower portion in FIGS. 4 and 5) is a cutting edge portion 3.
  • the tool body 1 of such a cutting tool with a coolant hole is usually sent out perpendicular to the axis O while the shank portion 2 is gripped by the spindle of the machine tool and rotated around the axis O in the tool rotation direction T.
  • the cutting edge 4 provided in the cutting edge portion 3 performs cutting processing such as flat surface processing, grooving processing, and shoulder cutting processing on the work material.
  • a plurality of (five in this embodiment) chip discharge grooves 5 that open to the tip surface 1a of the tool body 1 and extend toward the rear end side of the outer peripheral surface 1b of the tool body 1 surround the circumference. It is formed at intervals in the direction.
  • An insert mounting seat 6 that opens to the tip surface 1a and the outer peripheral surface 1b of the tool body 1 is formed at the tip of the wall surface of the chip discharge groove 5 facing the tool rotation direction T.
  • the cutting edge 4 is formed on a cutting insert 8 that is detachably attached to these insert mounting seats 6 by a clamp screw 7. That is, the tool body 1 of the cutting tool with a coolant hole of the present embodiment is the tool body 1 of a cutting tool with a coolant hole having a replaceable cutting edge. Further, the cutting tool with a coolant hole of the present embodiment has a tool body 1 and a cutting insert 8.
  • the cutting insert 8 is formed in a rectangular plate shape by a hard material such as a cemented carbide having a hardness higher than that of the tool body 1.
  • a bottom blade 4a is formed as a cutting blade 4 at a side edge portion of the rake face 8a directed to the tool rotation direction T toward the tip end side of the tool body 1, and the bottom blade 4a is formed toward the outer peripheral side of the tool body 1.
  • An outer peripheral blade 4b is also formed as a cutting blade 4 on the edge portion to be formed.
  • the bottom blade 4a is projected from the tip surface 1a toward the tip side in the direction from the shank portion 2 of the axis O of the tool body 1 toward the cutting edge portion 3.
  • the outer peripheral blade 4b is projected from the outer peripheral surface 1b of the tool body 1 toward the outer peripheral side in the radial direction with respect to the axis O.
  • the coolant hole 9 has a cylindrical large-diameter portion 9a having a constant inner diameter centered on the axis O on the rear end side of the tool body 1, and has a large diameter at the tip of the tool body 1.
  • the portion 9a is branched into a plurality of (five) portions having the same number as the cutting edge 4, and has a ejection portion 9b having a diameter smaller than that of the large diameter portion 9a. Part 9c is formed.
  • the openings 9c of the coolant holes 9 are arranged so as to be scattered in the circumferential direction of the tip surface 1a of the tool body 1. Specifically, the openings 9c are opened in the tip surface 1a of the tool body 1 corresponding to the inner peripheral side of the bottom blade 4a of the cutting blades 4, respectively. Further, as shown in FIGS. 1 and 2, the opening 9c is spaced from the chip discharge groove 5 at a position on the inner peripheral side of the tip surface 1a corresponding to the arrangement position of the chip discharge groove 5 on the tip surface 1a. It is open. Further, the ejection portion 9b is formed so as to face the outer peripheral side of the tool body 1 toward the tip end side of the tool body 1. Coolant such as compressed air or cutting fluid is supplied to the coolant hole 9 from the large diameter portion 9a on the rear end side of the tool body 1 during cutting.
  • Coolant such as compressed air or cutting fluid is supplied to the coolant hole 9 from the large diameter portion 9a on the rear end side of the tool body 1 during cutting.
  • the ejection portion 9b of the coolant hole 9 has a circular shape centered on the center line C as shown in FIG. 3 at the portion communicating with the large diameter portion 9a, but is perpendicular to the center line C toward the opening 9c.
  • the cross-sectional area of the cross section becomes smaller, the cross-sectional shape is deformed so as to be flattened in the axis O direction, and the opening 9c is formed in an elongated hole shape such as a rectangle as shown in FIG.
  • the ejection portion 9b extends in the axis O direction at the portion where the center line C communicates with the large diameter portion, and the tool is further located on the tip side of the tool body 1 than this. It has a convex curved shape that is convex toward the inner peripheral side of the tip of the main body 1, and extends toward the outer peripheral side toward the tip side of the tool main body 1.
  • the inner peripheral side of the tip of the tool body 1 includes two directions, a direction toward the tip surface 1a of the tool body 1 and a direction from the outer peripheral surface 1b of the tool body 1 toward the axis O. That is, the center line C has a convex curved shape that becomes convex in the direction toward the tip surface 1a of the tool body 1 and the direction from the outer peripheral surface 1b of the tool body 1 toward the axis O.
  • the opening 9c opened from the ejection portion 9b is in the axis O direction as shown in FIGS. 1 and 2.
  • it is formed in a groove shape extending radially toward the cutting edge 4 (bottom blade 4a) on the outer peripheral side in the radial direction with respect to the axis O so that the groove depth becomes shallower.
  • the tool body 1 is formed by a separate member whose boundary is a portion from the ejection portion 9b to the opening 9c, and the ejection portion 9b and the opening 9c are formed in at least one of these separate members. After forming the groove, it can be formed by combining these separate members, but the tool body 1 may be integrally molded by laminating with a 3D printer.
  • the coolant hole 9 does not open in the chip discharge groove 5 but opens in the tip surface 1a of the tool body 1. Therefore, even if the chips generated by the cutting blade 4 are discharged into the chip discharge groove 5, the chips are not caught in the opening 9c of the coolant hole 9 and cause chip clogging. Further, even if a force that twists the tool body 1 around the axis O is applied by the cutting load, the coolant hole 9 is not opened in the chip discharge groove 5, so that the stress is concentrated in the opening 9c and the tool body 1 is used. Will not be damaged.
  • the ejection portion 9b reaching the opening 9c of the coolant hole 9 is directed toward the outer peripheral side as it is directed toward the tip end side of the tool body 1.
  • the coolant ejected from the opening 9c hits the machined surface of the work material facing the tip surface 1a of the tool body 1 and bounces off.
  • the coolant thus bounced flows into the chip discharge groove 5 from the tip side of the tool body 1, so that the chips can be efficiently discharged and removed together with this coolant to the rear end side of the tool body 1.
  • the chips can be removed by blowing them to the outer peripheral side of the tool body 1 with a coolant.
  • the opening 9c of the coolant hole 9 in the tip surface 1a of the tool body 1 refers to the tip surface 1a with respect to the axis O when viewed from the direction from the cutting edge portion 3 of the axis O toward the shank portion 2. It is formed in a groove shape extending toward the cutting edge 4 on the outer peripheral side in the radial direction. Therefore, the groove-shaped opening 9c allows the coolant to be reliably guided and supplied to the cutting edge 4 without scattering the coolant more than necessary, and chips can be removed.
  • the coolant hole 9 is formed so that the cross-sectional area of the ejection portion 9b reaching the opening 9c on the tip surface 1a of the tool body 1 is small in the cross section perpendicular to the center line C. There is. Therefore, the ejection speed of the coolant from the opening 9c can be increased, and chips can be removed more efficiently.
  • the coolant hole 9 is also a convex curve in which the center line C is convex toward the inner peripheral side of the tip of the tool body 1 at the ejection portion 9b reaching the opening 9c on the tip surface 1a of the tool body 1. It is formed in a shape. Therefore, when the ejection portion branches from the large-diameter portion, the center line thereof is linear from the branch point toward the opening, and as compared with the case where the ejection portion is directed toward the tip side of the tool body 1 and toward the outer peripheral side.
  • the flow of coolant in the ejection portion 9b can be stabilized to suppress pressure loss, and the coolant can be ejected in a direction perpendicular to the axis O, so that chips can be removed even more efficiently. Can be done.
  • the tool body 1 is formed by the 3D printer as described above. It is possible to easily form such a tool body 1 by integrally molding it by laminating with the above.
  • Tool body 1a Tip surface of tool body 1 1b Outer surface of tool body 1 2 Shank part 3 Cutting edge part 4 Cutting edge 4a Bottom blade 4b Outer blade 5 Chip discharge groove 6 Insert mounting seat 7 Clamp screw 8 Cutting insert 9 Coolant hole 9a Large diameter part 9b Ejection part 9c Opening part O Axis line of tool body 1 T Tool rotation direction C Center line of ejection part 9b of coolant hole 9

Abstract

This cutting tool with a coolant bore has: a tool body rotated around an axis line in a tool rotation direction; a chip discharge groove formed in a tip-end outer periphery of the tool body; a cutting blade provided on a tip-end outer periphery of a wall surface of the chip discharge groove facing the tool rotation direction; and a coolant bore provided in the tool body to eject and supply a coolant to the cutting blade. Openings of the coolant bore are provided in a tip-end surface of the tool body in a scattered manner in a circumferential direction on an inner peripheral side of the cutting blade.

Description

クーラント孔付き切削工具およびクーラント孔付き切削工具の工具本体Tool body of cutting tool with coolant hole and cutting tool with coolant hole
 本発明は、クーラント孔付き切削工具およびクーラント孔付き切削工具の工具本体に関する。本発明は、軸線回りに工具回転方向に回転させられる工具本体の先端部外周に切屑排出溝が形成され、この切屑排出溝の上記工具回転方向を向く壁面の先端外周部に上記工具本体の先端面から上記軸線方向先端側に突出する切刃が設けられるとともに、上記工具本体には上記切刃にクーラントを噴出させて供給するクーラント孔が形成されたクーラント孔付き切削工具、およびこのようなクーラント孔付き切削工具の工具本体に関するものである。
 本願は、2020年3月10日に、日本に出願された特願2020-041282号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a tool body of a cutting tool with a coolant hole and a cutting tool with a coolant hole. In the present invention, a chip discharge groove is formed on the outer periphery of the tip of the tool body that is rotated in the tool rotation direction around the axis, and the tip of the tool body is formed on the outer periphery of the tip of the wall surface of the chip discharge groove that faces the tool rotation direction. A cutting tool having a coolant hole is provided on the tool body so as to project from the surface toward the tip end side in the axial direction, and a coolant hole is formed in the tool body to supply the coolant by ejecting the coolant to the cutting tool, and such a coolant. It relates to the tool body of a cutting tool with holes.
The present application claims priority based on Japanese Patent Application No. 2020-041282 filed in Japan on March 10, 2020, the contents of which are incorporated herein by reference.
 クーラント孔が形成されたクーラント孔付き切削工具として、例えば特許文献1には、円柱状のストレートシャンク部と、切刃をもつ切刃部と、を有する工具本体から構成される回転切削工具開示されている。この工具本体内には、長手方向に延在する供給孔(クーラント孔)と、この供給孔に連通するとともに切刃部の切屑排出溝に開口し、切刃に圧縮空気(クーラント)を噴出するための噴射孔と、が設けられており、噴出孔の開口方向が工具本体軸心(軸線)直交方向に対して切刃後端側の上向き方向に傾くように設けられている。 As a cutting tool with a coolant hole in which a coolant hole is formed, for example, Patent Document 1 discloses a rotary cutting tool composed of a tool body having a columnar straight shank portion and a cutting edge portion having a cutting edge. ing. Inside the tool body, a supply hole (coolant hole) extending in the longitudinal direction and a chip discharge groove of the cutting edge are opened to communicate with the supply hole, and compressed air (coolant) is ejected to the cutting edge. An injection hole for the purpose is provided, and the opening direction of the injection hole is provided so as to be inclined upward on the rear end side of the cutting edge with respect to the direction orthogonal to the axis (axis) of the tool body.
 また、特許文献2には、アーバ本体と、回転工具をアーバ本体に固定する固定部材とを備えたアーバが開示されている。このアーバ本体は、一端部には工作機械の主軸に把持されるシャンク部を備え、他端部には回転工具に嵌合する取付突起部を備え、且つ取付突起部には係合部を形成した内径部を備える。固定部材は、このアーバ本体の係合部に係合し回転工具をアーバ本体に固定している。このアーバ本体にはシャンク部の端面と内径部とを連通する流体供給穴(クーラント孔)が設けられ、且つ内径部の長手方向に沿って内径部の壁面に少なくとも1つの溝が設けられている。 Further, Patent Document 2 discloses an arbor including an arbor body and a fixing member for fixing the rotary tool to the arbor body. This arbor body has a shank portion gripped by the spindle of the machine tool at one end, a mounting protrusion that fits into a rotary tool at the other end, and an engaging portion formed at the mounting protrusion. It is provided with an inner diameter portion. The fixing member engages with the engaging portion of the arbor body and fixes the rotary tool to the arbor body. The arbor body is provided with a fluid supply hole (coolant hole) that communicates the end face of the shank portion with the inner diameter portion, and at least one groove is provided on the wall surface of the inner diameter portion along the longitudinal direction of the inner diameter portion. ..
 そして、特許文献2のアーバに固定する回転工具(クーラント孔付き切削工具)では、回転工具の中央部に、軸線方向に沿ってアーバ本体の取付突起部に嵌合する取付穴が設けられ、回転工具の先端外周部に、外周面から突出する切れ刃(切刃)が少なくとも1つ設けられている。さらに、回転工具の内部においては、取付穴に開口するとともに切れ刃に近接し且つ切れ刃方向に開口する流体噴射穴(クーラント孔)が設けられている。 Then, in the rotary tool (cutting tool with a coolant hole) fixed to the arbor of Patent Document 2, a mounting hole for fitting into the mounting protrusion of the arbor body is provided in the central portion of the rotary tool along the axial direction, and the rotary tool rotates. At least one cutting edge (cutting edge) protruding from the outer peripheral surface is provided on the outer peripheral portion of the tip of the tool. Further, inside the rotary tool, a fluid injection hole (coolant hole) that opens in the mounting hole and is close to the cutting edge and opens in the cutting edge direction is provided.
 特許文献3には、クーラントの流通穴(クーラント孔)とチップポケット(切屑排出溝)を有する工具本体の先端面に切刃が設けられた転削工具(クーラント孔付き切削工具)が開示されている。特許文献3において、流通穴は、チップポケットの切刃と向き合う対向面の先端外周部に開口されるよう配置されている。 Patent Document 3 discloses a milling tool (cutting tool with a coolant hole) in which a cutting edge is provided on the tip surface of a tool body having a coolant flow hole (coolant hole) and a tip pocket (chip discharge groove). There is. In Patent Document 3, the flow hole is arranged so as to be opened at the outer peripheral portion of the tip of the facing surface facing the cutting edge of the tip pocket.
実公平4-037689号公報Jitsufuku No. 4-037689 特開2005-022063号公報Japanese Unexamined Patent Publication No. 2005-022063 特開2002-219608号公報Japanese Unexamined Patent Publication No. 2002-219608
 これら特許文献1~3に記載されたクーラント孔付き切削工具は、いずれもクーラント孔が切屑排出溝に開口している。このため、切刃によって生成された切屑がクーラント孔の開口部に引っ掛かって切屑詰まりを生じるおそれがある。また、切削加工時に工具本体に作用する応力が、このクーラント孔の開口部に集中して、工具本体の損傷を招くおそれもある。 All of the cutting tools with coolant holes described in Patent Documents 1 to 3 have coolant holes opened in the chip discharge groove. Therefore, the chips generated by the cutting edge may be caught in the opening of the coolant hole, causing chip clogging. Further, the stress acting on the tool body during cutting may be concentrated on the opening of the coolant hole, which may cause damage to the tool body.
 さらに、工具本体の先端面から軸線方向先端側に突出する切刃である底刃によって生成された切屑を除去する際、工具本体の外周側に突出した切刃である外周刃によって生成された切屑にクーラントが遮られてしまうため、効率的な切屑の除去を図ることが困難となることが懸念される。 Further, when removing the chips generated by the bottom blade, which is a cutting blade protruding from the tip surface of the tool body toward the tip side in the axial direction, the chips generated by the outer peripheral blade, which is the cutting blade protruding toward the outer peripheral side of the tool body. Since the coolant is blocked, there is a concern that it will be difficult to remove chips efficiently.
 本発明は、このような背景の下になされたもので、クーラント孔の開口部への切屑の引っ掛かりによる切屑詰まりや、クーラント孔の開口部への応力の集中による工具本体の損傷を防ぐとともに、工具本体の先端面から軸線方向先端側に突出する切刃である底刃によって生成された切屑を効率的に除去することが可能なクーラント孔付き切削工具およびクーラント孔付き切削工具の工具本体を提供することを目的としている。 The present invention has been made under such a background to prevent chip clogging due to chip catching on the opening of the coolant hole and damage to the tool body due to concentration of stress on the opening of the coolant hole. We provide tool bodies for cutting tools with coolant holes and cutting tools with coolant holes that can efficiently remove chips generated by the bottom blade, which is a cutting blade that protrudes from the tip surface of the tool body toward the tip side in the axial direction. The purpose is to do.
 上記課題を解決して、このような目的を達成するために、本発明のクーラント孔付き切削工具は、軸線回りに工具回転方向に回転させられる工具本体と、前記工具本体の先端部外周に形成された切屑排出溝と、前記切屑排出溝の前記工具回転方向を向く壁面の先端外周部に設けられた切刃と、前記工具本体に設けられた、前記切刃にクーラントを噴出させて供給するクーラント孔と、を有し、前記切刃が前記工具本体の先端面から前記軸線に沿った前記工具本体の先端側に向けて突出しており、前記クーラント孔の開口部は、前記工具本体の先端面において、前記切刃の内周側に周方向に点在して開口しているとともに、前記開口部に至る前記クーラント孔の噴出部は、前記工具本体の先端側に向かうに従い前記工具本体の外周側に向かうように延びていることを特徴とする。 In order to solve the above problems and achieve such an object, the cutting tool with a coolant hole of the present invention is formed on a tool body that is rotated in the tool rotation direction around the axis and on the outer periphery of the tip portion of the tool body. Coolant is ejected and supplied to the chip discharge groove, the cutting edge provided on the outer peripheral portion of the tip of the wall surface of the chip discharge groove facing the tool rotation direction, and the cutting edge provided on the tool body. It has a coolant hole, and the cutting edge projects from the tip surface of the tool body toward the tip side of the tool body along the axis, and the opening of the coolant hole is the tip of the tool body. On the surface, openings are scattered on the inner peripheral side of the cutting edge in the circumferential direction, and the ejection portion of the coolant hole leading to the opening of the tool body is directed toward the tip end side of the tool body. It is characterized in that it extends toward the outer peripheral side.
 また、本発明のクーラント孔付き切削工具の工具本体は、上記クーラント孔付き切削工具の工具本体であって、前記切屑排出溝の工具回転方向を向く壁面の先端外周部にはインサート取付座が形成されており、前記インサート取付座に、前記切刃が形成された切削インサートが着脱可能に取り付けられることを特徴とする。すなわち、本発明の工具本体は、刃先交換式のクーラント孔付き切削工具の工具本体である。 Further, the tool body of the cutting tool with a coolant hole of the present invention is the tool body of the cutting tool with a coolant hole, and an insert mounting seat is formed on the outer peripheral portion of the tip of the wall surface of the chip discharge groove facing the tool rotation direction. The cutting insert on which the cutting edge is formed is detachably attached to the insert attachment seat. That is, the tool body of the present invention is a tool body of a cutting tool with a coolant hole having a replaceable cutting edge.
 前記クーラント孔付き切削工具およびクーラント孔付き切削工具の工具本体では、まずクーラント孔の開口部が工具本体の先端面に開口しているので、切刃によって生成された切屑が切屑排出溝に排出されても、クーラント孔の開口部に引っ掛かって切屑詰まりを生じることがなく、また切削負荷による応力集中によって工具本体が損傷するようなこともない。 In the tool body of the cutting tool with a coolant hole and the cutting tool with a coolant hole, the opening of the coolant hole is first opened on the tip surface of the tool body, so that the chips generated by the cutting edge are discharged into the chip discharge groove. However, it does not get caught in the opening of the coolant hole and cause chip clogging, and the tool body is not damaged by stress concentration due to the cutting load.
 そして、前記クーラント孔の開口部に至るクーラント孔の噴出部は、工具本体の先端側に向かうに従い外周側に向かうように延びているので、クーラント孔の開口部から噴出させられるクーラントは、工具本体の先端面に対向する被削材の加工面に当たって跳ね返って工具本体の先端側から切屑排出溝に流れ込む。これにより、このクーラントとともに切屑を工具本体の後端側に効率的に排出して除去することができ、あるいは切屑を加工面に沿って工具本体の外周側に吹き飛ばして除去することができる。 Then, the ejection portion of the coolant hole leading to the opening of the coolant hole extends toward the outer peripheral side toward the tip end side of the tool body, so that the coolant ejected from the opening of the coolant hole is the tool body. It hits the machined surface of the work material facing the tip surface of the tool and bounces off and flows into the chip discharge groove from the tip side of the tool body. Thereby, the chips can be efficiently discharged to the rear end side of the tool body together with the coolant and removed, or the chips can be blown off to the outer peripheral side of the tool body along the machined surface and removed.
 また、前記工具本体の先端面における前記クーラント孔の前記開口部を、前記軸線に対する径方向外周側から見て、前記軸線に向かう方向に偏平した長孔状に形成している。本構成によれば、クーラントを満遍なく切刃に向けて噴出させることが可能となるので、クーラント孔の開口部が切刃の内周側に周方向に点在して工具本体の先端面に開口しているとともに、噴出部が工具本体の先端側に向かうに従い外周側に向かうように延びていることとも相俟って、さらに効率的に切屑を除去することが可能となる。 Further, the opening of the coolant hole on the tip surface of the tool body is formed in an elongated hole shape flattened in the direction toward the axis when viewed from the outer peripheral side in the radial direction with respect to the axis. According to this configuration, the coolant can be evenly ejected toward the cutting edge, so that the openings of the coolant holes are scattered in the circumferential direction on the inner peripheral side of the cutting edge and open on the tip surface of the tool body. In addition to this, the ejection portion extends toward the outer peripheral side toward the tip end side of the tool body, which makes it possible to remove chips more efficiently.
 さらに、前記工具本体の先端面における前記クーラント孔の前記開口部を、前記軸線に沿った前記工具本体の先端側から見て、前記軸線に対する径方向外周側に前記切刃に向けて延びる溝状に形成することにより、この溝状の開口部によってクーラントを必要以上に飛散させることなく確実に切刃に供給することができる。 Further, when the opening of the coolant hole on the tip surface of the tool body is viewed from the tip side of the tool body along the axis, a groove extending toward the cutting edge on the outer peripheral side in the radial direction with respect to the axis. By forming the coolant in the above direction, the coolant can be reliably supplied to the cutting edge without being scattered more than necessary by the groove-shaped opening.
 さらに、前記クーラント孔を、前記工具本体の先端面における前記開口部に至る前記噴出部において、該噴出部の中心線に垂直な断面における断面積が小さくなるように形成することにより、開口部からのクーラントの噴出速度を高めて一層効率的な切屑の除去を図ることができる。 Further, the coolant hole is formed from the opening in the ejection portion reaching the opening on the tip surface of the tool body so that the cross-sectional area in the cross section perpendicular to the center line of the ejection portion becomes small. It is possible to increase the ejection speed of the coolant and to remove chips more efficiently.
 また、前記クーラント孔を、前記工具本体の先端面における前記開口部に至る前記噴出部において、該噴出部の中心線が前記工具本体の先端内周側に凸となる凸曲線状に形成することにより、この噴出部におけるクーラントの流れを安定させて圧力損失を抑えつつ、より軸線に対して垂直な方向にクーラントを噴出させてさらに一層効率的な切屑の除去を図ることができる。 Further, the coolant hole is formed in a convex curve shape in which the center line of the ejection portion reaches the inner peripheral side of the tip of the tool body in the ejection portion reaching the opening on the tip surface of the tool body. As a result, it is possible to stabilize the flow of the coolant in the ejection portion and suppress the pressure loss, and at the same time, eject the coolant in a direction perpendicular to the axis line to further efficiently remove chips.
 なお、特にこのようにクーラント孔の噴出部の中心線が工具本体の先端内周側に凸となる凸曲線状に形成する場合には、前記工具本体を、例えば3Dプリンターによる積層加工によって一体成形してもよい。 In particular, when the center line of the ejection portion of the coolant hole is formed in a convex curved shape that is convex toward the inner peripheral side of the tip of the tool body, the tool body is integrally molded by, for example, laminating with a 3D printer. You may.
 以上説明したように、本発明によれば、切屑がクーラント孔の開口部に引っ掛かって切屑詰まりを生じたり、切削負荷による応力集中によって工具本体が損傷したりするのを防ぎつつ、切屑を効率的に除去することが可能となる。 As described above, according to the present invention, chips are efficiently removed while preventing chips from being caught in the openings of the coolant holes and causing chip clogging or damage to the tool body due to stress concentration due to a cutting load. Can be removed.
本発明の刃先交換式切削工具の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the cutting tool of the cutting edge exchange type of this invention. 図1に示す実施形態の底面図である。It is a bottom view of the embodiment shown in FIG. 図1に示す実施形態の平面図である(ただし、クーラント孔の噴出部と切削インサートは1つだけ描かれている。)。It is a top view of the embodiment shown in FIG. 1 (however, only one ejection portion of the coolant hole and one cutting insert are drawn). 図3における矢線Y方向視の斜視側面図である。It is a perspective side view of the arrow line Y direction view in FIG. 図2におけるZO断面図である(ただし、クーラント孔の噴出部と切削インサートは1つだけ描かれている。)。It is a cross-sectional view of ZO in FIG. 2 (however, only one ejection portion of a coolant hole and one cutting insert are drawn).
 図1~図5は、本発明のクーラント孔付き切削工具およびクーラント孔付き切削工具の工具本体の一実施形態を示すものである。本実施形態における工具本体1は、鋼材等の金属材料により軸線Oを中心とした円柱状に形成されており、その後端部(図1において右上部分。図4および図5においては上側部分)は円柱状のままのシャンク部2とされるとともに、先端部(図1において左下部分。図4および図5においては下側部分)は切刃部3とされる。 1 to 5 show an embodiment of a tool body of the cutting tool with a coolant hole and the cutting tool with a coolant hole of the present invention. The tool body 1 in the present embodiment is formed of a metal material such as a steel material in a columnar shape centered on the axis O, and its rear end portion (upper right portion in FIG. 1; upper portion in FIGS. 4 and 5) is formed. The shank portion 2 remains cylindrical, and the tip portion (lower left portion in FIG. 1; lower portion in FIGS. 4 and 5) is a cutting edge portion 3.
 このようなクーラント孔付き切削工具の工具本体1は、シャンク部2が工作機械の主軸に把持されて軸線O回りに工具回転方向Tに回転させられつつ、通常は軸線Oに垂直に送り出され、切刃部3に設けられた切刃4によって被削材に平面加工や溝削り加工、肩削り加工等の切削加工を行う。 The tool body 1 of such a cutting tool with a coolant hole is usually sent out perpendicular to the axis O while the shank portion 2 is gripped by the spindle of the machine tool and rotated around the axis O in the tool rotation direction T. The cutting edge 4 provided in the cutting edge portion 3 performs cutting processing such as flat surface processing, grooving processing, and shoulder cutting processing on the work material.
 切刃部3の外周には、工具本体1の先端面1aに開口して、工具本体1の外周面1bの後端側に延びる複数(本実施形態では5つ)の切屑排出溝5が周方向に間隔をあけて形成されている。これらの切屑排出溝5の工具回転方向Tを向く壁面の先端部には、工具本体1の先端面1aと外周面1bとに開口するインサート取付座6が形成されている。 On the outer circumference of the cutting edge portion 3, a plurality of (five in this embodiment) chip discharge grooves 5 that open to the tip surface 1a of the tool body 1 and extend toward the rear end side of the outer peripheral surface 1b of the tool body 1 surround the circumference. It is formed at intervals in the direction. An insert mounting seat 6 that opens to the tip surface 1a and the outer peripheral surface 1b of the tool body 1 is formed at the tip of the wall surface of the chip discharge groove 5 facing the tool rotation direction T.
 上記切刃4は、これらのインサート取付座6にクランプネジ7によって着脱可能に取り付けられる切削インサート8に形成されている。
 すなわち、本実施形態のクーラント孔付き切削工具の工具本体1は、刃先交換式のクーラント孔付き切削工具の工具本体1とされている。また、本実施形態のクーラント孔付き切削工具は、工具本体1と切削インサート8とを有する。
The cutting edge 4 is formed on a cutting insert 8 that is detachably attached to these insert mounting seats 6 by a clamp screw 7.
That is, the tool body 1 of the cutting tool with a coolant hole of the present embodiment is the tool body 1 of a cutting tool with a coolant hole having a replaceable cutting edge. Further, the cutting tool with a coolant hole of the present embodiment has a tool body 1 and a cutting insert 8.
 本実施形態では、切削インサート8は、工具本体1よりも高硬度の超硬合金のような硬質材料により、長方形板状に形成されている。切削インサート8では、工具回転方向Tに向けられるすくい面8aの工具本体1の先端側に向けられる辺稜部に切刃4として底刃4aが形成されるとともに、工具本体1の外周側に向けられる辺稜部に同じく切刃4として外周刃4bが形成されている。底刃4aは、工具本体1の軸線Oのシャンク部2から切刃部3に向かう方向で先端面1aから先端側に突出させられる。外周刃4bは、工具本体1の外周面1bから軸線Oに対する径方向外周側に突出させられる。 In the present embodiment, the cutting insert 8 is formed in a rectangular plate shape by a hard material such as a cemented carbide having a hardness higher than that of the tool body 1. In the cutting insert 8, a bottom blade 4a is formed as a cutting blade 4 at a side edge portion of the rake face 8a directed to the tool rotation direction T toward the tip end side of the tool body 1, and the bottom blade 4a is formed toward the outer peripheral side of the tool body 1. An outer peripheral blade 4b is also formed as a cutting blade 4 on the edge portion to be formed. The bottom blade 4a is projected from the tip surface 1a toward the tip side in the direction from the shank portion 2 of the axis O of the tool body 1 toward the cutting edge portion 3. The outer peripheral blade 4b is projected from the outer peripheral surface 1b of the tool body 1 toward the outer peripheral side in the radial direction with respect to the axis O.
 そして、工具本体1には、その後端面からクーラント孔9が形成されている。このクーラント孔9は、図5に示すように、工具本体1の後端側では軸線Oを中心とする一定内径の円筒形の大径部9aを有し、工具本体1の先端部では大径部9aから切刃4と同数の複数(5つ)に分岐して大径部9aよりも小径の噴出部9bを有し、この噴出部9bが工具本体1の先端面1aに開口して開口部9cを形成している。 Then, in the tool body 1, a coolant hole 9 is formed from the rear end face. As shown in FIG. 5, the coolant hole 9 has a cylindrical large-diameter portion 9a having a constant inner diameter centered on the axis O on the rear end side of the tool body 1, and has a large diameter at the tip of the tool body 1. The portion 9a is branched into a plurality of (five) portions having the same number as the cutting edge 4, and has a ejection portion 9b having a diameter smaller than that of the large diameter portion 9a. Part 9c is formed.
 従って、図3~図5では噴出部9bは1つしか描かれていないが、本実施形態では図1および図2に示すように切刃4と同数の複数(5つ)のクーラント孔9の噴出部9bが開口部9cにおいて工具本体1の先端面1aに開口している。 Therefore, although only one ejection portion 9b is drawn in FIGS. 3 to 5, in the present embodiment, as shown in FIGS. 1 and 2, the same number of plurality (5) coolant holes 9 as the cutting edge 4 are provided. The ejection portion 9b opens to the tip surface 1a of the tool body 1 at the opening portion 9c.
 このクーラント孔9の開口部9cは、工具本体1の先端面1aの周方向に点在するように配置されている。具体的には、開口部9cは、それぞれ上記切刃4のうち底刃4aの内周側に対応する工具本体1の先端面1aに開口している。更に、開口部9cは、図1および図2に示すように、先端面1aにおいて、切屑排出溝5の配置位置に対応する、先端面1aの内周側の位置に、切屑排出溝5から間隔をあけて開口している。
 また、噴出部9bは、工具本体1の先端側に向かうに従い、工具本体1の外周側に向かうように形成されている。このクーラント孔9には、切削加工時に工具本体1の後端側の大径部9aから圧縮空気や切削油剤等のクーラントが供給される。
The openings 9c of the coolant holes 9 are arranged so as to be scattered in the circumferential direction of the tip surface 1a of the tool body 1. Specifically, the openings 9c are opened in the tip surface 1a of the tool body 1 corresponding to the inner peripheral side of the bottom blade 4a of the cutting blades 4, respectively. Further, as shown in FIGS. 1 and 2, the opening 9c is spaced from the chip discharge groove 5 at a position on the inner peripheral side of the tip surface 1a corresponding to the arrangement position of the chip discharge groove 5 on the tip surface 1a. It is open.
Further, the ejection portion 9b is formed so as to face the outer peripheral side of the tool body 1 toward the tip end side of the tool body 1. Coolant such as compressed air or cutting fluid is supplied to the coolant hole 9 from the large diameter portion 9a on the rear end side of the tool body 1 during cutting.
 クーラント孔9の噴出部9bは、大径部9aと連通する部分では図3に示すように中心線Cを中心とした円形とされているが、開口部9cに向かうに従いこの中心線Cに垂直な断面における断面積が小さくなるとともに断面形状が軸線O方向に偏平するように変形しており、開口部9cは図4に示すようにする長方形等の長孔状に形成されている。 The ejection portion 9b of the coolant hole 9 has a circular shape centered on the center line C as shown in FIG. 3 at the portion communicating with the large diameter portion 9a, but is perpendicular to the center line C toward the opening 9c. As the cross-sectional area of the cross section becomes smaller, the cross-sectional shape is deformed so as to be flattened in the axis O direction, and the opening 9c is formed in an elongated hole shape such as a rectangle as shown in FIG.
 また、本実施形態において噴出部9bは、図5に示すように上記中心線Cが大径部に連通する部分では軸線O方向に延びているとともに、これよりも工具本体1の先端側では工具本体1の先端内周側に凸となる凸曲線状とされて、工具本体1の先端側に向かうに従い外周側に向かうように延びている。
 ここで、工具本体1の先端内周側とは、工具本体1の先端面1aに向かう方向と、工具本体1の外周面1bから軸線Oに向かう方向との2つの方向を含む。即ち、中心線Cは、工具本体1の先端面1aに向かう方向と、工具本体1の外周面1bから軸線Oに向かう方向とにおいて、凸となる凸曲線状を有している。
Further, in the present embodiment, as shown in FIG. 5, the ejection portion 9b extends in the axis O direction at the portion where the center line C communicates with the large diameter portion, and the tool is further located on the tip side of the tool body 1 than this. It has a convex curved shape that is convex toward the inner peripheral side of the tip of the main body 1, and extends toward the outer peripheral side toward the tip side of the tool main body 1.
Here, the inner peripheral side of the tip of the tool body 1 includes two directions, a direction toward the tip surface 1a of the tool body 1 and a direction from the outer peripheral surface 1b of the tool body 1 toward the axis O. That is, the center line C has a convex curved shape that becomes convex in the direction toward the tip surface 1a of the tool body 1 and the direction from the outer peripheral surface 1b of the tool body 1 toward the axis O.
 さらに、このように噴出部9bにおけるクーラント孔9の中心線Cが凸曲線状とされることにより、この噴出部9bから開口する開口部9cは、図1および図2に示すように軸線O方向先端側から見て、軸線Oに対する径方向外周側に切刃4(底刃4a)に向けて溝深さが浅くなるように延びる溝状に形成される。 Further, by forming the center line C of the coolant hole 9 in the ejection portion 9b into a convex curve shape, the opening 9c opened from the ejection portion 9b is in the axis O direction as shown in FIGS. 1 and 2. When viewed from the tip side, it is formed in a groove shape extending radially toward the cutting edge 4 (bottom blade 4a) on the outer peripheral side in the radial direction with respect to the axis O so that the groove depth becomes shallower.
 このようなクーラント孔9は、例えば噴出部9bから開口部9cの部分を境界とする別部材によって工具本体1を形成して、これらの別部材の少なくとも一方に噴出部9bおよび開口部9cとなる溝を形成した後、これらの別部材を組み合わせることによって形成することも可能であるが、3Dプリンターによる積層加工を用いて工具本体1を一体成形して製造してもよい。 In such a coolant hole 9, for example, the tool body 1 is formed by a separate member whose boundary is a portion from the ejection portion 9b to the opening 9c, and the ejection portion 9b and the opening 9c are formed in at least one of these separate members. After forming the groove, it can be formed by combining these separate members, but the tool body 1 may be integrally molded by laminating with a 3D printer.
 このように構成されたクーラント孔付き切削工具およびクーラント孔付き切削工具の工具本体1においては、クーラント孔9が切屑排出溝5には開口せずに工具本体1の先端面1aに開口しているので、切刃4によって生成された切屑が切屑排出溝5内に排出されても、クーラント孔9の開口部9cに引っ掛かって切屑詰まりを生じるようなことがない。また、切削負荷によって工具本体1を軸線O回りに捩るような力が作用しても、切屑排出溝5にクーラント孔9が開口していないので、開口部9cに応力が集中して工具本体1が損傷するようなこともない。 In the tool body 1 of the cutting tool with a coolant hole and the cutting tool with a coolant hole configured in this way, the coolant hole 9 does not open in the chip discharge groove 5 but opens in the tip surface 1a of the tool body 1. Therefore, even if the chips generated by the cutting blade 4 are discharged into the chip discharge groove 5, the chips are not caught in the opening 9c of the coolant hole 9 and cause chip clogging. Further, even if a force that twists the tool body 1 around the axis O is applied by the cutting load, the coolant hole 9 is not opened in the chip discharge groove 5, so that the stress is concentrated in the opening 9c and the tool body 1 is used. Will not be damaged.
 そして、上記構成のクーラント孔付き切削工具およびクーラント孔付き切削工具の工具本体1では、クーラント孔9の開口部9cに至る噴出部9bが、工具本体1の先端側に向かうに従い外周側に向かうように延びているので、開口部9cから噴出させられるクーラントは、工具本体1の先端面1aに対向する被削材の加工面に当たって跳ね返る。 Then, in the tool body 1 of the cutting tool with a coolant hole and the cutting tool with a coolant hole having the above configuration, the ejection portion 9b reaching the opening 9c of the coolant hole 9 is directed toward the outer peripheral side as it is directed toward the tip end side of the tool body 1. The coolant ejected from the opening 9c hits the machined surface of the work material facing the tip surface 1a of the tool body 1 and bounces off.
 このため、こうして跳ね返ったクーラントが工具本体1の先端側から切屑排出溝5に流れ込むことにより、このクーラントとともに切屑を工具本体1の後端側に効率的に排出して除去することができる。あるいは、切屑をクーラントによって工具本体1の外周側に吹き飛ばして除去することもできる。 Therefore, the coolant thus bounced flows into the chip discharge groove 5 from the tip side of the tool body 1, so that the chips can be efficiently discharged and removed together with this coolant to the rear end side of the tool body 1. Alternatively, the chips can be removed by blowing them to the outer peripheral side of the tool body 1 with a coolant.
 また、本実施形態では、工具本体1の先端面1aにおけるクーラント孔9の開口部9cが、軸線Oに対する径方向外周側から見て、軸線Oに向かう方向に偏平した長孔状に形成されているので、クーラントを満遍なく切刃4に向けて噴出させることが可能となる。従って、クーラント孔9の開口部9cが切刃4の内周側に周方向に点在して工具本体1の先端面1aに開口しているとともに、噴出部9bが工具本体1の先端側に向かうに従い外周側に向かうようにいることとも相俟って、さらに効率的に切屑を除去することができる。 Further, in the present embodiment, the opening 9c of the coolant hole 9 on the tip surface 1a of the tool body 1 is formed in a long hole shape flattened in the direction toward the axis O when viewed from the radial outer peripheral side with respect to the axis O. Therefore, the coolant can be evenly ejected toward the cutting edge 4. Therefore, the openings 9c of the coolant holes 9 are scattered in the circumferential direction on the inner peripheral side of the cutting edge 4 and open to the tip surface 1a of the tool body 1, and the ejection portions 9b are on the tip side of the tool body 1. The chips can be removed more efficiently in combination with the fact that the direction is toward the outer peripheral side as the direction is increased.
 さらに、本実施形態では、工具本体1の先端面1aにおけるクーラント孔9の開口部9cが、先端面1aを、軸線Oの切刃部3からシャンク部2に向かう方向から見て、軸線Oに対する径方向外周側に切刃4に向けて延びる溝状に形成されている。このため、この溝状の開口部9cによってクーラントを必要以上に飛散させることなく、クーラントを確実に切刃4に案内して供給し、切屑を除去することができる。 Further, in the present embodiment, the opening 9c of the coolant hole 9 in the tip surface 1a of the tool body 1 refers to the tip surface 1a with respect to the axis O when viewed from the direction from the cutting edge portion 3 of the axis O toward the shank portion 2. It is formed in a groove shape extending toward the cutting edge 4 on the outer peripheral side in the radial direction. Therefore, the groove-shaped opening 9c allows the coolant to be reliably guided and supplied to the cutting edge 4 without scattering the coolant more than necessary, and chips can be removed.
 さらにまた、本実施形態では、クーラント孔9が、工具本体1の先端面1aにおける開口部9cに至る噴出部9bにおいて、その中心線Cに垂直な断面における断面積が小さくなるように形成されている。このため、開口部9cからのクーラントの噴出速度を高めることができ、一層効率的な切屑の除去を図ることができる。 Furthermore, in the present embodiment, the coolant hole 9 is formed so that the cross-sectional area of the ejection portion 9b reaching the opening 9c on the tip surface 1a of the tool body 1 is small in the cross section perpendicular to the center line C. There is. Therefore, the ejection speed of the coolant from the opening 9c can be increased, and chips can be removed more efficiently.
 また、本実施形態では、クーラント孔9が、やはり工具本体1の先端面1aにおける開口部9cに至る噴出部9bにおいて、上記中心線Cが工具本体1の先端内周側に凸となる凸曲線状に形成されている。このため、噴出部が大径部から分岐する際にその中心線が分岐点から開口部に向けて直線状であり、工具本体1の先端側に向かうに従い外周側に向かっている場合に比べ、噴出部9bにおけるクーラントの流れを安定させて圧力損失を抑えることができるとともに、より軸線Oに対して垂直な方向にクーラントを噴出させることができるので、さらに一層効率的な切屑の除去を図ることができる。 Further, in the present embodiment, the coolant hole 9 is also a convex curve in which the center line C is convex toward the inner peripheral side of the tip of the tool body 1 at the ejection portion 9b reaching the opening 9c on the tip surface 1a of the tool body 1. It is formed in a shape. Therefore, when the ejection portion branches from the large-diameter portion, the center line thereof is linear from the branch point toward the opening, and as compared with the case where the ejection portion is directed toward the tip side of the tool body 1 and toward the outer peripheral side. The flow of coolant in the ejection portion 9b can be stabilized to suppress pressure loss, and the coolant can be ejected in a direction perpendicular to the axis O, so that chips can be removed even more efficiently. Can be done.
 また、特にこのようにクーラント孔9の噴出部9bの中心線Cが工具本体の先端内周側に凸となる凸曲線状に形成する場合には、工具本体1を、上述のように3Dプリンターによる積層加工によって一体成形することにより、このような工具本体1を容易に形成することが可能である。 Further, particularly when the center line C of the ejection portion 9b of the coolant hole 9 is formed in a convex curved shape that is convex toward the inner peripheral side of the tip of the tool body, the tool body 1 is formed by the 3D printer as described above. It is possible to easily form such a tool body 1 by integrally molding it by laminating with the above.
 1 工具本体
 1a 工具本体1の先端面
 1b 工具本体1の外周面
 2 シャンク部
 3 切刃部
 4 切刃
 4a 底刃
 4b 外周刃
 5 切屑排出溝
 6 インサート取付座
 7 クランプネジ
 8 切削インサート
 9 クーラント孔
 9a 大径部
 9b 噴出部
 9c 開口部
 O 工具本体1の軸線
 T 工具回転方向
 C クーラント孔9の噴出部9bの中心線
1 Tool body 1a Tip surface of tool body 1 1b Outer surface of tool body 1 2 Shank part 3 Cutting edge part 4 Cutting edge 4a Bottom blade 4b Outer blade 5 Chip discharge groove 6 Insert mounting seat 7 Clamp screw 8 Cutting insert 9 Coolant hole 9a Large diameter part 9b Ejection part 9c Opening part O Axis line of tool body 1 T Tool rotation direction C Center line of ejection part 9b of coolant hole 9

Claims (7)

  1.  軸線回りに工具回転方向に回転させられる工具本体と、
     前記工具本体の先端部外周に形成された切屑排出溝と、
     前記切屑排出溝の前記工具回転方向を向く壁面の先端外周部に設けられた切刃と、
     前記工具本体に設けられた、前記切刃にクーラントを噴出させて供給するクーラント孔と、を有し、
     前記切刃が前記工具本体の先端面から前記軸線に沿った前記工具本体の先端側に向けて突出しており、
     前記クーラント孔の開口部は、前記工具本体の先端面において、前記切刃の内周側に周方向に点在して開口しているとともに、
     前記開口部に至る前記クーラント孔の噴出部は、前記工具本体の先端側に向かうに従い前記工具本体の外周側に向かうように延びていることを特徴とするクーラント孔付き切削工具。
    A tool body that can be rotated in the direction of tool rotation around the axis,
    A chip discharge groove formed on the outer periphery of the tip of the tool body and
    A cutting edge provided on the outer peripheral portion of the tip of the wall surface of the chip discharge groove facing the tool rotation direction, and
    It has a coolant hole provided in the tool body and is supplied by ejecting coolant to the cutting edge.
    The cutting edge projects from the tip surface of the tool body toward the tip side of the tool body along the axis.
    The openings of the coolant holes are scattered in the circumferential direction on the inner peripheral side of the cutting edge on the tip surface of the tool body, and are also opened.
    A cutting tool with a coolant hole, wherein the ejection portion of the coolant hole leading to the opening extends toward the outer peripheral side of the tool body toward the tip end side of the tool body.
  2.  前記工具本体の先端面における前記クーラント孔の前記開口部は、前記軸線に対する径方向外周側から見て、前記軸線に向かう方向に偏平した長孔状に形成されていることを特徴とする請求項1に記載のクーラント孔付き切削工具。 The claim is characterized in that the opening of the coolant hole on the tip surface of the tool body is formed in an elongated hole shape flattened in the direction toward the axis when viewed from the radial outer peripheral side with respect to the axis. The cutting tool with a coolant hole according to 1.
  3.  前記工具本体の先端面における前記クーラント孔の前記開口部は、前記軸線に沿った前記工具本体の先端側から見て、前記軸線に対する径方向外周側に前記切刃に向けて延びる溝状に形成されていることを特徴とする請求項1または請求項2に記載のクーラント孔付き切削工具。 The opening of the coolant hole on the tip surface of the tool body is formed in a groove shape extending toward the cutting edge on the outer peripheral side in the radial direction with respect to the axis when viewed from the tip side of the tool body along the axis. The cutting tool with a coolant hole according to claim 1 or 2, wherein the cutting tool is provided.
  4.  前記クーラント孔は、前記工具本体の先端面における前記開口部に至る前記噴出部において、該クーラント孔の中心線に垂直な断面における断面積が小さくなるように形成されていることを特徴とする請求項1から請求項3のうちいずれか一項に記載のクーラント孔付き切削工具。 The coolant hole is formed so that the cross-sectional area of the ejection portion reaching the opening on the tip surface of the tool body is small in the cross section perpendicular to the center line of the coolant hole. The cutting tool with a coolant hole according to any one of items 1 to 3.
  5.  前記クーラント孔は、前記工具本体の先端面における前記開口部に至る前記噴出部において、該クーラント孔の中心線が前記工具本体の先端内周側に凸となる凸曲線状に形成されていることを特徴とする請求項1から請求項4のうちいずれか一項に記載のクーラント孔付き切削工具。 The coolant hole is formed in a convex curve shape in which the center line of the coolant hole is convex toward the inner peripheral side of the tip of the tool body at the ejection portion reaching the opening on the tip surface of the tool body. The cutting tool with a coolant hole according to any one of claims 1 to 4, wherein the cutting tool has a coolant hole.
  6.  前記工具本体は一体成形されていることを特徴とする請求項1から請求項5のうちいずれか一項に記載のクーラント孔付き切削工具。 The cutting tool with a coolant hole according to any one of claims 1 to 5, wherein the tool body is integrally molded.
  7.  請求項1から請求項6のうちいずれか一項に記載のクーラント孔付き切削工具の工具本体であって、
     前記切屑排出溝の工具回転方向を向く壁面の先端外周部にはインサート取付座が形成されており、
     前記インサート取付座に、前記切刃が形成された切削インサートが着脱可能に取り付けられることを特徴とするクーラント孔付き切削工具の工具本体。
    The tool body of the cutting tool with a coolant hole according to any one of claims 1 to 6.
    An insert mounting seat is formed on the outer peripheral portion of the tip of the wall surface of the chip discharge groove facing the tool rotation direction.
    A tool body of a cutting tool with a coolant hole, wherein a cutting insert having a cutting edge formed thereof can be detachably attached to the insert mounting seat.
PCT/JP2021/009242 2020-03-10 2021-03-09 Cutting tool with coolant bore and tool body of cutting tool with coolant bore WO2021182458A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-041282 2020-03-10
JP2020041282A JP2021142587A (en) 2020-03-10 2020-03-10 Cutting tool with coolant hole and tool body of cutting tool with coolant hole

Publications (1)

Publication Number Publication Date
WO2021182458A1 true WO2021182458A1 (en) 2021-09-16

Family

ID=77671464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009242 WO2021182458A1 (en) 2020-03-10 2021-03-09 Cutting tool with coolant bore and tool body of cutting tool with coolant bore

Country Status (2)

Country Link
JP (1) JP2021142587A (en)
WO (1) WO2021182458A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154032A (en) * 2000-11-15 2002-05-28 Canon Inc Tool holder and coolant supply method
JP2002219608A (en) * 2001-01-23 2002-08-06 Mitsubishi Materials Corp Rotating tool
WO2014186812A1 (en) * 2013-05-23 2014-11-27 Ceratizit Austria Rotating tool with an internal coolant and/or lubricant supply line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154032A (en) * 2000-11-15 2002-05-28 Canon Inc Tool holder and coolant supply method
JP2002219608A (en) * 2001-01-23 2002-08-06 Mitsubishi Materials Corp Rotating tool
WO2014186812A1 (en) * 2013-05-23 2014-11-27 Ceratizit Austria Rotating tool with an internal coolant and/or lubricant supply line

Also Published As

Publication number Publication date
JP2021142587A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
JP6550759B2 (en) Part-Time Job
JP5007853B2 (en) Cutting inserts and cutting edge exchangeable cutting tools
US10201862B2 (en) Cutting tool having a coolant chamber with an integrally formed coolant deflection portion and tool body
JP4814890B2 (en) Cutting insert, milling tool and cutting method
KR101472998B1 (en) A drill and a drill cutting insert
JP6165165B2 (en) Indexable cutting insert, cutting tool therefor and clamping method therefor
EP2441543B1 (en) Drilling tool
WO2009107235A1 (en) Chip suction drill
US7478977B2 (en) Ball endmill
KR102291712B1 (en) Cutting tools with coolant deflection
JP5287426B2 (en) Cutting tools
WO2021182458A1 (en) Cutting tool with coolant bore and tool body of cutting tool with coolant bore
JP2014030888A (en) Cutting tool
WO2018016412A1 (en) Cutting tool
JP6389205B2 (en) Machining method using drill and drill with coolant injection hole
JP2019171514A (en) Drill
WO2016039347A1 (en) Cutting insert and interchangeable cutting edge-type rotary cutting tool
JP2020055086A (en) Chip carrying-type cutting tool
KR20110027655A (en) Deep-hole boring drill head
JP4961841B2 (en) Boring tool
KR200488778Y1 (en) Tool Body of Indexable Drill
JP2021098242A (en) Cutter with coolant hole and main body of the cutter
JPH07195251A (en) Chip suction device in end milling
JP2018161717A (en) drill
JP4892865B2 (en) Boring tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768727

Country of ref document: EP

Kind code of ref document: A1