WO2018016412A1 - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
WO2018016412A1
WO2018016412A1 PCT/JP2017/025519 JP2017025519W WO2018016412A1 WO 2018016412 A1 WO2018016412 A1 WO 2018016412A1 JP 2017025519 W JP2017025519 W JP 2017025519W WO 2018016412 A1 WO2018016412 A1 WO 2018016412A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
ejection
cutting edge
shape
cutting
Prior art date
Application number
PCT/JP2017/025519
Other languages
French (fr)
Japanese (ja)
Inventor
今井 康晴
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2018016412A1 publication Critical patent/WO2018016412A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/10Cutting tools with special provision for cooling

Definitions

  • the present invention relates to a cutting tool having a structure for supplying coolant in the vicinity of a cutting edge.
  • the blade-tip-exchangeable cutting tool includes an axial tool body and a plate-shaped cutting insert that is detachably attached to the tip of the tool body.
  • the cutting insert has a rake face, a flank face, and a cutting edge formed at a cross ridge line portion between the rake face and the flank face.
  • an oil hole (coolant supply passage) through which coolant (oil-based or water-soluble cutting fluid) flows is formed inside the tool body, and a plate-like member having a recess is attached to the tip of the tool body. It has been. Then, the coolant is ejected from the oil hole through the recess of the plate member toward the flank and the cutting edge from the direction parallel to the flank of the cutting insert.
  • coolant jetting method is called a so-called jet coolant method or JC method.
  • external coolant or internal coolant can be made less susceptible to chips compared to the case of supplying coolant from the rake face toward the cutting edge. It becomes easier to reach the cutting edge. For this reason, it is possible to increase the cooling efficiency of the cutting edge, and to expect a longer insert life and higher efficiency of the cutting process.
  • a predetermined cutting insert is selected from a plurality of types of cutting inserts having different cutting edge shapes, such as the size of the nose R, and mounted on the tool body for turning. In such a case, it has been difficult to supply coolant accurately and stably to the flank and cutting edge of each cutting insert having various cutting edge shapes. In addition, depending on the type of cutting, it has also been required to stably supply the coolant with high accuracy to predetermined portions of the flank and the cutting edge.
  • the present invention has been made in view of such circumstances, and can prevent coolant from leaking out, facilitate the coolant to reach the vicinity of the cutting edge, and efficiently supply the coolant to the flank and cutting edge.
  • the purpose is to provide bytes.
  • One aspect of the present invention is a tool main body having a shaft shape and having a coolant supply passage formed therein, and a cut formed at a cross ridge line portion between a rake face and a flank face.
  • a cutting tool including a blade and a coolant jetting member detachably provided at a tip of the tool body, wherein the coolant jetting member opens to the flank and the cutting blade.
  • the coolant spray member is disposed at the tip of the tool body, and the coolant flowing through the coolant supply path in the tool body is in the cylinder portion of the coolant spray member and the first spray hole. And is ejected toward the flank and cutting edge.
  • the first ejection hole in the flank ejection portion of the coolant ejection member and the coolant supply path communicate with each other via the cylindrical portion, the coolant is directed in an unintended direction from a portion other than the first ejection hole. Leakage is prevented.
  • the cylindrical portion of the coolant jet member surrounds the coolant flowing inside by the peripheral wall of the cylindrical portion, leakage of the coolant from the peripheral wall to the outside is prevented.
  • the first ejection hole of the coolant ejection member is, for example, a “hole” that opens in a V shape, unlike a notch such as a recess of the conventional plate-like member described in Patent Document 1 described above. And has an annular opening periphery. By forming such an annular opening peripheral edge, leakage of coolant from a portion other than the ejection hole is prevented.
  • the flow path from the connection portion with the coolant supply path in the cylinder portion to the first ejection hole is formed in a sealed shape except for the openings (inlet and outlet) at both ends of the flow path. Therefore, it is possible to reliably prevent unintended leakage of the coolant. Therefore, according to the present invention, a sufficient amount of coolant can be efficiently supplied to the flank and the cutting edge without increasing the amount of coolant supplied.
  • the coolant ejection member is detachably provided at the tip portion of the tool body, the following remarkable effects are obtained.
  • a cutting insert having a cutting edge is detachably attached to the tip of the tool body (in the case of a cutting edge exchangeable cutting tool)
  • various cutting edge shapes and types of cutting processing of multiple types of cutting inserts Corresponding to (hereinafter abbreviated as cutting edge shape and the like)
  • the coolant injection member which has a predetermined 1st injection hole suitable for the predetermined cutting-edge shape of a cutting insert from these coolant injection members can be selected, and it can mount
  • the cross-sectional shape of the inlet connected to the coolant supply path in the cylindrical portion and the end opposite to the cylindrical portion in the first ejection hole (that is, the cutting edge)
  • the cross-sectional shapes of the outlets located at the end of the side are different from each other.
  • the cross-sectional shape of the inflow port is a circular shape that can be easily connected to the coolant supply passage and is easy to manufacture
  • the cross-sectional shape of the outflow port is a V shape, a straight line shape, a curved shape corresponding to the cutting edge shape.
  • the coolant can be efficiently supplied to the cutting edge.
  • the cross-sectional area of the outflow port is smaller than the cross-sectional area of the inflow port in the flow path of the coolant ejection member, the flow rate of the coolant flowing through the outflow port is made higher than the flow rate of the coolant flowing through the inflow port. be able to.
  • the coolant ejected from the outlet of the first ejection hole can easily enter the slight gap between the work material and the flank and can easily reach the cutting edge. Can be raised remarkably. Therefore, there are effects such as improvement of cutting accuracy, high efficiency of cutting, and extension of tool life (long life).
  • the cross-sectional shape of the inflow port is a circular shape
  • the cross-sectional shape of the outflow port is any one of a V shape, a linear shape, and a curved shape corresponding to the shape of the cutting edge. Is preferred.
  • the cross-sectional shape of the inlet of the flow path is circular, the flow path is easy to connect to the coolant supply path and is easy to manufacture.
  • the cross-sectional shape of the outlet of the flow path is one of a V shape, a straight line shape, and a curved shape corresponding to the shape of the cutting edge, the coolant with the increased flow velocity as described above is used as the cutting edge. It can be supplied efficiently (without waste) and accurately.
  • a cross-sectional area of the flow path in the first ejection hole is constant from a connection portion with the inside of the cylindrical portion to the outlet.
  • the cross-sectional area of the flow path of the first ejection hole is constant between the connection portion with the inside of the cylindrical portion in the first ejection hole and the outlet. Therefore, the coolant flowing in the first ejection hole does not cause turbulent flow (causes pressure loss) from the connection portion with the cylindrical portion in the first ejection hole to the outlet. Without) and being ejected toward the flank and cutting edge while maintaining a high flow rate. Thereby, the effect mentioned above becomes still more remarkable.
  • the cross-sectional area of the flow path is constant as used in the present invention means that a draft angle (drawing taper) that is imparted in the manufacture in order to pull out the mold for forming the first injection hole during manufacture of the coolant injection member. ) Is defined. Specifically, the ratio of the size of the cross-sectional area at the outlet to the size of the cross-sectional area at the connection portion with the inside of the cylindrical portion in the flow path of the first ejection hole is in the range of 100 to 120%. This is defined as “the cross-sectional area of the flow path is constant”.
  • the cross-sectional area of the flow path inside the cylindrical portion becomes smaller from the inflow port toward the connection portion with the first ejection hole.
  • the coolant flowing inside the cylindrical portion gradually increases the flow velocity toward the first ejection hole, and after flowing into the first ejection hole, the flow velocity is increased most. Then, the coolant is ejected toward the flank and the cutting edge while the flow velocity is most increased.
  • the flow path in the coolant ejection member is not expanded after being narrowed, for example, as in the prior art, so that the pressure loss of the coolant flowing through the flow path in the coolant ejection member flows.
  • the coolant supply efficiency is remarkably increased by keeping the entire area from the inlet to the outlet small.
  • the flow path has a smaller width of the outlet than the width of the inlet.
  • the width of the outlet is smaller than the width of the inlet (width of the cross section of the channel) in the flow path of the coolant jetting member, the pressure loss of the coolant flowing through the flow path is more effectively suppressed. Can do. And the flow rate of the coolant which distribute
  • the cylindrical portion extends from the first ejection hole to the cutting edge side as it goes from the connection portion with the coolant supply path to at least one of the tip side and the side of the tool body. It is preferable to extend inclined.
  • the cylinder part of the coolant ejection member extends in an inclined manner, and the cylinder part and the coolant supply path, and the cylinder part and the first ejection hole are connected at a gentle angle so as to intersect each obtuse angle.
  • the pressure loss of the coolant flowing inside these can be reduced. Accordingly, it is possible to prevent the coolant supply pressure from being reduced or the flow velocity from being lowered inside the cutting tool, and to further increase the efficiency of supplying the coolant to the flank and the cutting edge.
  • a rake face jetting portion is provided at a tip portion of the tool main body.
  • the rake face jetting portion includes a second jetting hole that communicates with the coolant supply path and opens toward the rake face and the cutting edge. It is preferred that
  • the tip portion of the tool body is provided with a rake face ejection portion, and the coolant flowing through the coolant supply passage in the tool body passes through the second ejection hole of the rake face ejection portion, and the rake face and the cutting edge. It is ejected toward the blade.
  • the coolant can be supplied from the first ejection hole of the flank ejection portion of the coolant ejection member toward the flank and the cutting edge, and the rake surface and the cutting edge can be supplied from the second ejection hole of the rake surface ejection section.
  • Coolant can be supplied toward That is, since coolant can be supplied toward the cutting edge from two different directions (on the rake face and the flank face) out of the directions orthogonal to the cutting edge (the blade length direction), The coolant can be surely reached, and the cooling effect in the vicinity of the cutting edge can be remarkably enhanced.
  • the coolant can be prevented from leaking out, and the coolant can be easily reached near the cutting edge, so that the coolant can be efficiently supplied to the flank and the cutting edge.
  • FIG. 10 is a view showing an AA cross section of FIG. 9. It is a figure which shows the DD cross section of FIG. It is a perspective view which expands and shows the principal part of the blade-tip-exchange-type cutting tool which concerns on 2nd Embodiment of this invention. It is a top view which expands and shows the principal part of a blade-tip-exchange-type cutting tool. It is a side view which expands and shows the principal part of a blade-tip-exchange-type cutting tool. It is a front view which expands and shows the principal part of a blade-tip-exchange-type cutting tool.
  • the cutting edge replaceable cutting tool 30 which is a cutting tool according to the first embodiment of the present invention, will be described with reference to FIGS.
  • the cutting edge replaceable cutting tool 30 of this embodiment is a turning tool (cutting tool) that performs a turning process (cutting process) on a work material made of a metal material or the like.
  • the cutting edge replaceable cutting tool 30 includes, for example, a cutting insert 1 made of cemented carbide or the like, and a tool body 31 made of steel or the like to which the cutting insert 1 is detachably mounted.
  • the tool main body 31 has an axial shape.
  • the cutting insert 1 has a plate shape and is disposed on an insert mounting seat 32 formed at the tip of the tool body 31.
  • the cutting insert 1 includes a rake face 7, a flank face 8, and a cutting edge 5 formed at a cross ridge line portion between the rake face 7 and the flank face 8.
  • the cutting edge 5 is disposed so as to protrude from the tip of the tool body 31.
  • the work material to be turned by the cutting edge replaceable cutting tool 30 of the present embodiment has, for example, a shaft shape, a column shape, a disk shape, or the like.
  • the cutting edge 5 of the cutting edge replaceable cutting tool 30 is brought into contact with the processing portion (working surface) of the work material while rotating the work material in the direction of rotation of the work material around its central axis. Cut into the work material.
  • the cutting edge replaceable cutting tool 30 performs peripheral surface processing on the outer peripheral surface and inner peripheral surface of the work material, and performs end surface processing on the end surface facing the central axis direction of the work material.
  • the tool main body 31 has a rectangular bar shape, and a cross section perpendicular to the axis O is formed in a square shape. Of both end portions along the axis O direction of the tool body 31, one end portion (tip end portion) is disposed close to the processing surface of the work material at the time of cutting, and portions other than the one end portion including the other end portion are: It is detachably attached to a machine tool (not shown).
  • a coolant supply path 36 is formed inside the tool body 31 (see FIGS. 4 to 7).
  • the tool body 31 has a distal end portion that is larger in size in the width direction and the height direction in the direction perpendicular to the axis O than a portion other than the distal end portion (square bar-shaped body portion). ing.
  • a concave insert mounting seat 32 to which the cutting insert 1 is detachably attached, and a clamp piece 33 and a clamp screw 34 (clamp) for fixing (clamping) the cutting insert 1 to the insert mounting seat 32 are attached to the tip of the tool body 31.
  • Mechanism a coolant ejection member 37 that is detachably provided at the tip, and a recess that is formed in a recess at the tip and communicates with the coolant supply path 36 and in which the coolant spray member 37 is disposed (accommodated). 38.
  • the direction (direction along the axis O) in which the axis O of the tool main body 31 of the cutting edge replaceable cutting tool 30 extends is referred to as the axis O direction.
  • the axis O direction the direction from the end (one end) where the cutting insert 1 is disposed in the tool body 31 to the end (the other end) supported by the machine tool is referred to as the base end side.
  • the opposite direction is called the tip side.
  • a direction perpendicular to the axis O of the tool body 31 is referred to as a tool radial direction.
  • the direction in which the rake face 7 of the cutting insert 1 faces is referred to as “upward”, the opposite direction is referred to as “downward”, and the direction perpendicular to the upper and lower (up and down directions) is referred to as “side”.
  • the vertical direction of the tool may be referred to as the height direction, and the side of the tool may be referred to as the width direction.
  • the tool main body 31 of the cutting edge replaceable cutting tool 30 is mounted on the machine tool such that the rake face 7 of the cutting insert 1 disposed on the insert mounting seat 32 faces downward in the vertical direction.
  • a direction around the axis O of the tool body 31 is referred to as a tool circumferential direction.
  • the direction (direction along the insert axis) in which the insert axis of the cutting insert 1 (the central axis of the mounting hole 6 locked to the clamp piece 33) extends is referred to as the insert axis direction.
  • the direction orthogonal to the insert axis is referred to as the insert radial direction, and the direction around the insert axis is referred to as the insert circumferential direction.
  • the insert axis of the cutting insert 1 is slightly inclined with respect to the vertical direction of the tool body 31.
  • the insert mounting seat 32 has a concave shape corresponding to the shape of the cutting insert 1.
  • the insert mounting seat 32 corresponds to the cutting insert 1 having a substantially rhombic rectangular plate shape, the tip end of the tool main body 31 in the direction of the axis O, upward,
  • a substantially rhomboid quadrangular hole that opens toward one side (one of them) is formed.
  • the insert mounting seat 32 is detachably mounted on the bottom wall formed substantially parallel to the seating surface of the cutting insert 1 (the back surface 3b of the front and back surfaces 3 facing the insert axial direction in the cutting insert 1).
  • the sheet member 35 is provided between the bottom wall and the cutting insert 1 and has a pair of side walls that contact the outer peripheral surface 4 of the cutting insert 1.
  • the bottom wall of the insert mounting seat 32 has a substantially rhomboid quadrangular surface shape
  • the pair of side walls of the insert mounting seat 32 has a substantially rectangular quadrangular surface shape.
  • the pair of side walls intersect (connect) so as to form an acute angle that is concave between each other, and perpendicularly intersect the bottom wall and rise from the bottom wall.
  • the sheet member 35 is formed of, for example, a cemented carbide.
  • the sheet member 35 has a substantially rhombic square plate shape.
  • the back surface is in contact with the bottom wall of the insert mounting seat 32.
  • the front surface is a mounting surface on which the seating surface (back surface 3 b) of the cutting insert 1 is seated.
  • the sheet member 35 is attached to the bottom wall of the insert mounting seat 32 by a countersunk screw or the like (not shown).
  • the lower portion of the outer peripheral surface of the sheet member 35 is inclined inward in the insert radial direction as it goes downward.
  • a coolant guide recess 39 is formed in a portion of the outer peripheral surface of the sheet member 35 that is located immediately above a first ejection hole 51 described later of the coolant ejection member 37.
  • the width along the insert circumferential direction of the coolant guide recess 39 becomes narrower as it goes upward. Further, the depth of the coolant guide recess 39 along the insert radial direction becomes shallower as it goes upward.
  • the cutting edge replaceable cutting tool 30 includes a clamp mechanism including a clamp piece 33 and a clamp screw 34.
  • the clamp piece 33 is formed with a claw portion that is inserted into the mounting hole 6 penetrating the cutting insert 1 in the insert axial direction and is locked to the inner peripheral surface of the mounting hole 6.
  • the clamp piece 33 is formed with a through hole into which the clamp screw 34 is inserted.
  • the clamp screw 34 inserted into the through hole is screwed into a female screw hole formed at the distal end portion of the tool body 31. Worn.
  • the clamp piece 33 presses the cutting insert 1 toward the sheet member 35 of the insert mounting seat 32, and the cutting insert 1 is inserted into the insert mounting seat 32.
  • the clamp mechanism regulates the movement of the cutting insert 1 relative to the insert mounting seat 32 and clamps (fixes) the cutting insert 1.
  • the coolant supply path 36 is a coolant (oil-based or water-soluble cutting fluid) channel formed inside the tool body 31.
  • the coolant supply path 36 is connected to a coolant supply means (not shown) provided outside the cutting edge replaceable cutting tool 30.
  • the coolant supply path 36 is disposed at the tip of the tool body 31.
  • the coolant supply path 36 communicates with the main coolant supply path 36a connected to the coolant supply means, the main coolant supply path 36a, the sub-coolant supply path 36b having a smaller inner diameter than the main coolant supply path 36a, It has.
  • the cross-sectional shape of the main coolant supply passage 36a (the shape of the cross section perpendicular to the extending direction of the flow passage) and the cross-sectional shape of the sub-coolant supply passage 36b are each circular.
  • the cross-sectional area of the sub coolant supply path 36b is smaller than the cross-sectional area of the main coolant supply path 36a.
  • a plurality of (two in the illustrated example) sub-coolant supply paths 36 b are formed at the distal end portion of the tool body 31 so as to branch from the main coolant supply path 36 a.
  • the coolant flows into the sub coolant supply path 36b through the main coolant supply path 36a.
  • the sub coolant supply path 36b can be rephrased as a small diameter coolant supply path 36b or a downstream coolant supply path 36b
  • the main coolant supply path 36a can be rephrased as a large diameter coolant supply path 36a or an upstream coolant supply path 36a.
  • the main coolant supply path 36 a extends in the vertical direction in the tool body 31 and opens on the lower surface of the tool body 31.
  • the upper end portion of the main coolant supply path 36a is formed with a smaller diameter than the portion other than the upper end portion.
  • the sub coolant supply path 36b is connected to the upper end portion of the main coolant supply path 36a and extends upward from the upper end portion.
  • the accommodating recess 38 is formed in a concave shape at the distal end portion of the tool main body 31 corresponding to the shape of the coolant ejection member 37.
  • the accommodating recess 38 communicates with the coolant supply path 36, communicates with the hole 41 into which a later-described cylinder 43 of the coolant ejection member 37 is inserted, and the coolant supply path of the hole 41.
  • a recess 42 disposed adjacent to the side opposite to the side 36.
  • the hole portion 41 is formed in a hole shape corresponding to the cylindrical portion 43 of the coolant ejection member 37
  • the recess portion 42 is formed in a recess shape corresponding to the attachment portion 40 of the coolant ejection member 37.
  • the hole 41 has a circular hole shape.
  • the hole 41 is connected to the main coolant supply path 36a of the coolant supply path 36, and the tool is moved from the connecting portion with the main coolant supply path 36a toward at least one of the tip side and the side of the tool body 31.
  • the main body 31 extends obliquely upward.
  • the hole 41 is inclined upward as it goes toward the tip side and the side of the tool body 31 (that is, the direction inclined with respect to the axis O in the top view of the tool body 31). Yes.
  • the hollow portion 42 has a concave shape that opens to the tip side, the side, and the upper side (the bottom wall of the insert mounting seat 32) in the direction of the axis O in the tip portion of the tool body 31.
  • the shape of the portion where the recessed portion 42 opens in the bottom wall of the insert mounting seat 32 is V-shaped.
  • the coolant ejection member 37 is detachably attached to the distal end portion of the tool body 31 so as to be accommodated in the accommodation recess 38.
  • the coolant ejection member 37 is fixed to the distal end portion of the tool main body 31 with an attachment screw 45.
  • the coolant ejection member 37 is disposed adjacent to the flank 8 of the cutting insert 1 on the side opposite to the cutting edge 5 of the flank 8 (from the front surface 3a to the back surface 3b side in the insert axial direction). Yes.
  • the coolant ejection member 37 is disposed adjacent to the lower portion of the insert mounting seat 32 as the housing recess 38 is disposed adjacent to the lower portion of the insert mounting seat 32.
  • the coolant ejection member 37 includes a cylindrical portion 43 that is inserted into the hole 41 of the housing recess 38 and an attachment portion 40 that is disposed in the recess 42 of the housing recess 38.
  • the mounting portion 40 includes a flank ejection portion 44 in which a first ejection hole 51 that opens toward the flank 8 and the cutting edge 5 of the cutting insert 1 is formed.
  • the flank ejection portion 44 is provided in at least a part of the attachment portion 40 (the portion where the first ejection holes 51 are formed), and thus the entire attachment portion 40 may be the flank ejection portion 44.
  • the cylinder portion 43 has a cylindrical shape, and the inside (internal space) communicates with the first ejection hole 51 and the coolant supply path 36. That is, the first ejection hole 51 of the flank ejection portion 44 and the coolant supply path 36 of the tool body 31 are connected through the inside of the cylindrical portion 43. A flow path is formed in the coolant ejection member 37 by the first ejection hole 51 and the inside of the cylindrical portion 43.
  • the mounting portion 40 has a plate shape in which a cross section (cross section) perpendicular to the vertical direction of the tool is V-shaped.
  • a first ejection hole 51 is opened on the upper surface of the attachment portion 40 (flank ejection portion 44).
  • the first ejection holes 51 are formed so as to extend along the insert axial direction and the vertical direction of the tool body 31. As shown in FIG. 8, in the example of the present embodiment, the first ejection holes 51 are arranged at the corners of the upper surface of the attachment portion 40 that forms a V shape.
  • the end portion (that is, the upper end portion) on the opposite side to the cylinder portion 43 in the first ejection hole 51 is a coolant outlet 51a.
  • the cross-sectional shape of the outflow port 51a (the shape of the cross section perpendicular to the extending direction of the flow path) is any one of a V shape, a linear shape, and a curved shape corresponding to the shape of the cutting edge 5.
  • the cutting edge 5 has a V shape
  • the cross-sectional shape of the outlet 51a of the first ejection hole 51 has a V shape correspondingly.
  • the cross-sectional shape of the first ejection hole 51 is constant between the connection portion 51 b of the first ejection hole 51 with the inside of the cylindrical portion 43 and the outlet 51 a. ing. Further, the cross-sectional area of the flow path in the first ejection hole 51 is constant between the connection portion 51b of the first ejection hole 51 with the inside of the cylindrical portion 43 and the outlet 51a. Note that “the cross-sectional area of the flow path is constant” as used in the present embodiment means that a draft given in the manufacture for pulling out a mold for forming the first injection hole 51 when the coolant injection member 37 is manufactured. It is defined by allowing (drawer taper).
  • the ratio of the size of the cross-sectional area at the outlet 51a to the size of the cross-sectional area at the connection portion 51b with the inside of the cylindrical portion 43 in the flow path of the first ejection hole 51 is 100 to The range of 120% is defined as “the cross-sectional area of the flow path is constant”.
  • the first ejection hole 51 is a coolant channel provided in the flank ejection part 44, and the entire periphery of the channel except for the openings (the outlet 51a and the connection part 51b) at both ends of the channel. It is enclosed and sealed by walls. That is, the first ejection hole 51 is a chamber in which portions other than the upper and lower end portions are surrounded by the wall portion without any gap.
  • a flank 8 is located between the first ejection hole 51 (outlet 51 a thereof) and the cutting edge 5, and the first ejection hole 51 is adjacent to the flank 8. It is arranged. As shown in FIG. 5, the flank ejection portion 44 and the first ejection hole 51 are located more than the cutting edge 5 of the cutting insert 1 in the tool top view when the tip end portion of the tool body 31 is viewed along the vertical direction. It is arranged on the inner side of the tool body 31 (the base end side in the axis O direction and the inner side of the side).
  • the attachment portion 40 is formed with a through hole 49 through which the attachment screw 45 is inserted.
  • the mounting screw 45 is inserted into the through hole 49 and screwed into a female screw hole formed at the tip of the tool body 31, whereby the coolant ejection member 37 is fixed to the tip of the tool body 31.
  • the cylindrical portion 43 has a cylindrical shape.
  • the cylinder portion 43 is fitted into the hole portion 41 of the accommodation recess 38.
  • the inside of the cylindrical portion 43 is connected to the main coolant supply path 36 a of the coolant supply path 36.
  • the cylindrical portion 43 extends from the connection portion with the coolant supply path 36 in an inclined manner toward the cutting edge 5 from the first ejection hole 51 as it goes to at least one of the tip side and the side of the tool body 31. ing.
  • the cylindrical portion 43 is inclined upward as it goes toward the tip side and the side of the tool body 31 (that is, the direction inclined with respect to the axis O in the top view of the tool body 31). Yes.
  • an end portion that is, an end portion connected to the coolant supply path 36 opposite to the first ejection hole 51 in the inside (inner peripheral surface) of the cylinder portion 43 is a coolant inlet 43 a.
  • the inflow port 43 a has a tapered surface shape that increases in diameter as it approaches the coolant supply path 36 along the direction of the central axis C of the cylindrical portion 43.
  • the cross-sectional shape of the inflow port 43a (the cross-sectional shape perpendicular to the channel extending direction (the direction of the central axis C of the cylindrical portion 43)) is a circular shape. Therefore, among the flow paths formed in the coolant ejection member 37, the cross-sectional shape of the inflow port 43 a connected to the coolant supply path 36 in the cylindrical portion 43, and the flank 8 and the cutting edge 5 in the first ejection hole 51.
  • the cross-sectional shape of the outflow port 51a opening toward each other is different from each other.
  • the cross-sectional area of the flow path inside the cylindrical portion 43 decreases from the inflow port 43 a inside the cylindrical portion 43 toward the connecting portion 43 b with the first ejection hole 51.
  • the cross-sectional area of the flow path inside the cylindrical portion 43 is first gradually reduced toward the first ejection hole 51 along the central axis C direction at the inflow port 43a. In 43b, it is made small gradually as it goes to the 1st ejection hole 51.
  • the flow path formed in the coolant ejection member 37 has a smaller cross-sectional area of the outlet 51a than that of the inlet 43a.
  • the flow path formed in the coolant ejection member 37 has a smaller width of the outlet 51a than the width of the inlet 43a.
  • the width here refers to the length in the direction perpendicular to the extending direction of the flow path, and specifically refers to the horizontal direction (the left-right direction in FIGS. 9 and 12). It is not limited to the direction.
  • annular seal member is attached to the outer periphery of the cylindrical portion 43.
  • an O-ring made of a resin material or the like is disposed as a seal member in the groove 48 formed on the outer peripheral surface of the cylindrical portion 43.
  • the seal member closely contacts the inner wall of the groove 48 and the inner peripheral surface of the hole 41 of the housing recess 38.
  • a second ejection hole 52 that communicates with the coolant supply path 36 and opens toward the rake face 7 and the cutting edge 5 is formed at the tip of the tool body 31.
  • a rake face ejection part 50 is provided.
  • the rake face ejection part 50 is formed in a protruding shape on the upper surface of the tip part of the tool body 31.
  • a cylindrical body protrudes adjacent to the insert mounting seat 32 on the upper surface of the tip portion of the tool body 31, and the cylindrical body serves as a rake face ejection portion 50.
  • a plurality of rake face ejection portions 50 are provided at the distal end portion of the tool body 31 so as to be separated from each other. For this reason, the second ejection holes 52 are also separated from each other. A plurality are formed.
  • the second ejection holes 52 are coolant passages provided in the rake face ejection portion 50, and both ends of the passages are open to the outer peripheral surface and the bottom surface of the rake face ejection portion 50.
  • a portion of the second ejection hole 52 that opens to the bottom surface of the rake face ejection portion 50 is connected to the sub-coolant supply passage 36b of the coolant supply passage 36, and this connection portion serves as a coolant inlet. .
  • the part opened to the outer peripheral surface of the rake face ejection part 50 among the 2nd ejection holes 52 is made into the outflow port of a coolant.
  • the second ejection hole 52 is hermetically sealed with a wall portion surrounding the entire flow path except for openings at both ends of the flow path (a connection portion with the coolant supply path 36 and an outlet). That is, the second ejection hole 52 is a chamber in which portions other than both end portions thereof are surrounded by the wall portion without a gap.
  • the cross-sectional shape of the second ejection hole 52 is circular.
  • the cross-sectional area of the flow path in the second ejection hole 52 is constant from the connection portion with the coolant supply path 36 in the second ejection hole 52 to the outlet. Further, the cross-sectional area of the flow path of the second ejection hole 52 is smaller than the cross-sectional area of the flow path of the sub-coolant supply path 36b to which the second ejection hole 52 is connected.
  • the rake face 7 is located between the second ejection hole 52 (outlet thereof) and the cutting edge 5, and the second ejection hole 52 is disposed adjacent to the rake face 7. .
  • the second ejection hole 52 of one rake face ejection portion 50 located on the distal end side of the tool body 31 and the straight line described later among the cutting edges 5.
  • the rake face 7 is located between the blade 10 and the corner blade 9. Further, the rake face 7 is located between the second ejection hole 52 in the other rake face ejection portion 50 and the straight edge 11 and the corner edge 9 described later of the cutting edge 5.
  • the cutting insert 1 includes a plate-shaped insert body 2, front and back surfaces 3 (front surface 3 a and back surface 3 b) of the insert body 2, and peripheral edges of the front and back surfaces 3.
  • the outer peripheral surface 4 to be connected along the direction, the cutting edge 5 formed at the intersecting ridge line portion between the front and back surfaces 3 and the outer peripheral surface 4, and the insert body 2 are formed so as to penetrate the insert axial direction.
  • an attachment hole 6 that is engaged with the claw portion of the clamp piece 33.
  • the insert main body 2 has a substantially rhombic square plate shape
  • the front and back surfaces 3 each have a substantially rhombic square surface shape
  • the outer peripheral surface 4 has four approximate shapes arranged in the insert circumferential direction. It has a rectangular quadrangular surface.
  • Each corner portion of the outer peripheral edge of the front and back surfaces 3 of the insert body 2 has a convex curve shape, and among these corner portions, a corner portion located at a pair of acute angle portions of the front and back surfaces 3 having a rhombus shape and the vicinity thereof Is the cutting edge 5.
  • the attachment hole 6 is opening in each center part of the front and back 3 (coaxially with an insert axis line).
  • a portion between the substantially rectangular quadrangular surfaces adjacent to each other in the insert circumferential direction is a convex curved surface (in the illustrated example, a cylindrical body having a convex cross section perpendicular to the insert axis). Part of the outer peripheral surface).
  • the cutting insert 1 of the present embodiment is a so-called negative insert in which the flank 8 (outer peripheral surface 4) of the insert body 2 is formed in parallel to the insert axis, but is not limited thereto. That is, the cutting insert 1 may be a so-called positive insert formed so as to be inclined inward in the insert radial direction as the flank 8 is separated from the cutting edge 5 in the insert axial direction.
  • the cutting insert 1 of the present embodiment is a so-called double-sided insert in which the insert body 2 has a reverse-inverted symmetrical shape, but is not limited thereto. That is, the cutting insert 1 may be a so-called single-sided insert in which the insert body 2 has a non-front / reverse symmetric shape (not a front / reverse symmetric shape).
  • the cutting edge 5 of the cutting insert 1 is formed at the intersecting ridge line portion between the rake face 7 and the flank face 8.
  • the cutting edge 5 includes a corner blade 9 positioned at a corner portion of the front and back surfaces 3 (corner portion of the rake face 7), and a pair of linear blades 10, 11 connected to both ends of the corner blade 9 and extending linearly.
  • the cutting edge 5 has a V-shape as a whole by including a corner blade 9 and a pair of linear blades 10 and 11 continuous at both ends of the corner blade 9.
  • the corner blade 9 is disposed at an intermediate portion (between a pair of straight blades 10 and 11) in the entire length of the cutting blade 5.
  • the corner blade 9 has a convex curve shape protruding outward in the insert radial direction, and in the example of this embodiment, has a convex arc shape.
  • a portion (a portion connected to the straight blade 10 in the corner blade 9) located in front of the tool feeding direction and the straight blade 10 during cutting are cut into the processing surface of the work material.
  • a portion of the corner blade 9 located behind the tool feed direction (a portion connected to the straight blade 11 in the corner blade 9) finishes the processed surface of the work material.
  • the straight blades 10, 11 extend in a tangential direction in contact with both ends of the arcuate corner blade 9, and are connected to the corner blade 9 gently.
  • an angle formed between the pair of linear blades 10 and 11 (intersection angle between the virtual extension lines of the linear blades 10 and 11) in a top view (insert top view) of the cutting insert 1 viewed from the insert axial direction. ) Is an acute angle smaller than 90 ° in this embodiment, for example, about 80 °.
  • the cutting insert 1 of the present embodiment is formed in a line-symmetric shape (mirror image symmetry) with a bisector of an angle formed between the pair of straight blades 10 and 11 as viewed in the top view of the insert. ing.
  • the cutting edge 5 also has a line-symmetric shape with the angle bisector as the axis of symmetry, and the straight blades 10 and 11 have the same shape and the same blade length.
  • the present invention is not limited to this, and the cutting edge 5 may not be formed in a line-symmetric shape with the bisector of the corner as an axis of symmetry (that is, it may be a non-axisymmetric shape).
  • the straight blades 10 and 11 may have different shapes and blade lengths.
  • it is preferable that at least the vicinity of the cutting edge 5 (the cutting edge 5, the rake face 7 and the flank face 8) of the cutting insert 1 is coated with a hard film such as a CVD coating film.
  • the first ejection hole 51 of the coolant ejection member 37 is a region corresponding to the corner blade 9 of the cutting blade 5 and the straight blades 10 and 11 (the corner blade 9 of the cutting blade 5). And just below the straight blades 10 and 11).
  • the coolant injection member 37 is disposed at the tip of the tool body 31, and the coolant flowing through the coolant supply path 36 in the tool body 31 is The coolant is ejected toward the flank 8 and the cutting edge 5 through the cylindrical portion 43 of the coolant ejection member 37 and the first ejection hole 51. That is, since the first ejection hole 51 in the flank ejection portion 44 of the coolant ejection member 37 and the coolant supply path 36 communicate with each other via the cylinder portion 43, the coolant other than the first ejection hole 51. Leakage from the site in an unintended direction is prevented.
  • the cylindrical portion 43 of the coolant ejection member 37 surrounds the coolant flowing inside by the peripheral wall of the cylindrical portion 43, leakage of the coolant from the peripheral wall to the outside is prevented.
  • the first ejection hole 51 of the coolant ejection member 37 is different from the conventional notch of the plate-like member described in Patent Document 1 (Japanese Patent Laid-Open No. 10-76404) described above.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-76404
  • the coolant ejection member 37 has openings (inlet 43a and outlet 51a) at both ends of the flow path from the connecting portion of the cylinder portion 43 to the coolant supply path 36 to the first ejection holes 51. Except for being hermetically sealed, it is possible to reliably prevent unintended leakage of the coolant. Therefore, according to the present embodiment, a sufficient amount of coolant can be efficiently supplied to the flank 8 and the cutting edge 5 without increasing the amount of coolant supplied.
  • the coolant ejection member 37 is detachably provided at the distal end portion of the tool main body 31, the following remarkable effects are obtained. That is, as in this embodiment, when the cutting insert 1 having the cutting edge 5 is detachably attached to the tip of the tool body 31 (in the case of the blade tip replaceable cutting tool 30), a plurality of types of cutting inserts 1 are used. A plurality of types of coolant ejection members having different shapes, arrangements, sizes, etc. of the first ejection holes 51 corresponding to various shapes of the cutting edges 5 and types of cutting (hereinafter abbreviated as the shapes of the cutting edges 5). 37 can be prepared. Then, a coolant spraying member 37 having a predetermined first spraying hole 51 suitable for the shape of the predetermined cutting edge 5 of the cutting insert 1 is selected from these coolant spraying members 37 and mounted on the tool body 31. be able to.
  • the cross-sectional shape of the inlet 43 a connected to the coolant supply path 36 in the cylindrical portion 43 and the side opposite to the cylindrical portion 43 in the first ejection hole 51 are provided.
  • the cross-sectional shape of the outlet 51a located at the end (that is, the end on the cutting blade 5 side) is different from each other.
  • the cross-sectional shape of the inflow port 43a is a circular shape that can be easily connected to the coolant supply path 36 and can be easily manufactured
  • the cross-sectional shape of the outflow port 51a is the shape of a cutting edge 5
  • the coolant can be efficiently supplied to the cutting edge 5 in a V shape, a linear shape, a curved shape, or the like corresponding to.
  • the cross-sectional area of the outflow port 51a is smaller than the cross-sectional area of the inflow port 43a in the flow path of the coolant jetting member 37, the flow rate of the coolant flowing through the inflow port 43a is more circulated. The flow rate of the coolant can be increased. As a result, the coolant ejected from the outlet 51a of the first ejection hole 51 can easily enter a slight gap between the work material and the flank 8 and reach the cutting edge 5 easily. The cooling effect in the vicinity of 5 can be remarkably enhanced. Therefore, there are effects such as improvement of cutting accuracy, high efficiency of cutting, and extension of tool life (long life).
  • the cross-sectional shape of the inlet 43a of the flow path of the coolant ejection member 37 is circular
  • the cross-sectional shape of the outlet 51a is any of V-shape, linear shape, and curved shape corresponding to the shape of the cutting edge 5. If it is, the following effects are obtained. That is, in this case, since the cross-sectional shape of the inflow port 43a of the flow path is circular, the flow path is easily connected to the coolant supply path 36 and is easy to manufacture.
  • the cross-sectional shape of the outlet 51a of the flow path is any one of a V shape, a straight line shape, and a curved shape corresponding to the shape of the cutting edge 5, the coolant whose flow rate is increased as described above is cut off. The blade 5 can be supplied efficiently (without waste) and accurately.
  • the cross-sectional area of the flow path of the 1st ejection hole 51 is made constant from the connection part 51b with the inside of the cylinder part 43 in this 1st ejection hole 51 to the outflow port 51a. Yes. Therefore, the coolant flowing inside the first ejection hole 51 does not cause turbulent flow from the connection portion 51b with the cylindrical portion 43 in the first ejection hole 51 to the outlet 51a ( Without causing pressure loss), the air is ejected toward the flank 8 and the cutting edge 5 while maintaining a high flow rate. Thereby, the effect mentioned above becomes still more remarkable.
  • the cross-sectional area of the flow path inside the cylindrical portion 43 decreases from the inflow port 43a inside the cylindrical portion 43 toward the connecting portion 43b with the first ejection hole 51.
  • the coolant flowing inside the cylindrical portion 43 gradually increases the flow velocity toward the first ejection hole 51, and after flowing into the first ejection hole 51, the flow velocity is increased most. It will be. Then, the coolant is jetted toward the flank 8 and the cutting edge 5 with the flow velocity being the highest.
  • the flow path in the coolant ejection member 37 has a smaller width of the outlet 51a than the width of the inlet 43a (width of the cross section of the flow path), the pressure loss of the coolant flowing through the flow path is more effectively reduced. Can be suppressed. And the flow rate of the coolant which distribute
  • the cylinder part 43 goes to the cutting blade 5 side from the 1st ejection hole 51 as it goes to at least any one of the front end side and side of the tool main body 31 from the connection part with the coolant supply path 36. Since it is inclined and extended, the following effects are obtained. That is, in this case, the cylinder portion 43 of the coolant ejection member 37 extends in an inclined manner so that the cylinder portion 43 and the coolant supply path 36, and the cylinder portion 43 and the first ejection hole 51 intersect each other at an obtuse angle. Connected at a gentle angle, the pressure loss of the coolant flowing inside these can be reduced. As a result, it is possible to prevent the coolant supply pressure from being reduced or the flow velocity from being reduced inside the tool, and the coolant supply efficiency to the flank 8 and the cutting edge 5 can be further increased.
  • the rake face ejection part 50 in which the tip part of the tool body 31 communicates with the coolant supply path 36 and the second ejection hole 52 opened toward the rake face 7 and the cutting edge 5 is formed. Since it is provided, the following effects are achieved. In other words, in this case, the rake face ejection part 50 is provided at the tip of the tool body 31, and the coolant flowing through the coolant supply path 36 in the tool body 31 is the second ejection hole of the rake face ejection part 50. Through 52, it is ejected toward the rake face 7 and the cutting edge 5.
  • the coolant can be supplied from the first ejection hole 51 of the flank ejection portion 44 of the coolant ejection member 37 toward the flank 8 and the cutting edge 5, and the second ejection hole 52 of the rake surface ejection portion 50. Therefore, the coolant can be supplied toward the rake face 7 and the cutting edge 5. That is, the coolant can be supplied toward the cutting edge 5 from two different directions (on the rake face 7 and on the flank face 8) out of the directions orthogonal to the cutting edge 5 (the blade length direction). The coolant can surely reach the blade 5 and the cooling effect in the vicinity of the cutting blade 5 can be remarkably enhanced.
  • the flank 8 is located between the first ejection hole 51 and the cutting edge 5, and the rake face 7 is located between the second ejection hole 52 and the cutting edge 5. Therefore, the following effects are achieved. That is, in this case, the coolant ejected from the first ejection holes 51 is supplied from the direction substantially orthogonal to the cutting edge 5 through the flank 8. Further, the coolant ejected from the second ejection holes 52 is supplied from the direction substantially orthogonal to the cutting edge 5 through the rake face 7. For this reason, it becomes easy to supply coolant uniformly over the whole blade length of the cutting edge 5, and the cooling effect becomes more stable.
  • the second ejection hole 52 of the rake face ejection part 50 is engaged with, for example, a breaker shape or the like. It becomes easy to open straight toward the rake face 7 and the cutting edge 5. For this reason, the coolant ejected from the second ejection holes 52 can reach the rake face 7 and the cutting edge 5 more reliably.
  • a plurality of second ejection holes 52 are formed apart from each other at the tip of the tool body 31, and the second ejection holes 52 are directed toward the rake face 7 and the cutting edge 5.
  • the coolant is ejected. That is, coolant is supplied to the rake face 7 and the cutting edge 5 from a plurality of different directions. Therefore, the coolant can reliably reach the cutting edge 5 regardless of the discharge direction of the chips flowing from the cutting edge 5 onto the rake face 7.
  • an annular seal member such as an O-ring is attached to the outer periphery of the cylindrical portion 43 of the coolant ejection member 37, the coolant can be prevented from unintentionally flowing on the outer periphery of the cylindrical portion 43. At the same time, the coolant can be prevented from leaking to the outside such as the tool tip side or the side. Therefore, the operational effects of the present embodiment described above become more prominent. Further, since the contact member increases the contact resistance with the hole 41 of the tool main body 31 in which the cylindrical portion 43 is disposed, the coolant ejection member 37 can be easily removed from the tool main body 31 due to the coolant supply pressure or the like. Can be suppressed. In other words, the seal member can prevent the coolant ejection member 37 from coming off, and if this effect can be obtained sufficiently, the mounting screw 45 need not be provided.
  • the upper surface (at least the inner peripheral edge) of the mounting portion 40 on the extension line along the central axis C direction of the cylindrical portion 43 it is preferable that the back surface of the sheet member 35 (the back surface 3b of the cutting insert 1 when the sheet member 35 is not provided) is positioned so that these can be contacted.
  • an accommodation recess 38 communicating with the coolant supply path 36 is formed at the tip of the tool body 31, and the coolant jetting member 37 is accommodated in the accommodation recess 38. Play.
  • the coolant ejection member 37 is housed in the housing recess 38 and is prevented from protruding (projecting) greatly from the tip of the tool body 31. Therefore, the outer shape of the cutting edge replaceable cutting tool 30 can be reduced to a compact size while the above-described remarkable effects are obtained by the coolant spraying member 37, and the condition of the turning process can be achieved by mounting the coolant spraying member 37. It can also be suppressed.
  • the flank ejection portion 44 and the first ejection hole 51 are more than the cutting blade 5 of the cutting insert 1 in the tool top view when the tip portion of the tool body 31 is viewed along the vertical direction. 31 is disposed on the inner side (the base end side in the axis O direction and the inner side of the side). Therefore, while the excellent effect can be obtained by the first ejection hole 51 as described above, the flank ejection portion 44 can be prevented from interfering with the work material during turning, and the influence on the machining conditions can be prevented. Can be suppressed.
  • FIGS. 15 to 18 a blade edge replaceable cutting tool 60 according to a second embodiment of the present invention will be described with reference to FIGS. 15 to 18. Detailed description of the same components as those in the first embodiment will be omitted, and only different points will be described below.
  • the cutting edge replaceable cutting tool 60 of the present embodiment is different from the first embodiment in the sub-coolant supply path 36b of the coolant supply path 36 and the rake face ejection part 50. .
  • only one sub coolant supply path 36b is connected to the main coolant supply path 36a at the tip of the tool body 31, and the sub coolant supply paths 36b have different extending directions.
  • a plurality of linear flow paths are connected to each other.
  • the rake face ejection portion 50 is provided on the clamp piece 33 detachably attached to the tip portion of the tool body 31. That is, only one rake face ejection part 50 is provided at the tip of the tool body 31. And the 2nd ejection hole 52 is opened in the front end surface which faces the cutting-blade 5 side in the clamp piece 33 (rake face ejection part 50).
  • the clamp piece 33 is formed with a plurality of (two in the illustrated example) second ejection holes 52.
  • the second ejection hole 52 is a coolant flow path provided in the clamp piece 33 (rake face ejection portion 50), and both ends of the flow path are connected to the front end surface of the clamp piece 33 and Open to the bottom.
  • a portion of the second ejection hole 52 that opens to the bottom surface of the clamp piece 33 is connected to the sub-coolant supply passage 36b of the coolant supply passage 36, and this connection portion serves as a coolant inlet.
  • the part opened to the front end surface of the clamp piece 33 among the 2nd ejection holes 52 is made into the outflow port of a coolant.
  • the second ejection hole 52 is hermetically sealed with a wall portion around the entire flow path except for openings at both ends of the flow path (a connection portion with the coolant supply path 36 and an outlet). That is, the second ejection hole 52 is a chamber in which portions other than both end portions thereof are surrounded by the wall portion without a gap.
  • the second ejection holes 52 extend linearly toward the cutting edge 5 in the vicinity of the outlet, and are formed to extend in a curved shape or a straight line in portions other than the vicinity of the outlet.
  • the cutting insert 1 is formed in a substantially rhombic square plate shape, but the present invention is not limited to this. That is, the cutting insert 1 may have a polygonal plate shape or a disk shape other than the rectangular plate shape. Further, according to the shape of the cutting edge 5 of various cutting inserts 1, the cross-sectional shape of the first ejection hole 51 (outlet 51a thereof) may be selected from a V shape, a straight shape, and a curved shape. .
  • the cross-sectional area of the flow path in the first ejection hole 51 is constant between the connection portion 51b of the first ejection hole 51 with the inside of the cylindrical portion 43 and the outlet 51a.
  • the cross-sectional area of the flow path of the first ejection hole 51 may be gradually reduced from the connecting portion 51b of the first ejection hole 51 with the inside of the cylindrical portion 43 toward the outlet 51a.
  • the cross-sectional area of the flow path inside the cylindrical portion 43 may be constant between the inflow port 43 a and the connection portion 43 b with the first ejection hole 51.
  • the cross-sectional shape of the 1st ejection hole 51 was made constant from the connection part 51b with the inside of the cylinder part 43 in this 1st ejection hole 51 to the outflow port 51a, It is not limited.
  • the rake face ejection part 50 was formed in the projection shape in the front-end
  • the cutting insert 1 is made of cemented carbide or the like, and at least the vicinity of the cutting edge 5 (the cutting edge 5, the rake face 7 and the flank face 8) of the outer surface is a hard film such as a CVD coating film.
  • the present invention is not limited to this. That is, the cutting insert 1 is, for example, a PCD (polycrystalline diamond) sintered body or a cBN (cubic boron nitride) sintered body in a concave portion formed in a corner portion of a cemented carbide base metal (base).
  • a cutting edge chip made of an ultra-high hardness sintered body may be integrally formed by brazing or the like. In this case, the cutting edge 5, the rake face 7 and the flank face 8 of the cutting insert 1 are formed in a cutting edge tip.
  • the sheet member 35 is interposed between the back surface 3b of the cutting insert 1 and the bottom wall of the insert mounting seat 32.
  • the sheet member 35 may not be provided.
  • the back surface 3 b of the cutting insert 1 is directly seated on the bottom wall of the insert mounting seat 32.
  • the cutting edge exchangeable cutting tools 30 and 60 have been described as examples of the cutting tool.
  • the cutting tool is not limited thereto. That is, the present invention can be applied to a cutting tool that is not a blade-tip-exchangeable type, such as a brazing tool.

Abstract

To prevent coolant leakage, facilitate coolant reaching the vicinity of a cutting edge, and to enable coolant to be efficiently supplied to a flank and the cutting edge. A cutting tool provided with a coolant jetting member 37 detachably provided to a distal-end part of a tool body, wherein the coolant jetting member 37 is provided with a flank jetting part 44 in which a first jetting hole 51 opening toward a flank and a cutting edge is formed, and a cylinder part 43 formed in a cylindrical shape and internally communicated with the first jetting hole 51 and a coolant supply channel, a flow channel being formed in the coolant jetting member 37 by the insides of the first jetting hole 51 and the cylinder part 43, the cross-sectional shape of an inflow port 43a connected to the coolant supply channel in the cylinder part 43 and the cross-sectional shape of an outflow port 51a positioned in an end part on the opposite side of the first jetting hole 51 from the cylinder part 43 being mutually different in the flow channel, and the cross-sectional area of the outflow port 51a in the flow channel being smaller than the cross-sectional area of the inflow port 43a.

Description

バイトPart-Time Job
 本発明は、切れ刃近傍にクーラントを供給する構造を備えたバイトに関する。 The present invention relates to a cutting tool having a structure for supplying coolant in the vicinity of a cutting edge.
 従来のバイトとして、例えば下記特許文献1に示されるような刃先交換式バイトが知られている。刃先交換式バイトは、軸状をなす工具本体と、工具本体の先端部に着脱可能に装着される板状の切削インサートと、を備えている。切削インサートは、すくい面と、逃げ面と、すくい面と逃げ面との交差稜線部に形成された切れ刃と、を有している。 As a conventional cutting tool, for example, a cutting edge exchanging tool shown in Patent Document 1 below is known. The blade-tip-exchangeable cutting tool includes an axial tool body and a plate-shaped cutting insert that is detachably attached to the tip of the tool body. The cutting insert has a rake face, a flank face, and a cutting edge formed at a cross ridge line portion between the rake face and the flank face.
 また、工具本体の内部には、クーラント(油性又は水溶性の切削液剤)が流通する油穴(クーラント供給路)が形成され、工具本体の先端部には、凹所を有する板状部材が取り付けられている。そして、油穴から板状部材の凹所を通して、切削インサートの逃げ面に平行な方向から、クーラントが逃げ面及び切れ刃に向けて噴出する。このようなクーラント噴出方法は、いわゆるジェットクーラント法やJC法等と呼ばれる。 In addition, an oil hole (coolant supply passage) through which coolant (oil-based or water-soluble cutting fluid) flows is formed inside the tool body, and a plate-like member having a recess is attached to the tip of the tool body. It has been. Then, the coolant is ejected from the oil hole through the recess of the plate member toward the flank and the cutting edge from the direction parallel to the flank of the cutting insert. Such a coolant jetting method is called a so-called jet coolant method or JC method.
 ジェットクーラント法によれば、例えば外部給油や、内部給油であってもすくい面上から切れ刃に向けてクーラントを供給する場合に比べて、切屑の影響等を受けにくくすることができ、クーラントを切れ刃に到達させやすくなる。このため、切れ刃の冷却効率を高めることができ、インサート寿命の長寿命化や切削加工の高効率化を期待することができる。 According to the jet coolant method, for example, external coolant or internal coolant can be made less susceptible to chips compared to the case of supplying coolant from the rake face toward the cutting edge. It becomes easier to reach the cutting edge. For this reason, it is possible to increase the cooling efficiency of the cutting edge, and to expect a longer insert life and higher efficiency of the cutting process.
特開平10-76404号公報JP-A-10-76404
 しかしながら、上記従来の刃先交換式バイトでは、工具本体の先端部と板状部材との間から、クーラントが意図しない向きに漏出する。このため、クーラントを効率よく逃げ面及び切れ刃に供給することができず、この点に改善の余地があった。
 また、例えばノーズRの大きさ等、切れ刃形状が互いに異なる複数種類の切削インサートの中から所定の切削インサートを選択して、工具本体に装着し旋削加工する場合がある。このような場合に、切れ刃形状が種々に設定された各切削インサートの逃げ面及び切れ刃に対して、クーラントを精度よく安定的に供給することが難しかった。
 また切削加工の種類に応じて、逃げ面及び切れ刃の所定の部位に対して、クーラントを高精度に安定して供給することも要求されていた。
However, in the above-described conventional cutting edge-exchangeable cutting tool, the coolant leaks in an unintended direction from between the tip of the tool body and the plate-like member. For this reason, the coolant cannot be efficiently supplied to the flank and the cutting edge, and there is room for improvement in this respect.
In some cases, a predetermined cutting insert is selected from a plurality of types of cutting inserts having different cutting edge shapes, such as the size of the nose R, and mounted on the tool body for turning. In such a case, it has been difficult to supply coolant accurately and stably to the flank and cutting edge of each cutting insert having various cutting edge shapes.
In addition, depending on the type of cutting, it has also been required to stably supply the coolant with high accuracy to predetermined portions of the flank and the cutting edge.
 また、クーラントをより確実に切れ刃近傍に到達させやすくする点に改善の余地があった。 Also, there was room for improvement in terms of making it easier for the coolant to reach the vicinity of the cutting edge.
 本発明は、このような事情に鑑みてなされたものであって、クーラントの漏出を防止し、かつクーラントを切れ刃近傍に到達させやすくして、クーラントを逃げ面及び切れ刃に効率よく供給できるバイトを提供することを目的としている。 The present invention has been made in view of such circumstances, and can prevent coolant from leaking out, facilitate the coolant to reach the vicinity of the cutting edge, and efficiently supply the coolant to the flank and cutting edge. The purpose is to provide bytes.
 本発明の一態様は、軸状をなし、内部にクーラント供給路が形成された工具本体と、前記工具本体の先端部に配置され、すくい面と逃げ面との交差稜線部に形成された切れ刃と、前記工具本体の先端部に着脱可能に設けられたクーラント噴出部材と、を備えたバイトであって、前記クーラント噴出部材は、前記逃げ面及び前記切れ刃に向けて開口する第1の噴出孔が形成された逃げ面噴出部と、筒状をなし、内部が前記第1の噴出孔及び前記クーラント供給路に連通する筒部と、を備え、前記クーラント噴出部材内には、前記第1の噴出孔と前記筒部の内部とにより流路が形成され、前記流路のうち、前記筒部において前記クーラント供給路に接続する流入口の断面形状と、前記第1の噴出孔において前記筒部とは反対側の端部に位置する流出口の断面形状とが、互いに異なっており、前記流路は、前記流入口の断面積に比べて、前記流出口の断面積が小さいことを特徴とする。 One aspect of the present invention is a tool main body having a shaft shape and having a coolant supply passage formed therein, and a cut formed at a cross ridge line portion between a rake face and a flank face. A cutting tool including a blade and a coolant jetting member detachably provided at a tip of the tool body, wherein the coolant jetting member opens to the flank and the cutting blade. A flank jet part formed with a jet hole, and a cylindrical part that has a cylindrical shape and communicates with the first jet hole and the coolant supply path; and in the coolant jet member, A flow path is formed by one ejection hole and the inside of the cylindrical portion, and the cross-sectional shape of the inlet connected to the coolant supply path in the cylindrical portion of the flow path, and the first ejection hole Located at the end opposite the tube And a cross-sectional shape of the outlet, are different from each other, the flow path, as compared to the cross-sectional area of said inlet, and wherein the cross-sectional area of the outlet is small.
 本発明のバイトによれば、工具本体の先端部に、クーラント噴出部材が配設されており、工具本体内のクーラント供給路を流れるクーラントは、該クーラント噴出部材の筒部内及び第1の噴出孔を通して、逃げ面及び切れ刃に向けて噴出させられる。
 つまり、クーラント噴出部材の逃げ面噴出部における第1の噴出孔と、クーラント供給路とが、筒部を介して連通しているので、クーラントが第1の噴出孔以外の部位から意図しない向きに漏出することが防止される。
According to the cutting tool of the present invention, the coolant spray member is disposed at the tip of the tool body, and the coolant flowing through the coolant supply path in the tool body is in the cylinder portion of the coolant spray member and the first spray hole. And is ejected toward the flank and cutting edge.
In other words, since the first ejection hole in the flank ejection portion of the coolant ejection member and the coolant supply path communicate with each other via the cylindrical portion, the coolant is directed in an unintended direction from a portion other than the first ejection hole. Leakage is prevented.
 詳しくは、クーラント噴出部材の筒部は、該筒部の周壁によって内部を流れるクーラントを囲っているので、この周壁から外部へのクーラントの漏出が防止される。また、クーラント噴出部材の第1の噴出孔は、上述した特許文献1に記載の従来の板状部材の凹所等の切り欠きとは異なり、例えばV字状に開口する「孔」であるから、環状の開口周縁を有している。このような環状の開口周縁が形成されていることで、当該噴出孔以外の部位からのクーラントの漏出が防止される。 More specifically, since the cylindrical portion of the coolant jet member surrounds the coolant flowing inside by the peripheral wall of the cylindrical portion, leakage of the coolant from the peripheral wall to the outside is prevented. Further, the first ejection hole of the coolant ejection member is, for example, a “hole” that opens in a V shape, unlike a notch such as a recess of the conventional plate-like member described in Patent Document 1 described above. And has an annular opening periphery. By forming such an annular opening peripheral edge, leakage of coolant from a portion other than the ejection hole is prevented.
 このようにクーラント噴出部材は、筒部におけるクーラント供給路との接続部分から第1の噴出孔までの流路が、流路両端の開口部(流入口及び流出口)を除いて密閉状に形成されているので、クーラントの意図しない漏出を確実に防止できる。
 従って、本発明によれば、クーラントの供給量を増大させることなく十分な量のクーラントを、逃げ面及び切れ刃に効率よく供給することができる。
As described above, in the coolant ejection member, the flow path from the connection portion with the coolant supply path in the cylinder portion to the first ejection hole is formed in a sealed shape except for the openings (inlet and outlet) at both ends of the flow path. Therefore, it is possible to reliably prevent unintended leakage of the coolant.
Therefore, according to the present invention, a sufficient amount of coolant can be efficiently supplied to the flank and the cutting edge without increasing the amount of coolant supplied.
 また、クーラント噴出部材は、工具本体の先端部に着脱可能に設けられているので、下記の顕著な作用効果を奏する。
 例えば、工具本体の先端部に、切れ刃を有する切削インサートが着脱可能に装着される場合(刃先交換式バイトの場合)等において、複数種類の切削インサートの種々の切れ刃形状や切削加工の種類(以下、切れ刃形状等と省略)に対応して、第1の噴出孔の形状、配置、大きさ等が互いに異なる複数種類のクーラント噴出部材を用意しておくことが可能である。そして、これらのクーラント噴出部材の中から、切削インサートの所定の切れ刃形状に適した所定の第1の噴出孔を有するクーラント噴出部材を選択して、工具本体に装着することができる。
Moreover, since the coolant ejection member is detachably provided at the tip portion of the tool body, the following remarkable effects are obtained.
For example, when a cutting insert having a cutting edge is detachably attached to the tip of the tool body (in the case of a cutting edge exchangeable cutting tool), various cutting edge shapes and types of cutting processing of multiple types of cutting inserts Corresponding to (hereinafter abbreviated as cutting edge shape and the like), it is possible to prepare a plurality of types of coolant ejection members having different shapes, arrangements, sizes, etc. of the first ejection holes. And the coolant injection member which has a predetermined 1st injection hole suitable for the predetermined cutting-edge shape of a cutting insert from these coolant injection members can be selected, and it can mount | wear with a tool main body.
 つまり、各種の切れ刃形状等に対応して、最適形状とされた第1の噴出孔を有するクーラント噴出部材を適宜選択し用いることが可能になる。
 従って、切れ刃形状等に係わらず、逃げ面及び切れ刃に向けてクーラントを精度よく安定して供給することができる。
That is, it is possible to appropriately select and use the coolant ejection member having the first ejection hole having an optimum shape corresponding to various cutting edge shapes and the like.
Therefore, the coolant can be supplied accurately and stably toward the flank and the cutting edge regardless of the shape of the cutting edge.
 また、クーラント噴出部材内に形成された流路のうち、筒部においてクーラント供給路に接続する流入口の断面形状と、第1の噴出孔において筒部とは反対側の端部(つまり切れ刃側の端部)に位置する流出口の断面形状とが、互いに異なっている。
 このため、例えば、流入口の断面形状については、クーラント供給路に接続しやすく製造もしやすい円形状とし、流出口の断面形状については、切れ刃形状に対応したV字状、直線状、曲線状等として、クーラントを切れ刃に効率よく供給することができる。
In addition, among the flow paths formed in the coolant ejection member, the cross-sectional shape of the inlet connected to the coolant supply path in the cylindrical portion and the end opposite to the cylindrical portion in the first ejection hole (that is, the cutting edge) The cross-sectional shapes of the outlets located at the end of the side are different from each other.
For this reason, for example, the cross-sectional shape of the inflow port is a circular shape that can be easily connected to the coolant supply passage and is easy to manufacture, and the cross-sectional shape of the outflow port is a V shape, a straight line shape, a curved shape corresponding to the cutting edge shape. For example, the coolant can be efficiently supplied to the cutting edge.
 また、クーラント噴出部材の流路のうち、流入口の断面積に比べて、流出口の断面積が小さいので、流入口を流通するクーラントの流速よりも、流出口を流通するクーラントの流速を高めることができる。これにより、第1の噴出孔の流出口から噴出させられたクーラントが、被削材と逃げ面との僅かな隙間に進入しやすくなるとともに切れ刃まで到達しやすくなり、切れ刃近傍の冷却効果を格別顕著に高めることができる。従って、切削精度の向上、切削加工の高効率化、工具寿命の延長(長寿命化)等の効果を奏する。 Moreover, since the cross-sectional area of the outflow port is smaller than the cross-sectional area of the inflow port in the flow path of the coolant ejection member, the flow rate of the coolant flowing through the outflow port is made higher than the flow rate of the coolant flowing through the inflow port. be able to. As a result, the coolant ejected from the outlet of the first ejection hole can easily enter the slight gap between the work material and the flank and can easily reach the cutting edge. Can be raised remarkably. Therefore, there are effects such as improvement of cutting accuracy, high efficiency of cutting, and extension of tool life (long life).
 また、上記バイトにおいて、前記流入口の断面形状が、円形状であり、前記流出口の断面形状が、前記切れ刃の形状に対応するV字状、直線状及び曲線状のいずれかであることが好ましい。 Moreover, in the cutting tool, the cross-sectional shape of the inflow port is a circular shape, and the cross-sectional shape of the outflow port is any one of a V shape, a linear shape, and a curved shape corresponding to the shape of the cutting edge. Is preferred.
 この場合、流路の流入口の断面形状が、円形状であるので、流路をクーラント供給路に接続しやすく、製造もしやすい。また、流路の流出口の断面形状が、切れ刃の形状に対応したV字状、直線状及び曲線状のいずれかであるので、上述のように流速が高められたクーラントを、切れ刃に効率よく(無駄なく)正確に供給することができる。 In this case, since the cross-sectional shape of the inlet of the flow path is circular, the flow path is easy to connect to the coolant supply path and is easy to manufacture. In addition, since the cross-sectional shape of the outlet of the flow path is one of a V shape, a straight line shape, and a curved shape corresponding to the shape of the cutting edge, the coolant with the increased flow velocity as described above is used as the cutting edge. It can be supplied efficiently (without waste) and accurately.
 また、上記バイトにおいて、前記第1の噴出孔における流路の断面積が、前記筒部の内部との接続部分から前記流出口までの間で一定であることが好ましい。 Further, in the bite, it is preferable that a cross-sectional area of the flow path in the first ejection hole is constant from a connection portion with the inside of the cylindrical portion to the outlet.
 この場合、第1の噴出孔の流路の断面積が、該第1の噴出孔における筒部の内部との接続部分から流出口までの間で一定とされている。従って、第1の噴出孔の内部を流れるクーラントは、該第1の噴出孔における筒部との接続部分から流出口に至るまでの間で、乱流を生じさせることなく(圧力損失を生じさせることなく)、高い流速を維持したまま逃げ面及び切れ刃に向けて噴出させられる。これにより、上述した作用効果がさらに顕著なものとなる。 In this case, the cross-sectional area of the flow path of the first ejection hole is constant between the connection portion with the inside of the cylindrical portion in the first ejection hole and the outlet. Therefore, the coolant flowing in the first ejection hole does not cause turbulent flow (causes pressure loss) from the connection portion with the cylindrical portion in the first ejection hole to the outlet. Without) and being ejected toward the flank and cutting edge while maintaining a high flow rate. Thereby, the effect mentioned above becomes still more remarkable.
 なお、本発明でいう「流路の断面積が一定」とは、クーラント噴出部材の製造時において、第1の噴出孔を成形する金型を引き抜くために製造上付与される抜き勾配(抜きテーパ)を許容して定義されるものである。具体的には、第1の噴出孔の流路のうち、筒部の内部との接続部分における断面積の大きさに対する、流出口における断面積の大きさの割合が、100~120%の範囲であることを「流路の断面積が一定」と定義する。 The term “the cross-sectional area of the flow path is constant” as used in the present invention means that a draft angle (drawing taper) that is imparted in the manufacture in order to pull out the mold for forming the first injection hole during manufacture of the coolant injection member. ) Is defined. Specifically, the ratio of the size of the cross-sectional area at the outlet to the size of the cross-sectional area at the connection portion with the inside of the cylindrical portion in the flow path of the first ejection hole is in the range of 100 to 120%. This is defined as “the cross-sectional area of the flow path is constant”.
 また、上記バイトにおいて、前記筒部の内部における流路の断面積が、前記流入口から前記第1の噴出孔との接続部分に向かうに従い小さくなることが好ましい。 Moreover, in the cutting tool, it is preferable that the cross-sectional area of the flow path inside the cylindrical portion becomes smaller from the inflow port toward the connection portion with the first ejection hole.
 この場合、筒部の内部を流れるクーラントが、第1の噴出孔へ向かうに従い徐々に流速を高めていき、該第1の噴出孔の内部に流入した後、最も流速が高められることになる。そしてクーラントは、最も流速が高められた状態のまま、逃げ面及び切れ刃に向けて噴出させられる。 In this case, the coolant flowing inside the cylindrical portion gradually increases the flow velocity toward the first ejection hole, and after flowing into the first ejection hole, the flow velocity is increased most. Then, the coolant is ejected toward the flank and the cutting edge while the flow velocity is most increased.
 つまり上記構成によれば、クーラント噴出部材内の流路が、例えば従来のように狭められた後で広げられるようなことがないため、クーラント噴出部材内の流路を流れるクーラントの圧力損失が流入口から流出口までの全域にわたって小さく抑えられて、クーラントの供給効率が格別顕著に高められる。 In other words, according to the above configuration, the flow path in the coolant ejection member is not expanded after being narrowed, for example, as in the prior art, so that the pressure loss of the coolant flowing through the flow path in the coolant ejection member flows. The coolant supply efficiency is remarkably increased by keeping the entire area from the inlet to the outlet small.
 また、上記バイトにおいて、前記流路は、前記流入口の幅に比べて、前記流出口の幅が小さいことが好ましい。 Moreover, in the cutting tool, it is preferable that the flow path has a smaller width of the outlet than the width of the inlet.
 この場合、クーラント噴出部材の流路のうち、流入口の幅(流路断面の幅)に比べて、流出口の幅が小さいので、流路を流れるクーラントの圧力損失をより効果的に抑えることができる。そして、流入口を流通するクーラントの流速よりも、流出口を流通するクーラントの流速を顕著に高めて、切れ刃にクーラントを確実に到達させることができる。 In this case, since the width of the outlet is smaller than the width of the inlet (width of the cross section of the channel) in the flow path of the coolant jetting member, the pressure loss of the coolant flowing through the flow path is more effectively suppressed. Can do. And the flow rate of the coolant which distribute | circulates an outflow port can be remarkably raised rather than the flow rate of the coolant which distribute | circulates an inflow port, and a coolant can be made to reach a cutting edge reliably.
 また、上記バイトにおいて、前記筒部は、前記クーラント供給路との接続部分から前記工具本体の先端側及び側方のうち少なくともいずれかに向かうに従い、前記第1の噴出孔から前記切れ刃側へ向かって傾斜して延びていることが好ましい。 Further, in the cutting tool, the cylindrical portion extends from the first ejection hole to the cutting edge side as it goes from the connection portion with the coolant supply path to at least one of the tip side and the side of the tool body. It is preferable to extend inclined.
 この場合、クーラント噴出部材の筒部が傾斜して延びており、筒部とクーラント供給路、及び、筒部と第1の噴出孔が、それぞれ鈍角に交差するように緩やかな角度で接続されて、これらの内部を流れるクーラントの圧力損失を低減することができる。これにより、バイトの内部でクーラント供給圧が減圧したり流速が低下してしまうことを防止でき、逃げ面及び切れ刃へのクーラントの供給効率をさらに高めることができる。 In this case, the cylinder part of the coolant ejection member extends in an inclined manner, and the cylinder part and the coolant supply path, and the cylinder part and the first ejection hole are connected at a gentle angle so as to intersect each obtuse angle. The pressure loss of the coolant flowing inside these can be reduced. Accordingly, it is possible to prevent the coolant supply pressure from being reduced or the flow velocity from being lowered inside the cutting tool, and to further increase the efficiency of supplying the coolant to the flank and the cutting edge.
 また、上記バイトにおいて、前記工具本体の先端部には、前記クーラント供給路に連通し、前記すくい面及び前記切れ刃に向けて開口する第2の噴出孔が形成されたすくい面噴出部が備えられることが好ましい。 In the cutting tool, a rake face jetting portion is provided at a tip portion of the tool main body. The rake face jetting portion includes a second jetting hole that communicates with the coolant supply path and opens toward the rake face and the cutting edge. It is preferred that
 この場合、工具本体の先端部には、すくい面噴出部が備えられており、工具本体内のクーラント供給路を流れるクーラントは、該すくい面噴出部の第2の噴出孔を通して、すくい面及び切れ刃に向けて噴出させられる。 In this case, the tip portion of the tool body is provided with a rake face ejection portion, and the coolant flowing through the coolant supply passage in the tool body passes through the second ejection hole of the rake face ejection portion, and the rake face and the cutting edge. It is ejected toward the blade.
 従って、クーラント噴出部材の逃げ面噴出部の第1の噴出孔から、逃げ面及び切れ刃に向けてクーラントを供給でき、かつ、すくい面噴出部の第2の噴出孔から、すくい面及び切れ刃に向けてクーラントを供給できる。
 つまり、切れ刃(の刃長方向)に直交する方向のうち、異なる2方向(すくい面上及び逃げ面上)から、切れ刃に向けてクーラントを供給することができるので、切れ刃に対して確実にクーラントを到達させることができ、切れ刃近傍の冷却効果を格別顕著に高めることができる。
Accordingly, the coolant can be supplied from the first ejection hole of the flank ejection portion of the coolant ejection member toward the flank and the cutting edge, and the rake surface and the cutting edge can be supplied from the second ejection hole of the rake surface ejection section. Coolant can be supplied toward
That is, since coolant can be supplied toward the cutting edge from two different directions (on the rake face and the flank face) out of the directions orthogonal to the cutting edge (the blade length direction), The coolant can be surely reached, and the cooling effect in the vicinity of the cutting edge can be remarkably enhanced.
 本発明のバイトによれば、クーラントの漏出を防止し、かつクーラントを切れ刃近傍に到達させやすくして、クーラントを逃げ面及び切れ刃に効率よく供給できる。 According to the cutting tool of the present invention, the coolant can be prevented from leaking out, and the coolant can be easily reached near the cutting edge, so that the coolant can be efficiently supplied to the flank and the cutting edge.
本発明の第1実施形態に係る刃先交換式バイトを示す斜視図である。It is a perspective view which shows the blade-tip-exchange-type cutting tool concerning 1st Embodiment of this invention. 刃先交換式バイトの上面図である。It is a top view of a blade-tip-exchange-type tool. 刃先交換式バイトの側面図である。It is a side view of a blade-tip-exchange-type tool. 刃先交換式バイトの要部を拡大して示す斜視図である。It is a perspective view which expands and shows the principal part of a blade-tip-exchange-type cutting tool. 刃先交換式バイトの要部を拡大して示す上面図である。It is a top view which expands and shows the principal part of a blade-tip-exchange-type cutting tool. 刃先交換式バイトの要部を拡大して示す側面図である。It is a side view which expands and shows the principal part of a blade-tip-exchange-type cutting tool. 刃先交換式バイトの要部を拡大して示す正面図である。It is a front view which expands and shows the principal part of a blade-tip-exchange-type cutting tool. クーラント噴出部材を示す上面図である。It is a top view which shows a coolant ejection member. クーラント噴出部材を示す正面図である。It is a front view which shows a coolant ejection member. クーラント噴出部材を示す下面図である。It is a bottom view which shows a coolant ejection member. クーラント噴出部材を示す側面図である。It is a side view which shows a coolant ejection member. 図11のB矢視を示す図である。It is a figure which shows B arrow of FIG. 図9のA-A断面を示す図である。FIG. 10 is a view showing an AA cross section of FIG. 9. 図13のD-D断面を示す図である。It is a figure which shows the DD cross section of FIG. 本発明の第2実施形態に係る刃先交換式バイトの要部を拡大して示す斜視図である。It is a perspective view which expands and shows the principal part of the blade-tip-exchange-type cutting tool which concerns on 2nd Embodiment of this invention. 刃先交換式バイトの要部を拡大して示す上面図である。It is a top view which expands and shows the principal part of a blade-tip-exchange-type cutting tool. 刃先交換式バイトの要部を拡大して示す側面図である。It is a side view which expands and shows the principal part of a blade-tip-exchange-type cutting tool. 刃先交換式バイトの要部を拡大して示す正面図である。It is a front view which expands and shows the principal part of a blade-tip-exchange-type cutting tool.
<第1実施形態>
 以下、本発明の第1実施形態に係るバイトである刃先交換式バイト30について、図1~図14を参照して説明する。
 本実施形態の刃先交換式バイト30は、金属材料等からなる被削材に旋削加工(切削加工)を施す旋削工具(切削工具)である。
<First Embodiment>
Hereinafter, the cutting edge replaceable cutting tool 30, which is a cutting tool according to the first embodiment of the present invention, will be described with reference to FIGS.
The cutting edge replaceable cutting tool 30 of this embodiment is a turning tool (cutting tool) that performs a turning process (cutting process) on a work material made of a metal material or the like.
〔刃先交換式バイトの概略構成〕
 図1~図7に示されるように、刃先交換式バイト30は、例えば超硬合金等からなる切削インサート1と、鋼材等からなり切削インサート1が着脱可能に装着される工具本体31と、を備えている。
 工具本体31は、軸状をなしている。切削インサート1は、板状をなしており、工具本体31の先端部に形成されたインサート取付座32に配置される。また、切削インサート1は、すくい面7と、逃げ面8と、すくい面7と逃げ面8との交差稜線部に形成された切れ刃5と、を備える。切れ刃5は、工具本体31の先端から突出するように配置される。
[Schematic configuration of cutting edge replaceable tool]
As shown in FIG. 1 to FIG. 7, the cutting edge replaceable cutting tool 30 includes, for example, a cutting insert 1 made of cemented carbide or the like, and a tool body 31 made of steel or the like to which the cutting insert 1 is detachably mounted. I have.
The tool main body 31 has an axial shape. The cutting insert 1 has a plate shape and is disposed on an insert mounting seat 32 formed at the tip of the tool body 31. Further, the cutting insert 1 includes a rake face 7, a flank face 8, and a cutting edge 5 formed at a cross ridge line portion between the rake face 7 and the flank face 8. The cutting edge 5 is disposed so as to protrude from the tip of the tool body 31.
 本実施形態の刃先交換式バイト30によって旋削加工する被削材は、例えば軸状、柱状、円盤状等をなしている。旋削加工時には、被削材をその中心軸線回りの被削材回転方向に回転させつつ、刃先交換式バイト30の切れ刃5を被削材の加工部位(加工面)に接触させて、バイト30は被削材に切り込んでいく。
 刃先交換式バイト30は、被削材の外周面や内周面に周面加工を施したり、被削材の中心軸線方向を向く端面に端面加工を施したりする。
The work material to be turned by the cutting edge replaceable cutting tool 30 of the present embodiment has, for example, a shaft shape, a column shape, a disk shape, or the like. At the time of turning, the cutting edge 5 of the cutting edge replaceable cutting tool 30 is brought into contact with the processing portion (working surface) of the work material while rotating the work material in the direction of rotation of the work material around its central axis. Cut into the work material.
The cutting edge replaceable cutting tool 30 performs peripheral surface processing on the outer peripheral surface and inner peripheral surface of the work material, and performs end surface processing on the end surface facing the central axis direction of the work material.
〔工具本体〕
 本実施形態の例では、工具本体31が角棒状をなしており、その軸線Oに垂直な断面が四角形状に形成されている。工具本体31の軸線O方向に沿う両端部のうち、一端部(先端部)は、切削加工時において被削材の加工面に接近配置され、他端部を含む前記一端部以外の部位は、不図示の工作機械に着脱可能に取り付けられる。
(Tool body)
In the example of the present embodiment, the tool main body 31 has a rectangular bar shape, and a cross section perpendicular to the axis O is formed in a square shape. Of both end portions along the axis O direction of the tool body 31, one end portion (tip end portion) is disposed close to the processing surface of the work material at the time of cutting, and portions other than the one end portion including the other end portion are: It is detachably attached to a machine tool (not shown).
 工具本体31の内部には、クーラント供給路36が形成されている(図4~図7を参照)。
 また、工具本体31の先端部は、該先端部以外の部位(角棒状の本体部分)よりも、軸線Oに直交する方向のうち工具の幅方向及び高さ方向の大きさが、それぞれ大きくされている。
A coolant supply path 36 is formed inside the tool body 31 (see FIGS. 4 to 7).
In addition, the tool body 31 has a distal end portion that is larger in size in the width direction and the height direction in the direction perpendicular to the axis O than a portion other than the distal end portion (square bar-shaped body portion). ing.
 工具本体31の先端部には、切削インサート1が着脱可能に装着される凹状のインサート取付座32と、インサート取付座32に切削インサート1を固定(クランプ)するクランプ駒33及びクランプねじ34(クランプ機構)と、該先端部に着脱可能に設けられるクーラント噴出部材37と、該先端部に凹状に形成されてクーラント供給路36に連通するとともに、クーラント噴出部材37が配置(収容)される収容凹部38と、が備えられている。 A concave insert mounting seat 32 to which the cutting insert 1 is detachably attached, and a clamp piece 33 and a clamp screw 34 (clamp) for fixing (clamping) the cutting insert 1 to the insert mounting seat 32 are attached to the tip of the tool body 31. Mechanism), a coolant ejection member 37 that is detachably provided at the tip, and a recess that is formed in a recess at the tip and communicates with the coolant supply path 36 and in which the coolant spray member 37 is disposed (accommodated). 38.
〔本実施形態で用いる向きの定義〕
 本実施形態では、刃先交換式バイト30の工具本体31の軸線Oが延在する方向(軸線Oに沿う方向)を軸線O方向という。軸線O方向のうち、工具本体31において切削インサート1が配置される端部(一端部)から工作機械に支持される端部(他端部)へ向かう方向を基端側といい、これとは反対の方向を先端側という。
[Definition of orientation used in this embodiment]
In this embodiment, the direction (direction along the axis O) in which the axis O of the tool main body 31 of the cutting edge replaceable cutting tool 30 extends is referred to as the axis O direction. Of the axis O direction, the direction from the end (one end) where the cutting insert 1 is disposed in the tool body 31 to the end (the other end) supported by the machine tool is referred to as the base end side. The opposite direction is called the tip side.
 また、工具本体31の軸線Oに直交する方向を工具径方向という。工具径方向のうち、切削インサート1のすくい面7が向く方向を上方といい、これとは反対の方向を下方といい、上方及び下方(上下方向)に垂直な方向を側方という。なお、工具の上下方向を高さ方向といい、工具の側方を幅方向という場合がある。
 ただし、旋削加工時においては、刃先交換式バイト30の工具本体31は、インサート取付座32に配設された切削インサート1のすくい面7が鉛直方向の下方を向くように、工作機械に装着される。
 また、工具本体31の軸線O回りに周回する方向を工具周方向という。
A direction perpendicular to the axis O of the tool body 31 is referred to as a tool radial direction. Of the tool radial direction, the direction in which the rake face 7 of the cutting insert 1 faces is referred to as “upward”, the opposite direction is referred to as “downward”, and the direction perpendicular to the upper and lower (up and down directions) is referred to as “side”. The vertical direction of the tool may be referred to as the height direction, and the side of the tool may be referred to as the width direction.
However, at the time of turning, the tool main body 31 of the cutting edge replaceable cutting tool 30 is mounted on the machine tool such that the rake face 7 of the cutting insert 1 disposed on the insert mounting seat 32 faces downward in the vertical direction. The
In addition, a direction around the axis O of the tool body 31 is referred to as a tool circumferential direction.
 切削インサート1のインサート軸線(クランプ駒33に係止される取付孔6の中心軸)が延在する方向(インサート軸線に沿う方向)をインサート軸線方向という。
 また、インサート軸線に直交する方向をインサート径方向といい、インサート軸線回りに周回する方向をインサート周方向という。
 本実施形態の例では、切削インサート1のインサート軸線が、工具本体31の上下方向に対して僅かに傾斜している。
The direction (direction along the insert axis) in which the insert axis of the cutting insert 1 (the central axis of the mounting hole 6 locked to the clamp piece 33) extends is referred to as the insert axis direction.
Moreover, the direction orthogonal to the insert axis is referred to as the insert radial direction, and the direction around the insert axis is referred to as the insert circumferential direction.
In the example of this embodiment, the insert axis of the cutting insert 1 is slightly inclined with respect to the vertical direction of the tool body 31.
〔インサート取付座〕
 図4~図7において、インサート取付座32は、切削インサート1の形状に対応する凹状をなしている。本実施形態の例では、切削インサート1が略菱形の四角形板状に形成されているのに対応して、インサート取付座32は、工具本体31の先端部において軸線O方向の先端側、上方、及び側方(のうち一方)へ向けて開口する略菱形の四角形穴状をなしている。
(Insert mounting seat)
4 to 7, the insert mounting seat 32 has a concave shape corresponding to the shape of the cutting insert 1. In the example of the present embodiment, the insert mounting seat 32 corresponds to the cutting insert 1 having a substantially rhombic rectangular plate shape, the tip end of the tool main body 31 in the direction of the axis O, upward, In addition, a substantially rhomboid quadrangular hole that opens toward one side (one of them) is formed.
 インサート取付座32は、切削インサート1の着座面(切削インサート1においてインサート軸線方向を向く表裏面3のうち、裏面3b)に略平行に形成された底壁と、この底壁上に着脱可能に設けられるとともに、該底壁と切削インサート1との間に介装されるシート部材35と、切削インサート1の外周面4に当接する一対の側壁と、を有している。 The insert mounting seat 32 is detachably mounted on the bottom wall formed substantially parallel to the seating surface of the cutting insert 1 (the back surface 3b of the front and back surfaces 3 facing the insert axial direction in the cutting insert 1). The sheet member 35 is provided between the bottom wall and the cutting insert 1 and has a pair of side walls that contact the outer peripheral surface 4 of the cutting insert 1.
 インサート取付座32の底壁は、略菱形の四角形面状をなしており、インサート取付座32の一対の側壁は、略長方形の四角形面状をそれぞれなしている。一対の側壁は、互いの間に凹となる鋭角を形成するように交差(接続)しているとともに、底壁に対しては垂直に交差して、該底壁から立ち上がっている。 The bottom wall of the insert mounting seat 32 has a substantially rhomboid quadrangular surface shape, and the pair of side walls of the insert mounting seat 32 has a substantially rectangular quadrangular surface shape. The pair of side walls intersect (connect) so as to form an acute angle that is concave between each other, and perpendicularly intersect the bottom wall and rise from the bottom wall.
 シート部材35は、例えば超硬合金等により形成されている。シート部材35は、略菱形の四角形板状をなしている。シート部材35における表裏面のうち、裏面は、インサート取付座32の底壁に当接する。シート部材35における表裏面のうち、表面は、切削インサート1の着座面(裏面3b)が着座させられる取付面とされる。 The sheet member 35 is formed of, for example, a cemented carbide. The sheet member 35 has a substantially rhombic square plate shape. Of the front and back surfaces of the sheet member 35, the back surface is in contact with the bottom wall of the insert mounting seat 32. Of the front and back surfaces of the sheet member 35, the front surface is a mounting surface on which the seating surface (back surface 3 b) of the cutting insert 1 is seated.
 シート部材35は、図示しない皿ねじ等により、インサート取付座32の底壁に取り付けられる。本実施形態の例では、シート部材35の外周面のうち下方部分が、下方へ向かうに従いインサート径方向の内側へ向けて傾斜している。
 また、シート部材35の外周面のうち、クーラント噴出部材37の後述する第1の噴出孔51の直上に位置する部分には、クーラント案内凹部39が形成されている。クーラント案内凹部39のインサート周方向に沿う幅は、上方へ向かうに従い狭くなる。また、クーラント案内凹部39のインサート径方向に沿う深さは、上方へ向かうに従い浅くなる。
The sheet member 35 is attached to the bottom wall of the insert mounting seat 32 by a countersunk screw or the like (not shown). In the example of the present embodiment, the lower portion of the outer peripheral surface of the sheet member 35 is inclined inward in the insert radial direction as it goes downward.
In addition, a coolant guide recess 39 is formed in a portion of the outer peripheral surface of the sheet member 35 that is located immediately above a first ejection hole 51 described later of the coolant ejection member 37. The width along the insert circumferential direction of the coolant guide recess 39 becomes narrower as it goes upward. Further, the depth of the coolant guide recess 39 along the insert radial direction becomes shallower as it goes upward.
〔クランプ機構〕
 刃先交換式バイト30は、クランプ駒33及びクランプねじ34を含むクランプ機構を備えている。クランプ駒33には、切削インサート1をインサート軸線方向に貫通する取付孔6内に挿入され、該取付孔6の内周面に係止される爪部が形成されている。また、クランプ駒33には、クランプねじ34が挿通される貫通孔が形成されており、該貫通孔内に挿入されたクランプねじ34は、工具本体31の先端部に形成された雌ねじ孔に螺着される。
[Clamp mechanism]
The cutting edge replaceable cutting tool 30 includes a clamp mechanism including a clamp piece 33 and a clamp screw 34. The clamp piece 33 is formed with a claw portion that is inserted into the mounting hole 6 penetrating the cutting insert 1 in the insert axial direction and is locked to the inner peripheral surface of the mounting hole 6. The clamp piece 33 is formed with a through hole into which the clamp screw 34 is inserted. The clamp screw 34 inserted into the through hole is screwed into a female screw hole formed at the distal end portion of the tool body 31. Worn.
 工具本体31の雌ねじ孔にクランプねじ34をねじ込んでいくことにより、クランプ駒33は、切削インサート1をインサート取付座32のシート部材35に向けて押圧し、かつ切削インサート1を、インサート取付座32の一対の側壁に向けて(工具本体31の内部へ向けて)引き込むように押圧する。これによりクランプ機構は、インサート取付座32に対する切削インサート1の移動を規制して、該切削インサート1をクランプ(固定)する。 By inserting the clamp screw 34 into the female screw hole of the tool body 31, the clamp piece 33 presses the cutting insert 1 toward the sheet member 35 of the insert mounting seat 32, and the cutting insert 1 is inserted into the insert mounting seat 32. Are pressed toward the pair of side walls (toward the inside of the tool body 31). Accordingly, the clamp mechanism regulates the movement of the cutting insert 1 relative to the insert mounting seat 32 and clamps (fixes) the cutting insert 1.
〔クーラント供給路〕
 クーラント供給路36は、工具本体31の内部に形成されたクーラント(油性又は水溶性の切削液剤)の流路である。クーラント供給路36には、刃先交換式バイト30の外部に設けられた不図示のクーラント供給手段が接続される。
[Coolant supply path]
The coolant supply path 36 is a coolant (oil-based or water-soluble cutting fluid) channel formed inside the tool body 31. The coolant supply path 36 is connected to a coolant supply means (not shown) provided outside the cutting edge replaceable cutting tool 30.
 本実施形態の例では、クーラント供給路36が、工具本体31の先端部に配置されている。クーラント供給路36は、クーラント供給手段に接続される主クーラント供給路36aと、主クーラント供給路36aに連通し、該主クーラント供給路36aよりも流路の内径が小さい副クーラント供給路36bと、を備えている。主クーラント供給路36aの断面形状(流路の延在方向に垂直な断面の形状)及び副クーラント供給路36bの断面形状は、それぞれ円形状をなしている。副クーラント供給路36bの流路の断面積は、主クーラント供給路36aの流路の断面積よりも小さい。 In the example of this embodiment, the coolant supply path 36 is disposed at the tip of the tool body 31. The coolant supply path 36 communicates with the main coolant supply path 36a connected to the coolant supply means, the main coolant supply path 36a, the sub-coolant supply path 36b having a smaller inner diameter than the main coolant supply path 36a, It has. The cross-sectional shape of the main coolant supply passage 36a (the shape of the cross section perpendicular to the extending direction of the flow passage) and the cross-sectional shape of the sub-coolant supply passage 36b are each circular. The cross-sectional area of the sub coolant supply path 36b is smaller than the cross-sectional area of the main coolant supply path 36a.
 本実施形態の例では、工具本体31の先端部に、主クーラント供給路36aから分岐して、複数(図示の例では2つ)の副クーラント供給路36bが形成されている。クーラント供給路36内においてクーラントは、主クーラント供給路36aを通って副クーラント供給路36bに流入する。
 副クーラント供給路36bは、小径クーラント供給路36b又は下流側クーラント供給路36bと言い換えることができ、主クーラント供給路36aは、大径クーラント供給路36a又は上流側クーラント供給路36aと言い換えることができる。
In the example of the present embodiment, a plurality of (two in the illustrated example) sub-coolant supply paths 36 b are formed at the distal end portion of the tool body 31 so as to branch from the main coolant supply path 36 a. In the coolant supply path 36, the coolant flows into the sub coolant supply path 36b through the main coolant supply path 36a.
The sub coolant supply path 36b can be rephrased as a small diameter coolant supply path 36b or a downstream coolant supply path 36b, and the main coolant supply path 36a can be rephrased as a large diameter coolant supply path 36a or an upstream coolant supply path 36a. .
 主クーラント供給路36aは、工具本体31内において上下方向に延びており、工具本体31の下面に開口している。図示の例では、主クーラント供給路36aの上端部が、該上端部以外の部位よりも小径に形成されている。
 副クーラント供給路36bは、主クーラント供給路36aの上端部に接続されて、該上端部から上方に向かうように延びている。
The main coolant supply path 36 a extends in the vertical direction in the tool body 31 and opens on the lower surface of the tool body 31. In the illustrated example, the upper end portion of the main coolant supply path 36a is formed with a smaller diameter than the portion other than the upper end portion.
The sub coolant supply path 36b is connected to the upper end portion of the main coolant supply path 36a and extends upward from the upper end portion.
〔収容凹部〕
 収容凹部38は、クーラント噴出部材37の形状に対応して、工具本体31の先端部に凹状に形成されている。
 図4において、収容凹部38は、クーラント供給路36に連通しクーラント噴出部材37の後述する筒部43が挿入される孔部41と、孔部41に連通し、該孔部41のクーラント供給路36とは反対側に隣接配置される窪み部42と、を備えている。孔部41は、クーラント噴出部材37の筒部43に対応する孔形状に形成され、窪み部42は、クーラント噴出部材37の取り付け部40に対応する窪み形状に形成されている。
[Receiving recess]
The accommodating recess 38 is formed in a concave shape at the distal end portion of the tool main body 31 corresponding to the shape of the coolant ejection member 37.
In FIG. 4, the accommodating recess 38 communicates with the coolant supply path 36, communicates with the hole 41 into which a later-described cylinder 43 of the coolant ejection member 37 is inserted, and the coolant supply path of the hole 41. And a recess 42 disposed adjacent to the side opposite to the side 36. The hole portion 41 is formed in a hole shape corresponding to the cylindrical portion 43 of the coolant ejection member 37, and the recess portion 42 is formed in a recess shape corresponding to the attachment portion 40 of the coolant ejection member 37.
 孔部41は、円孔状をなしている。孔部41は、クーラント供給路36の主クーラント供給路36aに接続しており、主クーラント供給路36aとの接続部分から工具本体31の先端側及び側方のうち少なくともいずれかに向かうに従い、工具本体31の上方へ向けて傾斜して延びている。本実施形態の例では、孔部41が、工具本体31の先端側及び側方(つまり工具本体31の上面視で軸線Oに対して傾斜する方向)に向かうに従い、上方へ向かって傾斜している。 The hole 41 has a circular hole shape. The hole 41 is connected to the main coolant supply path 36a of the coolant supply path 36, and the tool is moved from the connecting portion with the main coolant supply path 36a toward at least one of the tip side and the side of the tool body 31. The main body 31 extends obliquely upward. In the example of the present embodiment, the hole 41 is inclined upward as it goes toward the tip side and the side of the tool body 31 (that is, the direction inclined with respect to the axis O in the top view of the tool body 31). Yes.
 窪み部42は、工具本体31の先端部において軸線O方向の先端側、側方、及び上方(インサート取付座32の底壁)に開口する凹状をなしている。特に図示していないが、窪み部42がインサート取付座32の底壁に開口する部分の形状は、V字状をなしている。 The hollow portion 42 has a concave shape that opens to the tip side, the side, and the upper side (the bottom wall of the insert mounting seat 32) in the direction of the axis O in the tip portion of the tool body 31. Although not particularly illustrated, the shape of the portion where the recessed portion 42 opens in the bottom wall of the insert mounting seat 32 is V-shaped.
〔クーラント噴出部材〕
 図4~図7において、クーラント噴出部材37は、収容凹部38に収容されるように工具本体31の先端部に着脱可能に装着される。本実施形態の例では、クーラント噴出部材37が、工具本体31の先端部に取付ねじ45により固定されている。
 クーラント噴出部材37は、切削インサート1の逃げ面8に対して、該逃げ面8の切れ刃5とは反対側(インサート軸線方向の表面3aから裏面3b側)に隣り合うように配設されている。クーラント噴出部材37は、収容凹部38がインサート取付座32の下方に隣接配置されているのにともない、インサート取付座32の下方に隣接して配置される。
[Coolant injection member]
4 to 7, the coolant ejection member 37 is detachably attached to the distal end portion of the tool body 31 so as to be accommodated in the accommodation recess 38. In the example of the present embodiment, the coolant ejection member 37 is fixed to the distal end portion of the tool main body 31 with an attachment screw 45.
The coolant ejection member 37 is disposed adjacent to the flank 8 of the cutting insert 1 on the side opposite to the cutting edge 5 of the flank 8 (from the front surface 3a to the back surface 3b side in the insert axial direction). Yes. The coolant ejection member 37 is disposed adjacent to the lower portion of the insert mounting seat 32 as the housing recess 38 is disposed adjacent to the lower portion of the insert mounting seat 32.
 図4、図8~図14において、クーラント噴出部材37は、収容凹部38の孔部41に挿入される筒部43と、収容凹部38の窪み部42に配設される取り付け部40と、を備えている。
 そして、取り付け部40には、切削インサート1の逃げ面8及び切れ刃5に向けて開口する第1の噴出孔51が形成された逃げ面噴出部44が含まれる。逃げ面噴出部44は、取り付け部40の少なくとも一部(第1の噴出孔51が形成された部分)に設けられており、よって取り付け部40全体が逃げ面噴出部44とされていてもよい。また、筒部43は、筒状をなしており、その内部(内部空間)が第1の噴出孔51及びクーラント供給路36に連通する。つまり、逃げ面噴出部44の第1の噴出孔51と、工具本体31のクーラント供給路36とが、筒部43の内部を通して接続されている。
 クーラント噴出部材37内には、第1の噴出孔51と筒部43の内部とにより流路が形成されている。
4 and 8 to 14, the coolant ejection member 37 includes a cylindrical portion 43 that is inserted into the hole 41 of the housing recess 38 and an attachment portion 40 that is disposed in the recess 42 of the housing recess 38. I have.
The mounting portion 40 includes a flank ejection portion 44 in which a first ejection hole 51 that opens toward the flank 8 and the cutting edge 5 of the cutting insert 1 is formed. The flank ejection portion 44 is provided in at least a part of the attachment portion 40 (the portion where the first ejection holes 51 are formed), and thus the entire attachment portion 40 may be the flank ejection portion 44. . The cylinder portion 43 has a cylindrical shape, and the inside (internal space) communicates with the first ejection hole 51 and the coolant supply path 36. That is, the first ejection hole 51 of the flank ejection portion 44 and the coolant supply path 36 of the tool body 31 are connected through the inside of the cylindrical portion 43.
A flow path is formed in the coolant ejection member 37 by the first ejection hole 51 and the inside of the cylindrical portion 43.
 取り付け部40は、工具の上下方向に垂直な断面(横断面)がV字状とされた板状をなしている。取り付け部40(逃げ面噴出部44)の上面には、第1の噴出孔51が開口している。第1の噴出孔51は、インサート軸線方向及び工具本体31の上下方向に沿うように延びて形成されている。図8に示されるように本実施形態の例では、第1の噴出孔51が、取り付け部40のV字状をなす上面の角部に配置されている。 The mounting portion 40 has a plate shape in which a cross section (cross section) perpendicular to the vertical direction of the tool is V-shaped. A first ejection hole 51 is opened on the upper surface of the attachment portion 40 (flank ejection portion 44). The first ejection holes 51 are formed so as to extend along the insert axial direction and the vertical direction of the tool body 31. As shown in FIG. 8, in the example of the present embodiment, the first ejection holes 51 are arranged at the corners of the upper surface of the attachment portion 40 that forms a V shape.
 図8及び図13において、第1の噴出孔51における筒部43とは反対側の端部(つまり上端部)は、クーラントの流出口51aとされている。流出口51aの断面形状(流路の延在方向に垂直な断面の形状)は、切れ刃5の形状に対応するV字状、直線状及び曲線状のいずれかとされる。本実施形態の例では、切れ刃5がV字状をなしており、これに対応して第1の噴出孔51の流出口51aの断面形状が、V字状をなしている。 8 and 13, the end portion (that is, the upper end portion) on the opposite side to the cylinder portion 43 in the first ejection hole 51 is a coolant outlet 51a. The cross-sectional shape of the outflow port 51a (the shape of the cross section perpendicular to the extending direction of the flow path) is any one of a V shape, a linear shape, and a curved shape corresponding to the shape of the cutting edge 5. In the example of the present embodiment, the cutting edge 5 has a V shape, and the cross-sectional shape of the outlet 51a of the first ejection hole 51 has a V shape correspondingly.
 図8、図13及び図14において、第1の噴出孔51の断面形状は、該第1の噴出孔51における筒部43の内部との接続部分51bから流出口51aまでの間で一定とされている。また、第1の噴出孔51における流路の断面積は、該第1の噴出孔51における筒部43の内部との接続部分51bから流出口51aまでの間で一定である。
 なお、本実施形態でいう「流路の断面積が一定」とは、クーラント噴出部材37の製造時において、第1の噴出孔51を成形する金型を引き抜くために製造上付与される抜き勾配(抜きテーパ)を許容して定義されるものである。具体的には、第1の噴出孔51の流路のうち、筒部43の内部との接続部分51bにおける断面積の大きさに対する、流出口51aにおける断面積の大きさの割合が、100~120%の範囲であることを「流路の断面積が一定」と定義する。
8, 13, and 14, the cross-sectional shape of the first ejection hole 51 is constant between the connection portion 51 b of the first ejection hole 51 with the inside of the cylindrical portion 43 and the outlet 51 a. ing. Further, the cross-sectional area of the flow path in the first ejection hole 51 is constant between the connection portion 51b of the first ejection hole 51 with the inside of the cylindrical portion 43 and the outlet 51a.
Note that “the cross-sectional area of the flow path is constant” as used in the present embodiment means that a draft given in the manufacture for pulling out a mold for forming the first injection hole 51 when the coolant injection member 37 is manufactured. It is defined by allowing (drawer taper). Specifically, the ratio of the size of the cross-sectional area at the outlet 51a to the size of the cross-sectional area at the connection portion 51b with the inside of the cylindrical portion 43 in the flow path of the first ejection hole 51 is 100 to The range of 120% is defined as “the cross-sectional area of the flow path is constant”.
 第1の噴出孔51は、逃げ面噴出部44内に設けられたクーラントの流路であるとともに、その流路両端の開口部(流出口51a及び接続部分51b)を除く流路の周囲全体が壁部により囲まれて密閉されている。つまり、第1の噴出孔51は、その上下端部以外の部位が壁部により隙間なく囲われた室となっている。 The first ejection hole 51 is a coolant channel provided in the flank ejection part 44, and the entire periphery of the channel except for the openings (the outlet 51a and the connection part 51b) at both ends of the channel. It is enclosed and sealed by walls. That is, the first ejection hole 51 is a chamber in which portions other than the upper and lower end portions are surrounded by the wall portion without any gap.
 図4において、第1の噴出孔51(の流出口51a)と切れ刃5との間には、逃げ面8が位置しており、第1の噴出孔51は、逃げ面8に隣り合うように配設される。
 図5に示されるように、工具本体31の先端部を上下方向に沿って見た工具上面視において、逃げ面噴出部44及び第1の噴出孔51は、切削インサート1の切れ刃5よりも工具本体31の内部側(軸線O方向の基端側かつ側方の内側)に配置されている。
In FIG. 4, a flank 8 is located between the first ejection hole 51 (outlet 51 a thereof) and the cutting edge 5, and the first ejection hole 51 is adjacent to the flank 8. It is arranged.
As shown in FIG. 5, the flank ejection portion 44 and the first ejection hole 51 are located more than the cutting edge 5 of the cutting insert 1 in the tool top view when the tip end portion of the tool body 31 is viewed along the vertical direction. It is arranged on the inner side of the tool body 31 (the base end side in the axis O direction and the inner side of the side).
 図4、図9及び図14に示されるように、取り付け部40には、取付ねじ45が挿通する貫通孔49が形成されている。貫通孔49に取付ねじ45を挿入し、工具本体31の先端部に形成された雌ねじ穴に螺着することで、クーラント噴出部材37が工具本体31の先端部に固定される。 As shown in FIGS. 4, 9, and 14, the attachment portion 40 is formed with a through hole 49 through which the attachment screw 45 is inserted. The mounting screw 45 is inserted into the through hole 49 and screwed into a female screw hole formed at the tip of the tool body 31, whereby the coolant ejection member 37 is fixed to the tip of the tool body 31.
 図4、図8~図14において、筒部43は、円筒状をなしている。筒部43は、収容凹部38の孔部41内に嵌合する。筒部43の内部は、クーラント供給路36の主クーラント供給路36aに接続している。筒部43は、クーラント供給路36との接続部分から工具本体31の先端側及び側方のうち少なくともいずれかに向かうに従い、第1の噴出孔51から切れ刃5側へ向かって傾斜して延びている。本実施形態の例では、筒部43が、工具本体31の先端側及び側方(つまり工具本体31の上面視で軸線Oに対して傾斜する方向)に向かうに従い、上方へ向かって傾斜している。 4 and 8 to 14, the cylindrical portion 43 has a cylindrical shape. The cylinder portion 43 is fitted into the hole portion 41 of the accommodation recess 38. The inside of the cylindrical portion 43 is connected to the main coolant supply path 36 a of the coolant supply path 36. The cylindrical portion 43 extends from the connection portion with the coolant supply path 36 in an inclined manner toward the cutting edge 5 from the first ejection hole 51 as it goes to at least one of the tip side and the side of the tool body 31. ing. In the example of the present embodiment, the cylindrical portion 43 is inclined upward as it goes toward the tip side and the side of the tool body 31 (that is, the direction inclined with respect to the axis O in the top view of the tool body 31). Yes.
 図13において、筒部43の内部(内周面)における第1の噴出孔51とは反対側の端部(つまりクーラント供給路36に接続する端部)は、クーラントの流入口43aとされている。流入口43aは、筒部43の中心軸C方向に沿ってクーラント供給路36へ接近するに従い拡径するテーパ面状をなしている。 In FIG. 13, an end portion (that is, an end portion connected to the coolant supply path 36) opposite to the first ejection hole 51 in the inside (inner peripheral surface) of the cylinder portion 43 is a coolant inlet 43 a. Yes. The inflow port 43 a has a tapered surface shape that increases in diameter as it approaches the coolant supply path 36 along the direction of the central axis C of the cylindrical portion 43.
 流入口43aの断面形状(流路の延在方向(筒部43の中心軸C方向)に垂直な断面の形状)は、円形状とされている。従って、クーラント噴出部材37内に形成された流路のうち、筒部43においてクーラント供給路36に接続する流入口43aの断面形状と、第1の噴出孔51において逃げ面8及び切れ刃5に向けて開口する流出口51aの断面形状とは、互いに異なっている。 The cross-sectional shape of the inflow port 43a (the cross-sectional shape perpendicular to the channel extending direction (the direction of the central axis C of the cylindrical portion 43)) is a circular shape. Therefore, among the flow paths formed in the coolant ejection member 37, the cross-sectional shape of the inflow port 43 a connected to the coolant supply path 36 in the cylindrical portion 43, and the flank 8 and the cutting edge 5 in the first ejection hole 51. The cross-sectional shape of the outflow port 51a opening toward each other is different from each other.
 図12及び図13において、筒部43の内部の流路の断面積は、該筒部43の内部における流入口43aから第1の噴出孔51との接続部分43bに向かうに従い小さくなる。本実施形態の例では、筒部43の内部の流路の断面積が、まず流入口43aにおいて、中心軸C方向に沿って第1の噴出孔51へ向かうに従い徐々に小さくされ、また接続部分43bにおいて、第1の噴出孔51へ向かうに従い徐々に小さくされている。 12 and 13, the cross-sectional area of the flow path inside the cylindrical portion 43 decreases from the inflow port 43 a inside the cylindrical portion 43 toward the connecting portion 43 b with the first ejection hole 51. In the example of the present embodiment, the cross-sectional area of the flow path inside the cylindrical portion 43 is first gradually reduced toward the first ejection hole 51 along the central axis C direction at the inflow port 43a. In 43b, it is made small gradually as it goes to the 1st ejection hole 51. FIG.
 そして、クーラント噴出部材37内に形成された流路は、流入口43aの断面積に比べて、流出口51aの断面積が小さい。また、図9及び図12において、クーラント噴出部材37内に形成された流路は、流入口43aの幅に比べて、流出口51aの幅が小さい。なお、ここでいう幅とは、流路の延在方向に直交する向きの長さを指しており、具体的には横方向(図9及び図12における左右方向)を指しているが、横方向に限定されるものではない。 And the flow path formed in the coolant ejection member 37 has a smaller cross-sectional area of the outlet 51a than that of the inlet 43a. 9 and 12, the flow path formed in the coolant ejection member 37 has a smaller width of the outlet 51a than the width of the inlet 43a. The width here refers to the length in the direction perpendicular to the extending direction of the flow path, and specifically refers to the horizontal direction (the left-right direction in FIGS. 9 and 12). It is not limited to the direction.
 特に図示していないが、筒部43の外周には、環状のシール部材が装着される。具体的には、筒部43の外周面に形成された溝48内に、シール部材として、樹脂材料等からなるOリングが配設される。シール部材は、溝48の内壁及び収容凹部38の孔部41の内周面に密に当接する。 Although not particularly illustrated, an annular seal member is attached to the outer periphery of the cylindrical portion 43. Specifically, an O-ring made of a resin material or the like is disposed as a seal member in the groove 48 formed on the outer peripheral surface of the cylindrical portion 43. The seal member closely contacts the inner wall of the groove 48 and the inner peripheral surface of the hole 41 of the housing recess 38.
〔すくい面噴出部〕
 図4~図7に示されるように、工具本体31の先端部には、クーラント供給路36に連通し、すくい面7及び切れ刃5に向けて開口する第2の噴出孔52が形成されたすくい面噴出部50が備えられている。
[Rake face ejection part]
As shown in FIGS. 4 to 7, a second ejection hole 52 that communicates with the coolant supply path 36 and opens toward the rake face 7 and the cutting edge 5 is formed at the tip of the tool body 31. A rake face ejection part 50 is provided.
 本実施形態の例では、すくい面噴出部50が、工具本体31の先端部における上面に、突起状に形成されている。具体的に、工具本体31の先端部の上面には、インサート取付座32に隣接して円柱体が突設されており、該円柱体がすくい面噴出部50とされている。また、工具本体31の先端部には、すくい面噴出部50が、互いに離間して複数(図示の例では2つ)設けられており、このため第2の噴出孔52も、互いに離間して複数形成されている。 In the example of this embodiment, the rake face ejection part 50 is formed in a protruding shape on the upper surface of the tip part of the tool body 31. Specifically, a cylindrical body protrudes adjacent to the insert mounting seat 32 on the upper surface of the tip portion of the tool body 31, and the cylindrical body serves as a rake face ejection portion 50. Further, a plurality of rake face ejection portions 50 (two in the illustrated example) are provided at the distal end portion of the tool body 31 so as to be separated from each other. For this reason, the second ejection holes 52 are also separated from each other. A plurality are formed.
 第2の噴出孔52は、すくい面噴出部50内に設けられたクーラントの流路であるとともに、その流路の両端は、該すくい面噴出部50の外周面及び底面に開口している。第2の噴出孔52のうち、すくい面噴出部50の底面に開口する部分は、クーラント供給路36の副クーラント供給路36bに接続しており、この接続部分がクーラントの流入口とされている。また、第2の噴出孔52のうち、すくい面噴出部50の外周面に開口する部分は、クーラントの流出口とされている。 The second ejection holes 52 are coolant passages provided in the rake face ejection portion 50, and both ends of the passages are open to the outer peripheral surface and the bottom surface of the rake face ejection portion 50. A portion of the second ejection hole 52 that opens to the bottom surface of the rake face ejection portion 50 is connected to the sub-coolant supply passage 36b of the coolant supply passage 36, and this connection portion serves as a coolant inlet. . Moreover, the part opened to the outer peripheral surface of the rake face ejection part 50 among the 2nd ejection holes 52 is made into the outflow port of a coolant.
 第2の噴出孔52は、その流路両端の開口部(クーラント供給路36との接続部分及び流出口)を除く流路の周囲全体が壁部により囲まれて密閉されている。つまり、第2の噴出孔52は、その両端部以外の部位が壁部により隙間なく囲われた室となっている。 The second ejection hole 52 is hermetically sealed with a wall portion surrounding the entire flow path except for openings at both ends of the flow path (a connection portion with the coolant supply path 36 and an outlet). That is, the second ejection hole 52 is a chamber in which portions other than both end portions thereof are surrounded by the wall portion without a gap.
 図示の例では、第2の噴出孔52の断面形状が、円形状をなしている。第2の噴出孔52における流路の断面積は、該第2の噴出孔52におけるクーラント供給路36との接続部分から流出口までの間で一定である。また、第2の噴出孔52の流路の断面積は、該第2の噴出孔52が接続する副クーラント供給路36bの流路の断面積よりも小さい。 In the illustrated example, the cross-sectional shape of the second ejection hole 52 is circular. The cross-sectional area of the flow path in the second ejection hole 52 is constant from the connection portion with the coolant supply path 36 in the second ejection hole 52 to the outlet. Further, the cross-sectional area of the flow path of the second ejection hole 52 is smaller than the cross-sectional area of the flow path of the sub-coolant supply path 36b to which the second ejection hole 52 is connected.
 第2の噴出孔52(の流出口)と切れ刃5との間には、すくい面7が位置しており、第2の噴出孔52は、すくい面7に隣り合うように配設される。
 本実施形態の例では、一対のすくい面噴出部50のうち、工具本体31の先端側に位置する一方のすくい面噴出部50の第2の噴出孔52と、切れ刃5のうち後述する直線刃10及びコーナ刃9との間に、すくい面7が位置している。また、他方のすくい面噴出部50における第2の噴出孔52と、切れ刃5のうち後述する直線刃11及びコーナ刃9との間に、すくい面7が位置している。
The rake face 7 is located between the second ejection hole 52 (outlet thereof) and the cutting edge 5, and the second ejection hole 52 is disposed adjacent to the rake face 7. .
In the example of the present embodiment, of the pair of rake face ejection portions 50, the second ejection hole 52 of one rake face ejection portion 50 located on the distal end side of the tool body 31 and the straight line described later among the cutting edges 5. The rake face 7 is located between the blade 10 and the corner blade 9. Further, the rake face 7 is located between the second ejection hole 52 in the other rake face ejection portion 50 and the straight edge 11 and the corner edge 9 described later of the cutting edge 5.
〔切削インサート〕
 図4~図7に示されるように、切削インサート1は、板状をなすインサート本体2と、インサート本体2の表裏面3(表面3a及び裏面3b)と、表裏面3の周縁同士をインサート軸線方向に沿うように接続する外周面4と、表裏面3と外周面4との交差稜線部に形成された切れ刃5と、インサート本体2をインサート軸線方向に貫通して形成され、表裏面3に開口するとともにクランプ駒33の爪部に係止される取付孔6と、を備えている。
[Cutting insert]
As shown in FIG. 4 to FIG. 7, the cutting insert 1 includes a plate-shaped insert body 2, front and back surfaces 3 (front surface 3 a and back surface 3 b) of the insert body 2, and peripheral edges of the front and back surfaces 3. The outer peripheral surface 4 to be connected along the direction, the cutting edge 5 formed at the intersecting ridge line portion between the front and back surfaces 3 and the outer peripheral surface 4, and the insert body 2 are formed so as to penetrate the insert axial direction. And an attachment hole 6 that is engaged with the claw portion of the clamp piece 33.
 本実施形態の例では、インサート本体2が略菱形の四角形板状をなしており、表裏面3はそれぞれ略菱形の四角形面状をなしており、外周面4はインサート周方向に並ぶ4つの略長方形の四角形面を有している。
 インサート本体2の表裏面3における外周縁の各コーナ部は凸曲線状をなしており、これらのコーナ部のうち、菱形状をなす表裏面3の一対の鋭角部分に位置するコーナ部及びその近傍が、切れ刃5とされている。また、表裏面3の各中央部に(インサート軸線に同軸に)、取付孔6が開口している。
In the example of the present embodiment, the insert main body 2 has a substantially rhombic square plate shape, the front and back surfaces 3 each have a substantially rhombic square surface shape, and the outer peripheral surface 4 has four approximate shapes arranged in the insert circumferential direction. It has a rectangular quadrangular surface.
Each corner portion of the outer peripheral edge of the front and back surfaces 3 of the insert body 2 has a convex curve shape, and among these corner portions, a corner portion located at a pair of acute angle portions of the front and back surfaces 3 having a rhombus shape and the vicinity thereof Is the cutting edge 5. Moreover, the attachment hole 6 is opening in each center part of the front and back 3 (coaxially with an insert axis line).
 インサート本体2の外周面4において、インサート周方向に隣り合う略長方形の四角形面同士の間の部分は、インサート軸線に垂直な断面が凸曲線状とされた凸曲面(図示の例では円筒体の外周面の一部)をなすように形成されている。 In the outer peripheral surface 4 of the insert body 2, a portion between the substantially rectangular quadrangular surfaces adjacent to each other in the insert circumferential direction is a convex curved surface (in the illustrated example, a cylindrical body having a convex cross section perpendicular to the insert axis). Part of the outer peripheral surface).
 切削インサート1がインサート取付座32に装着された状態で、インサート本体2の表裏面3のうち、該インサート取付座32の底壁とは反対側(つまり上方)を向く表面3aにおいて、少なくとも切れ刃5に隣接する領域を含む部位が、すくい面7とされる。またインサート本体2の表裏面3のうち、インサート取付座32の底壁側(つまり下方)を向く裏面3bは、シート部材35に当接する着座面とされる。
 また、インサート本体2の外周面4のうち、少なくとも切れ刃5に隣接する領域を含む部位が、逃げ面8とされる。
In a state where the cutting insert 1 is mounted on the insert mounting seat 32, at least the cutting edge on the surface 3 a facing the side opposite to the bottom wall of the insert mounting seat 32 (that is, the upper side) of the front and back surfaces 3 of the insert body 2. A portion including a region adjacent to 5 is a rake face 7. Of the front and back surfaces 3 of the insert body 2, the back surface 3 b facing the bottom wall side (that is, the lower side) of the insert mounting seat 32 is a seating surface that contacts the seat member 35.
Further, a portion including at least a region adjacent to the cutting edge 5 in the outer peripheral surface 4 of the insert body 2 is a flank 8.
 本実施形態の切削インサート1は、インサート本体2の逃げ面8(外周面4)がインサート軸線に平行に形成された、いわゆるネガティブインサートであるが、これに限定されるものではない。すなわち切削インサート1は、逃げ面8が切れ刃5からインサート軸線方向に離間するに従いインサート径方向の内側へ向けて傾斜して形成された、いわゆるポジティブインサートであってもよい。 The cutting insert 1 of the present embodiment is a so-called negative insert in which the flank 8 (outer peripheral surface 4) of the insert body 2 is formed in parallel to the insert axis, but is not limited thereto. That is, the cutting insert 1 may be a so-called positive insert formed so as to be inclined inward in the insert radial direction as the flank 8 is separated from the cutting edge 5 in the insert axial direction.
 また本実施形態の切削インサート1は、インサート本体2が表裏反転対称形状とされた、いわゆる両面インサートであるが、これに限定されるものではない。すなわち切削インサート1は、インサート本体2が非表裏反転対称形状とされた(表裏反転対称形状ではない)、いわゆる片面インサートであってもよい。 Further, the cutting insert 1 of the present embodiment is a so-called double-sided insert in which the insert body 2 has a reverse-inverted symmetrical shape, but is not limited thereto. That is, the cutting insert 1 may be a so-called single-sided insert in which the insert body 2 has a non-front / reverse symmetric shape (not a front / reverse symmetric shape).
〔切れ刃〕
 切削インサート1の切れ刃5は、すくい面7と逃げ面8との交差稜線部に形成されている。切れ刃5は、表裏面3のコーナ部(すくい面7のコーナ部)に位置するコーナ刃9と、コーナ刃9の両端に接続して直線状に延びる一対の直線刃10、11と、を有している。つまり切れ刃5は、コーナ刃9と、このコーナ刃9の両端に連続する一対の直線刃10、11と、を備えていることにより、全体としてV字状をなしている。コーナ刃9は、切れ刃5全長における中間部分(一対の直線刃10、11同士の間)に配置されている。
[Cutting edge]
The cutting edge 5 of the cutting insert 1 is formed at the intersecting ridge line portion between the rake face 7 and the flank face 8. The cutting edge 5 includes a corner blade 9 positioned at a corner portion of the front and back surfaces 3 (corner portion of the rake face 7), and a pair of linear blades 10, 11 connected to both ends of the corner blade 9 and extending linearly. Have. That is, the cutting edge 5 has a V-shape as a whole by including a corner blade 9 and a pair of linear blades 10 and 11 continuous at both ends of the corner blade 9. The corner blade 9 is disposed at an intermediate portion (between a pair of straight blades 10 and 11) in the entire length of the cutting blade 5.
 コーナ刃9は、インサート径方向の外側へ向けて突出する凸曲線状をなしており、本実施形態の例では凸円弧状をなしている。コーナ刃9のうち、旋削加工時において工具送り方向の前方に位置する部位(コーナ刃9において直線刃10に接続する部分)及び直線刃10は、被削材の加工面に切り込んでいく。また、コーナ刃9のうち、工具送り方向の後方に位置する部位(コーナ刃9において直線刃11に接続する部分)は、被削材の加工面を仕上げ加工する。なお、切れ刃5の直線刃11側から被削材の加工面に切り込んでもよい。 The corner blade 9 has a convex curve shape protruding outward in the insert radial direction, and in the example of this embodiment, has a convex arc shape. Of the corner blade 9, a portion (a portion connected to the straight blade 10 in the corner blade 9) located in front of the tool feeding direction and the straight blade 10 during cutting are cut into the processing surface of the work material. Further, a portion of the corner blade 9 located behind the tool feed direction (a portion connected to the straight blade 11 in the corner blade 9) finishes the processed surface of the work material. In addition, you may cut into the processed surface of a workpiece from the linear blade 11 side of the cutting blade 5. FIG.
 直線刃10、11は、円弧状をなすコーナ刃9の両端に接する接線方向にそれぞれ延びており、該コーナ刃9になだらかに連なっている。また、インサート軸線方向から見た切削インサート1の上面視(インサート上面視)で、一対の直線刃10、11同士の間に形成される角度(直線刃10、11の仮想延長線同士の交差角)は、本実施形態では90°よりも小さい鋭角とされており、例えば80°程度である。 The straight blades 10, 11 extend in a tangential direction in contact with both ends of the arcuate corner blade 9, and are connected to the corner blade 9 gently. In addition, an angle formed between the pair of linear blades 10 and 11 (intersection angle between the virtual extension lines of the linear blades 10 and 11) in a top view (insert top view) of the cutting insert 1 viewed from the insert axial direction. ) Is an acute angle smaller than 90 ° in this embodiment, for example, about 80 °.
 また、本実施形態の切削インサート1は、インサート上面視において一対の直線刃10、11同士の間に形成される角の二等分線を対称軸とした線対称形状(鏡像対称)に形成されている。このため、切れ刃5も前記角の二等分線を対称軸とした線対称形状とされており、直線刃10、11同士は、互いに同一形状、かつ同一の刃長とされている。ただしこれに限定されるものではなく、切れ刃5は前記角の二等分線を対称軸とした線対称形状に形成されていなくてもよい(つまり非線対称形状であってもよい)。また直線刃10、11同士は、互いに異なる形状や刃長とされていてもよい。
 なお、切削インサート1における少なくとも切れ刃5近傍(切れ刃5、すくい面7及び逃げ面8)には、CVDコーティング膜等の硬質膜が被覆されていることが好ましい。
In addition, the cutting insert 1 of the present embodiment is formed in a line-symmetric shape (mirror image symmetry) with a bisector of an angle formed between the pair of straight blades 10 and 11 as viewed in the top view of the insert. ing. For this reason, the cutting edge 5 also has a line-symmetric shape with the angle bisector as the axis of symmetry, and the straight blades 10 and 11 have the same shape and the same blade length. However, the present invention is not limited to this, and the cutting edge 5 may not be formed in a line-symmetric shape with the bisector of the corner as an axis of symmetry (that is, it may be a non-axisymmetric shape). The straight blades 10 and 11 may have different shapes and blade lengths.
In addition, it is preferable that at least the vicinity of the cutting edge 5 (the cutting edge 5, the rake face 7 and the flank face 8) of the cutting insert 1 is coated with a hard film such as a CVD coating film.
 特に図示していないが、インサート上面視において、クーラント噴出部材37の第1の噴出孔51は、切れ刃5のコーナ刃9及び直線刃10、11に対応する領域(切れ刃5のコーナ刃9及び直線刃10、11の直下)に配置される。 Although not particularly shown, the first ejection hole 51 of the coolant ejection member 37 is a region corresponding to the corner blade 9 of the cutting blade 5 and the straight blades 10 and 11 (the corner blade 9 of the cutting blade 5). And just below the straight blades 10 and 11).
〔本実施形態による作用効果〕
 以上説明した本実施形態の刃先交換式バイト30によれば、工具本体31の先端部に、クーラント噴出部材37が配設されており、工具本体31内のクーラント供給路36を流れるクーラントは、該クーラント噴出部材37の筒部43内及び第1の噴出孔51を通して、逃げ面8及び切れ刃5に向けて噴出させられる。
 つまり、クーラント噴出部材37の逃げ面噴出部44における第1の噴出孔51と、クーラント供給路36とが、筒部43を介して連通しているので、クーラントが第1の噴出孔51以外の部位から意図しない向きに漏出することが防止される。
[Effects of this embodiment]
According to the cutting edge-exchangeable cutting tool 30 of the present embodiment described above, the coolant injection member 37 is disposed at the tip of the tool body 31, and the coolant flowing through the coolant supply path 36 in the tool body 31 is The coolant is ejected toward the flank 8 and the cutting edge 5 through the cylindrical portion 43 of the coolant ejection member 37 and the first ejection hole 51.
That is, since the first ejection hole 51 in the flank ejection portion 44 of the coolant ejection member 37 and the coolant supply path 36 communicate with each other via the cylinder portion 43, the coolant other than the first ejection hole 51. Leakage from the site in an unintended direction is prevented.
 詳しくは、クーラント噴出部材37の筒部43は、該筒部43の周壁によって内部を流れるクーラントを囲っているので、この周壁から外部へのクーラントの漏出が防止される。また、クーラント噴出部材37の第1の噴出孔51は、上述した特許文献1(特開平10-76404号公報)に記載の従来の板状部材の凹所等の切り欠きとは異なり、本実施形態の例ではV字状に開口する「孔」であるから、環状の開口周縁を有している。このような環状の開口周縁が形成されていることで、当該噴出孔51以外の部位からのクーラントの漏出が防止される。 More specifically, since the cylindrical portion 43 of the coolant ejection member 37 surrounds the coolant flowing inside by the peripheral wall of the cylindrical portion 43, leakage of the coolant from the peripheral wall to the outside is prevented. Further, the first ejection hole 51 of the coolant ejection member 37 is different from the conventional notch of the plate-like member described in Patent Document 1 (Japanese Patent Laid-Open No. 10-76404) described above. In the form example, since it is a “hole” that opens in a V shape, it has an annular opening periphery. By forming such an annular opening peripheral edge, leakage of coolant from a portion other than the ejection hole 51 is prevented.
 このようにクーラント噴出部材37は、筒部43におけるクーラント供給路36との接続部分から第1の噴出孔51までの流路が、流路両端の開口部(流入口43a及び流出口51a)を除いて密閉状に形成されているので、クーラントの意図しない漏出を確実に防止できる。
 従って、本実施形態によれば、クーラントの供給量を増大させることなく十分な量のクーラントを、逃げ面8及び切れ刃5に効率よく供給することができる。
In this way, the coolant ejection member 37 has openings (inlet 43a and outlet 51a) at both ends of the flow path from the connecting portion of the cylinder portion 43 to the coolant supply path 36 to the first ejection holes 51. Except for being hermetically sealed, it is possible to reliably prevent unintended leakage of the coolant.
Therefore, according to the present embodiment, a sufficient amount of coolant can be efficiently supplied to the flank 8 and the cutting edge 5 without increasing the amount of coolant supplied.
 また、クーラント噴出部材37は、工具本体31の先端部に着脱可能に設けられているので、下記の顕著な作用効果を奏する。
 すなわち本実施形態のように、工具本体31の先端部に、切れ刃5を有する切削インサート1が着脱可能に装着される場合(刃先交換式バイト30の場合)において、複数種類の切削インサート1の種々の切れ刃5形状や切削加工の種類(以下、切れ刃5形状等と省略)に対応して、第1の噴出孔51の形状、配置、大きさ等が互いに異なる複数種類のクーラント噴出部材37を用意しておくことが可能である。そして、これらのクーラント噴出部材37の中から、切削インサート1の所定の切れ刃5形状に適した所定の第1の噴出孔51を有するクーラント噴出部材37を選択して、工具本体31に装着することができる。
Moreover, since the coolant ejection member 37 is detachably provided at the distal end portion of the tool main body 31, the following remarkable effects are obtained.
That is, as in this embodiment, when the cutting insert 1 having the cutting edge 5 is detachably attached to the tip of the tool body 31 (in the case of the blade tip replaceable cutting tool 30), a plurality of types of cutting inserts 1 are used. A plurality of types of coolant ejection members having different shapes, arrangements, sizes, etc. of the first ejection holes 51 corresponding to various shapes of the cutting edges 5 and types of cutting (hereinafter abbreviated as the shapes of the cutting edges 5). 37 can be prepared. Then, a coolant spraying member 37 having a predetermined first spraying hole 51 suitable for the shape of the predetermined cutting edge 5 of the cutting insert 1 is selected from these coolant spraying members 37 and mounted on the tool body 31. be able to.
 つまり、各種の切れ刃5形状等に対応して、最適形状とされた第1の噴出孔51を有するクーラント噴出部材37を適宜選択し用いることが可能になる。
 従って、切れ刃5形状等に係わらず、逃げ面8及び切れ刃5に向けてクーラントを精度よく安定して供給することができる。
That is, it is possible to appropriately select and use the coolant ejection member 37 having the first ejection hole 51 having an optimum shape corresponding to various shapes of the cutting edge 5 and the like.
Therefore, the coolant can be accurately and stably supplied toward the flank 8 and the cutting edge 5 regardless of the shape of the cutting edge 5 and the like.
 また、クーラント噴出部材37内に形成された流路のうち、筒部43においてクーラント供給路36に接続する流入口43aの断面形状と、第1の噴出孔51において筒部43とは反対側の端部(つまり切れ刃5側の端部)に位置する流出口51aの断面形状とが、互いに異なっている。
 このため、本実施形態で説明したように、例えば流入口43aの断面形状については、クーラント供給路36に接続しやすく製造もしやすい円形状とし、流出口51aの断面形状については、切れ刃5形状に対応したV字状、直線状、曲線状等として、クーラントを切れ刃5に効率よく供給することができる。
In addition, among the flow paths formed in the coolant ejection member 37, the cross-sectional shape of the inlet 43 a connected to the coolant supply path 36 in the cylindrical portion 43 and the side opposite to the cylindrical portion 43 in the first ejection hole 51 are provided. The cross-sectional shape of the outlet 51a located at the end (that is, the end on the cutting blade 5 side) is different from each other.
Therefore, as described in the present embodiment, for example, the cross-sectional shape of the inflow port 43a is a circular shape that can be easily connected to the coolant supply path 36 and can be easily manufactured, and the cross-sectional shape of the outflow port 51a is the shape of a cutting edge 5 The coolant can be efficiently supplied to the cutting edge 5 in a V shape, a linear shape, a curved shape, or the like corresponding to.
 また、クーラント噴出部材37の流路のうち、流入口43aの断面積に比べて、流出口51aの断面積が小さいので、流入口43aを流通するクーラントの流速よりも、流出口51aを流通するクーラントの流速を高めることができる。これにより、第1の噴出孔51の流出口51aから噴出させられたクーラントが、被削材と逃げ面8との僅かな隙間に進入しやすくなるとともに切れ刃5まで到達しやすくなり、切れ刃5近傍の冷却効果を格別顕著に高めることができる。従って、切削精度の向上、切削加工の高効率化、工具寿命の延長(長寿命化)等の効果を奏する。 Moreover, since the cross-sectional area of the outflow port 51a is smaller than the cross-sectional area of the inflow port 43a in the flow path of the coolant jetting member 37, the flow rate of the coolant flowing through the inflow port 43a is more circulated. The flow rate of the coolant can be increased. As a result, the coolant ejected from the outlet 51a of the first ejection hole 51 can easily enter a slight gap between the work material and the flank 8 and reach the cutting edge 5 easily. The cooling effect in the vicinity of 5 can be remarkably enhanced. Therefore, there are effects such as improvement of cutting accuracy, high efficiency of cutting, and extension of tool life (long life).
 なお、クーラント噴出部材37の流路の流入口43aの断面形状が、円形状であり、流出口51aの断面形状が、切れ刃5の形状に対応するV字状、直線状及び曲線状のいずれかである場合には、下記の作用効果を奏する。
 すなわちこの場合、流路の流入口43aの断面形状が、円形状であるので、流路をクーラント供給路36に接続しやすく、製造もしやすい。また、流路の流出口51aの断面形状が、切れ刃5の形状に対応したV字状、直線状及び曲線状のいずれかであるので、上述のように流速が高められたクーラントを、切れ刃5に効率よく(無駄なく)正確に供給することができる。
In addition, the cross-sectional shape of the inlet 43a of the flow path of the coolant ejection member 37 is circular, and the cross-sectional shape of the outlet 51a is any of V-shape, linear shape, and curved shape corresponding to the shape of the cutting edge 5. If it is, the following effects are obtained.
That is, in this case, since the cross-sectional shape of the inflow port 43a of the flow path is circular, the flow path is easily connected to the coolant supply path 36 and is easy to manufacture. In addition, since the cross-sectional shape of the outlet 51a of the flow path is any one of a V shape, a straight line shape, and a curved shape corresponding to the shape of the cutting edge 5, the coolant whose flow rate is increased as described above is cut off. The blade 5 can be supplied efficiently (without waste) and accurately.
 また本実施形態では、第1の噴出孔51の流路の断面積が、該第1の噴出孔51における筒部43の内部との接続部分51bから流出口51aまでの間で一定とされている。従って、第1の噴出孔51の内部を流れるクーラントは、該第1の噴出孔51における筒部43との接続部分51bから流出口51aに至るまでの間で、乱流を生じさせることなく(圧力損失を生じさせることなく)、高い流速を維持したまま逃げ面8及び切れ刃5に向けて噴出させられる。これにより、上述した作用効果がさらに顕著なものとなる。 Moreover, in this embodiment, the cross-sectional area of the flow path of the 1st ejection hole 51 is made constant from the connection part 51b with the inside of the cylinder part 43 in this 1st ejection hole 51 to the outflow port 51a. Yes. Therefore, the coolant flowing inside the first ejection hole 51 does not cause turbulent flow from the connection portion 51b with the cylindrical portion 43 in the first ejection hole 51 to the outlet 51a ( Without causing pressure loss), the air is ejected toward the flank 8 and the cutting edge 5 while maintaining a high flow rate. Thereby, the effect mentioned above becomes still more remarkable.
 また本実施形態では、筒部43の内部の流路の断面積が、該筒部43の内部における流入口43aから第1の噴出孔51との接続部分43bに向かうに従い小さくなるので、下記の作用効果を奏する。
 すなわちこの場合、筒部43の内部を流れるクーラントが、第1の噴出孔51へ向かうに従い徐々に流速を高めていき、該第1の噴出孔51の内部に流入した後、最も流速が高められることになる。そしてクーラントは、最も流速が高められた状態のまま、逃げ面8及び切れ刃5に向けて噴出させられる。
In the present embodiment, the cross-sectional area of the flow path inside the cylindrical portion 43 decreases from the inflow port 43a inside the cylindrical portion 43 toward the connecting portion 43b with the first ejection hole 51. Has an effect.
That is, in this case, the coolant flowing inside the cylindrical portion 43 gradually increases the flow velocity toward the first ejection hole 51, and after flowing into the first ejection hole 51, the flow velocity is increased most. It will be. Then, the coolant is jetted toward the flank 8 and the cutting edge 5 with the flow velocity being the highest.
 つまり上記構成によれば、クーラント噴出部材37内の流路が、例えば従来のように狭められた後で広げられるようなことがないため、クーラント噴出部材37内の流路を流れるクーラントの圧力損失が流入口43aから流出口51aまでの全域にわたって小さく抑えられて、クーラントの供給効率が格別顕著に高められる。 That is, according to the above configuration, since the flow path in the coolant ejection member 37 is not expanded after being narrowed, for example, as in the prior art, the pressure loss of the coolant flowing through the flow path in the coolant ejection member 37 is reduced. Is kept small over the entire area from the inlet 43a to the outlet 51a, and the coolant supply efficiency is significantly increased.
 また、クーラント噴出部材37内の流路は、流入口43aの幅(流路断面の幅)に比べて、流出口51aの幅が小さいので、流路を流れるクーラントの圧力損失をより効果的に抑えることができる。そして、流入口43aを流通するクーラントの流速よりも、流出口51aを流通するクーラントの流速を顕著に高めて、切れ刃5にクーラントを確実に到達させることができる。 Moreover, since the flow path in the coolant ejection member 37 has a smaller width of the outlet 51a than the width of the inlet 43a (width of the cross section of the flow path), the pressure loss of the coolant flowing through the flow path is more effectively reduced. Can be suppressed. And the flow rate of the coolant which distribute | circulates the outflow port 51a can be remarkably raised rather than the flow rate of the coolant which distribute | circulates the inflow port 43a, and a coolant can be made to reach the cutting edge 5 reliably.
 また本実施形態では、筒部43が、クーラント供給路36との接続部分から工具本体31の先端側及び側方のうち少なくともいずれかに向かうに従い、第1の噴出孔51から切れ刃5側へ向かって傾斜して延びているので、下記の作用効果を奏する。
 すなわちこの場合、クーラント噴出部材37の筒部43が傾斜して延びており、筒部43とクーラント供給路36、及び、筒部43と第1の噴出孔51が、それぞれ鈍角に交差するように緩やかな角度で接続されて、これらの内部を流れるクーラントの圧力損失を低減することができる。これにより、工具の内部でクーラント供給圧が減圧したり流速が低下してしまうことを防止でき、逃げ面8及び切れ刃5へのクーラントの供給効率をさらに高めることができる。
Moreover, in this embodiment, the cylinder part 43 goes to the cutting blade 5 side from the 1st ejection hole 51 as it goes to at least any one of the front end side and side of the tool main body 31 from the connection part with the coolant supply path 36. Since it is inclined and extended, the following effects are obtained.
That is, in this case, the cylinder portion 43 of the coolant ejection member 37 extends in an inclined manner so that the cylinder portion 43 and the coolant supply path 36, and the cylinder portion 43 and the first ejection hole 51 intersect each other at an obtuse angle. Connected at a gentle angle, the pressure loss of the coolant flowing inside these can be reduced. As a result, it is possible to prevent the coolant supply pressure from being reduced or the flow velocity from being reduced inside the tool, and the coolant supply efficiency to the flank 8 and the cutting edge 5 can be further increased.
 また本実施形態では、工具本体31の先端部に、クーラント供給路36に連通し、すくい面7及び切れ刃5に向けて開口する第2の噴出孔52が形成されたすくい面噴出部50が備えられているので、下記の作用効果を奏する。
 すなわちこの場合、工具本体31の先端部には、すくい面噴出部50が備えられており、工具本体31内のクーラント供給路36を流れるクーラントは、該すくい面噴出部50の第2の噴出孔52を通して、すくい面7及び切れ刃5に向けて噴出させられる。
Moreover, in this embodiment, the rake face ejection part 50 in which the tip part of the tool body 31 communicates with the coolant supply path 36 and the second ejection hole 52 opened toward the rake face 7 and the cutting edge 5 is formed. Since it is provided, the following effects are achieved.
In other words, in this case, the rake face ejection part 50 is provided at the tip of the tool body 31, and the coolant flowing through the coolant supply path 36 in the tool body 31 is the second ejection hole of the rake face ejection part 50. Through 52, it is ejected toward the rake face 7 and the cutting edge 5.
 従って、クーラント噴出部材37の逃げ面噴出部44の第1の噴出孔51から、逃げ面8及び切れ刃5に向けてクーラントを供給でき、かつ、すくい面噴出部50の第2の噴出孔52から、すくい面7及び切れ刃5に向けてクーラントを供給できる。
 つまり、切れ刃5(の刃長方向)に直交する方向のうち、異なる2方向(すくい面7上及び逃げ面8上)から、切れ刃5に向けてクーラントを供給することができるので、切れ刃5に対して確実にクーラントを到達させることができ、切れ刃5近傍の冷却効果を格別顕著に高めることができる。
Therefore, the coolant can be supplied from the first ejection hole 51 of the flank ejection portion 44 of the coolant ejection member 37 toward the flank 8 and the cutting edge 5, and the second ejection hole 52 of the rake surface ejection portion 50. Therefore, the coolant can be supplied toward the rake face 7 and the cutting edge 5.
That is, the coolant can be supplied toward the cutting edge 5 from two different directions (on the rake face 7 and on the flank face 8) out of the directions orthogonal to the cutting edge 5 (the blade length direction). The coolant can surely reach the blade 5 and the cooling effect in the vicinity of the cutting blade 5 can be remarkably enhanced.
 また本実施形態では、第1の噴出孔51と切れ刃5との間に、逃げ面8が位置しており、第2の噴出孔52と切れ刃5との間に、すくい面7が位置しているので、下記の作用効果を奏する。
 すなわちこの場合、第1の噴出孔51から噴出するクーラントは、逃げ面8上を通して切れ刃5に略直交する向きから供給される。また、第2の噴出孔52から噴出するクーラントは、すくい面7上を通して切れ刃5に略直交する向きから供給される。このため、切れ刃5の刃長全域にわたってクーラントを均等に供給しやすくなり、冷却効果がより安定したものとなる。
In the present embodiment, the flank 8 is located between the first ejection hole 51 and the cutting edge 5, and the rake face 7 is located between the second ejection hole 52 and the cutting edge 5. Therefore, the following effects are achieved.
That is, in this case, the coolant ejected from the first ejection holes 51 is supplied from the direction substantially orthogonal to the cutting edge 5 through the flank 8. Further, the coolant ejected from the second ejection holes 52 is supplied from the direction substantially orthogonal to the cutting edge 5 through the rake face 7. For this reason, it becomes easy to supply coolant uniformly over the whole blade length of the cutting edge 5, and the cooling effect becomes more stable.
 また本実施形態では、すくい面噴出部50が、工具本体31の先端部において突起状に形成されているので、該すくい面噴出部50の第2の噴出孔52を、例えばブレーカ形状等に係わらず、すくい面7及び切れ刃5に向けて真っ直ぐに開口させやすくなる。このため、第2の噴出孔52から噴出するクーラントを、より確実にすくい面7及び切れ刃5に到達させることができる。 Moreover, in this embodiment, since the rake face ejection part 50 is formed in a protruding shape at the tip of the tool body 31, the second ejection hole 52 of the rake face ejection part 50 is engaged with, for example, a breaker shape or the like. It becomes easy to open straight toward the rake face 7 and the cutting edge 5. For this reason, the coolant ejected from the second ejection holes 52 can reach the rake face 7 and the cutting edge 5 more reliably.
 また本実施形態では、第2の噴出孔52が、工具本体31の先端部において互いに離間して複数形成されており、それぞれの第2の噴出孔52から、すくい面7及び切れ刃5に向けてクーラントが噴出される。つまり、すくい面7及び切れ刃5に対して、互いに異なる複数方向からクーラントが供給される。従って、切れ刃5からすくい面7上に流れる切屑の排出方向に係わらず、クーラントを切れ刃5に確実に到達させることができる。 Further, in the present embodiment, a plurality of second ejection holes 52 are formed apart from each other at the tip of the tool body 31, and the second ejection holes 52 are directed toward the rake face 7 and the cutting edge 5. The coolant is ejected. That is, coolant is supplied to the rake face 7 and the cutting edge 5 from a plurality of different directions. Therefore, the coolant can reliably reach the cutting edge 5 regardless of the discharge direction of the chips flowing from the cutting edge 5 onto the rake face 7.
 また本実施形態では、クーラント噴出部材37の筒部43の外周に、環状をなすOリング等のシール部材が装着されるので、筒部43の外周上をクーラントが意図せず流れることを防止できるとともに、クーラントが工具先端側や側方等の外部に漏出することを防止できる。よって、上述した本実施形態の作用効果がより顕著なものとなる。
 またシール部材により、筒部43が配設される工具本体31の孔部41との接触抵抗が増大するので、クーラント供給圧等によって工具本体31からクーラント噴出部材37が容易に抜け出てしまうことを抑制できる。つまりシール部材によって、クーラント噴出部材37の抜け止め作用を得ることができ、この作用が十分に得られる場合には、取付ねじ45を設けなくてもよい。
In this embodiment, since an annular seal member such as an O-ring is attached to the outer periphery of the cylindrical portion 43 of the coolant ejection member 37, the coolant can be prevented from unintentionally flowing on the outer periphery of the cylindrical portion 43. At the same time, the coolant can be prevented from leaking to the outside such as the tool tip side or the side. Therefore, the operational effects of the present embodiment described above become more prominent.
Further, since the contact member increases the contact resistance with the hole 41 of the tool main body 31 in which the cylindrical portion 43 is disposed, the coolant ejection member 37 can be easily removed from the tool main body 31 due to the coolant supply pressure or the like. Can be suppressed. In other words, the seal member can prevent the coolant ejection member 37 from coming off, and if this effect can be obtained sufficiently, the mounting screw 45 need not be provided.
 なお、取付ねじ45を設けることなくクーラント噴出部材37の抜け止め作用をより確実に得るには、取り付け部40の上面(における少なくとも内周縁)の、筒部43の中心軸C方向に沿う延長線上に、シート部材35の裏面(シート部材35を設けない場合には切削インサート1の裏面3b)が位置するように配置して、これらを当接可能とすることが好ましい。 In order to obtain the action of preventing the coolant jetting member 37 from coming off without providing the mounting screw 45, the upper surface (at least the inner peripheral edge) of the mounting portion 40 on the extension line along the central axis C direction of the cylindrical portion 43 In addition, it is preferable that the back surface of the sheet member 35 (the back surface 3b of the cutting insert 1 when the sheet member 35 is not provided) is positioned so that these can be contacted.
 また本実施形態では、工具本体31の先端部に、クーラント供給路36に連通する収容凹部38が形成されており、クーラント噴出部材37が、この収容凹部38に収容されるので、下記の作用効果を奏する。
 すなわち上記構成によれば、クーラント噴出部材37が、収容凹部38に収容されて、工具本体31の先端部から大きく出っ張る(突出する)ようなことが抑制される。
 従って、クーラント噴出部材37により上述した顕著な作用効果が得られつつも、刃先交換式バイト30の外形をコンパクトに抑えることができ、かつ、クーラント噴出部材37を装着したことによって旋削加工の条件が制限されてしまうことも抑制できる。
Further, in the present embodiment, an accommodation recess 38 communicating with the coolant supply path 36 is formed at the tip of the tool body 31, and the coolant jetting member 37 is accommodated in the accommodation recess 38. Play.
In other words, according to the above configuration, the coolant ejection member 37 is housed in the housing recess 38 and is prevented from protruding (projecting) greatly from the tip of the tool body 31.
Therefore, the outer shape of the cutting edge replaceable cutting tool 30 can be reduced to a compact size while the above-described remarkable effects are obtained by the coolant spraying member 37, and the condition of the turning process can be achieved by mounting the coolant spraying member 37. It can also be suppressed.
 また本実施形態では、工具本体31の先端部を上下方向に沿って見た工具上面視において、逃げ面噴出部44及び第1の噴出孔51が、切削インサート1の切れ刃5よりも工具本体31の内部側(軸線O方向の基端側かつ側方の内側)に配置されている。従って、上述のように第1の噴出孔51により優れた作用効果が得られつつも、旋削加工時において、逃げ面噴出部44が被削材に干渉することを防止でき、加工条件への影響を抑制できる。 Further, in the present embodiment, the flank ejection portion 44 and the first ejection hole 51 are more than the cutting blade 5 of the cutting insert 1 in the tool top view when the tip portion of the tool body 31 is viewed along the vertical direction. 31 is disposed on the inner side (the base end side in the axis O direction and the inner side of the side). Therefore, while the excellent effect can be obtained by the first ejection hole 51 as described above, the flank ejection portion 44 can be prevented from interfering with the work material during turning, and the influence on the machining conditions can be prevented. Can be suppressed.
<第2実施形態>
 次に、本発明の第2実施形態に係る刃先交換式バイト60について、図15~図18を参照して説明する。
 なお、前述の第1実施形態と同じ構成要素については詳細な説明を省略し、主として異なる点についてのみ、下記に説明する。
Second Embodiment
Next, a blade edge replaceable cutting tool 60 according to a second embodiment of the present invention will be described with reference to FIGS. 15 to 18.
Detailed description of the same components as those in the first embodiment will be omitted, and only different points will be described below.
〔前述の実施形態との相違点〕
 図15~図18に示されるように、本実施形態の刃先交換式バイト60は、第1実施形態とは、クーラント供給路36の副クーラント供給路36b、及びすくい面噴出部50が異なっている。
[Differences from the previous embodiment]
As shown in FIGS. 15 to 18, the cutting edge replaceable cutting tool 60 of the present embodiment is different from the first embodiment in the sub-coolant supply path 36b of the coolant supply path 36 and the rake face ejection part 50. .
 本実施形態では、工具本体31の先端部において副クーラント供給路36bが、主クーラント供給路36aに接続して1つのみ形成されており、該副クーラント供給路36bは、互いに延在方向が異なる複数の直線状流路同士を連結し形成されている。 In the present embodiment, only one sub coolant supply path 36b is connected to the main coolant supply path 36a at the tip of the tool body 31, and the sub coolant supply paths 36b have different extending directions. A plurality of linear flow paths are connected to each other.
 また本実施形態では、工具本体31の先端部に着脱可能に装着されたクランプ駒33に、すくい面噴出部50が備えられている。つまりすくい面噴出部50は、工具本体31の先端部に1つのみ設けられている。そして、第2の噴出孔52は、クランプ駒33(すくい面噴出部50)において切れ刃5側を向く先端面に開口している。また、クランプ駒33には、第2の噴出孔52が複数(図示の例では2つ)形成されている。 Further, in the present embodiment, the rake face ejection portion 50 is provided on the clamp piece 33 detachably attached to the tip portion of the tool body 31. That is, only one rake face ejection part 50 is provided at the tip of the tool body 31. And the 2nd ejection hole 52 is opened in the front end surface which faces the cutting-blade 5 side in the clamp piece 33 (rake face ejection part 50). The clamp piece 33 is formed with a plurality of (two in the illustrated example) second ejection holes 52.
 具体的に、第2の噴出孔52は、クランプ駒33(すくい面噴出部50)内に設けられたクーラントの流路であるとともに、その流路の両端は、該クランプ駒33の先端面及び底面に開口している。第2の噴出孔52のうち、クランプ駒33の底面に開口する部分は、クーラント供給路36の副クーラント供給路36bに接続しており、この接続部分がクーラントの流入口とされている。また、第2の噴出孔52のうち、クランプ駒33の先端面に開口する部分は、クーラントの流出口とされている。 Specifically, the second ejection hole 52 is a coolant flow path provided in the clamp piece 33 (rake face ejection portion 50), and both ends of the flow path are connected to the front end surface of the clamp piece 33 and Open to the bottom. A portion of the second ejection hole 52 that opens to the bottom surface of the clamp piece 33 is connected to the sub-coolant supply passage 36b of the coolant supply passage 36, and this connection portion serves as a coolant inlet. Moreover, the part opened to the front end surface of the clamp piece 33 among the 2nd ejection holes 52 is made into the outflow port of a coolant.
 第2の噴出孔52は、その流路両端の開口部(クーラント供給路36との接続部分及び流出口)を除く流路の周囲全体が壁部により囲まれて密閉されている。つまり、第2の噴出孔52は、その両端部以外の部位が壁部により隙間なく囲われた室となっている。
 また第2の噴出孔52は、流出口付近では切れ刃5へ向けて直線状に延びており、流出口付近以外の部位では曲線状又は直線状に延びて形成されている。
The second ejection hole 52 is hermetically sealed with a wall portion around the entire flow path except for openings at both ends of the flow path (a connection portion with the coolant supply path 36 and an outlet). That is, the second ejection hole 52 is a chamber in which portions other than both end portions thereof are surrounded by the wall portion without a gap.
The second ejection holes 52 extend linearly toward the cutting edge 5 in the vicinity of the outlet, and are formed to extend in a curved shape or a straight line in portions other than the vicinity of the outlet.
〔本実施形態による作用効果〕
 本実施形態の刃先交換式バイト60によれば、前述した第1実施形態と同様の作用効果を得ることができる。
 さらに、クランプ駒33にすくい面噴出部50が備えられているので、工具本体31の先端部において部品点数を増やすことなく、第2の噴出孔52をすくい面7及び切れ刃5に向けて精度よく開口させることができる。
[Effects of this embodiment]
According to the cutting edge-exchangeable cutting tool 60 of the present embodiment, it is possible to obtain the same operational effects as those of the first embodiment described above.
Furthermore, since the rake face ejection part 50 is provided on the clamp piece 33, the second ejection hole 52 is directed toward the rake face 7 and the cutting edge 5 without increasing the number of parts at the tip of the tool body 31. It can be opened well.
〔本発明に含まれるその他の構成〕
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
[Other configurations included in the present invention]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、前述の実施形態では、切削インサート1が略菱形の四角形板状に形成されているとしたが、これに限定されるものではない。すなわち、切削インサート1は、上記四角形板状以外の多角形板状や円板状等であってもよい。また、種々の切削インサート1の切れ刃5形状に応じて、第1の噴出孔51(の流出口51a)の断面形状は、V字状、直線状及び曲線状のいずれかに選択されてよい。 For example, in the above-described embodiment, the cutting insert 1 is formed in a substantially rhombic square plate shape, but the present invention is not limited to this. That is, the cutting insert 1 may have a polygonal plate shape or a disk shape other than the rectangular plate shape. Further, according to the shape of the cutting edge 5 of various cutting inserts 1, the cross-sectional shape of the first ejection hole 51 (outlet 51a thereof) may be selected from a V shape, a straight shape, and a curved shape. .
 また、前述の実施形態では、第1の噴出孔51における流路の断面積が、該第1の噴出孔51における筒部43の内部との接続部分51bから流出口51aまでの間で一定であるとしたが、これに限定されるものではない。例えば、第1の噴出孔51の流路の断面積が、該第1の噴出孔51における筒部43の内部との接続部分51bから流出口51aへ向かうに従い徐々に小さくされていてもよい。なおこの場合、筒部43の内部の流路の断面積については、流入口43aから第1の噴出孔51との接続部分43bまでの間で一定とされていてもよい。
 また、第1の噴出孔51の断面形状が、該第1の噴出孔51における筒部43の内部との接続部分51bから流出口51aまでの間で一定とされているとしたが、これに限定されるものではない。
In the above-described embodiment, the cross-sectional area of the flow path in the first ejection hole 51 is constant between the connection portion 51b of the first ejection hole 51 with the inside of the cylindrical portion 43 and the outlet 51a. Although there is, it is not limited to this. For example, the cross-sectional area of the flow path of the first ejection hole 51 may be gradually reduced from the connecting portion 51b of the first ejection hole 51 with the inside of the cylindrical portion 43 toward the outlet 51a. In this case, the cross-sectional area of the flow path inside the cylindrical portion 43 may be constant between the inflow port 43 a and the connection portion 43 b with the first ejection hole 51.
Moreover, although the cross-sectional shape of the 1st ejection hole 51 was made constant from the connection part 51b with the inside of the cylinder part 43 in this 1st ejection hole 51 to the outflow port 51a, It is not limited.
 また、前述の実施形態では、すくい面噴出部50が、工具本体31の先端部において突起状に形成されているとしたが、すくい面噴出部50の形状は突起状に限定されるものではない。 Moreover, in the above-mentioned embodiment, although the rake face ejection part 50 was formed in the projection shape in the front-end | tip part of the tool main body 31, the shape of the rake face ejection part 50 is not limited to a projection shape. .
 また、前述の実施形態では、切削インサート1は、超硬合金等からなり、その外面のうち少なくとも切れ刃5近傍(切れ刃5、すくい面7及び逃げ面8)がCVDコーティング膜等の硬質膜で被覆されているとしたが、これに限定されるものではない。すなわち切削インサート1は、例えば、超硬合金製の台金(基体)のコーナ部に形成された凹部に、PCD(多結晶ダイヤモンド)焼結体やcBN(立方晶窒化硼素)焼結体のような超高硬度焼結体からなる切れ刃チップがろう付け等により一体に形成されたものであってもよい。この場合、切削インサート1の切れ刃5、すくい面7及び逃げ面8は、切れ刃チップに形成される。 In the above-described embodiment, the cutting insert 1 is made of cemented carbide or the like, and at least the vicinity of the cutting edge 5 (the cutting edge 5, the rake face 7 and the flank face 8) of the outer surface is a hard film such as a CVD coating film. However, the present invention is not limited to this. That is, the cutting insert 1 is, for example, a PCD (polycrystalline diamond) sintered body or a cBN (cubic boron nitride) sintered body in a concave portion formed in a corner portion of a cemented carbide base metal (base). A cutting edge chip made of an ultra-high hardness sintered body may be integrally formed by brazing or the like. In this case, the cutting edge 5, the rake face 7 and the flank face 8 of the cutting insert 1 are formed in a cutting edge tip.
 また、前述の実施形態では、切削インサート1の裏面3bとインサート取付座32の底壁との間に、シート部材35が介装されることとしたが、シート部材35は設けられなくてもよい。この場合、切削インサート1の裏面3bが、インサート取付座32の底壁に直接着座される。 In the above-described embodiment, the sheet member 35 is interposed between the back surface 3b of the cutting insert 1 and the bottom wall of the insert mounting seat 32. However, the sheet member 35 may not be provided. . In this case, the back surface 3 b of the cutting insert 1 is directly seated on the bottom wall of the insert mounting seat 32.
 また、前述の実施形態では、バイトとして、刃先交換式バイト30、60を例に挙げて説明したが、これに限定されるものではない。すなわち本発明は、例えば、ろう付けバイト等の刃先交換式タイプではないバイトにも、適用可能である。 In the above-described embodiment, the cutting edge exchangeable cutting tools 30 and 60 have been described as examples of the cutting tool. However, the cutting tool is not limited thereto. That is, the present invention can be applied to a cutting tool that is not a blade-tip-exchangeable type, such as a brazing tool.
 その他、本発明の趣旨から逸脱しない範囲において、前述の実施形態、変形例及びなお書き等で説明した各構成(構成要素)を組み合わせてもよく、また、構成の付加、省略、置換、その他の変更が可能である。また本発明は、前述した実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。 In addition, in the range which does not deviate from the meaning of this invention, you may combine each structure (component) demonstrated by the above-mentioned embodiment, a modification, and a remark etc., addition of a structure, omission, substitution, others It can be changed. Further, the present invention is not limited by the above-described embodiments, and is limited only by the scope of the claims.
 5 切れ刃
 7 すくい面
 8 逃げ面
 30、60 刃先交換式バイト(バイト)
 31 工具本体
 36 クーラント供給路
 37 クーラント噴出部材
 43 筒部
 43a 筒部の内部の流入口
 43b 筒部の内部における第1の噴出孔との接続部分
 44 逃げ面噴出部
 50 すくい面噴出部
 51 第1の噴出孔
 51a 第1の噴出孔の流出口
 51b 第1の噴出孔における筒部の内部との接続部分
 52 第2の噴出孔 
5 Cutting edge 7 Rake face 8 Relief face 30, 60 Cutting edge exchangeable tool (bite)
31 Tool body 36 Coolant supply path 37 Coolant ejection member 43 Cylinder portion 43a Inflow port 43b inside the cylinder portion Connection portion with the first ejection hole inside the cylinder portion 44 Relief surface ejection portion 50 Rake surface ejection portion 51 First 51a Outlet 51a of the first ejection hole 51b Connection portion of the first ejection hole with the inside of the cylindrical portion 52 Second ejection hole

Claims (7)

  1.  軸状をなし、内部にクーラント供給路が形成された工具本体と、
     前記工具本体の先端部に配置され、すくい面と逃げ面との交差稜線部に形成された切れ刃と、
     前記工具本体の先端部に着脱可能に設けられたクーラント噴出部材と、を備えたバイトであって、
     前記クーラント噴出部材は、
     前記逃げ面及び前記切れ刃に向けて開口する第1の噴出孔が形成された逃げ面噴出部と、
     筒状をなし、内部が前記第1の噴出孔及び前記クーラント供給路に連通する筒部と、を備え、
     前記クーラント噴出部材内には、前記第1の噴出孔と前記筒部の内部とにより流路が形成され、
     前記流路のうち、前記筒部において前記クーラント供給路に接続する流入口の断面形状と、前記第1の噴出孔において前記筒部とは反対側の端部に位置する流出口の断面形状とが、互いに異なっており、
     前記流路は、前記流入口の断面積に比べて、前記流出口の断面積が小さいことを特徴とするバイト。
    A tool body having a shaft shape and having a coolant supply path formed therein;
    A cutting edge disposed at the tip of the tool body and formed at the crossing ridge line portion of the rake face and the flank face;
    A coolant ejection member detachably provided at the tip of the tool body, and a tool comprising:
    The coolant ejection member is
    A flank jet portion formed with a first jet hole that opens toward the flank and the cutting edge;
    A cylindrical portion having an inner portion communicating with the first ejection hole and the coolant supply path,
    In the coolant jet member, a flow path is formed by the first jet hole and the inside of the cylindrical portion,
    Among the flow paths, a cross-sectional shape of an inflow port connected to the coolant supply path in the cylindrical portion, and a cross-sectional shape of an outflow port located at an end opposite to the cylindrical portion in the first ejection hole, Are different from each other,
    The bite characterized in that the channel has a cross-sectional area of the outlet that is smaller than a cross-sectional area of the inlet.
  2.  請求項1に記載のバイトであって、
     前記流入口の断面形状が、円形状であり、
     前記流出口の断面形状が、前記切れ刃の形状に対応するV字状、直線状及び曲線状のいずれかであることを特徴とするバイト。
    The byte according to claim 1,
    The cross-sectional shape of the inlet is a circular shape,
    The cutting tool is characterized in that a cross-sectional shape of the outlet is one of a V shape, a straight line shape, and a curved shape corresponding to the shape of the cutting edge.
  3.  請求項1又は2に記載のバイトであって、
     前記第1の噴出孔における流路の断面積が、前記筒部の内部との接続部分から前記流出口までの間で一定であることを特徴とするバイト。
    The byte according to claim 1 or 2,
    The cutting tool characterized in that a cross-sectional area of a flow path in the first ejection hole is constant from a connection portion with the inside of the cylindrical portion to the outlet.
  4.  請求項3に記載のバイトであって、
     前記筒部の内部における流路の断面積が、前記流入口から前記第1の噴出孔との接続部分に向かうに従い小さくなることを特徴とするバイト。
    The byte according to claim 3,
    The cutting tool according to claim 1, wherein a cross-sectional area of the flow path inside the cylindrical portion decreases from the inflow port toward a connection portion with the first ejection hole.
  5.  請求項1~4のいずれか一項に記載のバイトであって、
     前記流路は、前記流入口の幅に比べて、前記流出口の幅が小さいことを特徴とするバイト。
    The byte according to any one of claims 1 to 4,
    The bite characterized in that the flow path has a width of the outlet that is smaller than a width of the inlet.
  6.  請求項1~5のいずれか一項に記載のバイトであって、
     前記筒部は、前記クーラント供給路との接続部分から前記工具本体の先端側及び側方のうち少なくともいずれかに向かうに従い、前記第1の噴出孔から前記切れ刃側へ向かって傾斜して延びていることを特徴とするバイト。
    The byte according to any one of claims 1 to 5,
    The cylindrical portion extends from the first ejection hole to the cutting edge side in an inclined manner from the connecting portion with the coolant supply path toward at least one of the tip side and the side of the tool body. Byte characterized by
  7.  請求項1~6のいずれか一項に記載のバイトであって、
     前記工具本体の先端部には、前記クーラント供給路に連通し、前記すくい面及び前記切れ刃に向けて開口する第2の噴出孔が形成されたすくい面噴出部が備えられることを特徴とするバイト。 
    The byte according to any one of claims 1 to 6,
    The tip of the tool body is provided with a rake face jetting part formed with a second jet hole that communicates with the coolant supply path and opens toward the rake face and the cutting edge. Part-Time Job.
PCT/JP2017/025519 2016-07-21 2017-07-13 Cutting tool WO2018016412A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016143637A JP6874292B2 (en) 2016-07-21 2016-07-21 Part-Time Job
JP2016-143637 2016-07-21

Publications (1)

Publication Number Publication Date
WO2018016412A1 true WO2018016412A1 (en) 2018-01-25

Family

ID=60992062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025519 WO2018016412A1 (en) 2016-07-21 2017-07-13 Cutting tool

Country Status (2)

Country Link
JP (1) JP6874292B2 (en)
WO (1) WO2018016412A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT16570U1 (en) * 2018-08-01 2020-01-15 Ceratizit Austria Gmbh Rotary tool holder
KR102620887B1 (en) * 2021-08-23 2024-01-05 한국생산기술연구원 Indirect injection and mql injection type insert cutting tool and including processing device thereof
US20230201929A1 (en) * 2021-12-29 2023-06-29 Kennametal Inc. Turning toolholder with enhanced coolant delivery system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631502A (en) * 1992-07-13 1994-02-08 Genichi Sato Cutting tool
JPH09183002A (en) * 1995-12-29 1997-07-15 Sumitomo Electric Ind Ltd Internally lubricated cutting tool
JPH1076404A (en) * 1996-02-28 1998-03-24 Sumitomo Electric Ind Ltd Cutting tool for lathe turning
WO2011154933A1 (en) * 2010-06-10 2011-12-15 Iscar Ltd. Cutting tool and coolant outlet of special shape
JP2013049106A (en) * 2011-08-30 2013-03-14 Sumitomo Electric Hardmetal Corp Ultra-high pressure sintered tool having oil feed hole inside flank face
CN204430303U (en) * 2015-01-22 2015-07-01 株洲钻石切削刀具股份有限公司 Cold lathe tool in a kind of
EP2946857A1 (en) * 2014-05-19 2015-11-25 Sandvik Intellectual Property AB Turning tool holder and cutting tool insert
WO2016117461A1 (en) * 2015-01-23 2016-07-28 三菱マテリアル株式会社 Bit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003170302A (en) * 2001-12-06 2003-06-17 Ngk Spark Plug Co Ltd Shim seat and cutting tool
JP6122341B2 (en) * 2013-05-28 2017-04-26 京セラ株式会社 CUTTING TOOL AND PROCESS FOR PRODUCING CUT WORK

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631502A (en) * 1992-07-13 1994-02-08 Genichi Sato Cutting tool
JPH09183002A (en) * 1995-12-29 1997-07-15 Sumitomo Electric Ind Ltd Internally lubricated cutting tool
JPH1076404A (en) * 1996-02-28 1998-03-24 Sumitomo Electric Ind Ltd Cutting tool for lathe turning
WO2011154933A1 (en) * 2010-06-10 2011-12-15 Iscar Ltd. Cutting tool and coolant outlet of special shape
JP2013049106A (en) * 2011-08-30 2013-03-14 Sumitomo Electric Hardmetal Corp Ultra-high pressure sintered tool having oil feed hole inside flank face
EP2946857A1 (en) * 2014-05-19 2015-11-25 Sandvik Intellectual Property AB Turning tool holder and cutting tool insert
CN204430303U (en) * 2015-01-22 2015-07-01 株洲钻石切削刀具股份有限公司 Cold lathe tool in a kind of
WO2016117461A1 (en) * 2015-01-23 2016-07-28 三菱マテリアル株式会社 Bit

Also Published As

Publication number Publication date
JP6874292B2 (en) 2021-05-19
JP2018012171A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6550759B2 (en) Part-Time Job
US9925596B2 (en) Turning tool holder and cutting tool insert
US8827598B2 (en) Cutting assembly with enhanced coolant delivery
US9579727B2 (en) Cutting assembly with cutting insert having enhanced coolant delivery
JP5154803B2 (en) Boring bar for internal turning
KR102307031B1 (en) Cutting tool having a cooling chamber and tool body with integrally formed coolant deflection
US20080175678A1 (en) Metal cutting system for effective coolant delivery
US20120230780A1 (en) Cutting assembly
US20120230781A1 (en) Cutting tool including a locking screw and adapter with coolant delivery
KR20160054596A (en) Tool holder and cutting tool
US10300532B2 (en) Clamp for tool holder
WO2018016412A1 (en) Cutting tool
JP2018012172A (en) Tool bit
JP2002346810A (en) Cutting tool
JPWO2016121663A1 (en) Cutting tools
JP2014030888A (en) Cutting tool
JP6361805B1 (en) Tool body and cutting tool
JP6726395B2 (en) Cutting tools
JP6650133B2 (en) Jig, coolant supply structure and cutting tool
JP2022154328A (en) Coolant discharge member and tip-replaceable cutting tool
JP2018001297A (en) Hole drilling tool
JP2022154329A (en) Coolant discharge member and tip-replaceable cutting tool
JP2022155847A (en) Boring bar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830931

Country of ref document: EP

Kind code of ref document: A1