WO2009107235A1 - Chip suction drill - Google Patents

Chip suction drill Download PDF

Info

Publication number
WO2009107235A1
WO2009107235A1 PCT/JP2008/053658 JP2008053658W WO2009107235A1 WO 2009107235 A1 WO2009107235 A1 WO 2009107235A1 JP 2008053658 W JP2008053658 W JP 2008053658W WO 2009107235 A1 WO2009107235 A1 WO 2009107235A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
groove
cutting edge
chip suction
hole
Prior art date
Application number
PCT/JP2008/053658
Other languages
French (fr)
Japanese (ja)
Inventor
誠司 大橋
実朗 伊藤
ナーウィン ブアカウ
秀通 高橋
Original Assignee
オーエスジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーエスジー株式会社 filed Critical オーエスジー株式会社
Priority to KR1020107018515A priority Critical patent/KR101455582B1/en
Priority to JP2010500507A priority patent/JP4996739B2/en
Priority to CN200880127620.4A priority patent/CN101959634B/en
Priority to PCT/JP2008/053658 priority patent/WO2009107235A1/en
Publication of WO2009107235A1 publication Critical patent/WO2009107235A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/06Drills with lubricating or cooling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2270/00Details of turning, boring or drilling machines, processes or tools not otherwise provided for
    • B23B2270/62Use of suction

Definitions

  • the present invention relates to a drill, and more particularly to a chip suction drill that forcibly sucks and discharges chips in order to prevent environmental pollution and simplify cleaning operations.
  • an air introduction passage is provided inside the tool separately from the chip suction passage, and air is drawn from the air introduction passage along with suction by the chip suction passage. Since it is introduced to the tip, it is difficult to secure a sufficient cross-sectional area of the chip suction passage, chip clogging is likely to occur, and the chip intake hole is small, so that chip suction is possible. There was a problem that the effect could not be obtained sufficiently. Since the opening of the air introduction passage, that is, the air introduction site is also in front of the cutting edge, the chips generated by the cutting edge cannot always be efficiently guided to the chip intake hole.
  • the spiral groove is continuously provided in the axial direction continuously to the cutting edge groove for forming the cutting edge, air is also introduced from the spiral groove to the tool tip side. Therefore, there is a possibility that the chip suction passage sucks only air and the chips cannot be sucked well. Furthermore, since air is introduced into the air introduction passage only by the negative pressure of the chip suction passage, it is difficult to generate a sufficient air flow. It may not be possible.
  • the present invention has been made in the background of the above circumstances, and the object of the present invention is that the chips generated by the cutting blade are sucked well into the chip suction passage by a high suction action, and chip clogging is caused. It is to ensure that the chips are discharged well through the chip suction passage without being generated.
  • a cutting edge groove is formed on the outer peripheral surface of the rod, and the cutting edge groove is formed at the edge of the tool leading end.
  • a blade portion provided with a blade; and
  • a chip suction passage provided along the axis O inside the scissors tool and having a chip intake hole opened in the groove for the cutting edge.
  • drilling is performed by the cutting edge while being driven to rotate toward the tool tip while being rotationally driven around the shaft axis O, and the chips generated by the drilling are cut into the chip-taking hole.
  • An air introduction groove is provided on the outer peripheral surface of the blade portion so as to reach the flank face of the cutting blade. It is characterized by.
  • the second invention is the chip suction drill of the first invention, wherein (a) the cutting edge groove is a straight groove parallel to the axis O or a twist groove twisted in the same direction as the tool rotation direction as viewed from the shank side. (B) The air introduction groove is a straight groove parallel to the shaft center O or a twist groove twisted in the direction opposite to the tool rotation direction as viewed from the shank side, and is axially closer to the shank than the cutting edge groove. It is provided so that it may extend long.
  • the axial length L3 of the blade portion with respect to the drill diameter D is in the range of 1.0D to 2.0D.
  • a blade part is the range in which the said groove
  • the axial length L1 of the chip take-in hole with respect to the drill diameter D is in the range of 0.3D to 1.0D.
  • the width dimension L2 which is the maximum dimension in the width direction perpendicular to the axial direction is 0.15D or more.
  • a fifth aspect of the present invention is the chip suction drill according to any one of the first to fourth aspects of the present invention, wherein air introduced through the air introduction groove is formed on the flank of the cutting edge.
  • a predetermined relief is provided so as to flow into the cutting edge groove through a gap between the bottom surface and the bottom surface.
  • the cutting edge of the edge where the groove for the cutting edge opens on the tool tip side is formed on the flank of the cutting edge.
  • a communication groove is provided so as to connect a portion located on the opposite side to the air introduction groove.
  • a pair of the cutting edge groove and the cutting edge are provided symmetrically with respect to the axis O.
  • the chip suction passage is a single circular hole formed concentrically with the axial center O of the tool, and (c) the pair of the pair of chip suction passages so as to partially intersect the tip of the chip suction passage.
  • An eighth invention is the chip suction drill according to any one of the first to seventh inventions, wherein (a) the blade has a neck portion that is continuous with the blade portion and has a smaller diameter than the blade portion; The cutting edge groove is provided in a range that does not reach the step at the boundary between the blade part and the neck part. (C) The air introduction groove includes a step at the boundary between the blade part and the neck part. Is provided.
  • a ninth aspect of the present invention is the chip suction drill according to the eighth aspect of the present invention, wherein the diameter d1 of the neck portion is equal to or larger than the cross-sectional area of the chip suction passage between the inner peripheral surface of the machining hole. It is defined that an annular space is formed.
  • the chip suction passage As the chip suction passage is enlarged, the chip take-in hole can be enlarged, so that the occurrence of chip clogging is suppressed and excellent chip suction performance can be obtained.
  • the air introduction portion is closer to the cutting edge that generates chips, so that the chips are more effectively guided into the chip intake hole. And the chip suction performance is further improved.
  • the air introduction groove is a straight groove parallel to the axis O or a twisted groove twisted in the direction opposite to the tool rotation direction, and in the case of the twisted groove, the tool is rotated during drilling.
  • air is introduced better to the tool tip side through the air introduction groove, coupled with the suction of air by the chip suction passage, the air flowing from the air introduction groove to the chip intake hole through the tool tip part.
  • the flow is well formed and the air flow allows the chips to be sucked better into the chip suction passage.
  • the air introduction groove is provided so as to extend longer in the axial direction to the shank side than the cutting edge groove, after the cutting edge groove has completely entered the machining hole, the air introduction groove is provided. Air is introduced into the tool tip as a center, and excellent chip suction performance can be obtained.
  • the axial length L3 of the blade portion provided with the cutting edge groove is relatively short within the range of 1.0D to 2.0D, the processing resistance due to the sliding contact between the processing hole and the blade portion When machining a hole deeper than the blade, air is introduced into the tool tip centering on the air introduction groove after the blade has completely entered the machining hole. Therefore, excellent chip suction performance can be obtained.
  • the axial length L1 of the chip take-in hole is in the range of 0.3D to 1.0D and the width dimension L2 perpendicular to the axial direction is 0.15D or more, it is generated by the cutting edge. Chips are sucked well into the chip take-up hole. In particular, when a chip such as a casting that is relatively small and difficult to be entangled is generated, the chip can be satisfactorily sucked and removed.
  • a predetermined relief is provided on the flank face of the cutting edge, and the air introduced through the air introduction groove passes through the gap between the flank face and the bottom surface of the machining hole and enters the inside of the cutting edge groove. Therefore, the air introduced into the air introduction groove can be satisfactorily flowed into the cutting edge groove through the gap between the flank face of the cutting edge and the bottom surface of the machining hole, The air flow for sucking the chips into the chip taking-in holes is well formed.
  • the communication groove is provided on the flank face of the cutting edge, and the cutting edge groove and the air introduction groove are connected, the air introduced into the air introduction groove is cut through the communication groove. A flow of air that is satisfactorily flowed into the blade groove and sucked into the chip take-in hole is well formed.
  • a pair of cutting edges are provided symmetrically with respect to the axis O, but since a single chip suction passage is provided concentrically with the axis O of the tool, there is a large flow interruption. The area can be secured, and chips generated by the pair of cutting edges can be discharged to the shank side satisfactorily while suppressing chip clogging.
  • the cutting edge groove is formed by cutting or grinding. At the time of forming, a chip taking hole can be provided at the same time, and the shape and size of the chip taking hole can be easily adjusted, for example, by changing the gradient angle ⁇ of the cutting edge groove.
  • the blade portion has a neck portion having a diameter smaller than that of the blade portion and an air introduction groove is provided including a step at the boundary between the blade portion and the neck portion, Since air is satisfactorily introduced into the air introduction groove through the gap between the circumferential surface and the neck, the processing length of the air introduction groove is shortened, and the neck is processed by cylindrical cutting or grinding. Since it can be carried out relatively easily and quickly, the production costs are reduced.
  • the diameter d1 of the neck is determined such that an annular space having a cross-sectional area equal to or greater than the cross-sectional area of the chip suction passage is formed between the inner peripheral surface of the machining hole. Therefore, a sufficient amount of air flows between the neck portion and the inner peripheral surface of the machining hole, and the air flow for sucking the chips into the chip taking-in holes is well formed.
  • FIG. 1 is a diagram showing a two-blade chip suction drill according to an embodiment of the present invention, where (a) is a schematic front view, (b) is an enlarged view of a tip, and (c) is (b) An end view as viewed from the tip side, (d) is a view as seen from below (c), and (b) is a view as seen from a direction in which the phase around the axis O is 90 ° different from. It is sectional drawing which fractured
  • Chip suction drill 12 Chip suction drill 12
  • Blade part 14 Neck part 16: Shank 18: Chip suction passage 20: Processing hole 22: Groove for cutting edge 24: Cutting edge 26: Flank 30: Chip Intake holes 32, 64: Air introduction groove 52: Communication groove O: Shaft center D: Drill diameter
  • the present invention is preferably applied to a two-blade drill, but can also be applied to a single-blade drill or a drill having three or more blades.
  • a material of the drill various tool materials such as cemented carbide and high-speed tool steel can be used.
  • the chip suction drill of the present invention is basically suitably used for dry processing that does not use a cutting fluid, but uses a mist-like cutting fluid as long as the chip suction action can be appropriately obtained. There is no problem. In addition, it is suitably used for drilling a work material such as a casting or an aluminum casting that has fine chips and is not easily entangled.
  • the present invention is preferably applied to a drill having a neck portion having a diameter smaller than that of the blade portion. However, the diameter reaches a shank with substantially the same diameter as the drill diameter D, or the diameter dimension continuously increases toward the shank side.
  • the cutting edge groove may be parallel to the axis O, but on the shank side so that the chips generated by the cutting edge flow well toward the chip taking hole opening in the cutting edge groove. It is desirable to use a twisted groove that is twisted in the same direction as the tool rotation direction seen from above. Since this cutting edge groove may be short, it may be a linear inclined groove inclined with respect to the axis O, and such an inclined groove is also an embodiment of a twisted groove. Note that the cutting edge groove is relatively short and the chips are sucked in by suction of the chip suction passage, so that the cutting edge groove is twisted or inclined in the direction opposite to the tool rotation direction seen from the shank side. However, it can be sucked into the chip take-in hole.
  • the chip suction passage is preferably, for example, a linear circular hole provided concentrically with the axis O, but a twisted hole twisted around the axis O or a square hole having a triangular or quadrangular cross section may be employed.
  • Various modes capable of distributing chips are possible.
  • the diameter d2 is within the range of 0.3D to 0.7D. Appropriate, about 0.5D to 0.7D is desirable.
  • the chip suction passage is provided so as to reach the end face on the shank side, for example, and is configured to discharge the chip, but it is formed on the outer peripheral surface at the middle part of the shank or the boundary between the shank and the neck part. It is also possible to discharge chips by providing an open discharge hole or the like.
  • the air introduction groove may be parallel to the axis O, but may be a twist groove twisted in the direction opposite to the tool rotation direction seen from the shank side so that air flows in as the tool rotates. desirable.
  • the length dimension is short, such as when an air introduction groove is provided only in the blade portion with a small-diameter neck, it may be a linear inclined groove inclined with respect to the axis O.
  • Such an inclined groove is also an embodiment of a twisted groove.
  • an air introduction groove that is twisted or inclined in the same direction as the tool rotation direction seen from the shank side is adopted. You can also
  • the air introduction grooves are provided in the same number as the cutting edge grooves corresponding to the cutting edge grooves.
  • the air introduction groove is, for example, an arc groove that is curved along the outer peripheral surface with a certain depth, and can be formed by cutting or grinding with a grindstone. It is desirable that the air introduction groove is provided so as not to cross or contact the cutting edge groove, and is completely separated so that air does not flow through each other except for the flow at the tool tip. May be connected to allow a small amount of air to circulate.
  • the tip of the air introduction groove may open at the boundary between the cutting edge flank and the cutting edge groove.
  • the axial length L1 of the chip take-in hole is smaller than 0.3D, chip clogging is likely to occur and there is a high possibility of welding, while the axial length L1 is larger than 1.0D. Therefore, only air is easily sucked and the chip suction performance is deteriorated, so that the range of 0.3D to 1.0D is appropriate. Further, if the width dimension L2 of the chip take-in hole is smaller than 0.15D, chip clogging is likely to occur and the possibility of welding is increased.
  • the upper limit of the width dimension L2 is determined by the size of the chip suction passage, the cross-sectional shape of the cutting edge groove, and the like.
  • the chip take-in hole is formed, for example, by providing a cutting edge groove so as to partially intersect the tip of the chip suction passage, but the hole formed by the intersection is not necessarily used as the chip take-in hole. It is not necessary to do so, and if necessary, the hole may be enlarged by grinding or the like to be used as a chip take-in hole.
  • various forms such as making a hole in the bottom of the cutting edge groove and communicating with the chip suction passage may be used. Is possible.
  • the length L3 is suitably in the range of 1.0D to 2.0D.
  • the length L3 may be longer than 2.0D.
  • the air introduction groove does not interfere (contact) with the cutting edge groove.
  • the length L3 of the blade that is, the length of the groove for the cutting edge is preferably as short as possible.
  • the cutting edge groove is provided in a range that does not reach the step at the boundary between the blade part and the neck part. For example, it is difficult to sufficiently introduce air with only the air introduction groove. When it is difficult to form an air flow, the cutting edge groove is formed so as to reach the step at the boundary between the blade part and the neck part so that a predetermined amount of air flows into the cutting blade groove from the neck part. It is also possible to configure.
  • FIG. 1 is a view showing a chip suction drill 10 according to an embodiment of the present invention, where (a) is a schematic front view seen from a direction perpendicular to the axis O, and (b) is an enlarged view of a blade 12 at the tip. , (C) is an end view as viewed from the right side of (b), that is, from the front end side, and (d) is a view as viewed from below (c).
  • the phase around the axis O is 90 ° compared to (b). It is the figure seen from the different direction.
  • the chip suction drill 10 is made of a cemented carbide, has a blade portion 12 having the same diameter as the drill diameter D, a neck portion 14 having a smaller diameter than the blade portion 12 and a constant diameter d1, and a blade.
  • a shank 16 having the same diameter as that of the portion 12 is provided continuously and integrally on the axis O.
  • the drill diameter D 10 mm
  • the diameter dimension d1 of the neck portion 14 8 mm
  • a constant diameter dimension d2 6 mm (0.6 D) from the end surface on the shank 16 side to the tip end on the axis O.
  • a straight circular hole with a bottom is formed as the chip suction passage 18.
  • the diameter d1 of the neck 14 is such that the annular gap 21 between the inner diameter of the machining hole 20 (see FIG. 4) is substantially the same as the cross-sectional area of the chip suction passage 18.
  • a pair of cutting edge grooves 22 are provided symmetrically with respect to the axis O on the outer peripheral surface of the blade portion 12, and holes are formed in the edges of the cutting edge grooves 22 that open to the tool front end side.
  • a cutting edge 24 for dawn is provided.
  • the chip suction drill 10 of the present embodiment performs drilling by being rotated clockwise when viewed from the shank 16 side, and the cutting edge groove 22 has a predetermined twist angle (for example, about 20 °). ) To be twisted clockwise, strictly speaking, a linear inclined groove, and the chips generated by the cutting edge 24 are caused by the inclination of the cutting edge groove 22 as the tool rotates. A component force in the direction toward the neck 14 is applied. Further, the cutting edge 24 is formed with a flank 26 so as to escape in a circular arc shape with a predetermined clearance angle ⁇ .
  • the clearance angle ⁇ is about 10 ° in this embodiment.
  • the cutting edge groove 22 is inclined with respect to the axis O from the tip at a predetermined gradient angle ⁇ with a core thickness of about 1.0 to 1.3 mm remaining at the tip.
  • the chip is formed by grinding with a grindstone, and a chip take-in hole 30 is formed by a part of the groove bottom intersecting (interfering) with the chip suction passage 18.
  • FIG. 3 is a front view showing the chip take-in hole 30, that is, an enlarged view of the shape corresponding to FIG.
  • FIG. 2 is a cross-sectional view cut along the inclination (twist) of the cutting edge groove 22.
  • the blade portion 12 has an axial length L3 of 1. to prevent the cutting edge groove 22 from reaching the neck portion 14 and, strictly speaking, not to reach the step at the boundary between the neck portion 14 and the blade portion 12. It is set within the range of 0D to 2.0D, and in this embodiment, L3 ⁇ 12 mm (1.2D).
  • a pair of air introduction grooves 32 are provided symmetrically with respect to the axis O so as not to intersect with the cutting edge groove 22 on the outer peripheral surface of the blade portion 12.
  • the air introduction groove 32 is a twist groove twisted at a predetermined twist angle (for example, about 30 °) in the direction opposite to the tool rotation direction as viewed from the shank 16 side, that is, counterclockwise, and the level difference at the boundary between the neck portion 14 and the blade portion 12.
  • the external air is caused to flow along the air introduction groove 32 to the tip side of the tool as the tool rotates during drilling.
  • the air introduction groove 32 has a predetermined width dimension (for example, about 2 to 3 mm) by grinding with a grindstone, and the groove bottom diameter is, for example, substantially the same as or smaller than the diameter dimension of the neck portion 14, and at least in the chip suction passage 18. It is formed so as not to reach. In the present embodiment, the air introduction groove 32 is provided completely separated without contacting the cutting edge groove 22 over its entire length.
  • such a chip suction drill 10 has a suction device 40 connected to a rear end portion of the chip suction passage 18, that is, an opening on the shank 16 side. While suctioning air with the suction force of the tool, it is advanced to the tool tip side while being driven to rotate clockwise around the axis O as viewed from the shank 16 side by a processing machine (machining center or the like) (not shown), and a casting or the like by the cutting edge 24 Drilling is performed on the workpiece 42. In this case, chips generated by drilling are sucked into the chip suction passage 18 from the chip take-in hole 30 formed in the cutting edge groove 22 and discharged to the shank 16 side.
  • a processing machine machining center or the like
  • the air introduction groove 32 is provided on the outer peripheral surface of the blade portion 12 so as to reach the flank 26 of the cutting blade 24, the cutting edge 24 generates a chip at the tip portion of the tool. Air is introduced well, and the air introduced from the air introduction groove 32 to the tip of the tool is sucked into the chip take-in hole 30 together with the chips as the air is sucked by the chip suction passage 18. Is done.
  • the air introduction groove 32 is provided on the outer peripheral surface of the blade portion 12, only one chip suction passage 18 is provided inside the tool, and therefore, the cross-sectional area of the chip suction passage 18 is determined. It is possible to ensure sufficient, and the chip take-in hole 30 can be enlarged as the chip suction passage 18 is enlarged, so that the occurrence of chip clogging is suppressed and excellent chip suction performance is achieved. Can be obtained.
  • the air introduction portion is closer to the cutting edge 24 that generates chips, so that the chips are more effectively contained in the chip intake hole 30.
  • the chip suction performance is further improved.
  • the air introduction groove 32 is formed including a step at the boundary between the blade portion 12 and the neck portion 14, and extends toward the shank 16 rather than the cutting blade groove 22 provided so as not to reach the step at the boundary. Since the air introduction groove 32 and the cutting edge groove 22 are formed so as not to intersect each other, the blade portion provided with the cutting edge groove 22 is provided. After 12 completely enters the machining hole 20, air is introduced exclusively into the tool tip from the air introduction groove 32, and excellent chip suction performance can be obtained.
  • the bold arrows in FIG. 4 indicate the air flow at this time.
  • the air introduction groove 32 is a torsion groove twisted in the direction opposite to the tool rotation direction, the air is introduced to the tool tip side through the air introduction groove 32 as the tool rotates during drilling.
  • the air flow from the air introduction groove 32 to the chip take-in hole 30 through the tool tip is well formed in combination with the suction of air by the chip suction passage 18, and the air As a result of this flow, the chips are better sucked into the chip suction passage 18.
  • the axial length L3 of the blade portion 12 provided with the cutting edge groove 22 is relatively short within the range of 1.0D to 2.0D.
  • the axial length L1 of the chip take-in hole 30 is in the range of 0.3D to 1.0D and the width dimension L2 perpendicular to the axial direction is 0.15D or more, the cutting edge
  • the chips generated by 24 are satisfactorily sucked into the chip intake hole 30.
  • the chip can be satisfactorily sucked and removed.
  • the flank 26 of the cutting edge 24 is provided with an arc-shaped flank with a predetermined clearance angle ⁇ , so that the air introduced into the air introduction groove 32 is flank 26 of the cutting edge 24. And the bottom surface of the machining hole 20 are satisfactorily flowed into the cutting edge groove 22, and a flow of air for sucking chips into the chip take-in hole 30 is well formed.
  • a pair of cutting edges 24 are provided symmetrically with respect to the axis O, but a single chip suction passage 18 is provided concentrically with the axis O of the tool. It is possible to secure a large flow cross-sectional area, and it is possible to discharge the chips generated by the pair of cutting edges 24 to the shank 16 side while suppressing chip clogging.
  • the cutting edge groove 22 is formed by grinding.
  • the chip taking hole 30 can be provided simultaneously with the formation, and the shape and size of the chip taking hole 30 can be easily adjusted by changing the gradient angle ⁇ of the groove 22 for the cutting edge. it can.
  • the blade portion 12 has a neck portion 14 having a diameter smaller than that of the blade portion 12 continuously, and the air introduction groove 32 is formed including a step at the boundary between the blade portion 12 and the neck portion 14. If provided, air is satisfactorily introduced into the air introduction groove 32 through the gap 21 between the inner peripheral surface of the machining hole 20 and the neck portion 14, so that the processing length of the air introduction groove 32 is shortened. Since the neck portion 14 can be processed relatively easily and quickly by cylindrical grinding or the like, the manufacturing cost is reduced.
  • the diameter d1 of the neck portion 14 is determined so that an annular space having substantially the same cross-sectional area as the cross-sectional area of the chip suction passage 18 is formed with the inner peripheral surface of the processing hole 20, A sufficient amount of air flows between the neck portion 14 and the inner peripheral surface of the machining hole 20, and an air flow for sucking chips into the chip take-in hole 30 is well formed.
  • test pieces No1 to No4 having different sizes of the chip take-in holes 30 and the presence or absence of the air introduction grooves 32 are prepared, and the test conditions shown in (a) Explains the results of drilling and investigating chip suction performance.
  • the shape of the intake hole 30 is changed.
  • Test products No. 3 and No. 4 having the air introduction groove 32 are the products of the present invention, and the test product No. 3 among them is the same as that in the above-described embodiment.
  • Test No. 4 is a case where the chip take-in hole 30 is large, and therefore the cutting edge groove 22 reaches the neck portion 14 beyond the blade portion 12, and the blade portion 12 has completely entered the machining hole 20. After that, since air is sucked into the chip take-in hole 30 through the cutting edge groove 22, the chip suction performance is impaired by that amount, and the chip suction amount is about 90% compared to the test sample No3. Met.
  • the chip suction drill 50 of FIG. 6 is a case where the communication groove 52 is provided on the flank 26 of the cutting edge 24 so as to connect the air introduction groove 32 and the cutting edge groove 22 as compared with the above embodiment. is there.
  • the air introduced into the air introduction groove 32 can be satisfactorily flowed into the cutting edge groove 22 through the communication groove 52, and the relief of the relief surface 26 due to the relief angle ⁇ .
  • the air flow for sucking chips into the chip take-in hole 30 is well formed. Further, by providing the communication groove 52 as described above, the clearance angle ⁇ can be reduced, and the degree of freedom in design is increased.
  • the chip suction drill 60 of FIG. 7 is provided with a back taper whose diameter is continuously reduced from the drill tip toward the shank 16 side, and the cutting edge groove 22 is the same as in the above embodiment.
  • the range of the axial length L3 in which the cutting edge groove 22 is provided is the blade portion 62.
  • the pair of air introduction grooves 64 provided so as to reach the flank 26 corresponding to the pair of cutting edge grooves 22 do not intersect the cutting edge groove 22 like the air introduction groove 32.
  • the length dimension is sufficiently long and is provided in a spiral shape on the outer peripheral surface of the drill, and even when the blade portion 62 enters the processing hole 20 completely during drilling, External air can be introduced into the tool tip from the air introduction groove 64.
  • the air introduction groove 64 is provided on the outer peripheral surface including the blade portion 62, and external air is favorably introduced into the tool tip through the air introduction groove 64. It is sufficient that only one chip suction passage 18 is provided, and a sufficient cross-sectional area of the chip suction passage 18 can be ensured. Since 30 can be increased, the same effects as those of the above-described embodiment can be obtained, for example, generation of chip clogging can be suppressed and excellent chip suction performance can be obtained.
  • the chip suction drill of the present invention is provided with an air introduction groove on the outer peripheral surface of the blade part, and external air is favorably introduced into the tool tip part through the air introduction groove. It is only necessary to provide a suction passage, it is possible to secure a sufficient cross-sectional area of the chip suction passage, and the chip intake hole can be enlarged with the enlargement of the chip suction passage. Occurrence of clogging is suppressed, and excellent chip suction performance can be obtained, which is suitably used for an environment-friendly drilling process that does not discharge chips.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling Tools (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

A chip suction drill (10) performs a hole making process to a material to be ground (42) such as a casting using a cutting blade (24). A chip generated is suctioned in a chip suction path (18) from a chip intaking hole (30) formed in a cutting blade groove (22) and ejected to a shank (16) side. In this case, since an air introduction groove (32) is provided in the outer periphery surface of a blade (12), air is excellently introduced into the leading end of a tool at which the chip is generated by the cutting blade (24) and the air introduced into the leading end of the tool upon the suction of air by the chip suction path (18) is excellently suctioned in the chip intaking hole (30) together with the chip. Particularly, since only one chip suction path (18) is provided in the tool, its cross section area can be sufficiently secured and the chip intaking hole (30) can be enlarged along with the enlargement of the chip suction path (18). Thus, the generation of chip packing can be suppressed and excellent chip suction performance can be obtained.

Description

切りくず吸引ドリルChip suction drill
 本発明はドリルに係り、特に、環境汚染の予防や清掃作業の簡略化を図るために切りくずを強制的に吸引して排出する切りくず吸引ドリルに関するものである。 The present invention relates to a drill, and more particularly to a chip suction drill that forcibly sucks and discharges chips in order to prevent environmental pollution and simplify cleaning operations.
 (a) 外周面に切れ刃用溝が形成されているとともに、その切れ刃用溝が工具先端側に開口する端縁に穴明け用の切れ刃が設けられた刃部と、(b) 工具の内部に軸心に沿って設けられるとともに、前記切れ刃用溝に開口する切りくず取込み穴が形成された切りくず吸引通路と、を有し、(c) 軸心まわりに回転駆動されつつ工具先端側へ前進させられることにより前記切れ刃によって穴明け加工を行なうとともに、その穴明け加工で生成された切りくずを前記切りくず取込み穴から前記切りくず吸引通路内に吸引してシャンク側へ排出する切りくず吸引ドリルが提案されている(特許文献1参照)。このような切りくず吸引ドリルによれば、穴明け加工で生成された切りくずが切りくず取込み穴から切りくず吸引通路内に吸引されてシャンク側へ排出されるため、クーラントで洗い流す場合に比較して、切りくずの後始末が容易になって清掃作業が簡略化されるとともに、切りくずの飛散による作業環境の悪化が大幅に改善される。
特公昭44-13745号公報
(a) a cutting edge groove formed on the outer peripheral surface, and a cutting edge provided with a cutting edge for drilling on the edge where the cutting edge groove opens on the tool tip side; and (b) a tool A chip suction passage provided along the axis and formed with a chip take-in hole opened in the groove for the cutting edge, and (c) a tool while being driven to rotate around the axis. Drilling is performed by the cutting blade by being advanced toward the tip side, and chips generated by the drilling are sucked into the chip suction passage from the chip intake hole and discharged to the shank side. A chip suction drill has been proposed (see Patent Document 1). According to such a chip suction drill, chips generated by drilling are sucked into the chip suction passage from the chip intake hole and discharged to the shank side. Thus, the cleaning of the chip becomes easier and the cleaning work is simplified, and the deterioration of the working environment due to the scattering of the chip is greatly improved.
Japanese Patent Publication No.44-13745
 ところで、上記引用文献1に記載の切りくず吸引ドリルは、切りくず吸引通路とは別に空気導入通路が工具の内部に設けられ、切りくず吸引通路による吸引に伴って空気導入通路から空気が工具の先端部分へ導入されるようになっているため、切りくず吸引通路の断面積を十分に確保することが困難で、切りくず詰まりが発生し易いとともに、切りくず取込み穴が小さくて切りくずの吸引作用が十分に得られないという問題があった。空気導入通路の開口部、すなわち空気の導入部位も切れ刃より手前であるため、切れ刃によって生成された切りくずを必ずしも効率良く切りくず取込み穴に導くことができない。また、切れ刃を形成するための切れ刃用溝に連続して螺旋状溝が軸方向に連続して設けられているため、その螺旋状溝からも空気が工具先端側へ導入されることになり、切りくず吸引通路が空気ばかり吸い込んで、切りくずをうまく吸い込むことができない可能性があった。更に、切りくず吸引通路の負圧の作用だけで空気導入通路内に空気が導入されるため、十分な空気の流れを発生させることが困難で、この点でも切りくずの吸引作用が十分に得られない可能性がある。 By the way, in the chip suction drill described in the above cited reference 1, an air introduction passage is provided inside the tool separately from the chip suction passage, and air is drawn from the air introduction passage along with suction by the chip suction passage. Since it is introduced to the tip, it is difficult to secure a sufficient cross-sectional area of the chip suction passage, chip clogging is likely to occur, and the chip intake hole is small, so that chip suction is possible. There was a problem that the effect could not be obtained sufficiently. Since the opening of the air introduction passage, that is, the air introduction site is also in front of the cutting edge, the chips generated by the cutting edge cannot always be efficiently guided to the chip intake hole. Further, since the spiral groove is continuously provided in the axial direction continuously to the cutting edge groove for forming the cutting edge, air is also introduced from the spiral groove to the tool tip side. Therefore, there is a possibility that the chip suction passage sucks only air and the chips cannot be sucked well. Furthermore, since air is introduced into the air introduction passage only by the negative pressure of the chip suction passage, it is difficult to generate a sufficient air flow. It may not be possible.
 本発明は以上の事情を背景として為されたもので、その目的とするところは、切れ刃によって生成された切りくずが高い吸引作用で切りくず吸引通路内に良好に吸引され、切りくず詰まりを生じることなくその切りくず吸引通路内を通って良好に排出されるようにすることにある。 The present invention has been made in the background of the above circumstances, and the object of the present invention is that the chips generated by the cutting blade are sucked well into the chip suction passage by a high suction action, and chip clogging is caused. It is to ensure that the chips are discharged well through the chip suction passage without being generated.
 かかる目的を達成するために、第1発明は、(a) 外周面に切れ刃用溝が形成されているとともに、その切れ刃用溝が工具先端側に開口する端縁に穴明け用の切れ刃が設けられた刃部と、(b) 工具の内部に軸心Oに沿って設けられるとともに、前記切れ刃用溝に開口する切りくず取込み穴が形成された切りくず吸引通路と、を有し、(c) 軸心Oまわりに回転駆動されつつ工具先端側へ前進させられることにより前記切れ刃によって穴明け加工を行なうとともに、その穴明け加工で生成された切りくずを前記切りくず取込み穴から前記切りくず吸引通路内に吸引してシャンク側へ排出する切りくず吸引ドリルにおいて、(d) 前記刃部の外周面には、前記切れ刃の逃げ面に達するように空気導入溝が設けられていることを特徴とする。 In order to achieve such an object, according to the first aspect of the present invention, (a) a cutting edge groove is formed on the outer peripheral surface of the rod, and the cutting edge groove is formed at the edge of the tool leading end. A blade portion provided with a blade; and (b) a chip suction passage provided along the axis O inside the scissors tool and having a chip intake hole opened in the groove for the cutting edge. And (c) drilling is performed by the cutting edge while being driven to rotate toward the tool tip while being rotationally driven around the shaft axis O, and the chips generated by the drilling are cut into the chip-taking hole. In the chip suction drill for sucking into the chip suction passage and discharging to the shank side, (d) An air introduction groove is provided on the outer peripheral surface of the blade portion so as to reach the flank face of the cutting blade. It is characterized by.
 第2発明は、第1発明の切りくず吸引ドリルにおいて、(a) 前記切れ刃用溝は、軸心Oと平行な直溝またはシャンク側から見た工具回転方向と同じ方向にねじれたねじれ溝で、(b) 前記空気導入溝は、軸心Oと平行な直溝またはシャンク側から見た工具回転方向と反対方向にねじれたねじれ溝で、軸方向において前記切れ刃用溝よりもシャンク側へ長く延び出すように設けられていることを特徴とする。 The second invention is the chip suction drill of the first invention, wherein (a) the cutting edge groove is a straight groove parallel to the axis O or a twist groove twisted in the same direction as the tool rotation direction as viewed from the shank side. (B) The air introduction groove is a straight groove parallel to the shaft center O or a twist groove twisted in the direction opposite to the tool rotation direction as viewed from the shank side, and is axially closer to the shank than the cutting edge groove. It is provided so that it may extend long.
 第3発明は、第1発明または第2発明の切りくず吸引ドリルにおいて、ドリル径Dに対して、前記刃部の軸方向長さL3は1.0D~2.0Dの範囲内であることを特徴とする。なお、刃部は、前記切れ刃用溝が形成されている範囲である。 According to a third invention, in the chip suction drill of the first invention or the second invention, the axial length L3 of the blade portion with respect to the drill diameter D is in the range of 1.0D to 2.0D. Features. In addition, a blade part is the range in which the said groove | channel for cutting edges is formed.
 第4発明は、第1発明~第3発明の何れかの切りくず吸引ドリルにおいて、ドリル径Dに対して、前記切りくず取込み穴の軸方向長さL1は0.3D~1.0Dの範囲内で、軸方向と直角な幅方向の最大寸法である幅寸法L2は0.15D以上であることを特徴とする。 According to a fourth aspect of the present invention, in the chip suction drill of any one of the first to third aspects, the axial length L1 of the chip take-in hole with respect to the drill diameter D is in the range of 0.3D to 1.0D. Among them, the width dimension L2 which is the maximum dimension in the width direction perpendicular to the axial direction is 0.15D or more.
 第5発明は、第1発明~第4発明の何れかの切りくず吸引ドリルにおいて、前記切れ刃の逃げ面には、前記空気導入溝を通って導入された空気がその逃げ面と加工穴の底面との間の隙間を通って前記切れ刃用溝内へ流入できるように所定の逃げが設けられていることを特徴とする。 A fifth aspect of the present invention is the chip suction drill according to any one of the first to fourth aspects of the present invention, wherein air introduced through the air introduction groove is formed on the flank of the cutting edge. A predetermined relief is provided so as to flow into the cutting edge groove through a gap between the bottom surface and the bottom surface.
 第6発明は、第1発明~第5発明の何れかの切りくず吸引ドリルにおいて、前記切れ刃の逃げ面には、前記切れ刃用溝が工具先端側に開口する端縁のうち前記切れ刃と反対側に位置する部分と前記空気導入溝とを繋ぐように連通溝が設けられていることを特徴とする。 According to a sixth aspect of the present invention, in the chip suction drill according to any one of the first to fifth aspects of the invention, the cutting edge of the edge where the groove for the cutting edge opens on the tool tip side is formed on the flank of the cutting edge. A communication groove is provided so as to connect a portion located on the opposite side to the air introduction groove.
 第7発明は、第1発明~第6発明の何れかの切りくず吸引ドリルにおいて、(a) 前記切れ刃用溝および前記切れ刃は、軸心Oに対して対称的に一対設けられている一方、(b) 前記切りくず吸引通路は、工具の軸心Oと同心に形成された単一の円形穴で、(c) その切りくず吸引通路の先端に部分的に交わるように前記一対の切れ刃用溝が設けられることにより、それぞれその切れ刃用溝に開口する一対の切りくず取込み穴が形成されていることを特徴とする。 According to a seventh aspect of the present invention, in the chip suction drill according to any one of the first to sixth aspects of the invention, (a) a pair of the cutting edge groove and the cutting edge are provided symmetrically with respect to the axis O. On the other hand, (b) the chip suction passage is a single circular hole formed concentrically with the axial center O of the tool, and (c) the pair of the pair of chip suction passages so as to partially intersect the tip of the chip suction passage. By providing the cutting edge groove, a pair of chip taking holes each opening in the cutting edge groove is formed.
 第8発明は、第1発明~第7発明の何れかの切りくず吸引ドリルにおいて、(a) 前記刃部に連続してその刃部よりも径寸法が小さい首部を有し、(b) 前記切れ刃用溝は、前記刃部と前記首部との境界の段差に達しない範囲に設けられている一方、(c) 前記空気導入溝は、前記刃部と前記首部との境界の段差を含んで設けられていることを特徴とする。 An eighth invention is the chip suction drill according to any one of the first to seventh inventions, wherein (a) the blade has a neck portion that is continuous with the blade portion and has a smaller diameter than the blade portion; The cutting edge groove is provided in a range that does not reach the step at the boundary between the blade part and the neck part. (C) The air introduction groove includes a step at the boundary between the blade part and the neck part. Is provided.
 第9発明は、第8発明の切りくず吸引ドリルにおいて、前記首部の径寸法d1は、加工穴の内周面との間に前記切りくず吸引通路の断面積と同じかそれ以上の断面積の環状空間が形成されるように定められていることを特徴とする。 A ninth aspect of the present invention is the chip suction drill according to the eighth aspect of the present invention, wherein the diameter d1 of the neck portion is equal to or larger than the cross-sectional area of the chip suction passage between the inner peripheral surface of the machining hole. It is defined that an annular space is formed.
 このような切りくず吸引ドリルにおいては、刃部の外周面に切れ刃の逃げ面に達するように空気導入溝が設けられているため、切れ刃によって切りくずが生成される工具先端部に空気が良好に導入されるようになり、切りくず吸引通路による空気の吸引に伴って、空気導入溝から工具先端部に導入された空気が切りくずと共に良好に切りくず取込み穴内に吸引され、切りくず吸引通路を経てシャンク側へ良好に排出されるようになる。その場合に、刃部の外周面に空気導入溝が設けられることにより、工具の内部には切りくず吸引通路が設けられるだけであるため、その切りくず吸引通路の断面積を十分に確保することが可能で、その切りくず吸引通路の拡大に伴って切りくず取込み穴も大きくすることができるため、切りくず詰まりの発生が抑制されるとともに、優れた切りくず吸引性能が得られるようになる。加えて、工具の内部に空気導入通路を設ける場合に比較して、空気の導入部位が切りくずを生成する切れ刃に一層近くなるため、その切りくずを一層効果的に切りくず取込み穴内に導くことができ、切りくず吸引性能が一層向上する。 In such a chip suction drill, since an air introduction groove is provided on the outer peripheral surface of the blade portion so as to reach the flank surface of the cutting blade, air is generated at the tip of the tool where chips are generated by the cutting blade. As the air is sucked in through the chip suction passage, the air introduced from the air introduction groove to the tool tip is sucked into the chip take-in hole together with the chips, and the chips are sucked. It will be discharged well to the shank side through the passage. In that case, by providing an air introduction groove on the outer peripheral surface of the blade portion, only a chip suction passage is provided in the tool, so that a sufficient cross-sectional area of the chip suction passage is ensured. As the chip suction passage is enlarged, the chip take-in hole can be enlarged, so that the occurrence of chip clogging is suppressed and excellent chip suction performance can be obtained. In addition, as compared with the case where an air introduction passage is provided inside the tool, the air introduction portion is closer to the cutting edge that generates chips, so that the chips are more effectively guided into the chip intake hole. And the chip suction performance is further improved.
 また、穴明け加工の進行に伴って切れ刃用溝が設けられた刃部が加工穴内に入り込むと、その切れ刃用溝からの空気の流入が制限されるため、空気導入溝を中心として空気が工具先端部に導入されるようになり、その工具先端側から切りくず取込み穴内に吸い込まれる際に切りくずが一層良好に切りくず吸引通路内に吸引されるようになる。 In addition, if the blade portion provided with the cutting edge groove enters the machining hole as the drilling progresses, air flow from the cutting edge groove is restricted. Is introduced into the tip end of the tool, and the chip is more satisfactorily sucked into the chip suction passage when sucked into the chip take-in hole from the tip end side of the tool.
 第2発明では、空気導入溝が軸心Oと平行な直溝または工具回転方向と反対方向にねじれたねじれ溝であり、ねじれ溝とした場合には、穴明け加工の際の工具の回転に伴って空気導入溝を経て工具先端側へ空気が一層良好に導入されるようになり、切りくず吸引通路による空気の吸引と相まって空気導入溝から工具先端部を経て切りくず取込み穴へ向かう空気の流れが良好に形成され、その空気の流れにより切りくずが一層良好に切りくず吸引通路内に吸引されるようになる。また、この空気導入溝は、軸方向において切れ刃用溝よりもシャンク側へ長く延び出すように設けられているため、切れ刃用溝が加工穴内に完全に入り込んだ後には、空気導入溝を中心として空気が工具先端部に導入されるようになり、優れた切りくず吸引性能が得られるようになる。 In the second invention, the air introduction groove is a straight groove parallel to the axis O or a twisted groove twisted in the direction opposite to the tool rotation direction, and in the case of the twisted groove, the tool is rotated during drilling. Along with this, air is introduced better to the tool tip side through the air introduction groove, coupled with the suction of air by the chip suction passage, the air flowing from the air introduction groove to the chip intake hole through the tool tip part. The flow is well formed and the air flow allows the chips to be sucked better into the chip suction passage. Further, since the air introduction groove is provided so as to extend longer in the axial direction to the shank side than the cutting edge groove, after the cutting edge groove has completely entered the machining hole, the air introduction groove is provided. Air is introduced into the tool tip as a center, and excellent chip suction performance can be obtained.
 第3発明では、切れ刃用溝が設けられた刃部の軸方向長さL3が1.0D~2.0Dの範囲内で比較的短いため、加工穴と刃部との摺接による加工抵抗が低減されるとともに、その刃部よりも深い穴を加工する際には、その刃部が加工穴内に完全に入り込んだ後は空気導入溝を中心として空気が工具先端部に導入されるようになり、優れた切りくず吸引性能が得られる。 In the third invention, since the axial length L3 of the blade portion provided with the cutting edge groove is relatively short within the range of 1.0D to 2.0D, the processing resistance due to the sliding contact between the processing hole and the blade portion When machining a hole deeper than the blade, air is introduced into the tool tip centering on the air introduction groove after the blade has completely entered the machining hole. Therefore, excellent chip suction performance can be obtained.
 第4発明では、切りくず取込み穴の軸方向長さL1が0.3D~1.0Dの範囲内で、軸方向と直角な幅寸法L2が0.15D以上であるため、切れ刃によって生成された切りくずが良好に切りくず取込み穴内に吸引される。特に、鋳物など比較的小さくて且つ絡み難い切りくずが生成される場合に、その切りくずを良好に吸引して除去することができる。 In the fourth invention, since the axial length L1 of the chip take-in hole is in the range of 0.3D to 1.0D and the width dimension L2 perpendicular to the axial direction is 0.15D or more, it is generated by the cutting edge. Chips are sucked well into the chip take-up hole. In particular, when a chip such as a casting that is relatively small and difficult to be entangled is generated, the chip can be satisfactorily sucked and removed.
 第5発明では、切れ刃の逃げ面に所定の逃げが設けられ、空気導入溝を通って導入された空気がその逃げ面と加工穴の底面との間の隙間を通って切れ刃用溝内へ流入できるようになっているため、空気導入溝内に導入された空気が切れ刃の逃げ面と加工穴の底面との間の隙間を通って切れ刃用溝内へ良好に流入させられ、切りくずを切りくず取込み穴内に吸引する空気の流れが良好に形成される。 In the fifth invention, a predetermined relief is provided on the flank face of the cutting edge, and the air introduced through the air introduction groove passes through the gap between the flank face and the bottom surface of the machining hole and enters the inside of the cutting edge groove. Therefore, the air introduced into the air introduction groove can be satisfactorily flowed into the cutting edge groove through the gap between the flank face of the cutting edge and the bottom surface of the machining hole, The air flow for sucking the chips into the chip taking-in holes is well formed.
 第6発明では、切れ刃の逃げ面に連通溝が設けられ、切れ刃用溝と空気導入溝とが繋がれているため、空気導入溝内に導入された空気がその連通溝を通って切れ刃用溝内へ良好に流入させられ、切りくずを切りくず取込み穴内に吸引する空気の流れが良好に形成される。 In the sixth aspect of the present invention, since the communication groove is provided on the flank face of the cutting edge, and the cutting edge groove and the air introduction groove are connected, the air introduced into the air introduction groove is cut through the communication groove. A flow of air that is satisfactorily flowed into the blade groove and sucked into the chip take-in hole is well formed.
 第7発明は、軸心Oに対して対称的に一対の切れ刃が設けられているが、工具の軸心Oと同心に単一の切りくず吸引通路が設けられているため、大きな流通断面積を確保することが可能で、切りくず詰まりを抑制しつつ一対の切れ刃によって生成された切りくずを良好にシャンク側へ排出することができる。また、切りくず吸引通路の先端に部分的に交わるように一対の切れ刃用溝が設けられて一対の切りくず取込み穴が形成されているため、切削加工或いは研削加工などで切れ刃用溝を形成する際に同時に切りくず取込み穴を設けることができるとともに、例えばその切れ刃用溝の勾配角θを変更することにより、切りくず取込み穴の形状や大きさを簡単に調整することができる。 In the seventh invention, a pair of cutting edges are provided symmetrically with respect to the axis O, but since a single chip suction passage is provided concentrically with the axis O of the tool, there is a large flow interruption. The area can be secured, and chips generated by the pair of cutting edges can be discharged to the shank side satisfactorily while suppressing chip clogging. In addition, since a pair of cutting edge grooves are provided so as to partially intersect the tip of the chip suction passage and a pair of chip taking holes are formed, the cutting edge groove is formed by cutting or grinding. At the time of forming, a chip taking hole can be provided at the same time, and the shape and size of the chip taking hole can be easily adjusted, for example, by changing the gradient angle θ of the cutting edge groove.
 第8発明は、刃部に連続して刃部よりも径寸法が小さい首部を有する場合で、その刃部と首部との境界の段差を含んで空気導入溝を設ければ、加工穴の内周面と首部との間の隙間を通って空気導入溝内に空気が良好に導入されるため、空気導入溝の加工長さが短くなるとともに、首部の加工は円筒切削加工或いは研削加工等により比較的簡単に且つ迅速に行なうことができるため、製造コストが低減される。 According to an eighth aspect of the present invention, in the case where the blade portion has a neck portion having a diameter smaller than that of the blade portion and an air introduction groove is provided including a step at the boundary between the blade portion and the neck portion, Since air is satisfactorily introduced into the air introduction groove through the gap between the circumferential surface and the neck, the processing length of the air introduction groove is shortened, and the neck is processed by cylindrical cutting or grinding. Since it can be carried out relatively easily and quickly, the production costs are reduced.
 第9発明では、首部の径寸法d1が、加工穴の内周面との間に切りくず吸引通路の断面積と同じかそれ以上の断面積の環状空間が形成されるように定められているため、その首部と加工穴の内周面との間に十分な量の空気が流入し、切りくずを切りくず取込み穴内に吸引するための空気の流れが良好に形成される。 In the ninth aspect of the invention, the diameter d1 of the neck is determined such that an annular space having a cross-sectional area equal to or greater than the cross-sectional area of the chip suction passage is formed between the inner peripheral surface of the machining hole. Therefore, a sufficient amount of air flows between the neck portion and the inner peripheral surface of the machining hole, and the air flow for sucking the chips into the chip taking-in holes is well formed.
本発明の一実施例である2枚刃の切りくず吸引ドリルを示す図で、(a) は概略正面図、(b) は先端部の拡大図、(c) は(b) の右方向すなわち先端側から見た端面図、(d) は(c) の下方から見た図で(b) に比較して軸心Oまわりの位相が90°異なる方向から見た図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a two-blade chip suction drill according to an embodiment of the present invention, where (a) is a schematic front view, (b) is an enlarged view of a tip, and (c) is (b) An end view as viewed from the tip side, (d) is a view as seen from below (c), and (b) is a view as seen from a direction in which the phase around the axis O is 90 ° different from. 図1の切りくず吸引ドリルの先端部を切れ刃用溝に沿って破断した断面図である。It is sectional drawing which fractured | ruptured the front-end | tip part of the chip suction drill of FIG. 1 along the groove | channel for cutting edges. 図1の切りくず吸引ドリルに設けられた切りくず取込み穴の拡大図である。It is an enlarged view of the chip taking-in hole provided in the chip suction drill of FIG. 図1の切りくず吸引ドリルを用いて穴明け加工を行なった場合の空気の流れを説明する断面図である。It is sectional drawing explaining the flow of the air at the time of drilling using the chip suction drill of FIG. 本発明品を含む4種類の試験品を用いて穴明け加工を行い、切りくず吸引性能を調べた結果を説明する図である。It is a figure explaining the result of having drilled using 4 types of test products including the product of the present invention and examining the chip suction performance. 本発明の他の実施例を説明する図で、図1の(d) に対応する先端部の拡大図である。It is a figure explaining the other Example of this invention, and is an enlarged view of the front-end | tip part corresponding to (d) ridge of FIG. 本発明の更に別の実施例を説明する正面図である。It is a front view explaining another Example of this invention.
符号の説明Explanation of symbols
 10、50、60:切りくず吸引ドリル  12、62:刃部  14:首部  16:シャンク  18:切りくず吸引通路  20:加工穴  22:切れ刃用溝  24:切れ刃  26:逃げ面  30:切りくず取込み穴  32、64:空気導入溝  52:連通溝  O:軸心  D:ドリル径 10, 50, 60: Chip suction drill 12, 62: Blade part 14: Neck part 16: Shank 18: Chip suction passage 20: Processing hole 22: Groove for cutting edge 24: Cutting edge 26: Flank 30: Chip Intake holes 32, 64: Air introduction groove 52: Communication groove O: Shaft center D: Drill diameter
 本発明は、2枚刃のドリルに好適に適用されるが、1枚刃のドリルや3枚刃以上のドリルに適用することも可能である。ドリルの材質は、超硬合金や高速度工具鋼等の種々の工具材料を使用できる。 The present invention is preferably applied to a two-blade drill, but can also be applied to a single-blade drill or a drill having three or more blades. As the material of the drill, various tool materials such as cemented carbide and high-speed tool steel can be used.
 本発明の切りくず吸引ドリルは、基本的には切削油剤を使用しないドライ加工に好適に用いられるが、切りくずの吸引作用が適当に得られる範囲で、ミスト状の切削油剤などを使用しても差し支えない。また、例えば鋳物やアルミ鋳物など、切りくずが細かくて且つ絡みにくい被削材に対する穴明け加工に好適に用いられる。 The chip suction drill of the present invention is basically suitably used for dry processing that does not use a cutting fluid, but uses a mist-like cutting fluid as long as the chip suction action can be appropriately obtained. There is no problem. In addition, it is suitably used for drilling a work material such as a casting or an aluminum casting that has fine chips and is not easily entangled.
 本発明は、刃部よりも小径の首部を有するドリルに好適に適用されるが、ドリル径Dと略同じ径寸法でシャンクまで達しているものや、シャンク側に向かうに従って連続的に径寸法が小さくなるバックテーパが設けられたものにも、良好に適用され得る。その場合に、切れ刃用溝が設けられる刃部は、先端側の比較的短い範囲(例えば軸方向長さL3=1.0D~2.0D程度)に設定することが望ましく、空気導入溝は、その刃部を超えてシャンク側へ向かって延び出すように設ければ良い。 The present invention is preferably applied to a drill having a neck portion having a diameter smaller than that of the blade portion. However, the diameter reaches a shank with substantially the same diameter as the drill diameter D, or the diameter dimension continuously increases toward the shank side. The present invention can be applied well to those provided with a small back taper. In that case, it is desirable to set the blade portion provided with the cutting edge groove in a relatively short range on the tip side (for example, axial length L3 = about 1.0D to 2.0D). It suffices to extend the blade portion toward the shank side.
 切れ刃用溝は、軸心Oと平行であっても良いが、切れ刃によって生成された切りくずが切れ刃用溝に開口する切りくず取込み穴に向かって良好に流動するように、シャンク側から見た工具回転方向と同じ方向へねじれたねじれ溝とすることが望ましい。この切れ刃用溝は短くて良いため、軸心Oに対して傾斜する直線状の傾斜溝であっても良く、このような傾斜溝もねじれ溝の一態様である。なお、切れ刃用溝は比較的短く、且つ切りくず吸引通路の吸引で切りくずが吸い込まれるため、切れ刃用溝がシャンク側から見た工具回転方向と反対方向へねじれたり傾斜したりしていても、切りくず取込み穴内に吸引することができる。 The cutting edge groove may be parallel to the axis O, but on the shank side so that the chips generated by the cutting edge flow well toward the chip taking hole opening in the cutting edge groove. It is desirable to use a twisted groove that is twisted in the same direction as the tool rotation direction seen from above. Since this cutting edge groove may be short, it may be a linear inclined groove inclined with respect to the axis O, and such an inclined groove is also an embodiment of a twisted groove. Note that the cutting edge groove is relatively short and the chips are sucked in by suction of the chip suction passage, so that the cutting edge groove is twisted or inclined in the direction opposite to the tool rotation direction seen from the shank side. However, it can be sucked into the chip take-in hole.
 切りくず吸引通路は、例えば軸心Oと同心に設けられる直線状の円形穴が望ましいが、軸心Oまわりにねじれたねじれ穴や、断面が三角形や四角形等の角形穴を採用することもできるなど、切りくずを流通させることができる種々の態様が可能である。円形穴の切りくず吸引通路の場合、その径寸法d2は、小さ過ぎると切りくずの流通が阻害され、大き過ぎると工具の剛性が損なわれるため、例えば0.3D~0.7Dの範囲内が適当で、0.5D~0.7D程度が望ましい。この切りくず吸引通路は、例えばシャンク側の端面に達するように設けられて、切りくずを排出するように構成されるが、シャンクの中間部、或いはシャンクと首部との境界等に、外周面に開口する排出穴等を設けて切りくずを排出することもできる。 The chip suction passage is preferably, for example, a linear circular hole provided concentrically with the axis O, but a twisted hole twisted around the axis O or a square hole having a triangular or quadrangular cross section may be employed. Various modes capable of distributing chips are possible. In the case of a chip suction passage having a circular hole, if the diameter d2 is too small, the flow of chips is hindered, and if it is too large, the rigidity of the tool is impaired. For example, the diameter d2 is within the range of 0.3D to 0.7D. Appropriate, about 0.5D to 0.7D is desirable. The chip suction passage is provided so as to reach the end face on the shank side, for example, and is configured to discharge the chip, but it is formed on the outer peripheral surface at the middle part of the shank or the boundary between the shank and the neck part. It is also possible to discharge chips by providing an open discharge hole or the like.
 空気導入溝は、軸心Oと平行であっても良いが、工具の回転に伴って空気が流入するように、シャンク側から見た工具回転方向と反対方向へねじれたねじれ溝とすることが望ましい。小径の首部を備えていて刃部のみに空気導入溝が設けられる場合など、その長さ寸法が短い場合には、軸心Oに対して傾斜する直線状の傾斜溝であっても良く、このような傾斜溝もねじれ溝の一態様である。なお、切りくず吸引通路の吸引による負圧によっても空気が空気導入溝内に流入するため、シャンク側から見た工具回転方向と同じ方向へねじれたり傾斜したりしている空気導入溝を採用することもできる。 The air introduction groove may be parallel to the axis O, but may be a twist groove twisted in the direction opposite to the tool rotation direction seen from the shank side so that air flows in as the tool rotates. desirable. When the length dimension is short, such as when an air introduction groove is provided only in the blade portion with a small-diameter neck, it may be a linear inclined groove inclined with respect to the axis O. Such an inclined groove is also an embodiment of a twisted groove. In addition, since air flows into the air introduction groove even by negative pressure due to suction of the chip suction passage, an air introduction groove that is twisted or inclined in the same direction as the tool rotation direction seen from the shank side is adopted. You can also
 上記空気導入溝は、切れ刃用溝に対応してその切れ刃用溝と同じ数だけ設けられる。この空気導入溝は、例えば一定の深さ寸法で外周面に沿って湾曲する円弧溝などで、切削加工或いは砥石による研削加工などで形成することができる。空気導入溝は、切れ刃用溝と交差したり接触したりしないように設けられ、工具先端部における流通を除いて互いに空気が流通しないように完全に分離して設けることが望ましいが、一部が接続されて僅かな量の空気が流通するようになっていても差し支えない。例えば、切れ刃の逃げ面と切れ刃用溝との境界部分に空気導入溝の先端部が開口するようになっていても良い。 The air introduction grooves are provided in the same number as the cutting edge grooves corresponding to the cutting edge grooves. The air introduction groove is, for example, an arc groove that is curved along the outer peripheral surface with a certain depth, and can be formed by cutting or grinding with a grindstone. It is desirable that the air introduction groove is provided so as not to cross or contact the cutting edge groove, and is completely separated so that air does not flow through each other except for the flow at the tool tip. May be connected to allow a small amount of air to circulate. For example, the tip of the air introduction groove may open at the boundary between the cutting edge flank and the cutting edge groove.
 切りくず取込み穴の軸方向長さL1は、0.3Dよりも小さいと切りくず詰まりが発生し易くなって溶着を生じる可能性が高くなる一方、軸方向長さL1が1.0Dよりも大きいと空気ばかり吸い込み易くなって切りくず吸引性能が低下するため、0.3D~1.0Dの範囲内が適当である。また、切りくず取込み穴の幅寸法L2は、0.15Dよりも小さいと切りくず詰まりが発生し易くなって溶着を生じる可能性が高くなる。なお、この幅寸法L2の上限は、切りくず吸引通路の大きさや切れ刃用溝の断面形状等によって定まる。 If the axial length L1 of the chip take-in hole is smaller than 0.3D, chip clogging is likely to occur and there is a high possibility of welding, while the axial length L1 is larger than 1.0D. Therefore, only air is easily sucked and the chip suction performance is deteriorated, so that the range of 0.3D to 1.0D is appropriate. Further, if the width dimension L2 of the chip take-in hole is smaller than 0.15D, chip clogging is likely to occur and the possibility of welding is increased. The upper limit of the width dimension L2 is determined by the size of the chip suction passage, the cross-sectional shape of the cutting edge groove, and the like.
 上記切りくず取込み穴は、例えば切れ刃用溝が切りくず吸引通路の先端に部分的に交わるように設けられることによって形成されるが、必ずしも交差によって形成された穴をそのまま切りくず取込み穴として使用する必要はなく、必要に応じて研削加工等により穴を拡大して切りくず取込み穴として使用するようにしても良い。切れ刃用溝と切りくず吸引通路とが全く交差しない場合には、切れ刃用溝の底部に穴明け加工等を行なって切りくず吸引通路に連通させるようにしても良いなど、種々の態様が可能である。 The chip take-in hole is formed, for example, by providing a cutting edge groove so as to partially intersect the tip of the chip suction passage, but the hole formed by the intersection is not necessarily used as the chip take-in hole. It is not necessary to do so, and if necessary, the hole may be enlarged by grinding or the like to be used as a chip take-in hole. When the cutting edge groove and the chip suction passage do not intersect at all, various forms such as making a hole in the bottom of the cutting edge groove and communicating with the chip suction passage may be used. Is possible.
 刃部は、上記切りくず取込み穴を形成できれば良いため、その長さ寸法L3は、1.0D~2.0Dの範囲内が適当である。長さ寸法L3が2.0Dよりも長くても差し支えないが、例えば空気導入溝としてねじれ溝を形成する場合には、その空気導入溝が切れ刃用溝と干渉(接触)しないようにするため、刃部の長さ寸法L3、すなわち切れ刃用溝の長さ寸法はできるだけ短い方が望ましい。 Since the blade portion only needs to be able to form the above-described chip taking-in hole, the length L3 is suitably in the range of 1.0D to 2.0D. The length L3 may be longer than 2.0D. However, for example, when a twisted groove is formed as the air introduction groove, the air introduction groove does not interfere (contact) with the cutting edge groove. The length L3 of the blade, that is, the length of the groove for the cutting edge is preferably as short as possible.
 前記第8発明では、切れ刃用溝が刃部と首部との境界の段差に達しない範囲に設けられているが、例えば空気導入溝だけでは十分に空気を導入することが困難で、適当な空気の流れを形成することが難しい場合には、切れ刃用溝が刃部と首部との境界の段差に達するように形成し、所定量の空気が首部から切れ刃用溝内に流入するように構成することも可能である。 In the eighth aspect of the invention, the cutting edge groove is provided in a range that does not reach the step at the boundary between the blade part and the neck part. For example, it is difficult to sufficiently introduce air with only the air introduction groove. When it is difficult to form an air flow, the cutting edge groove is formed so as to reach the step at the boundary between the blade part and the neck part so that a predetermined amount of air flows into the cutting blade groove from the neck part. It is also possible to configure.
 以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
 図1は本発明の一実施例である切りくず吸引ドリル10を示す図で、(a) は軸心Oと直角方向から見た概略正面図、(b) は先端の刃部12の拡大図、(c) は(b) の右方向すなわち先端側から見た端面図、(d) は(c) の下方から見た図で(b) に比較して軸心Oまわりの位相が90°異なる方向から見た図である。この切りくず吸引ドリル10は、超硬合金にて構成されているとともに、ドリル径Dと同じ径寸法を有する刃部12、刃部12よりも小径で一定の径寸法d1の首部14、および刃部12と同じ径寸法のシャンク16とを、軸心O上に連続して一体に備えている。本実施例では、ドリル径D=10mmで、首部14の径寸法d1=8mmで、軸心O上にはシャンク16側の端面から先端近くまで一定の径寸法d2=6mm(0.6D)の直線状の有底の円形穴が切りくず吸引通路18として形成されている。首部14の径寸法d1は、加工穴20(図4参照)の内周面との間の環状の隙間21が切りくず吸引通路18の断面積と略同じになるように、加工穴20の内径=ドリル径Dとして、次式(1) を満足するように定められている。
  Dπ-d1π=d2π  ・・・(1) 
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a view showing a chip suction drill 10 according to an embodiment of the present invention, where (a) is a schematic front view seen from a direction perpendicular to the axis O, and (b) is an enlarged view of a blade 12 at the tip. , (C) is an end view as viewed from the right side of (b), that is, from the front end side, and (d) is a view as viewed from below (c). The phase around the axis O is 90 ° compared to (b). It is the figure seen from the different direction. The chip suction drill 10 is made of a cemented carbide, has a blade portion 12 having the same diameter as the drill diameter D, a neck portion 14 having a smaller diameter than the blade portion 12 and a constant diameter d1, and a blade. A shank 16 having the same diameter as that of the portion 12 is provided continuously and integrally on the axis O. In this embodiment, the drill diameter D = 10 mm, the diameter dimension d1 of the neck portion 14 = 8 mm, and a constant diameter dimension d2 = 6 mm (0.6 D) from the end surface on the shank 16 side to the tip end on the axis O. A straight circular hole with a bottom is formed as the chip suction passage 18. The diameter d1 of the neck 14 is such that the annular gap 21 between the inner diameter of the machining hole 20 (see FIG. 4) is substantially the same as the cross-sectional area of the chip suction passage 18. = The drill diameter D is determined so as to satisfy the following formula (1).
D 2 π-d1 2 π = d2 2 π (1)
 上記刃部12の外周面には、軸心Oに対して対称的に一対の切れ刃用溝22が設けられており、その切れ刃用溝22の工具先端側に開口する端縁にそれぞれ穴明け用の切れ刃24が設けられている。本実施例の切りくず吸引ドリル10は、シャンク16側から見て右まわりに回転駆動されることにより穴明け加工を行なうもので、上記切れ刃用溝22は所定のねじれ角(例えば20°程度)で右まわりにねじれたねじれ溝、厳密には直線状の傾斜溝とされており、切れ刃24によって生成された切りくずには、工具の回転に伴ってその切れ刃用溝22の傾斜により首部14側へ向かう方向の分力が作用する。また、切れ刃24には、所定の逃げ角ρで円弧状に逃げるように逃げ面26が形成されている。逃げ角ρは、本実施例では約10°とされている。 A pair of cutting edge grooves 22 are provided symmetrically with respect to the axis O on the outer peripheral surface of the blade portion 12, and holes are formed in the edges of the cutting edge grooves 22 that open to the tool front end side. A cutting edge 24 for dawn is provided. The chip suction drill 10 of the present embodiment performs drilling by being rotated clockwise when viewed from the shank 16 side, and the cutting edge groove 22 has a predetermined twist angle (for example, about 20 °). ) To be twisted clockwise, strictly speaking, a linear inclined groove, and the chips generated by the cutting edge 24 are caused by the inclination of the cutting edge groove 22 as the tool rotates. A component force in the direction toward the neck 14 is applied. Further, the cutting edge 24 is formed with a flank 26 so as to escape in a circular arc shape with a predetermined clearance angle ρ. The clearance angle ρ is about 10 ° in this embodiment.
 上記切れ刃用溝22は、図2に示すように先端に例えば1.0~1.3mm程度の心厚を残す状態で、その先端から軸心Oに対して所定の勾配角θで傾斜するように、砥石による研削加工によって形成されており、その溝底の一部が前記切りくず吸引通路18と交差(干渉)することにより、切りくず取込み穴30が形成されている。図3は、この切りくず取込み穴30を示す正面図、すなわち図1(b) に相当する形状の拡大図で、切りくず取込み穴30の軸心Oと平行な方向の軸方向長さL1は0.3D~1.0Dの範囲内で、軸方向と直角な幅方向の最大寸法である幅寸法L2は0.15D以上である。この切りくず取込み穴30の形状や大きさは、上記勾配角θや切れ刃用溝22の断面形状によって定まり、本実施例では勾配角θ≒20°で、軸方向長さL1≒5.0mm(0.5D)とされ、幅寸法L2≒2.5mm(0.25D)とされている。図2は、切れ刃用溝22の傾斜(ねじれ)に沿って切り開いた断面図である。 As shown in FIG. 2, the cutting edge groove 22 is inclined with respect to the axis O from the tip at a predetermined gradient angle θ with a core thickness of about 1.0 to 1.3 mm remaining at the tip. In this way, the chip is formed by grinding with a grindstone, and a chip take-in hole 30 is formed by a part of the groove bottom intersecting (interfering) with the chip suction passage 18. FIG. 3 is a front view showing the chip take-in hole 30, that is, an enlarged view of the shape corresponding to FIG. 1 (b), and the axial length L1 in the direction parallel to the axis O of the chip take-in hole 30 is Within the range of 0.3D to 1.0D, the width dimension L2 that is the maximum dimension in the width direction perpendicular to the axial direction is 0.15D or more. The shape and size of the chip take-in hole 30 are determined by the gradient angle θ and the cross-sectional shape of the cutting edge groove 22, and in this embodiment, the gradient angle θ≈20 ° and the axial length L1≈5.0 mm. (0.5D) and the width L2≈2.5 mm (0.25D). FIG. 2 is a cross-sectional view cut along the inclination (twist) of the cutting edge groove 22.
 刃部12は、切れ刃用溝22が首部14に達することがないように、厳密には首部14と刃部12との境界の段差に達しないように、その軸方向長さL3が1.0D~2.0Dの範囲内で設定されており、本実施例ではL3≒12mm(1.2D)とされている。 The blade portion 12 has an axial length L3 of 1. to prevent the cutting edge groove 22 from reaching the neck portion 14 and, strictly speaking, not to reach the step at the boundary between the neck portion 14 and the blade portion 12. It is set within the range of 0D to 2.0D, and in this embodiment, L3≈12 mm (1.2D).
 刃部12の外周面にはまた、切れ刃用溝22と交差することがないように、軸心Oに対して対称的に一対の空気導入溝32が設けられている。空気導入溝32は、シャンク16側から見た工具回転方向と反対方向すなわち左まわりに所定のねじれ角(例えば30°程度)でねじれたねじれ溝で、首部14と刃部12との境界の段差を含んで前記逃げ面26に達するように設けられており、穴明け加工時の工具の回転に伴って外部の空気が空気導入溝32に沿って工具の先端側へ流動させられる。この空気導入溝32は、砥石による研削加工によって所定の幅寸法(例えば2~3mm程度)で、溝底径が例えば首部14の径寸法と略同じかそれより小さく、少なくとも切りくず吸引通路18に達することがないように形成されている。本実施例では、空気導入溝32がその全長に亘って切れ刃用溝22と接することなく、完全に分離して設けられている。 A pair of air introduction grooves 32 are provided symmetrically with respect to the axis O so as not to intersect with the cutting edge groove 22 on the outer peripheral surface of the blade portion 12. The air introduction groove 32 is a twist groove twisted at a predetermined twist angle (for example, about 30 °) in the direction opposite to the tool rotation direction as viewed from the shank 16 side, that is, counterclockwise, and the level difference at the boundary between the neck portion 14 and the blade portion 12. The external air is caused to flow along the air introduction groove 32 to the tip side of the tool as the tool rotates during drilling. The air introduction groove 32 has a predetermined width dimension (for example, about 2 to 3 mm) by grinding with a grindstone, and the groove bottom diameter is, for example, substantially the same as or smaller than the diameter dimension of the neck portion 14, and at least in the chip suction passage 18. It is formed so as not to reach. In the present embodiment, the air introduction groove 32 is provided completely separated without contacting the cutting edge groove 22 over its entire length.
 そして、このような切りくず吸引ドリル10は、図4に示すように前記切りくず吸引通路18の後端部、すなわちシャンク16側の開口部に吸引装置40が接続され、その吸引装置40により所定の吸引力で空気を吸引しつつ、図示しない加工機械(マシニングセンタなど)によりシャンク16側から見て軸心Oの右まわりに回転駆動しつつ工具先端側へ前進させて、切れ刃24により鋳物等の被削材42に対して穴明け加工を行なう。その場合に、穴明け加工で生成された切りくずは、切れ刃用溝22に形成された切りくず取込み穴30から切りくず吸引通路18内に吸引され、シャンク16側へ排出される。 As shown in FIG. 4, such a chip suction drill 10 has a suction device 40 connected to a rear end portion of the chip suction passage 18, that is, an opening on the shank 16 side. While suctioning air with the suction force of the tool, it is advanced to the tool tip side while being driven to rotate clockwise around the axis O as viewed from the shank 16 side by a processing machine (machining center or the like) (not shown), and a casting or the like by the cutting edge 24 Drilling is performed on the workpiece 42. In this case, chips generated by drilling are sucked into the chip suction passage 18 from the chip take-in hole 30 formed in the cutting edge groove 22 and discharged to the shank 16 side.
 ここで、本実施例では刃部12の外周面に切れ刃24の逃げ面26に達するように空気導入溝32が設けられているため、切れ刃24によって切りくずが生成される工具先端部に空気が良好に導入されるようになり、切りくず吸引通路18による空気の吸引に伴い、空気導入溝32から工具先端部に導入された空気が切りくずと共に良好に切りくず取込み穴30内に吸引される。特に、刃部12の外周面に空気導入溝32が設けられることにより、工具の内部には1本の切りくず吸引通路18が設けられるだけであるため、その切りくず吸引通路18の断面積を十分に確保することが可能で、その切りくず吸引通路18の拡大に伴って切りくず取込み穴30も大きくすることができるため、切りくず詰まりの発生が抑制されるとともに、優れた切りくず吸引性能が得られるようになる。 Here, in this embodiment, since the air introduction groove 32 is provided on the outer peripheral surface of the blade portion 12 so as to reach the flank 26 of the cutting blade 24, the cutting edge 24 generates a chip at the tip portion of the tool. Air is introduced well, and the air introduced from the air introduction groove 32 to the tip of the tool is sucked into the chip take-in hole 30 together with the chips as the air is sucked by the chip suction passage 18. Is done. In particular, since the air introduction groove 32 is provided on the outer peripheral surface of the blade portion 12, only one chip suction passage 18 is provided inside the tool, and therefore, the cross-sectional area of the chip suction passage 18 is determined. It is possible to ensure sufficient, and the chip take-in hole 30 can be enlarged as the chip suction passage 18 is enlarged, so that the occurrence of chip clogging is suppressed and excellent chip suction performance is achieved. Can be obtained.
 また、工具の内部に空気導入通路を設ける場合に比較して、空気の導入部位が切りくずを生成する切れ刃24に一層近くなるため、その切りくずを一層効果的に切りくず取込み穴30内に導くことができ、切りくず吸引性能が一層向上する。 Further, compared with the case where the air introduction passage is provided inside the tool, the air introduction portion is closer to the cutting edge 24 that generates chips, so that the chips are more effectively contained in the chip intake hole 30. The chip suction performance is further improved.
 また、穴明け加工の進行に伴って切れ刃用溝22が設けられた刃部12が加工穴20内に入り込むと、その切れ刃用溝22からの空気の流入が制限されるため、空気導入溝32を中心として空気が工具先端部に導入されるようになり、その工具先端側から切りくず取込み穴30内に吸い込まれる際に切りくずが一層良好に切りくず吸引通路18内に吸引されるようになる。すなわち、空気導入溝32は刃部12と首部14との境界の段差を含んで形成されており、その境界の段差に達しないように設けられた切れ刃用溝22よりもシャンク16側へ延び出すように設けられているとともに、それ等の空気導入溝32および切れ刃用溝22は互いに交差しないように完全に分離して形成されているため、切れ刃用溝22が設けられた刃部12が加工穴20内に完全に入り込んだ後には、専ら空気導入溝32から空気が工具先端部に導入されるようになり、優れた切りくず吸引性能が得られるようになるのである。図4の太線矢印は、この時の空気の流れを示したものである。 Further, when the blade portion 12 provided with the cutting edge groove 22 enters the processing hole 20 as the drilling progresses, air flow from the cutting edge groove 22 is restricted, so that air is introduced. Air is introduced into the tip of the tool centering on the groove 32, and when sucked into the chip take-in hole 30 from the tip of the tool, the chip is sucked into the chip suction passage 18 even better. It becomes like this. That is, the air introduction groove 32 is formed including a step at the boundary between the blade portion 12 and the neck portion 14, and extends toward the shank 16 rather than the cutting blade groove 22 provided so as not to reach the step at the boundary. Since the air introduction groove 32 and the cutting edge groove 22 are formed so as not to intersect each other, the blade portion provided with the cutting edge groove 22 is provided. After 12 completely enters the machining hole 20, air is introduced exclusively into the tool tip from the air introduction groove 32, and excellent chip suction performance can be obtained. The bold arrows in FIG. 4 indicate the air flow at this time.
 また、本実施例では、空気導入溝32が工具回転方向と反対方向にねじれたねじれ溝であるため、穴明け加工の際の工具の回転に伴って空気導入溝32を経て工具先端側へ空気が一層良好に導入されるようになり、切りくず吸引通路18による空気の吸引と相まって空気導入溝32から工具先端部を経て切りくず取込み穴30へ向かう空気の流れが良好に形成され、その空気の流れにより切りくずが一層良好に切りくず吸引通路18内に吸引されるようになる。 Further, in this embodiment, since the air introduction groove 32 is a torsion groove twisted in the direction opposite to the tool rotation direction, the air is introduced to the tool tip side through the air introduction groove 32 as the tool rotates during drilling. The air flow from the air introduction groove 32 to the chip take-in hole 30 through the tool tip is well formed in combination with the suction of air by the chip suction passage 18, and the air As a result of this flow, the chips are better sucked into the chip suction passage 18.
 また、本実施例では、切れ刃用溝22が設けられた刃部12の軸方向長さL3が1.0D~2.0Dの範囲内で比較的短いため、加工穴20と刃部12との摺接による加工抵抗が低減されるとともに、その刃部12よりも深い穴を加工する際には、その刃部12が加工穴20内に完全に入り込んだ後は、首部14と加工穴20の内周面との間の隙間21および空気導入溝32を経て空気が工具先端部に導入されるようになり、優れた切りくず吸引性能が得られる。 In the present embodiment, the axial length L3 of the blade portion 12 provided with the cutting edge groove 22 is relatively short within the range of 1.0D to 2.0D. When the hole deeper than the blade portion 12 is machined, the neck portion 14 and the machining hole 20 are removed after the blade portion 12 completely enters the machining hole 20. Air is introduced into the tool tip through the gap 21 between the inner peripheral surface and the air introduction groove 32, and excellent chip suction performance is obtained.
 また、本実施例では、切りくず取込み穴30の軸方向長さL1が0.3D~1.0Dの範囲内で、軸方向と直角な幅寸法L2が0.15D以上であるため、切れ刃24によって生成された切りくずが良好に切りくず取込み穴30内に吸引される。特に、鋳物など比較的小さくて且つ絡み難い切りくずが生成される場合に、その切りくずを良好に吸引して除去することができる。 In this embodiment, since the axial length L1 of the chip take-in hole 30 is in the range of 0.3D to 1.0D and the width dimension L2 perpendicular to the axial direction is 0.15D or more, the cutting edge The chips generated by 24 are satisfactorily sucked into the chip intake hole 30. In particular, when a chip such as a casting that is relatively small and difficult to be entangled is generated, the chip can be satisfactorily sucked and removed.
 また、本実施例では、切れ刃24の逃げ面26に所定の逃げ角ρで円弧状の逃げが設けられているため、空気導入溝32内に導入された空気が切れ刃24の逃げ面26と加工穴20の底面との間の隙間を通って切れ刃用溝22内へ良好に流入させられ、切りくずを切りくず取込み穴30内に吸引する空気の流れが良好に形成される。 In the present embodiment, the flank 26 of the cutting edge 24 is provided with an arc-shaped flank with a predetermined clearance angle ρ, so that the air introduced into the air introduction groove 32 is flank 26 of the cutting edge 24. And the bottom surface of the machining hole 20 are satisfactorily flowed into the cutting edge groove 22, and a flow of air for sucking chips into the chip take-in hole 30 is well formed.
 また、本実施例では、軸心Oに対して対称的に一対の切れ刃24が設けられているが、工具の軸心Oと同心に単一の切りくず吸引通路18が設けられているため、大きな流通断面積を確保することが可能で、切りくず詰まりを抑制しつつ一対の切れ刃24によって生成された切りくずを良好にシャンク16側へ排出することができる。 Further, in this embodiment, a pair of cutting edges 24 are provided symmetrically with respect to the axis O, but a single chip suction passage 18 is provided concentrically with the axis O of the tool. It is possible to secure a large flow cross-sectional area, and it is possible to discharge the chips generated by the pair of cutting edges 24 to the shank 16 side while suppressing chip clogging.
 また、切りくず吸引通路18の先端に部分的に交わるように一対の切れ刃用溝22が設けられて一対の切りくず取込み穴30が形成されているため、研削加工によって切れ刃用溝22を形成する際に同時に切りくず取込み穴30を設けることができるとともに、その切れ刃用溝22の勾配角θを変更することにより、切りくず取込み穴30の形状や大きさを簡単に調整することができる。 Further, since the pair of cutting edge grooves 22 are provided so as to partially intersect the tip of the chip suction passage 18 and the pair of chip taking holes 30 are formed, the cutting edge groove 22 is formed by grinding. The chip taking hole 30 can be provided simultaneously with the formation, and the shape and size of the chip taking hole 30 can be easily adjusted by changing the gradient angle θ of the groove 22 for the cutting edge. it can.
 また、本実施例は、刃部12に連続して刃部12よりも径寸法が小さい首部14を有する場合で、その刃部12と首部14との境界の段差を含んで空気導入溝32を設ければ、加工穴20の内周面と首部14との間の隙間21を通って空気導入溝32内に空気が良好に導入されるため、空気導入溝32の加工長さが短くなるとともに、首部14の加工は円筒研削加工等により比較的簡単に且つ迅速に行なうことができるため、製造コストが低減される。 Further, in this embodiment, the blade portion 12 has a neck portion 14 having a diameter smaller than that of the blade portion 12 continuously, and the air introduction groove 32 is formed including a step at the boundary between the blade portion 12 and the neck portion 14. If provided, air is satisfactorily introduced into the air introduction groove 32 through the gap 21 between the inner peripheral surface of the machining hole 20 and the neck portion 14, so that the processing length of the air introduction groove 32 is shortened. Since the neck portion 14 can be processed relatively easily and quickly by cylindrical grinding or the like, the manufacturing cost is reduced.
 また、上記首部14の径寸法d1が、加工穴20の内周面との間に切りくず吸引通路18の断面積と略同じ断面積の環状空間が形成されるように定められているため、その首部14と加工穴20の内周面との間に十分な量の空気が流入し、切りくずを切りくず取込み穴30内に吸引するための空気の流れが良好に形成される。 In addition, since the diameter d1 of the neck portion 14 is determined so that an annular space having substantially the same cross-sectional area as the cross-sectional area of the chip suction passage 18 is formed with the inner peripheral surface of the processing hole 20, A sufficient amount of air flows between the neck portion 14 and the inner peripheral surface of the machining hole 20, and an air flow for sucking chips into the chip take-in hole 30 is well formed.
 次に、図5の(b) に示すように、切りくず取込み穴30の大きさおよび空気導入溝32の有無が異なる4種類の試験品No1~No4を用意し、(a) に示す試験条件で穴明け加工を行って切りくず吸引性能を調べた結果を説明する。試験品No1~No4の基本形状は前記実施例の切りくず吸引ドリル10と同じで、径寸法d2=6mmの切りくず吸引通路18を備えており、切れ刃用溝22の勾配角θによって切りくず取込み穴30の形状が変更されている。空気導入溝32を有する試験品No3、No4が本発明品で、その中の試験品No3は、前記実施例と同じものである。 Next, as shown in FIG. 5 (b), four types of test pieces No1 to No4 having different sizes of the chip take-in holes 30 and the presence or absence of the air introduction grooves 32 are prepared, and the test conditions shown in (a) Explains the results of drilling and investigating chip suction performance. The basic shapes of the test pieces No1 to No4 are the same as those of the chip suction drill 10 of the above-described embodiment, are provided with a chip suction passage 18 having a diameter d2 = 6 mm, and the chips are formed by the gradient angle θ of the groove 22 for cutting edges. The shape of the intake hole 30 is changed. Test products No. 3 and No. 4 having the air introduction groove 32 are the products of the present invention, and the test product No. 3 among them is the same as that in the above-described embodiment.
 そして、試験品No3による穴明け加工時に切りくず吸引通路18を経て吸引された切りくずの重量を100%として、切りくず吸引量を比較したところ、図5の(b) に示す結果が得られた。切りくず取込み穴30が比較的小さく且つ空気導入溝32を備えていない試験品No1では、切りくずがうまく吸引せず、切りくず取込み穴30に切りくずが詰まって溶着が発生し、穴明け加工が不可であった。試験品No2は、試験品No3と同じ形状の切りくず取込み穴30が設けられているが、空気導入溝32を備えていなため、空気の流れがうまく形成されず、試験品No3に比較して切りくず吸引量は85%程度であった。試験品No4は、切りくず取込み穴30が大きく、従って切れ刃用溝22が刃部12を超えて首部14にまで達している場合であり、刃部12が加工穴20内に完全に入り込んだ後も、その切れ刃用溝22を経て空気が切りくず取込み穴30に吸引されるため、その分だけ切りくず吸引性能が損なわれ、試験品No3に比較して切りくず吸引量は90%程度であった。 Then, when the weight of the chips sucked through the chip suction passage 18 at the time of drilling with the test sample No. 3 was set to 100%, the amount of chip suction was compared, and the result shown in (b) b of FIG. 5 was obtained. It was. In the test sample No. 1 in which the chip take-in hole 30 is relatively small and does not have the air introduction groove 32, the chip is not sucked well, and the chip take-in hole 30 is clogged and welded to cause drilling. Was impossible. The test product No. 2 is provided with a chip take-in hole 30 having the same shape as the test product No. 3, but since the air introduction groove 32 is not provided, the air flow is not formed well, compared with the test product No. 3. The chip suction amount was about 85%. Test No. 4 is a case where the chip take-in hole 30 is large, and therefore the cutting edge groove 22 reaches the neck portion 14 beyond the blade portion 12, and the blade portion 12 has completely entered the machining hole 20. After that, since air is sucked into the chip take-in hole 30 through the cutting edge groove 22, the chip suction performance is impaired by that amount, and the chip suction amount is about 90% compared to the test sample No3. Met.
 次に、本発明の他の実施例を説明する。なお、以下の実施例において前記実施例と実質的に共通する部分には同一の符号を付して詳しい説明を省略する。 Next, another embodiment of the present invention will be described. In the following embodiments, parts that are substantially the same as those in the above embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 図6の切りくず吸引ドリル50は、前記実施例に比較して、前記空気導入溝32と切れ刃用溝22とを繋ぐように切れ刃24の逃げ面26に連通溝52を設けた場合である。この場合には、空気導入溝32内に導入された空気がその連通溝52を通って切れ刃用溝22内へ良好に流入させられるようになり、前記逃げ角ρによる逃げ面26の逃げと相まって、切りくずを切りくず取込み穴30内に吸引するための空気の流れが良好に形成される。また、このように連通溝52が設けられることにより、逃げ角ρを小さくすることが可能で、設計の自由度が高くなる。 The chip suction drill 50 of FIG. 6 is a case where the communication groove 52 is provided on the flank 26 of the cutting edge 24 so as to connect the air introduction groove 32 and the cutting edge groove 22 as compared with the above embodiment. is there. In this case, the air introduced into the air introduction groove 32 can be satisfactorily flowed into the cutting edge groove 22 through the communication groove 52, and the relief of the relief surface 26 due to the relief angle ρ. In combination, the air flow for sucking chips into the chip take-in hole 30 is well formed. Further, by providing the communication groove 52 as described above, the clearance angle ρ can be reduced, and the degree of freedom in design is increased.
 図7の切りくず吸引ドリル60は、ドリル先端からシャンク16側へ向かうに従って連続的に径寸法が小さくなるバックテーパが設けられたもので、切れ刃用溝22は前記実施例と同じで、その切れ刃用溝22が設けられた軸方向長さL3の範囲が刃部62である。一方、一対の切れ刃用溝22に対応して逃げ面26に達するように設けられた一対の空気導入溝64は、前記空気導入溝32と同様に切れ刃用溝22と交差することがないように左ねじれで設けられているが、その長さ寸法は十分に長くてドリル外周面に螺旋状に設けられており、穴明け加工に際して刃部62が加工穴20内に完全に入り込んでも、外部の空気を空気導入溝64から工具先端部に導入できるようになっている。 The chip suction drill 60 of FIG. 7 is provided with a back taper whose diameter is continuously reduced from the drill tip toward the shank 16 side, and the cutting edge groove 22 is the same as in the above embodiment. The range of the axial length L3 in which the cutting edge groove 22 is provided is the blade portion 62. On the other hand, the pair of air introduction grooves 64 provided so as to reach the flank 26 corresponding to the pair of cutting edge grooves 22 do not intersect the cutting edge groove 22 like the air introduction groove 32. However, the length dimension is sufficiently long and is provided in a spiral shape on the outer peripheral surface of the drill, and even when the blade portion 62 enters the processing hole 20 completely during drilling, External air can be introduced into the tool tip from the air introduction groove 64.
 本実施例においても、刃部62を含めてその外周面に空気導入溝64が設けられ、その空気導入溝64を経て外部の空気が工具先端部に良好に導入されるため、工具の内部には1本の切りくず吸引通路18が設けられるだけで良く、その切りくず吸引通路18の断面積を十分に確保することが可能で、その切りくず吸引通路18の拡大に伴って切りくず取込み穴30も大きくすることができるため、切りくず詰まりの発生が抑制されるとともに、優れた切りくず吸引性能が得られるようになるなど、前記実施例と同様の効果が得られる。 Also in this embodiment, the air introduction groove 64 is provided on the outer peripheral surface including the blade portion 62, and external air is favorably introduced into the tool tip through the air introduction groove 64. It is sufficient that only one chip suction passage 18 is provided, and a sufficient cross-sectional area of the chip suction passage 18 can be ensured. Since 30 can be increased, the same effects as those of the above-described embodiment can be obtained, for example, generation of chip clogging can be suppressed and excellent chip suction performance can be obtained.
 以上、本発明の実施例を図面に基づいて詳細に説明したが、これ等はあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。 As mentioned above, although the Example of this invention was described in detail based on drawing, these are one Embodiment to the last, This invention is implemented in the aspect which added the various change and improvement based on the knowledge of those skilled in the art. be able to.
 本発明の切りくず吸引ドリルは、刃部の外周面に空気導入溝が設けられ、その空気導入溝を経て外部の空気が工具先端部に良好に導入されるため、工具の内部には切りくず吸引通路を設けるだけで良く、その切りくず吸引通路の断面積を十分に確保することが可能で、その切りくず吸引通路の拡大に伴って切りくず取込み穴も大きくすることができるため、切りくず詰まりの発生が抑制されるとともに、優れた切りくず吸引性能が得られるようになり、切りくずを排出しない環境に優しい穴明け加工に好適に用いられる。 The chip suction drill of the present invention is provided with an air introduction groove on the outer peripheral surface of the blade part, and external air is favorably introduced into the tool tip part through the air introduction groove. It is only necessary to provide a suction passage, it is possible to secure a sufficient cross-sectional area of the chip suction passage, and the chip intake hole can be enlarged with the enlargement of the chip suction passage. Occurrence of clogging is suppressed, and excellent chip suction performance can be obtained, which is suitably used for an environment-friendly drilling process that does not discharge chips.

Claims (9)

  1.  外周面に切れ刃用溝が形成されているとともに、該切れ刃用溝が工具先端側に開口する端縁に穴明け用の切れ刃が設けられた刃部と、
     工具の内部に軸心Oに沿って設けられるとともに、前記切れ刃用溝に開口する切りくず取込み穴が形成された切りくず吸引通路と、
     を有し、軸心Oまわりに回転駆動されつつ工具先端側へ前進させられることにより前記切れ刃によって穴明け加工を行なうとともに、該穴明け加工で生成された切りくずを前記切りくず取込み穴から前記切りくず吸引通路内に吸引してシャンク側へ排出する切りくず吸引ドリルにおいて、
     前記刃部の外周面には、前記切れ刃の逃げ面に達するように空気導入溝が設けられている
     ことを特徴とする切りくず吸引ドリル。
    A cutting edge groove formed on the outer peripheral surface, and a cutting edge provided with a cutting edge for drilling at the edge where the cutting edge groove opens on the tool tip side;
    A chip suction passage provided inside the tool along the axis O and formed with a chip take-in hole that opens in the groove for the cutting edge;
    And is drilled by the cutting blade by being advanced around the axis O while being driven to rotate, and the chips generated by the drilling are removed from the chip-taking hole. In the chip suction drill for sucking into the chip suction passage and discharging to the shank side,
    A chip suction drill, wherein an air introduction groove is provided on an outer peripheral surface of the blade portion so as to reach a clearance surface of the cutting blade.
  2.  前記切れ刃用溝は、軸心Oと平行な直溝またはシャンク側から見た工具回転方向と同じ方向にねじれたねじれ溝で、
     前記空気導入溝は、軸心Oと平行な直溝またはシャンク側から見た工具回転方向と反対方向にねじれたねじれ溝で、軸方向において前記切れ刃用溝よりもシャンク側へ長く延び出すように設けられている
     ことを特徴とする請求項1に記載の切りくず吸引ドリル。
    The cutting edge groove is a straight groove parallel to the axis O or a twisted groove twisted in the same direction as the tool rotation direction seen from the shank side.
    The air introduction groove is a straight groove parallel to the axis O or a torsion groove twisted in a direction opposite to the tool rotation direction as viewed from the shank side, and extends in the axial direction to the shank side longer than the cutting edge groove. The chip suction drill according to claim 1, wherein the chip suction drill is provided.
  3.  ドリル径Dに対して、前記刃部の軸方向長さL3は1.0D~2.0Dの範囲内である
     ことを特徴とする請求項1または2に記載の切りくず吸引ドリル。
    The chip suction drill according to claim 1 or 2, wherein an axial length L3 of the blade portion is within a range of 1.0D to 2.0D with respect to a drill diameter D.
  4.  ドリル径Dに対して、前記切りくず取込み穴の軸方向長さL1は0.3D~1.0Dの範囲内で、軸方向と直角な幅方向の最大寸法である幅寸法L2は0.15D以上である
     ことを特徴とする請求項1~3の何れか1項に記載の切りくず吸引ドリル。
    The axial length L1 of the chip take-in hole with respect to the drill diameter D is in the range of 0.3D to 1.0D, and the width dimension L2 which is the maximum dimension in the width direction perpendicular to the axial direction is 0.15D. The chip suction drill according to any one of claims 1 to 3, wherein the chip suction drill is as described above.
  5.  前記切れ刃の逃げ面には、前記空気導入溝を通って導入された空気が該逃げ面と加工穴の底面との間の隙間を通って前記切れ刃用溝内へ流入できるように所定の逃げが設けられている
     ことを特徴とする請求項1~4の何れか1項に記載の切りくず吸引ドリル。
    The flank of the cutting edge has a predetermined size so that air introduced through the air introduction groove can flow into the cutting edge groove through a gap between the flank and the bottom surface of the machining hole. The chip suction drill according to any one of claims 1 to 4, wherein a relief is provided.
  6.  前記切れ刃の逃げ面には、前記切れ刃用溝が工具先端側に開口する端縁のうち前記切れ刃と反対側に位置する部分と前記空気導入溝とを繋ぐように連通溝が設けられている
     ことを特徴とする請求項1~5の何れか1項に記載の切りくず吸引ドリル。
    The flank of the cutting edge is provided with a communication groove so as to connect the air introduction groove with a portion of the edge where the groove for the cutting edge is open on the tool tip side and located on the side opposite to the cutting edge. The chip suction drill according to any one of claims 1 to 5, wherein the chip suction drill is provided.
  7.  前記切れ刃用溝および前記切れ刃は、軸心Oに対して対称的に一対設けられている一方、
     前記切りくず吸引通路は、工具の軸心Oと同心に形成された単一の円形穴で、
     該切りくず吸引通路の先端に部分的に交わるように前記一対の切れ刃用溝が設けられることにより、それぞれ該切れ刃用溝に開口する一対の切りくず取込み穴が形成されている
     ことを特徴とする請求項1~6の何れか1項に記載の切りくず吸引ドリル。
    While the pair of the cutting edge groove and the cutting edge are provided symmetrically with respect to the axis O,
    The chip suction passage is a single circular hole formed concentrically with the axis O of the tool,
    The pair of cutting edge grooves are provided so as to partially intersect the tip of the chip suction passage, thereby forming a pair of chip taking holes each opening to the cutting edge groove. The chip suction drill according to any one of claims 1 to 6.
  8.  前記刃部に連続して該刃部よりも径寸法が小さい首部を有し、
     前記切れ刃用溝は、前記刃部と前記首部との境界の段差に達しない範囲に設けられている一方、
     前記空気導入溝は、前記刃部と前記首部との境界の段差を含んで設けられている
     ことを特徴とする請求項1~7の何れか1項に記載の切りくず吸引ドリル。
    Having a neck that is continuous with the blade and smaller in diameter than the blade,
    While the groove for the cutting edge is provided in a range that does not reach the step at the boundary between the blade part and the neck part,
    The chip suction drill according to any one of claims 1 to 7, wherein the air introduction groove includes a step at a boundary between the blade portion and the neck portion.
  9.  前記首部の径寸法d1は、加工穴の内周面との間に前記切りくず吸引通路の断面積と同じかそれ以上の断面積の環状空間が形成されるように定められている
     ことを特徴とする請求項8に記載の切りくず吸引ドリル。
    The diameter d1 of the neck is determined such that an annular space having a cross-sectional area equal to or greater than the cross-sectional area of the chip suction passage is formed between the inner peripheral surface of the machining hole. A chip suction drill according to claim 8.
PCT/JP2008/053658 2008-02-29 2008-02-29 Chip suction drill WO2009107235A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020107018515A KR101455582B1 (en) 2008-02-29 2008-02-29 Chip suction solid drill
JP2010500507A JP4996739B2 (en) 2008-02-29 2008-02-29 Chip suction drill
CN200880127620.4A CN101959634B (en) 2008-02-29 2008-02-29 Chip suction drill
PCT/JP2008/053658 WO2009107235A1 (en) 2008-02-29 2008-02-29 Chip suction drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053658 WO2009107235A1 (en) 2008-02-29 2008-02-29 Chip suction drill

Publications (1)

Publication Number Publication Date
WO2009107235A1 true WO2009107235A1 (en) 2009-09-03

Family

ID=41015648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053658 WO2009107235A1 (en) 2008-02-29 2008-02-29 Chip suction drill

Country Status (4)

Country Link
JP (1) JP4996739B2 (en)
KR (1) KR101455582B1 (en)
CN (1) CN101959634B (en)
WO (1) WO2009107235A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157468A1 (en) * 2011-05-18 2012-11-22 Uht株式会社 Drill and drilling device using same
JP2013039719A (en) * 2011-08-15 2013-02-28 Ohbayashi Corp Cutter and cutter unit
EP2848341A1 (en) * 2013-09-13 2015-03-18 Jakob Lach GmbH & Co. KG Tool assembly for manufacturing bore holes in materials such as fibre composite materials
CN104552616A (en) * 2013-10-14 2015-04-29 李斯建 Chip suction type drill bit
CN105772808A (en) * 2016-04-18 2016-07-20 哈尔滨理工大学 Air suction type self-chip-removal auger bit
EP2918361A4 (en) * 2012-11-09 2016-07-27 Miyagitanoi Co Ltd Drill and bore formation method
EP3150314A1 (en) * 2015-09-30 2017-04-05 Haimer GmbH Mill
US20170136555A1 (en) * 2013-05-28 2017-05-18 Allied Machine & Engineering Corp. Vacuum Drilling System and Methods
WO2019086169A1 (en) * 2017-10-30 2019-05-09 Robert Bosch Gmbh Drilling tool
JP6835194B1 (en) * 2019-12-12 2021-02-24 株式会社タンガロイ Drilling tool
CN112955293A (en) * 2018-11-19 2021-06-11 株式会社宫永 Diameter-expanding hole portion cutting device
US11110523B2 (en) * 2016-10-27 2021-09-07 Komet Group Gmbh Machining tool
US20210354210A1 (en) * 2020-05-12 2021-11-18 Kennametal Inc. Cutting tool and method for producing a cutting tool

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102357478B (en) * 2011-07-11 2013-04-24 潍柴动力股份有限公司 Cleaning equipment and blowing pipe thereof
CN102615057A (en) * 2012-04-12 2012-08-01 日月重工股份有限公司 Alloy steel bit
CN103056916B (en) * 2012-08-01 2015-10-07 哈尔滨理工大学 A kind of polycrystalline diamond air suction type drill bit and air suction type processing method
CN104107938A (en) * 2014-05-16 2014-10-22 机械科学研究总院先进制造技术研究中心 Novel tool special for cutting lost foam
CN105598508A (en) * 2016-01-18 2016-05-25 哈尔滨理工大学 Air suction type automatic chip removal drill bit for CFRP machining
CN106180827A (en) * 2016-08-11 2016-12-07 绵阳杰鑫工具科技有限公司 A kind of fluted drill with air suction opening
EP3421162A1 (en) * 2017-06-27 2019-01-02 HILTI Aktiengesellschaft Drill for chiselling rock
EP3421163A1 (en) 2017-06-27 2019-01-02 HILTI Aktiengesellschaft Drill for chiselling rock

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502163A (en) * 1999-06-21 2003-01-21 サンドビック アクティエボラーグ Deep hole drill
JP2004529782A (en) * 2001-03-07 2004-09-30 ルノー オトマシオン コモー Cutting tool and electronic broach and machine tool equipped with the cutting tool

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3709647A1 (en) * 1987-03-24 1988-10-13 Guehring Gottlieb Fa Drilling tool provided with internal cooling passages and having at least two flutes
CN2235346Y (en) * 1995-08-09 1996-09-18 张红旗 No grind drilling machine with central cooling
DE10342420A1 (en) * 2003-09-13 2005-04-28 Kaestner Praez Swerkzeuge Gmbh Drill bit, in particular suitable for drilling hole into soft material, comprising specifically shaped cutting head
KR200379740Y1 (en) 2004-12-24 2005-03-23 (주)우영엔지니어링 Tool for hole internal burr exclusion
DE112006003840B4 (en) 2006-11-30 2021-10-21 Osg Corporation drill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502163A (en) * 1999-06-21 2003-01-21 サンドビック アクティエボラーグ Deep hole drill
JP2004529782A (en) * 2001-03-07 2004-09-30 ルノー オトマシオン コモー Cutting tool and electronic broach and machine tool equipped with the cutting tool

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240149A (en) * 2011-05-18 2012-12-10 Uht Corp Drill and drilling device using the same
US9434009B2 (en) 2011-05-18 2016-09-06 Uht Corporation Drill and boring device using same
WO2012157468A1 (en) * 2011-05-18 2012-11-22 Uht株式会社 Drill and drilling device using same
JP2013039719A (en) * 2011-08-15 2013-02-28 Ohbayashi Corp Cutter and cutter unit
EP2918361A4 (en) * 2012-11-09 2016-07-27 Miyagitanoi Co Ltd Drill and bore formation method
US9475128B2 (en) 2012-11-09 2016-10-25 Miyagitanoi Co., Ltd. Drill and method for forming hole
US20170136555A1 (en) * 2013-05-28 2017-05-18 Allied Machine & Engineering Corp. Vacuum Drilling System and Methods
US10005138B2 (en) * 2013-05-28 2018-06-26 Allied Machine & Engineering Corp. Vacuum drilling system and methods
EP2848341A1 (en) * 2013-09-13 2015-03-18 Jakob Lach GmbH & Co. KG Tool assembly for manufacturing bore holes in materials such as fibre composite materials
US20150165530A1 (en) * 2013-09-13 2015-06-18 Jakob Lach Gmbh & Co. Kg Tool layout for making boreholes in materials such as fiber composite materials
CN104552616A (en) * 2013-10-14 2015-04-29 李斯建 Chip suction type drill bit
EP3150314A1 (en) * 2015-09-30 2017-04-05 Haimer GmbH Mill
DE102015116624B4 (en) 2015-09-30 2023-06-15 Haimer Gmbh end mill
CN105772808A (en) * 2016-04-18 2016-07-20 哈尔滨理工大学 Air suction type self-chip-removal auger bit
US11110523B2 (en) * 2016-10-27 2021-09-07 Komet Group Gmbh Machining tool
WO2019086169A1 (en) * 2017-10-30 2019-05-09 Robert Bosch Gmbh Drilling tool
CN112955293A (en) * 2018-11-19 2021-06-11 株式会社宫永 Diameter-expanding hole portion cutting device
JP6835194B1 (en) * 2019-12-12 2021-02-24 株式会社タンガロイ Drilling tool
JP2021091062A (en) * 2019-12-12 2021-06-17 株式会社タンガロイ Drilling tool
US20210354210A1 (en) * 2020-05-12 2021-11-18 Kennametal Inc. Cutting tool and method for producing a cutting tool

Also Published As

Publication number Publication date
CN101959634A (en) 2011-01-26
JPWO2009107235A1 (en) 2011-06-30
JP4996739B2 (en) 2012-08-08
KR20100119772A (en) 2010-11-10
KR101455582B1 (en) 2014-10-28
CN101959634B (en) 2013-05-15

Similar Documents

Publication Publication Date Title
WO2009107235A1 (en) Chip suction drill
JP4860631B2 (en) Drill
CN101394962B (en) End milling tool
JP4522451B2 (en) Tap
JP4566260B2 (en) Tool having a flow path in the tool
JP4418408B2 (en) Step drill
JP5870734B2 (en) End mill with coolant hole
JP4699526B2 (en) Drill
JP2006000985A (en) Cutting tool
JP4969255B2 (en) Drill unit and drill and holder used for the drill unit
JP2008142834A (en) Drill
JP5776595B2 (en) End mill with coolant hole
JP2007301706A (en) Drill
JP2019171514A (en) Drill
KR100919002B1 (en) End mill
JP5090297B2 (en) Machining tool with fluid supply hole
JP2018161717A (en) drill
JP4954044B2 (en) drill
JP2010005760A (en) Cutting tool, machine tool, and processing method
JP2004130411A (en) Drill with oil hole
JP2005022012A (en) Drill
KR20160079502A (en) Indexable Drill
JP4943129B2 (en) Tap
JP2001087919A (en) Drill structure
JP4449355B2 (en) Drill

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127620.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010500507

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107018515

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08721078

Country of ref document: EP

Kind code of ref document: A1