WO2021182322A1 - 眼科装置、その制御方法、及びプログラム - Google Patents

眼科装置、その制御方法、及びプログラム Download PDF

Info

Publication number
WO2021182322A1
WO2021182322A1 PCT/JP2021/008667 JP2021008667W WO2021182322A1 WO 2021182322 A1 WO2021182322 A1 WO 2021182322A1 JP 2021008667 W JP2021008667 W JP 2021008667W WO 2021182322 A1 WO2021182322 A1 WO 2021182322A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
scanner
light source
image sensor
illumination
Prior art date
Application number
PCT/JP2021/008667
Other languages
English (en)
French (fr)
Inventor
高橋 亮
山田 和広
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Priority to EP21766851.6A priority Critical patent/EP4119033A4/en
Priority to CN202180020977.8A priority patent/CN115297761A/zh
Publication of WO2021182322A1 publication Critical patent/WO2021182322A1/ja
Priority to US17/872,038 priority patent/US20220354365A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1025Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for confocal scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply

Definitions

  • the present invention relates to an ophthalmic apparatus, a control method thereof, and a program.
  • Patent Document 1 and Patent Document 2 disclose an ophthalmic apparatus configured to pattern-illuminate an eye to be inspected using slit light and detect the return light with a CMOS (Complementary Metal Oxide Sensor) image sensor. ing. By adjusting the illumination pattern and the light receiving timing by the CMOS image sensor, this ophthalmic apparatus can acquire an image of the eye to be inspected with a simple configuration.
  • CMOS Complementary Metal Oxide Sensor
  • the CMOS image sensor receives and captures the return light of the illumination light at an appropriate timing to eliminate the influence of unnecessary scattered light and improve the image quality of the acquired image of the eye to be inspected. Can be done.
  • the control on the illumination side and the control on the light receiving side cannot be synchronized with high accuracy.
  • the present invention has been made in view of such circumstances, and one of the objects thereof is to provide a new technique for acquiring a high-quality image of an eye to be inspected with a simple configuration. ..
  • the first aspect of some embodiments is a light source, an illumination optical system that uses the light from the light source to generate slit-shaped illumination light, and an optical scanner that deflects the illumination light and guides it to the fundus of the eye to be inspected. Then, the image sensor that captures the light reception result of the region of the light receiving surface corresponding to the illumination region of the illumination light in the fundus moved by the optical scanner by the rolling shutter method guides the return light of the illumination light from the fundus.
  • the optical scanner includes an optical system and a control unit that controls the deflection angle of the illumination light by the optical scanner. The optical scanner outputs a scanner position signal corresponding to the deflection angle of the illumination light, and the image sensor displays the image sensor. It is an ophthalmic apparatus that starts capturing the light reception result of the return light in synchronization with the scanner position signal.
  • a second aspect of some embodiments comprises, in the first aspect, a first voltage detection circuit that changes the trigger signal according to the result of comparison between the scanner position signal and the first threshold voltage.
  • the acquisition of the received light result is started in synchronization with the change of the trigger signal.
  • control unit outputs a scanner control signal to the optical scanner and illuminates the illumination at a deflection angle corresponding to the scanner control signal. Diverts light.
  • the light source is switched from an on state to an off state or from an off state to an on state in synchronization with the scanner position signal.
  • a fifth aspect of some embodiments is a second voltage in which, in the fourth aspect, the light source control signal for controlling the on / off of the light source is changed according to the comparison result between the scanner position signal and the second threshold voltage.
  • the light source includes a detection circuit, and the light source is switched from an on state to an off state or from an off state to an on state in synchronization with a change in the light source control signal.
  • the image sensor starts capturing the light receiving result and ends capturing the light receiving result during the period when the light source is on. ..
  • the image sensor is a CMOS image sensor.
  • Eighth aspects of some embodiments include a light source, an illumination optical system that uses the light from the light source to generate slit-shaped illumination light, and an optical scanner that deflects the illumination light and guides it to the fundus of the eye to be inspected. Then, the image sensor that captures the light reception result of the region of the light receiving surface corresponding to the illumination region of the illumination light in the fundus moved by the optical scanner by the rolling shutter method guides the return light of the illumination light from the fundus. It is a control method of an ophthalmic apparatus including an optical system and a control unit that controls a deflection angle of the illumination light by the optical scanner.
  • the control method of the ophthalmic apparatus includes a first output step in which the optical scanner outputs a scanner position signal corresponding to the deflection angle of the illumination light, and the image sensor receives the return light in synchronization with the scanner position signal.
  • the light receiving result acquisition step of initiating the acquisition of the result is included.
  • a ninth aspect of some embodiments includes, in the eighth aspect, a first voltage detection step in which the trigger signal is changed according to a comparison result between the scanner position signal and the first threshold voltage, and the light receiving result acquisition step. Starts capturing the light receiving result in synchronization with the change in the trigger signal.
  • a tenth aspect of some embodiments comprises, in the eighth or ninth aspect, a second output step in which the control unit outputs a scanner control signal to the optical scanner, wherein the optical scanner is the scanner.
  • the illumination light is deflected at a deflection angle corresponding to the control signal.
  • An eleventh aspect of some embodiments is a light source control step in any of the eighth to tenth aspects, which switches the light source from an on state to an off state or from an off state to an on state in synchronization with the scanner position signal. including.
  • a twelfth aspect of some embodiments is a second voltage in the eleventh aspect, in which the light source control signal for controlling the on / off of the light source is changed according to the comparison result between the scanner position signal and the second threshold voltage.
  • the light source control step includes a detection step and switches the light source from an on state to an off state or from an off state to an on state in synchronization with a change in the light source control signal.
  • the light receiving result acquisition step starts the image sensor to capture the light receiving result while the light source is on, and the light receiving result acquisition step. The capture of the light reception result is completed.
  • the image sensor is a CMOS image sensor.
  • the fifteenth aspect of some embodiments is a program that causes a computer to execute each step of the control method of the ophthalmic apparatus according to any one of the eighth to fourteenth aspects.
  • the ophthalmic apparatus illuminates a predetermined part of the eye to be inspected while moving the irradiation position (illumination area, irradiation range) of the slit-shaped illumination light, and the light receiving elements are arranged one-dimensionally or two-dimensionally.
  • the image sensor is used to receive the return light from a predetermined part.
  • the light receiving result of the return light is read out from the light receiving element at the light receiving position of the return light corresponding to the irradiation position of the illumination light in synchronization with the movement timing of the irradiation position of the illumination light.
  • the predetermined site is the anterior or posterior eye.
  • the anterior segment of the eye includes the cornea, iris, crystalline lens, ciliary body, and zonule of Zinn.
  • the posterior segment of the eye includes the vitreous body, the fundus of the eye, or its vicinity (retina, choroid, sclera, etc.).
  • the method for controlling an ophthalmic apparatus includes one or more steps for realizing a process executed by a processor (computer) in the ophthalmic apparatus according to the embodiment.
  • the program according to the embodiment causes the processor to execute each step of the control method of the ophthalmic apparatus according to the embodiment.
  • the "processor” is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), a programmable logic device (for example, a SPLD (Simple Cable) Program), a programmable logic device (for example, a SPLD) It means a circuit such as Programmable Logic Device), FPGA (Field Programgable Gate Array)).
  • the processor realizes the function according to the embodiment by reading and executing, for example, a program stored in a storage circuit or a storage device.
  • the ophthalmic apparatus according to the embodiment mainly acquires an image of the fundus of the eye to be inspected.
  • the optical scanner and the light receiving element are synchronized with high accuracy to improve the image quality of the acquired image.
  • the image quality of the acquired image is improved by synchronizing the optical scanner, the light receiving element, and the light source with high accuracy.
  • FIG. 1 to 3 show a schematic view of a configuration example of the ophthalmic apparatus according to the first embodiment.
  • FIG. 1 shows a configuration example of the optical system of the ophthalmic apparatus 1 according to the first embodiment.
  • FIG. 2 shows a block diagram of a configuration example of a control system (processing system) of the ophthalmic apparatus 1 according to the first embodiment.
  • FIG. 3 schematically shows a configuration example of the iris diaphragm 21 of FIG. 1 when viewed from the direction of the optical axis O.
  • similar parts are designated by the same reference numerals, and description thereof will be omitted as appropriate.
  • the ophthalmic apparatus 1 includes a light source 10, an illumination optical system 20, an optical scanner 30, a projection optical system 35, a photographing optical system 40, and an imaging device 50.
  • the illumination optics 20 comprises at least one of a light source 10, an optical scanner 30, and a projection optics 35.
  • the photographing optical system 40 includes an imaging device 50.
  • the projection optical system 35 or the imaging optical system 40 includes an optical scanner 30.
  • the light source 10 includes a visible light source that generates light in the visible region.
  • the light source 10 produces light having a central wavelength in the wavelength range of 420 nm to 700 nm.
  • a light source 10 includes, for example, an LED (Light Emitting Diode), an LD (Laser Diode), a halogen lamp, or a xenon lamp.
  • the light source 10 includes a white light source or a light source capable of outputting light of each color component of RGB.
  • the light source 10 includes a light source capable of switching and outputting light in the infrared region or light in the visible region.
  • the light source 10 is arranged at a position optically non-conjugated to each of the fundus Ef and the iris.
  • the illumination optical system 20 generates slit-shaped illumination light using the light from the light source 10.
  • the illumination optical system 20 guides the generated illumination light to the optical scanner 30.
  • the illumination optical system 20 includes an iris diaphragm 21, a slit 22, and a relay lens 23.
  • the light from the light source 10 passes through the opening formed in the iris diaphragm 21, passes through the opening formed in the slit 22, and passes through the relay lens 23.
  • the relay lens 23 includes one or more lenses. The light transmitted through the relay lens 23 is guided to the optical scanner 30.
  • the iris diaphragm 21 (specifically, the opening described later) can be arranged at a position optically conjugate with the iris (pupil) of the eye E to be inspected.
  • the iris diaphragm 21 is formed with one or more openings at positions away from the optical axis O.
  • the iris diaphragm 21 is formed with openings 21A and 21B having a predetermined thickness along the circumferential direction centered on the optical axis O.
  • the opening formed in the iris diaphragm 21 defines the incident position (incident shape) of the illumination light in the iris of the eye E to be inspected.
  • the position eccentric from the pupil center (specifically, the pupil center) It is possible to inject the illumination light into the eye from a point-symmetrical position with respect to the center.
  • the slit 22 (specifically, the opening described later) can be arranged at a position optically conjugate with the fundus Ef of the eye E to be inspected.
  • the slit 22 is formed with an opening in a direction corresponding to the line direction (low direction) read from the image sensor 51 described later by the rolling shutter method.
  • the opening formed in the slit 22 defines the irradiation pattern of the illumination light in the fundus Ef of the eye E to be inspected.
  • the slit 22 can be moved in the optical axis direction of the illumination optical system 20 by a moving mechanism (moving mechanism 22D described later).
  • the moving mechanism receives control from the control unit 100, which will be described later, and moves the slit 22 in the optical axis direction.
  • the control unit 100 controls the movement mechanism according to the state of the eye E to be inspected.
  • the position of the slit 22 can be moved according to the state of the eye E to be inspected (specifically, the refractive power and the shape of the fundus Ef).
  • the slit 22 is configured to be able to change at least one of the positions and shapes of the openings depending on the condition of the eye E to be inspected without being moved in the optical axis direction.
  • the function of such a slit 22 is realized by, for example, a liquid crystal shutter.
  • the light from the light source 10 that has passed through the opening formed in the iris diaphragm 21 is output as slit-shaped illumination light by passing through the opening formed in the slit 22.
  • the slit-shaped illumination light passes through the relay lens 23 and is guided to the optical scanner 30.
  • the optical scanner 30 is arranged at a position substantially conjugate with the iris of the eye E to be inspected.
  • the optical scanner 30 deflects the slit-shaped illumination light (slit-shaped light that has passed through the opening formed in the slit 22) that passes through the relay lens 23.
  • the optical scanner 30 sequentially illuminates a predetermined illumination range of the fundus Ef while changing the deflection angle within a predetermined deflection angle range with the iris of the eye E to be inspected or its vicinity as the scan center position.
  • the slit-shaped illumination light of the above is deflected and guided to the projection optical system 35.
  • the optical scanner 30 can deflect the illumination light one-dimensionally or two-dimensionally.
  • the optical scanner 30 includes a galvano scanner that deflects the illumination light within a predetermined deflection angle range with reference to a predetermined deflection direction.
  • the optical scanner 30 includes a first galvano scanner and a second galvano scanner.
  • the first galvano scanner deflects the illumination light so as to move the irradiation position of the illumination light in the horizontal direction orthogonal to the optical axis of the illumination optical system 20.
  • the second galvano scanner deflects the illumination light deflected by the first galvano scanner so as to move the irradiation position of the illumination light in the vertical direction orthogonal to the optical axis of the illumination optical system 20.
  • Scanning modes that move the irradiation position of the illumination light by the optical scanner 30 include, for example, horizontal scan, vertical scan, cross scan, radiation scan, circular scan, concentric circular scan, and spiral scan.
  • the optical scanner 30 is, for example, a non-resonant optical scanner.
  • the control unit 100 which will be described later, can set the orientation of one or more of the deflection surfaces of the optical scanner 30 so as to irradiate the illumination light into a desired irradiation range.
  • the optical scanner 30 changes the deflection angle of the illumination light (deflection angle of the deflection surface) by changing the direction of the deflection surface under the control of the control unit 100 described later, and is a scanner having a voltage level corresponding to the deflection angle. It is possible to output the position signal Spos.
  • the optical scanner 30 is, for example, a resonant optical scanner.
  • the control unit 100 which will be described later, sets the direction of the deflection surface of the scan center and the scan range based on the scan center with respect to the optical scanner 30 so as to irradiate the illumination light to a desired irradiation range.
  • the optical scanner 30 changes the deflection angle of the illumination light (deflection angle of the deflection surface) by changing the direction of the deflection surface under the control of the control unit 100 described later, and is a scanner having a voltage level corresponding to the deflection angle. It is possible to output the position signal Spos.
  • the projection optical system 35 guides the illumination light deflected by the optical scanner 30 to the fundus Ef of the eye E to be inspected.
  • the projection optical system 35 guides the illumination light deflected by the optical scanner 30 to the fundus Ef via the optical path coupled to the optical path of the photographing optical system 40 by the hole mirror 45 as an optical path coupling member described later. ..
  • the projection optical system 35 includes a relay lens 41, a black dot plate 42, a reflection mirror 43, and a relay lens 44.
  • Each of the relay lenses 41 and 44 includes one or more lenses.
  • the black dot plate 42 is arranged at a position optically conjugate with the lens surface of the objective lens 46 or its vicinity. As a result, it is possible to prevent the reflected light from the lens surface of the objective lens 46 from being guided to the light source 10 (illumination optical system 20).
  • the illumination light deflected by the optical scanner 30 passes through the relay lens 41, passes through the black dot plate 42, and is reflected by the reflection mirror 43 toward the hole mirror 45.
  • the photographing optical system 40 guides the illumination light guided by the projection optical system 35 to the fundus Ef of the eye E to be inspected, and guides the return light of the illumination light from the fundus Ef to the imaging device 50.
  • the optical path of the illumination light from the projection optical system 35 and the optical path of the return light of the illumination light from the fundus Ef are combined.
  • the hole mirror 45 as the optical path coupling member that couples these optical paths, it is possible to divide the illumination light and its return light into pupils.
  • the photographing optical system 40 includes a hole mirror 45, an objective lens 46, a focusing lens 47, a relay lens 48, and an imaging lens 49.
  • Each of the relay lenses 48 includes one or more lenses.
  • the hole mirror 45 is formed with a hole portion arranged on the optical axis of the photographing optical system 40.
  • the hole of the hole mirror 45 is arranged at a position optically conjugate with the iris of the eye E to be inspected.
  • the hole mirror 45 reflects the illumination light from the projection optical system 35 toward the objective lens 46 in the peripheral region of the hole.
  • the focusing lens 47 can be moved in the optical axis direction of the photographing optical system 40 by a moving mechanism (not shown).
  • the moving mechanism receives control from the control unit 100, which will be described later, and moves the focusing lens 47 in the optical axis direction.
  • the return light of the illumination light that has passed through the hole of the hole mirror 45 can be imaged on the light receiving surface of the image sensor 51 of the image pickup apparatus 50 according to the state of the eye E to be inspected.
  • the illumination light from the projection optical system 35 is reflected toward the objective lens 46 in the peripheral region of the hole formed in the hole mirror 45.
  • the illumination light reflected in the peripheral region of the hole mirror 45 is refracted by the objective lens 46, enters the eye through the pupil of the eye E to be inspected, and illuminates the fundus Ef of the eye E to be inspected.
  • the return light of the illumination light from the fundus Ef is refracted by the objective lens 46, passes through the hole of the hole mirror 45, passes through the focusing lens 47, passes through the relay lens 48, and is transmitted by the imaging lens 49.
  • An image is formed on the light receiving surface of the image sensor 51 of 50.
  • the image pickup apparatus 50 includes an image sensor 51 that receives the return light of the illumination light guided from the fundus Ef of the eye E to be inspected through the photographing optical system 40.
  • the image pickup apparatus 50 is controlled by the control unit 100, which will be described later, and can output the light reception result of the return light.
  • the image sensor 51 realizes a function as a pixelated receiver.
  • the light receiving surface (detection surface, imaging surface) of the image sensor 51 can be arranged at a position optically conjugate with the fundus Ef.
  • the light receiving result by the image sensor 51 is captured and read by the rolling shutter method.
  • the control unit 100 which will be described later, controls the image sensor 51 to read out the light receiving result.
  • the image sensor 51 can automatically output the light receiving result for a predetermined line together with the information indicating the light receiving position.
  • Such an image sensor 51 includes a CMOS image sensor.
  • the image sensor 51 includes a plurality of pixels in which a plurality of pixels (light receiving elements) arranged in the row direction are arranged in the column direction.
  • the image sensor 51 includes a plurality of pixels arranged two-dimensionally, a plurality of vertical signal lines, and a horizontal signal line.
  • Each pixel includes a photodiode (light receiving element) and a capacitor.
  • a plurality of vertical signal lines are provided for each pixel group in the column direction (vertical direction) orthogonal to the row direction (horizontal direction). Each vertical signal line is selectively electrically connected to a group of pixels in which charges corresponding to the light reception result are accumulated.
  • the horizontal signal line is selectively electrically connected to a plurality of vertical signal lines.
  • Each pixel accumulates an electric charge corresponding to the result of receiving the return light, and the accumulated electric charge is sequentially read out for each pixel group in the row direction, for example.
  • a voltage corresponding to the electric charge accumulated in each pixel is supplied to the vertical signal line.
  • the plurality of vertical signal lines are selectively electrically connected to the horizontal signal lines.
  • FIG. 4 shows an operation explanatory diagram of the ophthalmic apparatus 1 according to the first embodiment.
  • FIG. 4 schematically shows the irradiation range IP of the slit-shaped illumination light applied to the fundus Ef and the virtual opening range OP on the light receiving surface SR of the image sensor 51.
  • control unit 100 deflects the slit-shaped illumination light formed by the illumination optical system 20 by using the optical scanner 30.
  • the irradiation range IP of the slit-shaped illumination light is sequentially moved in the direction (for example, the vertical direction) orthogonal to the slit direction (for example, the low direction and the horizontal direction).
  • a virtual opening range OP is set by changing the pixel to be captured in line units by the control unit 100 described later.
  • the aperture range OP is preferably a range wider than the light receiving range IP'or the light receiving range IP'of the return light of the illumination light on the light receiving surface SR.
  • the control unit 100 which will be described later, executes the movement control of the aperture range OP in synchronization with the movement control of the irradiation range IP of the illumination light.
  • FIGS. 5 and 6 schematically show an example of the control timing of the rolling shutter method for the image sensor 51.
  • FIG. 5 shows an example of the timing of reading control for the image sensor 51.
  • FIG. 6 shows the movement control timing of the illumination range IP (light receiving range IP ′) of the illumination light superimposed on the read control timing of FIG.
  • the horizontal axis represents the number of rows of the image sensor 51, and the vertical axis represents time.
  • the number of rows of the image sensor 51 is assumed to be 1920, but the configuration according to the first embodiment is not limited to the number of rows. Further, in FIG. 6, for convenience of explanation, it is assumed that the slit width (width in the row direction) of the slit-shaped illumination light is 40 rows.
  • the read control in the low direction includes reset control, exposure control, charge transfer control, and output control.
  • the reset control is a control that initializes the amount of electric charge accumulated in the pixels in the row direction.
  • the exposure control is a control in which light is applied to the photodiode and an electric charge corresponding to the amount of received light is accumulated in the capacitor.
  • the charge transfer control is a control for transferring the amount of charge stored in a pixel to a vertical signal line.
  • the output control is a control that outputs the amount of electric charge accumulated in a plurality of vertical signal lines via the horizontal signal lines. That is, as shown in FIG.
  • the read time T of the amount of charge accumulated in the pixels in the row direction is the time Tr required for reset control, the time (exposure time) Te required for exposure control, and the time Tc required for charge transfer control. , The sum of the time Toout required for output control.
  • the light reception result (charge amount) accumulated in the pixels in the desired range of the image sensor 51 is acquired.
  • the frame rate FR is uniquely determined.
  • the irradiation position of the illumination light having slit widths corresponding to a plurality of waxes in the fundus Ef is sequentially shifted in the direction corresponding to the column direction in the fundus Ef.
  • the irradiation position of the illumination light in the fundus Ef is shifted in row units in the direction corresponding to the column direction every predetermined shift time ⁇ t.
  • the image sensor 51 is composed of one or more line sensors.
  • control system configuration As shown in FIG. 2, the control system of the ophthalmic apparatus 1 is configured around the control unit 100. In addition, at least a part of the structure of the control system may be included in the ophthalmic apparatus 1.
  • the control unit 100 controls each unit of the ophthalmic apparatus 1.
  • the control unit 100 includes a main control unit 101 and a storage unit 102.
  • the main control unit 101 includes a processor and executes processing according to a program stored in the storage unit 102 to execute control processing of each unit of the ophthalmic apparatus 1.
  • the main control unit 101 controls the light source 10, the movement mechanism 10D, the illumination optical system 20, the optical scanner 30, the imaging optical system 40, the image pickup device 50, and the data processing unit 200. And the voltage detection circuit 210 is controlled.
  • the control of the light source 10 includes switching of turning on and off (or the wavelength region of light) of the light source, and control of changing the amount of light of the light source.
  • the moving mechanism 10D changes at least one of the positions and orientations of the light source 10 by a known mechanism.
  • the main control unit 101 can change at least one of the relative position and relative orientation of the light source 10 with respect to the iris diaphragm 21 and the slit 22.
  • the control of the illumination optical system 20 includes the control of the moving mechanism 22D.
  • the moving mechanism 22D moves the slit 22 in the optical axis direction of the illumination optical system 20.
  • the main control unit 101 controls the moving mechanism 22D according to the state of the eye E to be inspected, thereby arranging the slit 22 at a position corresponding to the state of the eye E to be inspected.
  • the state of the eye to be inspected E includes the shape of the fundus Ef, the refractive power, the axial length, and the like.
  • the refractive power can be obtained from a known ocular refractive power measuring device as disclosed in, for example, Japanese Patent Application Laid-Open No. 61-293430 or Japanese Patent Application Laid-Open No. 2010-259495.
  • the axial length can be obtained from a known axial length measuring device or a measured value of an optical coherence tomography.
  • first control information in which the position of the slit 22 on the optical axis of the illumination optical system 20 is previously associated with the refractive power is stored in the storage unit 102.
  • the main control unit 101 specifies the position of the slit 22 corresponding to the refractive power with reference to the first control information, and controls the moving mechanism 22D so that the slit 22 is arranged at the specified position.
  • the main control unit 101 can change the position and orientation of the light source 10 by controlling the moving mechanism 10D.
  • the control of the optical scanner 30 includes the control of the angle of the deflection surface that deflects the illumination light. By controlling the angle range of the deflection surface, it is possible to control the scan range (scan start position and scan end position). It is possible to control the scanning speed by controlling the changing speed of the angle of the deflection surface.
  • the control of the photographing optical system 40 includes the control of the moving mechanism 47D.
  • the moving mechanism 47D moves the focusing lens 47 in the optical axis direction of the photographing optical system 40.
  • the main control unit 101 can control the moving mechanism 47D based on the analysis result of the image acquired by using the image sensor 51. Further, the main control unit 101 can control the movement mechanism 47D based on the operation content of the user using the operation unit 110 described later.
  • the control of the image pickup device 50 includes the control of the image sensor 51.
  • the control of the image sensor 51 includes a control for reading the light receiving result by the rolling shutter method (for example, setting the light receiving size corresponding to the size of the illumination pattern). Further, the control of the image sensor 51 includes reset control, exposure control, charge transfer control, output control and the like. It is possible to change the time Tr required for reset control, the time (exposure time) Te required for exposure control, the time Tc required for charge transfer control, the time Tout required for output control, and the like.
  • the control of the data processing unit 200 includes various image processing and analysis processing for the light receiving result acquired from the image sensor 51.
  • the image processing includes noise removal processing for the light reception result and luminance correction processing for making it easy to identify a predetermined portion drawn on the light reception image based on the light reception result.
  • the analysis process includes a process for specifying the in-focus state.
  • the data processing unit 200 can form a light receiving image corresponding to an arbitrary aperture range based on the light receiving result read from the image sensor 51 by the rolling shutter method. As an image forming unit, the data processing unit 200 can sequentially form light receiving images corresponding to the aperture range, and can form an image of the eye E to be inspected from the formed plurality of light receiving images.
  • the data processing unit 200 realizes the above function by performing processing according to a program stored in the storage unit or the like, including the processor.
  • the voltage detection circuit 210 outputs a trigger signal instructing the start of capturing the light receiving result to the image sensor 51 based on the scanner position signal from the optical scanner 30. It is possible to specify the deflection angle of the illumination light by the optical scanner 30 from the scanner position signal.
  • the function of the voltage detection circuit 210 can be realized by a known comparator circuit. Such control of the voltage detection circuit 210 includes setting a threshold voltage for determining whether or not the deflection angle of the illumination light by the optical scanner 30 is a desired deflection angle based on the scanner position signal.
  • the light source 10 includes two or more light sources.
  • each of the two or more light sources is provided corresponding to the two or more openings formed in the iris diaphragm 21.
  • the main control unit 201 changes at least one of the positions and orientations (directions in the direction in which the amount of light is maximized) of each light source by controlling the movement mechanism provided corresponding to each of the two or more light sources. It is possible to do.
  • the storage unit 102 stores various computer programs and data.
  • the computer program includes an arithmetic program and a control program for controlling the ophthalmic apparatus 1.
  • the operation unit 110 includes an operation device or an input device.
  • the operation unit 110 includes buttons and switches (for example, operation handles, operation knobs, etc.) and operation devices (mouse, keyboard, etc.) provided in the ophthalmic apparatus 1. Further, the operation unit 110 may include any operation device or input device such as a trackball, an operation panel, a switch, a button, and a dial.
  • the display unit 120 displays the image of the eye E to be inspected generated by the data processing unit 200.
  • the display unit 120 includes a display device such as a flat panel display such as an LCD (Liquid Crystal Display). Further, the display unit 120 may include various display devices such as a touch panel provided on the housing of the ophthalmic apparatus 1.
  • the operation unit 110 and the display unit 120 do not need to be configured as separate devices.
  • a device such as a touch panel in which a display function and an operation function are integrated.
  • the operation unit 110 includes the touch panel and a computer program.
  • the operation content for the operation unit 110 is input to the control unit 100 as an electric signal.
  • the graphical user interface (GUI) displayed on the display unit 120 and the operation unit 110 may be used to perform operations and information input.
  • the functions of the display unit 120 and the operation unit 110 are realized by a touch screen.
  • the ophthalmic apparatus 1 further comprises an fixation projection system.
  • the optical path of the fixation projection system is coupled to the optical path of the photographing optical system 40 in the configuration of the optical system shown in FIG.
  • the fixation projection system can present an internal fixation target or an external fixation target to the eye E to be inspected.
  • the fixation projection system includes an LCD that displays the internal fixation target under the control of the control unit 100, and the fixation light flux output from the LCD is displayed on the eye to be inspected. Project on the fundus of E.
  • the LCD is configured so that the display position of the fixation target on the screen can be changed.
  • the display position of the fixation target on the LCD By changing the display position of the fixation target on the LCD, it is possible to change the projection position of the fixation target on the fundus of the eye E to be inspected.
  • the display position of the fixation target on the LCD can be specified by the user by using the operation unit 110.
  • the ophthalmic apparatus 1 includes an alignment system.
  • the alignment system includes an XY alignment system and a Z alignment system.
  • the XY alignment system is used to align the device optical system and the eye E to be inspected in a direction intersecting the optical axis of the device optical system (objective lens 46).
  • the Z alignment system is used to align the device optical system and the eye E to be inspected in the direction of the optical axis of the ophthalmic device 1 (objective lens 46).
  • the XY alignment system projects a bright spot (bright spot in the infrared region or near infrared region) on the eye E to be inspected.
  • the data processing unit 200 acquires an anterior eye portion image of the eye E to be inspected on which a bright spot is projected, and obtains a displacement between the bright spot image drawn on the acquired anterior eye portion image and the alignment reference position.
  • the control unit 100 relatively moves the device optical system and the eye E to be inspected in a direction intersecting the direction of the optical axis by a moving mechanism (not shown) so as to cancel the obtained displacement.
  • the Z alignment system projects the alignment light in the infrared region or the near infrared region from a position off the optical axis of the device optical system, and receives the alignment light reflected by the anterior segment of the eye E to be inspected.
  • the data processing unit 200 specifies the distance of the eye E to be inspected to the optical system of the device from the light receiving position of the alignment light that changes according to the distance of the eye E to be inspected to the optical system of the device.
  • the control unit 100 relatively moves the device optical system and the eye E to be inspected in the direction of the optical axis by a moving mechanism (not shown) so that the specified distance becomes a desired working distance.
  • the function of the alignment system is realized by two or more anterior eye cameras located off the optical axis of the device optical system.
  • the data processing unit 200 analyzes the anterior segment image of the eye E to be inspected substantially simultaneously acquired by two or more anterior segment cameras.
  • the three-dimensional position of the eye E to be inspected is specified by using a known triangular method.
  • the control unit 100 uses a moving mechanism (not shown) so that the optical axis of the device optical system substantially coincides with the axis of the eye to be inspected E and the distance of the device optical system to the eye to be inspected E is a predetermined operating distance. And the eye E to be inspected are relatively moved three-dimensionally.
  • the slit 22 opening
  • the imaging site fundus Ef
  • the image sensor 51 light receiving surface
  • the image sensor 51 receives and captures the return light of the illumination light at an appropriate timing, thereby eliminating the influence of unnecessary scattered light and acquiring the object based on the light reception result.
  • the image quality of the image of the eye examination E can be improved. Therefore, in the first embodiment, the optical scanner 30 and the image sensor 51 are synchronized with each other with high accuracy to improve the image quality of the acquired image.
  • FIG. 7 shows a schematic diagram for explaining the synchronous control of the ophthalmic apparatus 1 according to the first embodiment.
  • the same parts as those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the control unit 100 controls the deflection angle of the illumination light (the angle of the deflection surface with respect to the reference angle) by the optical scanner 30.
  • the control unit 100 controls the deflection angle of the illumination light by outputting the scanner control signal Scott to the optical scanner 30.
  • the scanner control signal Scont of a desired voltage level For example, by outputting the scanner control signal Scont of a desired voltage level to the optical scanner 30, the angle of the deflection surface of the optical scanner 30 can be set to a desired deflection angle.
  • the optical scanner 30 can output a scanner position signal Spos corresponding to the angle of the deflection surface.
  • the scanner position signal Spos is a voltage level signal corresponding to the angle of the deflection surface.
  • the voltage detection circuit 210 detects whether or not the deflection angle of the illumination light by the optical scanner 30 is a desired deflection angle based on the voltage level of the scanner position signal Spos from the optical scanner 30, and corresponds to the detection result.
  • the trigger signal Tr is output to the image sensor 51.
  • the voltage detection circuit 210 compares the scanner position signal Spos with the first threshold voltage TH1 and obtains a voltage level trigger signal Tr corresponding to the comparison result between the scanner position signal Spos and the first threshold voltage TH1. Output to the image sensor 51.
  • the image sensor 51 starts capturing the light receiving result of the return light of the illumination light on the light receiving surface in synchronization with the change timing (for example, the rising edge) of the trigger signal Tr from the voltage detection circuit 210, and the captured light receiving result. Is transferred to the control unit 100.
  • FIG. 8 shows an operation example of the ophthalmic apparatus 1 according to the first embodiment.
  • FIG. 8 is a sequence diagram showing a sequence of operation examples of the ophthalmic apparatus 1.
  • control unit 100 outputs a scanner control signal Point to the optical scanner 30 so as to deflect the illumination light at a desired deflection angle (SQ1).
  • the direction of the deflection surface is changed by the deflection angle corresponding to the scanner control signal Scott from the control unit 100 (SQ2). This makes it possible to illuminate a predetermined region of the fundus Ef with illumination light.
  • the optical scanner 30 outputs a scanner position signal Spos corresponding to the deflection angle of the deflection surface (SQ3).
  • the voltage detection circuit 210 compares the scanner position signal Spos from the optical scanner 30 with the predetermined first threshold voltage TH1. As a result, the voltage detection circuit 210 can detect whether or not to capture the light reception result of the return light of the illumination light by the image sensor 51 from the deflection direction of the illumination light by the optical scanner 30 (SQ4).
  • the voltage detection circuit 210 compares the scanner position signal Spos from the optical scanner 30 with the predetermined first threshold voltage TH1 and outputs a trigger signal Tr of the voltage level according to the comparison result (SQ5).
  • the trigger signal Tr of the first power supply voltage level (L level) is output, and when the scanner position signal Spos is less than the first threshold voltage TH1, the second power supply is output.
  • the voltage level (H level) trigger signal Tr is output.
  • the voltage detection circuit 210 outputs an L-level trigger signal Tr to the image sensor 51.
  • the image sensor 51 Since the voltage level of the trigger signal Tr from the voltage detection circuit 210 does not change, the image sensor 51 does not start capturing the light reception result of the return light of the illumination light.
  • the control unit 100 outputs a scanner control signal Scont to the optical scanner 30 so as to deflect the illumination light at the next desired deflection angle (SQ6).
  • the control unit 100 outputs a scanner control signal Scott to the optical scanner 30 at predetermined time intervals.
  • the control unit 100 controls the scanner to deflect the optical scanner 30 at the next desired deflection angle. Output the signal Spec.
  • the direction of the deflection surface is changed by the deflection angle corresponding to the scanner control signal Scott from the control unit 100 (SQ7).
  • the optical scanner 30 outputs a scanner position signal Spos corresponding to the deflection angle of the deflection surface (SQ8).
  • the voltage detection circuit 210 compares the scanner position signal Spos from the optical scanner 30 with the first threshold voltage TH1 and whether or not to capture the result of receiving the return light of the illumination light by the image sensor 51. Is detected (SQ9).
  • the voltage detection circuit 210 compares the scanner position signal Spos from the optical scanner 30 with the first threshold voltage TH1 and outputs a trigger signal Tr of a voltage level according to the comparison result (SQ10).
  • the voltage detection circuit 210 changes from the L level to the H level with respect to the image sensor 51.
  • the changing trigger signal Tr is output.
  • the image sensor 51 captures the light reception result of the return light of the illumination light at a predetermined line (see FIG. 6) in synchronization with the rising edge where the trigger signal Tr from the voltage detection circuit 210 changes from the L level to the H level. Start (SQ11).
  • the image sensor 51 transfers the capture of the light reception result to the control unit 100 at a predetermined timing (SQ12).
  • the predetermined timing may be a predetermined timing, or may be a timing determined by the end timing of capturing the predetermined light receiving result.
  • the control unit 100 performs read control on the image sensor 51, so that the image sensor 51 transfers the light receiving result to the control unit 100.
  • FIG. 9 shows an example of the timing of synchronous control of the ophthalmic apparatus 1 according to the first embodiment.
  • FIG. 9 schematically shows the relationship between the scanner control signal Spot, the scanner position signal Spot, the trigger signal Tr, and the capture start timing of the light reception result by the image sensor 51.
  • FIG. 9 in the first timing diagram in which the vertical axis represents the voltage level of the scanner control signal Scott and the horizontal axis represents the time t, an example of the timing of the scanner control signal Scott is shown. Further, in the second timing diagram in which the vertical axis represents the voltage level of the scanner position signal Spos and the horizontal axis represents the time t, an example of the timing of the scanner position signal Spos is shown. Further, in the third timing diagram in which the vertical axis represents the voltage level of the trigger signal Tr and the horizontal axis represents the time t, an example of the timing of the trigger signal Tr is shown.
  • the control unit 100 sequentially outputs the scanner control signal Scott so as to sequentially illuminate the predetermined imaging area in the fundus Ef as shown in FIG. 6, thereby sequentially changing the illumination area.
  • the control unit 100 sequentially outputs the scanner control signal Scont to the optical scanner 30 as shown in FIG.
  • the optical scanner 30 changes the deflection surface so that the deflection angle corresponds to the scanner control signal Scott from the control unit 100. At this time, the optical scanner 30 changes the deflection plane after a predetermined delay time ⁇ dt elapses with respect to the scanner control signal Scott. The optical scanner 30 outputs a scanner position signal Spos corresponding to the deflection angle of the deflection surface.
  • the voltage detection circuit 210 compares the voltage level of the scanner position signal Spos with the first threshold voltage TH1 and outputs a trigger signal Tr of the voltage level according to the comparison result to the image sensor 51. ..
  • the voltage detection circuit 210 changes the voltage level of the trigger signal Tr to make the H level. Trigger signal Tr is output.
  • the image sensor 51 starts capturing the light reception result of the return light of the illumination light in synchronization with the rising edge of the trigger signal Tr from the voltage detection circuit 210. For example, in the capture period, as shown in FIG. 6, reset control is performed in the period Tr, exposure control is performed in the period Te, charge transfer control is performed in the period Tc, and output control is performed in the period Tout.
  • the timing of capturing the light reception result of the return light of the illumination light of the image sensor 51 is controlled in synchronization with the scanner position signal Spos of the optical scanner 30 which can be controlled by the scanner control signal Spot from the control unit 100. Can be done.
  • the return light of the illumination light can be received and captured in synchronization with the illumination region of the illumination light with high accuracy, so that the influence of unnecessary scattered light is eliminated and the image of the eye E to be inspected is acquired.
  • the image quality can be improved.
  • the voltage detection circuit 210 is an example of the "first voltage detection circuit" according to the embodiment.
  • the configuration of the ophthalmic apparatus according to the embodiment is not limited to the configuration of the ophthalmic apparatus 1 according to the first embodiment.
  • the optical scanner 30, the image sensor 51, and the light source 10 are synchronized with high accuracy to improve the image quality of the acquired image of the eye E to be inspected.
  • the ophthalmic apparatus according to the second embodiment will be described focusing on the differences from the ophthalmic apparatus 1 according to the first embodiment.
  • optical system configuration The configuration of the optical system of the ophthalmic apparatus according to the second embodiment is the same as the configuration of the optical system of the ophthalmic apparatus 1 according to the first embodiment.
  • FIG. 10 shows a block diagram of a configuration example of the control system of the ophthalmic apparatus according to the second embodiment.
  • the same parts as those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the configuration of the control system of the ophthalmic apparatus according to the second embodiment is different from the configuration of the control system of the ophthalmic apparatus 1 according to the first embodiment in that the voltage detection circuit 210a is provided instead of the voltage detection circuit 210. Is.
  • the voltage detection circuit 210a has, in addition to the function of the voltage detection circuit 210, a voltage detection function for controlling the light source 10 and a light source control signal output function for the light source 10.
  • the voltage detection circuit 210a outputs a light source control signal LScont for performing on control and off control of the light source 10 in synchronization with a change in the scanner position signal Spot.
  • FIG. 11 shows a schematic diagram for explaining the synchronous control of the ophthalmic apparatus according to the second embodiment.
  • the same parts as those in FIG. 7 or 10 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the voltage detection circuit 210a includes a first voltage detection circuit 211a and a second voltage detection circuit 212a.
  • the first voltage detection circuit 211a has the same function as the voltage detection circuit 210 in the first embodiment. That is, the first voltage detection circuit 211a detects and detects whether or not the deflection angle of the illumination light by the optical scanner 30 is a desired deflection angle based on the voltage level of the scanner position signal Spos from the optical scanner 30.
  • the trigger signal Tr corresponding to the result is output to the image sensor 51.
  • the first voltage detection circuit 211a compares the scanner position signal Spos with the first threshold voltage TH1, and the trigger signal of the voltage level corresponding to the comparison result between the scanner position signal Spos and the first threshold voltage TH1.
  • the Tr is output to the image sensor 51.
  • the second voltage detection circuit 212a detects whether or not the deflection angle of the illumination light by the optical scanner 30 is a desired deflection angle based on the voltage level of the scanner position signal Spos, and the light source control signal corresponding to the detection result.
  • the LScont is output to the light source 10.
  • the second voltage detection circuit 212a compares the scanner position signal Spos with the second threshold voltage TH2, and controls the light source at a voltage level corresponding to the comparison result between the scanner position signal Spos and the second threshold voltage TH2.
  • the signal LScont is output to the light source 10.
  • the second voltage detection circuit 212a outputs an L-level light source control signal LScont when the scanner position signal Spos is the second threshold voltage TH2 or higher.
  • the second threshold voltage TH2 is, for example, a threshold voltage for switching the light source 10 from the off state to the on state.
  • the second voltage detection circuit 212a compares the scanner position signal Spos with the third threshold voltage TH3, and obtains a light source control signal LScont at a voltage level corresponding to the comparison result between the scanner position signal Spos and the third threshold voltage TH3. Output to the light source 10. For example, the second voltage detection circuit 212a outputs an L-level light source control signal LScont when the scanner position signal Spos is less than the third threshold voltage TH3.
  • the third threshold voltage TH3 is, for example, a threshold voltage for switching the light source 10 from the on state to the off state.
  • the second voltage detection circuit 212a outputs an H level light source control signal LScont when the scanner position signal Spos is less than the second threshold voltage TH2 and is greater than or equal to the third threshold voltage TH3.
  • the second voltage detection circuit 212a can be realized by, for example, one or more known comparator circuits and an RS-flip-flop circuit.
  • the first threshold voltage TH1 may be a voltage between the second threshold voltage TH2 and the third threshold voltage TH3 in order to capture the light receiving result by the image sensor 51 during the period when the light source 10 is on.
  • the voltage level of the first threshold voltage TH1 is approximately equal to the voltage level of the second threshold voltage TH2.
  • the image sensor 51 synchronizes with the change timing (for example, the rising edge) of the trigger signal Tr from the first voltage detection circuit 211a, and receives the return light of the illumination light on the light receiving surface. The capture is started, and the captured light receiving result is transferred to the control unit 100.
  • the light source 10 is switched from an off state (non-lighting state) to an on state (lighting state) in synchronization with the first change timing (for example, rising edge) of the light source control signal LScont from the second voltage detection circuit 212a. Further, the light source 10 is switched from the on state to the off state in synchronization with the second change timing (for example, the falling edge) of the light source control signal LScont from the second voltage detection circuit 212a.
  • FIG. 12 shows an operation example of the ophthalmic apparatus according to the second embodiment.
  • FIG. 12 is a sequence diagram showing a sequence of operation examples of the ophthalmic apparatus according to the second embodiment. It is assumed that the following control is performed when the light source 10 is in the off state.
  • control unit 100 outputs a scanner control signal Scont to the optical scanner 30 so as to deflect the illumination light at a desired deflection angle, similarly to the SQ1 (SQ21).
  • the optical scanner 30 In the optical scanner 30, the direction of the deflection surface is changed by the deflection angle corresponding to the scanner control signal Scott from the control unit 100, as in the case of SQ2 (SQ22). Similar to SQ3, the optical scanner 30 outputs a scanner position signal Spos corresponding to the deflection angle of the deflection surface (SQ23).
  • the detection circuit 211a does not change the voltage level of the trigger signal Tr, and the second voltage detection circuit 212a changes the voltage level of the light source control signal LScont (SQ24).
  • the second voltage detection circuit 212a outputs the light source control signal LScont changed to the H level to the light source 10 (SQ25).
  • the light source 10 is switched from the off state to the on state in synchronization with the change timing (rising edge) of the light source control signal LScont from the second voltage detection circuit 212a (SQ26).
  • the control unit 100 outputs a scanner control signal Scont to the optical scanner 30 so as to deflect the illumination light at the next desired deflection angle (SQ27).
  • the direction of the deflection surface is changed by the deflection angle corresponding to the scanner control signal Scott from the control unit 100 (SQ28).
  • the optical scanner 30 outputs a scanner position signal Spos corresponding to the deflection angle of the deflection surface (SQ29).
  • the first voltage detection circuit 211a changes the voltage level of the trigger signal Tr, and the second voltage detection circuit 212a does not change the voltage level of the light source control signal LScont (SQ30).
  • the first voltage detection circuit 211a outputs the trigger signal Tr changed to the H level to the image sensor 51 (SQ31).
  • the image sensor 51 starts capturing the light reception result of the return light of the illumination light on the predetermined line in synchronization with the rising edge of the trigger signal Tr from the voltage detection circuit 210 (SQ32).
  • the image sensor 51 transfers the capture of the light receiving result to the control unit 100 at a predetermined timing (SQ33).
  • the control unit 100 outputs a scanner control signal Scott to the optical scanner 30 so as to deflect the illumination light at the next desired deflection angle (SQ34).
  • the direction of the deflection surface is changed by the deflection angle corresponding to the scanner control signal Scott from the control unit 100 (SQ35).
  • the optical scanner 30 outputs a scanner position signal Spos corresponding to the deflection angle of the deflection surface (SQ36).
  • the first voltage detection circuit 211a When the voltage level of the scanner position signal Spos changes from a voltage level of the third threshold voltage TH3 or higher to a voltage level of less than the third threshold voltage TH3, the first voltage detection circuit 211a does not change the voltage level of the trigger signal Tr.
  • the second voltage detection circuit 212a changes the voltage level of the light source control signal LScont (SQ37).
  • the second voltage detection circuit 212a outputs the light source control signal LScont changed to the L level to the light source 10 (SQ38).
  • the light source 10 is switched from the on state to the off state in synchronization with the change timing (falling edge) of the light source control signal LScont from the second voltage detection circuit 212a (SQ39).
  • FIG. 13 shows an example of the timing of synchronous control of the ophthalmic apparatus 2 according to the second embodiment.
  • FIG. 13 schematically shows the relationship between the scanner control signal Spot, the scanner position signal Spot, the trigger signal Tr, the light source control signal LScont, and the capture start timing of the light reception result by the image sensor 51.
  • FIG. 13 an example of the timing of the scanner control signal Scott is shown in the first timing diagram. Further, in the second timing diagram, an example of the timing of the scanner position signal Spos is shown. Further, in the third timing diagram, an example of the timing of the trigger signal Tr is shown. Furthermore, in the third timing diagram in which the vertical axis represents the voltage level of the light source control signal LScont and the horizontal axis represents the time 4, an example of the timing of the light source control signal LScont is shown.
  • the control unit 100 sequentially outputs the scanner control signal Scott so as to sequentially illuminate the predetermined imaging area in the fundus Ef as shown in FIG. 6, thereby sequentially changing the illumination area.
  • the control unit 100 sequentially outputs the scanner control signal Scont to the optical scanner 30 as shown in FIG.
  • the optical scanner 30 changes the deflection surface so that the deflection angle corresponds to the scanner control signal Scott from the control unit 100. At this time, the optical scanner 30 changes the deflection plane after a predetermined delay time ⁇ dt elapses with respect to the scanner control signal Scott. The optical scanner 30 outputs a scanner position signal Spos corresponding to the deflection angle of the deflection surface.
  • the second voltage detection circuit 212a compares the voltage level of the scanner position signal Spos with the second threshold voltage TH2 as described above, and the light source control signal of the voltage level corresponding to the comparison result with respect to the light source 10. Output LScont.
  • the second voltage detection circuit 212a changes the voltage level of the light source control signal LScont.
  • H level light source control signal LScont is output.
  • the light source 10 is switched from the off state to the on state in synchronization with the rising edge of the light source control signal LScont from the second voltage detection circuit 212a.
  • the first voltage detection circuit 211a compares the voltage level of the scanner position signal Spos with the first threshold voltage TH1 as described above, and triggers the image sensor 51 to have a voltage level according to the comparison result. Output the signal Tr.
  • the voltage level of the scanner position signal Spos changes from a voltage level equal to or higher than the first threshold voltage TH1 to a voltage level lower than the first threshold voltage TH1 (however, TH1> TH3)
  • the first voltage detection circuit 211a causes the trigger signal Tr.
  • the voltage level of H level is changed and the H level trigger signal Tr is output.
  • the image sensor 51 starts capturing the light reception result of the return light of the illumination light in synchronization with the rising edge of the trigger signal Tr from the first voltage detection circuit 211a. For example, in the capture period, as shown in FIG. 6, reset control is performed in the period Tr, exposure control is performed in the period Te, charge transfer control is performed in the period Tc, and output control is performed in the period Tout.
  • the control unit 100 outputs the scanner control signal Scont to the optical scanner 30 and changes the direction of the deflection surface.
  • the second voltage detection circuit 212a compares the voltage level of the scanner position signal Spos with the third threshold voltage TH3 as described above, and controls the light source 10 with a voltage level according to the comparison result. Output the signal LScont.
  • the second voltage detection circuit 212a changes the voltage level of the light source control signal LScont.
  • L level light source control signal LScont is output.
  • the light source 10 is switched from the on state to the off state in synchronization with the falling edge of the light source control signal LScont from the second voltage detection circuit 212a.
  • control unit 100 may control the light source 10 to switch it to the off state after a predetermined period has elapsed since the light source 10 was switched to the on state based on the voltage level of the scanner position signal Spos.
  • the image sensor 51 can start capturing the light receiving result and finish capturing the light receiving result during the period when the light source 10 is on, the influence of unnecessary scattered light is surely eliminated and the eye to be inspected.
  • the image quality of the image of E can be further improved.
  • the first voltage detection circuit 211a is an example of the "first voltage detection circuit” according to the embodiment.
  • the second voltage detection circuit 212a is an example of the "second voltage detection circuit” according to the embodiment.
  • the second threshold voltage TH2 or the third threshold voltage TH3 is an example of the “second threshold voltage” according to the embodiment.
  • the ophthalmic apparatus (1) includes a light source (10), an illumination optical system (20), an optical scanner (30), a photographing optical system (40), and a control unit (100, main control). Part 101) and.
  • the illumination optical system uses the light from the light source to generate slit-shaped illumination light.
  • the optical scanner deflects the illumination light and guides it to the fundus (Ef) of the eye to be inspected (E).
  • the photographing optical system guides the return light of the illumination light from the fundus to the image sensor (51) that captures the light reception result in the region of the light receiving surface corresponding to the illumination region of the illumination light in the fundus by the rolling shutter method.
  • the control unit controls the deflection angle of the illumination light by the optical scanner.
  • the optical scanner outputs a scanner position signal (Spos) corresponding to the deflection angle of the illumination light.
  • the image sensor starts capturing the light reception result of the return light in synchronization with the scanner position signal.
  • the optical scanner and the image sensor can be synchronized with high accuracy with a simple configuration, so that it is possible to prevent the capture of unnecessary scattered light reception results and based on the light reception results of the image sensor. It becomes possible to acquire a high-quality image of the formed eye to be inspected.
  • the first voltage detection circuit (voltage detection circuit 210, first voltage detection circuit 211a) that changes the trigger signal (Tr) according to the comparison result between the scanner position signal and the first threshold voltage (TH1). ), The image sensor starts capturing the light receiving result in synchronization with the change in the trigger signal.
  • the trigger signal is changed based on the voltage level of the scanner position signal, and the image sensor starts capturing the light reception result in synchronization with the change in the trigger signal. , It becomes possible to synchronize the optical scanner and the image sensor with high accuracy.
  • control unit outputs a scanner control signal (Scont) to the optical scanner and deflects the illumination light at a deflection angle corresponding to the scanner control signal.
  • Sc scanner control signal
  • the scanner position signal corresponding to the deflection angle can be generated by the scanner control signal, so that the image sensor can start capturing the light receiving result in synchronization with the scanner control signal by the control unit. It will be possible.
  • the light source is switched from on to off or from off to on in synchronization with the scanner position signal.
  • the optical scanner, the image sensor, and the light source can be synchronized with high accuracy with a simple configuration, so that it is possible to prevent the capture of unnecessary scattered light reception results and to obtain the light reception results of the image sensor. It becomes possible to acquire a high-quality image of the eye to be inspected formed based on the above.
  • the second light source control signal (LScont) for controlling the on / off of the light source is changed according to the comparison result between the scanner position signal and the second threshold voltage (TH2, third threshold voltage TH3).
  • the light source includes the voltage detection circuit (212a), and the light source is switched from the on state to the off state or from the off state to the on state in synchronization with the change of the light source control signal.
  • the light source control signal is changed based on the voltage level of the scanner position signal, and the on / off control of the light source is performed in synchronization with the change of the light source control signal. It is possible to synchronize the scanner, the image sensor, and the light source with high accuracy.
  • the image sensor starts capturing the light receiving result and ends capturing the light receiving result during the period when the light source is on.
  • the influence of unnecessary scattered light can be surely eliminated, and the image quality of the image of the eye to be inspected can be further improved.
  • the image sensor is a CMOS image sensor.
  • the optical scanner and the image sensor can be synchronized with high accuracy with a simple configuration and low cost.
  • the control method of the ophthalmic apparatus (1) is that the light source (10), the illumination optical system (20) that generates slit-shaped illumination light using the light from the light source, and the illumination light are deflected. Then, the optical scanner (30) that leads to the fundus (Ef) of the eye to be inspected (E) and the light receiving result of the light receiving surface area corresponding to the illumination area of the illumination light in the fundus moved by the optical scanner are captured by the rolling shutter method.
  • Ophthalmology including an imaging optical system (40) that guides the return light of the illumination light from the fundus to the image sensor (51), and a control unit (100, main control unit 101) that controls the deflection angle of the illumination light by the optical scanner.
  • the control method of the ophthalmic apparatus is as follows: the first output step in which the optical scanner outputs the scanner position signal (Spos) corresponding to the deflection angle of the illumination light, and the image sensor receives the return light in synchronization with the scanner position signal. Includes a light receiving result acquisition step to start uptake.
  • the optical scanner and the image sensor can be synchronized with high accuracy while simplifying the configuration of the ophthalmic apparatus, so that it is possible to prevent the capture of unnecessary scattered light reception results and the light reception results of the image sensor. It becomes possible to acquire a high-quality image of the eye to be inspected formed based on the above.
  • Some embodiments include a first voltage detection step that changes the scanner position signal according to the comparison result between the scanner position signal and the first threshold voltage (TH1), and the light receiving result acquisition step includes the image sensor in the scanner position. The capture of the received light result is started in synchronization with the change of the signal.
  • TH1 first threshold voltage
  • the trigger signal is changed based on the voltage level of the scanner position signal, and the image sensor starts capturing the light receiving result in synchronization with the change of the trigger signal. It is possible to synchronize the optical scanner and the image sensor with high accuracy while simplifying the above.
  • Some embodiments include a second output step in which the control unit outputs a scanner control signal (Scont) to the optical scanner, which deflects the illumination light at a deflection angle corresponding to the scanner control signal.
  • a scanner control signal Scont
  • the scanner position signal corresponding to the deflection angle can be generated by the scanner control signal, so that the image sensor can start capturing the light receiving result in synchronization with the scanner control signal by the control unit. It will be possible.
  • Some embodiments include a light source control step that switches the light source from the on state to the off state or from the off state to the on state in synchronization with the scanner position signal.
  • the optical scanner, the image sensor, and the light source can be synchronized with high accuracy while simplifying the configuration of the ophthalmic apparatus, so that it is possible to prevent the capture of unnecessary scattered light reception results and to capture the image sensor. It becomes possible to acquire a high-quality image of the eye to be inspected formed based on the light receiving result of.
  • the second light source control signal (LScont) for controlling the on / off of the light source is changed according to the comparison result between the scanner position signal and the second threshold voltage (TH2, third threshold voltage TH3).
  • a light source control step including a voltage detection step, switches the light source from an on state to an off state or from an off state to an on state in synchronization with a change in the light source control signal.
  • the light source control signal is changed based on the voltage level of the scanner position signal, and the on / off control of the light source is performed in synchronization with the change of the light source control signal, so that the configuration of the ophthalmic apparatus is simplified. It is possible to synchronize the optical scanner, the image sensor, and the light source with high accuracy.
  • the image sensor starts capturing the light receiving result and ends capturing the light receiving result during the period when the light source is on.
  • the influence of unnecessary scattered light can be surely eliminated, and the image quality of the image of the eye to be inspected can be further improved.
  • the image sensor is a CMOS image sensor.
  • the optical scanner and the image sensor can be synchronized with high accuracy at low cost while simplifying the configuration of the ophthalmic apparatus.
  • Some embodiments are programs that cause a computer to perform each step of the method of controlling an ophthalmic apparatus according to any of the above.
  • the optical scanner and the image sensor can be synchronized with high accuracy with a simple configuration, so that it is possible to prevent the capture of unnecessary scattered light reception results and based on the light reception results of the image sensor. It becomes possible to acquire a high-quality image of the formed eye to be inspected.
  • the ophthalmic apparatus has any functions that can be used in the field of ophthalmology, such as an axial length measuring function, an intraocular pressure measuring function, an optical interference tomography (OCT) function, and an ultrasonic examination function. May be.
  • the axial length measurement function is realized by an optical coherence tomography or the like.
  • the axial length measurement function projects light onto the eye to be inspected and detects the return light from the fundus while adjusting the position of the optical system in the Z direction (anterior-posterior direction) with respect to the eye to be inspected.
  • the axial length of the eye may be measured.
  • the intraocular pressure measurement function is realized by a tonometer or the like.
  • the OCT function is realized by an optical coherence tomography or the like.
  • the ultrasonic inspection function is realized by an ultrasonic diagnostic apparatus or the like. It is also possible to apply the present invention to a device (multifunction device) having two or more of such functions.
  • a program for causing a computer to execute the above-mentioned control method of the ophthalmic apparatus.
  • a program can be stored on any computer-readable non-transitory recording medium.
  • the recording medium may be an electronic medium using magnetism, light, magneto-optical, semiconductor, or the like.
  • the recording medium is a magnetic tape, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, a solid state drive, or the like. It is also possible to send and receive this program through a network such as the Internet or LAN.
  • Ophthalmic device 10 Light source 20 Illumination optical system 21 Iridescent aperture 22 Slits 23, 41, 44, 48 Relay lens 30 Optical scanner 35 Projection optical system 40 Imaging optical system 42 Black dot 43 Reflective mirror 45 Hole mirror 46 Objective lens 47 Focusing lens 49 Imaging lens 50 Imaging device 51 Image sensor 100 Control unit 101 Main control unit 102 Storage unit 210, 210a Voltage detection circuit 211a First voltage detection circuit 212a Second voltage detection circuit LScont Light source control signal Spot Scanner control signal Spot Scanner position signal TH1 1st threshold voltage TH2 2nd threshold voltage TH3 3rd threshold voltage E Eye to be inspected Ef Eye fundus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

眼科装置は、光源と、照明光学系と、光スキャナと、撮影光学系と、制御部とを含む。照明光学系は、光源からの光を用いてスリット状の照明光を生成する。光スキャナは、照明光を偏向して被検眼の眼底に導く。撮影光学系は、光スキャナにより移動される眼底における照明光の照明領域に対応した受光面の領域の受光結果をローリングシャッター方式で取り込むイメージセンサに眼底からの照明光の戻り光を導く。制御部は、光スキャナによる照明光の偏向角度を制御する。光スキャナは、照明光の偏向角度に対応したスキャナ位置信号を出力する。イメージセンサは、スキャナ位置信号に同期して戻り光の受光結果の取り込みを開始する。

Description

眼科装置、その制御方法、及びプログラム
 この発明は、眼科装置、その制御方法、及びプログラムに関する。
 近年、眼科装置を用いたスクリーニング検査が行われる。このような眼科装置は、自己検診への応用も期待されており、より一層の小型化、軽量化が望まれる。
 例えば、特許文献1及び特許文献2には、スリット光を用いて被検眼をパターン照明し、その戻り光をCMOS(Complementary Metal Oxide Semiconductor)イメージセンサで検出するように構成された眼科装置が開示されている。この眼科装置は、照明パターンと、CMOSイメージセンサによる受光タイミングとを調整することにより、簡素な構成で被検眼の画像を取得することが可能である。
米国特許第7831106号明細書 米国特許第8237835号明細書
 この種の眼科装置では、CMOSイメージセンサにおいて照明光の戻り光を適切なタイミングで受光して取り込むことで、不要な散乱光の影響をなくし、取得される被検眼の画像の画質を向上することができる。
 しかしながら、従来の手法では、照明側の制御と受光側の制御とを高精度に同期させることができない。それにより、照明側の制御と受光側の制御との時間的なずれを考慮して戻り光を受光して取り込む必要があり、不要な散乱光を受光してしまう。その結果、取得される被検眼の画像の画質が低下するという問題がある。
 本発明は、このような事情を鑑みてなされたものであり、その目的の1つは、簡素な構成で、被検眼の高画質の画像を取得するための新たな技術を提供することにある。
 いくつかの実施形態の第1態様は、光源と、前記光源からの光を用いてスリット状の照明光を生成する照明光学系と、前記照明光を偏向して被検眼の眼底に導く光スキャナと、前記光スキャナにより移動される前記眼底における前記照明光の照明領域に対応した受光面の領域の受光結果をローリングシャッター方式で取り込むイメージセンサに前記眼底からの前記照明光の戻り光を導く撮影光学系と、前記光スキャナによる前記照明光の偏向角度を制御する制御部と、を含み、前記光スキャナは、前記照明光の偏向角度に対応したスキャナ位置信号を出力し、前記イメージセンサは、前記スキャナ位置信号に同期して前記戻り光の受光結果の取り込みを開始する、眼科装置である。
 いくつかの実施形態の第2態様は、第1態様において、前記スキャナ位置信号と第1閾値電圧との比較結果に応じてトリガ信号を変化させる第1電圧検出回路を含み、前記イメージセンサは、前記トリガ信号の変化に同期して前記受光結果の取り込みを開始する。
 いくつかの実施形態の第3態様では、第1態様又は第2態様において、前記制御部は、前記光スキャナに対してスキャナ制御信号を出力し、前記スキャナ制御信号に対応した偏向角度で前記照明光を偏向させる。
 いくつかの実施形態の第4態様では、第1態様~第3態様のいずれかにおいて、前記光源は、前記スキャナ位置信号に同期してオン状態からオフ状態又はオフ状態からオン状態に切り替えられる。
 いくつかの実施形態の第5態様は、第4態様において、前記スキャナ位置信号と第2閾値電圧との比較結果に応じて前記光源のオンオフ制御を行うための光源制御信号を変化させる第2電圧検出回路を含み、前記光源は、前記光源制御信号の変化に同期してオン状態からオフ状態又はオフ状態からオン状態に切り替えられる。
 いくつかの実施形態の第6態様では、第5態様において、前記イメージセンサは、前記光源がオン状態の期間中に、前記受光結果の取り込みを開始し、かつ、前記受光結果の取り込みを終了する。
 いくつかの実施形態の第7態様では、第1態様~第6態様のいずれかにおいて、前記イメージセンサは、CMOSイメージセンサである。
 いくつかの実施形態の第8態様は、光源と、前記光源からの光を用いてスリット状の照明光を生成する照明光学系と、前記照明光を偏向して被検眼の眼底に導く光スキャナと、前記光スキャナにより移動される前記眼底における前記照明光の照明領域に対応した受光面の領域の受光結果をローリングシャッター方式で取り込むイメージセンサに前記眼底からの前記照明光の戻り光を導く撮影光学系と、前記光スキャナによる前記照明光の偏向角度を制御する制御部と、を含む眼科装置の制御方法である。眼科装置の制御方法は、前記光スキャナが前記照明光の偏向角度に対応したスキャナ位置信号を出力する第1出力ステップと、前記イメージセンサが、前記スキャナ位置信号に同期して前記戻り光の受光結果の取り込みを開始する受光結果取得ステップと、を含む。
 いくつかの実施形態の第9態様は、第8態様において、前記スキャナ位置信号と第1閾値電圧との比較結果に応じてトリガ信号を変化させる第1電圧検出ステップを含み、前記受光結果取得ステップは、前記イメージセンサが前記トリガ信号の変化に同期して前記受光結果の取り込みを開始する。
 いくつかの実施形態の第10態様は、第8態様又は第9態様において、前記制御部が前記光スキャナに対してスキャナ制御信号を出力する第2出力ステップを含み、前記光スキャナは、前記スキャナ制御信号に対応した偏向角度で前記照明光を偏向する。
 いくつかの実施形態の第11態様は、第8態様~第10態様のいずれかにおいて、前記スキャナ位置信号に同期して前記光源をオン状態からオフ状態又はオフ状態からオン状態に切り替える光源制御ステップを含む。
 いくつかの実施形態の第12態様は、第11態様において、前記スキャナ位置信号と第2閾値電圧との比較結果に応じて前記光源のオンオフ制御を行うための光源制御信号を変化させる第2電圧検出ステップを含み、前記光源制御ステップは、前記光源制御信号の変化に同期して前記光源をオン状態からオフ状態又はオフ状態からオン状態に切り替える。
 いくつかの実施形態の第13態様では、第12態様において、前記受光結果取得ステップは、前記イメージセンサは、前記光源がオン状態の期間中に、前記受光結果の取り込みを開始し、かつ、前記受光結果の取り込みを終了する。
 いくつかの実施形態の第14態様では、第8態様~第13態様のいずれかにおいて、前記イメージセンサは、CMOSイメージセンサである。
 いくつかの実施形態の第15態様は、コンピュータに、第8態様~第14態様のいずれかに記載の眼科装置の制御方法の各ステップを実行させるプログラムである。
 なお、上記した複数の態様に係る構成を任意に組み合わせることが可能である。
 この発明によれば、簡素な構成で、被検眼の高画質の画像を取得するための新たな技術を提供することができる。
第1実施形態に係る眼科装置の光学系の構成例を示す概略図である。 第1実施形態に係る眼科装置の制御系の構成例を示す概略図である。 第1実施形態に係る眼科装置の光学系の構成例を示す概略図である。 第1実施形態に係る眼科装置の動作説明図である。 第1実施形態に係る眼科装置の動作説明図である。 第1実施形態に係る眼科装置の動作説明図である。 第1実施形態に係る眼科装置の動作説明図である。 第1実施形態に係る眼科装置の動作例を示すシーケンス図である。 第1実施形態に係る眼科装置の動作説明図である。 第2実施形態に係る眼科装置の制御系の構成例を示す概略図である。 第2実施形態に係る眼科装置の動作説明図である。 第2実施形態に係る眼科装置の動作例を示すシーケンス図である。 第2実施形態に係る眼科装置の動作説明図である。
 この発明に係る眼科装置、その制御方法、及びプログラムの実施形態の一例について、図面を参照しながら詳細に説明する。なお、この明細書に記載された文献の記載内容を、以下の実施形態の内容として適宜援用することが可能である。
 実施形態に係る眼科装置は、スリット状の照明光の照射位置(照明領域、照射範囲)を移動させながら被検眼の所定部位を照明し、1次元的に又は2次元的に受光素子が配列されたイメージセンサを用いて所定部位からの戻り光を受光する。戻り光の受光結果は、照明光の照射位置の移動タイミングに同期して、照明光の照射位置に対応した戻り光の受光位置における受光素子から読み出される。いくつかの実施形態では、所定部位は、前眼部、又は後眼部である。前眼部には、角膜、虹彩、水晶体、毛様体、チン小帯などがある。後眼部には、硝子体、眼底又はその近傍(網膜、脈絡膜、強膜など)などがある。
 実施形態に係る眼科装置の制御方法は、実施形態に係る眼科装置においてプロセッサ(コンピュータ)により実行される処理を実現するための1以上のステップを含む。実施形態に係るプログラムは、プロセッサに実施形態に係る眼科装置の制御方法の各ステップを実行させる。
 本明細書において「プロセッサ」は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路を意味する。プロセッサは、例えば、記憶回路や記憶装置に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現する。
 以下、実施形態に係る眼科装置が、主に、被検眼の眼底の画像を取得する場合について説明する。第1実施形態に係る眼科装置では、光スキャナと受光素子(撮像素子)とを高精度に同期させることで、取得される画像の高画質化を図る。第2実施形態に係る眼科装置では、光スキャナと受光素子と光源とを高精度に同期させることで、取得される画像の高画質化を図る。
<第1実施形態>
[光学系の構成]
 図1~図3に、第1実施形態に係る眼科装置の構成例の概略図を示す。図1は、第1実施形態に係る眼科装置1の光学系の構成例を表す。図2は、第1実施形態に係る眼科装置1の制御系(処理系)の構成例のブロック図を表す。図3は、光軸Oの方向からみたときの図1の虹彩絞り21の構成例を模式的に表す。図1~図3において、同様の部分には同一符号を付し、適宜説明を省略する。
 眼科装置1は、光源10と、照明光学系20と、光スキャナ30と、投影光学系35と、撮影光学系40と、撮像装置50とを含む。いくつかの実施形態では、照明光学系20は、光源10、光スキャナ30、及び投影光学系35の少なくとも1つを含む。いくつかの実施形態では、撮影光学系40は、撮像装置50を含む。いくつかの実施形態では、投影光学系35又は撮影光学系40は、光スキャナ30を含む。
(光源10)
 光源10は、可視領域の光を発生する可視光源を含む。例えば、光源10は、420nm~700nmの波長範囲の中心波長を有する光を発生する。このような光源10は、例えば、LED(Light Emitting Diode)、LD(Laser Diode)、ハロゲンランプ、又はキセノンランプを含む。いくつかの実施形態では、光源10は、白色光源又はRGBの各色成分の光を出力可能な光源を含む。いくつかの実施形態では、光源10は、赤外領域の光又は可視領域の光を切り換えて出力することが可能な光源を含む。光源10は、眼底Ef及び虹彩のそれぞれと光学的に非共役な位置に配置される。
(照明光学系20)
 照明光学系20は、光源10からの光を用いてスリット状の照明光を生成する。照明光学系20は、生成された照明光を光スキャナ30に導く。
 照明光学系20は、虹彩絞り21と、スリット22と、リレーレンズ23とを含む。光源10からの光は、虹彩絞り21に形成された開口部を通過し、スリット22に形成された開口部を通過し、リレーレンズ23を透過する。リレーレンズ23は、1以上のレンズを含む。リレーレンズ23を透過した光は、光スキャナ30に導かれる。
(虹彩絞り21)
 虹彩絞り21(具体的には、後述の開口部)は、被検眼Eの虹彩(瞳孔)と光学的に略共役な位置に配置可能である。虹彩絞り21には、光軸Oから離れた位置に1以上の開口部が形成されている。例えば、図3に示すように、虹彩絞り21には、光軸Oと中心とする円周方向に沿って所定の厚さを有する開口部21A、21Bが形成されている。虹彩絞り21に形成された開口部は、被検眼Eの虹彩における照明光の入射位置(入射形状)を規定する。例えば、図3に示すように開口部21A、21Bを形成することにより、光軸Oに被検眼Eの瞳孔中心が配置されたとき、瞳孔中心から偏心した位置(具体的には、瞳孔中心を中心とする点対称の位置)から照明光を眼内に入射させることが可能である。
 また、光源10と虹彩絞り21に形成された開口部との間の相対位置を変更することにより、虹彩絞り21に形成された開口部を通過する光の光量分布を変更することが可能である。
(スリット22)
 スリット22(具体的には、後述の開口部)は、被検眼Eの眼底Efと光学的に略共役な位置に配置可能である。例えば、スリット22には、後述するイメージセンサ51からローリングシャッター方式で読み出されるライン方向(ロウ方向)に対応した方向に開口部が形成されている。スリット22に形成された開口部は、被検眼Eの眼底Efにおける照明光の照射パターンを規定する。
 スリット22は、移動機構(後述の移動機構22D)により照明光学系20の光軸方向に移動可能である。移動機構は、後述の制御部100からの制御を受け、スリット22を光軸方向に移動する。例えば、制御部100は、被検眼Eの状態に応じて移動機構を制御する。これにより、被検眼Eの状態(具体的には、屈折度数、眼底Efの形状)に応じてスリット22の位置を移動することができる。
 いくつかの実施形態では、スリット22は、被検眼Eの状態に応じて、光軸方向に移動されることなく開口部の位置及び形状の少なくとも1つを変更可能に構成される。このようなスリット22の機能は、例えば液晶シャッターにより実現される。
 虹彩絞り21に形成された開口部を通過した光源10からの光は、スリット22に形成された開口部を通過することによりスリット状の照明光として出力される。スリット状の照明光は、リレーレンズ23を透過して、光スキャナ30に導かれる。
(光スキャナ30)
 光スキャナ30は、被検眼Eの虹彩と光学的に略共役な位置に配置される。光スキャナ30は、リレーレンズ23を透過するスリット状の照明光(スリット22に形成された開口部を通過したスリット状の光)を偏向する。具体的には、光スキャナ30は、被検眼Eの虹彩又はその近傍をスキャン中心位置として所定の偏向角度範囲内で偏向角度を変更しつつ、眼底Efの所定の照明範囲を順次に照明するためのスリット状の照明光を偏向し、投影光学系35に導く。光スキャナ30は、照明光を1次元的又は2次元的に偏向することが可能である。
 1次元的に偏向する場合、光スキャナ30は、所定の偏向方向を基準に所定の偏向角度範囲で照明光を偏向するガルバノスキャナを含む。2次元的に偏向する場合、光スキャナ30は、第1ガルバノスキャナと、第2ガルバノスキャナとを含む。第1ガルバノスキャナは、照明光学系20の光軸に直交する水平方向に照明光の照射位置を移動するように照明光を偏向する。第2ガルバノスキャナは、照明光学系20の光軸に直交する垂直方向に照明光の照射位置を移動するように、第1ガルバノスキャナにより偏向された照明光を偏向する。光スキャナ30による照明光の照射位置を移動するスキャン態様としては、例えば、水平スキャン、垂直スキャン、十字スキャン、放射スキャン、円スキャン、同心円スキャン、螺旋スキャンなどがある。
 光スキャナ30は、例えば、非共振型の光スキャナである。この場合、後述の制御部100は、照明光を所望の照射範囲に照射するように光スキャナ30の偏向面の1以上の向きを設定することが可能である。光スキャナ30は、後述の制御部100からの制御を受けて偏向面の向きを変更することにより照明光の偏向角度(偏向面の偏向角度)を変更し、偏向角度に対応した電圧レベルのスキャナ位置信号Sposを出力することが可能である。
 いくつかの実施形態では、光スキャナ30は、例えば、共振型の光スキャナである。この場合、後述の制御部100は、照明光を所望の照射範囲に照射するように、光スキャナ30に対してスキャン中心の偏向面の向きとスキャン中心を基準としたスキャン範囲とを設定することが可能である。光スキャナ30は、後述の制御部100からの制御を受けて偏向面の向きを変更することにより照明光の偏向角度(偏向面の偏向角度)を変更し、偏向角度に対応した電圧レベルのスキャナ位置信号Sposを出力することが可能である。
(投影光学系35)
 投影光学系35は、光スキャナ30により偏向された照明光を被検眼Eの眼底Efに導く。実施形態では、投影光学系35は、後述の光路結合部材としての穴鏡45により撮影光学系40の光路と結合された光路を介して、光スキャナ30により偏向された照明光を眼底Efに導く。
 投影光学系35は、リレーレンズ41、黒点板42、反射ミラー43、リレーレンズ44を含む。リレーレンズ41、44のそれぞれは、1以上のレンズを含む。
(黒点板42)
 黒点板42は、対物レンズ46のレンズ表面又はその近傍と光学的に略共役な位置に配置される。これにより、対物レンズ46のレンズ表面からの反射光が光源10(照明光学系20)に導光されることを防ぐことができる。
 このような投影光学系35では、光スキャナ30により偏向された照明光は、リレーレンズ41を透過し、黒点板42を通過し、反射ミラー43により穴鏡45に向けて反射される。
(撮影光学系40)
 撮影光学系40は、投影光学系35を導かれてきた照明光を被検眼Eの眼底Efに導くと共に、眼底Efからの照明光の戻り光を撮像装置50に導く。
 撮影光学系40では、投影光学系35からの照明光の光路と、眼底Efからの照明光の戻り光の光路とが結合される。これらの光路を結合する光路結合部材として穴鏡45を用いることで、照明光とその戻り光とを瞳分割することが可能である。
 撮影光学系40は、穴鏡45、対物レンズ46、合焦レンズ47、リレーレンズ48、及び結像レンズ49を含む。リレーレンズ48のそれぞれは、1以上のレンズを含む。
(穴鏡45)
 穴鏡45には、撮影光学系40の光軸に配置される孔部が形成される。穴鏡45の孔部は、被検眼Eの虹彩と光学的に略共役な位置に配置される。穴鏡45は、孔部の周辺領域において、投影光学系35からの照明光を対物レンズ46に向けて反射する。
(合焦レンズ47)
 合焦レンズ47は、図示しない移動機構により撮影光学系40の光軸方向に移動可能である。移動機構は、後述の制御部100からの制御を受け、合焦レンズ47を光軸方向に移動する。これにより、被検眼Eの状態に応じて、穴鏡45の孔部を通過した照明光の戻り光を撮像装置50のイメージセンサ51の受光面に結像させることができる。
 このような撮影光学系40では、投影光学系35からの照明光は、穴鏡45に形成された孔部の周辺領域において対物レンズ46に向けて反射される。穴鏡45の周辺領域において反射された照明光は、対物レンズ46により屈折されて、被検眼Eの瞳孔を通じて眼内に入射し、被検眼Eの眼底Efを照明する。
 眼底Efからの照明光の戻り光は、対物レンズ46により屈折され、穴鏡45の孔部を通過し、合焦レンズ47を透過し、リレーレンズ48を透過し、結像レンズ49により撮像装置50のイメージセンサ51の受光面に結像される。
(撮像装置50)
 撮像装置50は、撮影光学系40を通じて被検眼Eの眼底Efから導かれてきた照明光の戻り光を受光するイメージセンサ51を含む。撮像装置50は、後述の制御部100からの制御を受け、戻り光の受光結果を出力することが可能である。
(イメージセンサ51)
 イメージセンサ51は、ピクセル化された受光器としての機能を実現する。イメージセンサ51の受光面(検出面、撮像面)は、眼底Efと光学的に略共役な位置に配置可能である。
 イメージセンサ51による受光結果は、ローリングシャッター方式により取り込まれて読み出される。いくつかの実施形態では、後述の制御部100は、イメージセンサ51を制御することにより受光結果の読み出し制御を行う。いくつかの実施形態では、イメージセンサ51は、受光位置を示す情報と共に、あらかじめ決められたライン分の受光結果を自動的に出力することが可能である。
 このようなイメージセンサ51は、CMOSイメージセンサを含む。この場合、イメージセンサ51は、ロウ方向に配列された複数のピクセル(受光素子)群がカラム方向に配列された複数のピクセルを含む。具体的には、イメージセンサ51は、2次元的に配列された複数のピクセルと、複数の垂直信号線と、水平信号線とを含む。各ピクセルは、フォトダイオード(受光素子)と、キャパシタとを含む。複数の垂直信号線は、ロウ方向(水平方向)に直交するカラム方向(垂直方向)のピクセル群毎に設けられる。各垂直信号線は、受光結果に対応した電荷が蓄積されたピクセル群と選択的に電気的に接続される。水平信号線は、複数の垂直信号線と選択的に電気的に接続される。各ピクセルは、戻り光の受光結果に対応した電荷を蓄積し、蓄積された電荷は、例えばロウ方向のピクセル群毎に順次読み出される。例えば、ロウ方向のライン毎に、各ピクセルに蓄積された電荷に対応した電圧が垂直信号線に供給される。複数の垂直信号線は、選択的に水平信号線と電気的に接続される。垂直方向に順次に上記のロウ方向のライン毎の読み出し動作を行うことで、2次元的に配列された複数のピクセルの受光結果を読み出すことが可能である。
 このようなイメージセンサ51に対してローリングシャッター方式で戻り光の受光結果を取り込む(読み出す)ことにより、ロウ方向に延びる所望の仮想的な開口形状に対応した受光像が取得される。このような制御については、例えば、米国特許第8237835号明細書等に開示されている。
 図4に、第1実施形態に係る眼科装置1の動作説明図を示す。図4は、眼底Efに照射されるスリット状の照明光の照射範囲IPと、イメージセンサ51の受光面SRにおける仮想的な開口範囲OPとを模式的に表す。
 例えば、後述の制御部100は、照明光学系20により形成されたスリット状の照明光を光スキャナ30を用いて偏向する。それにより、眼底Efにおいて、スリット状の照明光の照射範囲IPがスリット方向(例えば、ロウ方向、水平方向)と直交する方向(例えば、垂直方向)に順次に移動される。
 イメージセンサ51の受光面SRでは、例えば、後述の制御部100によって取り込み対象のピクセルをライン単位で変更することによって、仮想的な開口範囲OPが設定される。開口範囲OPは、受光面SRにおける照明光の戻り光の受光範囲IP´又は受光範囲IP´より広い範囲であることが望ましい。例えば、後述の制御部100は、照明光の照射範囲IPの移動制御に同期して、開口範囲OPの移動制御を実行する。それにより、不要な散乱光の影響を受けることなく、簡素な構成で、コントラストが強い眼底Efの高画質の画像を取得することが可能である。
 図5及び図6に、イメージセンサ51に対するローリングシャッター方式の制御タイミングの一例を模式的に示す。図5は、イメージセンサ51に対する読み出し制御のタイミングの一例を表す。図6は、照明光の照射範囲IP(受光範囲IP´)の移動制御タイミングを図5の読み出し制御タイミングに重畳させて表したものである。図5及び図6において、横軸はイメージセンサ51のロウ数、縦軸は時間を表す。
 なお、図5及び図6では、説明の便宜上、イメージセンサ51のロウ数が1920であるものとして説明するが、第1実施形態に係る構成はロウ数に限定されるものではない。また、図6において、説明の便宜上、スリット状の照明光のスリット幅(ロウ方向の幅)が40ロウ分であるものとする。
 ロウ方向の読み出し制御は、リセット制御と、露光制御と、電荷転送制御と、出力制御とを含む。リセット制御は、ロウ方向のピクセルに蓄積されている電荷の蓄積量を初期化する制御である。露光制御は、フォトダイオードに光を当てて、受光量に対応した電荷をキャパシタに蓄積させる制御である。電荷転送制御は、ピクセルに蓄積された電荷量を垂直信号線に転送する制御である。出力制御は、複数の垂直信号線に蓄積された電荷量を水平信号線を介して出力する制御である。すなわち、図5に示すように、ロウ方向のピクセルに蓄積された電荷量の読み出し時間Tは、リセット制御に要する時間Tr、露光制御に要する時間(露光時間)Te、電荷転送制御に要する時間Tc、出力制御に要する時間Toutの和である。
 図5では、ロウ単位で読み出し(取り込み)開始タイミング(時間Tcの開始タイミング)をシフトさせることで、イメージセンサ51における所望の範囲のピクセルに蓄積された受光結果(電荷量)が取得される。例えば、図5に示すピクセル範囲が1フレーム分の画像である場合、フレームレートFRが一意に決まる。
 この実施形態では、複数のロウ数分のスリット幅を有する照明光の眼底Efにおける照射位置を、眼底Efにおいてカラム方向に対応する方向に順次にシフトさせる。
 例えば、図6に示すように、所定のシフト時間Δt毎に、照明光の眼底Efにおける照射位置をカラム方向に対応する方向にロウ単位でシフトさせる。シフト時間Δtは、イメージセンサ51におけるピクセルの露光時間Teを照明光のスリット幅(例えば、スリット幅のロウ数=40)で分割することにより得られる(Δt=Te/40)。この照射位置の移動タイミングに同期させて、シフト時間Δt単位でロウ毎にピクセルの各ロウの読み出し開始タイミングを遅延させて開始させる。これにより、簡素な制御で、且つ、短時間に、コントラストが強い眼底Efの高画質の画像を取得することが可能になる。
 いくつかの実施形態では、イメージセンサ51は、1以上のラインセンサにより構成される。
[制御系の構成]
 図2に示すように、眼科装置1の制御系は、制御部100を中心に構成されている。なお、制御系の構成の少なくとも一部が眼科装置1に含まれていてもよい。
(制御部100)
 制御部100は、眼科装置1の各部を制御する。制御部100は、主制御部101と、記憶部102とを含む。主制御部101は、プロセッサを含み、記憶部102に記憶されたプログラムに従って処理を実行することで、眼科装置1の各部の制御処理を実行する。
(主制御部101)
 主制御部101は、光源10の制御、移動機構10Dの制御、照明光学系20の制御、光スキャナ30の制御、撮影光学系40の制御、撮像装置50の制御、データ処理部200の制御、及び電圧検出回路210の制御を行う。
 光源10の制御には、光源の点灯や消灯(又は光の波長領域)の切り替え、光源の光量の変更制御が含まれる。
 移動機構10Dは、公知の機構により、光源10の位置及び向きの少なくとも1つを変更する。主制御部101は、虹彩絞り21及びスリット22に対する光源10の相対位置及び相対向きの少なくとも1つを変更することが可能である。
 照明光学系20の制御には、移動機構22Dの制御が含まれる。移動機構22Dは、スリット22を照明光学系20の光軸方向に移動する。主制御部101は、被検眼Eの状態に応じて移動機構22Dを制御することにより、被検眼Eの状態に対応した位置にスリット22を配置する。被検眼Eの状態として、眼底Efの形状、屈折度数、眼軸長などがある。屈折度数は、例えば、特開昭61-293430号公報又は特開2010-259495号公報に開示されているような公知の眼屈折力測定装置から取得可能である。眼軸長は、公知の眼軸長測定装置、又は光干渉断層計の測定値から取得可能である。
 例えば、屈折度数に対して照明光学系20の光軸におけるスリット22の位置があらかじめ関連付けられた第1制御情報が記憶部102に記憶されている。主制御部101は、第1制御情報を参照して屈折度数に対応したスリット22の位置を特定し、特定された位置にスリット22が配置されるように移動機構22Dを制御する。
 ここで、スリット22の移動に伴い、スリット22に形成された開口部を通過する光の光量分布が変化する。このとき、上記のように、主制御部101は、移動機構10Dを制御することにより、光源10の位置及び向きを変更することが可能である。
 光スキャナ30の制御には、照明光を偏向する偏向面の角度の制御が含まれる。偏向面の角度範囲を制御することで、スキャン範囲(スキャン開始位置及びスキャン終了位置)を制御することが可能である。偏向面の角度の変更速度を制御することで、スキャン速度を制御することが可能である。
 撮影光学系40の制御には、移動機構47Dの制御が含まれる。移動機構47Dは、合焦レンズ47を撮影光学系40の光軸方向に移動する。主制御部101は、イメージセンサ51を用いて取得された画像の解析結果に基づいて移動機構47Dを制御することが可能である。また、主制御部101は、後述の操作部110を用いたユーザの操作内容に基づいて移動機構47Dを制御することが可能である。
 撮像装置50の制御には、イメージセンサ51の制御が含まれる。イメージセンサ51の制御には、ローリングシャッター方式で受光結果を読み出すための制御(例えば、照明パターンのサイズに対応した受光サイズの設定等)が含まれる。また、イメージセンサ51の制御には、リセット制御、露光制御、電荷転送制御、出力制御などが含まれる。リセット制御に要する時間Tr、露光制御に要する時間(露光時間)Te、電荷転送制御に要する時間Tc、出力制御に要する時間Tout等を変更することが可能である。
 データ処理部200の制御には、イメージセンサ51から取得された受光結果に対する各種の画像処理や解析処理が含まれる。画像処理には、受光結果に対するノイズ除去処理、受光結果に基づく受光像に描出された所定の部位を識別しやすくするための輝度補正処理がある。解析処理には、合焦状態の特定処理などがある。
 データ処理部200は、ローリングシャッター方式によりイメージセンサ51から読み出された受光結果に基づいて、任意の開口範囲に対応した受光像を形成することが可能である。データ処理部200は、画像形成部として、開口範囲に対応した受光像を順次に形成し、形成された複数の受光像から被検眼Eの画像を形成することが可能である。
 データ処理部200は、プロセッサを含み、記憶部等に記憶されたプログラムに従って処理を行うことで、上記の機能を実現する。
 電圧検出回路210は、後述のように、光スキャナ30からのスキャナ位置信号に基づいて受光結果の取り込み開始を指示するトリガ信号をイメージセンサ51に出力する。光スキャナ30による照明光の偏向角度をスキャナ位置信号から特定することが可能である。電圧検出回路210の機能は、公知のコンパレータ回路によって実現することができる。このような電圧検出回路210の制御には、スキャナ位置信号に基づいて光スキャナ30による照明光の偏向角度が所望の偏向角度であるか否かを判定するための閾値電圧の設定等がある。
 いくつかの実施形態では、光源10は、2以上の光源を含む。この場合、2以上の光源のそれぞれは、虹彩絞り21に形成された2以上の開口部に対応して設けられる。主制御部201は、2以上の光源のそれぞれに対応して設けられた移動機構を制御することにより、各光源の位置及び向き(光量分布が最大になる方向の向き)の少なくとも1つを変更することが可能である。
(記憶部102)
 記憶部102は、各種のコンピュータプログラムやデータを記憶する。コンピュータプログラムには、眼科装置1を制御するための演算プログラムや制御プログラムが含まれる。
(操作部110)
 操作部110は、操作デバイス又は入力デバイスを含む。操作部110には、眼科装置1に設けられたボタンやスイッチ(たとえば操作ハンドル、操作ノブ等)や、操作デバイス(マウス、キーボード等)が含まれる。また、操作部110は、トラックボール、操作パネル、スイッチ、ボタン、ダイアルなど、任意の操作デバイスや入力デバイスを含んでいてよい。
(表示部120)
 表示部120は、データ処理部200により生成された被検眼Eの画像を表示させる。表示部120は、LCD(Liquid Crystal Display)等のフラットパネルディスプレイなどの表示デバイスを含んで構成される。また、表示部120は、眼科装置1の筺体に設けられたタッチパネルなどの各種表示デバイスを含んでいてもよい。
 なお、操作部110と表示部120は、それぞれ個別のデバイスとして構成される必要はない。例えばタッチパネルのように、表示機能と操作機能とが一体化されたデバイスを用いることも可能である。その場合、操作部110は、このタッチパネルとコンピュータプログラムとを含んで構成される。操作部110に対する操作内容は、電気信号として制御部100に入力される。また、表示部120に表示されたグラフィカルユーザインターフェイス(GUI)と、操作部110とを用いて、操作や情報入力を行うようにしてもよい。いくつかの実施形態では、表示部120及び操作部110の機能は、タッチスクリーンにより実現される。
(その他の構成)
 いくつかの実施形態では、眼科装置1は、更に、固視投影系を含む。例えば、固視投影系の光路は、図1に示す光学系の構成において、撮影光学系40の光路に結合される。固視投影系は、内部固視標又は外部固視標を被検眼Eに提示することが可能である。内部固視標を被検眼Eに提示する場合、固視投影系は、制御部100からの制御を受けて内部固視標を表示するLCDを含み、LCDから出力された固視光束を被検眼Eの眼底に投影する。LCDは、その画面上における固視標の表示位置を変更可能に構成されている。LCDにおける固視標の表示位置を変更することにより、被検眼Eの眼底における固視標の投影位置を変更することが可能である。LCDにおける固視標の表示位置は、操作部110を用いることによりユーザが指定可能である。
 いくつかの実施形態では、眼科装置1は、アライメント系を含む。いくつかの実施形態では、アライメント系は、XYアライメント系と、Zアライメント系とを含む。XYアライメント系は、装置光学系(対物レンズ46)の光軸に交差する方向に装置光学系と被検眼Eとの位置合わせを行うために用いられる。Zアライメント系は、眼科装置1(対物レンズ46)の光軸の方向に装置光学系と被検眼Eとの位置合わせを行うために用いられる。
 例えば、XYアライメント系は、被検眼Eに輝点(赤外領域又は近赤外領域の輝点)を投影する。データ処理部200は、輝点が投影された被検眼Eの前眼部像を取得し、取得された前眼部像に描出された輝点像とアライメント基準位置との変位を求める。制御部100は、求められた変位がキャンセルされるように図示しない移動機構により装置光学系と被検眼Eとを光軸の方向と交差する方向に相対的に移動させる。
 例えば、Zアライメント系は、装置光学系の光軸から外れた位置から赤外領域又は近赤外領域のアライメント光を投影し、被検眼Eの前眼部で反射されたアライメント光を受光する。データ処理部200は、装置光学系に対する被検眼Eの距離に応じて変化するアライメント光の受光位置から、装置光学系に対する被検眼Eの距離を特定する。制御部100は、特定された距離が所望の作動距離になるように図示しない移動機構により装置光学系と被検眼Eとを光軸の方向に相対的に移動させる。
 いくつかの実施形態では、アライメント系の機能は、装置光学系の光軸から外れた位置に配置された2以上の前眼部カメラにより実現される。例えば、特開2013-248376号公報に開示されているように、データ処理部200は、2以上の前眼部カメラで実質的に同時に取得された被検眼Eの前眼部像を解析して、公知の三角法を用いて被検眼Eの3次元位置を特定する。制御部100は、装置光学系の光軸が被検眼Eの軸に略一致し、かつ、被検眼Eに対する装置光学系の距離が所定の作動距離になるように図示しない移動機構により装置光学系と被検眼Eとを3次元的に相対的に移動させる。
 以上のように、眼科装置1では、スリット22(開口部)と、撮影部位(眼底Ef)と、イメージセンサ51(受光面)とが光学的に略共役な位置に配置される。眼科装置1は、イメージセンサ51における受光開口と照明光による照射位置とを連動して移動させることにより、不要な散乱光の影響を抑えつつ、明瞭な撮影部位の画像を取得することが可能になる。
 第1実施形態に係る眼科装置1では、イメージセンサ51において照明光の戻り光を適切なタイミングで受光して取り込むことで、不要な散乱光の影響をなくし、受光結果に基づいて取得される被検眼Eの画像の画質を向上することができる。そこで、第1実施形態では、光スキャナ30とイメージセンサ51とを高精度に同期させることで、取得される画像の高画質化を図る。
 図7に、第1実施形態に係る眼科装置1の同期制御を説明するための概略図を示す。図7において、図2と同様の部分には同一符号を付し、適宜説明を省略する。
 上記のように、制御部100は、光スキャナ30による照明光の偏向角度(基準角度に対する偏向面の角度)を制御する。制御部100は、光スキャナ30に対してスキャナ制御信号Scontを出力することで、照明光の偏向角度を制御する。例えば、所望の電圧レベルのスキャナ制御信号Scontを光スキャナ30に出力することで、光スキャナ30の偏向面の角度を所望の偏向角度に設定することができる。
 光スキャナ30は、偏向面の角度に対応したスキャナ位置信号Sposを出力することが可能である。例えば、スキャナ位置信号Sposは、偏向面の角度に対応した電圧レベルの信号である。スキャナ位置信号Sposの電圧レベルを特定することにより、光スキャナ30の偏向面の角度(光スキャナ30による照明光の偏向角度)を特定することが可能である。
 電圧検出回路210は、光スキャナ30からのスキャナ位置信号Sposの電圧レベルに基づいて、光スキャナ30による照明光の偏向角度が所望の偏向角度であるか否かを検出し、検出結果に対応したトリガ信号Trをイメージセンサ51に出力する。具体的には、電圧検出回路210は、スキャナ位置信号Sposと第1閾値電圧TH1とを比較し、スキャナ位置信号Sposと第1閾値電圧TH1との比較結果に対応した電圧レベルのトリガ信号Trをイメージセンサ51に出力する。
 イメージセンサ51は、電圧検出回路210からのトリガ信号Trの変化タイミング(例えば、立ち上がりエッジ)に同期して、受光面における照明光の戻り光の受光結果の取り込みを開始し、取り込まれた受光結果を制御部100に転送する。
[動作]
 次に、眼科装置1の動作について説明する。
 図8に、第1実施形態に係る眼科装置1の動作例を示す。図8は、眼科装置1の動作例のシーケンスを示すシーケンス図である。
 まず、制御部100は、照明光を所望の偏向角度で偏向するように光スキャナ30に対してスキャナ制御信号Scontを出力する(SQ1)。
 光スキャナ30では、制御部100からのスキャナ制御信号Scontに対応した偏向角度で偏向面の向きが変更される(SQ2)。これにより、眼底Efにおける所定の領域を照明光で照明することが可能になる。光スキャナ30は、偏向面の偏向角度に対応したスキャナ位置信号Sposを出力する(SQ3)。
 電圧検出回路210は、光スキャナ30からのスキャナ位置信号Sposとあらかじめ決められた第1閾値電圧TH1とを比較する。それにより、電圧検出回路210は、光スキャナ30による照明光の偏向方向から、イメージセンサ51による照明光の戻り光の受光結果を取り込むべきか否かを検出することができる(SQ4)。
 電圧検出回路210は、光スキャナ30からのスキャナ位置信号Sposとあらかじめ決められた第1閾値電圧TH1とを比較し、比較結果に応じた電圧レベルのトリガ信号Trを出力する(SQ5)。
 例えば、スキャナ位置信号Sposが第1閾値電圧TH1以上のとき、第1電源電圧レベル(Lレベル)のトリガ信号Trが出力され、スキャナ位置信号Sposが第1閾値電圧TH1未満のとき、第2電源電圧レベル(Hレベル)のトリガ信号Trが出力される。この場合、スキャナ位置信号Sposが第1閾値電圧TH1以上のとき、電圧検出回路210は、イメージセンサ51に対してLレベルのトリガ信号Trを出力する。
 イメージセンサ51は、電圧検出回路210からのトリガ信号Trの電圧レベルが変化しないため、照明光の戻り光の受光結果の取り込みを開始しない。
 続いて、制御部100は、照明光を次の所望の偏向角度で偏向するように光スキャナ30に対してスキャナ制御信号Scontを出力する(SQ6)。いくつかの実施形態では、制御部100は、所定の時間間隔を置いて、光スキャナ30に対してスキャナ制御信号Scontを出力する。いくつかの実施形態では、イメージセンサ51からの受光結果の転送が終了したことの通知を受けて、制御部100は、光スキャナ30に対して次の所望の偏向角度で偏向するためのスキャナ制御信号Scontを出力する。
 以下、同様に、光スキャナ30では、制御部100からのスキャナ制御信号Scontに対応した偏向角度で偏向面の向きが変更される(SQ7)。光スキャナ30は、偏向面の偏向角度に対応したスキャナ位置信号Sposを出力する(SQ8)。
 電圧検出回路210は、SQ4と同様に、光スキャナ30からのスキャナ位置信号Sposと第1閾値電圧TH1とを比較して、イメージセンサ51による照明光の戻り光の受光結果を取り込むべきか否かを検出する(SQ9)。
 電圧検出回路210は、光スキャナ30からのスキャナ位置信号Sposと第1閾値電圧TH1とを比較し、比較結果に応じた電圧レベルのトリガ信号Trを出力する(SQ10)。
 この場合、スキャナ位置信号Sposが第1閾値電圧TH1以上の電圧レベルから第1閾値電圧TH1未満の電圧レベルに変化したとき、電圧検出回路210は、イメージセンサ51に対してLレベルからHレベルに変化するトリガ信号Trを出力する。
 イメージセンサ51は、電圧検出回路210からのトリガ信号TrがLレベルからHレベルに変化する立ち上がりエッジに同期して、所定のライン(図6参照)における照明光の戻り光の受光結果の取り込みを開始する(SQ11)。
 イメージセンサ51は、所定のタイミングで、受光結果の取り込みを制御部100に転送する(SQ12)。所定のタイミングは、あらかじめ決められたタイミングであってもよいし、所定の受光結果の取り込みの終了タイミングによって決められたタイミングであってもよい。いくつかの実施形態では、制御部100がイメージセンサ51に対して読み出し制御を行うことで、イメージセンサ51が受光結果を制御部100に転送する。
 眼底Efにおける照明光の所定の照明領域を分割して順次に照明するために、照明領域毎に上記のような一連の制御が繰り返される。
 図9に、第1実施形態に係る眼科装置1の同期制御のタイミングの一例を示す。図9は、スキャナ制御信号Scontと、スキャナ位置信号Sposと、トリガ信号Trと、イメージセンサ51による受光結果の取り込み開始タイミングとの関係を模式的に表す。
 図9では、縦軸がスキャナ制御信号Scontの電圧レベルを表し、横軸が時間tを表す第1タイミング図において、スキャナ制御信号Scontのタイミングの一例が図示されている。また、縦軸がスキャナ位置信号Sposの電圧レベルを表し、横軸が時間tを表す第2タイミング図において、スキャナ位置信号Sposのタイミングの一例が図示されている。更に、縦軸がトリガ信号Trの電圧レベルを表し、横軸が時間tを表す第3タイミング図において、トリガ信号Trのタイミングの一例が図示されている。
 制御部100は、眼底Efにおける所定の撮影領域を図6に示すように順次に照明するように、スキャナ制御信号Scontを順次に出力することにより照明領域を順次に変更する。例えば、制御部100は、光スキャナ30に対して、図9に示すようにスキャナ制御信号Scontを順次に出力する。
 光スキャナ30は、制御部100からのスキャナ制御信号Scontに対応した偏向角度になるように偏向面を変更する。このとき、光スキャナ30は、スキャナ制御信号Scontに対して所定の遅延時間Δdtが経過した後に、偏向面を変更させる。光スキャナ30は、偏向面の偏向角度に対応したスキャナ位置信号Sposを出力する。
 電圧検出回路210は、上記のように、スキャナ位置信号Sposの電圧レベルと第1閾値電圧TH1とを比較し、イメージセンサ51に対して、比較結果に応じた電圧レベルのトリガ信号Trを出力する。スキャナ位置信号Sposの電圧レベルが第1閾値電圧TH1以上の電圧レベルから第1閾値電圧TH1未満の電圧レベルに変化したとき、電圧検出回路210は、トリガ信号Trの電圧レベルを変化させ、Hレベルのトリガ信号Trを出力する。
 イメージセンサ51は、電圧検出回路210からのトリガ信号Trの立ち上がりエッジに同期して、照明光の戻り光の受光結果の取り込みを開始する。例えば、取り込み期間では、図6に示すように、期間Trにおいてリセット制御が行われ、期間Teにおいて露光制御が行われ、期間Tcにおいて電荷転送制御が行われ、期間Toutにおいて出力制御が行われる。
 以上説明したように、制御部100からのスキャナ制御信号Scontによって制御可能な光スキャナ30のスキャナ位置信号Sposに同期してイメージセンサ51の照明光の戻り光の受光結果の取り込みタイミングを制御することができる。それにより、照明光の照明領域に対して高精度に同期して照明光の戻り光を受光して取り込むことができるので、不要な散乱光の影響をなくし、取得される被検眼Eの画像の画質を向上することができる。
 電圧検出回路210は、実施形態に係る「第1電圧検出回路」の一例である。
<第2実施形態>
 実施形態に係る眼科装置の構成は、第1実施形態に係る眼科装置1の構成に限定されるものではない。第2実施形態に係る眼科装置では、光スキャナ30とイメージセンサ51と光源10とを高精度に同期させることで、取得される被検眼Eの画像の高画質化を図る。
 以下、第2実施形態に係る眼科装置について、第1実施形態に係る眼科装置1との相違点を中心に説明する。
[光学系の構成]
 第2実施形態に係る眼科装置の光学系の構成は、第1実施形態に係る眼科装置1の光学系の構成と同様である。
[制御系の構成]
 図10に、第2実施形態に係る眼科装置の制御系の構成例のブロック図を示す。図10において、図2と同様の部分には同一符号を付し、適宜説明を省略する。
 第2実施形態に係る眼科装置の制御系の構成が第1実施形態に係る眼科装置1の制御系の構成と異なる点は、電圧検出回路210に代えて電圧検出回路210aが設けられている点である。
 電圧検出回路210aは、電圧検出回路210の機能に加えて、光源10を制御するための電圧検出機能と、光源10に対する光源制御信号の出力機能とを備えている。電圧検出回路210aは、スキャナ位置信号Sposの変化に同期して、光源10のオン制御及びオフ制御を行うための光源制御信号LScontを出力する。
 図11に、第2実施形態に係る眼科装置の同期制御を説明するための概略図を示す。図11において、図7又は図10と同様の部分には同一符号を付し、適宜説明を省略する。
 電圧検出回路210aは、第1電圧検出回路211aと、第2電圧検出回路212aとを含む。第1電圧検出回路211aは、第1実施形態における電圧検出回路210と同様の機能を有する。すなわち、第1電圧検出回路211aは、光スキャナ30からのスキャナ位置信号Sposの電圧レベルに基づいて、光スキャナ30による照明光の偏向角度が所望の偏向角度であるか否かを検出し、検出結果に対応したトリガ信号Trをイメージセンサ51に出力する。具体的には、第1電圧検出回路211aは、スキャナ位置信号Sposと第1閾値電圧TH1とを比較し、スキャナ位置信号Sposと第1閾値電圧TH1との比較結果に対応した電圧レベルのトリガ信号Trをイメージセンサ51に出力する。
 第2電圧検出回路212aは、スキャナ位置信号Sposの電圧レベルに基づいて、光スキャナ30による照明光の偏向角度が所望の偏向角度であるか否かを検出し、検出結果に対応した光源制御信号LScontを光源10に出力する。具体的には、第2電圧検出回路212aは、スキャナ位置信号Sposと第2閾値電圧TH2とを比較し、スキャナ位置信号Sposと第2閾値電圧TH2との比較結果に対応した電圧レベルの光源制御信号LScontを光源10に出力する。例えば、第2電圧検出回路212aは、スキャナ位置信号Sposが第2閾値電圧TH2以上のとき、Lレベルの光源制御信号LScontを出力する。第2閾値電圧TH2は、例えば、光源10をオフ状態からオン状態に切り替えるための閾値電圧である。
 また、第2電圧検出回路212aは、スキャナ位置信号Sposと第3閾値電圧TH3とを比較し、スキャナ位置信号Sposと第3閾値電圧TH3との比較結果に対応した電圧レベルの光源制御信号LScontを光源10に出力する。例えば、第2電圧検出回路212aは、スキャナ位置信号Sposが第3閾値電圧TH3未満のとき、Lレベルの光源制御信号LScontを出力する。第3閾値電圧TH3は、例えば、光源10をオン状態からオフ状態に切り替えるための閾値電圧である。
 なお、第2電圧検出回路212aは、スキャナ位置信号Sposが第2閾値電圧TH2未満であり、かつ、第3閾値電圧TH3以上のとき、Hレベルの光源制御信号LScontを出力する。
 このような第2電圧検出回路212aの機能は、例えば、公知の1以上のコンパレータ回路とRS-フリップフロップ回路とによって実現することができる。光源10がオン状態の期間でイメージセンサ51による受光結果の取り込みを行うために、第1閾値電圧TH1は、第2閾値電圧TH2と第3閾値電圧TH3との間の電圧であってよい。いくつかの実施形態では、第1閾値電圧TH1の電圧レベルは、第2閾値電圧TH2の電圧レベルと略等しい。
 イメージセンサ51は、第1実施形態と同様に、第1電圧検出回路211aからのトリガ信号Trの変化タイミング(例えば、立ち上がりエッジ)に同期して、受光面における照明光の戻り光の受光結果の取り込みを開始し、取り込まれた受光結果を制御部100に転送する。
 光源10は、第2電圧検出回路212aからの光源制御信号LScontの第1変化タイミング(例えば、立ち上がりエッジ)に同期して、オフ状態(非点灯状態)からオン状態(点灯状態)に切り替えられる。また、光源10は、第2電圧検出回路212aからの光源制御信号LScontの第2変化タイミング(例えば、立ち下がりエッジ)に同期して、オン状態からオフ状態に切り替えられる。
[動作]
 次に、第2実施形態に係る眼科装置の動作について説明する。
 図12に、第2実施形態に係る眼科装置の動作例を示す。図12は、第2実施形態に係る眼科装置の動作例のシーケンスを示すシーケンス図である。なお、光源10がオフ状態のときに下記の制御が行われるものとする。
 まず、制御部100は、SQ1と同様に、照明光を所望の偏向角度で偏向するように光スキャナ30に対してスキャナ制御信号Scontを出力する(SQ21)。
 光スキャナ30では、SQ2と同様に、制御部100からのスキャナ制御信号Scontに対応した偏向角度で偏向面の向きが変更される(SQ22)。光スキャナ30は、SQ3と同様に、偏向面の偏向角度に対応したスキャナ位置信号Sposを出力する(SQ23)。
 スキャナ位置信号Sposの電圧レベルが第2閾値電圧TH2以上の電圧レベルから第2閾値電圧TH2未満の電圧レベル(但し、第1閾値電圧TH1以上の電圧レベル)に変化したときであり、第1電圧検出回路211aはトリガ信号Trの電圧レベルを変化させず、第2電圧検出回路212aは光源制御信号LScontの電圧レベルを変化させる(SQ24)。第2電圧検出回路212aは、Hレベルに変化した光源制御信号LScontを光源10に対して出力する(SQ25)。
 光源10は、第2電圧検出回路212aからの光源制御信号LScontの変化タイミング(立ち上がりエッジ)に同期して、オフ状態からオン状態に切り替えられる(SQ26)。
 例えば、SQ21から所定の時間間隔を置いて、制御部100は、照明光を次の所望の偏向角度で偏向するように光スキャナ30に対してスキャナ制御信号Scontを出力する(SQ27)。光スキャナ30では、制御部100からのスキャナ制御信号Scontに対応した偏向角度で偏向面の向きが変更される(SQ28)。光スキャナ30は、偏向面の偏向角度に対応したスキャナ位置信号Sposを出力する(SQ29)。
 スキャナ位置信号Sposの電圧レベルが第1閾値電圧TH1以上の電圧レベルから第1閾値電圧TH1未満の電圧レベル(但し、第3閾値電圧TH3より高い電圧レベル)に変化したとき、第1電圧検出回路211aはトリガ信号Trの電圧レベルを変化させ、第2電圧検出回路212aは光源制御信号LScontの電圧レベルを変化させない(SQ30)。第1電圧検出回路211aは、Hレベルに変化したトリガ信号Trをイメージセンサ51に対して出力する(SQ31)。
 イメージセンサ51は、電圧検出回路210からのトリガ信号Trの立ち上がりエッジに同期して、所定のラインにおける照明光の戻り光の受光結果の取り込みを開始する(SQ32)。
 イメージセンサ51は、所定のタイミングで、受光結果の取り込みを制御部100に転送する(SQ33)。
 以下、同様に、眼底Efにおける照明光の所定の照明領域を分割して順次に照明するために、照明領域単毎に上記の一連の制御が繰り返される。
 その後、例えば、制御部100は、照明光を次の所望の偏向角度で偏向するように光スキャナ30に対してスキャナ制御信号Scontを出力する(SQ34)。光スキャナ30では、制御部100からのスキャナ制御信号Scontに対応した偏向角度で偏向面の向きが変更される(SQ35)。光スキャナ30は、偏向面の偏向角度に対応したスキャナ位置信号Sposを出力する(SQ36)。
 スキャナ位置信号Sposの電圧レベルが第3閾値電圧TH3以上の電圧レベルから第3閾値電圧TH3未満の電圧レベルに変化したとき、第1電圧検出回路211aはトリガ信号Trの電圧レベルを変化させず、第2電圧検出回路212aは光源制御信号LScontの電圧レベルを変化させる(SQ37)。第2電圧検出回路212aは、Lレベルに変化した光源制御信号LScontを光源10に対して出力する(SQ38)。
 光源10は、第2電圧検出回路212aからの光源制御信号LScontの変化タイミング(立ち下がりエッジ)に同期して、オン状態からオフ状態に切り替えられる(SQ39)。
 図13に、第2実施形態に係る眼科装置2の同期制御のタイミングの一例を示す。図13は、スキャナ制御信号Scontと、スキャナ位置信号Sposと、トリガ信号Trと、光源制御信号LScontと、イメージセンサ51による受光結果の取り込み開始タイミングとの関係を模式的に表す。
 図13では、第1タイミング図において、スキャナ制御信号Scontのタイミングの一例が図示されている。また、第2タイミング図において、スキャナ位置信号Sposのタイミングの一例が図示されている。更に、第3タイミング図において、トリガ信号Trのタイミングの一例が図示されている。更にまた、縦軸が光源制御信号LScontの電圧レベルを表し、横軸が時間4を表す第3タイミング図において、光源制御信号LScontのタイミングの一例が図示されている。
 制御部100は、眼底Efにおける所定の撮影領域を図6に示すように順次に照明するように、スキャナ制御信号Scontを順次に出力することにより照明領域を順次に変更する。例えば、制御部100は、光スキャナ30に対して、図13に示すようにスキャナ制御信号Scontを順次に出力する。
 光スキャナ30は、制御部100からのスキャナ制御信号Scontに対応した偏向角度になるように偏向面を変更する。このとき、光スキャナ30は、スキャナ制御信号Scontに対して所定の遅延時間Δdtが経過した後に、偏向面を変更させる。光スキャナ30は、偏向面の偏向角度に対応したスキャナ位置信号Sposを出力する。
 まず、第2電圧検出回路212aは、上記のように、スキャナ位置信号Sposの電圧レベルと第2閾値電圧TH2とを比較し、光源10に対して、比較結果に応じた電圧レベルの光源制御信号LScontを出力する。スキャナ位置信号Sposの電圧レベルが第2閾値電圧TH2以上の電圧レベルから第2閾値電圧TH2未満の電圧レベルに変化したとき、第2電圧検出回路212aは、光源制御信号LScontの電圧レベルを変化させ、Hレベルの光源制御信号LScontを出力する。
 光源10は、第2電圧検出回路212aからの光源制御信号LScontの立ち上がりエッジに同期して、オフ状態からオン状態に切り替えられる。
 続いて、第1電圧検出回路211aは、上記のように、スキャナ位置信号Sposの電圧レベルと第1閾値電圧TH1とを比較し、イメージセンサ51に対して、比較結果に応じた電圧レベルのトリガ信号Trを出力する。スキャナ位置信号Sposの電圧レベルが第1閾値電圧TH1以上の電圧レベルから第1閾値電圧TH1未満の電圧レベル(但し、TH1>TH3)に変化したとき、第1電圧検出回路211aは、トリガ信号Trの電圧レベルを変化させ、Hレベルのトリガ信号Trを出力する。
 イメージセンサ51は、第1電圧検出回路211aからのトリガ信号Trの立ち上がりエッジに同期して、照明光の戻り光の受光結果の取り込みを開始する。例えば、取り込み期間では、図6に示すように、期間Trにおいてリセット制御が行われ、期間Teにおいて露光制御が行われ、期間Tcにおいて電荷転送制御が行われ、期間Toutにおいて出力制御が行われる。
 例えば、イメージセンサ51による受光結果の制御部100への転送が終了した後、制御部100がスキャナ制御信号Scontを光スキャナ30に対して出力し、偏向面の向きを変更する。このとき、第2電圧検出回路212aは、上記のように、スキャナ位置信号Sposの電圧レベルと第3閾値電圧TH3とを比較し、光源10に対して、比較結果に応じた電圧レベルの光源制御信号LScontを出力する。スキャナ位置信号Sposの電圧レベルが第3閾値電圧TH3以上の電圧レベルから第3閾値電圧TH3未満の電圧レベルに変化したとき、第2電圧検出回路212aは、光源制御信号LScontの電圧レベルを変化させ、Lレベルの光源制御信号LScontを出力する。
 光源10は、第2電圧検出回路212aからの光源制御信号LScontの立ち下がりエッジに同期して、オン状態からオフ状態に切り替えられる。
 なお、第2実施形態において、スキャナ位置信号Sposの電圧レベルに基づいて光源10をオフ状態に切り替える場合について説明したが、実施形態に係る構成はこれに限定されるものではない。例えば、スキャナ位置信号Sposの電圧レベルに基づいて光源10をオン状態に切り替えられてから所定の期間が経過した後に、制御部100が光源10を制御してオフ状態に切り替えてもよい。
 以上説明したように、制御部100からのスキャナ制御信号Scontによって制御可能な光スキャナ30のスキャナ位置信号Sposに同期してイメージセンサ51の照明光の戻り光の受光結果の取り込みタイミングと光源10による照明光の照射タイミングとを制御することができる。それにより、照明光の照明領域に対して高精度に同期して照明光の戻り光を受光して取り込むことができるので、不要な散乱光の影響をなくし、取得される被検眼Eの画像の画質を向上することができる。
 また、イメージセンサ51は、光源10がオン状態の期間中に受光結果の取り込みを開始し、当該受光結果の取り込みを終了することができるため、不要な散乱光の影響を確実になくし、被検眼Eの画像の画質をより一層向上させることができる。
 第1電圧検出回路211aは、実施形態に係る「第1電圧検出回路」の一例である。第2電圧検出回路212aは、実施形態に係る「第2電圧検出回路」の一例である。第2閾値電圧TH2又は第3閾値電圧TH3は、実施形態に係る「第2閾値電圧」の一例である。
[作用・効果]
 実施形態に係る眼科装置、その制御方法、及びプログラムの作用および効果について説明する。
 いくつかの実施形態に係る眼科装置(1)は、光源(10)と、照明光学系(20)と、光スキャナ(30)と、撮影光学系(40)と、制御部(100、主制御部101)とを含む。照明光学系は、光源からの光を用いてスリット状の照明光を生成する。光スキャナは、照明光を偏向して被検眼(E)の眼底(Ef)に導く。撮影光学系は、ローリングシャッター方式で眼底における照明光の照明領域に対応した受光面の領域の受光結果を取り込むイメージセンサ(51)に眼底からの照明光の戻り光を導く。制御部は、光スキャナによる照明光の偏向角度を制御する。光スキャナは、照明光の偏向角度に対応したスキャナ位置信号(Spos)を出力する。イメージセンサは、スキャナ位置信号に同期して戻り光の受光結果の取り込みを開始する。
 このような構成によれば、簡素な構成で、光スキャナとイメージセンサとを高精度に同期させることができるので、不要な散乱光の受光結果の取り込みを防ぎ、イメージセンサの受光結果に基づいて形成される被検眼の高画質の画像を取得することが可能になる。
 いくつかの実施形態は、スキャナ位置信号と第1閾値電圧(TH1)との比較結果に応じてトリガ信号(Tr)を変化させる第1電圧検出回路(電圧検出回路210、第1電圧検出回路211a)を含み、イメージセンサは、トリガ信号の変化に同期して受光結果の取り込みを開始する。
 このような構成によれば、スキャナ位置信号の電圧レベルに基づいてトリガ信号を変化させ、トリガ信号の変化に同期してイメージセンサによる受光結果の取り込みを開始するようにしたので、簡素な構成で、光スキャナとイメージセンサとを高精度に同期させることが可能になる。
 いくつかの実施形態では、制御部は、光スキャナに対してスキャナ制御信号(Scont)を出力し、スキャナ制御信号に対応した偏向角度で照明光を偏向させる。
 このような構成によれば、スキャナ制御信号により偏向角度に対応したスキャナ位置信号を生成することができるので、制御部によるスキャナ制御信号に同期してイメージセンサによる受光結果の取り込みを開始することが可能になる。
 いくつかの実施形態では、光源は、スキャナ位置信号に同期してオン状態からオフ状態又はオフ状態からオン状態に切り替えられる。
 このような構成によれば、簡素な構成で、光スキャナとイメージセンサと光源とを高精度に同期させることができるので、不要な散乱光の受光結果の取り込みを防ぎ、イメージセンサの受光結果に基づいて形成される被検眼の高画質の画像を取得することが可能になる。
 いくつかの実施形態は、スキャナ位置信号と第2閾値電圧(TH2、第3閾値電圧TH3)との比較結果に応じて光源のオンオフ制御を行うための光源制御信号(LScont)を変化させる第2電圧検出回路(212a)を含み、光源は、光源制御信号の変化に同期してオン状態からオフ状態又はオフ状態からオン状態に切り替えられる。
 このような構成によれば、スキャナ位置信号の電圧レベルに基づいて光源制御信号を変化させ、光源制御信号の変化に同期して光源のオンオフ制御を行うようにしたので、簡素な構成で、光スキャナとイメージセンサと光源とを高精度に同期させることが可能になる。
 いくつかの実施形態では、イメージセンサは、光源がオン状態の期間中に、受光結果の取り込みを開始し、かつ、受光結果の取り込みを終了する。
 このような構成によれば、不要な散乱光の影響を確実になくし、被検眼の画像の画質をより一層向上させることができる。
 いくつかの実施形態では、イメージセンサは、CMOSイメージセンサである。
 このような構成によれば、簡素な構成、かつ、低コストで、光スキャナとイメージセンサとを高精度に同期させることができる。
 いくつかの実施形態に係る眼科装置(1)の制御方法は、光源(10)と、光源からの光を用いてスリット状の照明光を生成する照明光学系(20)と、照明光を偏向して被検眼(E)の眼底(Ef)に導く光スキャナ(30)と、光スキャナにより移動される眼底における照明光の照明領域に対応した受光面の領域の受光結果をローリングシャッター方式で取り込むイメージセンサ(51)に眼底からの照明光の戻り光を導く撮影光学系(40)と、光スキャナによる照明光の偏向角度を制御する制御部(100、主制御部101)と、を含む眼科装置の制御方法である。眼科装置の制御方法は、光スキャナが照明光の偏向角度に対応したスキャナ位置信号(Spos)を出力する第1出力ステップと、イメージセンサが、スキャナ位置信号に同期して戻り光の受光結果の取り込みを開始する受光結果取得ステップと、を含む。
 このような方法によれば、眼科装置の構成を簡素化しつつ光スキャナとイメージセンサとを高精度に同期させることができるので、不要な散乱光の受光結果の取り込みを防ぎ、イメージセンサの受光結果に基づいて形成される被検眼の高画質の画像を取得することが可能になる。
 いくつかの実施形態は、スキャナ位置信号と第1閾値電圧(TH1)との比較結果に応じてスキャナ位置信号を変化させる第1電圧検出ステップを含み、受光結果取得ステップは、イメージセンサがスキャナ位置信号の変化に同期して受光結果の取り込みを開始する。
 このような方法によれば、スキャナ位置信号の電圧レベルに基づいてトリガ信号を変化させ、トリガ信号の変化に同期してイメージセンサによる受光結果の取り込みを開始するようにしたので、眼科装置の構成を簡素化しつつ、光スキャナとイメージセンサとを高精度に同期させることが可能になる。
 いくつかの実施形態は、制御部が光スキャナに対してスキャナ制御信号(Scont)を出力する第2出力ステップを含み、光スキャナは、スキャナ制御信号に対応した偏向角度で照明光を偏向する。
 このような方法によれば、スキャナ制御信号により偏向角度に対応したスキャナ位置信号を生成することができるので、制御部によるスキャナ制御信号に同期してイメージセンサによる受光結果の取り込みを開始することが可能になる。
 いくつかの実施形態は、スキャナ位置信号に同期して光源をオン状態からオフ状態又はオフ状態からオン状態に切り替える光源制御ステップを含む。
 このような方法によれば、眼科装置の構成を簡素化しつつ、光スキャナとイメージセンサと光源とを高精度に同期させることができるので、不要な散乱光の受光結果の取り込みを防ぎ、イメージセンサの受光結果に基づいて形成される被検眼の高画質の画像を取得することが可能になる。
 いくつかの実施形態は、スキャナ位置信号と第2閾値電圧(TH2、第3閾値電圧TH3)との比較結果に応じて光源のオンオフ制御を行うための光源制御信号(LScont)を変化させる第2電圧検出ステップを含み、光源制御ステップは、光源制御信号の変化に同期して光源をオン状態からオフ状態又はオフ状態からオン状態に切り替える。
 このような方法によれば、スキャナ位置信号の電圧レベルに基づいて光源制御信号を変化させ、光源制御信号の変化に同期して光源のオンオフ制御を行うようにしたので、眼科装置の構成を簡素化しつつ、光スキャナとイメージセンサと光源とを高精度に同期させることが可能になる。
 いくつかの実施形態では、受光結果取得ステップは、イメージセンサは、光源がオン状態の期間中に、受光結果の取り込みを開始し、かつ、受光結果の取り込みを終了する。
 このような方法によれば、不要な散乱光の影響を確実になくし、被検眼の画像の画質をより一層向上させることができる。
 いくつかの実施形態では、イメージセンサは、CMOSイメージセンサである。
 このような方法によれば、眼科装置の構成を簡素化しつつ、低コストで光スキャナとイメージセンサとを高精度に同期させることができる。
 いくつかの実施形態は、コンピュータに、上記のいずれかに記載の眼科装置の制御方法の各ステップを実行させるプログラムである。
 このようなプログラムによれば、簡素な構成で、光スキャナとイメージセンサとを高精度に同期させることができるので、不要な散乱光の受光結果の取り込みを防ぎ、イメージセンサの受光結果に基づいて形成される被検眼の高画質の画像を取得することが可能になる。
 以上に示された実施形態又はその変形例は、この発明を実施するための一例に過ぎない。この発明を実施しようとする者は、この発明の要旨の範囲内において任意の変形、省略、追加等を施すことが可能である。
 上記の実施形態において、眼科装置は、例えば、眼軸長測定機能、眼圧測定機能、光干渉断層撮影(OCT)機能、超音波検査機能など、眼科分野において使用可能な任意の機能を有していてもよい。なお、眼軸長測定機能は、光干渉断層計等により実現される。また、眼軸長測定機能は、被検眼に光を投影し、当該被検眼に対する光学系のZ方向(前後方向)の位置を調整しつつ眼底からの戻り光を検出することにより、当該被検眼の眼軸長を測定するようにしてもよい。眼圧測定機能は、眼圧計等により実現される。OCT機能は、光干渉断層計等により実現される。超音波検査機能は、超音波診断装置等により実現される。また、このような機能のうち2つ以上を具備した装置(複合機)に対してこの発明を適用することも可能である。
 いくつかの実施形態では、上記の眼科装置の制御方法をコンピュータに実行させるためのプログラムが提供される。このようなプログラムを、コンピュータによって読み取り可能な非一時的な(non-transitory)任意の記録媒体に記憶させることができる。記録媒体は、磁気、光、光磁気、半導体などを利用した電子媒体であってよい。典型的には、記録媒体は、磁気テープ、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ、ソリッドステートドライブなどである。また、インターネットやLAN等のネットワークを通じてこのプログラムを送受信することも可能である。
1 眼科装置
10 光源
20 照明光学系
21 虹彩絞り
22 スリット
23、41、44、48 リレーレンズ
30 光スキャナ
35 投影光学系
40 撮影光学系
42 黒点板
43 反射ミラー
45 穴鏡
46 対物レンズ
47 合焦レンズ
49 結像レンズ
50 撮像装置
51 イメージセンサ
100 制御部
101 主制御部
102 記憶部
210、210a 電圧検出回路
211a 第1電圧検出回路
212a 第2電圧検出回路
LScont 光源制御信号
Scont スキャナ制御信号
Spos スキャナ位置信号
TH1 第1閾値電圧
TH2 第2閾値電圧
TH3 第3閾値電圧
E 被検眼
Ef 眼底

Claims (15)

  1.  光源と、
     前記光源からの光を用いてスリット状の照明光を生成する照明光学系と、
     前記照明光を偏向して被検眼の眼底に導く光スキャナと、
     前記光スキャナにより移動される前記眼底における前記照明光の照明領域に対応した受光面の領域の受光結果をローリングシャッター方式で取り込むイメージセンサに前記眼底からの前記照明光の戻り光を導く撮影光学系と、
     前記光スキャナによる前記照明光の偏向角度を制御する制御部と、
     を含み、
     前記光スキャナは、前記照明光の偏向角度に対応したスキャナ位置信号を出力し、
     前記イメージセンサは、前記スキャナ位置信号に同期して前記戻り光の受光結果の取り込みを開始する、眼科装置。
  2.  前記スキャナ位置信号と第1閾値電圧との比較結果に応じてトリガ信号を変化させる第1電圧検出回路を含み、
     前記イメージセンサは、前記トリガ信号の変化に同期して前記受光結果の取り込みを開始する
     ことを特徴とする請求項1に記載の眼科装置。
  3.  前記制御部は、前記光スキャナに対してスキャナ制御信号を出力し、前記スキャナ制御信号に対応した偏向角度で前記照明光を偏向させる
     ことを特徴とする請求項1又は請求項2に記載の眼科装置。
  4.  前記光源は、前記スキャナ位置信号に同期してオン状態からオフ状態又はオフ状態からオン状態に切り替えられる
     ことを特徴とする請求項1~請求項3のいずれか一項に記載の眼科装置。
  5.  前記スキャナ位置信号と第2閾値電圧との比較結果に応じて前記光源のオンオフ制御を行うための光源制御信号を変化させる第2電圧検出回路を含み、
     前記光源は、前記光源制御信号の変化に同期してオン状態からオフ状態又はオフ状態からオン状態に切り替えられる
     ことを特徴とする請求項4に記載の眼科装置。
  6.  前記イメージセンサは、前記光源がオン状態の期間中に、前記受光結果の取り込みを開始し、かつ、前記受光結果の取り込みを終了する
     ことを特徴とする請求項5に記載の眼科装置。
  7.  前記イメージセンサは、CMOSイメージセンサである
     ことを特徴とする請求項1~請求項6のいずれか一項に記載の眼科装置。
  8.  光源と、
     前記光源からの光を用いてスリット状の照明光を生成する照明光学系と、
     前記照明光を偏向して被検眼の眼底に導く光スキャナと、
     前記光スキャナにより移動される前記眼底における前記照明光の照明領域に対応した受光面の領域の受光結果をローリングシャッター方式で取り込むイメージセンサに前記眼底からの前記照明光の戻り光を導く撮影光学系と、
     前記光スキャナによる前記照明光の偏向角度を制御する制御部と、
     を含む眼科装置の制御方法であって、
     前記光スキャナが前記照明光の偏向角度に対応したスキャナ位置信号を出力する第1出力ステップと、
     前記イメージセンサが、前記スキャナ位置信号に同期して前記戻り光の受光結果の取り込みを開始する受光結果取得ステップと、
     を含む、眼科装置の制御方法。
  9.  前記スキャナ位置信号と第1閾値電圧との比較結果に応じてトリガ信号を変化させる第1電圧検出ステップを含み、
     前記受光結果取得ステップは、
     前記イメージセンサが前記トリガ信号の変化に同期して前記受光結果の取り込みを開始する
     ことを特徴とする請求項8に記載の眼科装置の制御方法。
  10.  前記制御部が前記光スキャナに対してスキャナ制御信号を出力する第2出力ステップを含み、
     前記光スキャナは、前記スキャナ制御信号に対応した偏向角度で前記照明光を偏向する
     ことを特徴とする請求項8又は請求項9に記載の眼科装置の制御方法。
  11.  前記スキャナ位置信号に同期して前記光源をオン状態からオフ状態又はオフ状態からオン状態に切り替える光源制御ステップを含む
     ことを特徴とする請求項8~請求項10のいずれか一項に記載の眼科装置の制御方法。
  12.  前記スキャナ位置信号と第2閾値電圧との比較結果に応じて前記光源のオンオフ制御を行うための光源制御信号を変化させる第2電圧検出ステップを含み、
     前記光源制御ステップは、
     前記光源制御信号の変化に同期して前記光源をオン状態からオフ状態又はオフ状態からオン状態に切り替える
     ことを特徴とする請求項11に記載の眼科装置の制御方法。
  13.  前記受光結果取得ステップは、前記イメージセンサは、前記光源がオン状態の期間中に、前記受光結果の取り込みを開始し、かつ、前記受光結果の取り込みを終了する
     ことを特徴とする請求項12に記載の眼科装置の制御方法。
  14.  前記イメージセンサは、CMOSイメージセンサである
     ことを特徴とする請求項8~請求項13のいずれか一項に記載の眼科装置の制御方法。
  15.  コンピュータに、請求項8~請求項14のいずれか一項に記載の眼科装置の制御方法の各ステップを実行させることを特徴とするプログラム。
PCT/JP2021/008667 2020-03-13 2021-03-05 眼科装置、その制御方法、及びプログラム WO2021182322A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21766851.6A EP4119033A4 (en) 2020-03-13 2021-03-05 OPHTHALMOLOGICAL DEVICE, CONTROL METHOD AND ASSOCIATED PROGRAM
CN202180020977.8A CN115297761A (zh) 2020-03-13 2021-03-05 眼科装置及其控制方法以及程序
US17/872,038 US20220354365A1 (en) 2020-03-13 2022-07-25 Ophthalmic apparatus, method of controlling same, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020043604A JP2021142173A (ja) 2020-03-13 2020-03-13 眼科装置、その制御方法、及びプログラム
JP2020-043604 2020-03-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/872,038 Continuation US20220354365A1 (en) 2020-03-13 2022-07-25 Ophthalmic apparatus, method of controlling same, and program

Publications (1)

Publication Number Publication Date
WO2021182322A1 true WO2021182322A1 (ja) 2021-09-16

Family

ID=77671694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008667 WO2021182322A1 (ja) 2020-03-13 2021-03-05 眼科装置、その制御方法、及びプログラム

Country Status (5)

Country Link
US (1) US20220354365A1 (ja)
EP (1) EP4119033A4 (ja)
JP (1) JP2021142173A (ja)
CN (1) CN115297761A (ja)
WO (1) WO2021182322A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202247085A (zh) * 2021-05-19 2022-12-01 神盾股份有限公司 遠端監測裝置及其遠端監測方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276534A (ja) * 1985-04-04 1986-12-06 アラ−ガン ハンフリ− 眼底カメラ
JPS61293430A (ja) 1985-06-22 1986-12-24 株式会社トプコン 眼屈折力測定装置
JP2000135200A (ja) * 1998-10-29 2000-05-16 Canon Inc 検眼装置
JP2005531346A (ja) * 2002-06-28 2005-10-20 オーティーアイ オプサルミック テクノロジーズ インコーポレイテッド 深度分解能が調節可能である多機能性の光学写像装置
JP2009538697A (ja) * 2006-05-31 2009-11-12 インディアナ・ユニバーシティ・リサーチ・アンド・テクノロジー・コーポレーション 簡単な光学系と多重散乱光結像機能とを備えたレーザー走査デジタルカメラ
JP2010259495A (ja) 2009-04-30 2010-11-18 Topcon Corp 検眼装置
US8237835B1 (en) 2011-05-19 2012-08-07 Aeon Imaging, LLC Confocal imaging device using spatially modulated illumination with electronic rolling shutter detection
JP2012187293A (ja) * 2011-03-11 2012-10-04 Topcon Corp 眼底撮影装置
JP2013248376A (ja) 2012-05-01 2013-12-12 Topcon Corp 眼科装置
JP2014068704A (ja) * 2012-09-28 2014-04-21 Nidek Co Ltd 眼科撮影装置
US20140232987A1 (en) * 2011-09-23 2014-08-21 Carl Zeiss Ag Device and method for imaging an ocular fundus
JP2017196302A (ja) * 2016-04-28 2017-11-02 株式会社ニデック 眼科撮影装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6758564B2 (en) * 2002-06-14 2004-07-06 Physical Sciences, Inc. Line-scan laser ophthalmoscope
US8488895B2 (en) * 2006-05-31 2013-07-16 Indiana University Research And Technology Corp. Laser scanning digital camera with pupil periphery illumination and potential for multiply scattered light imaging
WO2009004497A2 (en) * 2007-07-04 2009-01-08 I-Optics Bv Confocal color ophthalmoscope
JP5199031B2 (ja) * 2008-11-05 2013-05-15 株式会社ニデック 眼科撮影装置
DE102010050693A1 (de) * 2010-11-06 2012-05-10 Carl Zeiss Meditec Ag Funduskamera mit streifenförmiger Pupillenteilung und Verfahren zur Aufzeichnung von Fundusaufnahmen
CN107126189B (zh) * 2016-05-31 2019-11-22 瑞尔明康(杭州)医疗科技有限公司 用于视网膜成像的光学组件和视网膜成像设备
CN108652581B (zh) * 2018-04-28 2020-09-15 中国科学院苏州生物医学工程技术研究所 基于线共焦成像的激光刺激系统和方法
CN109924942B (zh) * 2019-04-25 2024-04-05 南京博视医疗科技有限公司 一种基于线扫描成像系统的光学稳像方法及系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276534A (ja) * 1985-04-04 1986-12-06 アラ−ガン ハンフリ− 眼底カメラ
JPS61293430A (ja) 1985-06-22 1986-12-24 株式会社トプコン 眼屈折力測定装置
JP2000135200A (ja) * 1998-10-29 2000-05-16 Canon Inc 検眼装置
JP2005531346A (ja) * 2002-06-28 2005-10-20 オーティーアイ オプサルミック テクノロジーズ インコーポレイテッド 深度分解能が調節可能である多機能性の光学写像装置
JP2009538697A (ja) * 2006-05-31 2009-11-12 インディアナ・ユニバーシティ・リサーチ・アンド・テクノロジー・コーポレーション 簡単な光学系と多重散乱光結像機能とを備えたレーザー走査デジタルカメラ
US7831106B2 (en) 2006-05-31 2010-11-09 Indiana University Research And Technology Corporation Laser scanning digital camera with simplified optics and potential for multiply scattered light imaging
JP2010259495A (ja) 2009-04-30 2010-11-18 Topcon Corp 検眼装置
JP2012187293A (ja) * 2011-03-11 2012-10-04 Topcon Corp 眼底撮影装置
US8237835B1 (en) 2011-05-19 2012-08-07 Aeon Imaging, LLC Confocal imaging device using spatially modulated illumination with electronic rolling shutter detection
US20140232987A1 (en) * 2011-09-23 2014-08-21 Carl Zeiss Ag Device and method for imaging an ocular fundus
JP2013248376A (ja) 2012-05-01 2013-12-12 Topcon Corp 眼科装置
JP2014068704A (ja) * 2012-09-28 2014-04-21 Nidek Co Ltd 眼科撮影装置
JP2017196302A (ja) * 2016-04-28 2017-11-02 株式会社ニデック 眼科撮影装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4119033A4

Also Published As

Publication number Publication date
JP2021142173A (ja) 2021-09-24
EP4119033A4 (en) 2024-03-27
US20220354365A1 (en) 2022-11-10
EP4119033A1 (en) 2023-01-18
CN115297761A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2021149280A1 (ja) 眼科装置、及びその制御方法
US20220125307A1 (en) Ophthalmic apparatus and ophthalmic system
US20220192488A1 (en) Ophthalmic apparatus, method of controlling same, and recording medium
JP2020006172A (ja) 眼底撮影装置
US20230023425A1 (en) Ophthalmic apparatus
WO2021182322A1 (ja) 眼科装置、その制御方法、及びプログラム
JP7565697B2 (ja) 眼科装置、その制御方法、及びプログラム
WO2021187162A1 (ja) 眼科装置、その制御方法、及びプログラム
JP7460406B2 (ja) 眼科装置、その制御方法、及びプログラム
WO2024195637A1 (ja) 眼科装置
WO2023067853A1 (ja) 眼科装置
US20230389795A1 (en) Ophthalmic information processing apparatus, ophthalmic apparatus, ophthalmic information processing method, and recording medium
JP2024061891A (ja) 眼科装置、その制御方法、及びプログラム
JP2022073887A (ja) 眼科装置及び眼科装置の制御方法
JP2024121130A (ja) 眼科装置
JP2024016406A (ja) 眼科装置、眼科装置の制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021766851

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021766851

Country of ref document: EP

Effective date: 20221013

NENP Non-entry into the national phase

Ref country code: DE