WO2021181733A1 - 発光素子駆動装置及び発光システム - Google Patents

発光素子駆動装置及び発光システム Download PDF

Info

Publication number
WO2021181733A1
WO2021181733A1 PCT/JP2020/037020 JP2020037020W WO2021181733A1 WO 2021181733 A1 WO2021181733 A1 WO 2021181733A1 JP 2020037020 W JP2020037020 W JP 2020037020W WO 2021181733 A1 WO2021181733 A1 WO 2021181733A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
current
drive
reference voltage
light emitting
Prior art date
Application number
PCT/JP2020/037020
Other languages
English (en)
French (fr)
Inventor
▲高▼橋 徹
中山 昌昭
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to US17/910,148 priority Critical patent/US11871492B2/en
Priority to DE112020006872.2T priority patent/DE112020006872T5/de
Priority to JP2022505745A priority patent/JPWO2021181733A1/ja
Priority to CN202080098426.9A priority patent/CN115245052A/zh
Publication of WO2021181733A1 publication Critical patent/WO2021181733A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • H05B45/397Current mirror circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a light emitting element driving device and a light emitting system.
  • the LED driver drives a light emitting unit composed of LEDs.
  • An LED driver is typically an electronic component formed by enclosing a semiconductor integrated circuit in a housing (package) made of resin, and has a plurality of external terminals in the housing of the LED driver. It is provided exposed.
  • FIG. 13 shows the LED driver 910 according to the first reference configuration
  • FIG. 14 shows the LED driver 920 according to the second reference configuration.
  • Each of the LED drivers 910 and 920 includes a plurality of light emitting unit connection terminals to which the light emitting unit 950 should be connected, and supplies a desired drive current to the light emitting unit 950 for each channel.
  • the drive circuit 911 for each channel in the LED driver 910 and the drive circuit 921 for each channel in the LED driver 920 drive the corresponding light emitting unit 950 by PWM drive or DC drive.
  • the drive current can be changed by adjusting the resistance value of the variable resistor in the drive circuit within a predetermined adjustment range based on the dimming control signal SDIMMING, and the drive current at that time can be changed.
  • the upper limit is determined depending on the drive reference voltage V DREF'.
  • the drive reference voltage V DREF '(therefore, the upper limit value of the drive current) is set based on the external resistor Ra externally connected to the LED driver 910.
  • the drive reference voltage V DREF '(therefore, the upper limit value of the drive current) is set based on the internal resistance Rb built in the LED driver 920.
  • the upper limit value of the drive current is set to the first upper limit value (for example, 60 mA) in advance in accordance with the characteristics of the light emitting unit 950 expected to be connected to the light emitting unit connection terminal.
  • the upper limit value of the drive current may be required to increase the upper limit value of the drive current to the second upper limit value (first upper limit value ⁇ second upper limit value).
  • the LED driver 920 cannot change the drive reference voltage V DREF'defined at the design stage, it cannot meet the above request.
  • the above request can be met by using the LED driver 910 of FIG. 13, but when the LED driver 910 is used, the external resistor Ra is indispensable even in a system in which the upper limit value of the drive current may be the first upper limit value. ..
  • the LED driver 910 and the LED driver 920 are prepared separately, and the LED driver 920 is applied to the system in which the upper limit value of the drive current can be the first upper limit value, and the upper limit value of the drive current is higher than the first upper limit value. It is also conceivable to apply the LED driver 910 to the desired system. However, this requires designing and manufacturing both the LED drivers 910 and 920, which lacks versatility.
  • An object of the present invention is to provide a light emitting element driving device and a light emitting system having high versatility with respect to the upper limit of the driving current.
  • the light emitting element drive device has a drive circuit that causes the light emitting unit to emit light by passing a variable drive current through a light emitting unit composed of one or more light emitting elements, and a drive reference voltage that determines an upper limit value of the drive current.
  • a light emitting element drive device including a drive reference voltage generation circuit that is generated and supplied to the drive circuit and a specific external terminal, wherein the drive reference voltage generation circuit is the same regardless of the state of the specific external terminal.
  • a configuration that selectively operates in a first mode that generates a drive reference voltage or a second mode that generates the drive reference voltage according to a second mode current via the specific external terminal (first configuration). Is.
  • an external resistor is connected or not connected between the specific external terminal and the ground outside the light emitting element driving device (second configuration). You may.
  • the drive reference voltage generation circuit when the drive reference voltage generation circuit operates in the second mode in a state where the external resistor is connected between the specific external terminal and the ground, the drive The reference voltage generation circuit supplies the second mode current to the external resistor via the specific external terminal, and depending on the magnitude of the second mode current or the voltage generated by the external resistor.
  • the configuration may be such that the drive reference voltage is generated (third configuration).
  • the drive reference voltage generation circuit when the drive reference voltage generation circuit operates in the second mode in a state where the external resistor is connected between the specific external terminal and the ground, the drive reference The voltage is higher than the drive reference voltage in the first mode depending on the resistance value of the external resistor, and the drive circuit increases the upper limit value of the drive current as the drive reference voltage increases. It may be a configuration (fourth configuration).
  • the drive reference voltage generation circuit is a reference current generation circuit that commonly generates a reference current in the first mode and the second mode.
  • a current superimposing circuit that generates the current for the second mode only in the second mode
  • a current mirror circuit that generates an output side current proportional to the input side current.
  • the drive reference voltage is generated in proportion to the output side current, the reference current is used as the input side current in the first mode, and the reference current and the second are used in the second mode.
  • the configuration (fifth configuration) may be such that the sum with the mode current is the input side current.
  • the driving reference voltage generation circuit includes a switch inserted in series between the input end of the current mirror circuit and the specific external terminal, and drives the light emitting element.
  • the device is further provided with a switch control circuit for controlling the switch, and the switch control circuit turns off the switch in the first mode and turns on the switch in the second mode to turn on the specific external terminal.
  • the second mode current flowing through the current may be superimposed on the input side current (sixth configuration).
  • the presence or absence of abnormality of the second mode current is detected based on the magnitude of the second mode current flowing through the specific external terminal in the second mode.
  • An abnormality detection circuit is further provided, and the switch control circuit keeps the switch on when the abnormality detection circuit does not detect that the abnormality is present in the second mode, but the abnormality detection circuit is provided in the second mode.
  • the switch is switched from on to off to shift the operation mode of the drive reference voltage generation circuit from the second mode to the first mode (seventh configuration). You may.
  • the driving reference voltage generating circuit includes a current generating circuit for generating a predetermined current and an internal resistance in the first mode.
  • a current generating circuit for generating a predetermined current and an internal resistance in the first mode.
  • the drive reference voltage generation circuit includes a first switch inserted in series between the output end of the current generation circuit and the internal resistance, and the current generation circuit.
  • a second switch inserted in series between the output end of the light emitting element and the specific external terminal is provided, and the light emitting element driving device is further provided with a switch control circuit for controlling the first switch and the second switch.
  • the switch control circuit supplies the predetermined current to the internal resistor by turning on the first switch and turning off the second switch in the first mode, and the first switch in the second mode. May be configured to supply the predetermined current as the second mode current toward the specific external terminal by turning off and turning on the second switch (nineth configuration).
  • the switch control circuit further includes an abnormality detection circuit that detects the presence or absence of an abnormality in the drive reference voltage based on the voltage at the specific external terminal in the second mode.
  • an abnormality detection circuit that detects the presence or absence of an abnormality in the drive reference voltage based on the voltage at the specific external terminal in the second mode.
  • the first switch is turned off and the second switch is kept on, but in the second mode, the abnormality is detected by the abnormality detection circuit.
  • the first switch is switched from off to on and the second switch is switched from on to off to shift the operation mode of the drive reference voltage generation circuit from the second mode to the first mode. It may be the configuration (tenth configuration).
  • the drive circuit is provided for a plurality of channels, and the drive reference voltage generation circuit generates the drive reference voltage for each channel. It may be the configuration (the eleventh configuration).
  • the light emitting system according to the present invention has a configuration (12th configuration) including a light emitting element driving device according to any one of the first to eleventh configurations and a light emitting unit driven and controlled by the light emitting element driving device. ).
  • the present invention it is possible to provide a light emitting element driving device and a light emitting system having high versatility with respect to the upper limit of the driving current.
  • FIG. 3 is an internal block diagram of a main part of an LED driver according to an embodiment of the present invention. It is a figure which shows the relationship between the control signal of PWM and the drive current of a light emitting part which concerns on embodiment of this invention. It is a figure which shows the stored data of the data holding part of the LED driver which concerns on embodiment of this invention.
  • FIG. 5 is an internal configuration diagram of an LED driver according to a first embodiment belonging to an embodiment of the present invention (state without external resistance).
  • FIG. 5 is a modified internal configuration diagram of a part of the LED driver according to the second embodiment belonging to the embodiment of the present invention.
  • FIG. 3 is an internal configuration diagram of an LED driver according to a third embodiment belonging to the embodiment of the present invention (state without external resistance). It is an internal block diagram of an LED driver (state with an external resistor) according to the 3rd Embodiment belonging to the embodiment of this invention.
  • FIG. 5 is a modified internal configuration diagram of a part of the LED driver according to the fourth embodiment belonging to the embodiment of the present invention. It is a figure which shows the LED driver which concerns on 1st reference configuration and a plurality of light emitting parts. It is a figure which shows the LED driver which concerns on the 2nd reference configuration, and a plurality of light emitting parts.
  • the ground refers to a reference conductive portion having a reference potential of 0 V (zero volt) or the potential of 0 V itself.
  • the reference conductive portion is formed of a conductor such as metal.
  • the potential of 0V may be referred to as the ground potential.
  • the voltage shown without any particular reference represents the potential seen from the ground.
  • Level refers to the level of potential, where a high level has a higher potential than a low level for any signal or voltage.
  • a signal or voltage at a high level means that the signal or voltage level is at a high level
  • a signal or voltage at a low level means that the signal or voltage level is at a low level. Means that it is in.
  • a level for a signal is sometimes referred to as a signal level
  • a level for a voltage is sometimes referred to as a voltage level.
  • a section in which the level of the signal is high level is referred to as a high level section
  • a section in which the level of the signal is low level is referred to as a low level section. The same is true for any voltage that has a high or low level voltage level.
  • the on state means a state in which the drain and source of the transistor are conducting
  • the off state means the drain and source of the transistor. Refers to a state in which the interval is non-conducting (blocking state).
  • MOSFETs are understood to be enhancement-type MOSFETs.
  • MOSFET is an abbreviation for "metal-oxide-semiconductor field-effect transistor".
  • Any switch can be composed of one or more FETs (Field Effect Transistors), and when a switch is on, both ends of the switch are conducting, while when a switch is off, the switch is connected. There is no conduction between both ends.
  • FETs Field Effect Transistors
  • the on state and the off state of any transistor or switch may be simply expressed as on and off.
  • FIG. 1 shows an overall configuration diagram of a light emitting system SYS according to an embodiment of the present invention.
  • the light emitting system SYS includes an LED driver 1 which is an example of a light emitting element driving device, an MPU (Micro Processing Unit) 2 which controls the LED driver 1, a light emitting unit LL for n channels which is driven and controlled by the LED driver 1.
  • the pull-up resistors R PU , wirings 3 and 4 are also included in the components of the light emitting system SYS.
  • Each light emitting unit LL is composed of one or more LEDs (light emitting diodes).
  • the light emitting unit LL is composed of a series circuit of a plurality of LEDs.
  • the light emitting unit LL may be composed of a parallel circuit of a plurality of LEDs, or a series circuit of a plurality of LEDs and a parallel circuit of a plurality of LEDs may be mixed in one light emitting unit LL.
  • One light emitting unit LL may be configured by a single LED.
  • Each light emitting unit LL has a high potential end and a low potential end, and each LED forming the light emitting unit LL has a forward direction in the direction from the high potential end to the low potential end.
  • the LED driver 1 is provided with n terminal channels.
  • Each terminal CH is a light emitting unit connection terminal to which the light emitting unit LL should be connected.
  • a power supply voltage V POW which is a positive DC voltage, is applied to the high potential end of each light emitting unit LL, and the low potential end of each light emitting unit LL is connected to the corresponding terminal CH.
  • the current flowing through each light emitting unit LL is referred to as a drive current I LED.
  • the LED driver 1 is an electronic component (semiconductor device) formed by enclosing a semiconductor integrated circuit as shown in FIG. 2 in a housing (package) made of resin. A plurality of external terminals are exposed and provided in the housing of the LED driver 1.
  • terminal shown in FIG. 1 IN, GND, EX ISET, include FAILB and COM and n terminals CH. Terminals other than these may also be included in the plurality of external terminals.
  • the number of external terminals of the LED driver 1 and the appearance of the LED driver 1 shown in FIG. 2 are merely examples.
  • the input voltage V IN is supplied to the terminal IN from the outside of the LED driver 1.
  • a positive DC voltage is assumed as the input voltage VIN.
  • the LED driver 1 is driven based on the input voltage VIN.
  • the terminal GND is connected to the ground.
  • the terminal FAILB is connected to the MPU 2 through the wiring 3.
  • the MPU2 is driven based on the power supply voltage VCS, which is a predetermined positive DC voltage.
  • the wiring 3 connecting the terminal FAILB and the MPU 2 is connected to the application end of the power supply voltage VCS (the terminal to which the power supply voltage VCS is applied) via the pull-up resistor R PU. Further, the MPU 2 is connected to the terminal COM, which is a communication terminal, through the communication wiring 4.
  • the LED driver 1 and the MPU 2 are capable of bidirectional communication through the communication wiring 4. Although only one terminal COM is shown in FIG. 1, the terminal COM is actually composed of a plurality of external terminals, and the communication wiring 4 is composed of a plurality of wirings correspondingly.
  • the communication method between the LED driver 1 and the MPU 2 is arbitrary, and may be, for example, one that conforms to SPI (Serial Peripheral Interface).
  • SPI Serial Peripheral Interface
  • the terminal EX ISET will be described later.
  • n terminal CHs in other words, terminal CHs for n channels
  • n terminal CHs are referred to as terminal CHs [1] to CH [n]. It is called.
  • the n light emitting parts LL when it is necessary to distinguish the n light emitting parts LL (in other words, the light emitting parts LL for n channels) from each other, the n light emitting parts LL are referred to as light emitting parts LL [1] to LL [n].
  • the drive current I LED flowing through the light emitting unit LL [i] is particularly referred to as a drive current I LED [i]. i represents an arbitrary integer.
  • the terminal CHs in the first to nth channels are the terminals CH [1] to CH [n], respectively, and the light emitting units LL in the first to nth channels are the light emitting parts LL [1] to LL [n], respectively. ].
  • Emitting portion LL [1] ⁇ each high potential end of the LL [n] is connected to a supply voltage application node V POW (terminal power supply voltage V POW is applied), the light emitting portion LL [1] ⁇ LL [n ]
  • the low potential ends of are connected to terminals CH [1] to CH [n], respectively. Therefore, the drive currents I LED [1] to I LED [n] flow through the terminals CH [1] to CH [n], respectively.
  • the LED driver 1 may have a function of a DC / DC converter that generates a power supply voltage V POW from an input voltage V IN.
  • the DC / DC converter may control the voltage value of the power supply voltage V POW based on the voltage of the terminals CH [1] to CH [n], for example.
  • the circuit that generates the power supply voltage V POW may be a circuit provided separately from the LED driver 1.
  • FIG. 4 shows an internal block diagram of the main part of the LED driver 1.
  • the LED driver 1 includes drive circuits 10 [1] to 10 [n], which are drive circuits for the first to nth channels, a drive reference voltage generation circuit 20, a control circuit 30, an abnormality detection circuit 40, and data.
  • a holding unit 50 and an internal voltage generation circuit 60 are provided. Parts other than these may be further provided in the LED driver 1, but the illustration is omitted in FIG.
  • any or all of the drive circuits 10 [1] to 10 [n] may be referred to as a drive circuit 10.
  • the drive circuits 10 [1] to 10 [n] are connected to terminals CH [1] to CH [n], respectively.
  • a drive control signal including control signals S PWM [1] to S PWM [n] and S DC [1] to S DC [n] is supplied from the control circuit 30 to the drive circuits 10 [1] to 10 [n].
  • the drive circuits 10 [1] to 10 [n] can individually PWM drive or DC drive the light emitting units LL [1] to LL [n] based on the drive control signal.
  • the drive circuit 10 [i] When the drive circuit 10 [i] performs PWM drive, the corresponding light emitting unit LL [i] is made to emit a pulse by PWM control based on the control signal S PWM [i], and is driven based on the control signal S DC [i].
  • the magnitude of the drive current I LED [i] when the current I LED [i] is flowing is controlled in a plurality of steps.
  • the drive circuit 10 [i] constantly supplies the light emitting unit LL [i] with the constant drive current I LED [i] to cause the light emitting unit LL [i] to constantly emit light, and at this time, a control signal.
  • the magnitude of the drive current I LED [i] is controlled in a plurality of steps based on the S DC [i].
  • the drive reference voltage generation circuit 20 supplies the drive reference voltage V DREF to each drive circuit 10.
  • the drive reference voltage V DREF determines the upper limit of the drive current I LED [i]. That is, the drive circuit 10 [i] is for controlling the drive current I size of LED [i] when the drive current I LED based on the control signal S DC [i] [i] is flowing in a plurality of stages, its The upper limit of the magnitude of the drive current I LED [i] is determined depending on the drive reference voltage V DREF (a specific configuration example for realizing this will be described later).
  • the drive reference voltage V DREF may be generated for each drive circuit 10, or a single drive reference voltage V DREF common to the drive circuits 10 [1] to 10 [n] may be generated.
  • the control circuit 30 controls the drive reference voltage circuit 20 and each drive circuit 10.
  • the control circuit 30 generates a drive control signal including the control signals S PWM [1] to S PWM [n] and S DC [1] to S DC [n] based on the signal from the MPU 2.
  • a drive condition setting signal is given from the MPU 2 to the LED driver 1 via the communication wiring 4, and drive setting data based on the drive condition setting signal is stored in the data holding unit 50 (see FIG. 6).
  • the control circuit 30 is a drive control signal including control signals S PWM [1] to S PWM [n] and S DC [1] to S DC [n] based on the drive setting data stored in the data holding unit 50. To generate.
  • FIG. 5 shows the relationship between the control signal S PWM [i] and the drive current I LED [i] when PWM drive is performed.
  • the signal form of the control signal S PWM [i] is arbitrary, but here, the control signal S PWM [i] is considered to be a binarized signal having either a high level or a low level.
  • the control signal S PWM [i] has a predetermined PWM frequency.
  • the current value I VAL [i] is greater than zero.
  • the on-duty of the i-th channel is variably set in a plurality of steps based on the control signal S PWM [i] (for example, variably set in 256 steps).
  • the current value I VAL [i] is variably set in a plurality of steps based on the control signal S DC [i] (for example, variably set in 256 steps).
  • the abnormality detection circuit 40 detects the presence or absence of an abnormality related to the LED driver 1.
  • the abnormality detected by the abnormality detection circuit 40 includes a temperature abnormality caused by the temperature of the LED driver 1 being too high, an input voltage abnormality caused by the input voltage VIN being too low or too high, and the terminal EXISET. Includes abnormalities related to (details will be described later).
  • the abnormality detection circuit 40 keeps the level of the wiring 3 at a high level by setting the terminal FAILB in a high impedance state.
  • the abnormality detection circuit 40 cooperates with the pull-up resistor R PU to set the level of the terminal FAILB to a low level.
  • an FET having an open drain configuration is provided in the LED driver 1, the drain of the FET is connected to the terminal FAILB, and the abnormality detection circuit 40 controls the gate potential of the FET based on the detection result of the presence or absence of an abnormality. Just do it.
  • the MPU 2 can determine the presence or absence of an abnormality related to the LED driver 1 by monitoring the level of the wiring 3.
  • the data holding unit 50 stores the above-mentioned drive setting data, and also stores the mode setting value and the external resistance abnormality flag. In addition to this, various data and flags are stored in the data holding unit 50.
  • the mode setting value and the external resistance abnormality flag will be described later. It should be noted that storage and retention may be understood to be synonymous with respect to data and the like.
  • the data holding unit 50 may be a RAM (Random access memory), may be classified into a register or a lookup table, and may be composed of a combination of logic circuits including a flip-flop and the like. You may. In any case, the data holding unit 50 can hold necessary data and output the data held by itself to the control circuit 30. As long as this function can be realized, the type and configuration of the data holding unit 50 are arbitrary.
  • the internal voltage generation circuit 60 generates one or more predetermined internal voltages based on the input voltage VIN. Each circuit constituting the LED driver 1 is driven based on the generated voltage of the internal voltage generation circuit 60.
  • FIG. 7 shows a partial configuration diagram of the LED driver 1A according to the first embodiment.
  • the LED driver 1A is used as the LED driver 1.
  • the LED driver 1A includes drive circuits 10 [1] to 10 [n], a drive reference voltage generation circuit 20A as a drive reference voltage generation circuit 20, a mode control circuit 30A, an abnormality detection circuit 40A, and a sense resistor. It is equipped with an R SNS.
  • the terminal EX ISET is a specific external terminal to which an external resistor can be connected outside the LED driver 1A, and FIG. 8 shows a state in which the external resistor R EX_A is connected. In the state shown in FIG.
  • external external resistor R EX_A is provided an LED driver 1A, the external resistor R EX_A is connected between the terminals EX ISET and ground.
  • the external resistor R EX_A is a discrete component separate from the LED driver 1A, and can be a component of the light emitting system SYS.
  • the state in which the external resistor R EX_A is connected between the terminal EX ISET and the ground is referred to as a state with an external resistor.
  • FIG. 7 refers to a state where the external resistor R EX_A terminals EX ISET is open without being connected to the terminal EX ISET an external resistance without state.
  • each drive circuit 10 includes a transistor 11 configured as an N-channel MOSFET, an amplifier 12 which is an operational amplifier, and an amplifier 12.
  • the resistor 13 and the like are provided.
  • the terminal CH [i] is connected to the drive circuit 10 [i].
  • FIG. 7 shows only the internal configurations of two drive circuits 10 [1] and 10 [2] among the drive circuits 10 for n channels in order to prevent the illustration from becoming complicated.
  • each drive circuit 10 the drain of the transistor 11 is connected to the corresponding terminal CH. Therefore, the drain of the transistor 11 in the drive circuit 10 [i] is connected to the terminal CH [i].
  • the source of the transistor 11 is connected to the ground via the resistor 13
  • the output terminal of the amplifier 12 is connected to the gate of the transistor 11, and the non-inverting input terminal of the amplifier 12 is supplied from the circuit 20A.
  • the drive reference voltage V DREF to be applied is applied.
  • the connection node between the source of the transistor 11 and the resistor 13 is connected to the inverting input terminal of the amplifier 12.
  • each drive circuit 10 the resistor 13 is configured as a variable resistor.
  • the resistance value of the resistor 13 connected to the inverting input terminal of the amplifier 12 is variably set based on the control signal SDC [i], so that the gate potential control of the transistor 11 by the amplifier 12 is performed. Through this, the magnitude of the drive current I LED [i] when the transistor 11 is not in the off state is variably set.
  • each resistor other than the resistor 13 may be understood as a fixed resistor having a fixed resistance value unless otherwise specified.
  • the drive reference voltage V DREF and the voltage drop at the resistor 13 coincide with each other only in the high level section of the control signal S PWM [i].
  • the amplifier 12 controls the gate potential of the transistor 11, and in the low level section of the control signal S PWM [i], the output voltage of the amplifier 12 is not supplied to the gate of the transistor 11, and the transistor 11 is turned off.
  • a switch (not shown) is inserted between the output terminal of the amplifier 12 and the gate of the transistor 11, and the control signal S PWM [i] is high. Only in the level section, the switch between the output terminal of the amplifier 12 and the gate of the transistor 11 may be turned on.
  • the transistor 11 can be composed of a plurality of FETs and the resistor 13 can be composed of a plurality of resistors, whereby the resistance value of the resistor 13 arranged between the source and the ground of the transistor 11 can be changed. Can be.
  • the amplifier 12 When the output voltage of the amplifier 12 is supplied to the gate of the transistor 11 in the drive circuit 10 [i], the amplifier 12 gates the transistor 11 so that the voltage difference between its own non-inverting input terminal and the inverting input terminal becomes zero. In order to control the potential, a drive current I LED [i] depending on the resistance value of the resistor 13 connected to the inverting input terminal of the amplifier 12 flows through the light emitting unit LL [i].
  • the current value I VAL [i] (see FIG. 5) of the drive current I LED [i] is controlled in a plurality of stages based on the control signal S DC [i].
  • NS When PWM drive is performed by the drive circuit 10 [i], the on-duty of the i-channel and the high-level section of the control signal S PWM [i] are based on the control signals S PWM [i] and S DC [i].
  • the current value I VAL [i] (see FIG. 5) of the drive current I LED [i] is individually controlled in a plurality of steps.
  • the resistance value of the resistor 13 is variably set in a plurality of stages within a predetermined resistance variable range, and in conjunction with this, a plurality of current values I VAL [i] are set within a predetermined current variable range. It is variably set in stages.
  • the current value I VAL [i] is maximized when the resistance value of the resistor 13 matches the minimum value of the resistance variable range, and the current value I as the resistance value of the resistor 13 increases. VAL [i] decreases.
  • the upper limit value of the drive current I LED [i] (that is, the current value I VAL when the resistance value of the resistance 13 matches the minimum value of the variable resistance range) [I]) depends on the drive reference voltage V DREF and is represented by "V DREF / R13 MIN”.
  • the upper limit of the drive current I LED [i] is, in the case of DC driving is performed by the driving circuit 10 [i] refers to the upper limit itself the value of the driving current I LED flowing constantly [i], the driving circuit 10 [i] at or, in cases where PWM driving is performed the drive current I LED [i] is the instantaneous value of the drive current I LED [i] when the flowing limit (i.e. control signal S PWM of [i] It refers to the upper limit of the instantaneous value of the drive current I LED [i] in the high level section).
  • the drive reference voltage generation circuit 20A has a variable setting function of the drive reference voltage V DREF that determines the upper limit value of the drive current I LED [i].
  • the drive reference voltage generation circuit 20A includes a resistor 100 which is an internal resistance for generating a drive reference voltage, a reference current generation circuit 110, a current superimposition circuit 120, a current mirror circuit 130, a reference voltage generator 140, and a switch 150. And.
  • the reference current generation circuit 110 includes a transistor 111 configured as an N-channel MOSFET, an amplifier 112 which is an operational amplifier, and a resistor 113.
  • the drain of the transistor 111 is connected to the input end 131 of the current mirror circuit 130, and the source of the transistor 111 is connected to the ground via the resistor 113.
  • the gate of the transistor 111 is connected to the output terminal of the amplifier 112.
  • the connection node between the source of the transistor 111 and the resistor 113 is connected to the inverting input terminal of the amplifier 112.
  • a predetermined reference voltage V REF (for example, 0.6 V) is applied to the non-inverting input terminal of the amplifier 112. Therefore, a reference current I REF determined by the resistance value of the resistor 113 and the voltage value of the reference voltage V REF flows between the drain and the source of the transistor 111.
  • the current superimposition circuit 120 includes a transistor 121 configured as an N-channel MOSFET and an amplifier 122 which is an operational amplifier.
  • the drain of the transistor 121 is connected to one end of the switch 150, and the other end of the switch 150 is connected to the input end 131 of the current mirror circuit 130. That is, the switch 150 is inserted in series between the transistor 121, the drain, and the input end 131.
  • the source of the transistor 121 is connected to the terminal EX ISET via the sense resistor R SNS.
  • the gate of the transistor 121 is connected to the output terminal of the amplifier 122.
  • the source of the transistor 121 is connected to the inverting input terminal of the amplifier 122.
  • a predetermined reference voltage V REF is applied to the non-inverting input terminal of the amplifier 122.
  • the current mirror circuit 130 has an input end 131 and an output end 132, and outputs a current obtained by multiplying the input side current I IN_A flowing through the input end 131 by k A as an output side current I OUT_A from the output terminal 132.
  • the output end 132 is connected to one end of the resistor 100 and the other end of the resistor 100 is connected to the ground. Further, the output terminal 132 is connected to the non-inverting input terminals of the respective amplifiers 12 of the drive circuits 10 [1] to 10 [n]. Therefore, when the output side current I OUT_A is passed through the resistor 100, the voltage generated between both ends of the resistor 100 becomes the drive reference voltage V DREF .
  • the reference voltage generation unit 140 generates a reference voltage V REF having a predetermined positive DC voltage value.
  • the reference voltage generation unit 140 may be understood as a component of the circuits 110 and 120 shared between the circuits 110 and 120.
  • the mode control circuit 30A is a part of the control circuit 30 shown in FIG. 4, and controls the state of the switch 150 based on the mode setting value (FIG. 6) stored in the data holding unit 50. At this time, an external resistance abnormality flag having a value of "0" or “1” is also referred to (details will be described later).
  • the mode setting value has a value of "1” or "2".
  • the mode setting value is determined based on the mode setting signal transmitted from the microcomputer 2 to the LED driver 1 (here, the LED driver 1A). The initial value of the mode setting value is "1", and the mode setting value is "1” unless the mode setting signal is received by the LED driver 1 (here, the LED driver 1A).
  • the mode control circuit 30A When the external resistance abnormality flag has a value of "0", the mode control circuit 30A operates the circuit 20A in the mode MD A1 if the mode setting value is "1", and the mode setting value is "1". If it is 2 ”, the circuit 20A is operated in the mode MD A2. When the external resistance abnormality flag has a value of "1", the mode control circuit 30A operates the circuit 20A in the mode MD A1 regardless of the mode setting value.
  • the mode control circuit 30A keeps the switch 150 in the off state when the circuit 20A is operated in the mode MD A1 , and keeps the switch 150 in the on state when the circuit 20A is operated in the mode MD A2. Therefore, it can be said that the mode control circuit 30A is a switch control circuit that controls the state of the switch 150 based on the mode setting value.
  • the mode MD A1 is a mode in which the drive reference voltage V DREF is generated regardless of the state of the terminal EX ISET. That is, in the mode MD A1, by turning off the switch 150, whether the external resistor R EX_A is connected to the terminal EX ISET, whether terminal EX ISET is shorted to ground, to terminal EX ISET Therefore, a constant drive reference voltage V DREF is generated regardless of whether or not any voltage is applied.
  • the mode MD A2 is a mode that functions significantly in the presence of an external resistor, and is a mode in which a drive reference voltage V DREF is generated according to a current (current for the second mode) flowing through the terminal EX ISET.
  • the abnormality detection circuit 40A is a part of the abnormality detection circuit 40 shown in FIG.
  • the abnormality detection circuit 40A detects the magnitude of the current I EX_A flowing through the terminal EX ISET by detecting the voltage between both ends of the sense resistor R SNS in the mode MD A2 , and based on the detection result, the abnormality detection circuit 40A detects the magnitude of the current I EX_A . Detects the presence or absence of abnormalities.
  • the abnormality detection circuit 40A outputs a high level detection result signal S DET_A when the magnitude of the voltage between both ends of the sense resistor R SNS is equal to or higher than a predetermined value (for example, 175 mV) in the mode MD A2 , and low level otherwise.
  • a predetermined value for example, 175 mV
  • Detection result signal S DET_A is output.
  • the high level detection result signal S DET_A indicates that the current I EX_A is excessive.
  • the detection result signal S DET_A becomes high level when the terminal EX ISET is short-circuited to ground or the resistance value of the external resistor R EX_A connected to the terminal EX ISET is too low. ..
  • the detection result signal S DET_A is sent to the mode control circuit 30A.
  • the output signal (S DET_A ) of the abnormality detection circuit 40A in the mode MD A1 is invalid.
  • the mode control circuit 30A manages the value of the external resistance abnormality flag (see FIG. 6).
  • the initial value of the external resistance abnormality flag is "0".
  • the mode control circuit 30A receives the high-level detection result signal S DET_A from the abnormality detection circuit 40A in the mode MD A2 (that is, when the switch 150 is turned on)
  • the mode control circuit 30A sets the external resistance abnormality flag to "1".
  • the value of the external resistance abnormality flag is maintained at "1".
  • the situation in which the value of the external resistance abnormality flag is maintained at "1” continues until the power supply to the LED driver 1A is cut off, or until a specific signal is supplied from the MPU 2 to the LED driver 1A.
  • the operation mode of the circuit 20A is the mode MD A1 regardless of the mode setting value. Therefore, when an abnormality is detected by the abnormality detection circuit 40A during operation in the mode MD A2 (that is, when "1" is set in the external resistance abnormality flag), the switch 150 is switched from on to off. The operation mode of the circuit 20A shifts from the mode MD A2 to the mode MD A1.
  • the drive reference voltage V DREF in the case CS A2 is higher than the drive reference voltage V DREF in the case CS A1, and as a result, the upper limit of the drive current I LED [i] in each drive circuit 10 is higher than in the case CS A1 . Is also higher in case CS A2.
  • the upper limit of the drive current I LED [i] in the case CS A2 is determined depending on the magnitude of the current I EX_A (hence, the resistance value of the external resistor R EX_A).
  • Drive reference voltage generating circuit 20A mode MD A1 generates a drive reference voltage V DREF regardless of the state of the terminal EX ISET, or drive reference voltage corresponding to a current I EX_A (second mode current) through the terminal EX ISET It operates selectively in the mode MD A2 that generates V DREF.
  • the external resistor R EX_A is connected or disconnected between the terminal EX ISET and the ground outside the LED driver 1A.
  • the circuit 20A When the circuit 20A operates in the mode MD A2 with the external resistor R EX_A connected between the terminal EX ISET and the ground, the circuit 20A supplies the current I EX_A to the external resistor R EX_A via the terminal EX ISET.
  • the drive reference voltage V DREF is generated according to the magnitude of the current IEX_A at that time.
  • the drive reference voltage V DREF when the circuit 20A operates in the mode MD A2 in a state where the external resistor R EX_A is connected between the terminal EX ISET and the ground depends on the resistance value of the external resistor R EX_A.
  • the drive circuit 10 [i] increases the upper limit value of the drive current I LED [i] as the drive reference voltage V DREF increases. As a result, the upper limit of the drive current I LED [i] can be increased in the mode MD A2.
  • the drive reference voltage generation circuit 20A includes a switch 150 inserted in series between the input terminal 131 of the current mirror circuit 130 and the terminal EXISET.
  • the LED driver 1A is further provided with a switch control circuit (30A) for controlling the switch 150, and the switch control circuit (30A) turns off the switch 150 in the mode MD A1 while turning on the switch 150 in the mode MD A2. By doing so, the current I EX_A flowing through the terminal EX ISET is superimposed on the input side current I IN_A.
  • the abnormality detection circuit 40A detects the presence or absence of abnormality in the current I EX_A based on the magnitude of the current I EX_A flowing through the terminal EX ISET in the mode MD A2.
  • the switch control circuit (30A) keeps the switch 150 on when the abnormality detection circuit 40A does not detect an abnormality in the mode MD A2 (when the value of the external resistance abnormality flag is “0”), but the mode When an abnormality is detected by the abnormality detection circuit 40A in the MD A2 (when the value of the external resistance abnormality flag is "1”), the switch 150 is switched from on to off and the operation mode of the circuit 20A is changed from the mode MD A2. Shift to mode MD A1.
  • an appropriate upper limit should be set for the drive current I LED [i].
  • the external resistor REX_A becomes indispensable for setting the upper limit, the number of parts of the light emitting system SYS increases. Therefore, in order to avoid an increase in the number of parts, a mode MD A1 is provided, and an appropriate upper limit is set for the drive current I LED [i] without requiring an external resistor REX_A.
  • the LED driver 1A adopts a configuration that requires an external resistor REX_A but can meet the demand. By connecting the external resistor R EX_A and operating in the mode MD A2 , the upper limit of the drive current I LED [i] can be increased.
  • the drive current It can also function as an LED driver having a second upper limit value (for example, 125 mA) in which the upper limit value of the I LED [i] is higher than the first upper limit value. That is, it is possible to configure an LED driver having high versatility with respect to the upper limit of the drive current.
  • the abnormality detection circuit 40A it is possible to protect them from the overcurrent state.
  • a first lighting system to operate without an external resistor R EX_A in mode MD A1
  • a second lighting system to operate at the mode MD A2 using an external resistor R EX_A, selectively the realizable.
  • the operation of the current superimposing circuit 120 is unnecessary. Therefore, when the circuit 20A operates in the mode MD A1 , the mode control circuit 30A stops the operation of the current superimposition circuit 120 by cutting off the power supply to the amplifier 122 in conjunction with the off of the switch 150. Therefore, wasteful power consumption does not occur in the light emitting system SYS operated as the first light emitting system.
  • the terminal EX ISET may be short-circuited to the ground on the board on which each electronic component of the first light emitting system is mounted , but as long as it operates in mode MD A1 , both the switch 150 and the transistor 121 are turned off. Therefore, the leakage current through them is negligibly small and no problem occurs.
  • a pull-down resistor may be provided between the gate and the ground of the transistor 121.
  • Second Example A second embodiment will be described.
  • the deformation technique applicable to the first embodiment will be described.
  • the voltage between both ends of the single resistor 100 (voltage drop of the single resistor 100) is commonly supplied to all of the drive circuits 10 [1] to 10 [n] as the drive reference voltage V DREF.
  • the LED driver 1A may generate a drive reference voltage V DREF for each channel.
  • the current mirror circuit 130 is provided with a total of n output terminals 132 for the first to nth channels, and the drive reference voltage generation circuit 20A is provided with a meter for the first to nth channels.
  • the side current I OUT_A is output.
  • the drive reference voltage V DREF for the first to nth channels is generated in the resistors 100 for the first to nth channels, respectively.
  • the connection node between the output terminal 132 and the resistor 100 in the i-th channel is connected to the non-inverting input terminal of the amplifier 12 in the drive circuit 10 [i]. Therefore, the non-inverting input terminals of the amplifier 12 in the drive circuits 10 [1] to 10 [n] (that is, the drive circuits 10 for the first to nth channels) are driven for the first to nth channels, respectively.
  • the reference voltage V DREF is supplied.
  • the resistance values of the resistors 100 for the first to nth channels are all common.
  • the first to nth channels may be divided into two or more blocks, and the drive reference voltage V DREF may be generated for each block.
  • Each block consists of two or more channels.
  • FIG. 10 shows a partial configuration diagram of the LED driver 1B according to the third embodiment.
  • the LED driver 1B is used as the LED driver 1.
  • the LED driver 1B includes drive circuits 10 [1] to 10 [n], a drive reference voltage generation circuit 20B as a drive reference voltage generation circuit 20, a mode control circuit 30B, and an abnormality detection circuit 40B.
  • the terminal EX ISET is a specific external terminal to which an external resistor can be connected outside the LED driver 1B
  • FIG. 11 shows a state in which the external resistor R EX_B is connected. In the state shown in FIG.
  • the external external resistor R EX_B is provided an LED driver 1B, the external resistor R EX_B is connected between the terminals EX ISET and ground.
  • the external resistor R EX_B is a discrete component separate from the LED driver 1A, and can be a component of the light emitting system SYS.
  • the state in which the external resistor R EX_B is connected between the terminal EX ISET and the ground is referred to as a state with an external resistor.
  • FIG. 10 it referred to a state where the external resistor R EX_B terminals EX ISET is open without being connected to the terminal EX ISET an external resistance without state.
  • each drive circuit 10 in the LED driver 1B is the same as the internal configuration and operation of each drive circuit 10 in the LED driver 1A (that is, as shown in the first embodiment).
  • the contents described in the first embodiment for the drive circuit 10 and the drive current I LED are all applied to the third embodiment.
  • FIG. 10 shows only the internal configurations of two drive circuits 10 [1] and 10 [2] among the drive circuits 10 for n channels in order to prevent the illustration from becoming complicated.
  • the drive reference voltage generation circuit 20B has a variable setting function of the drive reference voltage V DREF that determines the upper limit value of the drive current I LED [i].
  • the drive reference voltage generation circuit 20B includes a resistor 200 which is an internal resistance for generating a drive reference voltage, a reference current generation circuit 210, a current mirror circuit 230, a reference voltage generation unit 240, and switches 251 and 252. ..
  • the reference current generation circuit 210 includes a transistor 211 configured as an N-channel MOSFET, an amplifier 212 which is an operational amplifier, and a resistor 213.
  • the drain of the transistor 211 is connected to the input end 231 of the current mirror circuit 230, and the source of the transistor 211 is connected to the ground via the resistor 213.
  • the gate of the transistor 211 is connected to the output terminal of the amplifier 212.
  • the connection node between the source of the transistor 211 and the resistor 213 is connected to the inverting input terminal of the amplifier 212.
  • a predetermined reference voltage V REF (for example, 0.6 V) is applied to the non-inverting input terminal of the amplifier 212. Therefore, a reference current I REF determined by the resistance value of the resistor 213 and the voltage value of the reference voltage V REF flows between the drain and the source of the transistor 211.
  • the current mirror circuit 230 has an input end 231 and output end 232 is outputted from the output terminal 232 of the k B multiplied by current input current I IN_B flowing through the input terminal 231 as an output-side current I OUT_B.
  • the input side current I IN_B always coincides with the reference current I REF by the reference current generation circuit 210.
  • the output end 232 is commonly connected to one end of the switch 251 and one end of the switch 252.
  • the other end of the switch 251 is connected to the ground via a resistor 200, and the other end of the switch 252 is connected to the terminal EXISET.
  • the output terminal 232 is connected to the non-inverting input terminal of each of the amplifiers 12 of the drive circuits 10 [1] to 10 [n].
  • the reference voltage generation unit 240 generates a reference voltage V REF having a predetermined positive DC voltage value.
  • the reference voltage generation unit 240 may be understood as a component of the reference current generation circuit 210.
  • the mode control circuit 30B is a part of the control circuit 30 shown in FIG. 4, and controls the states of the switches 251 and 252 based on the mode setting value (FIG. 6) stored in the data holding unit 50. At this time, an external resistance abnormality flag having a value of "0" or “1” is also referred to (details will be described later).
  • the mode setting value has a value of "1” or "2". The mode setting value is determined based on the mode setting signal transmitted from the microcomputer 2 to the LED driver 1 (here, the LED driver 1B). The initial value of the mode setting value is "1", and the mode setting value is "1" unless the mode setting signal is received by the LED driver 1 (here, the LED driver 1B).
  • the mode control circuit 30B When the external resistance abnormality flag has a value of "0”, the mode control circuit 30B operates the circuit 20B in the mode MD B1 if the mode setting value is "1", and the mode setting value is "1". If it is 2 ”, the circuit 20B is operated in the mode MD B2. When the external resistance abnormality flag has a value of "1”, the mode control circuit 30B operates the circuit 20B in the mode MD B1 regardless of the mode setting value.
  • the mode control circuit 30B keeps the switch 251 in the on state and the switch 252 in the off state when the circuit 20B is operated in the mode MD B1 , and the switch 251 is in the off state when the circuit 20B is operated in the mode MD B2. And keep the switch 252 on. Therefore, it can be said that the mode control circuit 30B is a switch control circuit that controls the states of the switches 251 and 252 based on the mode setting value.
  • the mode MD B1 is a mode in which the drive reference voltage V DREF is generated regardless of the state of the terminal EX ISET. That is, in the mode MD B1, by turning off the ON and switch 252 of the switch 251, whether the external resistor R EX_B is with respect to the terminal EX ISET is connected, whether the terminal EX ISET is shorted to ground, A constant drive reference voltage V DREF is generated regardless of whether or not any voltage is applied to the terminal EX ISET. In the mode MD B1 , the voltage generated between both ends of the resistor 200 by passing the output side current I OUT_B through the resistor 200 becomes the drive reference voltage V DREF .
  • the mode MD B2 is a mode that functions significantly in the state of having an external resistor, and is a mode in which a drive reference voltage V DREF is generated according to a current (current for the second mode) flowing through the terminal EX ISET.
  • the voltage of the terminal EX ISET becomes the drive reference voltage V DREF
  • the external resistor R EX_B is provided between the terminal EX ISET and the ground in the mode MD B2 , the output side current is provided in the external resistor R EX_B.
  • the voltage generated between both ends of the external resistor R EX_B by passing I OUT_B becomes the drive reference voltage V DREF .
  • the abnormality detection circuit 40B is a part of the abnormality detection circuit 40 shown in FIG.
  • the abnormality detection circuit 40B detects the presence or absence of an abnormality in the drive reference voltage V DREF by detecting the voltage of the terminal EX ISET in the mode MD B2 , in other words, an abnormality of the current I EX_B flowing through the terminal EX ISET. Detects the presence or absence of.
  • Abnormality detecting circuit 40B in the mode MD B2, when the voltage at the terminal EX ISET is within a predetermined normal voltage range, and outputs a detection result signal S DET_B the low level, the voltage at the terminal EX ISET is a positive normal voltage range When deviating, a high-level detection result signal S DET_B is output.
  • the normal voltage range here is a voltage range from a predetermined lower limit voltage (for example, 0.3 V) to a predetermined upper limit voltage (for example, 3.5 V).
  • the lower limit voltage and the upper limit voltage are positive voltages, and the upper limit voltage is higher than the lower limit voltage.
  • the high-level detection result signal S DET_B indicates that the voltage of the terminal EX ISET is too high or too low. In mode MD B2 or terminal EX ISET (i.e.
  • the mode control circuit 30B manages the value of the external resistance abnormality flag (see FIG. 6).
  • the initial value of the external resistance abnormality flag is "0".
  • the mode control circuit 30B receives the high level detection result signal S DET_B from the abnormality detection circuit 40B in the mode MD B2 (that is, when the switch 251 is off and the switch 252 is on)
  • the mode control circuit 30B sets the external resistance abnormality flag. “1” is set, and thereafter, the value of the external resistance abnormality flag is maintained at “1”.
  • the situation in which the value of the external resistance abnormality flag is maintained at "1” continues until the power supply to the LED driver 1B is cut off, or until a specific signal is supplied from the MPU 2 to the LED driver 1B.
  • the operation mode of the circuit 20B is the mode MD B1 regardless of the mode setting value. Therefore, when an abnormality is detected by the abnormality detection circuit 40B during operation in the mode MD B2 (that is, when "1" is set in the external resistance abnormality flag), the switch 251 is turned from off to on and the switch 252 is turned on. Is switched from on to off, and the operation mode of the circuit 20B shifts from the mode MD B2 to the mode MD B1.
  • circuit 20B operates in a mode MD B1 a case CS B1.
  • the drive reference voltage V DREF is determined by each value of the output side current I OUT_B and the resistor 200.
  • a case in which the circuit 20B operates in the mode MD B2 in a state with an external resistor is referred to as a case CS B2.
  • the drive reference voltage V DREF is determined by each value of the output side current I OUT_B and the external resistor R EX_B.
  • Drive reference voltage generating circuit 20B is the mode MD B1 generates a driving reference voltage V DREF regardless of the state of the terminal EX ISET, or current I EX_B (second mode current) corresponding drive reference voltage via the terminals EX ISET It operates selectively in the mode MD B2 that generates V DREF.
  • the external resistor R EX_B is connected or disconnected between the terminal EX ISET and the ground outside the LED driver 1B.
  • the circuit 20B When the circuit 20B operates in the mode MD B2 with the external resistor R EX_B connected between the terminal EX ISET and the ground, the circuit 20B supplies the current I EX_B to the external resistor R EX_B via the terminal EX ISET.
  • the drive reference voltage V DREF is generated according to the voltage generated by the external resistor R EX_B at that time.
  • the drive reference voltage V DREF when the circuit 20B operates in the mode MD B2 in a state where the external resistor R EX_B is connected between the terminal EX ISET and the ground depends on the resistance value of the external resistor R EX_B. It is higher than the drive reference voltage V DREF in the mode MD B1 , and the drive circuit 10 [i] increases the upper limit value of the drive current I LED [i] as the drive reference voltage V DREF increases. As a result, the upper limit of the drive current I LED [i] can be increased in the mode MD B2.
  • Drive reference voltage generating circuit 20B is provided with a current mirror circuit 230 for generating an output-side current I OUT_B proportional to the input-side current I IN_B, a resistor 200 is an internal resistance, and in the mode MD B1 output current By supplying I OUT_B to the resistor 200, the voltage generated by the resistor 200 is supplied to the drive circuit 10 [i] as the drive reference voltage V DREF , and in the mode MD B2 , the output side current I OUT_B is set as the current I EX_B and the terminal EX. By supplying the current to ISET , the voltage at the terminal EX ISET is supplied to the drive circuit 10 [i] as the drive reference voltage V DREF.
  • the current mirror circuit 230 is an example of a current generation circuit, and the output side current I OUT_B is an example of a predetermined current generated by the current generation circuit. In the present invention, the current generation circuit does not necessarily have to be a current mirror circuit.
  • the drive reference voltage generation circuit 20B includes a switch 251 inserted in series between the output end 232 (current generation circuit output end) of the current mirror circuit 230 and the resistor 200, and the output end 232 (current) of the current mirror circuit 230.
  • a switch 252 inserted in series between the output end of the generation circuit) and the terminal EX ISET is provided.
  • the LED driver 1B is further provided with a switch control circuit (30B) for controlling the switch 251 and the switch 252.
  • the switch control circuit (30B) supplies the output side current I OUT_B to the resistor 200 by turning on the switch 251 and turning off the switch 252 in the mode MD B1 , and turns off the switch 251 and turns on the switch 252 in the mode MD B2 . Therefore, the output side current I OUT_B is supplied as the current I EX_B toward the terminal EX ISET.
  • the LED driver 1B further includes an abnormality detection circuit 40B that detects the presence or absence of an abnormality in the drive reference voltage V DREF based on the voltage at the terminal EX ISET in the mode MD B2.
  • the switch control circuit (30B) turns off the switch 251 and turns on the switch 252 when the abnormality detection circuit 40B does not detect that there is an abnormality in the mode MD B2 (when the value of the external resistance abnormality flag is “0”).
  • the switch 251 is turned from off to on and the switch 252 is turned from on to off.
  • the operation mode of the circuit 20B is changed from the mode MD B2 to the mode MD B1.
  • the configuration of the third embodiment can be obtained by the configuration of the third embodiment. That is, according to the request in the light emitting system SYS, even if the single LED driver 1B is used as an LED driver in which the upper limit value of the drive current I LED [i] is the first upper limit value, the drive current I LED [i] It can also function as an LED driver having a second upper limit value whose upper limit value is higher than the first upper limit value. That is, it is possible to configure an LED driver having high versatility with respect to the upper limit of the drive current.
  • the drive reference voltage V DREF is too small or too large, such as when the terminal EX ISET is short-circuited or opened in the mode MD B2 , the upper limit of the drive current I LED [i] becomes inappropriate.
  • the abnormality detection circuit 40B it is possible to avoid driving the light emitting unit LL [i] in such an inappropriate state.
  • the current mirror circuit 230 is provided with a total of n output terminals 232 for the first to nth channels, and a set of a resistor 200, a switch 251, a switch 252, and a terminal EXISET is n.
  • the output terminals 232 for the first to nth channels are connected to one end of the resistors 200 for the first to nth channels via the switches 251 for the first to nth channels, respectively.
  • the other ends of the resistors 200 for the first to nth channels are all connected to the ground.
  • the resistance values of the resistors 200 for the first to nth channels are all common.
  • the output terminals 232 for the first to nth channels are connected to the terminals EXISET for the first to nth channels via switches 252 for the first to nth channels, respectively.
  • the mode control circuit 30B turns on the switch 251 for the first to nth channels and turns off the switch 252 for the first to nth channels, and sets the circuit 20B in the mode MD.
  • the switch 251 for the first to nth channels is turned off and the switch 252 for the first to nth channels is turned on.
  • the circuit 20B operates in the mode MD B2 , outside the LED driver 1B , between the terminals EX ISET for the 1st to nth channels and the ground, the external resistors R EX_B for the 1st to nth channels, respectively. (The external resistor R EX_B is not shown in FIG. 12).
  • the drive reference voltage V DREF for the first to nth channels is generated in the resistors 200 for the first to nth channels, respectively.
  • the voltage of the terminal EX ISET for the 1st to nth channels (that is, the voltage generated by the external resistor R EX_B for the 1st to nth channels) is driven for the 1st to nth channels, respectively.
  • the reference voltage is V DREF .
  • the non-inverting input terminals of the amplifier 12 in the drive circuits 10 [1] to 10 [n] (that is, the drive circuits 10 for the first to nth channels) are connected to the outputs 232 for the first to nth channels, respectively. NS.
  • the drive reference voltage V DREF for the first to nth channels is supplied to the non-inverting input terminals of the amplifier 12 in the drive circuits 10 [1] to 10 [n], respectively.
  • the mode MD B1 is applied to the first channel (that is, the switches 251 and 252 for the first channel are turned on and off, respectively), and the mode MD B2 is applied to the second channel (that is, that is). It is also possible to turn off and on the switches 251 and 252 for the second channel, respectively).
  • the first to nth channels may be divided into two or more blocks, and the drive reference voltage V DREF may be generated for each block.
  • Each block consists of two or more channels.
  • the light emitting system SYS may be mounted on a vehicle such as an automobile.
  • any lighting device provided in the vehicle can be configured by the light emitting system SYS.
  • the lighting device configured by using the light emitting system SYS is any lighting device mounted on the vehicle, such as a vehicle headlamp, a tail lamp, a brake lamp (stop lamp), and a turn signal.
  • the modes MD A2 or MD B2 shown in any of the first to fourth embodiments are used in order to increase the brightness of the brake lamp.
  • a high-level detection result signal S DET_A or S DET_B is output from the abnormality detection circuit 40A or 40B due to some abnormality occurring in the terminal EX ISET portion. If the above abnormality occurs, it is inappropriate to continue setting the drive reference voltage V DREF in the mode MD A2 or MD B2.
  • the LED driver 1A according to the first and second embodiment, the mode if the detection result signal S DET_A high level at MD A2 is derived, mode the operation mode from the mode MD A2 circuits 20A MD A1 It is possible to continue supplying the drive current I LED [i] to the light emitting unit LL [i] by switching to. The same applies to the LED driver 1B according to the third and fourth embodiments.
  • the drive current I is controlled by fixing all the transistors 11 of the drive circuits 10 [1] to 10 [n] to the off state under the control of the control circuit 30 regardless of the drive setting data (see FIG. 6). LED [1] to I LED [n] are all maintained at zero.
  • Whether or not the shutdown process is executed may be switched based on the signal supplied from the MPU 2 to the LED driver 1A or 1B.
  • the shutdown setting value is stored in the data holding unit 50, and the shutdown setting value is set to "0" or “1” based on the signal supplied from the MPU 2 to the LED driver 1A or 1B.
  • the control circuit 30 refers to the value of the shutdown set value, and if the shutdown set value is "0", the first or first 3
  • the circuit 20A or 20B is controlled so that the operation shown in the embodiment is performed, and if the shutdown setting value is “1”, the shutdown process is performed.
  • the abnormality detection circuit 40 including the abnormality detection circuit 40A is, in principle, a high level terminal.
  • the FAILB level is set to a low level in cooperation with the pull-up resistor R PU (see FIGS. 1 and 4).
  • the abnormality detection circuit 40 including the abnormality detection circuit 40B is in principle high level. the level of terminal FAILB being, a pull-up resistor R PU in cooperation with the low level (see FIG. 1, FIG. 4).
  • the MPU 2 can determine the presence or absence of an abnormality related to the LED driver 1 by monitoring the level of the wiring 3 that matches the level of the terminal FAILB. When the MPU 2 recognizes that the level of the wiring 3 is low, it can request the LED driver 1 (1A or 1B) to transmit the data in the data holding unit 50 via the communication wiring 4.
  • the data required to be transmitted here includes the above-mentioned external resistance abnormality flag, a temperature abnormality flag indicating whether or not a temperature abnormality has occurred, and an input voltage abnormality flag indicating whether or not an input voltage VIN abnormality has occurred. Etc. are included.
  • the MPU 2 can recognize what kind of abnormality is detected by the LED driver 1 based on the data received from the LED driver 1.
  • the external terminal for mode setting is included in the plurality of external terminals provided on the LED driver 1 (1A or 1B). Then, the mode control circuit 30A of FIG. 7 sets the operation mode of the circuit 20A to the mode MD A1 or MD A2 according to the voltage of the external terminal for mode setting. For example, the voltage value of the external terminal for mode setting is binarized to low level and high level with a predetermined value as a boundary. When the voltage value of the external terminal for mode setting is low level, the operation mode of the circuit 20A is set to mode MD A1, and when the voltage value of the external terminal for mode setting is high level, the operation mode of the circuit 20A is set. Is the mode MD A2 (or vice versa). Similarly, the mode control circuit 30B of FIG.
  • the 10 sets the operation mode of the circuit 20B to the mode MD B1 or MD B2 according to the voltage of the external terminal for mode setting. For example, the voltage value of the external terminal for mode setting is binarized to low level and high level with a predetermined value as a boundary. Then, when the voltage value of the external terminal for mode setting is low level, the operation mode of the circuit 20B is set to mode MD B1, and when the voltage value of the external terminal for mode setting is high level, the operation mode of the circuit 20B is set. Is the mode MD B2 (or vice versa).
  • the handling when the high level detection result signal S DET_A or S DET_B is derived in the mode MD A2 or MD B2 and the value of the external resistance abnormality flag is set to "1" is the above-mentioned embodiment. It may be as shown in.
  • the number of channels in the LED driver 1 that is, the value of n may be "1".
  • n 1
  • all the symbols "[i]” indicating the above-mentioned channel numbers represent "[1]”.
  • the light emitting unit LL is composed of one or more light emitting elements that emit light by supplying a current.
  • the LED as the light emitting element may be any kind of light emitting diode, or may be an organic LED that realizes organic EL (organic electroluminescence). Further, the light emitting element may not be classified as an LED, and may be, for example, a laser diode.
  • the light-emitting element drive device and light-emitting system SYS embodied as LED drivers in this embodiment are not limited to in-vehicle applications, but are also used for backlights of liquid crystal display panels and LIDAR (Laser Imaging Detection and Ringing) systems using laser diodes. , Head-up display, etc., can be used for various purposes.
  • LIDAR Laser Imaging Detection and Ringing
  • the relationship between the high level and the low level may be reversed in a manner that does not impair the above-mentioned purpose.
  • the channel types of FETs are examples, so that the N-channel type FET is changed to the P-channel type FET, or the P-channel type FET is N-channel.
  • the configuration of the circuit containing the FET can be modified so that it is changed to a type FET.
  • the above-mentioned arbitrary transistor may be any kind of transistor as long as no inconvenience occurs.
  • any transistor described above as a MOSFET can be replaced with a junction FET, an IGBT (Insulated Gate Bipolar Transistor), or a bipolar transistor as long as no inconvenience occurs.
  • Any transistor has a first electrode, a second electrode and a control electrode.
  • the FET one of the first and second electrodes is a drain, the other is a source, and the control electrode is a gate.
  • the IGBT one of the first and second electrodes is a collector, the other is an emitter, and the control electrode is a gate.
  • a bipolar transistor that does not belong to an IGBT one of the first and second electrodes is a collector, the other is an emitter, and the control electrode is the base.

Abstract

LEDドライバ(1A)は、1以上のLEDから成る発光部に可変の駆動電流を流すことで発光部を発光させる駆動回路(10[i])と、駆動電流の上限値を定める駆動基準電圧(VDREF)を生成して駆動回路に供給する駆動基準電圧生成回路(20A)と、外部抵抗(REX_A)を外付け接続可能な特定外部端子(EXISET)と、を備える。駆動基準電圧生成回路は、特定外部端子の状態に依らず駆動基準電圧を生成する第1モード、又は、特定外部端子を介する第2モード用電流(IEX_A)に応じ駆動基準電圧を生成する第2モードにて、選択的に動作する。

Description

発光素子駆動装置及び発光システム
 本発明は、発光素子駆動装置及び発光システムに関する。
 LEDドライバはLEDにて構成された発光部を駆動する。LEDドライバは、典型的には、半導体集積回路を、樹脂にて構成された筐体(パッケージ)内に封入することで形成された電子部品であり、LEDドライバの筐体に複数の外部端子が露出して設けられる。
特開2010-182883号公報
 図13に第1参考構成に係るLEDドライバ910を示し、図14に第2参考構成に係るLEDドライバ920を示す。LEDドライバ910及び920は、夫々に、発光部950が接続されるべき発光部接続端子を複数チャネル分備え、チャネルごとに所望の駆動電流を発光部950に供給する。LEDドライバ910におけるチャネルごとの駆動回路911及びLEDドライバ920におけるチャネルごとの駆動回路921は、対応する発光部950をPWM駆動又はDC駆動する。駆動回路911又は921において、調光制御信号SDIMMINGに基づき駆動回路内の可変抵抗の抵抗値を所定の調整範囲内で調整することで駆動電流を可変することができ、その際の駆動電流の上限値は駆動基準電圧VDREF’に依存して定まる。
 図13のLEDドライバ910においては、LEDドライバ910に外付け接続された外部抵抗Raに基づいて駆動基準電圧VDREF’(従って駆動電流の上限値)が設定される。図14のLEDドライバ920においては、LEDドライバ920に内蔵された内部抵抗Rbに基づいて駆動基準電圧VDREF’(従って駆動電流の上限値)が設定される。
 外部抵抗Raを用いた場合の方が内部抵抗Rbを用いる場合よりも、駆動電流の上限値の設定精度が高くなることが見込まれるが、外部抵抗Raが必要な分、システム全体の部品点数が増大する。このため、外部抵抗Raを要しないLEDドライバ920が好まれる場合も多い。
 他方、LEDドライバ920を組み込んだシステムによっては、駆動電流の上限値の増大が要望されることもある。つまり、図14のLEDドライバ920では、発光部接続端子に接続されることが期待される発光部950の特性等に併せて駆動電流の上限値が予め第1上限値(例えば60mA)に設定されるが、LEDドライバ920を組み込むシステムによっては、駆動電流の上限値を第2上限値まで増大させることが要求されることもある(第1上限値<第2上限値)。しかしながら、LEDドライバ920では設計段階で定めた駆動基準電圧VDREF’を変えることはできないので、上記要望に応えることはできない。
 図13のLEDドライバ910を用いることで上記要望に応えることができるが、LEDドライバ910を用いた場合、駆動電流の上限値が第1上限値で構わないシステムにおいても外部抵抗Raが必須となる。
 LEDドライバ910とLEDドライバ920を別々に用意し、駆動電流の上限値が第1上限値で構わないシステムに対してはLEDドライバ920を適用し、駆動電流の上限値を第1上限値より高めたいシステムに対してはLEDドライバ910を適用するといったことも考えられる。しかしながら、それでは、LEDドライバ910及び920の双方を設計及び製造する必要があり、汎用性に欠ける。
 尚、発光部を構成する発光素子としてLEDを例示すると共に発光素子駆動装置としてLEDドライバを例示して、発光素子駆動装置に関わる事情を説明したが、LED以外の発光素子を取り扱う発光素子駆動装置においても同様の事情が存在し得る。
 本発明は、駆動電流の上限に関して高い汎用性を有する発光素子駆動装置及び発光システムを提供することを目的とする。
 本発明に係る発光素子駆動装置は、1以上の発光素子から成る発光部に可変の駆動電流を流すことで前記発光部を発光させる駆動回路と、前記駆動電流の上限値を定める駆動基準電圧を生成して前記駆動回路に供給する駆動基準電圧生成回路と、特定外部端子と、を備えた発光素子駆動装置であって、前記駆動基準電圧生成回路は、前記特定外部端子の状態に依らず前記駆動基準電圧を生成する第1モード、又は、前記特定外部端子を介する第2モード用電流に応じ前記駆動基準電圧を生成する第2モードにて、選択的に動作する構成(第1の構成)である。
 上記第1の構成に係る発光素子駆動装置に関し、前記発光素子駆動装置の外部において前記特定外部端子とグランドとの間に外部抵抗が接続又は非接続とされる構成(第2の構成)であっても良い。
 上記第2の構成に係る発光素子駆動装置に関し、前記特定外部端子及び前記グランド間に前記外部抵抗が接続された状態において、前記駆動基準電圧生成回路が前記第2モードで動作するとき、前記駆動基準電圧生成回路は、前記特定外部端子を介して前記外部抵抗に前記第2モード用電流を供給し、前記第2モード用電流の大きさに応じて又は前記外部抵抗での発生電圧に応じて前記駆動基準電圧を生成する構成(第3の構成)であっても良い。
 上記第3の構成に係る発光素子駆動装置に関し、前記特定外部端子及び前記グランド間に前記外部抵抗が接続された状態において前記駆動基準電圧生成回路が前記第2モードで動作するとき、前記駆動基準電圧は、前記外部抵抗の抵抗値に依存して、前記第1モードにおける前記駆動基準電圧よりも高く、前記駆動回路は、前記駆動基準電圧の増大に伴って前記駆動電流の上限値を増大させる構成(第4の構成)であっても良い。
 上記第1~第4の構成の何れかに係る発光素子駆動装置において、前記駆動基準電圧生成回路は、前記第1モード及び前記第2モードにて共通に基準電流を生成する基準電流生成回路と、前記第1モード及び前記第2モードの内、前記第2モードにおいてのみ前記第2モード用電流を発生させる電流重畳回路と、入力側電流に比例する出力側電流を生成するカレントミラー回路と、を備えて、前記出力側電流に比例して前記駆動基準電圧を生成し、前記第1モードにおいては前記基準電流が前記入力側電流とされ、前記第2モードにおいては前記基準電流と前記第2モード用電流との和が前記入力側電流とされる構成(第5の構成)であっても良い。
 上記第5の構成に係る発光素子駆動装置において、前記駆動基準電圧生成回路は、前記カレントミラー回路の入力端と前記特定外部端子との間に直列に挿入されたスイッチを備え、当該発光素子駆動装置には前記スイッチを制御するスイッチ制御回路が更に設けられ、前記スイッチ制御回路は、前記第1モードにおいて前記スイッチをオフとし、前記第2モードにおいて前記スイッチをオンとすることで前記特定外部端子を介して流れる前記第2モード用電流を前記入力側電流に重畳する構成(第6の構成)であっても良い。
 上記第6の構成に係る発光素子駆動装置に関し、前記第2モードにおいて前記特定外部端子を介して流れる前記第2モード用電流の大きさに基づき前記第2モード用電流の異常の有無を検出する異常検出回路を更に備え、前記スイッチ制御回路は、前記第2モードにおいて前記異常検出回路により前記異常が有ると検出されていないときには前記スイッチをオンに保つが、前記第2モードにおいて前記異常検出回路により前記異常が有ると検出されたときには前記スイッチをオンからオフに切り替えて前記駆動基準電圧生成回路の動作モードを前記第2モードから前記第1モードに移行させる構成(第7の構成)であっても良い。
 上記第1~第4の構成の何れかに係る発光素子駆動装置において、前記駆動基準電圧生成回路は、所定電流を生成する電流生成回路と、内部抵抗と、を備えて、前記第1モードにおいては前記所定電流を前記内部抵抗に供給することで前記内部抵抗での発生電圧を前記駆動基準電圧として前記駆動回路に供給し、前記第2モードにおいては前記所定電流を前記第2モード用電流として前記特定外部端子に向けて供給することで前記特定外部端子にて発生した電圧を前記駆動基準電圧として前記駆動回路に供給する構成(第8の構成)であっても良い。
 上記第8の構成に係る発光素子駆動装置において、前記駆動基準電圧生成回路は、前記電流生成回路の出力端と前記内部抵抗との間に直列に挿入された第1スイッチと、前記電流生成回路の出力端と前記特定外部端子との間に直列に挿入された第2スイッチと、を備え、当該発光素子駆動装置には前記第1スイッチ及び前記第2スイッチを制御するスイッチ制御回路が更に設けられ、前記スイッチ制御回路は、前記第1モードにおいて前記第1スイッチをオン且つ前記第2スイッチをオフとすることで前記所定電流を前記内部抵抗に供給し、前記第2モードにおいて前記第1スイッチをオフ且つ前記第2スイッチをオンとすることで前記所定電流を前記第2モード用電流として前記特定外部端子に向けて供給する構成(第9の構成)であっても良い。
 上記第9の構成に係る発光素子駆動装置に関し、前記第2モードにおいて前記特定外部端子での電圧に基づき前記駆動基準電圧の異常の有無を検出する異常検出回路を更に備え、前記スイッチ制御回路は、前記第2モードにおいて前記異常検出回路により前記異常が有ると検出されていないときには前記第1スイッチをオフ且つ前記第2スイッチをオンに保つが、前記第2モードにおいて前記異常検出回路により前記異常が有ると検出されたときには前記第1スイッチをオフからオンに且つ前記第2スイッチをオンからオフに切り替えて前記駆動基準電圧生成回路の動作モードを前記第2モードから前記第1モードに移行させる構成(第10の構成)であっても良い。
 上記第1~第10の構成の何れかに係る発光素子駆動装置において、前記駆動回路は、複数チャネル分設けられ、前記駆動基準電圧生成回路は、各チャネルに対して前記駆動基準電圧を生成する構成(第11の構成)であっても良い。
 本発明に係る発光システムは、上記第1~第11の構成の何れかに係る発光素子駆動装置と、前記発光素子駆動装置により駆動制御される発光部と、を備えた構成(第12の構成)である。
 本発明によれば、駆動電流の上限に関して高い汎用性を有する発光素子駆動装置及び発光システムを提供することが可能となる。
本発明の実施形態に係る発光システムの全体構成図である。 本発明の実施形態に係るLEDドライバの外観斜視図である。 本発明の実施形態に係る発光システムの全体構成図である。 本発明の実施形態に係り、LEDドライバの要部の内部ブロック図である。 本発明の実施形態に係り、PWMの制御信号と発光部の駆動電流との関係を示す図である。 本発明の実施形態に係り、LEDドライバのデータ保持部の格納データを示す図である。 本発明の実施形態に属する第1実施例に係り、LEDドライバの内部構成図である(外部抵抗無し状態)。 本発明の実施形態に属する第1実施例に係り、LEDドライバの内部構成図である(外部抵抗有り状態)。 本発明の実施形態に属する第2実施例に係り、LEDドライバの一部の変形内部構成図である。 本発明の実施形態に属する第3実施例に係り、LEDドライバの内部構成図である(外部抵抗無し状態)。 本発明の実施形態に属する第3実施例に係り、LEDドライバの内部構成図である(外部抵抗有り状態)。 本発明の実施形態に属する第4実施例に係り、LEDドライバの一部の変形内部構成図である。 第1参考構成に係るLEDドライバ及び複数の発光部を示す図である。 第2参考構成に係るLEDドライバ及び複数の発光部を示す図である。
 以下、本発明の実施形態の例を、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。尚、本明細書では、記述の簡略化上、情報、信号、物理量、素子又は部位等を参照する記号又は符号を記すことによって、該記号又は符号に対応する情報、信号、物理量、素子又は部位等の名称を省略又は略記することがある。例えば、後述の“20A”によって参照される駆動基準電圧生成回路は(図7参照)、駆動基準電圧生成回路20Aと表記されることもあるし、回路20Aと略記されることもあり得るが、それらは全て同じものを指す。
 まず、本発明の実施形態の記述にて用いられる幾つかの用語について説明を設ける。グランドとは、基準となる0V(ゼロボルト)の電位を有する基準導電部を指す又は0Vの電位そのものを指す。基準導電部は金属等の導体にて形成される。0Vの電位をグランド電位と称することもある。本発明の実施形態において、特に基準を設けずに示される電圧は、グランドから見た電位を表す。レベルとは電位のレベルを指し、任意の信号又は電圧についてハイレベルはローレベルよりも高い電位を有する。任意の信号又は電圧について、信号又は電圧がハイレベルにあるとは信号又は電圧のレベルがハイレベルにあることを意味し、信号又は電圧がローレベルにあるとは信号又は電圧のレベルがローレベルにあることを意味する。信号についてのレベルは信号レベルと表現されることがあり、電圧についてのレベルは電圧レベルと表現されることがある。ハイレベル又はローレベルの信号レベルをとる任意の信号について、当該信号のレベルがハイレベルとなる区間をハイレベル区間と称し、当該信号のレベルがローレベルとなる区間をローレベル区間と称する。ハイレベル又はローレベルの電圧レベルをとる任意の電圧についても同様である。
 MOSFETを含むFET(電界効果トランジスタ)として構成された任意のトランジスタについて、オン状態とは、当該トランジスタのドレイン及びソース間が導通している状態を指し、オフ状態とは、当該トランジスタのドレイン及びソース間が非導通となっている状態(遮断状態)を指す。FETに分類されないトランジスタについても同様である。MOSFETは、特に記述無き限り、エンハンスメント型のMOSFETであると解される。MOSFETは“metal-oxide-semiconductor field-effect transistor”の略称である。
 任意のスイッチを1以上のFET(電界効果トランジスタ)にて構成することができ、或るスイッチがオン状態のときには当該スイッチの両端間が導通する一方で或るスイッチがオフ状態のときには当該スイッチの両端間が非導通となる。以下、任意のトランジスタ又はスイッチについて、オン状態、オフ状態を、単に、オン、オフと表現することもある。
 図1に本発明の実施形態に係る発光システムSYSの全体構成図を示す。発光システムSYSは、発光素子駆動装置の例であるLEDドライバ1と、LEDドライバ1を制御するMPU(Micro Processing Unit)2と、LEDドライバ1により駆動制御されるnチャネル分の発光部LLと、を備える。nは2以上の任意の整数(例えば24)である。“n=1”であり得ても良いが、以下では特に記述なき限り、“n≧2”であるとする。また、プルアップ抵抗RPU、配線3及び4も発光システムSYSの構成要素に含まれる。
 各発光部LLは1以上のLED(発光ダイオード)から成る。例えば、発光部LLは複数のLEDの直列回路にて構成される。但し、発光部LLは複数のLEDの並列回路にて構成されていても良いし、複数のLEDの直列回路と複数のLEDの並列回路とが1つの発光部LLに混在していても良い。単一のLEDにて1つの発光部LLが構成されることがあっても良い。各発光部LLは高電位端及び低電位端を有し、発光部LLを形成する各LEDは高電位端から低電位端に向かう方向に順方向を有する。
 LEDドライバ1には、n個の端子CHが設けられている。各端子CHは発光部LLが接続されるべき発光部接続端子である。各発光部LLの高電位端には正の直流電圧である電源電圧VPOWが印加され、各発光部LLの低電位端は対応する端子CHに接続される。各発光部LLに流れる電流を駆動電流ILEDと称する。
 LEDドライバ1は、図2に示すような、半導体集積回路を、樹脂にて構成された筐体(パッケージ)内に封入することで形成された電子部品(半導体装置)である。LEDドライバ1の筐体に複数の外部端子が露出して設けられている。図1の構成例に係るLEDドライバ1において、上記複数の外部端子には、図1に示される端子IN、GND、EXISET、FAILB及びCOM並びにn個の端子CHが含まれる。これら以外の端子も、上記複数の外部端子に含まれうる。尚、図2に示されるLEDドライバ1の外部端子の数及びLEDドライバ1の外観は例示に過ぎない。
 LEDドライバ1の外部より入力電圧VINが端子INに供給される。入力電圧VINとして正の直流電圧が想定される。LEDドライバ1は入力電圧VINに基づいて駆動する。端子GNDはグランドに接続される。端子FAILBは配線3を通じてMPU2に接続される。MPU2は所定の正の直流電圧である電源電圧VCCに基づいて駆動する。端子FAILBとMPU2とを接続する配線3はプルアップ抵抗RPUを介して電源電圧VCCの印加端(電源電圧VCCが印加される端子)に接続される。また、MPU2は通信用配線4を通じて通信用端子である端子COMに接続される。LEDドライバ1及びMPU2は通信用配線4を通じて双方向通信が可能となっている。図1では、端子COMが1つしか示されていないが、端子COMは実際には複数の外部端子から成り、これに対応して通信用配線4は複数の配線から成る。LEDドライバ1及びMPU2間の通信方式は任意であり、例えばSPI(Serial Peripheral Interface)に準拠するものであって良い。端子EXISETについては後述される。
 図3を参照し、以下では、n個の端子CH(換言すればnチャネル分の端子CH)を互いに区別する必要がある場合、n個の端子CHを端子CH[1]~CH[n]と称する。同様に、n個の発光部LL(換言すればnチャネル分の発光部LL)を互いに区別する必要がある場合、n個の発光部LLを発光部LL[1]~LL[n]と称し、発光部LL[i]に流れる駆動電流ILEDを特に駆動電流ILED[i]と称する。iは任意の整数を表す。第1~第nチャネルにおける端子CHが、夫々、端子CH[1]~CH[n]であり、第1~第nチャネルにおける発光部LLが、夫々、発光部LL[1]~LL[n]である。発光部LL[1]~LL[n]の各高電位端は電源電圧VPOWの印加端(電源電圧VPOWが印加される端子)に接続され、発光部LL[1]~LL[n]の低電位端は、夫々、端子CH[1]~CH[n]に接続される。故に、駆動電流ILED[1]~ILED[n]は、夫々、端子CH[1]~CH[n]を介して流れる。
 尚、LEDドライバ1は、入力電圧VINから電源電圧VPOWを生成するDC/DCコンバータの機能を備えていても良い。当該DC/DCコンバータは、例えば、端子CH[1]~CH[n]の電圧に基づき電源電圧VPOWの電圧値を制御して良い。電源電圧VPOWを生成する回路は、LEDドライバ1とは別に設けられた回路であっても良い。
 図4にLEDドライバ1の要部の内部ブロック図を示す。LEDドライバ1は、第1~第nチャネル用の駆動回路である駆動回路10[1]~10[n]と、駆動基準電圧生成回路20と、制御回路30と、異常検出回路40と、データ保持部50と、内部電圧生成回路60と、を備える。それら以外の部位もLEDドライバ1に更に設けられうるが、図4では図示を省略している。駆動回路10[1]~10[n]を互いに区別する必要がないとき、駆動回路10[1]~10[n]の何れか又は全部は、駆動回路10と称されることがある。
 駆動回路10[1]~10[n]は、夫々、端子CH[1]~CH[n]に接続される。制御回路30から駆動回路10[1]~10[n]に対し、制御信号SPWM[1]~SPWM[n]及びSDC[1]~SDC[n]を含む駆動制御信号が供給され、駆動回路10[1]~10[n]は駆動制御信号に基づいて発光部LL[1]~LL[n]を個別にPWM駆動又はDC駆動することができる。
 駆動回路10[i]は、PWM駆動を行うとき、制御信号SPWM[i]に基づき対応する発光部LL[i]をPWM制御にてパルス発光させ、制御信号SDC[i]に基づき駆動電流ILED[i]が流れているときの駆動電流ILED[i]の大きさを複数段階で制御する。駆動回路10[i]は、DC駆動を行うとき、発光部LL[i]に常時駆動電流ILED[i]を供給することで発光部LL[i]を常時発光させ、この際、制御信号SDC[i]に基づき駆動電流ILED[i]の大きさを複数段階で制御する。
 駆動基準電圧生成回路20は、各駆動回路10に対して駆動基準電圧VDREFを供給する。駆動基準電圧VDREFにより駆動電流ILED[i]の上限値が定められる。即ち、駆動回路10[i]は制御信号SDC[i]に基づき駆動電流ILED[i]が流れているときの駆動電流ILED[i]の大きさを複数段階で制御するが、その駆動電流ILED[i]の大きさの上限は駆動基準電圧VDREFに依存して決定される(これを実現する具体的な構成例は後述される)。駆動基準電圧VDREFは駆動回路10ごとに生成されても良いし、駆動回路10[1]~10[n]に共通の単一の駆動基準電圧VDREFが生成されても良い。
 制御回路30は、駆動基準電圧回路20及び各駆動回路10を制御する。制御回路30は、MPU2からの信号に基づいて制御信号SPWM[1]~SPWM[n]及びSDC[1]~SDC[n]を含む駆動制御信号を生成する。具体的には例えば、MPU2から駆動条件設定信号が通信用配線4を介してLEDドライバ1に与えられ、当該駆動条件設定信号に基づく駆動設定データがデータ保持部50に格納される(図6参照)。制御回路30は、データ保持部50に格納された駆動設定データに基づいて、制御信号SPWM[1]~SPWM[n]及びSDC[1]~SDC[n]を含む駆動制御信号を生成する。
 図5にPWM駆動が行われるときの制御信号SPWM[i]と駆動電流ILED[i]との関係を示す。制御信号SPWM[i]の信号形態は任意であるが、ここでは、制御信号SPWM[i]はハイレベル又はローレベルの何れかをとる二値化信号であると考える。制御信号SPWM[i]は所定のPWM周波数を持つ。駆動回路10[i]の機能により、制御信号SPWM[i]のハイレベル区間において駆動電流ILED[i]の値は電流値IVAL[i]となり、制御信号SPWM[i]のローレベル区間において駆動電流ILED[i]の値はゼロとなる(但し過渡状態を無視)。電流値IVAL[i]はゼロより大きい。制御信号SPWM[i]のハイレベル区間と制御信号SPWM[i]のローレベル区間との和に対する、制御信号SPWM[i]のハイレベル区間の比を、第iチャネルのオンデューティと称する。第iチャネルのオンデューティは制御信号SPWM[i]に基づき複数段階で可変設定される(例えば256段階で可変設定される)。また、電流値IVAL[i]は制御信号SDC[i]に基づき複数段階で可変設定される(例えば256段階で可変設定される)。
 駆動回路10[i]にてDC駆動が行われるときには、常時、電流値IVAL[i]を持つ駆動電流ILED[i]が流れる。駆動回路10[i]によるDC駆動は、第iチャネルのオンデューティが100%となることと等価である。駆動回路10[i]にてDC駆動が行われるとき、制御信号SPWM[i]は常にハイレベルに維持されている、と考えて良い。
 異常検出回路40はLEDドライバ1に関わる異常の有無を検出する。異常検出回路40にて有無が検出される異常は、LEDドライバ1の温度が高すぎることによる温度異常、入力電圧VINが低すぎる又は高すぎることによる入力電圧異常などを含む他、端子EXISETに関わる異常(詳細は後述)も含む。異常検出回路40にて一切の異常が検出されていないとき、異常検出回路40は端子FAILBをハイインピーダンス状態とすることで配線3のレベルをハイレベルに保つ。異常検出回路40にて何らかの異常が検出されると、異常検出回路40はプルアップ抵抗RPUと協働して端子FAILBのレベルをローレベルとする。例えば、LEDドライバ1にオープンドレイン構成のFETを設けておき、当該FETのドレインを端子FAILBに接続しておいて異常の有無の検出結果に基づき異常検出回路40が当該FETのゲート電位を制御すれば良い。MPU2は配線3のレベルを監視することでLEDドライバ1に関わる異常の有無を判断できる。
 データ保持部50は、図6に示す如く、上述の駆動設定データに格納すると共に、モード設定値及び外部抵抗異常フラグを格納する。この他にも、様々なデータ及びフラグがデータ保持部50に格納される。モード設定値及び外部抵抗異常フラグについては後述される。尚、データ等に関し、格納と保持は同義であると解して良い。データ保持部50は、RAM(Random access memory)であっても良いし、レジスタ又はルックアップテーブルに分類されるものであっても良いし、フリップフロップ等を含むロジック回路の組み合わせにて構成されていても良い。何れにせよ、データ保持部50は、必要なデータを保持すると共に、自身が保持しているデータを制御回路30に対して出力できる。この機能を実現できる限り、データ保持部50の種類及び構成は任意である。
 内部電圧生成回路60は、入力電圧VINに基づいて1以上の所定の内部電圧を生成する。LEDドライバ1を構成する各回路は、内部電圧生成回路60の生成電圧に基づいて駆動する。
 以下、複数の実施例の中で、発光システムSYSに関する幾つかの具体的な構成例、応用技術、変形技術等を説明する。本実施形態にて上述した事項は、特に記述無き限り且つ矛盾無き限り、以下の各実施例に適用され、各実施例において、上述した事項と矛盾する事項については各実施例での記載が優先されて良い。また矛盾無き限り、以下に示す複数の実施例の内、任意の実施例に記載した事項を、他の任意の実施例に適用することもできる(即ち複数の実施例の内の任意の2以上の実施例を組み合わせることも可能である)。
<<第1実施例>>
 第1実施例を説明する。図7に、第1実施例に係るLEDドライバ1Aの一部構成図を示す。第1実施例ではLEDドライバ1AがLEDドライバ1として用いられる。LEDドライバ1Aは、駆動回路10[1]~10[n]を備えると共に、駆動基準電圧生成回路20として駆動基準電圧生成回路20Aを備え、且つ、モード制御回路30A、異常検出回路40A及びセンス抵抗RSNSを備える。端子EXISETはLEDドライバ1Aの外部において外部抵抗が接続されうる特定外部端子であり、図8に外部抵抗REX_Aが接続された状態を示す。図8に示す状態では、LEDドライバ1Aの外部に外部抵抗REX_Aが設けられ、外部抵抗REX_Aは端子EXISET及びグランド間に接続されている。外部抵抗REX_Aは、LEDドライバ1Aとは別のディスクリート部品であり、発光システムSYSの構成要素となりうる。図8に示す如く、外部抵抗REX_Aが端子EXISET及びグランド間に接続されている状態を外部抵抗有り状態と称する。図7に示す如く、外部抵抗REX_Aが端子EXISETに接続されずに端子EXISETが開放されている状態を外部抵抗無し状態と称する。
 LEDドライバ1Aにおいて駆動回路10[1]~10[n]の内部構成は互いに同じであり、各駆動回路10は、Nチャネル型MOSFETとして構成されたトランジスタ11と、演算増幅器であるアンプ12と、抵抗13と、を備える。駆動回路10[i]に対して端子CH[i]が接続される。尚、図7では、図示の煩雑化防止のため、nチャネル分の駆動回路10の内、2つの駆動回路10[1]及び10[2]の内部構成のみが示されている。
 各駆動回路10において、トランジスタ11のドレインは対応する端子CHに接続される。従って、駆動回路10[i]におけるトランジスタ11のドレインは端子CH[i]に接続される。各駆動回路10において、トランジスタ11のソースは抵抗13を介してグランドに接続され、アンプ12の出力端子はトランジスタ11のゲートに接続され、且つ、アンプ12の非反転入力端子には回路20Aから供給される駆動基準電圧VDREFが印加される。各駆動回路10において、トランジスタ11のソースと抵抗13との接続ノードは、アンプ12の反転入力端子に接続される。
 各駆動回路10において抵抗13は可変抵抗として構成されている。駆動回路10[i]において、アンプ12の反転入力端子に接続される抵抗13の抵抗値が制御信号SDC[i]に基づき可変設定とされることで、アンプ12によるトランジスタ11のゲート電位制御を通じ、トランジスタ11がオフ状態でないときの駆動電流ILED[i]の大きさが可変設定される。尚、本実施形態において、抵抗13以外の各抵抗は、特に記述なき限り、抵抗値が固定された固定抵抗であると解して良い。
 また、図7からは明らかではないが、駆動回路10[i]では、制御信号SPWM[i]のハイレベル区間においてのみ、駆動基準電圧VDREFと抵抗13での電圧降下とが一致するようアンプ12がトランジスタ11のゲート電位を制御し、制御信号SPWM[i]のローレベル区間ではアンプ12の出力電圧がトランジスタ11のゲートに供給されずにトランジスタ11がオフ状態となる。
 これを実現するために例えば、駆動回路10[i]において、アンプ12の出力端子とトランジスタ11のゲートとの間にスイッチ(不図示)を挿入しておき、制御信号SPWM[i]のハイレベル区間においてのみ、アンプ12の出力端子及びトランジスタ11のゲート間のスイッチをオンとすれば良い。尚、実際にはトランジスタ11を複数のFETにて構成すると共に複数の抵抗にて抵抗13を構成することができ、これによってトランジスタ11のソース及びグランド間に配置される抵抗13の抵抗値を可変とすることができる。
 駆動回路10[i]においてアンプ12の出力電圧がトランジスタ11のゲートに供給されるとき、アンプ12は自身の非反転入力端子及び反転入力端子間の電圧差がゼロとなるようにトランジスタ11のゲート電位を制御するため、アンプ12の反転入力端子に接続される抵抗13の抵抗値に依存した駆動電流ILED[i]が発光部LL[i]に流れる。
 駆動回路10[i]によりDC駆動が行われるときには、制御信号SDC[i]に基づき、駆動電流ILED[i]の電流値IVAL[i](図5参照)が複数段階で制御される。駆動回路10[i]によりPWM駆動が行われるときには、制御信号SPWM[i]及びSDC[i]に基づき、第iチャネルのオンデューティと、制御信号SPWM[i]のハイレベル区間における駆動電流ILED[i]の電流値IVAL[i](図5参照)と、が個別に複数段階で制御される。
 駆動回路10[i]において、抵抗13の抵抗値は所定の抵抗可変範囲内で複数段階で可変設定され、これに連動して、電流値IVAL[i]は所定の電流可変範囲内で複数段階で可変設定される。駆動回路10[i]において、抵抗13の抵抗値が上記抵抗可変範囲の最小値と一致するときに電流値IVAL[i]は最大化され、抵抗13の抵抗値が増大するにつれ電流値IVAL[i]は減少する。
 抵抗可変範囲の最小値を記号“R13MIN”で表すと、駆動電流ILED[i]の上限値(即ち抵抗13の抵抗値が上記抵抗可変範囲の最小値と一致するときの電流値IVAL[i])は、駆動基準電圧VDREFに依存し、“VDREF/R13MIN”で表される。駆動電流ILED[i]の上限値は、駆動回路10[i]にてDC駆動が行われる場合にあっては常時流れる駆動電流ILED[i]の値の上限そのものを指し、駆動回路10[i]にてPWM駆動が行われる場合にあっては駆動電流ILED[i]が流れているときの駆動電流ILED[i]の瞬時値の上限(即ち御信号SPWM[i]のハイレベル区間における駆動電流ILED[i]の瞬時値の上限)を指す。
 駆動基準電圧生成回路20Aは、駆動電流ILED[i]の上限値を定める駆動基準電圧VDREFの可変設定機能を備える。駆動基準電圧生成回路20Aは、駆動基準電圧発生用の内部抵抗である抵抗100と、基準電流生成回路110と、電流重畳回路120と、カレントミラー回路130と、基準電圧生成部140と、スイッチ150と、を備える。
 基準電流生成回路110は、Nチャネル型MOSFETとして構成されたトランジスタ111と、演算増幅器であるアンプ112と、抵抗113と、備える。トランジスタ111のドレインは、カレントミラー回路130の入力端131に接続され、トランジスタ111のソースは抵抗113を介してグランドに接続される。トランジスタ111のゲートはアンプ112の出力端子に接続される。トランジスタ111のソースと抵抗113との接続ノードはアンプ112の反転入力端子に接続される。アンプ112の非反転入力端子には所定の基準電圧VREF(例えば0.6V)が印加される。このため、トランジスタ111のドレイン及びソース間に、抵抗113の抵抗値と基準電圧VREFの電圧値とで定まる基準電流IREFが流れる。
 電流重畳回路120は、Nチャネル型MOSFETとして構成されたトランジスタ121と、演算増幅器であるアンプ122と、備える。トランジスタ121のドレインはスイッチ150の一端に接続され、スイッチ150の他端はカレントミラー回路130の入力端131に接続される。つまり、トランジスタ121とドレインと入力端131との間にスイッチ150が直列に挿入されている。トランジスタ121のソースはセンス抵抗RSNSを介して端子EXISETに接続される。トランジスタ121のゲートはアンプ122の出力端子に接続される。トランジスタ121のソースはアンプ122の反転入力端子に接続される。アンプ122の非反転入力端子には所定の基準電圧VREFが印加される。
 カレントミラー回路130は、入力端131及び出力端132を有し、入力端131を介して流れる入力側電流IIN_Aをk倍した電流を出力側電流IOUT_Aとして出力端132から出力する。kは任意の実数であり、“k=1”であっても構わない。出力端132は抵抗100の一端に接続され、抵抗100の他端はグランドに接続される。また、出力端132は、駆動回路10[1]~10[n]の夫々のアンプ12の非反転入力端子に接続される。このため、抵抗100に出力側電流IOUT_Aを流すことで抵抗100の両端間にて発生する電圧が駆動基準電圧VDREFとなる。
 基準電圧生成部140は所定の正の直流電圧値を有する基準電圧VREFを生成する。基準電圧生成部140は、回路110及び120間で共用される、回路110及び120の構成要素であると解しても良い。
 モード制御回路30Aは、図4に示される制御回路30の一部であり、データ保持部50に格納されるモード設定値(図6)に基づいてスイッチ150の状態を制御する。この際、“0”又は“1”の値を持つ外部抵抗異常フラグも参照される(詳細は後述)。モード設定値は“1”又は“2”の値を持つ。マイコン2からLEDドライバ1(ここではLEDドライバ1A)に送信されるモード設定信号に基づき、モード設定値が定められる。モード設定値の初期値は“1”であり、LEDドライバ1(ここではLEDドライバ1A)にてモード設定信号が受信されない限り、モード設定値は“1”である。
 モード制御回路30Aは、外部抵抗異常フラグが“0”の値を有している場合において、モード設定値が“1”であるならば回路20AをモードMDA1で動作させ、モード設定値が“2”であるならば回路20AをモードMDA2で動作させる。モード制御回路30Aは、外部抵抗異常フラグが“1”の値を有している場合においては、モード設定値に依らずに回路20AをモードMDA1で動作させる。
 モード制御回路30Aは、回路20AをモードMDA1で動作させる場合にはスイッチ150をオフ状態に保ち、回路20AをモードMDA2で動作させる場合にはスイッチ150をオン状態に保つ。従って、モード制御回路30Aは、モード設定値に基づいてスイッチ150の状態を制御するスイッチ制御回路であるともいえる。
 モードMDA1は、端子EXISETの状態に依らず駆動基準電圧VDREFを生成するモードである。即ち、モードMDA1においては、スイッチ150のオフにより、端子EXISETに対して外部抵抗REX_Aが接続されているか否か、端子EXISETがグランドに短絡されているか否か、端子EXISETに対して何らかの電圧が印加されているか否かに依らず、一定の駆動基準電圧VDREFが生成される。
 モードMDA2は、外部抵抗有り状態にて有意に機能するモードであって、端子EXISETを介して流れる電流(第2モード用電流)に応じて駆動基準電圧VDREFを生成するモードである。
 異常検出回路40Aは図4に示される異常検出回路40の一部である。異常検出回路40Aは、モードMDA2において、センス抵抗RSNSの両端間電圧を検出することを通じ端子EXISETを介して流れる電流IEX_Aの大きさを検出し、その検出結果に基づき電流IEX_Aの異常の有無を検出する。異常検出回路40Aは、モードMDA2において、センス抵抗RSNSの両端間電圧の大きさが所定値(例えば175mV)以上であるときハイレベルの検出結果信号SDET_Aを出力し、それ以外ではローレベルの検出結果信号SDET_Aを出力する。ハイレベルの検出結果信号SDET_Aは電流IEX_Aが過大であることを表している。スイッチ150がオンであるときにおいて端子EXISETがグランドに短絡されたり、端子EXISETに接続される外部抵抗REX_Aの抵抗値が低すぎたりするときに、検出結果信号SDET_Aがハイレベルとなる。検出結果信号SDET_Aはモード制御回路30Aに送られる。尚、モードMDA1における異常検出回路40Aの出力信号(SDET_A)は無効である。
 モード制御回路30Aは外部抵抗異常フラグ(図6参照)の値を管理する。外部抵抗異常フラグの初期値は“0”である。モード制御回路30Aは、モードMDA2において(即ちスイッチ150がオンとされているときに)異常検出回路40Aからハイレベルの検出結果信号SDET_Aを受けると、外部抵抗異常フラグに“1”を設定し、以後、外部抵抗異常フラグの値を“1”に維持する。外部抵抗異常フラグの値が“1”に維持される状況は、LEDドライバ1Aに対する電力供給が遮断されるまで継続する、或いは、MPU2から特定の信号がLEDドライバ1Aに供給されるまで継続する。上述したように、外部抵抗異常フラグが“1”の値を持つとき、回路20Aの動作モードはモード設定値に依らずモードMDA1となる。このため、モードMDA2での動作中に異常検出回路40Aにより異常が有ると検出されたときには(即ち外部抵抗異常フラグに“1”が設定されると)スイッチ150がオンからオフに切り替えられて回路20Aの動作モードがモードMDA2からモードMDA1に移行することになる。
 回路20AがモードMDA1で動作するケースをケースCSA1と称する。ケースCSA1においては、スイッチ150がオフであるため、入力側電流IIN_Aは基準電流IREFと一致する。外部抵抗有り状態において回路20AがモードMDA2で動作するケースをケースCSA2と称する。ケースCSA2では、スイッチ150がオンであるため、入力側電流IIN_Aは、基準電流IREFと、端子EXISET及び外部抵抗REX_Aを通じて流れる電流IEX_Aと、の和となる。故に、ケースCSA2における駆動基準電圧VDREFはケースCSA1における駆動基準電圧VDREFよりも高くなり、結果、各駆動回路10における駆動電流ILED[i]の上限値は、ケースCSA1においてよりもケースCSA2において高くなる。ケースCSA2における駆動電流ILED[i]の上限値は電流IEX_Aの大きさ(従って外部抵抗REX_Aの抵抗値)に依存して定まる。
 以下、LEDドライバ1Aの動作についてまとめる。駆動基準電圧生成回路20Aは、端子EXISETの状態に依らず駆動基準電圧VDREFを生成するモードMDA1、又は、端子EXISETを介する電流IEX_A(第2モード用電流)に応じ駆動基準電圧VDREFを生成するモードMDA2にて、選択的に動作する。
 上述したように、LEDドライバ1Aの外部において端子EXISETとグランドとの間に外部抵抗REX_Aが接続又は非接続とされる。端子EXISET及びグランド間に外部抵抗REX_Aが接続された状態において、回路20AがモードMDA2で動作するとき、回路20Aは、端子EXISETを介して外部抵抗REX_Aに電流IEX_Aを供給し、そのときの電流IEX_Aの大きさに応じて駆動基準電圧VDREFを生成する。この際、端子EXISET及びグランド間に外部抵抗REX_Aが接続された状態において回路20AがモードMDA2で動作するときの駆動基準電圧VDREFは、外部抵抗REX_Aの抵抗値に依存して、モードMDA1における駆動基準電圧VDREFよりも高く、駆動回路10[i]は駆動基準電圧VDREFの増大に伴って駆動電流ILED[i]の上限値を増大させる。これにより、モードMDA2にて駆動電流ILED[i]の上限値を増大させることができる。
 駆動基準電圧生成回路20Aは、モードMDA1及びモードMDA2にて共通に基準電流IREFを生成する基準電流生成回路110と、モードMDA1及びモードMDA2の内、モードMDA2においてのみ電流IEX_Aを発生させる電流重畳回路120と、入力側電流IIN_Aに比例する出力側電流IOUT_Aを生成するカレントミラー回路130と、を備えて、出力側電流IOUT_Aに比例して駆動基準電圧VDREFを生成する。モードMDA1においては基準電流IREFが入力側電流IIN_Aとされ、モードMDA2においては基準電流IREFと電流IEX_Aとの和が入力側電流IIN_Aとされる。
 駆動基準電圧生成回路20Aは、カレントミラー回路130の入力端131と端子EXISETとの間に直列に挿入されたスイッチ150を備える。LEDドライバ1Aにはスイッチ150を制御するスイッチ制御回路(30A)が更に設けられ、スイッチ制御回路(30A)は、モードMDA1においてスイッチ150をオフとする一方、モードMDA2においてスイッチ150をオンとすることで端子EXISETを介して流れる電流IEX_Aを入力側電流IIN_Aに重畳する。
 異常検出回路40Aは、モードMDA2において端子EXISETを介して流れる電流IEX_Aの大きさに基づき電流IEX_Aの異常の有無を検出する。スイッチ制御回路(30A)は、モードMDA2において異常検出回路40Aにより異常が有ると検出されていないときには(外部抵抗異常フラグの値が“0”であるときには)スイッチ150をオンに保つが、モードMDA2において異常検出回路40Aにより異常が有ると検出されたときには(外部抵抗異常フラグの値が“1”であるときには)スイッチ150をオンからオフに切り替えて回路20Aの動作モードをモードMDA2からモードMDA1に移行させる。
 発光部LLやトランジスタ11の発熱等を考慮すれば、駆動電流ILED[i]に対して適切な上限が定められるべきである。一方において、その上限の設定のために外部抵抗REX_Aが必須となると発光システムSYSの部品点数が増大する。そこで、部品点数の増大を回避すべく、モードMDA1を設けて、外部抵抗REX_Aを必要とすることなく駆動電流ILED[i]に適切な上限を定める。
 しかしながら、発光システムSYSによっては駆動電流ILED[i]の上限増大が要望されることもある。これを考慮し、外部抵抗REX_Aを要するものの当該要望に応えることのできる構成をLEDドライバ1Aにて採用している。外部抵抗REX_Aを接続した上でモードMDA2にて動作させることで駆動電流ILED[i]の上限増大が実現される。このように、発光システムSYSでの要望に合わせ、単一のLEDドライバ1Aを、駆動電流ILED[i]の上限値が第1上限値(例えば60mA)とされるLEDドライバとしても、駆動電流ILED[i]の上限値が第1上限値よりも高い第2上限値(例えば125mA)とされるLEDドライバとしても機能させることができる。つまり、駆動電流の上限に関して高い汎用性を有したLEDドライバを構成することができる。
 但し、モードMDA2にて端子EXISETがグランドに短絡される場合など、電流IEX_Aが大きくなりすぎると、駆動電流ILED[i]の上限値も大きくなりすぎて、発光部LL[i]及びトランジスタ11が過電流状態となる。異常検出回路40Aを設けることで、それらを過電流状態から保護することが可能となる。
 発光システムSYSとして、外部抵抗REX_Aを用いずにモードMDA1にて動作させる第1発光システムと、外部抵抗REX_Aを用いてモードMDA2にて動作させる第2発光システムと、を選択的に実現できる。第1発光システムにおいて、電流重畳回路120の動作は不要である。このため、回路20AがモードMDA1で動作するとき、モード制御回路30Aは、スイッチ150のオフに連動してアンプ122への電力供給を遮断することにより電流重畳回路120の動作を停止させる。このため、第1発光システムとして運用される発光システムSYSにおいて、無駄な電力消費は発生しない。第1発光システムの各電子部品を実装する基板上で、設計によっては端子EXISETがグランドに短絡されたりすることもあるが、モードMDA1で動作する限り、スイッチ150及びトランジスタ121が共にオフとなるので、それらを介したリーク電流は無視できる程度に小さく、問題は生じない。電流重畳回120において、トランジスタ121のゲートとグランドとの間にプルダウン抵抗を設けておいても良い。
<<第2実施例>>
 第2実施例を説明する。第2実施例では第1実施例に適用可能な変形技術を説明する。図7の構成では、単一の抵抗100の両端間電圧(単一の抵抗100の電圧降下)が駆動基準電圧VDREFとして駆動回路10[1]~10[n]の全てに対し共通に供給されているが、LEDドライバ1Aにおいてチャネルごとに駆動基準電圧VDREFを生成するようにしても良い。
 LEDドライバ1Aにおいてチャネルごとに駆動基準電圧VDREFを生成する場合には以下のようにすれば良い。即ち、図9に示す如く、カレントミラー回路130に第1~第nチャネル用の計n個の出力端132を設けておくと共に、駆動基準電圧生成回路20Aに第1~第nチャネル用の計n個の抵抗100を設けておく(図9では“n=2”であると想定されている)。そして、第1~第nチャネル用の出力端132を、夫々、第1~第nチャネル用の抵抗100を介してグランドに接続し、第1~第nチャネル用の出力端132から個別に出力側電流IOUT_Aを出力する。これにより、第1~第nチャネル用の抵抗100において、夫々、第1~第nチャネル用の駆動基準電圧VDREFが発生する。第iチャネルにおける出力端132及び抵抗100間の接続ノードは、駆動回路10[i]中のアンプ12の非反転入力端子に接続される。このため、駆動回路10[1]~10[n](即ち第1~第nチャネル用の駆動回路10)におけるアンプ12の非反転入力端子に対し、夫々、第1~第nチャネル用の駆動基準電圧VDREFが供給される。第1~第nチャネル用の抵抗100の抵抗値は全て共通とされる。
 尚、LEDドライバ1Aにおいて、第1~第nチャネルを2以上のブロックに分割し、ブロックごとに駆動基準電圧VDREFを生成するようにしても構わない。各ブロックは2以上のチャネルから成る。
<<第3実施例>>
 第3実施例を説明する。図10に、第3実施例に係るLEDドライバ1Bの一部構成図を示す。第3実施例ではLEDドライバ1BがLEDドライバ1として用いられる。LEDドライバ1Bは、駆動回路10[1]~10[n]を備えると共に、駆動基準電圧生成回路20として駆動基準電圧生成回路20Bを備え、且つ、モード制御回路30B及び異常検出回路40Bを備える。端子EXISETはLEDドライバ1Bの外部において外部抵抗が接続されうる特定外部端子であり、図11に外部抵抗REX_Bが接続された状態を示す。図11に示す状態では、LEDドライバ1Bの外部に外部抵抗REX_Bが設けられ、外部抵抗REX_Bは端子EXISET及びグランド間に接続されている。外部抵抗REX_Bは、LEDドライバ1Aとは別のディスクリート部品であり、発光システムSYSの構成要素となりうる。図11に示す如く、外部抵抗REX_Bが端子EXISET及びグランド間に接続されている状態を外部抵抗有り状態と称する。図10に示す如く、外部抵抗REX_Bが端子EXISETに接続されずに端子EXISETが開放されている状態を外部抵抗無し状態と称する。
 LEDドライバ1Bにおいて各駆動回路10の内部構成及び動作は、LEDドライバ1Aにおける各駆動回路10の内部構成及び動作と同じである(即ち第1実施例で示した通りである)。駆動回路10及び駆動電流ILEDについて第1実施例で述べた内容は全て第3実施例にも適用される。尚、図10では、図示の煩雑化防止のため、nチャネル分の駆動回路10の内、2つの駆動回路10[1]及び10[2]の内部構成のみが示されている。
 駆動基準電圧生成回路20Bは、駆動電流ILED[i]の上限値を定める駆動基準電圧VDREFの可変設定機能を備える。駆動基準電圧生成回路20Bは、駆動基準電圧発生用の内部抵抗である抵抗200と、基準電流生成回路210と、カレントミラー回路230と、基準電圧生成部240と、スイッチ251及び252と、を備える。
 基準電流生成回路210は、Nチャネル型MOSFETとして構成されたトランジスタ211と、演算増幅器であるアンプ212と、抵抗213と、備える。トランジスタ211のドレインは、カレントミラー回路230の入力端231に接続され、トランジスタ211のソースは抵抗213を介してグランドに接続される。トランジスタ211のゲートはアンプ212の出力端子に接続される。トランジスタ211のソースと抵抗213との接続ノードはアンプ212の反転入力端子に接続される。アンプ212の非反転入力端子には所定の基準電圧VREF(例えば0.6V)が印加される。このため、トランジスタ211のドレイン及びソース間に、抵抗213の抵抗値と基準電圧VREFの電圧値とで定まる基準電流IREFが流れる。
 カレントミラー回路230は、入力端231及び出力端232を有し、入力端231を介して流れる入力側電流IIN_Bをk倍した電流を出力側電流IOUT_Bとして出力端232から出力する。kは任意の実数であり、“k=1”であっても構わない。LEDドライバ1Bにおいて、入力側電流IIN_Bは常に基準電流生成回路210による基準電流IREFと一致する。出力端232はスイッチ251の一端及びスイッチ252の一端に共通接続される。スイッチ251の他端は抵抗200を介してグランドに接続され、スイッチ252の他端は端子EXISETに接続される。また、出力端232は、駆動回路10[1]~10[n]の夫々のアンプ12の非反転入力端子に接続される。
 基準電圧生成部240は所定の正の直流電圧値を有する基準電圧VREFを生成する。基準電圧生成部240は、基準電流生成回路210の構成要素であると解しても良い。
 モード制御回路30Bは、図4に示される制御回路30の一部であり、データ保持部50に格納されるモード設定値(図6)に基づいてスイッチ251及び252の状態を制御する。この際、“0”又は“1”の値を持つ外部抵抗異常フラグも参照される(詳細は後述)。モード設定値は“1”又は“2”の値を持つ。マイコン2からLEDドライバ1(ここではLEDドライバ1B)に送信されるモード設定信号に基づき、モード設定値が定められる。モード設定値の初期値は“1”であり、LEDドライバ1(ここではLEDドライバ1B)にてモード設定信号が受信されない限り、モード設定値は“1”である。
 モード制御回路30Bは、外部抵抗異常フラグが“0”の値を有している場合において、モード設定値が“1”であるならば回路20BをモードMDB1で動作させ、モード設定値が“2”であるならば回路20BをモードMDB2で動作させる。モード制御回路30Bは、外部抵抗異常フラグが“1”の値を有している場合においては、モード設定値に依らずに回路20BをモードMDB1で動作させる。
 モード制御回路30Bは、回路20BをモードMDB1で動作させる場合にはスイッチ251をオン状態に且つスイッチ252をオフ状態に保ち、回路20BをモードMDB2で動作させる場合にはスイッチ251をオフ状態に且つスイッチ252をオン状態に保つ。従って、モード制御回路30Bは、モード設定値に基づいてスイッチ251及び252の状態を制御するスイッチ制御回路であるともいえる。
 モードMDB1は、端子EXISETの状態に依らず駆動基準電圧VDREFを生成するモードである。即ち、モードMDB1においては、スイッチ251のオン且つスイッチ252のオフにより、端子EXISETに対して外部抵抗REX_Bが接続されているか否か、端子EXISETがグランドに短絡されているか否か、端子EXISETに対して何らかの電圧が印加されているか否かに依らず、一定の駆動基準電圧VDREFが生成される。モードMDB1においては、抵抗200に出力側電流IOUT_Bを流すことで抵抗200の両端間にて発生する電圧が駆動基準電圧VDREFとなる。
 モードMDB2は、外部抵抗有り状態にて有意に機能するモードであって、端子EXISETを介して流れる電流(第2モード用電流)に応じて駆動基準電圧VDREFを生成するモードである。モードMDB2においては端子EXISETの電圧が駆動基準電圧VDREFとなり、モードMDB2において端子EXISET及びグランド間に外部抵抗REX_Bが設けられている場合には、外部抵抗REX_Bに出力側電流IOUT_Bを流すことで外部抵抗REX_Bの両端間にて発生する電圧が駆動基準電圧VDREFとなる。
 異常検出回路40Bは図4に示される異常検出回路40の一部である。異常検出回路40Bは、モードMDB2において、端子EXISETの電圧を検出することを通じ、駆動基準電圧VDREFの異常の有無を検出する、換言すれば端子EXISETを介して流れる電流IEX_Bの異常の有無を検出する。異常検出回路40Bは、モードMDB2において、端子EXISETの電圧が所定の正常電圧範囲内に収まるとき、ローレベルの検出結果信号SDET_Bを出力し、端子EXISETの電圧が該正常電圧範囲を逸脱するとき、ハイレベルの検出結果信号SDET_Bを出力する。ここにおける正常電圧範囲は、所定の下限電圧(例えば0.3V)から所定の上限電圧(例えば3.5V)までの電圧範囲である。下限電圧及び上限電圧は正の電圧であり、下限電圧よりも上限電圧の方が高い。ハイレベルの検出結果信号SDET_Bは端子EXISETの電圧が過大又は過少であることを表している。モードMDB2において(即ちスイッチ252がオンであるときにおいて)端子EXISETがグランドに短絡されたり、端子EXISETに接続される外部抵抗REX_Bの抵抗値が低すぎたりするときに、端子EXISETの電圧が上記の下限電圧を下回って検出結果信号SDET_Bがハイレベルとなる。また、モードMDB2において端子EXISETが開放されていたり、端子EXISETに接続される外部抵抗REX_Bの抵抗値が高すぎたりするときに、端子EXISETの電圧が上記の上限電圧を上回って検出結果信号SDET_Bがハイレベルとなる。検出結果信号SDET_Bはモード制御回路30Bに送られる。尚、モードMDB1における異常検出回路40Bの出力信号(SDET_B)は無効である。
 モード制御回路30Bは外部抵抗異常フラグ(図6参照)の値を管理する。外部抵抗異常フラグの初期値は“0”である。モード制御回路30Bは、モードMDB2において(即ちスイッチ251がオフ且つスイッチ252がオンとされているときに)異常検出回路40Bからハイレベルの検出結果信号SDET_Bを受けると、外部抵抗異常フラグに“1”を設定し、以後、外部抵抗異常フラグの値を“1”に維持する。外部抵抗異常フラグの値が“1”に維持される状況は、LEDドライバ1Bに対する電力供給が遮断されるまで継続する、或いは、MPU2から特定の信号がLEDドライバ1Bに供給されるまで継続する。上述したように、外部抵抗異常フラグが“1”の値を持つとき、回路20Bの動作モードはモード設定値に依らずモードMDB1となる。このため、モードMDB2での動作中に異常検出回路40Bにより異常が有ると検出されたときには(即ち外部抵抗異常フラグに“1”が設定されると)スイッチ251がオフからオンへ且つスイッチ252がオンからオフへ切り替えられて回路20Bの動作モードがモードMDB2からモードMDB1に移行することになる。
 回路20BがモードMDB1で動作するケースをケースCSB1と称する。ケースCSB1においては、スイッチ251がオン且つスイッチ252がオフであるため、出力側電流IOUT_Bと抵抗200の各値にて駆動基準電圧VDREFが定まる。外部抵抗有り状態において回路20BがモードMDB2で動作するケースをケースCSB2と称する。ケースCSB2では、スイッチ251がオフ且つスイッチ252がオンであるため、出力側電流IOUT_Bと外部抵抗REX_Bの各値にて駆動基準電圧VDREFが定まる。ケースCSB2において、異常状態を除けば、抵抗200の抵抗値よりも大きな抵抗値を有する外部抵抗REX_Bが用いられる。このため、ケースCSB2における駆動基準電圧VDREFはケースCSB1における駆動基準電圧VDREFよりも高くなり、結果、各駆動回路10における駆動電流ILED[i]の上限値は、ケースCSB1においてよりもケースCSB2において高くなる。ケースCSB2における駆動電流ILED[i]の上限値は外部抵抗REX_Bの抵抗値に依存して定まる。
 以下、LEDドライバ1Bの動作についてまとめる。駆動基準電圧生成回路20Bは、端子EXISETの状態に依らず駆動基準電圧VDREFを生成するモードMDB1、又は、端子EXISETを介する電流IEX_B(第2モード用電流)に応じ駆動基準電圧VDREFを生成するモードMDB2にて、選択的に動作する。
 上述したように、LEDドライバ1Bの外部において端子EXISETとグランドとの間に外部抵抗REX_Bが接続又は非接続とされる。端子EXISET及びグランド間に外部抵抗REX_Bが接続された状態において、回路20BがモードMDB2で動作するとき、回路20Bは、端子EXISETを介して外部抵抗REX_Bに電流IEX_Bを供給し、そのときの外部抵抗REX_Bでの発生電圧に応じて駆動基準電圧VDREFを生成する。この際、端子EXISET及びグランド間に外部抵抗REX_Bが接続された状態において回路20BがモードMDB2で動作するときの駆動基準電圧VDREFは、外部抵抗REX_Bの抵抗値に依存して、モードMDB1における駆動基準電圧VDREFよりも高く、駆動回路10[i]は駆動基準電圧VDREFの増大に伴って駆動電流ILED[i]の上限値を増大させる。これにより、モードMDB2にて駆動電流ILED[i]の上限値を増大させることができる。
 駆動基準電圧生成回路20Bは、入力側電流IIN_Bに比例する出力側電流IOUT_Bを生成するカレントミラー回路230と、内部抵抗である抵抗200と、を備えて、モードMDB1においては出力側電流IOUT_Bを抵抗200に供給することで抵抗200での発生電圧を駆動基準電圧VDREFとして駆動回路10[i]に供給し、モードMDB2においては出力側電流IOUT_Bを電流IEX_Bとして端子EXISETに向けて供給することで端子EXISETでの電圧を駆動基準電圧VDREFとして駆動回路10[i]に供給する。カレントミラー回路230は電流生成回路の例であり、出力側電流IOUT_Bは電流生成回路が生成する所定電流の例である。本発明において、電流生成回路はカレントミラー回路である必要は必ずしも無い。
 駆動基準電圧生成回路20Bは、カレントミラー回路230の出力端232(電流生成回路の出力端)と抵抗200との間に直列に挿入されたスイッチ251と、カレントミラー回路230の出力端232(電流生成回路の出力端)と端子EXISETとの間に直列に挿入されたスイッチ252と、を備える。LEDドライバ1Bにはスイッチ251及びスイッチ252を制御するスイッチ制御回路(30B)が更に設けられる。スイッチ制御回路(30B)は、モードMDB1においてスイッチ251をオン且つスイッチ252をオフとすることで出力側電流IOUT_Bを抵抗200に供給し、モードMDB2においてスイッチ251をオフ且つスイッチ252をオンとすることで出力側電流IOUT_Bを電流IEX_Bとして端子EXISETに向けて供給する。
 また、LEDドライバ1Bは、モードMDB2において端子EXISETでの電圧に基づき駆動基準電圧VDREFの異常の有無を検出する異常検出回路40Bを更に備えている。スイッチ制御回路(30B)は、モードMDB2において異常検出回路40Bにより異常が有ると検出されていないときには(外部抵抗異常フラグの値が“0”であるときには)スイッチ251をオフ且つスイッチ252をオンに保つが、モードMDB2において異常検出回路40Bにより異常が有ると検出されたときには(外部抵抗異常フラグの値が“1”であるときには)スイッチ251をオフからオンに且つスイッチ252をオンからオフに切り替えて回路20Bの動作モードをモードMDB2からモードMDB1に移行させる。
 第3実施例の構成によっても第1実施例の構成と同様の作用及び効果が得られる。つまり、発光システムSYSでの要望に合わせ、単一のLEDドライバ1Bを、駆動電流ILED[i]の上限値が第1上限値とされるLEDドライバとしても、駆動電流ILED[i]の上限値が第1上限値よりも高い第2上限値とされるLEDドライバとしても機能させることができる。つまり、駆動電流の上限に関して高い汎用性を有したLEDドライバを構成することができる。
 但し、モードMDB2にて端子EXISETが短絡又は開放される場合など、駆動基準電圧VDREFが過少又は過大となると、駆動電流ILED[i]の上限値が不適切となる。異常検出回路40Bを設けることで、このような不適切な状態で発光部LL[i]が駆動されることが回避される。
<<第4実施例>>
 第4実施例を説明する。第4実施例では第3実施例に適用可能な変形技術を説明する。図10の構成では、モードMDB1において単一の抵抗200の両端間電圧(単一の抵抗200の電圧降下)が駆動基準電圧VDREFとして駆動回路10[1]~10[n]の全てに対し共通に供給され、モードMDB2において単一の外部抵抗REX_Bの両端間電圧(単一の外部抵抗REX_Bの電圧降下)が駆動基準電圧VDREFとして駆動回路10[1]~10[n]の全てに対し共通に供給されているが、LEDドライバ1Bにおいてチャネルごとに駆動基準電圧VDREFを生成するようにしても良い。
 LEDドライバ1Bにおいてチャネルごとに駆動基準電圧VDREFを生成する場合には以下のようにすれば良い。即ち、図12に示す如く、カレントミラー回路230に第1~第nチャネル用の計n個の出力端232を設けておくと共に、抵抗200、スイッチ251、スイッチ252及び端子EXISETの組をn組分、駆動基準電圧生成回路20Bに設けておく(図12では“n=2”であると想定されている)。第i番目の組における抵抗200、スイッチ251、スイッチ252及び端子EXISETは、第iチャネル用(換言すれば駆動回路10[i]用)の抵抗200、スイッチ251、スイッチ252及び端子EXISETである。
 そして、第1~第nチャネル用の出力端232を、夫々、第1~第nチャネル用のスイッチ251を介して第1~第nチャネル用の抵抗200の一端に接続する。第1~第nチャネル用の抵抗200の他端は全てグランドに接続される。第1~第nチャネル用の抵抗200の抵抗値は全て共通とされる。また、第1~第nチャネル用の出力端232を、夫々、第1~第nチャネル用のスイッチ252を介して第1~第nチャネル用の端子EXISETに接続する。
 モード制御回路30Bは、回路20BをモードMDB1で動作させる場合には第1~第nチャネル用のスイッチ251をオン且つ第1~第nチャネル用のスイッチ252をオフとし、回路20BをモードMDB2で動作させる場合には第1~第nチャネル用のスイッチ251をオフ且つ第1~第nチャネル用のスイッチ252をオンとする。回路20BがモードMDB2で動作する場合、LEDドライバ1Bの外部において、第1~第nチャネル用の端子EXISETとグランドとの間に、夫々、第1~第nチャネル用の外部抵抗REX_Bが接続される(図12において外部抵抗REX_Bの図示を省略)。
 これにより、モードMDB1では第1~第nチャネル用の抵抗200において、夫々、第1~第nチャネル用の駆動基準電圧VDREFが発生する。モードMDB2では、第1~第nチャネル用の端子EXISETの電圧(即ち第1~第nチャネル用の外部抵抗REX_Bでの発生電圧)が、夫々、第1~第nチャネル用の駆動基準電圧VDREFとなる。駆動回路10[1]~10[n](即ち第1~第nチャネル用の駆動回路10)におけるアンプ12の非反転入力端子は、夫々、第1~第nチャネル用の出力232に接続される。これにより、駆動回路10[1]~10[n]におけるアンプ12の非反転入力端子に対し、夫々、第1~第nチャネル用の駆動基準電圧VDREFが供給される。
 図12に示すように、抵抗200、スイッチ251、スイッチ252及び端子EXISETの組がチャネルごとに設けられる場合にあっては、チャネルごとにモード設定を行うことも可能である。即ち例えば、第1チャネルに対してはモードMDB1を適用し(即ち第1チャネル用のスイッチ251、252を夫々オン、オフとし)、第2チャネルに対してはモードMDB2を適用する(即ち第2チャネル用のスイッチ251、252を夫々オフ、オンとする)、といったことも可能である。
 尚、LEDドライバ1Bにおいて、第1~第nチャネルを2以上のブロックに分割し、ブロックごとに駆動基準電圧VDREFを生成するようにしても構わない。各ブロックは2以上のチャネルから成る。
<<第5実施例>>
 第5実施例を説明する。発光システムSYSは自動車等の車両に搭載されて良い。この場合、車両に設けられた任意の照明装置を発光システムSYSにて構成することができる。発光システムSYSを用いて構成される照明装置は、車両のヘッドランプ、テールランプ、ブレーキランプ(ストップランプ)、方向指示器など、車両に搭載される照明装置であれば任意である。
 例えば、発光システムSYSを用いて車両のブレーキランプを構成する場合において、当該ブレーキランプの輝度を高めるために、第1~第4実施例の何れかで示したモードMDA2又はMDB2が利用されることを考える。この場合において、端子EXISETの部分に何らかの異常が発生したことにより、異常検出回路40A又は40Bからハイレベルの検出結果信号SDET_A又はSDET_Bが出力されたとする。上記異常があった場合、モードMDA2又はMDB2にて駆動基準電圧VDREFを設定し続けることは不適切となる。但し、端子EXISETの部分に異常があるからといって、駆動電流ILED[i]を完全にゼロにすることは好ましいとは言えず、ブレーキングが行われたならば、本来の輝度から低下したとしても発光システムSYSによるブレーキランプの点灯を行った方が、安全上、好ましい。
 このため、第1及び第2実施例に係るLEDドライバ1Aでは、モードMDA2にてハイレベルの検出結果信号SDET_Aが導出されたならば、回路20Aの動作モードをモードMDA2からモードMDA1に切り替えて発光部LL[i]への駆動電流ILED[i]の供給を継続可能としている。第3及び第4実施例に係るLEDドライバ1Bについても同様である。
<<第6実施例>>
 第6実施例を説明する。図7等に示されるLEDドライバ1Aにおいて、モードMDA2にてハイレベルの検出結果信号SDET_Aが導出されて外部抵抗異常フラグの値が“1”とされたとき、シャットダウン処理が行われるようにしても良い。同様に、図10等に示されるLEDドライバ1Bにおいて、モードMDB2にてハイレベルの検出結果信号SDET_Bが導出されて外部抵抗異常フラグの値が“1”とされたとき、シャットダウン処理が行われるようにしても良い。シャットダウン処理は、制御回路30の制御の下で駆動回路10[1]~10[n]により実現される。シャットダウン処理では、制御回路30の制御の下、駆動設定データ(図6参照)に依らず駆動回路10[1]~10[n]のトランジスタ11を全てオフ状態に固定することで、駆動電流ILED[1]~ILED[n]を全てゼロに維持する。
 MPU2からLEDドライバ1A又は1Bに供給される信号に基づいてシャットダウン処理の実行有無が切り替え可能であっても良い。例えば、データ保持部50内にシャットダウン設定値が格納され、MPU2からLEDドライバ1A又は1Bに供給される信号に基づき、シャットダウン設定値が“0”又は“1”に設定される。LEDドライバ1A又は1Bにおいて、外部抵抗異常フラグの値が“1”とされたとき、制御回路30はシャットダウン設定値の値を参照し、シャットダウン設定値が“0”であるならば第1又は第3実施例に示した動作が行われるよう回路20A又は20Bを制御し、シャットダウン設定値が“1”であるならばシャットダウン処理を行う。
<<第7実施例>>
 第7実施例を説明する。図7等に示されるLEDドライバ1Aにおいて、モードMDA2にてハイレベルの検出結果信号SDET_Aが導出されたとき、異常検出回路40Aを含む異常検出回路40は、原則としてハイレベルとされる端子FAILBのレベルを、プルアップ抵抗RPUと協働してローレベルとする(図1、図4参照)。同様に、図10等に示されるLEDドライバ1Bにおいて、モードMDB2にてハイレベルの検出結果信号SDET_Bが導出されたとき、異常検出回路40Bを含む異常検出回路40は、原則としてハイレベルとされる端子FAILBのレベルを、プルアップ抵抗RPUと協働してローレベルとする(図1、図4参照)。
 MPU2は、端子FAILBのレベルと一致する配線3のレベルを監視することで、LEDドライバ1に関わる異常の有無を判断できる。MPU2は配線3のレベルがローレベルであることを認知すると、通信用配線4を介しLEDドライバ1(1A又は1B)に対し、データ保持部50内のデータを送信するよう要求することができる。ここで送信が要求されるデータには、上述の外部抵抗異常フラグが含まれる他、温度異常の発生有無を表す温度異常フラグ、及び、入力電圧VINの異常の発生有無を表す入力電圧異常フラグなどが含まれる。MPU2はLEDドライバ1から受信したデータに基づき、LEDドライバ1にてどのような異常が検出されたのかを認識することができる。
<<第8実施例>>
 第8実施例を説明する。駆動基準電圧生成回路20(20A又は20B)の動作モードがモード設定値により設定されることを想定したが、回路20(20A又は20B)の動作モードは、モード設定用の外部端子の電圧に基づいて設定されても良い。この場合、以下のようにすれば良い。
 LEDドライバ1(1A又は1B)に設けられる複数の外部端子の中に、モード設定用の外部端子を含めておく。
 そして、図7のモード制御回路30Aは、モード設定用の外部端子の電圧に応じて回路20Aの動作モードをモードMDA1又はMDA2に設定する。例えば、モード設定用の外部端子の電圧値を所定値を境界にしてローレベル及びハイレベルに二値化する。そして、モード設定用の外部端子の電圧値がローレベルであるとき、回路20Aの動作モードをモードMDA1とし、モード設定用の外部端子の電圧値がハイレベルであるとき、回路20Aの動作モードをモードMDA2とする(或いは、その逆であっても良い)。
 同様に、図10のモード制御回路30Bは、モード設定用の外部端子の電圧に応じて回路20Bの動作モードをモードMDB1又はMDB2に設定する。例えば、モード設定用の外部端子の電圧値を所定値を境界にしてローレベル及びハイレベルに二値化する。そして、モード設定用の外部端子の電圧値がローレベルであるとき、回路20Bの動作モードをモードMDB1とし、モード設定用の外部端子の電圧値がハイレベルであるとき、回路20Bの動作モードをモードMDB2とする(或いは、その逆であっても良い)。
 但し、モードMDA2又はMDB2にてハイレベルの検出結果信号SDET_A又はSDET_Bが導出されて外部抵抗異常フラグの値が“1”とされたときの取り扱いは、上述の何れかの実施例で示した通りとされて良い。
<<第9実施例>>
 第9実施例を説明する。
 既に述べた事項であるが、LEDドライバ1におけるチャネル数、即ち、nの値は“1”であっても良い。“n=1”である場合、上述のチャネル番号を示す記号“[i]”は全て“[1]”を表す。
 発光部LLは電流供給により発光する1以上の発光素子から成る。発光素子としてのLEDは、任意の種類の発光ダイオードであって良く、有機EL(有機エレクトロルミネッセンス)を実現する有機LEDでも良い。また、発光素子はLEDに分類されないものでもよく、例えば、レーザダイオードであっても良い。
 本実施形態においてLEDドライバとして具現化された発光素子駆動装置及び発光システムSYSは、車載用途に限らず、液晶表示パネルのバックライト用途や、レーザダイオードを使用したLIDAR(Laser Imaging Detection and Ranging)システム、ヘッドアップディスプレイなど、様々な用途に利用可能である。
 任意の信号又は電圧に関して、上述の主旨を損なわない形で、それらのハイレベルとローレベルの関係を逆にしても良い。
 各実施形態に示されたFET(電界効果トランジスタ)のチャネルの種類は例示であり、Nチャネル型のFETがPチャネル型のFETに変更されるように、或いは、Pチャネル型のFETがNチャネル型のFETに変更されるように、FETを含む回路の構成は変形され得る。
 不都合が生じない限り、上述の任意のトランジスタは、任意の種類のトランジスタであって良い。例えば、MOSFETとして上述された任意のトランジスタを、不都合が生じない限り、接合型FET、IGBT(Insulated Gate Bipolar Transistor)又はバイポーラトランジスタに置き換えることも可能である。任意のトランジスタは第1電極、第2電極及び制御電極を有する。FETにおいては、第1及び第2電極の内の一方がドレインで他方がソースであり且つ制御電極がゲートである。IGBTにおいては、第1及び第2電極の内の一方がコレクタで他方がエミッタであり且つ制御電極がゲートである。IGBTに属さないバイポーラトランジスタにおいては、第1及び第2電極の内の一方がコレクタで他方がエミッタであり且つ制御電極がベースである。
 本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本発明の実施形態の例であって、本発明ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。
 LL 発光部
SYS 発光システム
  1、1A、1B LEDドライバ
  2 MPU
 10、10[i] 駆動回路
 20、20A、20B 駆動基準電圧生成回路
 30 制御回路
 40 異常検出回路
 50 データ保持部
 60 内部電圧生成回路
110 基準電流生成回路
120 電流重畳回路
130 カレントミラー回路
150 スイッチ
EX_A 外部抵抗
210 基準電流生成回路
230 カレントミラー回路
251、252 スイッチ
EX_B 外部抵抗

Claims (12)

  1.  1以上の発光素子から成る発光部に可変の駆動電流を流すことで前記発光部を発光させる駆動回路と、
     前記駆動電流の上限値を定める駆動基準電圧を生成して前記駆動回路に供給する駆動基準電圧生成回路と、
     特定外部端子と、を備えた発光素子駆動装置であって、
     前記駆動基準電圧生成回路は、前記特定外部端子の状態に依らず前記駆動基準電圧を生成する第1モード、又は、前記特定外部端子を介する第2モード用電流に応じ前記駆動基準電圧を生成する第2モードにて、選択的に動作する
    ことを特徴とする発光素子駆動装置。
  2.  前記発光素子駆動装置の外部において前記特定外部端子とグランドとの間に外部抵抗が接続又は非接続とされる
    ことを特徴とする請求項1に記載の発光素子駆動装置。
  3.  前記特定外部端子及び前記グランド間に前記外部抵抗が接続された状態において、前記駆動基準電圧生成回路が前記第2モードで動作するとき、前記駆動基準電圧生成回路は、前記特定外部端子を介して前記外部抵抗に前記第2モード用電流を供給し、前記第2モード用電流の大きさに応じて又は前記外部抵抗での発生電圧に応じて前記駆動基準電圧を生成する
    ことを特徴とする請求項2に記載の発光素子駆動装置。
  4.  前記特定外部端子及び前記グランド間に前記外部抵抗が接続された状態において前記駆動基準電圧生成回路が前記第2モードで動作するとき、前記駆動基準電圧は、前記外部抵抗の抵抗値に依存して、前記第1モードにおける前記駆動基準電圧よりも高く、
     前記駆動回路は、前記駆動基準電圧の増大に伴って前記駆動電流の上限値を増大させる
    ことを特徴とする請求項3に記載の発光素子駆動装置。
  5.  前記駆動基準電圧生成回路は、
     前記第1モード及び前記第2モードにて共通に基準電流を生成する基準電流生成回路と、
     前記第1モード及び前記第2モードの内、前記第2モードにおいてのみ前記第2モード用電流を発生させる電流重畳回路と、
     入力側電流に比例する出力側電流を生成するカレントミラー回路と、を備えて、前記出力側電流に比例して前記駆動基準電圧を生成し、
     前記第1モードにおいては前記基準電流が前記入力側電流とされ、前記第2モードにおいては前記基準電流と前記第2モード用電流との和が前記入力側電流とされる
    ことを特徴とする請求項1~4の何れかに記載の発光素子駆動装置。
  6.  前記駆動基準電圧生成回路は、前記カレントミラー回路の入力端と前記特定外部端子との間に直列に挿入されたスイッチを備え、
     当該発光素子駆動装置には前記スイッチを制御するスイッチ制御回路が更に設けられ、
     前記スイッチ制御回路は、前記第1モードにおいて前記スイッチをオフとし、前記第2モードにおいて前記スイッチをオンとすることで前記特定外部端子を介して流れる前記第2モード用電流を前記入力側電流に重畳する
    ことを特徴とする請求項5に記載の発光素子駆動装置。
  7.  前記第2モードにおいて前記特定外部端子を介して流れる前記第2モード用電流の大きさに基づき前記第2モード用電流の異常の有無を検出する異常検出回路を更に備え、
     前記スイッチ制御回路は、前記第2モードにおいて前記異常検出回路により前記異常が有ると検出されていないときには前記スイッチをオンに保つが、前記第2モードにおいて前記異常検出回路により前記異常が有ると検出されたときには前記スイッチをオンからオフに切り替えて前記駆動基準電圧生成回路の動作モードを前記第2モードから前記第1モードに移行させる
    ことを特徴とする請求項6に記載の発光素子駆動装置。
  8.  前記駆動基準電圧生成回路は、所定電流を生成する電流生成回路と、内部抵抗と、を備えて、
     前記第1モードにおいては前記所定電流を前記内部抵抗に供給することで前記内部抵抗での発生電圧を前記駆動基準電圧として前記駆動回路に供給し、
     前記第2モードにおいては前記所定電流を前記第2モード用電流として前記特定外部端子に向けて供給することで前記特定外部端子にて発生した電圧を前記駆動基準電圧として前記駆動回路に供給する
    ことを特徴とする請求項1~4の何れかに記載の発光素子駆動装置。
  9.  前記駆動基準電圧生成回路は、
     前記電流生成回路の出力端と前記内部抵抗との間に直列に挿入された第1スイッチと、
     前記電流生成回路の出力端と前記特定外部端子との間に直列に挿入された第2スイッチと、を備え、
     当該発光素子駆動装置には前記第1スイッチ及び前記第2スイッチを制御するスイッチ制御回路が更に設けられ、
     前記スイッチ制御回路は、前記第1モードにおいて前記第1スイッチをオン且つ前記第2スイッチをオフとすることで前記所定電流を前記内部抵抗に供給し、前記第2モードにおいて前記第1スイッチをオフ且つ前記第2スイッチをオンとすることで前記所定電流を前記第2モード用電流として前記特定外部端子に向けて供給する
    ことを特徴とする請求項8に記載の発光素子駆動装置。
  10.  前記第2モードにおいて前記特定外部端子での電圧に基づき前記駆動基準電圧の異常の有無を検出する異常検出回路を更に備え、
     前記スイッチ制御回路は、前記第2モードにおいて前記異常検出回路により前記異常が有ると検出されていないときには前記第1スイッチをオフ且つ前記第2スイッチをオンに保つが、前記第2モードにおいて前記異常検出回路により前記異常が有ると検出されたときには前記第1スイッチをオフからオンに且つ前記第2スイッチをオンからオフに切り替えて前記駆動基準電圧生成回路の動作モードを前記第2モードから前記第1モードに移行させる
    ことを特徴とする請求項9に記載の発光素子駆動装置。
  11.  前記駆動回路は、複数チャネル分設けられ、
     前記駆動基準電圧生成回路は、各チャネルに対して前記駆動基準電圧を生成する
    ことを特徴とする請求項1~10の何れかに記載の発光素子駆動装置。
  12.  請求項1~11の何れかに記載の発光素子駆動装置と、
     前記発光素子駆動装置により駆動制御される発光部と、を備えた
    ことを特徴とする発光システム。
PCT/JP2020/037020 2020-03-12 2020-09-29 発光素子駆動装置及び発光システム WO2021181733A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/910,148 US11871492B2 (en) 2020-03-12 2020-09-29 Light emitting element drive device and light emitting system
DE112020006872.2T DE112020006872T5 (de) 2020-03-12 2020-09-29 Treibervorrichtung für ein lichtemittierendes element und lichtemittierendes system
JP2022505745A JPWO2021181733A1 (ja) 2020-03-12 2020-09-29
CN202080098426.9A CN115245052A (zh) 2020-03-12 2020-09-29 发光元件驱动装置和发光系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020043069 2020-03-12
JP2020-043069 2020-03-12

Publications (1)

Publication Number Publication Date
WO2021181733A1 true WO2021181733A1 (ja) 2021-09-16

Family

ID=77671513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037020 WO2021181733A1 (ja) 2020-03-12 2020-09-29 発光素子駆動装置及び発光システム

Country Status (5)

Country Link
US (1) US11871492B2 (ja)
JP (1) JPWO2021181733A1 (ja)
CN (1) CN115245052A (ja)
DE (1) DE112020006872T5 (ja)
WO (1) WO2021181733A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114316A (ja) * 2010-11-26 2012-06-14 Renesas Electronics Corp 半導体集積回路およびその動作方法
JP2019071211A (ja) * 2017-10-10 2019-05-09 セイコーエプソン株式会社 発光制御回路、光源装置、及び、投写型映像表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044081A (ja) * 2007-08-10 2009-02-26 Rohm Co Ltd 駆動装置
US10938303B2 (en) * 2007-08-10 2021-03-02 Rohm Co., Ltd. Driving device
JP4985669B2 (ja) 2009-02-05 2012-07-25 株式会社デンソー 発光ダイオード駆動回路
DE102018111729A1 (de) * 2017-05-19 2018-11-22 Panasonic Intellectual Property Management Co., Ltd. Beleuchtungsvorrichtung, Leuchte und Anzeigetafel
US10652962B1 (en) * 2019-06-27 2020-05-12 Lumileds Llc Dim-to-warm LED circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114316A (ja) * 2010-11-26 2012-06-14 Renesas Electronics Corp 半導体集積回路およびその動作方法
JP2019071211A (ja) * 2017-10-10 2019-05-09 セイコーエプソン株式会社 発光制御回路、光源装置、及び、投写型映像表示装置

Also Published As

Publication number Publication date
CN115245052A (zh) 2022-10-25
JPWO2021181733A1 (ja) 2021-09-16
DE112020006872T5 (de) 2022-12-29
US20230099245A1 (en) 2023-03-30
US11871492B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
US8063585B2 (en) Power supply system and method for the operation of an electrical load
US7710049B2 (en) Driver and method for driving LEDS on multiple branch circuits
US5796276A (en) High-side-driver gate drive circuit
US20130038819A1 (en) Driving circuit for light emitting element, light emitting device using same, and display apparatus
EP2410820B1 (en) Semiconductor light source lighting circuit and control method
CN104798306B (zh) 用于操控场效应晶体管的装置
US8476838B2 (en) Light source lighting circuit and lamp system for vehicle
US8471493B2 (en) Combination LED driver
US8686783B2 (en) Level shifter and boost driving circuit
KR101243144B1 (ko) Lcd 패널용 led 드라이버의 구동회로
US20160381773A1 (en) Semiconductor light source driving apparatus
CN113412683B (zh) 具有高效率及高可靠性的车辆照明用led系统
TWI397044B (zh) 背光模組控制系統及其控制方法
WO2021181733A1 (ja) 発光素子駆動装置及び発光システム
WO2022153668A1 (ja) 発光素子駆動装置
US10923908B2 (en) Electronic module and motor vehicle and method for limiting an input current during a switch-on process of the module
EP2690773B1 (en) Bypass for on-chip voltage regulator
JP2017034970A (ja) 点灯回路およびそれを用いた車両用灯具
US6661117B2 (en) Load driving system and method thereof
JP4082547B2 (ja) 発光素子の電源供給制御装置
US10492281B2 (en) Selective power supply device for incandescent lamp or light-emitting diode
CN111225478B (zh) 开关组件保护电路
JP2014082226A (ja) 定電流駆動装置およびそれを用いた負荷駆動装置
JP6954845B2 (ja) レベルシフト装置、及びic装置
JP2019204985A (ja) 負荷駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505745

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20923938

Country of ref document: EP

Kind code of ref document: A1